xref: /netbsd-src/external/cddl/osnet/dist/tools/ctf/cvt/dwarf.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DWARF to tdata conversion
28  *
29  * For the most part, conversion is straightforward, proceeding in two passes.
30  * On the first pass, we iterate through every die, creating new type nodes as
31  * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
32  * allowing type reference pointers to be filled in.  If the tdesc_t
33  * corresponding to a given die can be completely filled out (sizes and offsets
34  * calculated, and so forth) without using any referenced types, the tdesc_t is
35  * marked as resolved.  Consider an array type.  If the type corresponding to
36  * the array contents has not yet been processed, we will create a blank tdesc
37  * for the contents type (only the type ID will be filled in, relying upon the
38  * later portion of the first pass to encounter and complete the referenced
39  * type).  We will then attempt to determine the size of the array.  If the
40  * array has a byte size attribute, we will have completely characterized the
41  * array type, and will be able to mark it as resolved.  The lack of a byte
42  * size attribute, on the other hand, will prevent us from fully resolving the
43  * type, as the size will only be calculable with reference to the contents
44  * type, which has not, as yet, been encountered.  The array type will thus be
45  * left without the resolved flag, and the first pass will continue.
46  *
47  * When we begin the second pass, we will have created tdesc_t nodes for every
48  * type in the section.  We will traverse the tree, from the iidescs down,
49  * processing each unresolved node.  As the referenced nodes will have been
50  * populated, the array type used in our example above will be able to use the
51  * size of the referenced types (if available) to determine its own type.  The
52  * traversal will be repeated until all types have been resolved or we have
53  * failed to make progress.  When all tdescs have been resolved, the conversion
54  * is complete.
55  *
56  * There are, as always, a few special cases that are handled during the first
57  * and second passes:
58  *
59  *  1. Empty enums - GCC will occasionally emit an enum without any members.
60  *     Later on in the file, it will emit the same enum type, though this time
61  *     with the full complement of members.  All references to the memberless
62  *     enum need to be redirected to the full definition.  During the first
63  *     pass, each enum is entered in dm_enumhash, along with a pointer to its
64  *     corresponding tdesc_t.  If, during the second pass, we encounter a
65  *     memberless enum, we use the hash to locate the full definition.  All
66  *     tdescs referencing the empty enum are then redirected.
67  *
68  *  2. Forward declarations - If the compiler sees a forward declaration for
69  *     a structure, followed by the definition of that structure, it will emit
70  *     DWARF data for both the forward declaration and the definition.  We need
71  *     to resolve the forward declarations when possible, by redirecting
72  *     forward-referencing tdescs to the actual struct/union definitions.  This
73  *     redirection is done completely within the first pass.  We begin by
74  *     recording all forward declarations in dw_fwdhash.  When we define a
75  *     structure, we check to see if there have been any corresponding forward
76  *     declarations.  If so, we redirect the tdescs which referenced the forward
77  *     declarations to the structure or union definition.
78  *
79  * XXX see if a post traverser will allow the elimination of repeated pass 2
80  * traversals.
81  */
82 
83 #if HAVE_NBTOOL_CONFIG_H
84 # include "nbtool_config.h"
85 #endif
86 
87 #include <stdio.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <strings.h>
91 #include <errno.h>
92 #include <libelf.h>
93 #include <libdwarf.h>
94 #include <libgen.h>
95 #include <dwarf.h>
96 
97 #include "ctf_headers.h"
98 #include "ctftools.h"
99 #include "memory.h"
100 #include "list.h"
101 #include "traverse.h"
102 
103 /*
104  * We need to define a couple of our own intrinsics, to smooth out some of the
105  * differences between the GCC and DevPro DWARF emitters.  See the referenced
106  * routines and the special cases in the file comment for more details.
107  *
108  * Type IDs are 32 bits wide.  We're going to use the top of that field to
109  * indicate types that we've created ourselves.
110  */
111 #define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
112 #define	TID_VOID		0x40000001	/* see die_void() */
113 #define	TID_LONG		0x40000002	/* see die_array() */
114 
115 #define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
116 
117 /*
118  * To reduce the staggering amount of error-handling code that would otherwise
119  * be required, the attribute-retrieval routines handle most of their own
120  * errors.  If the following flag is supplied as the value of the `req'
121  * argument, they will also handle the absence of a requested attribute by
122  * terminating the program.
123  */
124 #define	DW_ATTR_REQ	1
125 
126 #define	TDESC_HASH_BUCKETS	511
127 
128 typedef struct dwarf {
129 	Dwarf_Debug dw_dw;		/* for libdwarf */
130 	Dwarf_Error dw_err;		/* for libdwarf */
131 	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
132 	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
133 	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
134 	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
135 	hash_t *dw_enumhash;		/* hash of memberless enums by name */
136 	tdesc_t *dw_void;		/* manufactured void type */
137 	tdesc_t *dw_long;		/* manufactured long type for arrays */
138 	size_t dw_ptrsz;		/* size of a pointer in this file */
139 	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
140 	uint_t dw_nunres;		/* count of unresolved types */
141 	char *dw_cuname;		/* name of compilation unit */
142 } dwarf_t;
143 
144 static void die_create_one(dwarf_t *, Dwarf_Die);
145 static void die_create(dwarf_t *, Dwarf_Die);
146 
147 static tid_t
148 mfgtid_next(dwarf_t *dw)
149 {
150 	return (++dw->dw_mfgtid_last);
151 }
152 
153 static void
154 tdesc_add(dwarf_t *dw, tdesc_t *tdp)
155 {
156 	hash_add(dw->dw_tidhash, tdp);
157 }
158 
159 static tdesc_t *
160 tdesc_lookup(dwarf_t *dw, int tid)
161 {
162 	tdesc_t tmpl;
163 	void *tdp;
164 
165 	tmpl.t_id = tid;
166 
167 	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
168 		return (tdp);
169 	else
170 		return (NULL);
171 }
172 
173 /*
174  * Resolve a tdesc down to a node which should have a size.  Returns the size,
175  * zero if the size hasn't yet been determined.
176  */
177 static size_t
178 tdesc_size(tdesc_t *tdp)
179 {
180 	for (;;) {
181 		switch (tdp->t_type) {
182 		case INTRINSIC:
183 		case POINTER:
184 		case REFERENCE:
185 		case ARRAY:
186 		case FUNCTION:
187 		case STRUCT:
188 		case UNION:
189 		case CLASS:
190 		case ENUM:
191 			return (tdp->t_size);
192 
193 		case FORWARD:
194 			debug(3, "type is forward for %#x\n", tdp->t_id);
195 			return (0);
196 
197 		case TYPEDEF:
198 		case VOLATILE:
199 		case CONST:
200 		case RESTRICT:
201 			tdp = tdp->t_tdesc;
202 			continue;
203 
204 		case 0: /* not yet defined */
205 			debug(3, "type is undefined for %#x\n", tdp->t_id);
206 			return (0);
207 
208 		default:
209 			terminate("tdp %u: tdesc_size on unknown type %#x\n",
210 			    tdp->t_id, tdp->t_type);
211 		}
212 	}
213 }
214 
215 static size_t
216 tdesc_bitsize(tdesc_t *tdp)
217 {
218 	for (;;) {
219 		switch (tdp->t_type) {
220 		case INTRINSIC:
221 			return (tdp->t_intr->intr_nbits);
222 
223 		case ARRAY:
224 		case FUNCTION:
225 		case STRUCT:
226 		case UNION:
227 		case CLASS:
228 		case ENUM:
229 		case POINTER:
230 		case REFERENCE:
231 			return (tdp->t_size * NBBY);
232 
233 		case FORWARD:
234 			debug(3, "bitsize is forward for %d\n", tdp->t_id);
235 			return (0);
236 
237 		case TYPEDEF:
238 		case VOLATILE:
239 		case RESTRICT:
240 		case CONST:
241 			tdp = tdp->t_tdesc;
242 			continue;
243 
244 		case 0: /* not yet defined */
245 			debug(3, "bitsize is undefined for %d\n", tdp->t_id);
246 			return (0);
247 
248 		default:
249 			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
250 			    tdp->t_id, tdp->t_type);
251 		}
252 	}
253 }
254 
255 static tdesc_t *
256 tdesc_basetype(tdesc_t *tdp)
257 {
258 	for (;;) {
259 		switch (tdp->t_type) {
260 		case TYPEDEF:
261 		case VOLATILE:
262 		case RESTRICT:
263 		case CONST:
264 			tdp = tdp->t_tdesc;
265 			break;
266 		case 0: /* not yet defined */
267 			return (NULL);
268 		default:
269 			return (tdp);
270 		}
271 	}
272 }
273 
274 static Dwarf_Off
275 die_off(dwarf_t *dw, Dwarf_Die die)
276 {
277 	Dwarf_Off off;
278 
279 	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
280 		return (off);
281 
282 	terminate("failed to get offset for die: %s\n",
283 	    dwarf_errmsg(dw->dw_err));
284 	/*NOTREACHED*/
285 	return (0);
286 }
287 
288 static Dwarf_Die
289 die_sibling(dwarf_t *dw, Dwarf_Die die)
290 {
291 	Dwarf_Die sib;
292 	int rc;
293 
294 	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
295 	    DW_DLV_OK)
296 		return (sib);
297 	else if (rc == DW_DLV_NO_ENTRY)
298 		return (NULL);
299 
300 	terminate("die %ju: failed to find type sibling: %s\n",
301 	    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
302 	/*NOTREACHED*/
303 	return (NULL);
304 }
305 
306 static Dwarf_Die
307 die_child(dwarf_t *dw, Dwarf_Die die)
308 {
309 	Dwarf_Die child;
310 	int rc;
311 
312 	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
313 		return (child);
314 	else if (rc == DW_DLV_NO_ENTRY)
315 		return (NULL);
316 
317 	terminate("die %ju: failed to find type child: %s\n",
318 	    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
319 	/*NOTREACHED*/
320 	return (NULL);
321 }
322 
323 static Dwarf_Half
324 die_tag(dwarf_t *dw, Dwarf_Die die)
325 {
326 	Dwarf_Half tag;
327 
328 	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
329 		return (tag);
330 
331 	terminate("die %ju: failed to get tag for type: %s\n",
332 	    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
333 	/*NOTREACHED*/
334 	return (0);
335 }
336 
337 static Dwarf_Attribute
338 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
339 {
340 	Dwarf_Attribute attr;
341 	int rc;
342 
343 	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
344 		return (attr);
345 	} else if (rc == DW_DLV_NO_ENTRY) {
346 		if (req) {
347 			terminate("die %ju: no attr 0x%x\n",
348 			    (uintmax_t)die_off(dw, die),
349 			    name);
350 		} else {
351 			return (NULL);
352 		}
353 	}
354 
355 	terminate("die %ju: failed to get attribute for type: %s\n",
356 	    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
357 	/*NOTREACHED*/
358 	return (NULL);
359 }
360 
361 static int
362 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
363     int req)
364 {
365 	*valp = 0;
366 	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
367 		if (req)
368 			terminate("die %ju: failed to get signed: %s\n",
369 			    (uintmax_t)die_off(dw, die),
370 			    dwarf_errmsg(dw->dw_err));
371 		return (0);
372 	}
373 
374 	return (1);
375 }
376 
377 static int
378 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
379     int req)
380 {
381 	*valp = 0;
382 	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
383 		if (req)
384 			terminate("die %ju: failed to get unsigned: %s\n",
385 			    (uintmax_t)die_off(dw, die),
386 			    dwarf_errmsg(dw->dw_err));
387 		return (0);
388 	}
389 
390 	return (1);
391 }
392 
393 static int
394 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
395 {
396 	*valp = 0;
397 
398 	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
399 		if (req)
400 			terminate("die %ju: failed to get flag: %s\n",
401 			    (uintmax_t)die_off(dw, die),
402 			    dwarf_errmsg(dw->dw_err));
403 		return (0);
404 	}
405 
406 	return (1);
407 }
408 
409 static int
410 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
411 {
412 	const char *str = NULL;
413 
414 	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK ||
415 	    str == NULL) {
416 		if (req)
417 			terminate("die %ju: failed to get string: %s\n",
418 			    (uintmax_t)die_off(dw, die),
419 			    dwarf_errmsg(dw->dw_err));
420 		else
421 			*strp = NULL;
422 		return (0);
423 	} else
424 		*strp = xstrdup(str);
425 
426 	return (1);
427 }
428 
429 static Dwarf_Off
430 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
431 {
432 	Dwarf_Unsigned off;
433 
434 	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) {
435 		terminate("die %ju: failed to get ref: %s\n",
436 		    (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err));
437 	}
438 
439 	return (off);
440 }
441 
442 static char *
443 die_name(dwarf_t *dw, Dwarf_Die die)
444 {
445 	char *str = NULL;
446 
447 	(void) die_string(dw, die, DW_AT_name, &str, 0);
448 	if (str == NULL)
449 		str = xstrdup("");
450 
451 	return (str);
452 }
453 
454 static int
455 die_isdecl(dwarf_t *dw, Dwarf_Die die)
456 {
457 	Dwarf_Bool val;
458 
459 	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
460 }
461 
462 static int
463 die_isglobal(dwarf_t *dw, Dwarf_Die die)
464 {
465 	Dwarf_Signed vis;
466 	Dwarf_Bool ext;
467 
468 	/*
469 	 * Some compilers (gcc) use DW_AT_external to indicate function
470 	 * visibility.  Others (Sun) use DW_AT_visibility.
471 	 */
472 	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
473 		return (vis == DW_VIS_exported);
474 	else
475 		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
476 }
477 
478 static tdesc_t *
479 die_add(dwarf_t *dw, Dwarf_Off off)
480 {
481 	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
482 
483 	tdp->t_id = off;
484 
485 	tdesc_add(dw, tdp);
486 
487 	return (tdp);
488 }
489 
490 static tdesc_t *
491 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
492 {
493 	Dwarf_Off ref = die_attr_ref(dw, die, name);
494 	tdesc_t *tdp;
495 
496 	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
497 		return (tdp);
498 
499 	return (die_add(dw, ref));
500 }
501 
502 static int
503 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
504     Dwarf_Unsigned *valp, int req __unused)
505 {
506 	Dwarf_Locdesc *loc = NULL;
507 	Dwarf_Signed locnum = 0;
508 	Dwarf_Attribute at;
509 	Dwarf_Half form;
510 
511 	if (name != DW_AT_data_member_location)
512 		terminate("die %ju: can only process attribute "
513 		    "DW_AT_data_member_location\n",
514 		    (uintmax_t)die_off(dw, die));
515 
516 	if ((at = die_attr(dw, die, name, 0)) == NULL)
517 		return (0);
518 
519 	if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK)
520 		return (0);
521 
522 	switch (form) {
523 	case DW_FORM_sec_offset:
524 	case DW_FORM_block:
525 	case DW_FORM_block1:
526 	case DW_FORM_block2:
527 	case DW_FORM_block4:
528 		/*
529 		 * GCC in base and Clang (3.3 or below) generates
530 		 * DW_AT_data_member_location attribute with DW_FORM_block*
531 		 * form. The attribute contains one DW_OP_plus_uconst
532 		 * operator. The member offset stores in the operand.
533 		 */
534 		if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
535 			return (0);
536 		if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
537 			terminate("die %ju: cannot parse member offset with "
538 			    "operator other than DW_OP_plus_uconst\n",
539 			    (uintmax_t)die_off(dw, die));
540 		}
541 		*valp = loc->ld_s->lr_number;
542 		if (loc != NULL) {
543 			dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK);
544 			dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC);
545 		}
546 		break;
547 
548 	case DW_FORM_data1:
549 	case DW_FORM_data2:
550 	case DW_FORM_data4:
551 	case DW_FORM_data8:
552 	case DW_FORM_udata:
553 		/*
554 		 * Clang 3.4 generates DW_AT_data_member_location attribute
555 		 * with DW_FORM_data* form (constant class). The attribute
556 		 * stores a contant value which is the member offset.
557 		 *
558 		 * However, note that DW_FORM_data[48] in DWARF version 2 or 3
559 		 * could be used as a section offset (offset into .debug_loc in
560 		 * this case). Here we assume the attribute always stores a
561 		 * constant because we know Clang 3.4 does this and GCC in
562 		 * base won't emit DW_FORM_data[48] for this attribute. This
563 		 * code will remain correct if future vesrions of Clang and
564 		 * GCC conform to DWARF4 standard and only use the form
565 		 * DW_FORM_sec_offset for section offset.
566 		 */
567 		if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) !=
568 		    DW_DLV_OK)
569 			return (0);
570 		break;
571 
572 	default:
573 		terminate("die %ju: cannot parse member offset with form "
574 		    "%u\n", (uintmax_t)die_off(dw, die), form);
575 	}
576 
577 	return (1);
578 }
579 
580 static tdesc_t *
581 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
582 {
583 	tdesc_t *tdp;
584 	intr_t *intr;
585 
586 	intr = xcalloc(sizeof (intr_t));
587 	intr->intr_type = INTR_INT;
588 	intr->intr_signed = 1;
589 	intr->intr_nbits = sz * NBBY;
590 
591 	tdp = xcalloc(sizeof (tdesc_t));
592 	tdp->t_name = xstrdup(name);
593 	tdp->t_size = sz;
594 	tdp->t_id = tid;
595 	tdp->t_type = INTRINSIC;
596 	tdp->t_intr = intr;
597 	tdp->t_flags = TDESC_F_RESOLVED;
598 
599 	tdesc_add(dw, tdp);
600 
601 	return (tdp);
602 }
603 
604 /*
605  * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
606  * type reference implies a reference to a void type.  A void *, for example
607  * will be represented by a pointer die without a DW_AT_type.  CTF requires
608  * that pointer nodes point to something, so we'll create a void for use as
609  * the target.  Note that the DWARF data may already create a void type.  Ours
610  * would then be a duplicate, but it'll be removed in the self-uniquification
611  * merge performed at the completion of DWARF->tdesc conversion.
612  */
613 static tdesc_t *
614 tdesc_intr_void(dwarf_t *dw)
615 {
616 	if (dw->dw_void == NULL)
617 		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
618 
619 	return (dw->dw_void);
620 }
621 
622 static tdesc_t *
623 tdesc_intr_long(dwarf_t *dw)
624 {
625 	if (dw->dw_long == NULL) {
626 		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
627 		    dw->dw_ptrsz);
628 	}
629 
630 	return (dw->dw_long);
631 }
632 
633 /*
634  * Used for creating bitfield types.  We create a copy of an existing intrinsic,
635  * adjusting the size of the copy to match what the caller requested.  The
636  * caller can then use the copy as the type for a bitfield structure member.
637  */
638 static tdesc_t *
639 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
640 {
641 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
642 
643 	if (!(old->t_flags & TDESC_F_RESOLVED)) {
644 		terminate("tdp %u: attempt to make a bit field from an "
645 		    "unresolved type\n", old->t_id);
646 	}
647 
648 	new->t_name = xstrdup(old->t_name);
649 	new->t_size = old->t_size;
650 	new->t_id = mfgtid_next(dw);
651 	new->t_type = INTRINSIC;
652 	new->t_flags = TDESC_F_RESOLVED;
653 
654 	new->t_intr = xcalloc(sizeof (intr_t));
655 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
656 	new->t_intr->intr_nbits = bitsz;
657 
658 	tdesc_add(dw, new);
659 
660 	return (new);
661 }
662 
663 static void
664 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
665     tdesc_t *dimtdp)
666 {
667 	Dwarf_Unsigned uval;
668 	Dwarf_Signed sval;
669 	tdesc_t *ctdp = NULL;
670 	Dwarf_Die dim2;
671 	ardef_t *ar;
672 
673 	if ((dim2 = die_sibling(dw, dim)) == NULL) {
674 		ctdp = arrtdp;
675 		debug(3, "die %ju: sibling type %#x for dimension\n",
676 		    (uintmax_t)die_off(dw, dim), ctdp->t_id);
677 	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
678 		ctdp = xcalloc(sizeof (tdesc_t));
679 		ctdp->t_id = mfgtid_next(dw);
680 		debug(3, "die %ju: creating new type %#x for sub-dimension\n",
681 		    (uintmax_t)die_off(dw, dim2), ctdp->t_id);
682 		tdesc_array_create(dw, dim2, arrtdp, ctdp);
683 	} else {
684 		terminate("die %ju: unexpected non-subrange node in array\n",
685 		    (uintmax_t)die_off(dw, dim2));
686 	}
687 
688 	dimtdp->t_type = ARRAY;
689 	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
690 
691 	/*
692 	 * Array bounds can be signed or unsigned, but there are several kinds
693 	 * of signless forms (data1, data2, etc) that take their sign from the
694 	 * routine that is trying to interpret them.  That is, data1 can be
695 	 * either signed or unsigned, depending on whether you use the signed or
696 	 * unsigned accessor function.  GCC will use the signless forms to store
697 	 * unsigned values which have their high bit set, so we need to try to
698 	 * read them first as unsigned to get positive values.  We could also
699 	 * try signed first, falling back to unsigned if we got a negative
700 	 * value.
701 	 */
702 	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
703 		ar->ad_nelems = uval + 1;
704 	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
705 		ar->ad_nelems = sval + 1;
706 	else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0))
707 		ar->ad_nelems = uval + 1;
708 	else if (die_signed(dw, dim, DW_AT_count, &sval, 0))
709 		ar->ad_nelems = sval + 1;
710 	else
711 		ar->ad_nelems = 0;
712 
713 	/*
714 	 * Different compilers use different index types.  Force the type to be
715 	 * a common, known value (long).
716 	 */
717 	ar->ad_idxtype = tdesc_intr_long(dw);
718 	ar->ad_contents = ctdp;
719 	debug(3, "die %ju: hi mom sibling type %#x for dimension\n",
720 	    (uintmax_t)die_off(dw, dim), ctdp->t_id);
721 
722 	if (ar->ad_contents->t_size != 0) {
723 		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
724 		dimtdp->t_flags |= TDESC_F_RESOLVED;
725 	}
726 }
727 
728 /*
729  * Create a tdesc from an array node.  Some arrays will come with byte size
730  * attributes, and thus can be resolved immediately.  Others don't, and will
731  * need to wait until the second pass for resolution.
732  */
733 static void
734 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
735 {
736 	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
737 	Dwarf_Unsigned uval;
738 	Dwarf_Die dim;
739 
740 	debug(3, "die %ju <%jx>: creating array\n",
741 	    (uintmax_t)off, (uintmax_t)off);
742 
743 	if ((dim = die_child(dw, arr)) == NULL ||
744 	    die_tag(dw, dim) != DW_TAG_subrange_type)
745 		terminate("die %ju: failed to retrieve array bounds\n",
746 		    (uintmax_t)off);
747 
748 	if (arrtdp->t_type == 0) {
749 		/*
750 		 * Add the die that contains the type of the array elements
751 		 * to the the ones we process; XXX: no public API for that?
752 		 */
753 		extern Dwarf_Die _dwarf_die_find(Dwarf_Die, Dwarf_Unsigned);
754 		Dwarf_Die elem = _dwarf_die_find(arr, arrtdp->t_id);
755 		if (elem != NULL)
756 		    die_create_one(dw, elem);
757 	}
758 
759 	tdesc_array_create(dw, dim, arrtdp, tdp);
760 
761 	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
762 		tdesc_t *dimtdp;
763 		int flags;
764 
765 		/* Check for bogus gcc DW_AT_byte_size attribute */
766 		if (uval == (unsigned)-1) {
767 			printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
768 			    __func__);
769 			uval = 0;
770 		}
771 
772 		tdp->t_size = uval;
773 
774 		/*
775 		 * Ensure that sub-dimensions have sizes too before marking
776 		 * as resolved.
777 		 */
778 		flags = TDESC_F_RESOLVED;
779 		for (dimtdp = tdp->t_ardef->ad_contents;
780 		    dimtdp->t_type == ARRAY;
781 		    dimtdp = dimtdp->t_ardef->ad_contents) {
782 			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
783 				flags = 0;
784 				break;
785 			}
786 		}
787 
788 		tdp->t_flags |= flags;
789 	}
790 
791 	debug(3, "die %ju <%jx>: array nelems %u size %u\n", (uintmax_t)off,
792 	    (uintmax_t)off, tdp->t_ardef->ad_nelems, tdp->t_size);
793 }
794 
795 /*ARGSUSED1*/
796 static int
797 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
798 {
799 	dwarf_t *dw = private;
800 	size_t sz;
801 
802 	if (tdp->t_flags & TDESC_F_RESOLVED)
803 		return (1);
804 
805 	debug(3, "trying to resolve array %#x (cont %#x/%d)\n", tdp->t_id,
806 	    tdp->t_ardef->ad_contents->t_id,
807 	    tdp->t_ardef->ad_contents->t_size);
808 
809 	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 &&
810 	    (tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) {
811 		debug(3, "unable to resolve array %s (%#x) contents %#x\n",
812 		    tdesc_name(tdp), tdp->t_id,
813 		    tdp->t_ardef->ad_contents->t_id);
814 
815 		dw->dw_nunres++;
816 		return (1);
817 	}
818 
819 	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
820 	tdp->t_flags |= TDESC_F_RESOLVED;
821 
822 	debug(3, "resolved array %#x: %u bytes\n", tdp->t_id, tdp->t_size);
823 
824 	return (1);
825 }
826 
827 /*ARGSUSED1*/
828 static int
829 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
830 {
831 	tdesc_t *cont = tdp->t_ardef->ad_contents;
832 
833 	if (tdp->t_flags & TDESC_F_RESOLVED)
834 		return (1);
835 
836 	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
837 	    tdp->t_id, tdesc_name(cont), cont->t_id);
838 
839 	return (1);
840 }
841 
842 /*
843  * Most enums (those with members) will be resolved during this first pass.
844  * Others - those without members (see the file comment) - won't be, and will
845  * need to wait until the second pass when they can be matched with their full
846  * definitions.
847  */
848 static void
849 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
850 {
851 	Dwarf_Die mem;
852 	Dwarf_Unsigned uval;
853 	Dwarf_Signed sval;
854 
855 	debug(3, "die %ju: creating enum\n", (uintmax_t)off);
856 
857 	tdp->t_type = (die_isdecl(dw, die) ? FORWARD : ENUM);
858 	if (tdp->t_type != ENUM)
859 		return;
860 
861 	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
862 	/* Check for bogus gcc DW_AT_byte_size attribute */
863 	if (uval == (unsigned)-1) {
864 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
865 		    __func__);
866 		uval = 0;
867 	}
868 	tdp->t_size = uval;
869 
870 	if ((mem = die_child(dw, die)) != NULL) {
871 		elist_t **elastp = &tdp->t_emem;
872 
873 		do {
874 			elist_t *el;
875 
876 			if (die_tag(dw, mem) != DW_TAG_enumerator) {
877 				/* Nested type declaration */
878 				die_create_one(dw, mem);
879 				continue;
880 			}
881 
882 			el = xcalloc(sizeof (elist_t));
883 			el->el_name = die_name(dw, mem);
884 
885 			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
886 				el->el_number = sval;
887 			} else if (die_unsigned(dw, mem, DW_AT_const_value,
888 			    &uval, 0)) {
889 				el->el_number = uval;
890 			} else {
891 				terminate("die %ju: enum %ju: member without "
892 				    "value\n", (uintmax_t)off,
893 				    (uintmax_t)die_off(dw, mem));
894 			}
895 
896 			debug(3, "die %ju: enum %ju: created %s = %d\n",
897 			    (uintmax_t)off, (uintmax_t)die_off(dw, mem),
898 			    el->el_name, el->el_number);
899 
900 			*elastp = el;
901 			elastp = &el->el_next;
902 
903 		} while ((mem = die_sibling(dw, mem)) != NULL);
904 
905 		hash_add(dw->dw_enumhash, tdp);
906 
907 		tdp->t_flags |= TDESC_F_RESOLVED;
908 
909 		if (tdp->t_name != NULL) {
910 			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
911 			ii->ii_type = II_SOU;
912 			ii->ii_name = xstrdup(tdp->t_name);
913 			ii->ii_dtype = tdp;
914 
915 			iidesc_add(dw->dw_td->td_iihash, ii);
916 		}
917 	}
918 }
919 
920 static int
921 die_enum_match(void *arg1, void *arg2)
922 {
923 	tdesc_t *tdp = arg1, **fullp = arg2;
924 
925 	if (tdp->t_emem != NULL) {
926 		*fullp = tdp;
927 		return (-1); /* stop the iteration */
928 	}
929 
930 	return (0);
931 }
932 
933 /*ARGSUSED1*/
934 static int
935 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
936 {
937 	dwarf_t *dw = private;
938 	tdesc_t *full = NULL;
939 
940 	if (tdp->t_flags & TDESC_F_RESOLVED)
941 		return (1);
942 
943 	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
944 
945 	/*
946 	 * The answer to this one won't change from iteration to iteration,
947 	 * so don't even try.
948 	 */
949 	if (full == NULL) {
950 		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
951 		    tdesc_name(tdp));
952 	}
953 
954 	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
955 	    tdesc_name(tdp), full->t_id);
956 
957 	tdp->t_flags |= TDESC_F_RESOLVED;
958 
959 	return (1);
960 }
961 
962 static int
963 die_fwd_map(void *arg1, void *arg2)
964 {
965 	tdesc_t *fwd = arg1, *sou = arg2;
966 
967 	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
968 	    tdesc_name(fwd), sou->t_id);
969 	fwd->t_tdesc = sou;
970 
971 	return (0);
972 }
973 
974 /*
975  * Structures and unions will never be resolved during the first pass, as we
976  * won't be able to fully determine the member sizes.  The second pass, which
977  * have access to sizing information, will be able to complete the resolution.
978  */
979 static void
980 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
981     int type, const char *typename)
982 {
983 	Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0;
984 #if BYTE_ORDER == LITTLE_ENDIAN
985 	Dwarf_Unsigned bysz;
986 #endif
987 	Dwarf_Die mem;
988 	mlist_t *ml, **mlastp;
989 	iidesc_t *ii;
990 
991 	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
992 
993 	debug(3, "die %ju: creating %s %s <%d>\n", (uintmax_t)off,
994 	    (tdp->t_type == FORWARD ? "forward decl" : typename),
995 	    tdesc_name(tdp), tdp->t_id);
996 
997 	if (tdp->t_type == FORWARD) {
998 		hash_add(dw->dw_fwdhash, tdp);
999 		return;
1000 	}
1001 
1002 	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
1003 
1004 	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1005 	tdp->t_size = sz;
1006 
1007 	/*
1008 	 * GCC allows empty SOUs as an extension.
1009 	 */
1010 	if ((mem = die_child(dw, str)) == NULL) {
1011 		goto out;
1012 	}
1013 
1014 	mlastp = &tdp->t_members;
1015 
1016 	do {
1017 		Dwarf_Off memoff = die_off(dw, mem);
1018 		Dwarf_Half tag = die_tag(dw, mem);
1019 		Dwarf_Unsigned mloff;
1020 
1021 		if (tag != DW_TAG_member) {
1022 			/* Nested type declaration */
1023 			die_create_one(dw, mem);
1024 			continue;
1025 		}
1026 
1027 		debug(3, "die %ju: mem %ju: creating member\n",
1028 		    (uintmax_t)off, (uintmax_t)memoff);
1029 
1030 		ml = xcalloc(sizeof (mlist_t));
1031 
1032 		/*
1033 		 * This could be a GCC anon struct/union member, so we'll allow
1034 		 * an empty name, even though nothing can really handle them
1035 		 * properly.  Note that some versions of GCC miss out debug
1036 		 * info for anon structs, though recent versions are fixed (gcc
1037 		 * bug 11816).
1038 		 */
1039 		if ((ml->ml_name = die_name(dw, mem)) == NULL)
1040 			ml->ml_name = NULL;
1041 
1042 		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
1043 		debug(3, "die_sou_create(): ml_type = %p t_id = %#x\n",
1044 		    ml->ml_type, ml->ml_type->t_id);
1045 
1046 		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
1047 		    &mloff, 0)) {
1048 			debug(3, "die %ju: got mloff 0x%jx\n", (uintmax_t)off,
1049 			    (uintmax_t)mloff);
1050 			ml->ml_offset = mloff * 8;
1051 		}
1052 
1053 		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1054 			ml->ml_size = bitsz;
1055 		else
1056 			ml->ml_size = tdesc_bitsize(ml->ml_type);
1057 
1058 		if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1059 #if BYTE_ORDER == BIG_ENDIAN
1060 			ml->ml_offset += bitoff;
1061 #else
1062 			/*
1063 			 * Note that Clang 3.4 will sometimes generate
1064 			 * member DIE before generating the DIE for the
1065 			 * member's type. The code can not handle this
1066 			 * properly so that tdesc_bitsize(ml->ml_type) will
1067 			 * return 0 because ml->ml_type is unknown. As a
1068 			 * result, a wrong member offset will be calculated.
1069 			 * To workaround this, we can instead try to
1070 			 * retrieve the value of DW_AT_byte_size attribute
1071 			 * which stores the byte size of the space occupied
1072 			 * by the type. If this attribute exists, its value
1073 			 * should equal to tdesc_bitsize(ml->ml_type)/NBBY.
1074 			 */
1075 			if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) &&
1076 			    bysz > 0)
1077 				ml->ml_offset += bysz * NBBY - bitoff -
1078 				    ml->ml_size;
1079 			else
1080 				ml->ml_offset += tdesc_bitsize(ml->ml_type) -
1081 				    bitoff - ml->ml_size;
1082 #endif
1083 		}
1084 
1085 		debug(3, "die %ju: mem %ju: created \"%s\" (off %u sz %u)\n",
1086 		    (uintmax_t)off, (uintmax_t)memoff, ml->ml_name,
1087 		    ml->ml_offset, ml->ml_size);
1088 
1089 		*mlastp = ml;
1090 		mlastp = &ml->ml_next;
1091 
1092 		/* Find the size of the largest member to work around a gcc
1093 		 * bug.  See GCC Bugzilla 35998.
1094 		 */
1095 		if (maxsz < ml->ml_size)
1096 			maxsz = ml->ml_size;
1097 
1098 	} while ((mem = die_sibling(dw, mem)) != NULL);
1099 
1100 	/* See if we got a bogus DW_AT_byte_size.  GCC will sometimes
1101 	 * emit this.
1102 	 */
1103 	if (sz == (unsigned)-1) {
1104 		 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1105 		     __func__);
1106 		 tdp->t_size = maxsz / 8;  /* maxsz is in bits, t_size is bytes */
1107 	}
1108 
1109 	/*
1110 	 * GCC will attempt to eliminate unused types, thus decreasing the
1111 	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
1112 	 * header, include said header in your source file, and neglect to
1113 	 * actually use (directly or indirectly) the foo_t in the source file,
1114 	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
1115 	 * the theory.
1116 	 *
1117 	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1118 	 * and then neglect to emit the members.  Strangely, the loner struct
1119 	 * tag will always be followed by a proper nested declaration of
1120 	 * something else.  This is clearly a bug, but we're not going to have
1121 	 * time to get it fixed before this goo goes back, so we'll have to work
1122 	 * around it.  If we see a no-membered struct with a nested declaration
1123 	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1124 	 * Being paranoid, we won't simply remove it from the hash.  Instead,
1125 	 * we'll decline to create an iidesc for it, thus ensuring that this
1126 	 * type won't make it into the output file.  To be safe, we'll also
1127 	 * change the name.
1128 	 */
1129 	if (tdp->t_members == NULL) {
1130 		const char *old = tdesc_name(tdp);
1131 		size_t newsz = 7 + strlen(old) + 1;
1132 		char *new = xmalloc(newsz);
1133 		(void) snprintf(new, newsz, "orphan %s", old);
1134 
1135 		debug(3, "die %ju: worked around %s %s\n", (uintmax_t)off,
1136 		    typename, old);
1137 
1138 		if (tdp->t_name != NULL)
1139 			free(tdp->t_name);
1140 		tdp->t_name = new;
1141 		return;
1142 	}
1143 
1144 out:
1145 	if (tdp->t_name != NULL) {
1146 		ii = xcalloc(sizeof (iidesc_t));
1147 		ii->ii_type = II_SOU;
1148 		ii->ii_name = xstrdup(tdp->t_name);
1149 		ii->ii_dtype = tdp;
1150 
1151 		iidesc_add(dw->dw_td->td_iihash, ii);
1152 	}
1153 }
1154 
1155 static void
1156 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1157 {
1158 	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1159 }
1160 
1161 static void
1162 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1163 {
1164 	die_sou_create(dw, die, off, tdp, UNION, "union");
1165 }
1166 
1167 static void
1168 die_class_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1169 {
1170 	die_sou_create(dw, die, off, tdp, CLASS, "class");
1171 }
1172 
1173 /*ARGSUSED1*/
1174 static int
1175 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1176 {
1177 	dwarf_t *dw = private;
1178 	mlist_t *ml;
1179 	tdesc_t *mt;
1180 
1181 	if (tdp->t_flags & TDESC_F_RESOLVED)
1182 		return (1);
1183 
1184 	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1185 
1186 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1187 		if (ml->ml_size == 0) {
1188 			mt = tdesc_basetype(ml->ml_type);
1189 
1190 			if (mt == NULL)
1191 				continue;
1192 
1193 			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1194 				continue;
1195 
1196 			/*
1197 			 * For empty members, or GCC/C99 flexible array
1198 			 * members, a size of 0 is correct. Structs and unions
1199 			 * consisting of flexible array members will also have
1200 			 * size 0.
1201 			 */
1202 			if (mt->t_members == NULL)
1203 				continue;
1204 			if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1205 				continue;
1206 			if ((mt->t_flags & TDESC_F_RESOLVED) != 0 &&
1207 			    (mt->t_type == STRUCT || mt->t_type == UNION ||
1208 			     mt->t_type == CLASS))
1209 				continue;
1210 
1211 			if (mt->t_type == STRUCT &&
1212 				mt->t_members != NULL &&
1213 				mt->t_members->ml_type->t_type == ARRAY &&
1214 				mt->t_members->ml_type->t_ardef->ad_nelems == 0) {
1215 			    /* struct with zero sized array */
1216 			    continue;
1217 			}
1218 
1219 			/*
1220 			 * anonymous union members are OK.
1221 			 * XXX: we should consistently use NULL, instead of ""
1222 			 */
1223 			if (mt->t_type == UNION &&
1224 			    (mt->t_name == NULL || mt->t_name[0] == '\0'))
1225 			    continue;
1226 
1227 			/*
1228 			 * XXX: Gcc-5.4 DW_TAG_typedef without DW_AT_type;
1229 			 * assume pointer
1230 			 */
1231 			if (mt->t_id == TID_VOID) {
1232 			    ml->ml_size = dw->dw_ptrsz;
1233 			    continue;
1234 			}
1235 
1236 			fprintf(stderr, "%s unresolved type=%d (%s) tid=%#x\n",
1237 			    tdesc_name(tdp), mt->t_type, tdesc_name(mt),
1238 			    mt->t_id);
1239 			dw->dw_nunres++;
1240 			return (1);
1241 		}
1242 
1243 		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1244 			dw->dw_nunres++;
1245 			return (1);
1246 		}
1247 
1248 		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1249 		    mt->t_intr->intr_nbits != (int)ml->ml_size) {
1250 			/*
1251 			 * This member is a bitfield, and needs to reference
1252 			 * an intrinsic type with the same width.  If the
1253 			 * currently-referenced type isn't of the same width,
1254 			 * we'll copy it, adjusting the width of the copy to
1255 			 * the size we'd like.
1256 			 */
1257 			debug(3, "tdp %u: creating bitfield for %d bits\n",
1258 			    tdp->t_id, ml->ml_size);
1259 
1260 			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1261 		}
1262 	}
1263 
1264 	tdp->t_flags |= TDESC_F_RESOLVED;
1265 
1266 	return (1);
1267 }
1268 
1269 /*ARGSUSED1*/
1270 static int
1271 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1272 {
1273 	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1274 	mlist_t *ml;
1275 
1276 	if (tdp->t_flags & TDESC_F_RESOLVED)
1277 		return (1);
1278 
1279 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1280 		if (ml->ml_size == 0) {
1281 			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1282 			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1283 			    tdp->t_id,
1284 			    ml->ml_name, tdesc_name(ml->ml_type),
1285 			    ml->ml_type->t_id, ml->ml_type->t_id);
1286 		}
1287 	}
1288 
1289 	return (1);
1290 }
1291 
1292 static void
1293 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1294 {
1295 	Dwarf_Attribute attr;
1296 	Dwarf_Half tag;
1297 	Dwarf_Die arg;
1298 	fndef_t *fn;
1299 	int i;
1300 
1301 	debug(3, "die %ju <0x%jx>: creating function pointer\n",
1302 	    (uintmax_t)off, (uintmax_t)off);
1303 
1304 	/*
1305 	 * We'll begin by processing any type definition nodes that may be
1306 	 * lurking underneath this one.
1307 	 */
1308 	for (arg = die_child(dw, die); arg != NULL;
1309 	    arg = die_sibling(dw, arg)) {
1310 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1311 		    tag != DW_TAG_unspecified_parameters) {
1312 			/* Nested type declaration */
1313 			die_create_one(dw, arg);
1314 		}
1315 	}
1316 
1317 	if (die_isdecl(dw, die)) {
1318 		/*
1319 		 * This is a prototype.  We don't add prototypes to the
1320 		 * tree, so we're going to drop the tdesc.  Unfortunately,
1321 		 * it has already been added to the tree.  Nobody will reference
1322 		 * it, though, and it will be leaked.
1323 		 */
1324 		return;
1325 	}
1326 
1327 	fn = xcalloc(sizeof (fndef_t));
1328 
1329 	tdp->t_type = FUNCTION;
1330 
1331 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1332 		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1333 	} else {
1334 		fn->fn_ret = tdesc_intr_void(dw);
1335 	}
1336 
1337 	/*
1338 	 * Count the arguments to the function, then read them in.
1339 	 */
1340 	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1341 	    arg = die_sibling(dw, arg)) {
1342 		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1343 			fn->fn_nargs++;
1344 		else if (tag == DW_TAG_unspecified_parameters &&
1345 		    fn->fn_nargs > 0)
1346 			fn->fn_vargs = 1;
1347 	}
1348 
1349 	if (fn->fn_nargs != 0) {
1350 		debug(3, "die %ju: adding %d argument%s\n", (uintmax_t)off,
1351 		    fn->fn_nargs, (fn->fn_nargs > 1 ? "s" : ""));
1352 
1353 		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1354 		for (i = 0, arg = die_child(dw, die);
1355 		    arg != NULL && i < (int) fn->fn_nargs;
1356 		    arg = die_sibling(dw, arg)) {
1357 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1358 				continue;
1359 
1360 			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1361 			    DW_AT_type);
1362 		}
1363 	}
1364 
1365 	tdp->t_fndef = fn;
1366 	tdp->t_flags |= TDESC_F_RESOLVED;
1367 }
1368 
1369 /*
1370  * GCC and DevPro use different names for the base types.  While the terms are
1371  * the same, they are arranged in a different order.  Some terms, such as int,
1372  * are implied in one, and explicitly named in the other.  Given a base type
1373  * as input, this routine will return a common name, along with an intr_t
1374  * that reflects said name.
1375  */
1376 static intr_t *
1377 die_base_name_parse(const char *name, char **newp)
1378 {
1379 	char buf[1024];
1380 	char const *base;
1381 	char *c;
1382 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1383 	int sign = 1;
1384 	char fmt = '\0';
1385 	intr_t *intr;
1386 
1387 	if (strlen(name) > sizeof (buf) - 1)
1388 		terminate("base type name \"%s\" is too long\n", name);
1389 
1390 	strncpy(buf, name, sizeof (buf));
1391 
1392 	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1393 		if (strcmp(c, "signed") == 0)
1394 			sign = 1;
1395 		else if (strcmp(c, "unsigned") == 0)
1396 			sign = 0;
1397 		else if (strcmp(c, "long") == 0)
1398 			nlong++;
1399 		else if (strcmp(c, "char") == 0) {
1400 			nchar++;
1401 			fmt = 'c';
1402 		} else if (strcmp(c, "short") == 0)
1403 			nshort++;
1404 		else if (strcmp(c, "int") == 0)
1405 			nint++;
1406 		else {
1407 			/*
1408 			 * If we don't recognize any of the tokens, we'll tell
1409 			 * the caller to fall back to the dwarf-provided
1410 			 * encoding information.
1411 			 */
1412 			return (NULL);
1413 		}
1414 	}
1415 
1416 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1417 		return (NULL);
1418 
1419 	if (nchar > 0) {
1420 		if (nlong > 0 || nshort > 0 || nint > 0)
1421 			return (NULL);
1422 
1423 		base = "char";
1424 
1425 	} else if (nshort > 0) {
1426 		if (nlong > 0)
1427 			return (NULL);
1428 
1429 		base = "short";
1430 
1431 	} else if (nlong > 0) {
1432 		base = "long";
1433 
1434 	} else {
1435 		base = "int";
1436 	}
1437 
1438 	intr = xcalloc(sizeof (intr_t));
1439 	intr->intr_type = INTR_INT;
1440 	intr->intr_signed = sign;
1441 	intr->intr_iformat = fmt;
1442 
1443 	snprintf(buf, sizeof (buf), "%s%s%s",
1444 	    (sign ? "" : "unsigned "),
1445 	    (nlong > 1 ? "long " : ""),
1446 	    base);
1447 
1448 	*newp = xstrdup(buf);
1449 	return (intr);
1450 }
1451 
1452 typedef struct fp_size_map {
1453 	size_t fsm_typesz[2];	/* size of {32,64} type */
1454 	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1455 } fp_size_map_t;
1456 
1457 static const fp_size_map_t fp_encodings[] = {
1458 	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1459 	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1460 #ifdef __sparc
1461 	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1462 #else
1463 	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1464 #endif
1465 	{ { 0, 0 }, { 0, 0, 0 } }
1466 };
1467 
1468 static uint_t
1469 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1470 {
1471 	const fp_size_map_t *map = fp_encodings;
1472 	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1473 	uint_t mult = 1, col = 0;
1474 
1475 	if (enc == DW_ATE_complex_float) {
1476 		mult = 2;
1477 		col = 1;
1478 	} else if (enc == DW_ATE_imaginary_float
1479 #if defined(sun)
1480 	    || enc == DW_ATE_SUN_imaginary_float
1481 #endif
1482 	    )
1483 		col = 2;
1484 
1485 	while (map->fsm_typesz[szidx] != 0) {
1486 		if (map->fsm_typesz[szidx] * mult == sz)
1487 			return (map->fsm_enc[col]);
1488 		map++;
1489 	}
1490 
1491 	terminate("die %ju: unrecognized real type size %ju\n",
1492 	    (uintmax_t)off, (uintmax_t)sz);
1493 	/*NOTREACHED*/
1494 	return (0);
1495 }
1496 
1497 static intr_t *
1498 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1499 {
1500 	intr_t *intr = xcalloc(sizeof (intr_t));
1501 	Dwarf_Signed enc;
1502 
1503 	(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1504 
1505 	switch (enc) {
1506 	case DW_ATE_unsigned:
1507 	case DW_ATE_address:
1508 		intr->intr_type = INTR_INT;
1509 		break;
1510 	case DW_ATE_unsigned_char:
1511 		intr->intr_type = INTR_INT;
1512 		intr->intr_iformat = 'c';
1513 		break;
1514 	case DW_ATE_signed:
1515 		intr->intr_type = INTR_INT;
1516 		intr->intr_signed = 1;
1517 		break;
1518 	case DW_ATE_signed_char:
1519 		intr->intr_type = INTR_INT;
1520 		intr->intr_signed = 1;
1521 		intr->intr_iformat = 'c';
1522 		break;
1523 	case DW_ATE_boolean:
1524 		intr->intr_type = INTR_INT;
1525 		intr->intr_signed = 1;
1526 		intr->intr_iformat = 'b';
1527 		break;
1528 	case DW_ATE_float:
1529 	case DW_ATE_complex_float:
1530 	case DW_ATE_imaginary_float:
1531 #if defined(sun)
1532 	case DW_ATE_SUN_imaginary_float:
1533 	case DW_ATE_SUN_interval_float:
1534 #endif
1535 		intr->intr_type = INTR_REAL;
1536 		intr->intr_signed = 1;
1537 		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1538 		break;
1539 	default:
1540 		terminate("die %ju: unknown base type encoding 0x%jx\n",
1541 		    (uintmax_t)off, (uintmax_t)enc);
1542 	}
1543 
1544 	return (intr);
1545 }
1546 
1547 static void
1548 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1549 {
1550 	Dwarf_Unsigned sz;
1551 	intr_t *intr;
1552 	char *new;
1553 
1554 	debug(3, "die %ju: creating base type\n", (uintmax_t)off);
1555 
1556 	/*
1557 	 * The compilers have their own clever (internally inconsistent) ideas
1558 	 * as to what base types should look like.  Some times gcc will, for
1559 	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1560 	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1561 	 * down the road, particularly with merging.  We do, however, use the
1562 	 * DWARF idea of type sizes, as this allows us to avoid caring about
1563 	 * the data model.
1564 	 */
1565 	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1566 
1567 	/* Check for bogus gcc DW_AT_byte_size attribute */
1568 	if (sz == (unsigned)-1) {
1569 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1570 		    __func__);
1571 		sz = 0;
1572 	}
1573 
1574 	if (tdp->t_name == NULL)
1575 		terminate("die %ju: base type without name\n", (uintmax_t)off);
1576 
1577 	/* XXX make a name parser for float too */
1578 	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1579 		/* Found it.  We'll use the parsed version */
1580 		debug(3, "die %ju: name \"%s\" remapped to \"%s\"\n",
1581 		    (uintmax_t)off, tdesc_name(tdp), new);
1582 
1583 		free(tdp->t_name);
1584 		tdp->t_name = new;
1585 	} else {
1586 		/*
1587 		 * We didn't recognize the type, so we'll create an intr_t
1588 		 * based on the DWARF data.
1589 		 */
1590 		debug(3, "die %ju: using dwarf data for base \"%s\"\n",
1591 		    (uintmax_t)off, tdesc_name(tdp));
1592 
1593 		intr = die_base_from_dwarf(dw, base, off, sz);
1594 	}
1595 
1596 	intr->intr_nbits = sz * 8;
1597 
1598 	tdp->t_type = INTRINSIC;
1599 	tdp->t_intr = intr;
1600 	tdp->t_size = sz;
1601 
1602 	tdp->t_flags |= TDESC_F_RESOLVED;
1603 }
1604 
1605 static void
1606 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1607     int type, const char *typename)
1608 {
1609 	Dwarf_Attribute attr;
1610 
1611 	debug(3, "die %ju <0x%jx>: creating %s type %d\n", (uintmax_t)off,
1612 	    (uintmax_t)off, typename, type);
1613 
1614 	tdp->t_type = type;
1615 
1616 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1617 		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1618 	} else {
1619 		tdp->t_tdesc = tdesc_intr_void(dw);
1620 	}
1621 
1622 	if (type == POINTER || type == REFERENCE)
1623 		tdp->t_size = dw->dw_ptrsz;
1624 
1625 	tdp->t_flags |= TDESC_F_RESOLVED;
1626 
1627 	if (type == TYPEDEF) {
1628 		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1629 		ii->ii_type = II_TYPE;
1630 		ii->ii_name = xstrdup(tdp->t_name);
1631 		ii->ii_dtype = tdp;
1632 
1633 		iidesc_add(dw->dw_td->td_iihash, ii);
1634 	}
1635 }
1636 
1637 static void
1638 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1639 {
1640 	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1641 }
1642 
1643 static void
1644 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1645 {
1646 	die_through_create(dw, die, off, tdp, CONST, "const");
1647 }
1648 
1649 static void
1650 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1651 {
1652 	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1653 }
1654 
1655 static void
1656 die_reference_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1657 {
1658 	die_through_create(dw, die, off, tdp, REFERENCE, "reference");
1659 }
1660 
1661 static void
1662 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1663 {
1664 	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1665 }
1666 
1667 static void
1668 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1669 {
1670 	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1671 }
1672 
1673 /*ARGSUSED3*/
1674 static void
1675 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1676 {
1677 	Dwarf_Die arg;
1678 	Dwarf_Half tag;
1679 	iidesc_t *ii;
1680 	char *name;
1681 
1682 	debug(3, "die %ju <0x%jx>: creating function definition\n",
1683 	    (uintmax_t)off, (uintmax_t)off);
1684 
1685 	/*
1686 	 * We'll begin by processing any type definition nodes that may be
1687 	 * lurking underneath this one.
1688 	 */
1689 	for (arg = die_child(dw, die); arg != NULL;
1690 	    arg = die_sibling(dw, arg)) {
1691 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1692 		    tag != DW_TAG_variable) {
1693 			/* Nested type declaration */
1694 			die_create_one(dw, arg);
1695 		}
1696 	}
1697 
1698 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1699 		/*
1700 		 * We process neither prototypes nor subprograms without
1701 		 * names.
1702 		 */
1703 		return;
1704 	}
1705 
1706 	ii = xcalloc(sizeof (iidesc_t));
1707 	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1708 	ii->ii_name = name;
1709 	if (ii->ii_type == II_SFUN)
1710 		ii->ii_owner = xstrdup(dw->dw_cuname);
1711 
1712 	debug(3, "die %ju: function %s is %s\n", (uintmax_t)off, ii->ii_name,
1713 	    (ii->ii_type == II_GFUN ? "global" : "static"));
1714 
1715 	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1716 		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1717 	else
1718 		ii->ii_dtype = tdesc_intr_void(dw);
1719 
1720 	for (arg = die_child(dw, die); arg != NULL;
1721 	    arg = die_sibling(dw, arg)) {
1722 		char *name1;
1723 
1724 		debug(3, "die %ju: looking at sub member at %ju\n",
1725 		    (uintmax_t)off, (uintmax_t)die_off(dw, die));
1726 
1727 		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1728 			continue;
1729 
1730 		if ((name1 = die_name(dw, arg)) == NULL) {
1731 			terminate("die %ju: func arg %d has no name\n",
1732 			    (uintmax_t)off, ii->ii_nargs + 1);
1733 		}
1734 
1735 		if (strcmp(name1, "...") == 0) {
1736 			free(name1);
1737 			ii->ii_vargs = 1;
1738 			continue;
1739 		}
1740 
1741 		ii->ii_nargs++;
1742 	}
1743 
1744 	if (ii->ii_nargs > 0) {
1745 		int i;
1746 
1747 		debug(3, "die %ju: function has %d argument%s\n",
1748 		    (uintmax_t)off, ii->ii_nargs, ii->ii_nargs == 1 ? "" : "s");
1749 
1750 		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1751 
1752 		for (arg = die_child(dw, die), i = 0;
1753 		    arg != NULL && i < ii->ii_nargs;
1754 		    arg = die_sibling(dw, arg)) {
1755 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1756 				continue;
1757 
1758 			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1759 			    DW_AT_type);
1760 		}
1761 	}
1762 
1763 	iidesc_add(dw->dw_td->td_iihash, ii);
1764 }
1765 
1766 /*ARGSUSED3*/
1767 static void
1768 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1769 {
1770 	iidesc_t *ii;
1771 	char *name;
1772 
1773 	debug(3, "die %ju: creating object definition\n", (uintmax_t)off);
1774 
1775 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1776 		return; /* skip prototypes and nameless objects */
1777 
1778 	ii = xcalloc(sizeof (iidesc_t));
1779 	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1780 	ii->ii_name = name;
1781 	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1782 	if (ii->ii_type == II_SVAR)
1783 		ii->ii_owner = xstrdup(dw->dw_cuname);
1784 
1785 	iidesc_add(dw->dw_td->td_iihash, ii);
1786 }
1787 
1788 /*ARGSUSED2*/
1789 static int
1790 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1791 {
1792 	if (fwd->t_flags & TDESC_F_RESOLVED)
1793 		return (1);
1794 
1795 	if (fwd->t_tdesc != NULL) {
1796 		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1797 		    tdesc_name(fwd));
1798 		*fwdp = fwd->t_tdesc;
1799 	}
1800 
1801 	fwd->t_flags |= TDESC_F_RESOLVED;
1802 
1803 	return (1);
1804 }
1805 
1806 /*ARGSUSED*/
1807 static void
1808 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1809 {
1810 	Dwarf_Die child = die_child(dw, die);
1811 
1812 	if (child != NULL)
1813 		die_create(dw, child);
1814 }
1815 
1816 /*
1817  * Used to map the die to a routine which can parse it, using the tag to do the
1818  * mapping.  While the processing of most tags entails the creation of a tdesc,
1819  * there are a few which don't - primarily those which result in the creation of
1820  * iidescs which refer to existing tdescs.
1821  */
1822 
1823 #define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1824 
1825 typedef struct die_creator {
1826 	Dwarf_Half dc_tag;
1827 	uint16_t dc_flags;
1828 	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1829 } die_creator_t;
1830 
1831 static const die_creator_t die_creators[] = {
1832 	{ DW_TAG_array_type,		0,		die_array_create },
1833 	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1834 	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1835 	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1836 	{ DW_TAG_reference_type,	0,		die_reference_create },
1837 	{ DW_TAG_structure_type,	0,		die_struct_create },
1838 	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1839 	{ DW_TAG_typedef,		0,		die_typedef_create },
1840 	{ DW_TAG_union_type,		0,		die_union_create },
1841 	{ DW_TAG_class_type,		0,		die_class_create },
1842 	{ DW_TAG_base_type,		0,		die_base_create },
1843 	{ DW_TAG_const_type,		0,		die_const_create },
1844 	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1845 	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1846 	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1847 	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1848 	{ 0, 0, NULL }
1849 };
1850 
1851 static const die_creator_t *
1852 die_tag2ctor(Dwarf_Half tag)
1853 {
1854 	const die_creator_t *dc;
1855 
1856 	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1857 		if (dc->dc_tag == tag)
1858 			return (dc);
1859 	}
1860 
1861 	return (NULL);
1862 }
1863 
1864 static void
1865 die_create_one(dwarf_t *dw, Dwarf_Die die)
1866 {
1867 	Dwarf_Off off = die_off(dw, die);
1868 	const die_creator_t *dc;
1869 	Dwarf_Half tag;
1870 	tdesc_t *tdp;
1871 
1872 	debug(3, "die %ju <0x%jx>: create_one\n", (uintmax_t)off,
1873 	    (uintmax_t)off);
1874 
1875 	if (off > dw->dw_maxoff) {
1876 		terminate("illegal die offset %ju (max %ju)\n", (uintmax_t)off,
1877 		    dw->dw_maxoff);
1878 	}
1879 
1880 	tag = die_tag(dw, die);
1881 
1882 	if ((dc = die_tag2ctor(tag)) == NULL) {
1883 		debug(2, "die %ju: ignoring tag type %x\n", (uintmax_t)off,
1884 		    tag);
1885 		return;
1886 	}
1887 
1888 	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1889 	    !(dc->dc_flags & DW_F_NOTDP)) {
1890 		tdp = xcalloc(sizeof (tdesc_t));
1891 		tdp->t_id = off;
1892 		tdesc_add(dw, tdp);
1893 	}
1894 
1895 	if (tdp != NULL)
1896 		tdp->t_name = die_name(dw, die);
1897 
1898 	dc->dc_create(dw, die, off, tdp);
1899 }
1900 
1901 static void
1902 die_create(dwarf_t *dw, Dwarf_Die die)
1903 {
1904 	do {
1905 		die_create_one(dw, die);
1906 	} while ((die = die_sibling(dw, die)) != NULL);
1907 }
1908 
1909 static tdtrav_cb_f die_resolvers[] = {
1910 	NULL,
1911 	NULL,			/* intrinsic */
1912 	NULL,			/* pointer */
1913 	NULL,			/* reference */
1914 	die_array_resolve,	/* array */
1915 	NULL,			/* function */
1916 	die_sou_resolve,	/* struct */
1917 	die_sou_resolve,	/* union */
1918 	die_sou_resolve,	/* class */
1919 	die_enum_resolve,	/* enum */
1920 	die_fwd_resolve,	/* forward */
1921 	NULL,			/* typedef */
1922 	NULL,			/* typedef unres */
1923 	NULL,			/* volatile */
1924 	NULL,			/* const */
1925 	NULL,			/* restrict */
1926 };
1927 
1928 static tdtrav_cb_f die_fail_reporters[] = {
1929 	NULL,
1930 	NULL,			/* intrinsic */
1931 	NULL,			/* pointer */
1932 	NULL,			/* reference */
1933 	die_array_failed,	/* array */
1934 	NULL,			/* function */
1935 	die_sou_failed,		/* struct */
1936 	die_sou_failed,		/* union */
1937 	die_sou_failed,		/* class */
1938 	NULL,			/* enum */
1939 	NULL,			/* forward */
1940 	NULL,			/* typedef */
1941 	NULL,			/* typedef unres */
1942 	NULL,			/* volatile */
1943 	NULL,			/* const */
1944 	NULL,			/* restrict */
1945 };
1946 
1947 static void
1948 die_resolve(dwarf_t *dw)
1949 {
1950 	int last = -1;
1951 	int pass = 0;
1952 
1953 	do {
1954 		pass++;
1955 		dw->dw_nunres = 0;
1956 
1957 		(void) iitraverse_hash(dw->dw_td->td_iihash,
1958 		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1959 
1960 		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1961 
1962 		if ((int) dw->dw_nunres == last) {
1963 			fprintf(stderr, "%s: failed to resolve the following "
1964 			    "types:\n", progname);
1965 
1966 			(void) iitraverse_hash(dw->dw_td->td_iihash,
1967 			    &dw->dw_td->td_curvgen, NULL, NULL,
1968 			    die_fail_reporters, dw);
1969 
1970 			terminate("failed to resolve types\n");
1971 		}
1972 
1973 		last = dw->dw_nunres;
1974 
1975 	} while (dw->dw_nunres != 0);
1976 }
1977 
1978 /*
1979  * Any object containing a function or object symbol at any scope should also
1980  * contain DWARF data.
1981  */
1982 static boolean_t
1983 should_have_dwarf(Elf *elf)
1984 {
1985 	Elf_Scn *scn = NULL;
1986 	Elf_Data *data = NULL;
1987 	GElf_Shdr shdr;
1988 	GElf_Sym sym;
1989 	uint32_t symdx = 0;
1990 	size_t nsyms = 0;
1991 	boolean_t found = B_FALSE;
1992 
1993 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1994 		gelf_getshdr(scn, &shdr);
1995 
1996 		if (shdr.sh_type == SHT_SYMTAB) {
1997 			found = B_TRUE;
1998 			break;
1999 		}
2000 	}
2001 
2002 	if (!found)
2003 		terminate("cannot convert stripped objects\n");
2004 
2005 	data = elf_getdata(scn, NULL);
2006 	nsyms = shdr.sh_size / shdr.sh_entsize;
2007 
2008 	for (symdx = 0; symdx < nsyms; symdx++) {
2009 		gelf_getsym(data, symdx, &sym);
2010 
2011 		if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
2012 		    (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
2013 		    (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
2014 			char *name;
2015 
2016 			name = elf_strptr(elf, shdr.sh_link, sym.st_name);
2017 
2018 			/* Studio emits these local symbols regardless */
2019 			if ((strcmp(name, "Bbss.bss") != 0) &&
2020 			    (strcmp(name, "Ttbss.bss") != 0) &&
2021 			    (strcmp(name, "Ddata.data") != 0) &&
2022 			    (strcmp(name, "Ttdata.data") != 0) &&
2023 			    (strcmp(name, "Drodata.rodata") != 0))
2024 				return (B_TRUE);
2025 		}
2026 	}
2027 
2028 	return (B_FALSE);
2029 }
2030 
2031 /*ARGSUSED*/
2032 int
2033 dw_read(tdata_t *td, Elf *elf, char *filename __unused)
2034 {
2035 	Dwarf_Unsigned hdrlen, nxthdr;
2036 	Dwarf_Off abboff;
2037 	Dwarf_Half vers, addrsz, offsz;
2038 	Dwarf_Die cu = 0;
2039 	Dwarf_Die child = 0;
2040 	dwarf_t dw;
2041 	char *prod = NULL;
2042 	int rc;
2043 
2044 	bzero(&dw, sizeof (dwarf_t));
2045 	dw.dw_td = td;
2046 	dw.dw_ptrsz = elf_ptrsz(elf);
2047 	dw.dw_mfgtid_last = TID_MFGTID_BASE;
2048 	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
2049 	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
2050 	    tdesc_namecmp);
2051 	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
2052 	    tdesc_namecmp);
2053 
2054 	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw,
2055 	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
2056 		/* The new library does that */
2057 		if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
2058 			/*
2059 			 * There's no type data in the DWARF section, but
2060 			 * libdwarf is too clever to handle that properly.
2061 			 */
2062 			return (0);
2063 		}
2064 		if (should_have_dwarf(elf)) {
2065 			errno = ENOENT;
2066 			return (-1);
2067 		} else {
2068 
2069 			return (0);
2070 		}
2071 	} else if (rc != DW_DLV_OK) {
2072 		if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
2073 			/*
2074 			 * There's no type data in the DWARF section, but
2075 			 * libdwarf is too clever to handle that properly.
2076 			 */
2077 			return (0);
2078 		}
2079 
2080 		terminate("failed to initialize DWARF: %s\n",
2081 		    dwarf_errmsg(dw.dw_err));
2082 	}
2083 
2084 	if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
2085 	    &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) {
2086 		if (dwarf_errno(dw.dw_err) == DW_DLE_NO_ENTRY) {
2087 			/*
2088 			 * There's no DWARF section...
2089 			 */
2090 			return (0);
2091 		}
2092 		terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err));
2093 	}
2094 
2095 	if ((cu = die_sibling(&dw, NULL)) == NULL)
2096 		goto out;
2097 
2098 	if ((child = die_child(&dw, cu)) == NULL) {
2099 		Dwarf_Unsigned lang;
2100 		if (die_unsigned(&dw, cu, DW_AT_language, &lang, 0)) {
2101 			debug(1, "DWARF language: %ju\n", (uintmax_t)lang);
2102 			/*
2103 			 * Assembly languages are typically that.
2104 			 * They have some dwarf info, but not what
2105 			 * we expect. They have local symbols for
2106 			 * example, but they are missing the child info.
2107 			 */
2108 			if (lang >= DW_LANG_lo_user)
2109 				return 0;
2110 		}
2111 	    	if (should_have_dwarf(elf))
2112 			goto out;
2113 	}
2114 
2115 	if (child == NULL)
2116 		return (0);
2117 
2118 	dw.dw_maxoff = nxthdr - 1;
2119 
2120 	if (dw.dw_maxoff > TID_FILEMAX)
2121 		terminate("file contains too many types\n");
2122 
2123 	debug(1, "DWARF version: %d\n", vers);
2124 	if (vers < 2 || vers > 4) {
2125 		terminate("file contains incompatible version %d DWARF code "
2126 		    "(version 2, 3 or 4 required)\n", vers);
2127 	}
2128 
2129 	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
2130 		debug(1, "DWARF emitter: %s\n", prod);
2131 		free(prod);
2132 	}
2133 
2134 	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
2135 		char *base = xstrdup(basename(dw.dw_cuname));
2136 		free(dw.dw_cuname);
2137 		dw.dw_cuname = base;
2138 
2139 		debug(1, "CU name: %s\n", dw.dw_cuname);
2140 	}
2141 
2142 	if ((child = die_child(&dw, cu)) != NULL)
2143 		die_create(&dw, child);
2144 
2145 	if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
2146 	    &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
2147 		terminate("multiple compilation units not supported\n");
2148 
2149 	(void) dwarf_finish(dw.dw_dw, &dw.dw_err);
2150 
2151 	die_resolve(&dw);
2152 
2153 	cvt_fixups(td, dw.dw_ptrsz);
2154 
2155 	/* leak the dwarf_t */
2156 
2157 	return (0);
2158 out:
2159 	terminate("file does not contain dwarf type data "
2160 	    "(try compiling with -g)\n");
2161 	return -1;
2162 }
2163