xref: /netbsd-src/external/cddl/osnet/dist/tools/ctf/cvt/dwarf.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DWARF to tdata conversion
28  *
29  * For the most part, conversion is straightforward, proceeding in two passes.
30  * On the first pass, we iterate through every die, creating new type nodes as
31  * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
32  * allowing type reference pointers to be filled in.  If the tdesc_t
33  * corresponding to a given die can be completely filled out (sizes and offsets
34  * calculated, and so forth) without using any referenced types, the tdesc_t is
35  * marked as resolved.  Consider an array type.  If the type corresponding to
36  * the array contents has not yet been processed, we will create a blank tdesc
37  * for the contents type (only the type ID will be filled in, relying upon the
38  * later portion of the first pass to encounter and complete the referenced
39  * type).  We will then attempt to determine the size of the array.  If the
40  * array has a byte size attribute, we will have completely characterized the
41  * array type, and will be able to mark it as resolved.  The lack of a byte
42  * size attribute, on the other hand, will prevent us from fully resolving the
43  * type, as the size will only be calculable with reference to the contents
44  * type, which has not, as yet, been encountered.  The array type will thus be
45  * left without the resolved flag, and the first pass will continue.
46  *
47  * When we begin the second pass, we will have created tdesc_t nodes for every
48  * type in the section.  We will traverse the tree, from the iidescs down,
49  * processing each unresolved node.  As the referenced nodes will have been
50  * populated, the array type used in our example above will be able to use the
51  * size of the referenced types (if available) to determine its own type.  The
52  * traversal will be repeated until all types have been resolved or we have
53  * failed to make progress.  When all tdescs have been resolved, the conversion
54  * is complete.
55  *
56  * There are, as always, a few special cases that are handled during the first
57  * and second passes:
58  *
59  *  1. Empty enums - GCC will occasionally emit an enum without any members.
60  *     Later on in the file, it will emit the same enum type, though this time
61  *     with the full complement of members.  All references to the memberless
62  *     enum need to be redirected to the full definition.  During the first
63  *     pass, each enum is entered in dm_enumhash, along with a pointer to its
64  *     corresponding tdesc_t.  If, during the second pass, we encounter a
65  *     memberless enum, we use the hash to locate the full definition.  All
66  *     tdescs referencing the empty enum are then redirected.
67  *
68  *  2. Forward declarations - If the compiler sees a forward declaration for
69  *     a structure, followed by the definition of that structure, it will emit
70  *     DWARF data for both the forward declaration and the definition.  We need
71  *     to resolve the forward declarations when possible, by redirecting
72  *     forward-referencing tdescs to the actual struct/union definitions.  This
73  *     redirection is done completely within the first pass.  We begin by
74  *     recording all forward declarations in dw_fwdhash.  When we define a
75  *     structure, we check to see if there have been any corresponding forward
76  *     declarations.  If so, we redirect the tdescs which referenced the forward
77  *     declarations to the structure or union definition.
78  *
79  * XXX see if a post traverser will allow the elimination of repeated pass 2
80  * traversals.
81  */
82 
83 #if HAVE_NBTOOL_CONFIG_H
84 # include "nbtool_config.h"
85 #endif
86 
87 #include <stdio.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <strings.h>
91 #include <errno.h>
92 #include <libelf.h>
93 #include <libdwarf.h>
94 #include <libgen.h>
95 #include <dwarf.h>
96 
97 #include "ctf_headers.h"
98 #include "ctftools.h"
99 #include "memory.h"
100 #include "list.h"
101 #include "traverse.h"
102 
103 /*
104  * We need to define a couple of our own intrinsics, to smooth out some of the
105  * differences between the GCC and DevPro DWARF emitters.  See the referenced
106  * routines and the special cases in the file comment for more details.
107  *
108  * Type IDs are 32 bits wide.  We're going to use the top of that field to
109  * indicate types that we've created ourselves.
110  */
111 #define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
112 #define	TID_VOID		0x40000001	/* see die_void() */
113 #define	TID_LONG		0x40000002	/* see die_array() */
114 
115 #define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
116 
117 /*
118  * To reduce the staggering amount of error-handling code that would otherwise
119  * be required, the attribute-retrieval routines handle most of their own
120  * errors.  If the following flag is supplied as the value of the `req'
121  * argument, they will also handle the absence of a requested attribute by
122  * terminating the program.
123  */
124 #define	DW_ATTR_REQ	1
125 
126 #define	TDESC_HASH_BUCKETS	511
127 
128 typedef struct dwarf {
129 	Dwarf_Debug dw_dw;		/* for libdwarf */
130 	Dwarf_Error dw_err;		/* for libdwarf */
131 	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
132 	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
133 	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
134 	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
135 	hash_t *dw_enumhash;		/* hash of memberless enums by name */
136 	tdesc_t *dw_void;		/* manufactured void type */
137 	tdesc_t *dw_long;		/* manufactured long type for arrays */
138 	size_t dw_ptrsz;		/* size of a pointer in this file */
139 	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
140 	uint_t dw_nunres;		/* count of unresolved types */
141 	char *dw_cuname;		/* name of compilation unit */
142 } dwarf_t;
143 
144 static void die_create_one(dwarf_t *, Dwarf_Die);
145 static void die_create(dwarf_t *, Dwarf_Die);
146 
147 static tid_t
148 mfgtid_next(dwarf_t *dw)
149 {
150 	return (++dw->dw_mfgtid_last);
151 }
152 
153 static void
154 tdesc_add(dwarf_t *dw, tdesc_t *tdp)
155 {
156 	hash_add(dw->dw_tidhash, tdp);
157 }
158 
159 static tdesc_t *
160 tdesc_lookup(dwarf_t *dw, int tid)
161 {
162 	tdesc_t tmpl;
163 	void *tdp;
164 
165 	tmpl.t_id = tid;
166 
167 	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
168 		return (tdp);
169 	else
170 		return (NULL);
171 }
172 
173 /*
174  * Resolve a tdesc down to a node which should have a size.  Returns the size,
175  * zero if the size hasn't yet been determined.
176  */
177 static size_t
178 tdesc_size(tdesc_t *tdp)
179 {
180 	for (;;) {
181 		switch (tdp->t_type) {
182 		case INTRINSIC:
183 		case POINTER:
184 		case ARRAY:
185 		case FUNCTION:
186 		case STRUCT:
187 		case UNION:
188 		case ENUM:
189 			return (tdp->t_size);
190 
191 		case FORWARD:
192 			return (0);
193 
194 		case TYPEDEF:
195 		case VOLATILE:
196 		case CONST:
197 		case RESTRICT:
198 			tdp = tdp->t_tdesc;
199 			continue;
200 
201 		case 0: /* not yet defined */
202 			return (0);
203 
204 		default:
205 			terminate("tdp %u: tdesc_size on unknown type %d\n",
206 			    tdp->t_id, tdp->t_type);
207 		}
208 	}
209 }
210 
211 static size_t
212 tdesc_bitsize(tdesc_t *tdp)
213 {
214 	for (;;) {
215 		switch (tdp->t_type) {
216 		case INTRINSIC:
217 			return (tdp->t_intr->intr_nbits);
218 
219 		case ARRAY:
220 		case FUNCTION:
221 		case STRUCT:
222 		case UNION:
223 		case ENUM:
224 		case POINTER:
225 			return (tdp->t_size * NBBY);
226 
227 		case FORWARD:
228 			return (0);
229 
230 		case TYPEDEF:
231 		case VOLATILE:
232 		case RESTRICT:
233 		case CONST:
234 			tdp = tdp->t_tdesc;
235 			continue;
236 
237 		case 0: /* not yet defined */
238 			return (0);
239 
240 		default:
241 			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
242 			    tdp->t_id, tdp->t_type);
243 		}
244 	}
245 }
246 
247 static tdesc_t *
248 tdesc_basetype(tdesc_t *tdp)
249 {
250 	for (;;) {
251 		switch (tdp->t_type) {
252 		case TYPEDEF:
253 		case VOLATILE:
254 		case RESTRICT:
255 		case CONST:
256 			tdp = tdp->t_tdesc;
257 			break;
258 		case 0: /* not yet defined */
259 			return (NULL);
260 		default:
261 			return (tdp);
262 		}
263 	}
264 }
265 
266 static Dwarf_Off
267 die_off(dwarf_t *dw, Dwarf_Die die)
268 {
269 	Dwarf_Off off;
270 
271 	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
272 		return (off);
273 
274 	terminate("failed to get offset for die: %s\n",
275 	    dwarf_errmsg(dw->dw_err));
276 	/*NOTREACHED*/
277 	return (0);
278 }
279 
280 static Dwarf_Die
281 die_sibling(dwarf_t *dw, Dwarf_Die die)
282 {
283 	Dwarf_Die sib;
284 	int rc;
285 
286 	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
287 	    DW_DLV_OK)
288 		return (sib);
289 	else if (rc == DW_DLV_NO_ENTRY)
290 		return (NULL);
291 
292 	terminate("die %ju: failed to find type sibling: %s\n",
293 	    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
294 	/*NOTREACHED*/
295 	return (NULL);
296 }
297 
298 static Dwarf_Die
299 die_child(dwarf_t *dw, Dwarf_Die die)
300 {
301 	Dwarf_Die child;
302 	int rc;
303 
304 	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
305 		return (child);
306 	else if (rc == DW_DLV_NO_ENTRY)
307 		return (NULL);
308 
309 	terminate("die %ju: failed to find type child: %s\n",
310 	    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
311 	/*NOTREACHED*/
312 	return (NULL);
313 }
314 
315 static Dwarf_Half
316 die_tag(dwarf_t *dw, Dwarf_Die die)
317 {
318 	Dwarf_Half tag;
319 
320 	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
321 		return (tag);
322 
323 	terminate("die %ju: failed to get tag for type: %s\n",
324 	    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
325 	/*NOTREACHED*/
326 	return (0);
327 }
328 
329 static Dwarf_Attribute
330 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
331 {
332 	Dwarf_Attribute attr;
333 	int rc;
334 
335 	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
336 		return (attr);
337 	} else if (rc == DW_DLV_NO_ENTRY) {
338 		if (req) {
339 			terminate("die %ju: no attr 0x%x\n",
340 			    (uintmax_t)die_off(dw, die),
341 			    name);
342 		} else {
343 			return (NULL);
344 		}
345 	}
346 
347 	terminate("die %ju: failed to get attribute for type: %s\n",
348 	    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
349 	/*NOTREACHED*/
350 	return (NULL);
351 }
352 
353 static int
354 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
355     int req)
356 {
357 	*valp = 0;
358 	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
359 		if (req)
360 			terminate("die %ju: failed to get signed: %s\n",
361 			    (uintmax_t)die_off(dw, die),
362 			    dwarf_errmsg(dw->dw_err));
363 		return (0);
364 	}
365 
366 	return (1);
367 }
368 
369 static int
370 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
371     int req)
372 {
373 	*valp = 0;
374 	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
375 		if (req)
376 			terminate("die %ju: failed to get unsigned: %s\n",
377 			    (uintmax_t)die_off(dw, die),
378 			    dwarf_errmsg(dw->dw_err));
379 		return (0);
380 	}
381 
382 	return (1);
383 }
384 
385 static int
386 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
387 {
388 	*valp = 0;
389 
390 	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
391 		if (req)
392 			terminate("die %ju: failed to get flag: %s\n",
393 			    (uintmax_t)die_off(dw, die),
394 			    dwarf_errmsg(dw->dw_err));
395 		return (0);
396 	}
397 
398 	return (1);
399 }
400 
401 static int
402 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
403 {
404 	const char *str = NULL;
405 
406 	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK ||
407 	    str == NULL) {
408 		if (req)
409 			terminate("die %ju: failed to get string: %s\n",
410 			    (uintmax_t)die_off(dw, die),
411 			    dwarf_errmsg(dw->dw_err));
412 		else
413 			*strp = NULL;
414 		return (0);
415 	} else
416 		*strp = xstrdup(str);
417 
418 	return (1);
419 }
420 
421 static Dwarf_Off
422 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
423 {
424 	Dwarf_Unsigned off;
425 
426 	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) {
427 		terminate("die %ju: failed to get ref: %s\n",
428 		    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
429 	}
430 
431 	return (off);
432 }
433 
434 static char *
435 die_name(dwarf_t *dw, Dwarf_Die die)
436 {
437 	char *str = NULL;
438 
439 	(void) die_string(dw, die, DW_AT_name, &str, 0);
440 	if (str == NULL)
441 		str = xstrdup("");
442 
443 	return (str);
444 }
445 
446 static int
447 die_isdecl(dwarf_t *dw, Dwarf_Die die)
448 {
449 	Dwarf_Bool val;
450 
451 	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
452 }
453 
454 static int
455 die_isglobal(dwarf_t *dw, Dwarf_Die die)
456 {
457 	Dwarf_Signed vis;
458 	Dwarf_Bool ext;
459 
460 	/*
461 	 * Some compilers (gcc) use DW_AT_external to indicate function
462 	 * visibility.  Others (Sun) use DW_AT_visibility.
463 	 */
464 	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
465 		return (vis == DW_VIS_exported);
466 	else
467 		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
468 }
469 
470 static tdesc_t *
471 die_add(dwarf_t *dw, Dwarf_Off off)
472 {
473 	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
474 
475 	tdp->t_id = off;
476 
477 	tdesc_add(dw, tdp);
478 
479 	return (tdp);
480 }
481 
482 static tdesc_t *
483 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
484 {
485 	Dwarf_Off ref = die_attr_ref(dw, die, name);
486 	tdesc_t *tdp;
487 
488 	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
489 		return (tdp);
490 
491 	return (die_add(dw, ref));
492 }
493 
494 static int
495 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
496     Dwarf_Unsigned *valp, int req __unused)
497 {
498 	Dwarf_Locdesc *loc = NULL;
499 	Dwarf_Signed locnum = 0;
500 	Dwarf_Attribute at;
501 	Dwarf_Half form;
502 
503 	if (name != DW_AT_data_member_location)
504 		terminate("die %ju: can only process attribute "
505 		    "DW_AT_data_member_location\n",
506 		    (uintmax_t)die_off(dw, die));
507 
508 	if ((at = die_attr(dw, die, name, 0)) == NULL)
509 		return (0);
510 
511 	if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK)
512 		return (0);
513 
514 	switch (form) {
515 	case DW_FORM_sec_offset:
516 	case DW_FORM_block:
517 	case DW_FORM_block1:
518 	case DW_FORM_block2:
519 	case DW_FORM_block4:
520 		/*
521 		 * GCC in base and Clang (3.3 or below) generates
522 		 * DW_AT_data_member_location attribute with DW_FORM_block*
523 		 * form. The attribute contains one DW_OP_plus_uconst
524 		 * operator. The member offset stores in the operand.
525 		 */
526 		if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
527 			return (0);
528 		if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
529 			terminate("die %ju: cannot parse member offset with "
530 			    "operator other than DW_OP_plus_uconst\n",
531 			    (uintmax_t)die_off(dw, die));
532 		}
533 		*valp = loc->ld_s->lr_number;
534 		if (loc != NULL) {
535 			dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK);
536 			dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC);
537 		}
538 		break;
539 
540 	case DW_FORM_data1:
541 	case DW_FORM_data2:
542 	case DW_FORM_data4:
543 	case DW_FORM_data8:
544 	case DW_FORM_udata:
545 		/*
546 		 * Clang 3.4 generates DW_AT_data_member_location attribute
547 		 * with DW_FORM_data* form (constant class). The attribute
548 		 * stores a contant value which is the member offset.
549 		 *
550 		 * However, note that DW_FORM_data[48] in DWARF version 2 or 3
551 		 * could be used as a section offset (offset into .debug_loc in
552 		 * this case). Here we assume the attribute always stores a
553 		 * constant because we know Clang 3.4 does this and GCC in
554 		 * base won't emit DW_FORM_data[48] for this attribute. This
555 		 * code will remain correct if future vesrions of Clang and
556 		 * GCC conform to DWARF4 standard and only use the form
557 		 * DW_FORM_sec_offset for section offset.
558 		 */
559 		if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) !=
560 		    DW_DLV_OK)
561 			return (0);
562 		break;
563 
564 	default:
565 		terminate("die %ju: cannot parse member offset with form "
566 		    "%u\n", (uintmax_t)die_off(dw, die), form);
567 	}
568 
569 	return (1);
570 }
571 
572 static tdesc_t *
573 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
574 {
575 	tdesc_t *tdp;
576 	intr_t *intr;
577 
578 	intr = xcalloc(sizeof (intr_t));
579 	intr->intr_type = INTR_INT;
580 	intr->intr_signed = 1;
581 	intr->intr_nbits = sz * NBBY;
582 
583 	tdp = xcalloc(sizeof (tdesc_t));
584 	tdp->t_name = xstrdup(name);
585 	tdp->t_size = sz;
586 	tdp->t_id = tid;
587 	tdp->t_type = INTRINSIC;
588 	tdp->t_intr = intr;
589 	tdp->t_flags = TDESC_F_RESOLVED;
590 
591 	tdesc_add(dw, tdp);
592 
593 	return (tdp);
594 }
595 
596 /*
597  * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
598  * type reference implies a reference to a void type.  A void *, for example
599  * will be represented by a pointer die without a DW_AT_type.  CTF requires
600  * that pointer nodes point to something, so we'll create a void for use as
601  * the target.  Note that the DWARF data may already create a void type.  Ours
602  * would then be a duplicate, but it'll be removed in the self-uniquification
603  * merge performed at the completion of DWARF->tdesc conversion.
604  */
605 static tdesc_t *
606 tdesc_intr_void(dwarf_t *dw)
607 {
608 	if (dw->dw_void == NULL)
609 		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
610 
611 	return (dw->dw_void);
612 }
613 
614 static tdesc_t *
615 tdesc_intr_long(dwarf_t *dw)
616 {
617 	if (dw->dw_long == NULL) {
618 		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
619 		    dw->dw_ptrsz);
620 	}
621 
622 	return (dw->dw_long);
623 }
624 
625 /*
626  * Used for creating bitfield types.  We create a copy of an existing intrinsic,
627  * adjusting the size of the copy to match what the caller requested.  The
628  * caller can then use the copy as the type for a bitfield structure member.
629  */
630 static tdesc_t *
631 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
632 {
633 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
634 
635 	if (!(old->t_flags & TDESC_F_RESOLVED)) {
636 		terminate("tdp %u: attempt to make a bit field from an "
637 		    "unresolved type\n", old->t_id);
638 	}
639 
640 	new->t_name = xstrdup(old->t_name);
641 	new->t_size = old->t_size;
642 	new->t_id = mfgtid_next(dw);
643 	new->t_type = INTRINSIC;
644 	new->t_flags = TDESC_F_RESOLVED;
645 
646 	new->t_intr = xcalloc(sizeof (intr_t));
647 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
648 	new->t_intr->intr_nbits = bitsz;
649 
650 	tdesc_add(dw, new);
651 
652 	return (new);
653 }
654 
655 static void
656 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
657     tdesc_t *dimtdp)
658 {
659 	Dwarf_Unsigned uval;
660 	Dwarf_Signed sval;
661 	tdesc_t *ctdp = NULL;
662 	Dwarf_Die dim2;
663 	ardef_t *ar;
664 
665 	if ((dim2 = die_sibling(dw, dim)) == NULL) {
666 		ctdp = arrtdp;
667 	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
668 		ctdp = xcalloc(sizeof (tdesc_t));
669 		ctdp->t_id = mfgtid_next(dw);
670 		debug(3, "die %ju: creating new type %u for sub-dimension\n",
671 		    (uintmax_t)die_off(dw, dim2), ctdp->t_id);
672 		tdesc_array_create(dw, dim2, arrtdp, ctdp);
673 	} else {
674 		terminate("die %ju: unexpected non-subrange node in array\n",
675 		    (uintmax_t)die_off(dw, dim2));
676 	}
677 
678 	dimtdp->t_type = ARRAY;
679 	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
680 
681 	/*
682 	 * Array bounds can be signed or unsigned, but there are several kinds
683 	 * of signless forms (data1, data2, etc) that take their sign from the
684 	 * routine that is trying to interpret them.  That is, data1 can be
685 	 * either signed or unsigned, depending on whether you use the signed or
686 	 * unsigned accessor function.  GCC will use the signless forms to store
687 	 * unsigned values which have their high bit set, so we need to try to
688 	 * read them first as unsigned to get positive values.  We could also
689 	 * try signed first, falling back to unsigned if we got a negative
690 	 * value.
691 	 */
692 	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
693 		ar->ad_nelems = uval + 1;
694 	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
695 		ar->ad_nelems = sval + 1;
696 	else
697 		ar->ad_nelems = 0;
698 
699 	/*
700 	 * Different compilers use different index types.  Force the type to be
701 	 * a common, known value (long).
702 	 */
703 	ar->ad_idxtype = tdesc_intr_long(dw);
704 	ar->ad_contents = ctdp;
705 
706 	if (ar->ad_contents->t_size != 0) {
707 		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
708 		dimtdp->t_flags |= TDESC_F_RESOLVED;
709 	}
710 }
711 
712 /*
713  * Create a tdesc from an array node.  Some arrays will come with byte size
714  * attributes, and thus can be resolved immediately.  Others don't, and will
715  * need to wait until the second pass for resolution.
716  */
717 static void
718 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
719 {
720 	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
721 	Dwarf_Unsigned uval;
722 	Dwarf_Die dim;
723 
724 	debug(3, "die %ju <%jx>: creating array\n",
725 	    (uintmax_t)off, (uintmax_t)off);
726 
727 	if ((dim = die_child(dw, arr)) == NULL ||
728 	    die_tag(dw, dim) != DW_TAG_subrange_type)
729 		terminate("die %ju: failed to retrieve array bounds\n",
730 		    (uintmax_t)off);
731 
732 	tdesc_array_create(dw, dim, arrtdp, tdp);
733 
734 	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
735 		tdesc_t *dimtdp;
736 		int flags;
737 
738 		/* Check for bogus gcc DW_AT_byte_size attribute */
739 		if (uval == (unsigned)-1) {
740 			printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
741 			    __func__);
742 			uval = 0;
743 		}
744 
745 		tdp->t_size = uval;
746 
747 		/*
748 		 * Ensure that sub-dimensions have sizes too before marking
749 		 * as resolved.
750 		 */
751 		flags = TDESC_F_RESOLVED;
752 		for (dimtdp = tdp->t_ardef->ad_contents;
753 		    dimtdp->t_type == ARRAY;
754 		    dimtdp = dimtdp->t_ardef->ad_contents) {
755 			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
756 				flags = 0;
757 				break;
758 			}
759 		}
760 
761 		tdp->t_flags |= flags;
762 	}
763 
764 	debug(3, "die %ju <%jx>: array nelems %u size %u\n", (uintmax_t)off,
765 	    (uintmax_t)off, tdp->t_ardef->ad_nelems, tdp->t_size);
766 }
767 
768 /*ARGSUSED1*/
769 static int
770 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
771 {
772 	dwarf_t *dw = private;
773 	size_t sz;
774 
775 	if (tdp->t_flags & TDESC_F_RESOLVED)
776 		return (1);
777 
778 	debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
779 	    tdp->t_ardef->ad_contents->t_id);
780 
781 	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
782 		debug(3, "unable to resolve array %s (%d) contents %d\n",
783 		    tdesc_name(tdp), tdp->t_id,
784 		    tdp->t_ardef->ad_contents->t_id);
785 
786 		dw->dw_nunres++;
787 		return (1);
788 	}
789 
790 	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
791 	tdp->t_flags |= TDESC_F_RESOLVED;
792 
793 	debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
794 
795 	return (1);
796 }
797 
798 /*ARGSUSED1*/
799 static int
800 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
801 {
802 	tdesc_t *cont = tdp->t_ardef->ad_contents;
803 
804 	if (tdp->t_flags & TDESC_F_RESOLVED)
805 		return (1);
806 
807 	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
808 	    tdp->t_id, tdesc_name(cont), cont->t_id);
809 
810 	return (1);
811 }
812 
813 /*
814  * Most enums (those with members) will be resolved during this first pass.
815  * Others - those without members (see the file comment) - won't be, and will
816  * need to wait until the second pass when they can be matched with their full
817  * definitions.
818  */
819 static void
820 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
821 {
822 	Dwarf_Die mem;
823 	Dwarf_Unsigned uval;
824 	Dwarf_Signed sval;
825 
826 	debug(3, "die %ju: creating enum\n", (uintmax_t)off);
827 
828 	tdp->t_type = (die_isdecl(dw, die) ? FORWARD : ENUM);
829 	if (tdp->t_type != ENUM)
830 		return;
831 
832 	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
833 	/* Check for bogus gcc DW_AT_byte_size attribute */
834 	if (uval == (unsigned)-1) {
835 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
836 		    __func__);
837 		uval = 0;
838 	}
839 	tdp->t_size = uval;
840 
841 	if ((mem = die_child(dw, die)) != NULL) {
842 		elist_t **elastp = &tdp->t_emem;
843 
844 		do {
845 			elist_t *el;
846 
847 			if (die_tag(dw, mem) != DW_TAG_enumerator) {
848 				/* Nested type declaration */
849 				die_create_one(dw, mem);
850 				continue;
851 			}
852 
853 			el = xcalloc(sizeof (elist_t));
854 			el->el_name = die_name(dw, mem);
855 
856 			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
857 				el->el_number = sval;
858 			} else if (die_unsigned(dw, mem, DW_AT_const_value,
859 			    &uval, 0)) {
860 				el->el_number = uval;
861 			} else {
862 				terminate("die %ju: enum %ju: member without "
863 				    "value\n", (uintmax_t)off,
864 				    (uintmax_t)die_off(dw, mem));
865 			}
866 
867 			debug(3, "die %ju: enum %ju: created %s = %d\n",
868 			    (uintmax_t)off, (uintmax_t)die_off(dw, mem),
869 			    el->el_name, el->el_number);
870 
871 			*elastp = el;
872 			elastp = &el->el_next;
873 
874 		} while ((mem = die_sibling(dw, mem)) != NULL);
875 
876 		hash_add(dw->dw_enumhash, tdp);
877 
878 		tdp->t_flags |= TDESC_F_RESOLVED;
879 
880 		if (tdp->t_name != NULL) {
881 			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
882 			ii->ii_type = II_SOU;
883 			ii->ii_name = xstrdup(tdp->t_name);
884 			ii->ii_dtype = tdp;
885 
886 			iidesc_add(dw->dw_td->td_iihash, ii);
887 		}
888 	}
889 }
890 
891 static int
892 die_enum_match(void *arg1, void *arg2)
893 {
894 	tdesc_t *tdp = arg1, **fullp = arg2;
895 
896 	if (tdp->t_emem != NULL) {
897 		*fullp = tdp;
898 		return (-1); /* stop the iteration */
899 	}
900 
901 	return (0);
902 }
903 
904 /*ARGSUSED1*/
905 static int
906 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
907 {
908 	dwarf_t *dw = private;
909 	tdesc_t *full = NULL;
910 
911 	if (tdp->t_flags & TDESC_F_RESOLVED)
912 		return (1);
913 
914 	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
915 
916 	/*
917 	 * The answer to this one won't change from iteration to iteration,
918 	 * so don't even try.
919 	 */
920 	if (full == NULL) {
921 		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
922 		    tdesc_name(tdp));
923 	}
924 
925 	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
926 	    tdesc_name(tdp), full->t_id);
927 
928 	tdp->t_flags |= TDESC_F_RESOLVED;
929 
930 	return (1);
931 }
932 
933 static int
934 die_fwd_map(void *arg1, void *arg2)
935 {
936 	tdesc_t *fwd = arg1, *sou = arg2;
937 
938 	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
939 	    tdesc_name(fwd), sou->t_id);
940 	fwd->t_tdesc = sou;
941 
942 	return (0);
943 }
944 
945 /*
946  * Structures and unions will never be resolved during the first pass, as we
947  * won't be able to fully determine the member sizes.  The second pass, which
948  * have access to sizing information, will be able to complete the resolution.
949  */
950 static void
951 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
952     int type, const char *typename)
953 {
954 	Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0;
955 #if BYTE_ORDER == _LITTLE_ENDIAN
956 	Dwarf_Unsigned bysz;
957 #endif
958 	Dwarf_Die mem;
959 	mlist_t *ml, **mlastp;
960 	iidesc_t *ii;
961 
962 	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
963 
964 	debug(3, "die %ju: creating %s %s\n", (uintmax_t)off,
965 	    (tdp->t_type == FORWARD ? "forward decl" : typename),
966 	    tdesc_name(tdp));
967 
968 	if (tdp->t_type == FORWARD) {
969 		hash_add(dw->dw_fwdhash, tdp);
970 		return;
971 	}
972 
973 	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
974 
975 	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
976 	tdp->t_size = sz;
977 
978 	/*
979 	 * GCC allows empty SOUs as an extension.
980 	 */
981 	if ((mem = die_child(dw, str)) == NULL) {
982 		goto out;
983 	}
984 
985 	mlastp = &tdp->t_members;
986 
987 	do {
988 		Dwarf_Off memoff = die_off(dw, mem);
989 		Dwarf_Half tag = die_tag(dw, mem);
990 		Dwarf_Unsigned mloff;
991 
992 		if (tag != DW_TAG_member) {
993 			/* Nested type declaration */
994 			die_create_one(dw, mem);
995 			continue;
996 		}
997 
998 		debug(3, "die %ju: mem %ju: creating member\n",
999 		    (uintmax_t)off, (uintmax_t)memoff);
1000 
1001 		ml = xcalloc(sizeof (mlist_t));
1002 
1003 		/*
1004 		 * This could be a GCC anon struct/union member, so we'll allow
1005 		 * an empty name, even though nothing can really handle them
1006 		 * properly.  Note that some versions of GCC miss out debug
1007 		 * info for anon structs, though recent versions are fixed (gcc
1008 		 * bug 11816).
1009 		 */
1010 		if ((ml->ml_name = die_name(dw, mem)) == NULL)
1011 			ml->ml_name = NULL;
1012 
1013 		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
1014 		debug(3, "die_sou_create(): ml_type = %p t_id = %d\n",
1015 		    ml->ml_type, ml->ml_type->t_id);
1016 
1017 		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
1018 		    &mloff, 0)) {
1019 			debug(3, "die %ju: got mloff 0x%jx\n", (uintmax_t)off,
1020 			    (uintmax_t)mloff);
1021 			ml->ml_offset = mloff * 8;
1022 		}
1023 
1024 		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1025 			ml->ml_size = bitsz;
1026 		else
1027 			ml->ml_size = tdesc_bitsize(ml->ml_type);
1028 
1029 		if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1030 #if BYTE_ORDER == _BIG_ENDIAN
1031 			ml->ml_offset += bitoff;
1032 #else
1033 			/*
1034 			 * Note that Clang 3.4 will sometimes generate
1035 			 * member DIE before generating the DIE for the
1036 			 * member's type. The code can not handle this
1037 			 * properly so that tdesc_bitsize(ml->ml_type) will
1038 			 * return 0 because ml->ml_type is unknown. As a
1039 			 * result, a wrong member offset will be calculated.
1040 			 * To workaround this, we can instead try to
1041 			 * retrieve the value of DW_AT_byte_size attribute
1042 			 * which stores the byte size of the space occupied
1043 			 * by the type. If this attribute exists, its value
1044 			 * should equal to tdesc_bitsize(ml->ml_type)/NBBY.
1045 			 */
1046 			if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) &&
1047 			    bysz > 0)
1048 				ml->ml_offset += bysz * NBBY - bitoff -
1049 				    ml->ml_size;
1050 			else
1051 				ml->ml_offset += tdesc_bitsize(ml->ml_type) -
1052 				    bitoff - ml->ml_size;
1053 #endif
1054 		}
1055 
1056 		debug(3, "die %ju: mem %ju: created \"%s\" (off %u sz %u)\n",
1057 		    (uintmax_t)off, (uintmax_t)memoff, ml->ml_name,
1058 		    ml->ml_offset, ml->ml_size);
1059 
1060 		*mlastp = ml;
1061 		mlastp = &ml->ml_next;
1062 
1063 		/* Find the size of the largest member to work around a gcc
1064 		 * bug.  See GCC Bugzilla 35998.
1065 		 */
1066 		if (maxsz < ml->ml_size)
1067 			maxsz = ml->ml_size;
1068 
1069 	} while ((mem = die_sibling(dw, mem)) != NULL);
1070 
1071 	/* See if we got a bogus DW_AT_byte_size.  GCC will sometimes
1072 	 * emit this.
1073 	 */
1074 	if (sz == (unsigned)-1) {
1075 		 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1076 		     __func__);
1077 		 tdp->t_size = maxsz / 8;  /* maxsz is in bits, t_size is bytes */
1078 	}
1079 
1080 	/*
1081 	 * GCC will attempt to eliminate unused types, thus decreasing the
1082 	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
1083 	 * header, include said header in your source file, and neglect to
1084 	 * actually use (directly or indirectly) the foo_t in the source file,
1085 	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
1086 	 * the theory.
1087 	 *
1088 	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1089 	 * and then neglect to emit the members.  Strangely, the loner struct
1090 	 * tag will always be followed by a proper nested declaration of
1091 	 * something else.  This is clearly a bug, but we're not going to have
1092 	 * time to get it fixed before this goo goes back, so we'll have to work
1093 	 * around it.  If we see a no-membered struct with a nested declaration
1094 	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1095 	 * Being paranoid, we won't simply remove it from the hash.  Instead,
1096 	 * we'll decline to create an iidesc for it, thus ensuring that this
1097 	 * type won't make it into the output file.  To be safe, we'll also
1098 	 * change the name.
1099 	 */
1100 	if (tdp->t_members == NULL) {
1101 		const char *old = tdesc_name(tdp);
1102 		size_t newsz = 7 + strlen(old) + 1;
1103 		char *new = xmalloc(newsz);
1104 		(void) snprintf(new, newsz, "orphan %s", old);
1105 
1106 		debug(3, "die %ju: worked around %s %s\n", (uintmax_t)off,
1107 		    typename, old);
1108 
1109 		if (tdp->t_name != NULL)
1110 			free(tdp->t_name);
1111 		tdp->t_name = new;
1112 		return;
1113 	}
1114 
1115 out:
1116 	if (tdp->t_name != NULL) {
1117 		ii = xcalloc(sizeof (iidesc_t));
1118 		ii->ii_type = II_SOU;
1119 		ii->ii_name = xstrdup(tdp->t_name);
1120 		ii->ii_dtype = tdp;
1121 
1122 		iidesc_add(dw->dw_td->td_iihash, ii);
1123 	}
1124 }
1125 
1126 static void
1127 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1128 {
1129 	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1130 }
1131 
1132 static void
1133 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1134 {
1135 	die_sou_create(dw, die, off, tdp, UNION, "union");
1136 }
1137 
1138 /*ARGSUSED1*/
1139 static int
1140 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1141 {
1142 	dwarf_t *dw = private;
1143 	mlist_t *ml;
1144 	tdesc_t *mt;
1145 
1146 	if (tdp->t_flags & TDESC_F_RESOLVED)
1147 		return (1);
1148 
1149 	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1150 
1151 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1152 		if (ml->ml_size == 0) {
1153 			mt = tdesc_basetype(ml->ml_type);
1154 
1155 			if (mt == NULL)
1156 				continue;
1157 
1158 			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1159 				continue;
1160 
1161 			/*
1162 			 * For empty members, or GCC/C99 flexible array
1163 			 * members, a size of 0 is correct.
1164 			 */
1165 			if (mt->t_members == NULL)
1166 				continue;
1167 			if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1168 				continue;
1169 
1170 			if (mt->t_type == STRUCT &&
1171 				mt->t_members != NULL &&
1172 				mt->t_members->ml_type->t_type == ARRAY &&
1173 				mt->t_members->ml_type->t_ardef->ad_nelems == 0) {
1174 			    /* struct with zero sized array */
1175 			    continue;
1176 			}
1177 
1178 			/*
1179 			 * anonymous union members are OK.
1180 			 * XXX: we should consistently use NULL, instead of ""
1181 			 */
1182 			if (mt->t_type == UNION &&
1183 			    (mt->t_name == NULL || mt->t_name[0] == '\0'))
1184 			    continue;
1185 
1186 			printf("%s unresolved type = %d (%s)\n", tdesc_name(tdp),
1187 				mt->t_type, tdesc_name(mt));
1188 			dw->dw_nunres++;
1189 			return (1);
1190 		}
1191 
1192 		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1193 			dw->dw_nunres++;
1194 			return (1);
1195 		}
1196 
1197 		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1198 		    mt->t_intr->intr_nbits != (int)ml->ml_size) {
1199 			/*
1200 			 * This member is a bitfield, and needs to reference
1201 			 * an intrinsic type with the same width.  If the
1202 			 * currently-referenced type isn't of the same width,
1203 			 * we'll copy it, adjusting the width of the copy to
1204 			 * the size we'd like.
1205 			 */
1206 			debug(3, "tdp %u: creating bitfield for %d bits\n",
1207 			    tdp->t_id, ml->ml_size);
1208 
1209 			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1210 		}
1211 	}
1212 
1213 	tdp->t_flags |= TDESC_F_RESOLVED;
1214 
1215 	return (1);
1216 }
1217 
1218 /*ARGSUSED1*/
1219 static int
1220 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1221 {
1222 	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1223 	mlist_t *ml;
1224 
1225 	if (tdp->t_flags & TDESC_F_RESOLVED)
1226 		return (1);
1227 
1228 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1229 		if (ml->ml_size == 0) {
1230 			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1231 			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1232 			    tdp->t_id,
1233 			    ml->ml_name, tdesc_name(ml->ml_type),
1234 			    ml->ml_type->t_id, ml->ml_type->t_id);
1235 		}
1236 	}
1237 
1238 	return (1);
1239 }
1240 
1241 static void
1242 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1243 {
1244 	Dwarf_Attribute attr;
1245 	Dwarf_Half tag;
1246 	Dwarf_Die arg;
1247 	fndef_t *fn;
1248 	int i;
1249 
1250 	debug(3, "die %ju <0x%jx>: creating function pointer\n",
1251 	    (uintmax_t)off, (uintmax_t)off);
1252 
1253 	/*
1254 	 * We'll begin by processing any type definition nodes that may be
1255 	 * lurking underneath this one.
1256 	 */
1257 	for (arg = die_child(dw, die); arg != NULL;
1258 	    arg = die_sibling(dw, arg)) {
1259 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1260 		    tag != DW_TAG_unspecified_parameters) {
1261 			/* Nested type declaration */
1262 			die_create_one(dw, arg);
1263 		}
1264 	}
1265 
1266 	if (die_isdecl(dw, die)) {
1267 		/*
1268 		 * This is a prototype.  We don't add prototypes to the
1269 		 * tree, so we're going to drop the tdesc.  Unfortunately,
1270 		 * it has already been added to the tree.  Nobody will reference
1271 		 * it, though, and it will be leaked.
1272 		 */
1273 		return;
1274 	}
1275 
1276 	fn = xcalloc(sizeof (fndef_t));
1277 
1278 	tdp->t_type = FUNCTION;
1279 
1280 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1281 		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1282 	} else {
1283 		fn->fn_ret = tdesc_intr_void(dw);
1284 	}
1285 
1286 	/*
1287 	 * Count the arguments to the function, then read them in.
1288 	 */
1289 	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1290 	    arg = die_sibling(dw, arg)) {
1291 		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1292 			fn->fn_nargs++;
1293 		else if (tag == DW_TAG_unspecified_parameters &&
1294 		    fn->fn_nargs > 0)
1295 			fn->fn_vargs = 1;
1296 	}
1297 
1298 	if (fn->fn_nargs != 0) {
1299 		debug(3, "die %ju: adding %d argument%s\n", (uintmax_t)off,
1300 		    fn->fn_nargs, (fn->fn_nargs > 1 ? "s" : ""));
1301 
1302 		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1303 		for (i = 0, arg = die_child(dw, die);
1304 		    arg != NULL && i < (int) fn->fn_nargs;
1305 		    arg = die_sibling(dw, arg)) {
1306 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1307 				continue;
1308 
1309 			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1310 			    DW_AT_type);
1311 		}
1312 	}
1313 
1314 	tdp->t_fndef = fn;
1315 	tdp->t_flags |= TDESC_F_RESOLVED;
1316 }
1317 
1318 /*
1319  * GCC and DevPro use different names for the base types.  While the terms are
1320  * the same, they are arranged in a different order.  Some terms, such as int,
1321  * are implied in one, and explicitly named in the other.  Given a base type
1322  * as input, this routine will return a common name, along with an intr_t
1323  * that reflects said name.
1324  */
1325 static intr_t *
1326 die_base_name_parse(const char *name, char **newp)
1327 {
1328 	char buf[100];
1329 	char const *base;
1330 	char *c;
1331 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1332 	int sign = 1;
1333 	char fmt = '\0';
1334 	intr_t *intr;
1335 
1336 	if (strlen(name) > sizeof (buf) - 1)
1337 		terminate("base type name \"%s\" is too long\n", name);
1338 
1339 	strncpy(buf, name, sizeof (buf));
1340 
1341 	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1342 		if (strcmp(c, "signed") == 0)
1343 			sign = 1;
1344 		else if (strcmp(c, "unsigned") == 0)
1345 			sign = 0;
1346 		else if (strcmp(c, "long") == 0)
1347 			nlong++;
1348 		else if (strcmp(c, "char") == 0) {
1349 			nchar++;
1350 			fmt = 'c';
1351 		} else if (strcmp(c, "short") == 0)
1352 			nshort++;
1353 		else if (strcmp(c, "int") == 0)
1354 			nint++;
1355 		else {
1356 			/*
1357 			 * If we don't recognize any of the tokens, we'll tell
1358 			 * the caller to fall back to the dwarf-provided
1359 			 * encoding information.
1360 			 */
1361 			return (NULL);
1362 		}
1363 	}
1364 
1365 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1366 		return (NULL);
1367 
1368 	if (nchar > 0) {
1369 		if (nlong > 0 || nshort > 0 || nint > 0)
1370 			return (NULL);
1371 
1372 		base = "char";
1373 
1374 	} else if (nshort > 0) {
1375 		if (nlong > 0)
1376 			return (NULL);
1377 
1378 		base = "short";
1379 
1380 	} else if (nlong > 0) {
1381 		base = "long";
1382 
1383 	} else {
1384 		base = "int";
1385 	}
1386 
1387 	intr = xcalloc(sizeof (intr_t));
1388 	intr->intr_type = INTR_INT;
1389 	intr->intr_signed = sign;
1390 	intr->intr_iformat = fmt;
1391 
1392 	snprintf(buf, sizeof (buf), "%s%s%s",
1393 	    (sign ? "" : "unsigned "),
1394 	    (nlong > 1 ? "long " : ""),
1395 	    base);
1396 
1397 	*newp = xstrdup(buf);
1398 	return (intr);
1399 }
1400 
1401 typedef struct fp_size_map {
1402 	size_t fsm_typesz[2];	/* size of {32,64} type */
1403 	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1404 } fp_size_map_t;
1405 
1406 static const fp_size_map_t fp_encodings[] = {
1407 	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1408 	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1409 #ifdef __sparc
1410 	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1411 #else
1412 	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1413 #endif
1414 	{ { 0, 0 }, { 0, 0, 0 } }
1415 };
1416 
1417 static uint_t
1418 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1419 {
1420 	const fp_size_map_t *map = fp_encodings;
1421 	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1422 	uint_t mult = 1, col = 0;
1423 
1424 	if (enc == DW_ATE_complex_float) {
1425 		mult = 2;
1426 		col = 1;
1427 	} else if (enc == DW_ATE_imaginary_float
1428 #if defined(sun)
1429 	    || enc == DW_ATE_SUN_imaginary_float
1430 #endif
1431 	    )
1432 		col = 2;
1433 
1434 	while (map->fsm_typesz[szidx] != 0) {
1435 		if (map->fsm_typesz[szidx] * mult == sz)
1436 			return (map->fsm_enc[col]);
1437 		map++;
1438 	}
1439 
1440 	terminate("die %ju: unrecognized real type size %ju\n",
1441 	    (uintmax_t)off, (uintmax_t)sz);
1442 	/*NOTREACHED*/
1443 	return (0);
1444 }
1445 
1446 static intr_t *
1447 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1448 {
1449 	intr_t *intr = xcalloc(sizeof (intr_t));
1450 	Dwarf_Signed enc;
1451 
1452 	(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1453 
1454 	switch (enc) {
1455 	case DW_ATE_unsigned:
1456 	case DW_ATE_address:
1457 		intr->intr_type = INTR_INT;
1458 		break;
1459 	case DW_ATE_unsigned_char:
1460 		intr->intr_type = INTR_INT;
1461 		intr->intr_iformat = 'c';
1462 		break;
1463 	case DW_ATE_signed:
1464 		intr->intr_type = INTR_INT;
1465 		intr->intr_signed = 1;
1466 		break;
1467 	case DW_ATE_signed_char:
1468 		intr->intr_type = INTR_INT;
1469 		intr->intr_signed = 1;
1470 		intr->intr_iformat = 'c';
1471 		break;
1472 	case DW_ATE_boolean:
1473 		intr->intr_type = INTR_INT;
1474 		intr->intr_signed = 1;
1475 		intr->intr_iformat = 'b';
1476 		break;
1477 	case DW_ATE_float:
1478 	case DW_ATE_complex_float:
1479 	case DW_ATE_imaginary_float:
1480 #if defined(sun)
1481 	case DW_ATE_SUN_imaginary_float:
1482 	case DW_ATE_SUN_interval_float:
1483 #endif
1484 		intr->intr_type = INTR_REAL;
1485 		intr->intr_signed = 1;
1486 		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1487 		break;
1488 	default:
1489 		terminate("die %ju: unknown base type encoding 0x%jx\n",
1490 		    (uintmax_t)off, (uintmax_t)enc);
1491 	}
1492 
1493 	return (intr);
1494 }
1495 
1496 static void
1497 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1498 {
1499 	Dwarf_Unsigned sz;
1500 	intr_t *intr;
1501 	char *new;
1502 
1503 	debug(3, "die %ju: creating base type\n", (uintmax_t)off);
1504 
1505 	/*
1506 	 * The compilers have their own clever (internally inconsistent) ideas
1507 	 * as to what base types should look like.  Some times gcc will, for
1508 	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1509 	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1510 	 * down the road, particularly with merging.  We do, however, use the
1511 	 * DWARF idea of type sizes, as this allows us to avoid caring about
1512 	 * the data model.
1513 	 */
1514 	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1515 
1516 	/* Check for bogus gcc DW_AT_byte_size attribute */
1517 	if (sz == (unsigned)-1) {
1518 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1519 		    __func__);
1520 		sz = 0;
1521 	}
1522 
1523 	if (tdp->t_name == NULL)
1524 		terminate("die %ju: base type without name\n", (uintmax_t)off);
1525 
1526 	/* XXX make a name parser for float too */
1527 	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1528 		/* Found it.  We'll use the parsed version */
1529 		debug(3, "die %ju: name \"%s\" remapped to \"%s\"\n",
1530 		    (uintmax_t)off, tdesc_name(tdp), new);
1531 
1532 		free(tdp->t_name);
1533 		tdp->t_name = new;
1534 	} else {
1535 		/*
1536 		 * We didn't recognize the type, so we'll create an intr_t
1537 		 * based on the DWARF data.
1538 		 */
1539 		debug(3, "die %ju: using dwarf data for base \"%s\"\n",
1540 		    (uintmax_t)off, tdesc_name(tdp));
1541 
1542 		intr = die_base_from_dwarf(dw, base, off, sz);
1543 	}
1544 
1545 	intr->intr_nbits = sz * 8;
1546 
1547 	tdp->t_type = INTRINSIC;
1548 	tdp->t_intr = intr;
1549 	tdp->t_size = sz;
1550 
1551 	tdp->t_flags |= TDESC_F_RESOLVED;
1552 }
1553 
1554 static void
1555 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1556     int type, const char *typename)
1557 {
1558 	Dwarf_Attribute attr;
1559 
1560 	debug(3, "die %ju <0x%jx>: creating %s type %d\n", (uintmax_t)off,
1561 	    (uintmax_t)off, typename, type);
1562 
1563 	tdp->t_type = type;
1564 
1565 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1566 		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1567 	} else {
1568 		tdp->t_tdesc = tdesc_intr_void(dw);
1569 	}
1570 
1571 	if (type == POINTER)
1572 		tdp->t_size = dw->dw_ptrsz;
1573 
1574 	tdp->t_flags |= TDESC_F_RESOLVED;
1575 
1576 	if (type == TYPEDEF) {
1577 		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1578 		ii->ii_type = II_TYPE;
1579 		ii->ii_name = xstrdup(tdp->t_name);
1580 		ii->ii_dtype = tdp;
1581 
1582 		iidesc_add(dw->dw_td->td_iihash, ii);
1583 	}
1584 }
1585 
1586 static void
1587 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1588 {
1589 	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1590 }
1591 
1592 static void
1593 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1594 {
1595 	die_through_create(dw, die, off, tdp, CONST, "const");
1596 }
1597 
1598 static void
1599 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1600 {
1601 	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1602 }
1603 
1604 static void
1605 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1606 {
1607 	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1608 }
1609 
1610 static void
1611 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1612 {
1613 	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1614 }
1615 
1616 /*ARGSUSED3*/
1617 static void
1618 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1619 {
1620 	Dwarf_Die arg;
1621 	Dwarf_Half tag;
1622 	iidesc_t *ii;
1623 	char *name;
1624 
1625 	debug(3, "die %ju <0x%jx>: creating function definition\n",
1626 	    (uintmax_t)off, (uintmax_t)off);
1627 
1628 	/*
1629 	 * We'll begin by processing any type definition nodes that may be
1630 	 * lurking underneath this one.
1631 	 */
1632 	for (arg = die_child(dw, die); arg != NULL;
1633 	    arg = die_sibling(dw, arg)) {
1634 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1635 		    tag != DW_TAG_variable) {
1636 			/* Nested type declaration */
1637 			die_create_one(dw, arg);
1638 		}
1639 	}
1640 
1641 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1642 		/*
1643 		 * We process neither prototypes nor subprograms without
1644 		 * names.
1645 		 */
1646 		return;
1647 	}
1648 
1649 	ii = xcalloc(sizeof (iidesc_t));
1650 	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1651 	ii->ii_name = name;
1652 	if (ii->ii_type == II_SFUN)
1653 		ii->ii_owner = xstrdup(dw->dw_cuname);
1654 
1655 	debug(3, "die %ju: function %s is %s\n", (uintmax_t)off, ii->ii_name,
1656 	    (ii->ii_type == II_GFUN ? "global" : "static"));
1657 
1658 	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1659 		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1660 	else
1661 		ii->ii_dtype = tdesc_intr_void(dw);
1662 
1663 	for (arg = die_child(dw, die); arg != NULL;
1664 	    arg = die_sibling(dw, arg)) {
1665 		char *name1;
1666 
1667 		debug(3, "die %ju: looking at sub member at %ju\n",
1668 		    (uintmax_t)off, (uintmax_t)die_off(dw, die));
1669 
1670 		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1671 			continue;
1672 
1673 		if ((name1 = die_name(dw, arg)) == NULL) {
1674 			terminate("die %ju: func arg %d has no name\n",
1675 			    (uintptr_t)off, ii->ii_nargs + 1);
1676 		}
1677 
1678 		if (strcmp(name1, "...") == 0) {
1679 			free(name1);
1680 			ii->ii_vargs = 1;
1681 			continue;
1682 		}
1683 
1684 		ii->ii_nargs++;
1685 	}
1686 
1687 	if (ii->ii_nargs > 0) {
1688 		int i;
1689 
1690 		debug(3, "die %ju: function has %d argument%s\n",
1691 		    (uintptr_t)off, ii->ii_nargs, ii->ii_nargs == 1 ? "" : "s");
1692 
1693 		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1694 
1695 		for (arg = die_child(dw, die), i = 0;
1696 		    arg != NULL && i < ii->ii_nargs;
1697 		    arg = die_sibling(dw, arg)) {
1698 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1699 				continue;
1700 
1701 			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1702 			    DW_AT_type);
1703 		}
1704 	}
1705 
1706 	iidesc_add(dw->dw_td->td_iihash, ii);
1707 }
1708 
1709 /*ARGSUSED3*/
1710 static void
1711 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1712 {
1713 	iidesc_t *ii;
1714 	char *name;
1715 
1716 	debug(3, "die %ju: creating object definition\n", (uintptr_t)off);
1717 
1718 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1719 		return; /* skip prototypes and nameless objects */
1720 
1721 	ii = xcalloc(sizeof (iidesc_t));
1722 	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1723 	ii->ii_name = name;
1724 	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1725 	if (ii->ii_type == II_SVAR)
1726 		ii->ii_owner = xstrdup(dw->dw_cuname);
1727 
1728 	iidesc_add(dw->dw_td->td_iihash, ii);
1729 }
1730 
1731 /*ARGSUSED2*/
1732 static int
1733 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1734 {
1735 	if (fwd->t_flags & TDESC_F_RESOLVED)
1736 		return (1);
1737 
1738 	if (fwd->t_tdesc != NULL) {
1739 		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1740 		    tdesc_name(fwd));
1741 		*fwdp = fwd->t_tdesc;
1742 	}
1743 
1744 	fwd->t_flags |= TDESC_F_RESOLVED;
1745 
1746 	return (1);
1747 }
1748 
1749 /*ARGSUSED*/
1750 static void
1751 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1752 {
1753 	Dwarf_Die child = die_child(dw, die);
1754 
1755 	if (child != NULL)
1756 		die_create(dw, child);
1757 }
1758 
1759 /*
1760  * Used to map the die to a routine which can parse it, using the tag to do the
1761  * mapping.  While the processing of most tags entails the creation of a tdesc,
1762  * there are a few which don't - primarily those which result in the creation of
1763  * iidescs which refer to existing tdescs.
1764  */
1765 
1766 #define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1767 
1768 typedef struct die_creator {
1769 	Dwarf_Half dc_tag;
1770 	uint16_t dc_flags;
1771 	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1772 } die_creator_t;
1773 
1774 static const die_creator_t die_creators[] = {
1775 	{ DW_TAG_array_type,		0,		die_array_create },
1776 	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1777 	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1778 	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1779 	{ DW_TAG_structure_type,	0,		die_struct_create },
1780 	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1781 	{ DW_TAG_typedef,		0,		die_typedef_create },
1782 	{ DW_TAG_union_type,		0,		die_union_create },
1783 	{ DW_TAG_base_type,		0,		die_base_create },
1784 	{ DW_TAG_const_type,		0,		die_const_create },
1785 	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1786 	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1787 	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1788 	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1789 	{ 0, 0, NULL }
1790 };
1791 
1792 static const die_creator_t *
1793 die_tag2ctor(Dwarf_Half tag)
1794 {
1795 	const die_creator_t *dc;
1796 
1797 	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1798 		if (dc->dc_tag == tag)
1799 			return (dc);
1800 	}
1801 
1802 	return (NULL);
1803 }
1804 
1805 static void
1806 die_create_one(dwarf_t *dw, Dwarf_Die die)
1807 {
1808 	Dwarf_Off off = die_off(dw, die);
1809 	const die_creator_t *dc;
1810 	Dwarf_Half tag;
1811 	tdesc_t *tdp;
1812 
1813 	debug(3, "die %ju <0x%jx>: create_one\n", (uintptr_t)off,
1814 	    (uintptr_t)off);
1815 
1816 	if (off > dw->dw_maxoff) {
1817 		terminate("illegal die offset %ju (max %ju)\n", (uintptr_t)off,
1818 		    dw->dw_maxoff);
1819 	}
1820 
1821 	tag = die_tag(dw, die);
1822 
1823 	if ((dc = die_tag2ctor(tag)) == NULL) {
1824 		debug(2, "die %ju: ignoring tag type %x\n", (uintptr_t)off,
1825 		    tag);
1826 		return;
1827 	}
1828 
1829 	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1830 	    !(dc->dc_flags & DW_F_NOTDP)) {
1831 		tdp = xcalloc(sizeof (tdesc_t));
1832 		tdp->t_id = off;
1833 		tdesc_add(dw, tdp);
1834 	}
1835 
1836 	if (tdp != NULL)
1837 		tdp->t_name = die_name(dw, die);
1838 
1839 	dc->dc_create(dw, die, off, tdp);
1840 }
1841 
1842 static void
1843 die_create(dwarf_t *dw, Dwarf_Die die)
1844 {
1845 	do {
1846 		die_create_one(dw, die);
1847 	} while ((die = die_sibling(dw, die)) != NULL);
1848 }
1849 
1850 static tdtrav_cb_f die_resolvers[] = {
1851 	NULL,
1852 	NULL,			/* intrinsic */
1853 	NULL,			/* pointer */
1854 	die_array_resolve,	/* array */
1855 	NULL,			/* function */
1856 	die_sou_resolve,	/* struct */
1857 	die_sou_resolve,	/* union */
1858 	die_enum_resolve,	/* enum */
1859 	die_fwd_resolve,	/* forward */
1860 	NULL,			/* typedef */
1861 	NULL,			/* typedef unres */
1862 	NULL,			/* volatile */
1863 	NULL,			/* const */
1864 	NULL,			/* restrict */
1865 };
1866 
1867 static tdtrav_cb_f die_fail_reporters[] = {
1868 	NULL,
1869 	NULL,			/* intrinsic */
1870 	NULL,			/* pointer */
1871 	die_array_failed,	/* array */
1872 	NULL,			/* function */
1873 	die_sou_failed,		/* struct */
1874 	die_sou_failed,		/* union */
1875 	NULL,			/* enum */
1876 	NULL,			/* forward */
1877 	NULL,			/* typedef */
1878 	NULL,			/* typedef unres */
1879 	NULL,			/* volatile */
1880 	NULL,			/* const */
1881 	NULL,			/* restrict */
1882 };
1883 
1884 static void
1885 die_resolve(dwarf_t *dw)
1886 {
1887 	int last = -1;
1888 	int pass = 0;
1889 
1890 	do {
1891 		pass++;
1892 		dw->dw_nunres = 0;
1893 
1894 		(void) iitraverse_hash(dw->dw_td->td_iihash,
1895 		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1896 
1897 		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1898 
1899 		if ((int) dw->dw_nunres == last) {
1900 			fprintf(stderr, "%s: failed to resolve the following "
1901 			    "types:\n", progname);
1902 
1903 			(void) iitraverse_hash(dw->dw_td->td_iihash,
1904 			    &dw->dw_td->td_curvgen, NULL, NULL,
1905 			    die_fail_reporters, dw);
1906 
1907 			terminate("failed to resolve types\n");
1908 		}
1909 
1910 		last = dw->dw_nunres;
1911 
1912 	} while (dw->dw_nunres != 0);
1913 }
1914 
1915 /*
1916  * Any object containing a function or object symbol at any scope should also
1917  * contain DWARF data.
1918  */
1919 static boolean_t
1920 should_have_dwarf(Elf *elf)
1921 {
1922 	Elf_Scn *scn = NULL;
1923 	Elf_Data *data = NULL;
1924 	GElf_Shdr shdr;
1925 	GElf_Sym sym;
1926 	uint32_t symdx = 0;
1927 	size_t nsyms = 0;
1928 	boolean_t found = B_FALSE;
1929 
1930 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1931 		gelf_getshdr(scn, &shdr);
1932 
1933 		if (shdr.sh_type == SHT_SYMTAB) {
1934 			found = B_TRUE;
1935 			break;
1936 		}
1937 	}
1938 
1939 	if (!found)
1940 		terminate("cannot convert stripped objects\n");
1941 
1942 	data = elf_getdata(scn, NULL);
1943 	nsyms = shdr.sh_size / shdr.sh_entsize;
1944 
1945 	for (symdx = 0; symdx < nsyms; symdx++) {
1946 		gelf_getsym(data, symdx, &sym);
1947 
1948 		if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1949 		    (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1950 		    (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1951 			char *name;
1952 
1953 			name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1954 
1955 			/* Studio emits these local symbols regardless */
1956 			if ((strcmp(name, "Bbss.bss") != 0) &&
1957 			    (strcmp(name, "Ttbss.bss") != 0) &&
1958 			    (strcmp(name, "Ddata.data") != 0) &&
1959 			    (strcmp(name, "Ttdata.data") != 0) &&
1960 			    (strcmp(name, "Drodata.rodata") != 0))
1961 				return (B_TRUE);
1962 		}
1963 	}
1964 
1965 	return (B_FALSE);
1966 }
1967 
1968 /*ARGSUSED*/
1969 int
1970 dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1971 {
1972 	Dwarf_Unsigned hdrlen, nxthdr;
1973 	Dwarf_Off abboff;
1974 	Dwarf_Half vers, addrsz, offsz;
1975 	Dwarf_Die cu = 0;
1976 	Dwarf_Die child = 0;
1977 	dwarf_t dw;
1978 	char *prod = NULL;
1979 	int rc;
1980 
1981 	bzero(&dw, sizeof (dwarf_t));
1982 	dw.dw_td = td;
1983 	dw.dw_ptrsz = elf_ptrsz(elf);
1984 	dw.dw_mfgtid_last = TID_MFGTID_BASE;
1985 	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1986 	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1987 	    tdesc_namecmp);
1988 	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1989 	    tdesc_namecmp);
1990 
1991 	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw,
1992 	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1993 		/* The new library does that */
1994 		if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1995 			/*
1996 			 * There's no type data in the DWARF section, but
1997 			 * libdwarf is too clever to handle that properly.
1998 			 */
1999 			return (0);
2000 		}
2001 		if (should_have_dwarf(elf)) {
2002 			errno = ENOENT;
2003 			return (-1);
2004 		} else {
2005 
2006 			return (0);
2007 		}
2008 	} else if (rc != DW_DLV_OK) {
2009 		if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
2010 			/*
2011 			 * There's no type data in the DWARF section, but
2012 			 * libdwarf is too clever to handle that properly.
2013 			 */
2014 			return (0);
2015 		}
2016 
2017 		terminate("failed to initialize DWARF: %s\n",
2018 		    dwarf_errmsg(dw.dw_err));
2019 	}
2020 
2021 	if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
2022 /*###2022 [cc] error: passing argument 4 of 'dwarf_next_cu_header_b' from incompatible pointer type [-Werror]%%%*/
2023 	    &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
2024 		terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err));
2025 
2026 	if ((cu = die_sibling(&dw, NULL)) == NULL)
2027 		goto out;
2028 
2029 	if ((child = die_child(&dw, cu)) == NULL) {
2030 		Dwarf_Unsigned lang;
2031 		if (die_unsigned(&dw, cu, DW_AT_language, &lang, 0)) {
2032 			debug(1, "DWARF language: %ju\n", (uintptr_t)lang);
2033 			/*
2034 			 * Assembly languages are typically that.
2035 			 * They have some dwarf info, but not what
2036 			 * we expect. They have local symbols for
2037 			 * example, but they are missing the child info.
2038 			 */
2039 			if (lang >= DW_LANG_lo_user)
2040 				return 0;
2041 		}
2042 	    	if (should_have_dwarf(elf))
2043 			goto out;
2044 	}
2045 
2046 	if (child == NULL)
2047 		return (0);
2048 
2049 	dw.dw_maxoff = nxthdr - 1;
2050 
2051 	if (dw.dw_maxoff > TID_FILEMAX)
2052 		terminate("file contains too many types\n");
2053 
2054 	debug(1, "DWARF version: %d\n", vers);
2055 	if (vers < 2 || vers > 4) {
2056 		terminate("file contains incompatible version %d DWARF code "
2057 		    "(version 2, 3 or 4 required)\n", vers);
2058 	}
2059 
2060 	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
2061 		debug(1, "DWARF emitter: %s\n", prod);
2062 		free(prod);
2063 	}
2064 
2065 	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
2066 		char *base = xstrdup(basename(dw.dw_cuname));
2067 		free(dw.dw_cuname);
2068 		dw.dw_cuname = base;
2069 
2070 		debug(1, "CU name: %s\n", dw.dw_cuname);
2071 	}
2072 
2073 	if ((child = die_child(&dw, cu)) != NULL)
2074 		die_create(&dw, child);
2075 
2076 	if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
2077 /*###2076 [cc] error: passing argument 4 of 'dwarf_next_cu_header_b' from incompatible pointer type [-Werror]%%%*/
2078 	    &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
2079 		terminate("multiple compilation units not supported\n");
2080 
2081 	(void) dwarf_finish(dw.dw_dw, &dw.dw_err);
2082 
2083 	die_resolve(&dw);
2084 
2085 	cvt_fixups(td, dw.dw_ptrsz);
2086 
2087 	/* leak the dwarf_t */
2088 
2089 	return (0);
2090 out:
2091 	terminate("file does not contain dwarf type data "
2092 	    "(try compiling with -g)\n");
2093 }
2094