1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DWARF to tdata conversion 28 * 29 * For the most part, conversion is straightforward, proceeding in two passes. 30 * On the first pass, we iterate through every die, creating new type nodes as 31 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 32 * allowing type reference pointers to be filled in. If the tdesc_t 33 * corresponding to a given die can be completely filled out (sizes and offsets 34 * calculated, and so forth) without using any referenced types, the tdesc_t is 35 * marked as resolved. Consider an array type. If the type corresponding to 36 * the array contents has not yet been processed, we will create a blank tdesc 37 * for the contents type (only the type ID will be filled in, relying upon the 38 * later portion of the first pass to encounter and complete the referenced 39 * type). We will then attempt to determine the size of the array. If the 40 * array has a byte size attribute, we will have completely characterized the 41 * array type, and will be able to mark it as resolved. The lack of a byte 42 * size attribute, on the other hand, will prevent us from fully resolving the 43 * type, as the size will only be calculable with reference to the contents 44 * type, which has not, as yet, been encountered. The array type will thus be 45 * left without the resolved flag, and the first pass will continue. 46 * 47 * When we begin the second pass, we will have created tdesc_t nodes for every 48 * type in the section. We will traverse the tree, from the iidescs down, 49 * processing each unresolved node. As the referenced nodes will have been 50 * populated, the array type used in our example above will be able to use the 51 * size of the referenced types (if available) to determine its own type. The 52 * traversal will be repeated until all types have been resolved or we have 53 * failed to make progress. When all tdescs have been resolved, the conversion 54 * is complete. 55 * 56 * There are, as always, a few special cases that are handled during the first 57 * and second passes: 58 * 59 * 1. Empty enums - GCC will occasionally emit an enum without any members. 60 * Later on in the file, it will emit the same enum type, though this time 61 * with the full complement of members. All references to the memberless 62 * enum need to be redirected to the full definition. During the first 63 * pass, each enum is entered in dm_enumhash, along with a pointer to its 64 * corresponding tdesc_t. If, during the second pass, we encounter a 65 * memberless enum, we use the hash to locate the full definition. All 66 * tdescs referencing the empty enum are then redirected. 67 * 68 * 2. Forward declarations - If the compiler sees a forward declaration for 69 * a structure, followed by the definition of that structure, it will emit 70 * DWARF data for both the forward declaration and the definition. We need 71 * to resolve the forward declarations when possible, by redirecting 72 * forward-referencing tdescs to the actual struct/union definitions. This 73 * redirection is done completely within the first pass. We begin by 74 * recording all forward declarations in dw_fwdhash. When we define a 75 * structure, we check to see if there have been any corresponding forward 76 * declarations. If so, we redirect the tdescs which referenced the forward 77 * declarations to the structure or union definition. 78 * 79 * XXX see if a post traverser will allow the elimination of repeated pass 2 80 * traversals. 81 */ 82 83 #if HAVE_NBTOOL_CONFIG_H 84 # include "nbtool_config.h" 85 #endif 86 87 #include <stdio.h> 88 #include <stdlib.h> 89 #include <string.h> 90 #include <strings.h> 91 #include <errno.h> 92 #include <libelf.h> 93 #include <libdwarf.h> 94 #include <libgen.h> 95 #include <dwarf.h> 96 97 #include "ctf_headers.h" 98 #include "ctftools.h" 99 #include "memory.h" 100 #include "list.h" 101 #include "traverse.h" 102 103 /* 104 * We need to define a couple of our own intrinsics, to smooth out some of the 105 * differences between the GCC and DevPro DWARF emitters. See the referenced 106 * routines and the special cases in the file comment for more details. 107 * 108 * Type IDs are 32 bits wide. We're going to use the top of that field to 109 * indicate types that we've created ourselves. 110 */ 111 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 112 #define TID_VOID 0x40000001 /* see die_void() */ 113 #define TID_LONG 0x40000002 /* see die_array() */ 114 115 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 116 117 /* 118 * To reduce the staggering amount of error-handling code that would otherwise 119 * be required, the attribute-retrieval routines handle most of their own 120 * errors. If the following flag is supplied as the value of the `req' 121 * argument, they will also handle the absence of a requested attribute by 122 * terminating the program. 123 */ 124 #define DW_ATTR_REQ 1 125 126 #define TDESC_HASH_BUCKETS 511 127 128 typedef struct dwarf { 129 Dwarf_Debug dw_dw; /* for libdwarf */ 130 Dwarf_Error dw_err; /* for libdwarf */ 131 Dwarf_Off dw_maxoff; /* highest legal offset in this cu */ 132 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 133 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 134 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 135 hash_t *dw_enumhash; /* hash of memberless enums by name */ 136 tdesc_t *dw_void; /* manufactured void type */ 137 tdesc_t *dw_long; /* manufactured long type for arrays */ 138 size_t dw_ptrsz; /* size of a pointer in this file */ 139 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 140 uint_t dw_nunres; /* count of unresolved types */ 141 char *dw_cuname; /* name of compilation unit */ 142 } dwarf_t; 143 144 static void die_create_one(dwarf_t *, Dwarf_Die); 145 static void die_create(dwarf_t *, Dwarf_Die); 146 147 static tid_t 148 mfgtid_next(dwarf_t *dw) 149 { 150 return (++dw->dw_mfgtid_last); 151 } 152 153 static void 154 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 155 { 156 hash_add(dw->dw_tidhash, tdp); 157 } 158 159 static tdesc_t * 160 tdesc_lookup(dwarf_t *dw, int tid) 161 { 162 tdesc_t tmpl; 163 void *tdp; 164 165 tmpl.t_id = tid; 166 167 if (hash_find(dw->dw_tidhash, &tmpl, &tdp)) 168 return (tdp); 169 else 170 return (NULL); 171 } 172 173 /* 174 * Resolve a tdesc down to a node which should have a size. Returns the size, 175 * zero if the size hasn't yet been determined. 176 */ 177 static size_t 178 tdesc_size(tdesc_t *tdp) 179 { 180 for (;;) { 181 switch (tdp->t_type) { 182 case INTRINSIC: 183 case POINTER: 184 case REFERENCE: 185 case ARRAY: 186 case FUNCTION: 187 case STRUCT: 188 case UNION: 189 case CLASS: 190 case ENUM: 191 return (tdp->t_size); 192 193 case FORWARD: 194 debug(3, "type is forward for %#x\n", tdp->t_id); 195 return (0); 196 197 case TYPEDEF: 198 case VOLATILE: 199 case CONST: 200 case RESTRICT: 201 tdp = tdp->t_tdesc; 202 continue; 203 204 case 0: /* not yet defined */ 205 debug(3, "type is undefined for %#x\n", tdp->t_id); 206 return (0); 207 208 default: 209 terminate("tdp %u: tdesc_size on unknown type %#x\n", 210 tdp->t_id, tdp->t_type); 211 } 212 } 213 } 214 215 static size_t 216 tdesc_bitsize(tdesc_t *tdp) 217 { 218 for (;;) { 219 switch (tdp->t_type) { 220 case INTRINSIC: 221 return (tdp->t_intr->intr_nbits); 222 223 case ARRAY: 224 case FUNCTION: 225 case STRUCT: 226 case UNION: 227 case CLASS: 228 case ENUM: 229 case POINTER: 230 case REFERENCE: 231 return (tdp->t_size * NBBY); 232 233 case FORWARD: 234 debug(3, "bitsize is forward for %d\n", tdp->t_id); 235 return (0); 236 237 case TYPEDEF: 238 case VOLATILE: 239 case RESTRICT: 240 case CONST: 241 tdp = tdp->t_tdesc; 242 continue; 243 244 case 0: /* not yet defined */ 245 debug(3, "bitsize is undefined for %d\n", tdp->t_id); 246 return (0); 247 248 default: 249 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 250 tdp->t_id, tdp->t_type); 251 } 252 } 253 } 254 255 static tdesc_t * 256 tdesc_basetype(tdesc_t *tdp) 257 { 258 for (;;) { 259 switch (tdp->t_type) { 260 case TYPEDEF: 261 case VOLATILE: 262 case RESTRICT: 263 case CONST: 264 tdp = tdp->t_tdesc; 265 break; 266 case 0: /* not yet defined */ 267 return (NULL); 268 default: 269 return (tdp); 270 } 271 } 272 } 273 274 static Dwarf_Off 275 die_off(dwarf_t *dw, Dwarf_Die die) 276 { 277 Dwarf_Off off; 278 279 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 280 return (off); 281 282 terminate("failed to get offset for die: %s\n", 283 dwarf_errmsg(dw->dw_err)); 284 /*NOTREACHED*/ 285 return (0); 286 } 287 288 static Dwarf_Die 289 die_sibling(dwarf_t *dw, Dwarf_Die die) 290 { 291 Dwarf_Die sib; 292 int rc; 293 294 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 295 DW_DLV_OK) 296 return (sib); 297 else if (rc == DW_DLV_NO_ENTRY) 298 return (NULL); 299 300 terminate("die %ju: failed to find type sibling: %s\n", 301 (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err)); 302 /*NOTREACHED*/ 303 return (NULL); 304 } 305 306 static Dwarf_Die 307 die_child(dwarf_t *dw, Dwarf_Die die) 308 { 309 Dwarf_Die child; 310 int rc; 311 312 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 313 return (child); 314 else if (rc == DW_DLV_NO_ENTRY) 315 return (NULL); 316 317 terminate("die %ju: failed to find type child: %s\n", 318 (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err)); 319 /*NOTREACHED*/ 320 return (NULL); 321 } 322 323 static Dwarf_Half 324 die_tag(dwarf_t *dw, Dwarf_Die die) 325 { 326 Dwarf_Half tag; 327 328 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 329 return (tag); 330 331 terminate("die %ju: failed to get tag for type: %s\n", 332 (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err)); 333 /*NOTREACHED*/ 334 return (0); 335 } 336 337 static Dwarf_Attribute 338 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 339 { 340 Dwarf_Attribute attr; 341 int rc; 342 343 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 344 return (attr); 345 } else if (rc == DW_DLV_NO_ENTRY) { 346 if (req) { 347 terminate("die %ju: no attr 0x%x\n", 348 (uintmax_t)die_off(dw, die), 349 name); 350 } else { 351 return (NULL); 352 } 353 } 354 355 terminate("die %ju: failed to get attribute for type: %s\n", 356 (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err)); 357 /*NOTREACHED*/ 358 return (NULL); 359 } 360 361 static int 362 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 363 int req) 364 { 365 *valp = 0; 366 if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 367 if (req) 368 terminate("die %ju: failed to get signed: %s\n", 369 (uintmax_t)die_off(dw, die), 370 dwarf_errmsg(dw->dw_err)); 371 return (0); 372 } 373 374 return (1); 375 } 376 377 static int 378 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 379 int req) 380 { 381 *valp = 0; 382 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 383 if (req) 384 terminate("die %ju: failed to get unsigned: %s\n", 385 (uintmax_t)die_off(dw, die), 386 dwarf_errmsg(dw->dw_err)); 387 return (0); 388 } 389 390 return (1); 391 } 392 393 static int 394 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 395 { 396 *valp = 0; 397 398 if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 399 if (req) 400 terminate("die %ju: failed to get flag: %s\n", 401 (uintmax_t)die_off(dw, die), 402 dwarf_errmsg(dw->dw_err)); 403 return (0); 404 } 405 406 return (1); 407 } 408 409 static int 410 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 411 { 412 const char *str = NULL; 413 414 if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK || 415 str == NULL) { 416 if (req) 417 terminate("die %ju: failed to get string: %s\n", 418 (uintmax_t)die_off(dw, die), 419 dwarf_errmsg(dw->dw_err)); 420 else 421 *strp = NULL; 422 return (0); 423 } else 424 *strp = xstrdup(str); 425 426 return (1); 427 } 428 429 static Dwarf_Off 430 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 431 { 432 Dwarf_Off off; 433 434 if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) { 435 terminate("die %ju: failed to get ref: %s\n", 436 (uintmax_t)die_off(dw, die), dwarf_errmsg(dw->dw_err)); 437 } 438 439 return (off); 440 } 441 442 static char * 443 die_name(dwarf_t *dw, Dwarf_Die die) 444 { 445 char *str = NULL; 446 447 (void) die_string(dw, die, DW_AT_name, &str, 0); 448 if (str == NULL) 449 str = xstrdup(""); 450 451 return (str); 452 } 453 454 static int 455 die_isdecl(dwarf_t *dw, Dwarf_Die die) 456 { 457 Dwarf_Bool val; 458 459 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 460 } 461 462 static int 463 die_isglobal(dwarf_t *dw, Dwarf_Die die) 464 { 465 Dwarf_Signed vis; 466 Dwarf_Bool ext; 467 468 /* 469 * Some compilers (gcc) use DW_AT_external to indicate function 470 * visibility. Others (Sun) use DW_AT_visibility. 471 */ 472 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 473 return (vis == DW_VIS_exported); 474 else 475 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 476 } 477 478 static tdesc_t * 479 die_add(dwarf_t *dw, Dwarf_Off off) 480 { 481 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 482 483 tdp->t_id = off; 484 485 tdesc_add(dw, tdp); 486 487 return (tdp); 488 } 489 490 static tdesc_t * 491 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 492 { 493 Dwarf_Off ref = die_attr_ref(dw, die, name); 494 tdesc_t *tdp; 495 496 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 497 return (tdp); 498 499 return (die_add(dw, ref)); 500 } 501 502 static int 503 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 504 Dwarf_Unsigned *valp, int req __unused) 505 { 506 Dwarf_Locdesc *loc = NULL; 507 Dwarf_Signed locnum = 0; 508 Dwarf_Attribute at; 509 Dwarf_Half form; 510 511 if (name != DW_AT_data_member_location) 512 terminate("die %ju: can only process attribute " 513 "DW_AT_data_member_location\n", 514 (uintmax_t)die_off(dw, die)); 515 516 if ((at = die_attr(dw, die, name, 0)) == NULL) 517 return (0); 518 519 if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK) 520 return (0); 521 522 switch (form) { 523 case DW_FORM_sec_offset: 524 case DW_FORM_block: 525 case DW_FORM_block1: 526 case DW_FORM_block2: 527 case DW_FORM_block4: 528 /* 529 * GCC in base and Clang (3.3 or below) generates 530 * DW_AT_data_member_location attribute with DW_FORM_block* 531 * form. The attribute contains one DW_OP_plus_uconst 532 * operator. The member offset stores in the operand. 533 */ 534 if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) 535 return (0); 536 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 537 terminate("die %ju: cannot parse member offset with " 538 "operator other than DW_OP_plus_uconst\n", 539 (uintmax_t)die_off(dw, die)); 540 } 541 *valp = loc->ld_s->lr_number; 542 if (loc != NULL) { 543 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 544 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 545 } 546 break; 547 548 case DW_FORM_data1: 549 case DW_FORM_data2: 550 case DW_FORM_data4: 551 case DW_FORM_data8: 552 case DW_FORM_udata: 553 /* 554 * Clang 3.4 generates DW_AT_data_member_location attribute 555 * with DW_FORM_data* form (constant class). The attribute 556 * stores a contant value which is the member offset. 557 * 558 * However, note that DW_FORM_data[48] in DWARF version 2 or 3 559 * could be used as a section offset (offset into .debug_loc in 560 * this case). Here we assume the attribute always stores a 561 * constant because we know Clang 3.4 does this and GCC in 562 * base won't emit DW_FORM_data[48] for this attribute. This 563 * code will remain correct if future vesrions of Clang and 564 * GCC conform to DWARF4 standard and only use the form 565 * DW_FORM_sec_offset for section offset. 566 */ 567 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != 568 DW_DLV_OK) 569 return (0); 570 break; 571 572 default: 573 terminate("die %ju: cannot parse member offset with form " 574 "%u\n", (uintmax_t)die_off(dw, die), form); 575 } 576 577 return (1); 578 } 579 580 static tdesc_t * 581 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 582 { 583 tdesc_t *tdp; 584 intr_t *intr; 585 586 intr = xcalloc(sizeof (intr_t)); 587 intr->intr_type = INTR_INT; 588 intr->intr_signed = 1; 589 intr->intr_nbits = sz * NBBY; 590 591 tdp = xcalloc(sizeof (tdesc_t)); 592 tdp->t_name = xstrdup(name); 593 tdp->t_size = sz; 594 tdp->t_id = tid; 595 tdp->t_type = INTRINSIC; 596 tdp->t_intr = intr; 597 tdp->t_flags = TDESC_F_RESOLVED; 598 599 tdesc_add(dw, tdp); 600 601 return (tdp); 602 } 603 604 /* 605 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 606 * type reference implies a reference to a void type. A void *, for example 607 * will be represented by a pointer die without a DW_AT_type. CTF requires 608 * that pointer nodes point to something, so we'll create a void for use as 609 * the target. Note that the DWARF data may already create a void type. Ours 610 * would then be a duplicate, but it'll be removed in the self-uniquification 611 * merge performed at the completion of DWARF->tdesc conversion. 612 */ 613 static tdesc_t * 614 tdesc_intr_void(dwarf_t *dw) 615 { 616 if (dw->dw_void == NULL) 617 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 618 619 return (dw->dw_void); 620 } 621 622 static tdesc_t * 623 tdesc_intr_long(dwarf_t *dw) 624 { 625 if (dw->dw_long == NULL) { 626 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 627 dw->dw_ptrsz); 628 } 629 630 return (dw->dw_long); 631 } 632 633 /* 634 * Used for creating bitfield types. We create a copy of an existing intrinsic, 635 * adjusting the size of the copy to match what the caller requested. The 636 * caller can then use the copy as the type for a bitfield structure member. 637 */ 638 static tdesc_t * 639 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 640 { 641 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 642 643 if (!(old->t_flags & TDESC_F_RESOLVED)) { 644 terminate("tdp %u: attempt to make a bit field from an " 645 "unresolved type\n", old->t_id); 646 } 647 648 new->t_name = xstrdup(old->t_name); 649 new->t_size = old->t_size; 650 new->t_id = mfgtid_next(dw); 651 new->t_type = INTRINSIC; 652 new->t_flags = TDESC_F_RESOLVED; 653 654 new->t_intr = xcalloc(sizeof (intr_t)); 655 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 656 new->t_intr->intr_nbits = bitsz; 657 658 tdesc_add(dw, new); 659 660 return (new); 661 } 662 663 static void 664 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 665 tdesc_t *dimtdp) 666 { 667 Dwarf_Unsigned uval; 668 Dwarf_Signed sval; 669 tdesc_t *ctdp = NULL; 670 Dwarf_Die dim2; 671 ardef_t *ar; 672 673 if ((dim2 = die_sibling(dw, dim)) == NULL) { 674 ctdp = arrtdp; 675 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 676 ctdp = xcalloc(sizeof (tdesc_t)); 677 ctdp->t_id = mfgtid_next(dw); 678 debug(3, "die %ju: creating new type %#x for sub-dimension\n", 679 (uintmax_t)die_off(dw, dim2), ctdp->t_id); 680 tdesc_array_create(dw, dim2, arrtdp, ctdp); 681 } else { 682 terminate("die %ju: unexpected non-subrange node in array\n", 683 (uintmax_t)die_off(dw, dim2)); 684 } 685 686 dimtdp->t_type = ARRAY; 687 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 688 689 /* 690 * Array bounds can be signed or unsigned, but there are several kinds 691 * of signless forms (data1, data2, etc) that take their sign from the 692 * routine that is trying to interpret them. That is, data1 can be 693 * either signed or unsigned, depending on whether you use the signed or 694 * unsigned accessor function. GCC will use the signless forms to store 695 * unsigned values which have their high bit set, so we need to try to 696 * read them first as unsigned to get positive values. We could also 697 * try signed first, falling back to unsigned if we got a negative 698 * value. 699 */ 700 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 701 ar->ad_nelems = uval + 1; 702 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 703 ar->ad_nelems = sval + 1; 704 else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0)) 705 ar->ad_nelems = uval + 1; 706 else if (die_signed(dw, dim, DW_AT_count, &sval, 0)) 707 ar->ad_nelems = sval + 1; 708 else 709 ar->ad_nelems = 0; 710 711 /* 712 * Different compilers use different index types. Force the type to be 713 * a common, known value (long). 714 */ 715 ar->ad_idxtype = tdesc_intr_long(dw); 716 ar->ad_contents = ctdp; 717 debug(3, "die %ju: hi mom sibling type %#x for dimension\n", 718 (uintmax_t)die_off(dw, dim), ctdp->t_id); 719 720 if (ar->ad_contents->t_size != 0) { 721 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 722 dimtdp->t_flags |= TDESC_F_RESOLVED; 723 } 724 } 725 726 /* 727 * Create a tdesc from an array node. Some arrays will come with byte size 728 * attributes, and thus can be resolved immediately. Others don't, and will 729 * need to wait until the second pass for resolution. 730 */ 731 static void 732 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 733 { 734 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 735 Dwarf_Unsigned uval; 736 Dwarf_Die dim; 737 738 debug(3, "die %ju <%jx>: creating array\n", 739 (uintmax_t)off, (uintmax_t)off); 740 741 if ((dim = die_child(dw, arr)) == NULL || 742 die_tag(dw, dim) != DW_TAG_subrange_type) 743 terminate("die %ju: failed to retrieve array bounds\n", 744 (uintmax_t)off); 745 746 if (arrtdp->t_type == 0) { 747 /* 748 * Add the die that contains the type of the array elements 749 * to the the ones we process; XXX: no public API for that? 750 */ 751 extern Dwarf_Die _dwarf_die_find(Dwarf_Die, Dwarf_Unsigned); 752 Dwarf_Die elem = _dwarf_die_find(arr, arrtdp->t_id); 753 if (elem != NULL) 754 die_create_one(dw, elem); 755 } 756 757 tdesc_array_create(dw, dim, arrtdp, tdp); 758 759 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 760 tdesc_t *dimtdp; 761 int flags; 762 763 tdp->t_size = uval; 764 765 /* 766 * Ensure that sub-dimensions have sizes too before marking 767 * as resolved. 768 */ 769 flags = TDESC_F_RESOLVED; 770 for (dimtdp = tdp->t_ardef->ad_contents; 771 dimtdp->t_type == ARRAY; 772 dimtdp = dimtdp->t_ardef->ad_contents) { 773 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 774 flags = 0; 775 break; 776 } 777 } 778 779 tdp->t_flags |= flags; 780 } 781 782 debug(3, "die %ju <%jx>: array nelems %u size %u\n", (uintmax_t)off, 783 (uintmax_t)off, tdp->t_ardef->ad_nelems, tdp->t_size); 784 } 785 786 /*ARGSUSED1*/ 787 static int 788 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 789 { 790 dwarf_t *dw = private; 791 size_t sz; 792 793 if (tdp->t_flags & TDESC_F_RESOLVED) 794 return (1); 795 796 debug(3, "trying to resolve array %#x (cont %#x/%d)\n", tdp->t_id, 797 tdp->t_ardef->ad_contents->t_id, 798 tdp->t_ardef->ad_contents->t_size); 799 800 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 && 801 (tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) { 802 debug(3, "unable to resolve array %s (%#x) contents %#x\n", 803 tdesc_name(tdp), tdp->t_id, 804 tdp->t_ardef->ad_contents->t_id); 805 806 dw->dw_nunres++; 807 return (1); 808 } 809 810 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 811 tdp->t_flags |= TDESC_F_RESOLVED; 812 813 debug(3, "resolved array %#x: %u bytes\n", tdp->t_id, tdp->t_size); 814 815 return (1); 816 } 817 818 /*ARGSUSED1*/ 819 static int 820 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 821 { 822 tdesc_t *cont = tdp->t_ardef->ad_contents; 823 824 if (tdp->t_flags & TDESC_F_RESOLVED) 825 return (1); 826 827 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 828 tdp->t_id, tdesc_name(cont), cont->t_id); 829 830 return (1); 831 } 832 833 /* 834 * Most enums (those with members) will be resolved during this first pass. 835 * Others - those without members (see the file comment) - won't be, and will 836 * need to wait until the second pass when they can be matched with their full 837 * definitions. 838 */ 839 static void 840 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 841 { 842 Dwarf_Die mem; 843 Dwarf_Unsigned uval; 844 Dwarf_Signed sval; 845 846 if (die_isdecl(dw, die)) { 847 tdp->t_type = FORWARD; 848 return; 849 } 850 851 debug(3, "die %ju: creating enum\n", (uintmax_t)off); 852 853 tdp->t_type = ENUM; 854 855 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 856 tdp->t_size = uval; 857 858 if ((mem = die_child(dw, die)) != NULL) { 859 elist_t **elastp = &tdp->t_emem; 860 861 do { 862 elist_t *el; 863 864 if (die_tag(dw, mem) != DW_TAG_enumerator) { 865 /* Nested type declaration */ 866 die_create_one(dw, mem); 867 continue; 868 } 869 870 el = xcalloc(sizeof (elist_t)); 871 el->el_name = die_name(dw, mem); 872 873 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 874 el->el_number = sval; 875 } else if (die_unsigned(dw, mem, DW_AT_const_value, 876 &uval, 0)) { 877 el->el_number = uval; 878 } else { 879 terminate("die %ju: enum %ju: member without " 880 "value\n", (uintmax_t)off, 881 (uintmax_t)die_off(dw, mem)); 882 } 883 884 debug(3, "die %ju: enum %ju: created %s = %d\n", 885 (uintmax_t)off, (uintmax_t)die_off(dw, mem), 886 el->el_name, el->el_number); 887 888 *elastp = el; 889 elastp = &el->el_next; 890 891 } while ((mem = die_sibling(dw, mem)) != NULL); 892 893 hash_add(dw->dw_enumhash, tdp); 894 895 tdp->t_flags |= TDESC_F_RESOLVED; 896 897 if (tdp->t_name != NULL) { 898 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 899 ii->ii_type = II_SOU; 900 ii->ii_name = xstrdup(tdp->t_name); 901 ii->ii_dtype = tdp; 902 903 iidesc_add(dw->dw_td->td_iihash, ii); 904 } 905 } 906 } 907 908 static int 909 die_enum_match(void *arg1, void *arg2) 910 { 911 tdesc_t *tdp = arg1, **fullp = arg2; 912 913 if (tdp->t_emem != NULL) { 914 *fullp = tdp; 915 return (-1); /* stop the iteration */ 916 } 917 918 return (0); 919 } 920 921 /*ARGSUSED1*/ 922 static int 923 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 924 { 925 dwarf_t *dw = private; 926 tdesc_t *full = NULL; 927 928 if (tdp->t_flags & TDESC_F_RESOLVED) 929 return (1); 930 931 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 932 933 /* 934 * The answer to this one won't change from iteration to iteration, 935 * so don't even try. 936 */ 937 if (full == NULL) { 938 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 939 tdesc_name(tdp)); 940 } 941 942 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 943 tdesc_name(tdp), full->t_id); 944 945 tdp->t_flags |= TDESC_F_RESOLVED; 946 947 return (1); 948 } 949 950 static int 951 die_fwd_map(void *arg1, void *arg2) 952 { 953 tdesc_t *fwd = arg1, *sou = arg2; 954 955 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 956 tdesc_name(fwd), sou->t_id); 957 fwd->t_tdesc = sou; 958 959 return (0); 960 } 961 962 /* 963 * Structures and unions will never be resolved during the first pass, as we 964 * won't be able to fully determine the member sizes. The second pass, which 965 * have access to sizing information, will be able to complete the resolution. 966 */ 967 static void 968 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 969 int type, const char *typename) 970 { 971 Dwarf_Unsigned sz, bitsz, bitoff; 972 #if BYTE_ORDER == LITTLE_ENDIAN 973 Dwarf_Unsigned bysz; 974 #endif 975 Dwarf_Die mem; 976 mlist_t *ml, **mlastp; 977 iidesc_t *ii; 978 979 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 980 981 debug(3, "die %ju: creating %s %s <%d>\n", (uintmax_t)off, 982 (tdp->t_type == FORWARD ? "forward decl" : typename), 983 tdesc_name(tdp), tdp->t_id); 984 985 if (tdp->t_type == FORWARD) { 986 hash_add(dw->dw_fwdhash, tdp); 987 return; 988 } 989 990 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 991 992 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 993 tdp->t_size = sz; 994 995 /* 996 * GCC allows empty SOUs as an extension. 997 */ 998 if ((mem = die_child(dw, str)) == NULL) { 999 goto out; 1000 } 1001 1002 mlastp = &tdp->t_members; 1003 1004 do { 1005 Dwarf_Off memoff = die_off(dw, mem); 1006 Dwarf_Half tag = die_tag(dw, mem); 1007 Dwarf_Unsigned mloff; 1008 1009 if (tag != DW_TAG_member) { 1010 /* Nested type declaration */ 1011 die_create_one(dw, mem); 1012 continue; 1013 } 1014 1015 debug(3, "die %ju: mem %ju: creating member\n", 1016 (uintmax_t)off, (uintmax_t)memoff); 1017 1018 ml = xcalloc(sizeof (mlist_t)); 1019 1020 /* 1021 * This could be a GCC anon struct/union member, so we'll allow 1022 * an empty name, even though nothing can really handle them 1023 * properly. Note that some versions of GCC miss out debug 1024 * info for anon structs, though recent versions are fixed (gcc 1025 * bug 11816). 1026 */ 1027 if ((ml->ml_name = die_name(dw, mem)) == NULL) 1028 ml->ml_name = NULL; 1029 1030 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 1031 1032 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 1033 &mloff, 0)) { 1034 debug(3, "die %ju: got mloff 0x%jx\n", (uintmax_t)off, 1035 (uintmax_t)mloff); 1036 ml->ml_offset = mloff * 8; 1037 } 1038 1039 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 1040 ml->ml_size = bitsz; 1041 else 1042 ml->ml_size = tdesc_bitsize(ml->ml_type); 1043 1044 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 1045 #if BYTE_ORDER == BIG_ENDIAN 1046 ml->ml_offset += bitoff; 1047 #else 1048 /* 1049 * Note that Clang 3.4 will sometimes generate 1050 * member DIE before generating the DIE for the 1051 * member's type. The code can not handle this 1052 * properly so that tdesc_bitsize(ml->ml_type) will 1053 * return 0 because ml->ml_type is unknown. As a 1054 * result, a wrong member offset will be calculated. 1055 * To workaround this, we can instead try to 1056 * retrieve the value of DW_AT_byte_size attribute 1057 * which stores the byte size of the space occupied 1058 * by the type. If this attribute exists, its value 1059 * should equal to tdesc_bitsize(ml->ml_type)/NBBY. 1060 */ 1061 if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) && 1062 bysz > 0) 1063 ml->ml_offset += bysz * NBBY - bitoff - 1064 ml->ml_size; 1065 else 1066 ml->ml_offset += tdesc_bitsize(ml->ml_type) - 1067 bitoff - ml->ml_size; 1068 #endif 1069 } 1070 1071 debug(3, "die %ju: mem %ju: created \"%s\" (off %u sz %u)\n", 1072 (uintmax_t)off, (uintmax_t)memoff, ml->ml_name, 1073 ml->ml_offset, ml->ml_size); 1074 1075 *mlastp = ml; 1076 mlastp = &ml->ml_next; 1077 } while ((mem = die_sibling(dw, mem)) != NULL); 1078 1079 /* 1080 * GCC will attempt to eliminate unused types, thus decreasing the 1081 * size of the emitted dwarf. That is, if you declare a foo_t in your 1082 * header, include said header in your source file, and neglect to 1083 * actually use (directly or indirectly) the foo_t in the source file, 1084 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1085 * the theory. 1086 * 1087 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1088 * and then neglect to emit the members. Strangely, the loner struct 1089 * tag will always be followed by a proper nested declaration of 1090 * something else. This is clearly a bug, but we're not going to have 1091 * time to get it fixed before this goo goes back, so we'll have to work 1092 * around it. If we see a no-membered struct with a nested declaration 1093 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1094 * Being paranoid, we won't simply remove it from the hash. Instead, 1095 * we'll decline to create an iidesc for it, thus ensuring that this 1096 * type won't make it into the output file. To be safe, we'll also 1097 * change the name. 1098 */ 1099 if (tdp->t_members == NULL) { 1100 const char *old = tdesc_name(tdp); 1101 size_t newsz = 7 + strlen(old) + 1; 1102 char *new = xmalloc(newsz); 1103 (void) snprintf(new, newsz, "orphan %s", old); 1104 1105 debug(3, "die %ju: worked around %s %s\n", (uintmax_t)off, 1106 typename, old); 1107 1108 if (tdp->t_name != NULL) 1109 free(tdp->t_name); 1110 tdp->t_name = new; 1111 return; 1112 } 1113 1114 out: 1115 if (tdp->t_name != NULL) { 1116 ii = xcalloc(sizeof (iidesc_t)); 1117 ii->ii_type = II_SOU; 1118 ii->ii_name = xstrdup(tdp->t_name); 1119 ii->ii_dtype = tdp; 1120 1121 iidesc_add(dw->dw_td->td_iihash, ii); 1122 } 1123 } 1124 1125 static void 1126 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1127 { 1128 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1129 } 1130 1131 static void 1132 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1133 { 1134 die_sou_create(dw, die, off, tdp, UNION, "union"); 1135 } 1136 1137 static void 1138 die_class_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1139 { 1140 die_sou_create(dw, die, off, tdp, CLASS, "class"); 1141 } 1142 1143 /*ARGSUSED1*/ 1144 static int 1145 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 1146 { 1147 dwarf_t *dw = private; 1148 mlist_t *ml; 1149 tdesc_t *mt; 1150 1151 if (tdp->t_flags & TDESC_F_RESOLVED) 1152 return (1); 1153 1154 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1155 1156 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1157 if (ml->ml_size == 0) { 1158 mt = tdesc_basetype(ml->ml_type); 1159 1160 if (mt == NULL) 1161 continue; 1162 1163 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1164 continue; 1165 1166 /* 1167 * For empty members, or GCC/C99 flexible array 1168 * members, a size of 0 is correct. Structs and unions 1169 * consisting of flexible array members will also have 1170 * size 0. 1171 */ 1172 if (mt->t_members == NULL) 1173 continue; 1174 if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0) 1175 continue; 1176 if ((mt->t_flags & TDESC_F_RESOLVED) != 0 && 1177 (mt->t_type == STRUCT || mt->t_type == UNION || 1178 mt->t_type == CLASS)) 1179 continue; 1180 1181 if (mt->t_type == STRUCT && 1182 mt->t_members != NULL && 1183 mt->t_members->ml_type->t_type == ARRAY && 1184 mt->t_members->ml_type->t_ardef->ad_nelems == 0) { 1185 /* struct with zero sized array */ 1186 continue; 1187 } 1188 1189 /* 1190 * anonymous union members are OK. 1191 * XXX: we should consistently use NULL, instead of "" 1192 */ 1193 if (mt->t_type == UNION && 1194 (mt->t_name == NULL || mt->t_name[0] == '\0')) 1195 continue; 1196 1197 /* 1198 * XXX: Gcc-5.4 DW_TAG_typedef without DW_AT_type; 1199 * assume pointer 1200 */ 1201 if (mt->t_id == TID_VOID) { 1202 ml->ml_size = dw->dw_ptrsz; 1203 continue; 1204 } 1205 1206 fprintf(stderr, "%s unresolved type=%d (%s) tid=%#x\n", 1207 tdesc_name(tdp), mt->t_type, tdesc_name(mt), 1208 mt->t_id); 1209 dw->dw_nunres++; 1210 return (1); 1211 } 1212 1213 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1214 dw->dw_nunres++; 1215 return (1); 1216 } 1217 1218 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1219 mt->t_intr->intr_nbits != ml->ml_size) { 1220 /* 1221 * This member is a bitfield, and needs to reference 1222 * an intrinsic type with the same width. If the 1223 * currently-referenced type isn't of the same width, 1224 * we'll copy it, adjusting the width of the copy to 1225 * the size we'd like. 1226 */ 1227 debug(3, "tdp %u: creating bitfield for %d bits\n", 1228 tdp->t_id, ml->ml_size); 1229 1230 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1231 } 1232 } 1233 1234 tdp->t_flags |= TDESC_F_RESOLVED; 1235 1236 return (1); 1237 } 1238 1239 /*ARGSUSED1*/ 1240 static int 1241 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 1242 { 1243 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1244 mlist_t *ml; 1245 1246 if (tdp->t_flags & TDESC_F_RESOLVED) 1247 return (1); 1248 1249 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1250 if (ml->ml_size == 0) { 1251 fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" " 1252 "of type %s (%d <%x>)\n", typename, tdp->t_id, 1253 tdp->t_id, 1254 ml->ml_name, tdesc_name(ml->ml_type), 1255 ml->ml_type->t_id, ml->ml_type->t_id); 1256 } 1257 } 1258 1259 return (1); 1260 } 1261 1262 static void 1263 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1264 { 1265 Dwarf_Attribute attr; 1266 Dwarf_Half tag; 1267 Dwarf_Die arg; 1268 fndef_t *fn; 1269 int i; 1270 1271 debug(3, "die %ju <0x%jx>: creating function pointer\n", 1272 (uintmax_t)off, (uintmax_t)off); 1273 1274 /* 1275 * We'll begin by processing any type definition nodes that may be 1276 * lurking underneath this one. 1277 */ 1278 for (arg = die_child(dw, die); arg != NULL; 1279 arg = die_sibling(dw, arg)) { 1280 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1281 tag != DW_TAG_unspecified_parameters) { 1282 /* Nested type declaration */ 1283 die_create_one(dw, arg); 1284 } 1285 } 1286 1287 if (die_isdecl(dw, die)) { 1288 /* 1289 * This is a prototype. We don't add prototypes to the 1290 * tree, so we're going to drop the tdesc. Unfortunately, 1291 * it has already been added to the tree. Nobody will reference 1292 * it, though, and it will be leaked. 1293 */ 1294 return; 1295 } 1296 1297 fn = xcalloc(sizeof (fndef_t)); 1298 1299 tdp->t_type = FUNCTION; 1300 1301 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1302 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1303 } else { 1304 fn->fn_ret = tdesc_intr_void(dw); 1305 } 1306 1307 /* 1308 * Count the arguments to the function, then read them in. 1309 */ 1310 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1311 arg = die_sibling(dw, arg)) { 1312 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1313 fn->fn_nargs++; 1314 else if (tag == DW_TAG_unspecified_parameters && 1315 fn->fn_nargs > 0) 1316 fn->fn_vargs = 1; 1317 } 1318 1319 if (fn->fn_nargs != 0) { 1320 debug(3, "die %ju: adding %d argument%s\n", (uintmax_t)off, 1321 fn->fn_nargs, (fn->fn_nargs > 1 ? "s" : "")); 1322 1323 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1324 for (i = 0, arg = die_child(dw, die); 1325 arg != NULL && i < (int) fn->fn_nargs; 1326 arg = die_sibling(dw, arg)) { 1327 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1328 continue; 1329 1330 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1331 DW_AT_type); 1332 } 1333 } 1334 1335 tdp->t_fndef = fn; 1336 tdp->t_flags |= TDESC_F_RESOLVED; 1337 } 1338 1339 /* 1340 * GCC and DevPro use different names for the base types. While the terms are 1341 * the same, they are arranged in a different order. Some terms, such as int, 1342 * are implied in one, and explicitly named in the other. Given a base type 1343 * as input, this routine will return a common name, along with an intr_t 1344 * that reflects said name. 1345 */ 1346 static intr_t * 1347 die_base_name_parse(const char *name, char **newp) 1348 { 1349 char buf[1024]; 1350 char const *base; 1351 char *c; 1352 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1353 int sign = 1; 1354 char fmt = '\0'; 1355 intr_t *intr; 1356 1357 if (strlen(name) > sizeof (buf) - 1) 1358 terminate("base type name \"%s\" is too long\n", name); 1359 1360 strncpy(buf, name, sizeof (buf)); 1361 1362 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1363 if (strcmp(c, "signed") == 0) 1364 sign = 1; 1365 else if (strcmp(c, "unsigned") == 0) 1366 sign = 0; 1367 else if (strcmp(c, "long") == 0) 1368 nlong++; 1369 else if (strcmp(c, "char") == 0) { 1370 nchar++; 1371 fmt = 'c'; 1372 } else if (strcmp(c, "short") == 0) 1373 nshort++; 1374 else if (strcmp(c, "int") == 0) 1375 nint++; 1376 else { 1377 /* 1378 * If we don't recognize any of the tokens, we'll tell 1379 * the caller to fall back to the dwarf-provided 1380 * encoding information. 1381 */ 1382 return (NULL); 1383 } 1384 } 1385 1386 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1387 return (NULL); 1388 1389 if (nchar > 0) { 1390 if (nlong > 0 || nshort > 0 || nint > 0) 1391 return (NULL); 1392 1393 base = "char"; 1394 1395 } else if (nshort > 0) { 1396 if (nlong > 0) 1397 return (NULL); 1398 1399 base = "short"; 1400 1401 } else if (nlong > 0) { 1402 base = "long"; 1403 1404 } else { 1405 base = "int"; 1406 } 1407 1408 intr = xcalloc(sizeof (intr_t)); 1409 intr->intr_type = INTR_INT; 1410 intr->intr_signed = sign; 1411 intr->intr_iformat = fmt; 1412 1413 snprintf(buf, sizeof (buf), "%s%s%s", 1414 (sign ? "" : "unsigned "), 1415 (nlong > 1 ? "long " : ""), 1416 base); 1417 1418 *newp = xstrdup(buf); 1419 return (intr); 1420 } 1421 1422 /* 1423 * Return the CTF float encoding type. The logic is all floating 1424 * point types of 4 bytes or less are "float", 8 bytes or less are 1425 * "double" and 16 bytes or less are "long double". Anything bigger 1426 * will error. 1427 */ 1428 #define FLOAT_SIZE_SINGLE 4 1429 #define FLOAT_SIZE_DOUBLE 8 1430 #define FLOAT_SIZE_LONG_DOUBLE 16 1431 1432 typedef struct fp_size_map { 1433 size_t fsm_typesz; /* size of type */ 1434 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1435 } fp_size_map_t; 1436 1437 static const fp_size_map_t fp_encodings[] = { 1438 { FLOAT_SIZE_SINGLE, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1439 { FLOAT_SIZE_DOUBLE, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1440 { FLOAT_SIZE_LONG_DOUBLE, 1441 { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1442 { 0, { 0, 0, 0 } } 1443 }; 1444 1445 static uint_t 1446 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1447 { 1448 const fp_size_map_t *map = fp_encodings; 1449 uint_t mult = 1, col = 0; 1450 1451 switch (enc) { 1452 case DW_ATE_complex_float: 1453 #if defined(DW_ATE_SUN_interval_float) 1454 case DW_ATE_SUN_interval_float: 1455 #endif 1456 mult = 2; 1457 col = 1; 1458 break; 1459 case DW_ATE_imaginary_float: 1460 #if defined(DW_ATE_SUN_imaginary_float) 1461 case DW_ATE_SUN_imaginary_float: 1462 #endif 1463 col = 2; 1464 break; 1465 } 1466 1467 while (map->fsm_typesz != 0) { 1468 if (sz <= map->fsm_typesz * mult) 1469 return (map->fsm_enc[col]); 1470 map++; 1471 } 1472 1473 terminate("die %ju: unrecognized real type size %ju\n", 1474 (uintmax_t)off, (uintmax_t)sz); 1475 /*NOTREACHED*/ 1476 return (0); 1477 } 1478 1479 static intr_t * 1480 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1481 { 1482 intr_t *intr = xcalloc(sizeof (intr_t)); 1483 Dwarf_Signed enc; 1484 1485 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1486 1487 switch (enc) { 1488 case DW_ATE_unsigned: 1489 case DW_ATE_address: 1490 intr->intr_type = INTR_INT; 1491 break; 1492 case DW_ATE_unsigned_char: 1493 intr->intr_type = INTR_INT; 1494 intr->intr_iformat = 'c'; 1495 break; 1496 case DW_ATE_signed: 1497 intr->intr_type = INTR_INT; 1498 intr->intr_signed = 1; 1499 break; 1500 case DW_ATE_signed_char: 1501 intr->intr_type = INTR_INT; 1502 intr->intr_signed = 1; 1503 intr->intr_iformat = 'c'; 1504 break; 1505 case DW_ATE_boolean: 1506 intr->intr_type = INTR_INT; 1507 intr->intr_signed = 1; 1508 intr->intr_iformat = 'b'; 1509 break; 1510 case DW_ATE_float: 1511 case DW_ATE_complex_float: 1512 case DW_ATE_imaginary_float: 1513 #if defined(sun) 1514 case DW_ATE_SUN_imaginary_float: 1515 case DW_ATE_SUN_interval_float: 1516 #endif 1517 intr->intr_type = INTR_REAL; 1518 intr->intr_signed = 1; 1519 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1520 break; 1521 case DW_ATE_UTF: 1522 // XXX: c++ char16_t/char32_t; we don't deal with it. 1523 intr->intr_type = INTR_INT; 1524 intr->intr_signed = 1; 1525 intr->intr_iformat = 'v'; 1526 break; 1527 default: 1528 terminate("die %ju: unknown base type encoding 0x%jx\n", 1529 (uintmax_t)off, (uintmax_t)enc); 1530 } 1531 1532 return (intr); 1533 } 1534 1535 static void 1536 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1537 { 1538 Dwarf_Unsigned sz; 1539 intr_t *intr; 1540 char *new; 1541 1542 debug(3, "die %ju: creating base type\n", (uintmax_t)off); 1543 1544 /* 1545 * The compilers have their own clever (internally inconsistent) ideas 1546 * as to what base types should look like. Some times gcc will, for 1547 * example, use DW_ATE_signed_char for char. Other times, however, it 1548 * will use DW_ATE_signed. Needless to say, this causes some problems 1549 * down the road, particularly with merging. We do, however, use the 1550 * DWARF idea of type sizes, as this allows us to avoid caring about 1551 * the data model. 1552 */ 1553 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1554 1555 if (tdp->t_name == NULL) 1556 terminate("die %ju: base type without name\n", (uintmax_t)off); 1557 1558 /* XXX make a name parser for float too */ 1559 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1560 /* Found it. We'll use the parsed version */ 1561 debug(3, "die %ju: name \"%s\" remapped to \"%s\"\n", 1562 (uintmax_t)off, tdesc_name(tdp), new); 1563 1564 free(tdp->t_name); 1565 tdp->t_name = new; 1566 } else { 1567 /* 1568 * We didn't recognize the type, so we'll create an intr_t 1569 * based on the DWARF data. 1570 */ 1571 debug(3, "die %ju: using dwarf data for base \"%s\"\n", 1572 (uintmax_t)off, tdesc_name(tdp)); 1573 1574 intr = die_base_from_dwarf(dw, base, off, sz); 1575 } 1576 1577 intr->intr_nbits = sz * 8; 1578 1579 tdp->t_type = INTRINSIC; 1580 tdp->t_intr = intr; 1581 tdp->t_size = sz; 1582 1583 tdp->t_flags |= TDESC_F_RESOLVED; 1584 } 1585 1586 static void 1587 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1588 int type, const char *typename) 1589 { 1590 Dwarf_Attribute attr; 1591 1592 debug(3, "die %ju <0x%jx>: creating %s type %d\n", (uintmax_t)off, 1593 (uintmax_t)off, typename, type); 1594 1595 tdp->t_type = type; 1596 1597 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1598 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1599 } else { 1600 tdp->t_tdesc = tdesc_intr_void(dw); 1601 } 1602 1603 if (type == POINTER || type == REFERENCE) 1604 tdp->t_size = dw->dw_ptrsz; 1605 1606 tdp->t_flags |= TDESC_F_RESOLVED; 1607 1608 if (type == TYPEDEF) { 1609 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1610 ii->ii_type = II_TYPE; 1611 ii->ii_name = xstrdup(tdp->t_name); 1612 ii->ii_dtype = tdp; 1613 1614 iidesc_add(dw->dw_td->td_iihash, ii); 1615 } 1616 } 1617 1618 static void 1619 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1620 { 1621 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1622 } 1623 1624 static void 1625 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1626 { 1627 die_through_create(dw, die, off, tdp, CONST, "const"); 1628 } 1629 1630 static void 1631 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1632 { 1633 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1634 } 1635 1636 static void 1637 die_reference_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1638 { 1639 die_through_create(dw, die, off, tdp, REFERENCE, "reference"); 1640 } 1641 1642 static void 1643 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1644 { 1645 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1646 } 1647 1648 static void 1649 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1650 { 1651 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1652 } 1653 1654 /*ARGSUSED3*/ 1655 static void 1656 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1657 { 1658 Dwarf_Die arg; 1659 Dwarf_Half tag; 1660 iidesc_t *ii; 1661 char *name; 1662 1663 debug(3, "die %ju <0x%jx>: creating function definition\n", 1664 (uintmax_t)off, (uintmax_t)off); 1665 1666 /* 1667 * We'll begin by processing any type definition nodes that may be 1668 * lurking underneath this one. 1669 */ 1670 for (arg = die_child(dw, die); arg != NULL; 1671 arg = die_sibling(dw, arg)) { 1672 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1673 tag != DW_TAG_variable) { 1674 /* Nested type declaration */ 1675 die_create_one(dw, arg); 1676 } 1677 } 1678 1679 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1680 /* 1681 * We process neither prototypes nor subprograms without 1682 * names. 1683 */ 1684 return; 1685 } 1686 1687 ii = xcalloc(sizeof (iidesc_t)); 1688 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1689 ii->ii_name = name; 1690 if (ii->ii_type == II_SFUN) 1691 ii->ii_owner = xstrdup(dw->dw_cuname); 1692 1693 debug(3, "die %ju: function %s is %s\n", (uintmax_t)off, ii->ii_name, 1694 (ii->ii_type == II_GFUN ? "global" : "static")); 1695 1696 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1697 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1698 else 1699 ii->ii_dtype = tdesc_intr_void(dw); 1700 1701 for (arg = die_child(dw, die); arg != NULL; 1702 arg = die_sibling(dw, arg)) { 1703 char *name1; 1704 1705 debug(3, "die %ju: looking at sub member at %ju\n", 1706 (uintmax_t)off, (uintmax_t)die_off(dw, die)); 1707 1708 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1709 continue; 1710 1711 if ((name1 = die_name(dw, arg)) == NULL) { 1712 terminate("die %ju: func arg %d has no name\n", 1713 (uintmax_t)off, ii->ii_nargs + 1); 1714 } 1715 1716 if (strcmp(name1, "...") == 0) { 1717 free(name1); 1718 ii->ii_vargs = 1; 1719 continue; 1720 } 1721 1722 ii->ii_nargs++; 1723 } 1724 1725 if (ii->ii_nargs > 0) { 1726 int i; 1727 1728 debug(3, "die %ju: function has %d argument%s\n", 1729 (uintmax_t)off, ii->ii_nargs, ii->ii_nargs == 1 ? "" : "s"); 1730 1731 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1732 1733 for (arg = die_child(dw, die), i = 0; 1734 arg != NULL && i < ii->ii_nargs; 1735 arg = die_sibling(dw, arg)) { 1736 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1737 continue; 1738 1739 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1740 DW_AT_type); 1741 } 1742 } 1743 1744 iidesc_add(dw->dw_td->td_iihash, ii); 1745 } 1746 1747 /*ARGSUSED3*/ 1748 static void 1749 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1750 { 1751 iidesc_t *ii; 1752 char *name; 1753 1754 debug(3, "die %ju: creating object definition\n", (uintmax_t)off); 1755 1756 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1757 return; /* skip prototypes and nameless objects */ 1758 1759 ii = xcalloc(sizeof (iidesc_t)); 1760 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1761 ii->ii_name = name; 1762 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1763 if (ii->ii_type == II_SVAR) 1764 ii->ii_owner = xstrdup(dw->dw_cuname); 1765 1766 iidesc_add(dw->dw_td->td_iihash, ii); 1767 } 1768 1769 /*ARGSUSED2*/ 1770 static int 1771 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused) 1772 { 1773 if (fwd->t_flags & TDESC_F_RESOLVED) 1774 return (1); 1775 1776 if (fwd->t_tdesc != NULL) { 1777 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1778 tdesc_name(fwd)); 1779 *fwdp = fwd->t_tdesc; 1780 } 1781 1782 fwd->t_flags |= TDESC_F_RESOLVED; 1783 1784 return (1); 1785 } 1786 1787 /*ARGSUSED*/ 1788 static void 1789 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused) 1790 { 1791 Dwarf_Die child = die_child(dw, die); 1792 1793 if (child != NULL) 1794 die_create(dw, child); 1795 } 1796 1797 /* 1798 * Used to map the die to a routine which can parse it, using the tag to do the 1799 * mapping. While the processing of most tags entails the creation of a tdesc, 1800 * there are a few which don't - primarily those which result in the creation of 1801 * iidescs which refer to existing tdescs. 1802 */ 1803 1804 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1805 1806 typedef struct die_creator { 1807 Dwarf_Half dc_tag; 1808 uint16_t dc_flags; 1809 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1810 } die_creator_t; 1811 1812 static const die_creator_t die_creators[] = { 1813 { DW_TAG_array_type, 0, die_array_create }, 1814 { DW_TAG_enumeration_type, 0, die_enum_create }, 1815 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1816 { DW_TAG_pointer_type, 0, die_pointer_create }, 1817 { DW_TAG_reference_type, 0, die_reference_create }, 1818 { DW_TAG_structure_type, 0, die_struct_create }, 1819 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1820 { DW_TAG_typedef, 0, die_typedef_create }, 1821 { DW_TAG_union_type, 0, die_union_create }, 1822 { DW_TAG_class_type, 0, die_class_create }, 1823 { DW_TAG_base_type, 0, die_base_create }, 1824 { DW_TAG_const_type, 0, die_const_create }, 1825 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1826 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1827 { DW_TAG_volatile_type, 0, die_volatile_create }, 1828 { DW_TAG_restrict_type, 0, die_restrict_create }, 1829 { 0, 0, NULL } 1830 }; 1831 1832 static const die_creator_t * 1833 die_tag2ctor(Dwarf_Half tag) 1834 { 1835 const die_creator_t *dc; 1836 1837 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1838 if (dc->dc_tag == tag) 1839 return (dc); 1840 } 1841 1842 return (NULL); 1843 } 1844 1845 static void 1846 die_create_one(dwarf_t *dw, Dwarf_Die die) 1847 { 1848 Dwarf_Off off = die_off(dw, die); 1849 const die_creator_t *dc; 1850 Dwarf_Half tag; 1851 tdesc_t *tdp; 1852 1853 debug(3, "die %ju <0x%jx>: create_one\n", (uintmax_t)off, 1854 (uintmax_t)off); 1855 1856 if (off > dw->dw_maxoff) { 1857 terminate("illegal die offset %ju (max %ju)\n", (uintmax_t)off, 1858 dw->dw_maxoff); 1859 } 1860 1861 tag = die_tag(dw, die); 1862 1863 if ((dc = die_tag2ctor(tag)) == NULL) { 1864 debug(2, "die %ju: ignoring tag type %x\n", (uintmax_t)off, 1865 tag); 1866 return; 1867 } 1868 1869 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1870 !(dc->dc_flags & DW_F_NOTDP)) { 1871 tdp = xcalloc(sizeof (tdesc_t)); 1872 tdp->t_id = off; 1873 tdesc_add(dw, tdp); 1874 } 1875 1876 if (tdp != NULL) 1877 tdp->t_name = die_name(dw, die); 1878 1879 dc->dc_create(dw, die, off, tdp); 1880 } 1881 1882 static void 1883 die_create(dwarf_t *dw, Dwarf_Die die) 1884 { 1885 do { 1886 die_create_one(dw, die); 1887 } while ((die = die_sibling(dw, die)) != NULL); 1888 } 1889 1890 static tdtrav_cb_f die_resolvers[] = { 1891 NULL, 1892 NULL, /* intrinsic */ 1893 NULL, /* pointer */ 1894 NULL, /* reference */ 1895 die_array_resolve, /* array */ 1896 NULL, /* function */ 1897 die_sou_resolve, /* struct */ 1898 die_sou_resolve, /* union */ 1899 die_sou_resolve, /* class */ 1900 die_enum_resolve, /* enum */ 1901 die_fwd_resolve, /* forward */ 1902 NULL, /* typedef */ 1903 NULL, /* typedef unres */ 1904 NULL, /* volatile */ 1905 NULL, /* const */ 1906 NULL, /* restrict */ 1907 }; 1908 1909 static tdtrav_cb_f die_fail_reporters[] = { 1910 NULL, 1911 NULL, /* intrinsic */ 1912 NULL, /* pointer */ 1913 NULL, /* reference */ 1914 die_array_failed, /* array */ 1915 NULL, /* function */ 1916 die_sou_failed, /* struct */ 1917 die_sou_failed, /* union */ 1918 die_sou_failed, /* class */ 1919 NULL, /* enum */ 1920 NULL, /* forward */ 1921 NULL, /* typedef */ 1922 NULL, /* typedef unres */ 1923 NULL, /* volatile */ 1924 NULL, /* const */ 1925 NULL, /* restrict */ 1926 }; 1927 1928 static void 1929 die_resolve(dwarf_t *dw) 1930 { 1931 int last = -1; 1932 int pass = 0; 1933 1934 do { 1935 pass++; 1936 dw->dw_nunres = 0; 1937 1938 (void) iitraverse_hash(dw->dw_td->td_iihash, 1939 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1940 1941 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1942 1943 if ((int) dw->dw_nunres == last) { 1944 fprintf(stderr, "%s: failed to resolve the following " 1945 "types:\n", progname); 1946 1947 (void) iitraverse_hash(dw->dw_td->td_iihash, 1948 &dw->dw_td->td_curvgen, NULL, NULL, 1949 die_fail_reporters, dw); 1950 1951 terminate("failed to resolve types\n"); 1952 } 1953 1954 last = dw->dw_nunres; 1955 1956 } while (dw->dw_nunres != 0); 1957 } 1958 1959 /* 1960 * Any object containing a function or object symbol at any scope should also 1961 * contain DWARF data. 1962 */ 1963 static boolean_t 1964 should_have_dwarf(Elf *elf) 1965 { 1966 Elf_Scn *scn = NULL; 1967 Elf_Data *data = NULL; 1968 GElf_Shdr shdr; 1969 GElf_Sym sym; 1970 uint32_t symdx = 0; 1971 size_t nsyms = 0; 1972 boolean_t found = B_FALSE; 1973 1974 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1975 gelf_getshdr(scn, &shdr); 1976 1977 if (shdr.sh_type == SHT_SYMTAB) { 1978 found = B_TRUE; 1979 break; 1980 } 1981 } 1982 1983 if (!found) 1984 terminate("cannot convert stripped objects\n"); 1985 1986 data = elf_getdata(scn, NULL); 1987 nsyms = shdr.sh_size / shdr.sh_entsize; 1988 1989 for (symdx = 0; symdx < nsyms; symdx++) { 1990 gelf_getsym(data, symdx, &sym); 1991 1992 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) || 1993 (GELF_ST_TYPE(sym.st_info) == STT_TLS) || 1994 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) { 1995 char *name; 1996 1997 name = elf_strptr(elf, shdr.sh_link, sym.st_name); 1998 1999 /* Studio emits these local symbols regardless */ 2000 if ((strcmp(name, "Bbss.bss") != 0) && 2001 (strcmp(name, "Ttbss.bss") != 0) && 2002 (strcmp(name, "Ddata.data") != 0) && 2003 (strcmp(name, "Ttdata.data") != 0) && 2004 (strcmp(name, "Drodata.rodata") != 0)) 2005 return (B_TRUE); 2006 } 2007 } 2008 2009 return (B_FALSE); 2010 } 2011 2012 /*ARGSUSED*/ 2013 int 2014 dw_read(tdata_t *td, Elf *elf, char *filename __unused) 2015 { 2016 Dwarf_Unsigned hdrlen, nxthdr; 2017 Dwarf_Off abboff; 2018 Dwarf_Half vers, addrsz, offsz; 2019 Dwarf_Die cu = 0; 2020 Dwarf_Die child = 0; 2021 dwarf_t dw; 2022 char *prod = NULL; 2023 int rc; 2024 2025 bzero(&dw, sizeof (dwarf_t)); 2026 dw.dw_td = td; 2027 dw.dw_ptrsz = elf_ptrsz(elf); 2028 dw.dw_mfgtid_last = TID_MFGTID_BASE; 2029 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 2030 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 2031 tdesc_namecmp); 2032 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 2033 tdesc_namecmp); 2034 2035 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 2036 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 2037 /* The new library does that */ 2038 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 2039 /* 2040 * There's no type data in the DWARF section, but 2041 * libdwarf is too clever to handle that properly. 2042 */ 2043 return (0); 2044 } 2045 if (should_have_dwarf(elf)) { 2046 errno = ENOENT; 2047 return (-1); 2048 } else { 2049 return (0); 2050 } 2051 } else if (rc != DW_DLV_OK) { 2052 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 2053 /* 2054 * There's no type data in the DWARF section, but 2055 * libdwarf is too clever to handle that properly. 2056 */ 2057 return (0); 2058 } 2059 2060 terminate("failed to initialize DWARF: %s\n", 2061 dwarf_errmsg(dw.dw_err)); 2062 } 2063 2064 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 2065 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) { 2066 if (dwarf_errno(dw.dw_err) == DW_DLE_NO_ENTRY) { 2067 /* 2068 * There's no DWARF section... 2069 */ 2070 return (0); 2071 } 2072 terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err)); 2073 } 2074 2075 if ((cu = die_sibling(&dw, NULL)) == NULL) 2076 goto out; 2077 2078 if ((child = die_child(&dw, cu)) == NULL) { 2079 Dwarf_Unsigned lang; 2080 if (die_unsigned(&dw, cu, DW_AT_language, &lang, 0)) { 2081 debug(1, "DWARF language: %ju\n", (uintmax_t)lang); 2082 /* 2083 * Assembly languages are typically that. 2084 * They have some dwarf info, but not what 2085 * we expect. They have local symbols for 2086 * example, but they are missing the child info. 2087 */ 2088 if (lang >= DW_LANG_lo_user) 2089 return 0; 2090 } 2091 if (should_have_dwarf(elf)) 2092 goto out; 2093 } 2094 2095 if (child == NULL) 2096 return (0); 2097 2098 dw.dw_maxoff = nxthdr - 1; 2099 2100 if (dw.dw_maxoff > TID_FILEMAX) 2101 terminate("file contains too many types\n"); 2102 2103 debug(1, "DWARF version: %d\n", vers); 2104 if (vers < 2 || vers > 4) { 2105 terminate("file contains incompatible version %d DWARF code " 2106 "(version 2, 3 or 4 required)\n", vers); 2107 } 2108 2109 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 2110 debug(1, "DWARF emitter: %s\n", prod); 2111 free(prod); 2112 } 2113 2114 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 2115 char *base = xstrdup(basename(dw.dw_cuname)); 2116 free(dw.dw_cuname); 2117 dw.dw_cuname = base; 2118 2119 debug(1, "CU name: %s\n", dw.dw_cuname); 2120 } 2121 2122 if ((child = die_child(&dw, cu)) != NULL) 2123 die_create(&dw, child); 2124 2125 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 2126 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 2127 terminate("multiple compilation units not supported\n"); 2128 2129 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 2130 2131 die_resolve(&dw); 2132 2133 cvt_fixups(td, dw.dw_ptrsz); 2134 2135 /* leak the dwarf_t */ 2136 2137 return (0); 2138 out: 2139 terminate("file does not contain dwarf type data " 2140 "(try compiling with -g)\n"); 2141 return -1; 2142 } 2143