xref: /netbsd-src/external/cddl/osnet/dist/tools/ctf/cvt/merge.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains routines that merge one tdata_t tree, called the child,
30  * into another, called the parent.  Note that these names are used mainly for
31  * convenience and to represent the direction of the merge.  They are not meant
32  * to imply any relationship between the tdata_t graphs prior to the merge.
33  *
34  * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35  * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36  * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37  * clean up loose ends.
38  *
39  * The algorithm is as follows:
40  *
41  * 1. Mapping iidesc_t nodes
42  *
43  * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44  * against the tdesc_t graph in the parent.  For each node in the child subgraph
45  * that exists in the parent, a mapping between the two (between their type IDs)
46  * is established.  For the child nodes that cannot be mapped onto existing
47  * parent nodes, a mapping is established between the child node ID and a
48  * newly-allocated ID that the node will use when it is re-created in the
49  * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50  * Added) hash, which tracks nodes that need to be created in the parent.
51  *
52  * If all of the nodes in the subgraph for an iidesc_t in the child can be
53  * mapped to existing nodes in the parent, then we can try to map the child
54  * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55  * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56  * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57  * list tracks iidesc_t nodes that are to be created in the parent.
58  *
59  * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60  * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61  * may be a structure or union definition in the child with the same name as the
62  * forward declaration in the parent.  If we find such a node, we record an
63  * association in the md_fdida (Forward => Definition ID Association) list
64  * between the parent ID of the forward declaration and the ID that the
65  * definition will use when re-created in the parent.
66  *
67  * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68  *
69  * We have now attempted to map all tdesc_t nodes from the child into the
70  * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71  * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72  * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73  * node, conjuring requires two steps - the copying of the common tdesc_t data
74  * (name, type, etc) from the child node, and the creation of links from the
75  * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76  * to by node being conjured.  Note that in some cases, the targets of these
77  * links will be on the md_tdtba hash themselves, and may not have been created
78  * yet.  As such, we can't establish the links from these new nodes into the
79  * parent graph.  We therefore conjure them with links to nodes in the *child*
80  * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81  * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82  * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83  *
84  * 3. Creating new iidesc_t nodes (the md_iitba list)
85  *
86  * When we have completed step 2, all tdesc_t nodes have been created (or
87  * already existed) in the parent.  Some of them may have incorrect links (the
88  * members of the md_tdtbr list), but they've all been created.  As such, we can
89  * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90  * pointers correctly.  We create each node, and attach the pointers to the
91  * appropriate parts of the parent tdesc_t graph.
92  *
93  * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94  *
95  * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96  * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97  * the parent will be established.  As saved in the md_tdtbr list, these
98  * pointers point into the child tdesc_t subgraph.  We can thus get the target
99  * type ID from the child, look at the ID mapping to determine the desired link
100  * target, and redirect the link accordingly.
101  *
102  * 5. Parent => child forward declaration resolution
103  *
104  * If entries were made in the md_fdida list in step 1, we have forward
105  * declarations in the parent that need to be resolved to their definitions
106  * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107  * the definition for the forward declaration, and we can redirect all inbound
108  * edges to the forward declaration node to the actual definition.
109  *
110  * A pox on the house of anyone who changes the algorithm without updating
111  * this comment.
112  */
113 
114 #if HAVE_NBTOOL_CONFIG_H
115 # include "nbtool_config.h"
116 #endif
117 
118 #include <stdio.h>
119 #include <strings.h>
120 #include <assert.h>
121 #include <pthread.h>
122 
123 #include "ctf_headers.h"
124 #include "ctftools.h"
125 #include "list.h"
126 #include "alist.h"
127 #include "memory.h"
128 #include "traverse.h"
129 
130 typedef struct equiv_data equiv_data_t;
131 typedef struct merge_cb_data merge_cb_data_t;
132 
133 /*
134  * There are two traversals in this file, for equivalency and for tdesc_t
135  * re-creation, that do not fit into the tdtraverse() framework.  We have our
136  * own traversal mechanism and ops vector here for those two cases.
137  */
138 typedef struct tdesc_ops {
139 	const char *name;
140 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
141 	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
142 } tdesc_ops_t;
143 extern tdesc_ops_t tdesc_ops[];
144 
145 /*
146  * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
147  * processed during various phases of the merge algorithm.
148  */
149 struct merge_cb_data {
150 	tdata_t *md_parent;
151 	tdata_t *md_tgt;
152 	alist_t *md_ta;		/* Type Association */
153 	alist_t *md_fdida;	/* Forward -> Definition ID Association */
154 	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
155 	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
156 	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
157 	int md_flags;
158 }; /* merge_cb_data_t */
159 
160 /*
161  * When we first create a tdata_t from stabs data, we will have duplicate nodes.
162  * Normal merges, however, assume that the child tdata_t is already self-unique,
163  * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
164  * the merge algorithm will self-uniquify by avoiding the insertion of
165  * duplicates in the md_tdtdba list.
166  */
167 #define	MCD_F_SELFUNIQUIFY	0x1
168 
169 /*
170  * When we merge the CTF data for the modules, we don't want it to contain any
171  * data that can be found in the reference module (usually genunix).  If this
172  * flag is set, we're doing a merge between the fully merged tdata_t for this
173  * module and the tdata_t for the reference module, with the data unique to this
174  * module ending up in a third tdata_t.  It is this third tdata_t that will end
175  * up in the .SUNW_ctf section for the module.
176  */
177 #define	MCD_F_REFMERGE	0x2
178 
179 /*
180  * Mapping of child type IDs to parent type IDs
181  */
182 
183 static void
184 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
185 {
186 	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
187 
188 	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
189 	assert(srcid != 0 && tgtid != 0);
190 
191 	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
192 }
193 
194 static tid_t
195 get_mapping(alist_t *ta, int srcid)
196 {
197 	void *ltgtid;
198 
199 	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
200 		return ((uintptr_t)ltgtid);
201 	else
202 		return (0);
203 }
204 
205 /*
206  * Determining equivalence of tdesc_t subgraphs
207  */
208 
209 struct equiv_data {
210 	alist_t *ed_ta;
211 	tdesc_t *ed_node;
212 	tdesc_t *ed_tgt;
213 
214 	int ed_clear_mark;
215 	int ed_cur_mark;
216 	int ed_selfuniquify;
217 }; /* equiv_data_t */
218 
219 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
220 
221 /*ARGSUSED2*/
222 static int
223 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
224 {
225 	intr_t *si = stdp->t_intr;
226 	intr_t *ti = ttdp->t_intr;
227 
228 	if (si->intr_type != ti->intr_type ||
229 	    si->intr_signed != ti->intr_signed ||
230 	    si->intr_offset != ti->intr_offset ||
231 	    si->intr_nbits != ti->intr_nbits)
232 		return (0);
233 
234 	if (si->intr_type == INTR_INT &&
235 	    si->intr_iformat != ti->intr_iformat)
236 		return (0);
237 	else if (si->intr_type == INTR_REAL &&
238 	    si->intr_fformat != ti->intr_fformat)
239 		return (0);
240 
241 	return (1);
242 }
243 
244 static int
245 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
246 {
247 	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
248 }
249 
250 static int
251 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
252 {
253 	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
254 	int i;
255 
256 	if (fn1->fn_nargs != fn2->fn_nargs ||
257 	    fn1->fn_vargs != fn2->fn_vargs)
258 		return (0);
259 
260 	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
261 		return (0);
262 
263 	for (i = 0; i < (int) fn1->fn_nargs; i++) {
264 		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
265 			return (0);
266 	}
267 
268 	return (1);
269 }
270 
271 static int
272 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
273 {
274 	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
275 
276 	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
277 	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
278 		return (0);
279 
280 	if (ar1->ad_nelems != ar2->ad_nelems)
281 		return (0);
282 
283 	return (1);
284 }
285 
286 static int
287 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
288 {
289 	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
290 	mlist_t *olm1 = NULL;
291 
292 	while (ml1 && ml2) {
293 		if (ml1->ml_offset != ml2->ml_offset ||
294 		    strcmp(ml1->ml_name, ml2->ml_name) != 0)
295 			return (0);
296 
297 		/*
298 		 * Don't do the recursive equivalency checking more than
299 		 * we have to.
300 		 */
301 		if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
302 			if (ml1->ml_size != ml2->ml_size ||
303 			    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
304 				return (0);
305 		}
306 
307 		olm1 = ml1;
308 		ml1 = ml1->ml_next;
309 		ml2 = ml2->ml_next;
310 	}
311 
312 	if (ml1 || ml2)
313 		return (0);
314 
315 	return (1);
316 }
317 
318 /*ARGSUSED2*/
319 static int
320 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
321 {
322 	elist_t *el1 = stdp->t_emem;
323 	elist_t *el2 = ttdp->t_emem;
324 
325 	while (el1 && el2) {
326 		if (el1->el_number != el2->el_number ||
327 		    strcmp(el1->el_name, el2->el_name) != 0)
328 			return (0);
329 
330 		el1 = el1->el_next;
331 		el2 = el2->el_next;
332 	}
333 
334 	if (el1 || el2)
335 		return (0);
336 
337 	return (1);
338 }
339 
340 /*ARGSUSED*/
341 static int
342 equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
343 {
344 	/* foul, evil, and very bad - this is a "shouldn't happen" */
345 	assert(1 == 0);
346 
347 	return (0);
348 }
349 
350 static int
351 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
352 {
353 	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
354 
355 	return (defn->t_type == STRUCT || defn->t_type == UNION);
356 }
357 
358 static int
359 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
360 {
361 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
362 	int mapping;
363 
364 	if (ctdp->t_emark > ed->ed_clear_mark ||
365 	    mtdp->t_emark > ed->ed_clear_mark)
366 		return (ctdp->t_emark == mtdp->t_emark);
367 
368 	/*
369 	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
370 	 * checking on a subgraph that has already been checked.  If a mapping
371 	 * has already been established for a given child node, we can simply
372 	 * compare the mapping for the child node with the ID of the parent
373 	 * node.  If we are in self-uniquify mode, then we're comparing two
374 	 * subgraphs within the child graph, and thus need to ignore any
375 	 * type mappings that have been created, as they are only valid into the
376 	 * parent.
377 	 */
378 	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
379 	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
380 		return (1);
381 
382 	if (!streq(ctdp->t_name, mtdp->t_name))
383 		return (0);
384 
385 	if (ctdp->t_type != mtdp->t_type) {
386 		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
387 			return (fwd_equiv(ctdp, mtdp));
388 		else
389 			return (0);
390 	}
391 
392 	ctdp->t_emark = ed->ed_cur_mark;
393 	mtdp->t_emark = ed->ed_cur_mark;
394 	ed->ed_cur_mark++;
395 
396 	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
397 		return (equiv(ctdp, mtdp, ed));
398 
399 	return (1);
400 }
401 
402 /*
403  * We perform an equivalency check on two subgraphs by traversing through them
404  * in lockstep.  If a given node is equivalent in both the parent and the child,
405  * we mark it in both subgraphs, using the t_emark field, with a monotonically
406  * increasing number.  If, in the course of the traversal, we reach a node that
407  * we have visited and numbered during this equivalency check, we have a cycle.
408  * If the previously-visited nodes don't have the same emark, then the edges
409  * that brought us to these nodes are not equivalent, and so the check ends.
410  * If the emarks are the same, the edges are equivalent.  We then backtrack and
411  * continue the traversal.  If we have exhausted all edges in the subgraph, and
412  * have not found any inequivalent nodes, then the subgraphs are equivalent.
413  */
414 static int
415 equiv_cb(void *bucket, void *arg)
416 {
417 	equiv_data_t *ed = arg;
418 	tdesc_t *mtdp = bucket;
419 	tdesc_t *ctdp = ed->ed_node;
420 
421 	ed->ed_clear_mark = ed->ed_cur_mark + 1;
422 	ed->ed_cur_mark = ed->ed_clear_mark + 1;
423 
424 	if (equiv_node(ctdp, mtdp, ed)) {
425 		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
426 		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
427 		ed->ed_tgt = mtdp;
428 		/* matched.  stop looking */
429 		return (-1);
430 	}
431 
432 	return (0);
433 }
434 
435 /*ARGSUSED1*/
436 static int
437 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
438 {
439 	merge_cb_data_t *mcd = private;
440 
441 	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
442 		return (0);
443 
444 	return (1);
445 }
446 
447 /*ARGSUSED1*/
448 static int
449 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
450 {
451 	merge_cb_data_t *mcd = private;
452 	equiv_data_t ed;
453 
454 	ed.ed_ta = mcd->md_ta;
455 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
456 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
457 	ed.ed_node = ctdp;
458 	ed.ed_selfuniquify = 0;
459 
460 	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
461 
462 	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
463 	    equiv_cb, &ed) < 0) {
464 		/* We found an equivalent node */
465 		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
466 			int id = mcd->md_tgt->td_nextid++;
467 
468 			debug(3, "Creating new defn type %d <%x>\n", id, id);
469 			add_mapping(mcd->md_ta, ctdp->t_id, id);
470 			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
471 			    (void *)(ulong_t)id);
472 			hash_add(mcd->md_tdtba, ctdp);
473 		} else
474 			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
475 
476 	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
477 	    equiv_cb, &ed) < 0) {
478 		/*
479 		 * We didn't find an equivalent node by looking through the
480 		 * layout hash, but we somehow found it by performing an
481 		 * exhaustive search through the entire graph.  This usually
482 		 * means that the "name" hash function is broken.
483 		 */
484 		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
485 		    tdesc_name(ctdp), ed.ed_tgt->t_id);
486 	} else {
487 		int id = mcd->md_tgt->td_nextid++;
488 
489 		debug(3, "Creating new type %d <%x>\n", id, id);
490 		add_mapping(mcd->md_ta, ctdp->t_id, id);
491 		hash_add(mcd->md_tdtba, ctdp);
492 	}
493 
494 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
495 
496 	return (1);
497 }
498 
499 /*ARGSUSED1*/
500 static int
501 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
502 {
503 	merge_cb_data_t *mcd = private;
504 	equiv_data_t ed;
505 
506 	ed.ed_ta = mcd->md_ta;
507 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
508 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
509 	ed.ed_node = ctdp;
510 	ed.ed_selfuniquify = 1;
511 	ed.ed_tgt = NULL;
512 
513 	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
514 		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
515 		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
516 		add_mapping(mcd->md_ta, ctdp->t_id,
517 		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
518 	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
519 	    equiv_cb, &ed) < 0) {
520 		/*
521 		 * We didn't find an equivalent node using the quick way (going
522 		 * through the hash normally), but we did find it by iterating
523 		 * through the entire hash.  This usually means that the hash
524 		 * function is broken.
525 		 */
526 		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
527 		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
528 		    ed.ed_tgt->t_id);
529 	} else {
530 		int id = mcd->md_tgt->td_nextid++;
531 
532 		debug(3, "Creating new type %d <%x>\n", id, id);
533 		add_mapping(mcd->md_ta, ctdp->t_id, id);
534 		hash_add(mcd->md_tdtba, ctdp);
535 	}
536 
537 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
538 
539 	return (1);
540 }
541 
542 static tdtrav_cb_f map_pre[] = {
543 	NULL,
544 	map_td_tree_pre,	/* intrinsic */
545 	map_td_tree_pre,	/* pointer */
546 	map_td_tree_pre,	/* array */
547 	map_td_tree_pre,	/* function */
548 	map_td_tree_pre,	/* struct */
549 	map_td_tree_pre,	/* union */
550 	map_td_tree_pre,	/* enum */
551 	map_td_tree_pre,	/* forward */
552 	map_td_tree_pre,	/* typedef */
553 	tdtrav_assert,		/* typedef_unres */
554 	map_td_tree_pre,	/* volatile */
555 	map_td_tree_pre,	/* const */
556 	map_td_tree_pre		/* restrict */
557 };
558 
559 static tdtrav_cb_f map_post[] = {
560 	NULL,
561 	map_td_tree_post,	/* intrinsic */
562 	map_td_tree_post,	/* pointer */
563 	map_td_tree_post,	/* array */
564 	map_td_tree_post,	/* function */
565 	map_td_tree_post,	/* struct */
566 	map_td_tree_post,	/* union */
567 	map_td_tree_post,	/* enum */
568 	map_td_tree_post,	/* forward */
569 	map_td_tree_post,	/* typedef */
570 	tdtrav_assert,		/* typedef_unres */
571 	map_td_tree_post,	/* volatile */
572 	map_td_tree_post,	/* const */
573 	map_td_tree_post	/* restrict */
574 };
575 
576 static tdtrav_cb_f map_self_post[] = {
577 	NULL,
578 	map_td_tree_self_post,	/* intrinsic */
579 	map_td_tree_self_post,	/* pointer */
580 	map_td_tree_self_post,	/* array */
581 	map_td_tree_self_post,	/* function */
582 	map_td_tree_self_post,	/* struct */
583 	map_td_tree_self_post,	/* union */
584 	map_td_tree_self_post,	/* enum */
585 	map_td_tree_self_post,	/* forward */
586 	map_td_tree_self_post,	/* typedef */
587 	tdtrav_assert,		/* typedef_unres */
588 	map_td_tree_self_post,	/* volatile */
589 	map_td_tree_self_post,	/* const */
590 	map_td_tree_self_post	/* restrict */
591 };
592 
593 /*
594  * Determining equivalence of iidesc_t nodes
595  */
596 
597 typedef struct iifind_data {
598 	iidesc_t *iif_template;
599 	alist_t *iif_ta;
600 	int iif_newidx;
601 	int iif_refmerge;
602 } iifind_data_t;
603 
604 /*
605  * Check to see if this iidesc_t (node) - the current one on the list we're
606  * iterating through - matches the target one (iif->iif_template).  Return -1
607  * if it matches, to stop the iteration.
608  */
609 static int
610 iidesc_match(void *data, void *arg)
611 {
612 	iidesc_t *node = data;
613 	iifind_data_t *iif = arg;
614 	int i;
615 
616 	if (node->ii_type != iif->iif_template->ii_type ||
617 	    !streq(node->ii_name, iif->iif_template->ii_name) ||
618 	    node->ii_dtype->t_id != iif->iif_newidx)
619 		return (0);
620 
621 	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
622 	    !streq(node->ii_owner, iif->iif_template->ii_owner))
623 		return (0);
624 
625 	if (node->ii_nargs != iif->iif_template->ii_nargs)
626 		return (0);
627 
628 	for (i = 0; i < node->ii_nargs; i++) {
629 		if (get_mapping(iif->iif_ta,
630 		    iif->iif_template->ii_args[i]->t_id) !=
631 		    node->ii_args[i]->t_id)
632 			return (0);
633 	}
634 
635 	if (iif->iif_refmerge) {
636 		switch (iif->iif_template->ii_type) {
637 		case II_GFUN:
638 		case II_SFUN:
639 		case II_GVAR:
640 		case II_SVAR:
641 			debug(3, "suppressing duping of %d %s from %s\n",
642 			    iif->iif_template->ii_type,
643 			    iif->iif_template->ii_name,
644 			    (iif->iif_template->ii_owner ?
645 			    iif->iif_template->ii_owner : "NULL"));
646 			return (0);
647 		case II_NOT:
648 		case II_PSYM:
649 		case II_SOU:
650 		case II_TYPE:
651 			break;
652 		}
653 	}
654 
655 	return (-1);
656 }
657 
658 static int
659 merge_type_cb(void *data, void *arg)
660 {
661 	iidesc_t *sii = data;
662 	merge_cb_data_t *mcd = arg;
663 	iifind_data_t iif;
664 	tdtrav_cb_f *post;
665 
666 	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
667 
668 	/* Map the tdesc nodes */
669 	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
670 	    mcd);
671 
672 	/* Map the iidesc nodes */
673 	iif.iif_template = sii;
674 	iif.iif_ta = mcd->md_ta;
675 	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
676 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
677 
678 	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
679 	    &iif) == 1)
680 		/* successfully mapped */
681 		return (1);
682 
683 	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
684 	    sii->ii_type);
685 
686 	list_add(mcd->md_iitba, sii);
687 
688 	return (0);
689 }
690 
691 static int
692 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
693     merge_cb_data_t *mcd)
694 {
695 	tdesc_t *tgt = NULL;
696 	tdesc_t template;
697 	int oldid = oldtgt->t_id;
698 
699 	if (oldid == selftid) {
700 		*tgtp = newself;
701 		return (1);
702 	}
703 
704 	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
705 		aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
706 
707 	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
708 	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
709 	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
710 	    (void *)&tgt))) {
711 		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
712 		    template.t_id, oldid, oldid);
713 		*tgtp = oldtgt;
714 		list_add(mcd->md_tdtbr, tgtp);
715 		return (0);
716 	}
717 
718 	*tgtp = tgt;
719 	return (1);
720 }
721 
722 static tdesc_t *
723 conjure_template(tdesc_t *old, int newselfid)
724 {
725 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
726 
727 	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
728 	new->t_type = old->t_type;
729 	new->t_size = old->t_size;
730 	new->t_id = newselfid;
731 	new->t_flags = old->t_flags;
732 
733 	return (new);
734 }
735 
736 /*ARGSUSED2*/
737 static tdesc_t *
738 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
739 {
740 	tdesc_t *new = conjure_template(old, newselfid);
741 
742 	new->t_intr = xmalloc(sizeof (intr_t));
743 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
744 
745 	return (new);
746 }
747 
748 static tdesc_t *
749 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
750 {
751 	tdesc_t *new = conjure_template(old, newselfid);
752 
753 	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
754 
755 	return (new);
756 }
757 
758 static tdesc_t *
759 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
760 {
761 	tdesc_t *new = conjure_template(old, newselfid);
762 	fndef_t *nfn = xmalloc(sizeof (fndef_t));
763 	fndef_t *ofn = old->t_fndef;
764 	int i;
765 
766 	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
767 
768 	nfn->fn_nargs = ofn->fn_nargs;
769 	nfn->fn_vargs = ofn->fn_vargs;
770 
771 	if (nfn->fn_nargs > 0)
772 		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
773 
774 	for (i = 0; i < (int) ofn->fn_nargs; i++) {
775 		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
776 		    new, mcd);
777 	}
778 
779 	new->t_fndef = nfn;
780 
781 	return (new);
782 }
783 
784 static tdesc_t *
785 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
786 {
787 	tdesc_t *new = conjure_template(old, newselfid);
788 	ardef_t *nar = xmalloc(sizeof (ardef_t));
789 	ardef_t *oar = old->t_ardef;
790 
791 	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
792 	    mcd);
793 	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
794 	    mcd);
795 
796 	nar->ad_nelems = oar->ad_nelems;
797 
798 	new->t_ardef = nar;
799 
800 	return (new);
801 }
802 
803 static tdesc_t *
804 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
805 {
806 	tdesc_t *new = conjure_template(old, newselfid);
807 	mlist_t *omem, **nmemp;
808 
809 	for (omem = old->t_members, nmemp = &new->t_members;
810 	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
811 		*nmemp = xmalloc(sizeof (mlist_t));
812 		(*nmemp)->ml_offset = omem->ml_offset;
813 		(*nmemp)->ml_size = omem->ml_size;
814 		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
815 		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
816 		    old->t_id, new, mcd);
817 	}
818 	*nmemp = NULL;
819 
820 	return (new);
821 }
822 
823 /*ARGSUSED2*/
824 static tdesc_t *
825 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
826 {
827 	tdesc_t *new = conjure_template(old, newselfid);
828 	elist_t *oel, **nelp;
829 
830 	for (oel = old->t_emem, nelp = &new->t_emem;
831 	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
832 		*nelp = xmalloc(sizeof (elist_t));
833 		(*nelp)->el_name = xstrdup(oel->el_name);
834 		(*nelp)->el_number = oel->el_number;
835 	}
836 	*nelp = NULL;
837 
838 	return (new);
839 }
840 
841 /*ARGSUSED2*/
842 static tdesc_t *
843 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
844 {
845 	tdesc_t *new = conjure_template(old, newselfid);
846 
847 	list_add(&mcd->md_tgt->td_fwdlist, new);
848 
849 	return (new);
850 }
851 
852 /*ARGSUSED*/
853 static tdesc_t *
854 conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
855 {
856 	assert(1 == 0);
857 	return (NULL);
858 }
859 
860 static iidesc_t *
861 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
862 {
863 	iidesc_t *new = iidesc_dup(old);
864 	int i;
865 
866 	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
867 	for (i = 0; i < new->ii_nargs; i++) {
868 		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
869 		    mcd);
870 	}
871 
872 	return (new);
873 }
874 
875 static int
876 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
877 {
878 	alist_t *map = private;
879 	void *defn;
880 
881 	if (!alist_find(map, (void *)fwd, (void **)&defn))
882 		return (0);
883 
884 	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
885 
886 	*fwdp = defn;
887 
888 	return (1);
889 }
890 
891 static tdtrav_cb_f fwd_redir_cbs[] = {
892 	NULL,
893 	NULL,			/* intrinsic */
894 	NULL,			/* pointer */
895 	NULL,			/* array */
896 	NULL,			/* function */
897 	NULL,			/* struct */
898 	NULL,			/* union */
899 	NULL,			/* enum */
900 	fwd_redir,		/* forward */
901 	NULL,			/* typedef */
902 	tdtrav_assert,		/* typedef_unres */
903 	NULL,			/* volatile */
904 	NULL,			/* const */
905 	NULL			/* restrict */
906 };
907 
908 typedef struct redir_mstr_data {
909 	tdata_t *rmd_tgt;
910 	alist_t *rmd_map;
911 } redir_mstr_data_t;
912 
913 static int
914 redir_mstr_fwd_cb(void *name, void *value, void *arg)
915 {
916 	tdesc_t *fwd = name;
917 	int defnid = (uintptr_t)value;
918 	redir_mstr_data_t *rmd = arg;
919 	tdesc_t template;
920 	tdesc_t *defn;
921 
922 	template.t_id = defnid;
923 
924 	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
925 	    (void *)&defn)) {
926 		aborterr("Couldn't unforward %d (%s)\n", defnid,
927 		    tdesc_name(defn));
928 	}
929 
930 	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
931 
932 	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
933 
934 	return (1);
935 }
936 
937 static void
938 redir_mstr_fwds(merge_cb_data_t *mcd)
939 {
940 	redir_mstr_data_t rmd;
941 	alist_t *map = alist_new(NULL, NULL);
942 
943 	rmd.rmd_tgt = mcd->md_tgt;
944 	rmd.rmd_map = map;
945 
946 	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
947 		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
948 		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
949 	}
950 
951 	alist_free(map);
952 }
953 
954 static int
955 add_iitba_cb(void *data, void *private)
956 {
957 	merge_cb_data_t *mcd = private;
958 	iidesc_t *tba = data;
959 	iidesc_t *new;
960 	iifind_data_t iif;
961 	int newidx;
962 
963 	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
964 	assert(newidx != -1);
965 
966 	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
967 
968 	iif.iif_template = tba;
969 	iif.iif_ta = mcd->md_ta;
970 	iif.iif_newidx = newidx;
971 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
972 
973 	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
974 	    &iif) == 1) {
975 		debug(3, "iidesc_t %s already exists\n",
976 		    (tba->ii_name ? tba->ii_name : "(anon)"));
977 		return (1);
978 	}
979 
980 	new = conjure_iidesc(tba, mcd);
981 	hash_add(mcd->md_tgt->td_iihash, new);
982 
983 	return (1);
984 }
985 
986 static int
987 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
988 {
989 	tdesc_t *newtdp;
990 	tdesc_t template;
991 
992 	template.t_id = newid;
993 	assert(hash_find(mcd->md_parent->td_idhash,
994 	    (void *)&template, NULL) == 0);
995 
996 	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
997 	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
998 	    oldtdp->t_id, newid, newid);
999 
1000 	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
1001 	    mcd)) == NULL)
1002 		/* couldn't map everything */
1003 		return (0);
1004 
1005 	debug(3, "succeeded\n");
1006 
1007 	hash_add(mcd->md_tgt->td_idhash, newtdp);
1008 	hash_add(mcd->md_tgt->td_layouthash, newtdp);
1009 
1010 	return (1);
1011 }
1012 
1013 static int
1014 add_tdtba_cb(void *data, void *arg)
1015 {
1016 	tdesc_t *tdp = data;
1017 	merge_cb_data_t *mcd = arg;
1018 	int newid;
1019 	int rc;
1020 
1021 	newid = get_mapping(mcd->md_ta, tdp->t_id);
1022 	assert(newid != -1);
1023 
1024 	if ((rc = add_tdesc(tdp, newid, mcd)))
1025 		hash_remove(mcd->md_tdtba, (void *)tdp);
1026 
1027 	return (rc);
1028 }
1029 
1030 static int
1031 add_tdtbr_cb(void *data, void *arg)
1032 {
1033 	tdesc_t **tdpp = data;
1034 	merge_cb_data_t *mcd = arg;
1035 
1036 	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1037 
1038 	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1039 		return (0);
1040 
1041 	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1042 	return (1);
1043 }
1044 
1045 static void
1046 merge_types(hash_t *src, merge_cb_data_t *mcd)
1047 {
1048 	list_t *iitba = NULL;
1049 	list_t *tdtbr = NULL;
1050 	int iirc, tdrc;
1051 
1052 	mcd->md_iitba = &iitba;
1053 	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1054 	    tdesc_layoutcmp);
1055 	mcd->md_tdtbr = &tdtbr;
1056 
1057 	(void) hash_iter(src, merge_type_cb, mcd);
1058 
1059 	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1060 	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1061 
1062 	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1063 	debug(3, "add_iitba_cb added %d items\n", iirc);
1064 
1065 	assert(list_count(*mcd->md_iitba) == 0 &&
1066 	    hash_count(mcd->md_tdtba) == 0);
1067 
1068 	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1069 	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1070 
1071 	if (list_count(*mcd->md_tdtbr) != 0)
1072 		aborterr("Couldn't remap all nodes\n");
1073 
1074 	/*
1075 	 * We now have an alist of master forwards and the ids of the new master
1076 	 * definitions for those forwards in mcd->md_fdida.  By this point,
1077 	 * we're guaranteed that all of the master definitions referenced in
1078 	 * fdida have been added to the master tree.  We now traverse through
1079 	 * the master tree, redirecting all edges inbound to forwards that have
1080 	 * definitions to those definitions.
1081 	 */
1082 	if (mcd->md_parent == mcd->md_tgt) {
1083 		redir_mstr_fwds(mcd);
1084 	}
1085 }
1086 
1087 void
1088 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1089 {
1090 	merge_cb_data_t mcd;
1091 
1092 	cur->td_ref++;
1093 	mstr->td_ref++;
1094 	if (tgt)
1095 		tgt->td_ref++;
1096 
1097 	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1098 	    (tgt == NULL || tgt->td_ref == 1));
1099 
1100 	mcd.md_parent = mstr;
1101 	mcd.md_tgt = (tgt ? tgt : mstr);
1102 	mcd.md_ta = alist_new(NULL, NULL);
1103 	mcd.md_fdida = alist_new(NULL, NULL);
1104 	mcd.md_flags = 0;
1105 
1106 	if (selfuniquify)
1107 		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1108 	if (tgt)
1109 		mcd.md_flags |= MCD_F_REFMERGE;
1110 
1111 	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1112 	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1113 
1114 	merge_types(cur->td_iihash, &mcd);
1115 
1116 	if (debug_level >= 3) {
1117 		debug(3, "Type association stats\n");
1118 		alist_stats(mcd.md_ta, 0);
1119 		debug(3, "Layout hash stats\n");
1120 		hash_stats(mcd.md_tgt->td_layouthash, 1);
1121 	}
1122 
1123 	alist_free(mcd.md_fdida);
1124 	alist_free(mcd.md_ta);
1125 
1126 	cur->td_ref--;
1127 	mstr->td_ref--;
1128 	if (tgt)
1129 		tgt->td_ref--;
1130 }
1131 
1132 tdesc_ops_t tdesc_ops[] = {
1133 	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1134 	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1135 	{ "pointer", 		equiv_plain,		conjure_plain },
1136 	{ "array", 		equiv_array,		conjure_array },
1137 	{ "function", 		equiv_function,		conjure_function },
1138 	{ "struct",		equiv_su,		conjure_su },
1139 	{ "union",		equiv_su,		conjure_su },
1140 	{ "enum",		equiv_enum,		conjure_enum },
1141 	{ "forward",		NULL,			conjure_forward },
1142 	{ "typedef",		equiv_plain,		conjure_plain },
1143 	{ "typedef_unres",	equiv_assert,		conjure_assert },
1144 	{ "volatile",		equiv_plain,		conjure_plain },
1145 	{ "const", 		equiv_plain,		conjure_plain },
1146 	{ "restrict",		equiv_plain,		conjure_plain }
1147 };
1148