1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DWARF to tdata conversion 28 * 29 * For the most part, conversion is straightforward, proceeding in two passes. 30 * On the first pass, we iterate through every die, creating new type nodes as 31 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 32 * allowing type reference pointers to be filled in. If the tdesc_t 33 * corresponding to a given die can be completely filled out (sizes and offsets 34 * calculated, and so forth) without using any referenced types, the tdesc_t is 35 * marked as resolved. Consider an array type. If the type corresponding to 36 * the array contents has not yet been processed, we will create a blank tdesc 37 * for the contents type (only the type ID will be filled in, relying upon the 38 * later portion of the first pass to encounter and complete the referenced 39 * type). We will then attempt to determine the size of the array. If the 40 * array has a byte size attribute, we will have completely characterized the 41 * array type, and will be able to mark it as resolved. The lack of a byte 42 * size attribute, on the other hand, will prevent us from fully resolving the 43 * type, as the size will only be calculable with reference to the contents 44 * type, which has not, as yet, been encountered. The array type will thus be 45 * left without the resolved flag, and the first pass will continue. 46 * 47 * When we begin the second pass, we will have created tdesc_t nodes for every 48 * type in the section. We will traverse the tree, from the iidescs down, 49 * processing each unresolved node. As the referenced nodes will have been 50 * populated, the array type used in our example above will be able to use the 51 * size of the referenced types (if available) to determine its own type. The 52 * traversal will be repeated until all types have been resolved or we have 53 * failed to make progress. When all tdescs have been resolved, the conversion 54 * is complete. 55 * 56 * There are, as always, a few special cases that are handled during the first 57 * and second passes: 58 * 59 * 1. Empty enums - GCC will occasionally emit an enum without any members. 60 * Later on in the file, it will emit the same enum type, though this time 61 * with the full complement of members. All references to the memberless 62 * enum need to be redirected to the full definition. During the first 63 * pass, each enum is entered in dm_enumhash, along with a pointer to its 64 * corresponding tdesc_t. If, during the second pass, we encounter a 65 * memberless enum, we use the hash to locate the full definition. All 66 * tdescs referencing the empty enum are then redirected. 67 * 68 * 2. Forward declarations - If the compiler sees a forward declaration for 69 * a structure, followed by the definition of that structure, it will emit 70 * DWARF data for both the forward declaration and the definition. We need 71 * to resolve the forward declarations when possible, by redirecting 72 * forward-referencing tdescs to the actual struct/union definitions. This 73 * redirection is done completely within the first pass. We begin by 74 * recording all forward declarations in dw_fwdhash. When we define a 75 * structure, we check to see if there have been any corresponding forward 76 * declarations. If so, we redirect the tdescs which referenced the forward 77 * declarations to the structure or union definition. 78 * 79 * XXX see if a post traverser will allow the elimination of repeated pass 2 80 * traversals. 81 */ 82 83 #if HAVE_NBTOOL_CONFIG_H 84 # include "nbtool_config.h" 85 #endif 86 87 #include <stdio.h> 88 #include <stdlib.h> 89 #include <string.h> 90 #include <strings.h> 91 #include <errno.h> 92 #include <libelf.h> 93 #include <libdwarf.h> 94 #include <libgen.h> 95 #include <dwarf.h> 96 97 #include "ctf_headers.h" 98 #include "ctftools.h" 99 #include "memory.h" 100 #include "list.h" 101 #include "traverse.h" 102 103 /* 104 * We need to define a couple of our own intrinsics, to smooth out some of the 105 * differences between the GCC and DevPro DWARF emitters. See the referenced 106 * routines and the special cases in the file comment for more details. 107 * 108 * Type IDs are 32 bits wide. We're going to use the top of that field to 109 * indicate types that we've created ourselves. 110 */ 111 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 112 #define TID_VOID 0x40000001 /* see die_void() */ 113 #define TID_LONG 0x40000002 /* see die_array() */ 114 115 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 116 117 /* 118 * To reduce the staggering amount of error-handling code that would otherwise 119 * be required, the attribute-retrieval routines handle most of their own 120 * errors. If the following flag is supplied as the value of the `req' 121 * argument, they will also handle the absence of a requested attribute by 122 * terminating the program. 123 */ 124 #define DW_ATTR_REQ 1 125 126 #define TDESC_HASH_BUCKETS 511 127 128 typedef struct dwarf { 129 Dwarf_Debug dw_dw; /* for libdwarf */ 130 Dwarf_Error dw_err; /* for libdwarf */ 131 Dwarf_Off dw_maxoff; /* highest legal offset in this cu */ 132 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 133 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 134 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 135 hash_t *dw_enumhash; /* hash of memberless enums by name */ 136 tdesc_t *dw_void; /* manufactured void type */ 137 tdesc_t *dw_long; /* manufactured long type for arrays */ 138 size_t dw_ptrsz; /* size of a pointer in this file */ 139 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 140 uint_t dw_nunres; /* count of unresolved types */ 141 char *dw_cuname; /* name of compilation unit */ 142 } dwarf_t; 143 144 static void die_create_one(dwarf_t *, Dwarf_Die); 145 static void die_create(dwarf_t *, Dwarf_Die); 146 147 static tid_t 148 mfgtid_next(dwarf_t *dw) 149 { 150 return (++dw->dw_mfgtid_last); 151 } 152 153 static void 154 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 155 { 156 hash_add(dw->dw_tidhash, tdp); 157 } 158 159 static tdesc_t * 160 tdesc_lookup(dwarf_t *dw, int tid) 161 { 162 tdesc_t tmpl; 163 void *tdp; 164 165 tmpl.t_id = tid; 166 167 if (hash_find(dw->dw_tidhash, &tmpl, &tdp)) 168 return (tdp); 169 else 170 return (NULL); 171 } 172 173 /* 174 * Resolve a tdesc down to a node which should have a size. Returns the size, 175 * zero if the size hasn't yet been determined. 176 */ 177 static size_t 178 tdesc_size(tdesc_t *tdp) 179 { 180 for (;;) { 181 switch (tdp->t_type) { 182 case INTRINSIC: 183 case POINTER: 184 case ARRAY: 185 case FUNCTION: 186 case STRUCT: 187 case UNION: 188 case ENUM: 189 return (tdp->t_size); 190 191 case FORWARD: 192 return (0); 193 194 case TYPEDEF: 195 case VOLATILE: 196 case CONST: 197 case RESTRICT: 198 tdp = tdp->t_tdesc; 199 continue; 200 201 case 0: /* not yet defined */ 202 return (0); 203 204 default: 205 terminate("tdp %u: tdesc_size on unknown type %d\n", 206 tdp->t_id, tdp->t_type); 207 } 208 } 209 } 210 211 static size_t 212 tdesc_bitsize(tdesc_t *tdp) 213 { 214 for (;;) { 215 switch (tdp->t_type) { 216 case INTRINSIC: 217 return (tdp->t_intr->intr_nbits); 218 219 case ARRAY: 220 case FUNCTION: 221 case STRUCT: 222 case UNION: 223 case ENUM: 224 case POINTER: 225 return (tdp->t_size * NBBY); 226 227 case FORWARD: 228 return (0); 229 230 case TYPEDEF: 231 case VOLATILE: 232 case RESTRICT: 233 case CONST: 234 tdp = tdp->t_tdesc; 235 continue; 236 237 case 0: /* not yet defined */ 238 return (0); 239 240 default: 241 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 242 tdp->t_id, tdp->t_type); 243 } 244 } 245 } 246 247 static tdesc_t * 248 tdesc_basetype(tdesc_t *tdp) 249 { 250 for (;;) { 251 switch (tdp->t_type) { 252 case TYPEDEF: 253 case VOLATILE: 254 case RESTRICT: 255 case CONST: 256 tdp = tdp->t_tdesc; 257 break; 258 case 0: /* not yet defined */ 259 return (NULL); 260 default: 261 return (tdp); 262 } 263 } 264 } 265 266 static Dwarf_Off 267 die_off(dwarf_t *dw, Dwarf_Die die) 268 { 269 Dwarf_Off off; 270 271 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 272 return (off); 273 274 terminate("failed to get offset for die: %s\n", 275 dwarf_errmsg(dw->dw_err)); 276 /*NOTREACHED*/ 277 return (0); 278 } 279 280 static Dwarf_Die 281 die_sibling(dwarf_t *dw, Dwarf_Die die) 282 { 283 Dwarf_Die sib; 284 int rc; 285 286 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 287 DW_DLV_OK) 288 return (sib); 289 else if (rc == DW_DLV_NO_ENTRY) 290 return (NULL); 291 292 terminate("die %llu: failed to find type sibling: %s\n", 293 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 294 /*NOTREACHED*/ 295 return (NULL); 296 } 297 298 static Dwarf_Die 299 die_child(dwarf_t *dw, Dwarf_Die die) 300 { 301 Dwarf_Die child; 302 int rc; 303 304 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 305 return (child); 306 else if (rc == DW_DLV_NO_ENTRY) 307 return (NULL); 308 309 terminate("die %llu: failed to find type child: %s\n", 310 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 311 /*NOTREACHED*/ 312 return (NULL); 313 } 314 315 static Dwarf_Half 316 die_tag(dwarf_t *dw, Dwarf_Die die) 317 { 318 Dwarf_Half tag; 319 320 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 321 return (tag); 322 323 terminate("die %llu: failed to get tag for type: %s\n", 324 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 325 /*NOTREACHED*/ 326 return (0); 327 } 328 329 static Dwarf_Attribute 330 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 331 { 332 Dwarf_Attribute attr; 333 int rc; 334 335 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 336 return (attr); 337 } else if (rc == DW_DLV_NO_ENTRY) { 338 if (req) { 339 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 340 name); 341 } else { 342 return (NULL); 343 } 344 } 345 346 terminate("die %llu: failed to get attribute for type: %s\n", 347 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 348 /*NOTREACHED*/ 349 return (NULL); 350 } 351 352 static int 353 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 354 int req) 355 { 356 *valp = 0; 357 if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 358 if (req) 359 terminate("die %llu: failed to get signed: %s\n", 360 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 361 return (0); 362 } 363 364 return (1); 365 } 366 367 static int 368 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 369 int req) 370 { 371 *valp = 0; 372 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 373 if (req) 374 terminate("die %llu: failed to get unsigned: %s\n", 375 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 376 return (0); 377 } 378 379 return (1); 380 } 381 382 static int 383 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 384 { 385 *valp = 0; 386 387 if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 388 if (req) 389 terminate("die %llu: failed to get flag: %s\n", 390 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 391 return (0); 392 } 393 394 return (1); 395 } 396 397 static int 398 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 399 { 400 const char *str = NULL; 401 402 if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK || 403 str == NULL) { 404 if (req) 405 terminate("die %llu: failed to get string: %s\n", 406 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 407 else 408 *strp = NULL; 409 return (0); 410 } else 411 *strp = xstrdup(str); 412 413 return (1); 414 } 415 416 static Dwarf_Off 417 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 418 { 419 Dwarf_Off off; 420 421 if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) { 422 terminate("die %llu: failed to get ref: %s\n", 423 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 424 } 425 426 return (off); 427 } 428 429 static char * 430 die_name(dwarf_t *dw, Dwarf_Die die) 431 { 432 char *str = NULL; 433 434 (void) die_string(dw, die, DW_AT_name, &str, 0); 435 if (str == NULL) 436 str = xstrdup(""); 437 438 return (str); 439 } 440 441 static int 442 die_isdecl(dwarf_t *dw, Dwarf_Die die) 443 { 444 Dwarf_Bool val; 445 446 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 447 } 448 449 static int 450 die_isglobal(dwarf_t *dw, Dwarf_Die die) 451 { 452 Dwarf_Signed vis; 453 Dwarf_Bool ext; 454 455 /* 456 * Some compilers (gcc) use DW_AT_external to indicate function 457 * visibility. Others (Sun) use DW_AT_visibility. 458 */ 459 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 460 return (vis == DW_VIS_exported); 461 else 462 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 463 } 464 465 static tdesc_t * 466 die_add(dwarf_t *dw, Dwarf_Off off) 467 { 468 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 469 470 tdp->t_id = off; 471 472 tdesc_add(dw, tdp); 473 474 return (tdp); 475 } 476 477 static tdesc_t * 478 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 479 { 480 Dwarf_Off ref = die_attr_ref(dw, die, name); 481 tdesc_t *tdp; 482 483 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 484 return (tdp); 485 486 return (die_add(dw, ref)); 487 } 488 489 static int 490 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 491 Dwarf_Unsigned *valp, int req __unused) 492 { 493 Dwarf_Locdesc *loc = NULL; 494 Dwarf_Signed locnum = 0; 495 Dwarf_Attribute at; 496 Dwarf_Half form; 497 498 if (name != DW_AT_data_member_location) 499 terminate("die %llu: can only process attribute " 500 "DW_AT_data_member_location\n", die_off(dw, die)); 501 502 if ((at = die_attr(dw, die, name, 0)) == NULL) 503 return (0); 504 505 if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK) 506 return (0); 507 508 switch (form) { 509 case DW_FORM_sec_offset: 510 case DW_FORM_block: 511 case DW_FORM_block1: 512 case DW_FORM_block2: 513 case DW_FORM_block4: 514 /* 515 * GCC in base and Clang (3.3 or below) generates 516 * DW_AT_data_member_location attribute with DW_FORM_block* 517 * form. The attribute contains one DW_OP_plus_uconst 518 * operator. The member offset stores in the operand. 519 */ 520 if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) 521 return (0); 522 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 523 terminate("die %llu: cannot parse member offset with " 524 "operator other than DW_OP_plus_uconst\n", 525 die_off(dw, die)); 526 } 527 *valp = loc->ld_s->lr_number; 528 if (loc != NULL) { 529 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 530 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 531 } 532 break; 533 534 case DW_FORM_data1: 535 case DW_FORM_data2: 536 case DW_FORM_data4: 537 case DW_FORM_data8: 538 case DW_FORM_udata: 539 /* 540 * Clang 3.4 generates DW_AT_data_member_location attribute 541 * with DW_FORM_data* form (constant class). The attribute 542 * stores a contant value which is the member offset. 543 * 544 * However, note that DW_FORM_data[48] in DWARF version 2 or 3 545 * could be used as a section offset (offset into .debug_loc in 546 * this case). Here we assume the attribute always stores a 547 * constant because we know Clang 3.4 does this and GCC in 548 * base won't emit DW_FORM_data[48] for this attribute. This 549 * code will remain correct if future vesrions of Clang and 550 * GCC conform to DWARF4 standard and only use the form 551 * DW_FORM_sec_offset for section offset. 552 */ 553 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != 554 DW_DLV_OK) 555 return (0); 556 break; 557 558 default: 559 terminate("die %llu: cannot parse member offset with form " 560 "%u\n", die_off(dw, die), form); 561 } 562 563 return (1); 564 } 565 566 static tdesc_t * 567 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 568 { 569 tdesc_t *tdp; 570 intr_t *intr; 571 572 intr = xcalloc(sizeof (intr_t)); 573 intr->intr_type = INTR_INT; 574 intr->intr_signed = 1; 575 intr->intr_nbits = sz * NBBY; 576 577 tdp = xcalloc(sizeof (tdesc_t)); 578 tdp->t_name = xstrdup(name); 579 tdp->t_size = sz; 580 tdp->t_id = tid; 581 tdp->t_type = INTRINSIC; 582 tdp->t_intr = intr; 583 tdp->t_flags = TDESC_F_RESOLVED; 584 585 tdesc_add(dw, tdp); 586 587 return (tdp); 588 } 589 590 /* 591 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 592 * type reference implies a reference to a void type. A void *, for example 593 * will be represented by a pointer die without a DW_AT_type. CTF requires 594 * that pointer nodes point to something, so we'll create a void for use as 595 * the target. Note that the DWARF data may already create a void type. Ours 596 * would then be a duplicate, but it'll be removed in the self-uniquification 597 * merge performed at the completion of DWARF->tdesc conversion. 598 */ 599 static tdesc_t * 600 tdesc_intr_void(dwarf_t *dw) 601 { 602 if (dw->dw_void == NULL) 603 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 604 605 return (dw->dw_void); 606 } 607 608 static tdesc_t * 609 tdesc_intr_long(dwarf_t *dw) 610 { 611 if (dw->dw_long == NULL) { 612 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 613 dw->dw_ptrsz); 614 } 615 616 return (dw->dw_long); 617 } 618 619 /* 620 * Used for creating bitfield types. We create a copy of an existing intrinsic, 621 * adjusting the size of the copy to match what the caller requested. The 622 * caller can then use the copy as the type for a bitfield structure member. 623 */ 624 static tdesc_t * 625 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 626 { 627 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 628 629 if (!(old->t_flags & TDESC_F_RESOLVED)) { 630 terminate("tdp %u: attempt to make a bit field from an " 631 "unresolved type\n", old->t_id); 632 } 633 634 new->t_name = xstrdup(old->t_name); 635 new->t_size = old->t_size; 636 new->t_id = mfgtid_next(dw); 637 new->t_type = INTRINSIC; 638 new->t_flags = TDESC_F_RESOLVED; 639 640 new->t_intr = xcalloc(sizeof (intr_t)); 641 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 642 new->t_intr->intr_nbits = bitsz; 643 644 tdesc_add(dw, new); 645 646 return (new); 647 } 648 649 static void 650 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 651 tdesc_t *dimtdp) 652 { 653 Dwarf_Unsigned uval; 654 Dwarf_Signed sval; 655 tdesc_t *ctdp = NULL; 656 Dwarf_Die dim2; 657 ardef_t *ar; 658 659 if ((dim2 = die_sibling(dw, dim)) == NULL) { 660 ctdp = arrtdp; 661 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 662 ctdp = xcalloc(sizeof (tdesc_t)); 663 ctdp->t_id = mfgtid_next(dw); 664 debug(3, "die %llu: creating new type %u for sub-dimension\n", 665 die_off(dw, dim2), ctdp->t_id); 666 tdesc_array_create(dw, dim2, arrtdp, ctdp); 667 } else { 668 terminate("die %llu: unexpected non-subrange node in array\n", 669 die_off(dw, dim2)); 670 } 671 672 dimtdp->t_type = ARRAY; 673 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 674 675 /* 676 * Array bounds can be signed or unsigned, but there are several kinds 677 * of signless forms (data1, data2, etc) that take their sign from the 678 * routine that is trying to interpret them. That is, data1 can be 679 * either signed or unsigned, depending on whether you use the signed or 680 * unsigned accessor function. GCC will use the signless forms to store 681 * unsigned values which have their high bit set, so we need to try to 682 * read them first as unsigned to get positive values. We could also 683 * try signed first, falling back to unsigned if we got a negative 684 * value. 685 */ 686 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 687 ar->ad_nelems = uval + 1; 688 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 689 ar->ad_nelems = sval + 1; 690 else 691 ar->ad_nelems = 0; 692 693 /* 694 * Different compilers use different index types. Force the type to be 695 * a common, known value (long). 696 */ 697 ar->ad_idxtype = tdesc_intr_long(dw); 698 ar->ad_contents = ctdp; 699 700 if (ar->ad_contents->t_size != 0) { 701 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 702 dimtdp->t_flags |= TDESC_F_RESOLVED; 703 } 704 } 705 706 /* 707 * Create a tdesc from an array node. Some arrays will come with byte size 708 * attributes, and thus can be resolved immediately. Others don't, and will 709 * need to wait until the second pass for resolution. 710 */ 711 static void 712 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 713 { 714 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 715 Dwarf_Unsigned uval; 716 Dwarf_Die dim; 717 718 debug(3, "die %llu <%llx>: creating array\n", off, off); 719 720 if ((dim = die_child(dw, arr)) == NULL || 721 die_tag(dw, dim) != DW_TAG_subrange_type) 722 terminate("die %llu: failed to retrieve array bounds\n", off); 723 724 tdesc_array_create(dw, dim, arrtdp, tdp); 725 726 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 727 tdesc_t *dimtdp; 728 int flags; 729 730 /* Check for bogus gcc DW_AT_byte_size attribute */ 731 if (uval == (unsigned)-1) { 732 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 733 __func__); 734 uval = 0; 735 } 736 737 tdp->t_size = uval; 738 739 /* 740 * Ensure that sub-dimensions have sizes too before marking 741 * as resolved. 742 */ 743 flags = TDESC_F_RESOLVED; 744 for (dimtdp = tdp->t_ardef->ad_contents; 745 dimtdp->t_type == ARRAY; 746 dimtdp = dimtdp->t_ardef->ad_contents) { 747 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 748 flags = 0; 749 break; 750 } 751 } 752 753 tdp->t_flags |= flags; 754 } 755 756 debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off, 757 tdp->t_ardef->ad_nelems, tdp->t_size); 758 } 759 760 /*ARGSUSED1*/ 761 static int 762 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 763 { 764 dwarf_t *dw = private; 765 size_t sz; 766 767 if (tdp->t_flags & TDESC_F_RESOLVED) 768 return (1); 769 770 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 771 tdp->t_ardef->ad_contents->t_id); 772 773 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) { 774 debug(3, "unable to resolve array %s (%d) contents %d\n", 775 tdesc_name(tdp), tdp->t_id, 776 tdp->t_ardef->ad_contents->t_id); 777 778 dw->dw_nunres++; 779 return (1); 780 } 781 782 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 783 tdp->t_flags |= TDESC_F_RESOLVED; 784 785 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 786 787 return (1); 788 } 789 790 /*ARGSUSED1*/ 791 static int 792 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 793 { 794 tdesc_t *cont = tdp->t_ardef->ad_contents; 795 796 if (tdp->t_flags & TDESC_F_RESOLVED) 797 return (1); 798 799 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 800 tdp->t_id, tdesc_name(cont), cont->t_id); 801 802 return (1); 803 } 804 805 /* 806 * Most enums (those with members) will be resolved during this first pass. 807 * Others - those without members (see the file comment) - won't be, and will 808 * need to wait until the second pass when they can be matched with their full 809 * definitions. 810 */ 811 static void 812 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 813 { 814 Dwarf_Die mem; 815 Dwarf_Unsigned uval; 816 Dwarf_Signed sval; 817 818 debug(3, "die %llu: creating enum\n", off); 819 820 tdp->t_type = (die_isdecl(dw, die) ? FORWARD : ENUM); 821 if (tdp->t_type != ENUM) 822 return; 823 824 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 825 /* Check for bogus gcc DW_AT_byte_size attribute */ 826 if (uval == (unsigned)-1) { 827 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 828 __func__); 829 uval = 0; 830 } 831 tdp->t_size = uval; 832 833 if ((mem = die_child(dw, die)) != NULL) { 834 elist_t **elastp = &tdp->t_emem; 835 836 do { 837 elist_t *el; 838 839 if (die_tag(dw, mem) != DW_TAG_enumerator) { 840 /* Nested type declaration */ 841 die_create_one(dw, mem); 842 continue; 843 } 844 845 el = xcalloc(sizeof (elist_t)); 846 el->el_name = die_name(dw, mem); 847 848 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 849 el->el_number = sval; 850 } else if (die_unsigned(dw, mem, DW_AT_const_value, 851 &uval, 0)) { 852 el->el_number = uval; 853 } else { 854 terminate("die %llu: enum %llu: member without " 855 "value\n", off, die_off(dw, mem)); 856 } 857 858 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 859 die_off(dw, mem), el->el_name, el->el_number); 860 861 *elastp = el; 862 elastp = &el->el_next; 863 864 } while ((mem = die_sibling(dw, mem)) != NULL); 865 866 hash_add(dw->dw_enumhash, tdp); 867 868 tdp->t_flags |= TDESC_F_RESOLVED; 869 870 if (tdp->t_name != NULL) { 871 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 872 ii->ii_type = II_SOU; 873 ii->ii_name = xstrdup(tdp->t_name); 874 ii->ii_dtype = tdp; 875 876 iidesc_add(dw->dw_td->td_iihash, ii); 877 } 878 } 879 } 880 881 static int 882 die_enum_match(void *arg1, void *arg2) 883 { 884 tdesc_t *tdp = arg1, **fullp = arg2; 885 886 if (tdp->t_emem != NULL) { 887 *fullp = tdp; 888 return (-1); /* stop the iteration */ 889 } 890 891 return (0); 892 } 893 894 /*ARGSUSED1*/ 895 static int 896 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 897 { 898 dwarf_t *dw = private; 899 tdesc_t *full = NULL; 900 901 if (tdp->t_flags & TDESC_F_RESOLVED) 902 return (1); 903 904 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 905 906 /* 907 * The answer to this one won't change from iteration to iteration, 908 * so don't even try. 909 */ 910 if (full == NULL) { 911 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 912 tdesc_name(tdp)); 913 } 914 915 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 916 tdesc_name(tdp), full->t_id); 917 918 tdp->t_flags |= TDESC_F_RESOLVED; 919 920 return (1); 921 } 922 923 static int 924 die_fwd_map(void *arg1, void *arg2) 925 { 926 tdesc_t *fwd = arg1, *sou = arg2; 927 928 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 929 tdesc_name(fwd), sou->t_id); 930 fwd->t_tdesc = sou; 931 932 return (0); 933 } 934 935 /* 936 * Structures and unions will never be resolved during the first pass, as we 937 * won't be able to fully determine the member sizes. The second pass, which 938 * have access to sizing information, will be able to complete the resolution. 939 */ 940 static void 941 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 942 int type, const char *typename) 943 { 944 Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0; 945 #if BYTE_ORDER == _LITTLE_ENDIAN 946 Dwarf_Unsigned bysz; 947 #endif 948 Dwarf_Die mem; 949 mlist_t *ml, **mlastp; 950 iidesc_t *ii; 951 952 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 953 954 debug(3, "die %llu: creating %s %s\n", off, 955 (tdp->t_type == FORWARD ? "forward decl" : typename), 956 tdesc_name(tdp)); 957 958 if (tdp->t_type == FORWARD) { 959 hash_add(dw->dw_fwdhash, tdp); 960 return; 961 } 962 963 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 964 965 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 966 tdp->t_size = sz; 967 968 /* 969 * GCC allows empty SOUs as an extension. 970 */ 971 if ((mem = die_child(dw, str)) == NULL) { 972 goto out; 973 } 974 975 mlastp = &tdp->t_members; 976 977 do { 978 Dwarf_Off memoff = die_off(dw, mem); 979 Dwarf_Half tag = die_tag(dw, mem); 980 Dwarf_Unsigned mloff; 981 982 if (tag != DW_TAG_member) { 983 /* Nested type declaration */ 984 die_create_one(dw, mem); 985 continue; 986 } 987 988 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 989 990 ml = xcalloc(sizeof (mlist_t)); 991 992 /* 993 * This could be a GCC anon struct/union member, so we'll allow 994 * an empty name, even though nothing can really handle them 995 * properly. Note that some versions of GCC miss out debug 996 * info for anon structs, though recent versions are fixed (gcc 997 * bug 11816). 998 */ 999 if ((ml->ml_name = die_name(dw, mem)) == NULL) 1000 ml->ml_name = NULL; 1001 1002 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 1003 debug(3, "die_sou_create(): ml_type = %p t_id = %d\n", 1004 ml->ml_type, ml->ml_type->t_id); 1005 1006 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 1007 &mloff, 0)) { 1008 debug(3, "die %llu: got mloff %llx\n", off, 1009 (u_longlong_t)mloff); 1010 ml->ml_offset = mloff * 8; 1011 } 1012 1013 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 1014 ml->ml_size = bitsz; 1015 else 1016 ml->ml_size = tdesc_bitsize(ml->ml_type); 1017 1018 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 1019 #if BYTE_ORDER == _BIG_ENDIAN 1020 ml->ml_offset += bitoff; 1021 #else 1022 /* 1023 * Note that Clang 3.4 will sometimes generate 1024 * member DIE before generating the DIE for the 1025 * member's type. The code can not handle this 1026 * properly so that tdesc_bitsize(ml->ml_type) will 1027 * return 0 because ml->ml_type is unknown. As a 1028 * result, a wrong member offset will be calculated. 1029 * To workaround this, we can instead try to 1030 * retrieve the value of DW_AT_byte_size attribute 1031 * which stores the byte size of the space occupied 1032 * by the type. If this attribute exists, its value 1033 * should equal to tdesc_bitsize(ml->ml_type)/NBBY. 1034 */ 1035 if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) && 1036 bysz > 0) 1037 ml->ml_offset += bysz * NBBY - bitoff - 1038 ml->ml_size; 1039 else 1040 ml->ml_offset += tdesc_bitsize(ml->ml_type) - 1041 bitoff - ml->ml_size; 1042 #endif 1043 } 1044 1045 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n", 1046 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 1047 1048 *mlastp = ml; 1049 mlastp = &ml->ml_next; 1050 1051 /* Find the size of the largest member to work around a gcc 1052 * bug. See GCC Bugzilla 35998. 1053 */ 1054 if (maxsz < ml->ml_size) 1055 maxsz = ml->ml_size; 1056 1057 } while ((mem = die_sibling(dw, mem)) != NULL); 1058 1059 /* See if we got a bogus DW_AT_byte_size. GCC will sometimes 1060 * emit this. 1061 */ 1062 if (sz == (unsigned)-1) { 1063 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1064 __func__); 1065 tdp->t_size = maxsz / 8; /* maxsz is in bits, t_size is bytes */ 1066 } 1067 1068 /* 1069 * GCC will attempt to eliminate unused types, thus decreasing the 1070 * size of the emitted dwarf. That is, if you declare a foo_t in your 1071 * header, include said header in your source file, and neglect to 1072 * actually use (directly or indirectly) the foo_t in the source file, 1073 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1074 * the theory. 1075 * 1076 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1077 * and then neglect to emit the members. Strangely, the loner struct 1078 * tag will always be followed by a proper nested declaration of 1079 * something else. This is clearly a bug, but we're not going to have 1080 * time to get it fixed before this goo goes back, so we'll have to work 1081 * around it. If we see a no-membered struct with a nested declaration 1082 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1083 * Being paranoid, we won't simply remove it from the hash. Instead, 1084 * we'll decline to create an iidesc for it, thus ensuring that this 1085 * type won't make it into the output file. To be safe, we'll also 1086 * change the name. 1087 */ 1088 if (tdp->t_members == NULL) { 1089 const char *old = tdesc_name(tdp); 1090 size_t newsz = 7 + strlen(old) + 1; 1091 char *new = xmalloc(newsz); 1092 (void) snprintf(new, newsz, "orphan %s", old); 1093 1094 debug(3, "die %llu: worked around %s %s\n", off, typename, old); 1095 1096 if (tdp->t_name != NULL) 1097 free(tdp->t_name); 1098 tdp->t_name = new; 1099 return; 1100 } 1101 1102 out: 1103 if (tdp->t_name != NULL) { 1104 ii = xcalloc(sizeof (iidesc_t)); 1105 ii->ii_type = II_SOU; 1106 ii->ii_name = xstrdup(tdp->t_name); 1107 ii->ii_dtype = tdp; 1108 1109 iidesc_add(dw->dw_td->td_iihash, ii); 1110 } 1111 } 1112 1113 static void 1114 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1115 { 1116 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1117 } 1118 1119 static void 1120 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1121 { 1122 die_sou_create(dw, die, off, tdp, UNION, "union"); 1123 } 1124 1125 /*ARGSUSED1*/ 1126 static int 1127 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 1128 { 1129 dwarf_t *dw = private; 1130 mlist_t *ml; 1131 tdesc_t *mt; 1132 1133 if (tdp->t_flags & TDESC_F_RESOLVED) 1134 return (1); 1135 1136 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1137 1138 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1139 if (ml->ml_size == 0) { 1140 mt = tdesc_basetype(ml->ml_type); 1141 1142 if (mt == NULL) 1143 continue; 1144 1145 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1146 continue; 1147 1148 /* 1149 * For empty members, or GCC/C99 flexible array 1150 * members, a size of 0 is correct. 1151 */ 1152 if (mt->t_members == NULL) 1153 continue; 1154 if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0) 1155 continue; 1156 1157 if (mt->t_type == STRUCT && 1158 mt->t_members != NULL && 1159 mt->t_members->ml_type->t_type == ARRAY && 1160 mt->t_members->ml_type->t_ardef->ad_nelems == 0) { 1161 /* struct with zero sized array */ 1162 continue; 1163 } 1164 1165 printf("%s unresolved type = %d (%s)\n", tdesc_name(tdp), 1166 mt->t_type, tdesc_name(mt)); 1167 dw->dw_nunres++; 1168 return (1); 1169 } 1170 1171 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1172 dw->dw_nunres++; 1173 return (1); 1174 } 1175 1176 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1177 mt->t_intr->intr_nbits != (int)ml->ml_size) { 1178 /* 1179 * This member is a bitfield, and needs to reference 1180 * an intrinsic type with the same width. If the 1181 * currently-referenced type isn't of the same width, 1182 * we'll copy it, adjusting the width of the copy to 1183 * the size we'd like. 1184 */ 1185 debug(3, "tdp %u: creating bitfield for %d bits\n", 1186 tdp->t_id, ml->ml_size); 1187 1188 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1189 } 1190 } 1191 1192 tdp->t_flags |= TDESC_F_RESOLVED; 1193 1194 return (1); 1195 } 1196 1197 /*ARGSUSED1*/ 1198 static int 1199 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 1200 { 1201 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1202 mlist_t *ml; 1203 1204 if (tdp->t_flags & TDESC_F_RESOLVED) 1205 return (1); 1206 1207 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1208 if (ml->ml_size == 0) { 1209 fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" " 1210 "of type %s (%d <%x>)\n", typename, tdp->t_id, 1211 tdp->t_id, 1212 ml->ml_name, tdesc_name(ml->ml_type), 1213 ml->ml_type->t_id, ml->ml_type->t_id); 1214 } 1215 } 1216 1217 return (1); 1218 } 1219 1220 static void 1221 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1222 { 1223 Dwarf_Attribute attr; 1224 Dwarf_Half tag; 1225 Dwarf_Die arg; 1226 fndef_t *fn; 1227 int i; 1228 1229 debug(3, "die %llu <%llx>: creating function pointer\n", off, off); 1230 1231 /* 1232 * We'll begin by processing any type definition nodes that may be 1233 * lurking underneath this one. 1234 */ 1235 for (arg = die_child(dw, die); arg != NULL; 1236 arg = die_sibling(dw, arg)) { 1237 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1238 tag != DW_TAG_unspecified_parameters) { 1239 /* Nested type declaration */ 1240 die_create_one(dw, arg); 1241 } 1242 } 1243 1244 if (die_isdecl(dw, die)) { 1245 /* 1246 * This is a prototype. We don't add prototypes to the 1247 * tree, so we're going to drop the tdesc. Unfortunately, 1248 * it has already been added to the tree. Nobody will reference 1249 * it, though, and it will be leaked. 1250 */ 1251 return; 1252 } 1253 1254 fn = xcalloc(sizeof (fndef_t)); 1255 1256 tdp->t_type = FUNCTION; 1257 1258 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1259 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1260 } else { 1261 fn->fn_ret = tdesc_intr_void(dw); 1262 } 1263 1264 /* 1265 * Count the arguments to the function, then read them in. 1266 */ 1267 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1268 arg = die_sibling(dw, arg)) { 1269 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1270 fn->fn_nargs++; 1271 else if (tag == DW_TAG_unspecified_parameters && 1272 fn->fn_nargs > 0) 1273 fn->fn_vargs = 1; 1274 } 1275 1276 if (fn->fn_nargs != 0) { 1277 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1278 (fn->fn_nargs > 1 ? "s" : "")); 1279 1280 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1281 for (i = 0, arg = die_child(dw, die); 1282 arg != NULL && i < (int) fn->fn_nargs; 1283 arg = die_sibling(dw, arg)) { 1284 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1285 continue; 1286 1287 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1288 DW_AT_type); 1289 } 1290 } 1291 1292 tdp->t_fndef = fn; 1293 tdp->t_flags |= TDESC_F_RESOLVED; 1294 } 1295 1296 /* 1297 * GCC and DevPro use different names for the base types. While the terms are 1298 * the same, they are arranged in a different order. Some terms, such as int, 1299 * are implied in one, and explicitly named in the other. Given a base type 1300 * as input, this routine will return a common name, along with an intr_t 1301 * that reflects said name. 1302 */ 1303 static intr_t * 1304 die_base_name_parse(const char *name, char **newp) 1305 { 1306 char buf[100]; 1307 char const *base; 1308 char *c; 1309 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1310 int sign = 1; 1311 char fmt = '\0'; 1312 intr_t *intr; 1313 1314 if (strlen(name) > sizeof (buf) - 1) 1315 terminate("base type name \"%s\" is too long\n", name); 1316 1317 strncpy(buf, name, sizeof (buf)); 1318 1319 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1320 if (strcmp(c, "signed") == 0) 1321 sign = 1; 1322 else if (strcmp(c, "unsigned") == 0) 1323 sign = 0; 1324 else if (strcmp(c, "long") == 0) 1325 nlong++; 1326 else if (strcmp(c, "char") == 0) { 1327 nchar++; 1328 fmt = 'c'; 1329 } else if (strcmp(c, "short") == 0) 1330 nshort++; 1331 else if (strcmp(c, "int") == 0) 1332 nint++; 1333 else { 1334 /* 1335 * If we don't recognize any of the tokens, we'll tell 1336 * the caller to fall back to the dwarf-provided 1337 * encoding information. 1338 */ 1339 return (NULL); 1340 } 1341 } 1342 1343 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1344 return (NULL); 1345 1346 if (nchar > 0) { 1347 if (nlong > 0 || nshort > 0 || nint > 0) 1348 return (NULL); 1349 1350 base = "char"; 1351 1352 } else if (nshort > 0) { 1353 if (nlong > 0) 1354 return (NULL); 1355 1356 base = "short"; 1357 1358 } else if (nlong > 0) { 1359 base = "long"; 1360 1361 } else { 1362 base = "int"; 1363 } 1364 1365 intr = xcalloc(sizeof (intr_t)); 1366 intr->intr_type = INTR_INT; 1367 intr->intr_signed = sign; 1368 intr->intr_iformat = fmt; 1369 1370 snprintf(buf, sizeof (buf), "%s%s%s", 1371 (sign ? "" : "unsigned "), 1372 (nlong > 1 ? "long " : ""), 1373 base); 1374 1375 *newp = xstrdup(buf); 1376 return (intr); 1377 } 1378 1379 typedef struct fp_size_map { 1380 size_t fsm_typesz[2]; /* size of {32,64} type */ 1381 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1382 } fp_size_map_t; 1383 1384 static const fp_size_map_t fp_encodings[] = { 1385 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1386 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1387 #ifdef __sparc 1388 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1389 #else 1390 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1391 #endif 1392 { { 0, 0 }, { 0, 0, 0 } } 1393 }; 1394 1395 static uint_t 1396 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1397 { 1398 const fp_size_map_t *map = fp_encodings; 1399 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1400 uint_t mult = 1, col = 0; 1401 1402 if (enc == DW_ATE_complex_float) { 1403 mult = 2; 1404 col = 1; 1405 } else if (enc == DW_ATE_imaginary_float 1406 #if defined(sun) 1407 || enc == DW_ATE_SUN_imaginary_float 1408 #endif 1409 ) 1410 col = 2; 1411 1412 while (map->fsm_typesz[szidx] != 0) { 1413 if (map->fsm_typesz[szidx] * mult == sz) 1414 return (map->fsm_enc[col]); 1415 map++; 1416 } 1417 1418 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1419 /*NOTREACHED*/ 1420 return (0); 1421 } 1422 1423 static intr_t * 1424 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1425 { 1426 intr_t *intr = xcalloc(sizeof (intr_t)); 1427 Dwarf_Signed enc; 1428 1429 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1430 1431 switch (enc) { 1432 case DW_ATE_unsigned: 1433 case DW_ATE_address: 1434 intr->intr_type = INTR_INT; 1435 break; 1436 case DW_ATE_unsigned_char: 1437 intr->intr_type = INTR_INT; 1438 intr->intr_iformat = 'c'; 1439 break; 1440 case DW_ATE_signed: 1441 intr->intr_type = INTR_INT; 1442 intr->intr_signed = 1; 1443 break; 1444 case DW_ATE_signed_char: 1445 intr->intr_type = INTR_INT; 1446 intr->intr_signed = 1; 1447 intr->intr_iformat = 'c'; 1448 break; 1449 case DW_ATE_boolean: 1450 intr->intr_type = INTR_INT; 1451 intr->intr_signed = 1; 1452 intr->intr_iformat = 'b'; 1453 break; 1454 case DW_ATE_float: 1455 case DW_ATE_complex_float: 1456 case DW_ATE_imaginary_float: 1457 #if defined(sun) 1458 case DW_ATE_SUN_imaginary_float: 1459 case DW_ATE_SUN_interval_float: 1460 #endif 1461 intr->intr_type = INTR_REAL; 1462 intr->intr_signed = 1; 1463 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1464 break; 1465 default: 1466 terminate("die %llu: unknown base type encoding 0x%llx\n", 1467 off, enc); 1468 } 1469 1470 return (intr); 1471 } 1472 1473 static void 1474 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1475 { 1476 Dwarf_Unsigned sz; 1477 intr_t *intr; 1478 char *new; 1479 1480 debug(3, "die %llu: creating base type\n", off); 1481 1482 /* 1483 * The compilers have their own clever (internally inconsistent) ideas 1484 * as to what base types should look like. Some times gcc will, for 1485 * example, use DW_ATE_signed_char for char. Other times, however, it 1486 * will use DW_ATE_signed. Needless to say, this causes some problems 1487 * down the road, particularly with merging. We do, however, use the 1488 * DWARF idea of type sizes, as this allows us to avoid caring about 1489 * the data model. 1490 */ 1491 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1492 1493 /* Check for bogus gcc DW_AT_byte_size attribute */ 1494 if (sz == (unsigned)-1) { 1495 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1496 __func__); 1497 sz = 0; 1498 } 1499 1500 if (tdp->t_name == NULL) 1501 terminate("die %llu: base type without name\n", off); 1502 1503 /* XXX make a name parser for float too */ 1504 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1505 /* Found it. We'll use the parsed version */ 1506 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1507 tdesc_name(tdp), new); 1508 1509 free(tdp->t_name); 1510 tdp->t_name = new; 1511 } else { 1512 /* 1513 * We didn't recognize the type, so we'll create an intr_t 1514 * based on the DWARF data. 1515 */ 1516 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1517 tdesc_name(tdp)); 1518 1519 intr = die_base_from_dwarf(dw, base, off, sz); 1520 } 1521 1522 intr->intr_nbits = sz * 8; 1523 1524 tdp->t_type = INTRINSIC; 1525 tdp->t_intr = intr; 1526 tdp->t_size = sz; 1527 1528 tdp->t_flags |= TDESC_F_RESOLVED; 1529 } 1530 1531 static void 1532 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1533 int type, const char *typename) 1534 { 1535 Dwarf_Attribute attr; 1536 1537 debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type); 1538 1539 tdp->t_type = type; 1540 1541 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1542 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1543 } else { 1544 tdp->t_tdesc = tdesc_intr_void(dw); 1545 } 1546 1547 if (type == POINTER) 1548 tdp->t_size = dw->dw_ptrsz; 1549 1550 tdp->t_flags |= TDESC_F_RESOLVED; 1551 1552 if (type == TYPEDEF) { 1553 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1554 ii->ii_type = II_TYPE; 1555 ii->ii_name = xstrdup(tdp->t_name); 1556 ii->ii_dtype = tdp; 1557 1558 iidesc_add(dw->dw_td->td_iihash, ii); 1559 } 1560 } 1561 1562 static void 1563 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1564 { 1565 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1566 } 1567 1568 static void 1569 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1570 { 1571 die_through_create(dw, die, off, tdp, CONST, "const"); 1572 } 1573 1574 static void 1575 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1576 { 1577 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1578 } 1579 1580 static void 1581 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1582 { 1583 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1584 } 1585 1586 static void 1587 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1588 { 1589 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1590 } 1591 1592 /*ARGSUSED3*/ 1593 static void 1594 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1595 { 1596 Dwarf_Die arg; 1597 Dwarf_Half tag; 1598 iidesc_t *ii; 1599 char *name; 1600 1601 debug(3, "die %llu <%llx>: creating function definition\n", off, off); 1602 1603 /* 1604 * We'll begin by processing any type definition nodes that may be 1605 * lurking underneath this one. 1606 */ 1607 for (arg = die_child(dw, die); arg != NULL; 1608 arg = die_sibling(dw, arg)) { 1609 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1610 tag != DW_TAG_variable) { 1611 /* Nested type declaration */ 1612 die_create_one(dw, arg); 1613 } 1614 } 1615 1616 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1617 /* 1618 * We process neither prototypes nor subprograms without 1619 * names. 1620 */ 1621 return; 1622 } 1623 1624 ii = xcalloc(sizeof (iidesc_t)); 1625 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1626 ii->ii_name = name; 1627 if (ii->ii_type == II_SFUN) 1628 ii->ii_owner = xstrdup(dw->dw_cuname); 1629 1630 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1631 (ii->ii_type == II_GFUN ? "global" : "static")); 1632 1633 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1634 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1635 else 1636 ii->ii_dtype = tdesc_intr_void(dw); 1637 1638 for (arg = die_child(dw, die); arg != NULL; 1639 arg = die_sibling(dw, arg)) { 1640 char *name1; 1641 1642 debug(3, "die %llu: looking at sub member at %llu\n", 1643 off, die_off(dw, die)); 1644 1645 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1646 continue; 1647 1648 if ((name1 = die_name(dw, arg)) == NULL) { 1649 terminate("die %llu: func arg %d has no name\n", 1650 off, ii->ii_nargs + 1); 1651 } 1652 1653 if (strcmp(name1, "...") == 0) { 1654 free(name1); 1655 ii->ii_vargs = 1; 1656 continue; 1657 } 1658 1659 ii->ii_nargs++; 1660 } 1661 1662 if (ii->ii_nargs > 0) { 1663 int i; 1664 1665 debug(3, "die %llu: function has %d argument%s\n", off, 1666 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1667 1668 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1669 1670 for (arg = die_child(dw, die), i = 0; 1671 arg != NULL && i < ii->ii_nargs; 1672 arg = die_sibling(dw, arg)) { 1673 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1674 continue; 1675 1676 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1677 DW_AT_type); 1678 } 1679 } 1680 1681 iidesc_add(dw->dw_td->td_iihash, ii); 1682 } 1683 1684 /*ARGSUSED3*/ 1685 static void 1686 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1687 { 1688 iidesc_t *ii; 1689 char *name; 1690 1691 debug(3, "die %llu: creating object definition\n", off); 1692 1693 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1694 return; /* skip prototypes and nameless objects */ 1695 1696 ii = xcalloc(sizeof (iidesc_t)); 1697 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1698 ii->ii_name = name; 1699 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1700 if (ii->ii_type == II_SVAR) 1701 ii->ii_owner = xstrdup(dw->dw_cuname); 1702 1703 iidesc_add(dw->dw_td->td_iihash, ii); 1704 } 1705 1706 /*ARGSUSED2*/ 1707 static int 1708 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused) 1709 { 1710 if (fwd->t_flags & TDESC_F_RESOLVED) 1711 return (1); 1712 1713 if (fwd->t_tdesc != NULL) { 1714 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1715 tdesc_name(fwd)); 1716 *fwdp = fwd->t_tdesc; 1717 } 1718 1719 fwd->t_flags |= TDESC_F_RESOLVED; 1720 1721 return (1); 1722 } 1723 1724 /*ARGSUSED*/ 1725 static void 1726 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused) 1727 { 1728 Dwarf_Die child = die_child(dw, die); 1729 1730 if (child != NULL) 1731 die_create(dw, child); 1732 } 1733 1734 /* 1735 * Used to map the die to a routine which can parse it, using the tag to do the 1736 * mapping. While the processing of most tags entails the creation of a tdesc, 1737 * there are a few which don't - primarily those which result in the creation of 1738 * iidescs which refer to existing tdescs. 1739 */ 1740 1741 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1742 1743 typedef struct die_creator { 1744 Dwarf_Half dc_tag; 1745 uint16_t dc_flags; 1746 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1747 } die_creator_t; 1748 1749 static const die_creator_t die_creators[] = { 1750 { DW_TAG_array_type, 0, die_array_create }, 1751 { DW_TAG_enumeration_type, 0, die_enum_create }, 1752 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1753 { DW_TAG_pointer_type, 0, die_pointer_create }, 1754 { DW_TAG_structure_type, 0, die_struct_create }, 1755 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1756 { DW_TAG_typedef, 0, die_typedef_create }, 1757 { DW_TAG_union_type, 0, die_union_create }, 1758 { DW_TAG_base_type, 0, die_base_create }, 1759 { DW_TAG_const_type, 0, die_const_create }, 1760 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1761 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1762 { DW_TAG_volatile_type, 0, die_volatile_create }, 1763 { DW_TAG_restrict_type, 0, die_restrict_create }, 1764 { 0, 0, NULL } 1765 }; 1766 1767 static const die_creator_t * 1768 die_tag2ctor(Dwarf_Half tag) 1769 { 1770 const die_creator_t *dc; 1771 1772 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1773 if (dc->dc_tag == tag) 1774 return (dc); 1775 } 1776 1777 return (NULL); 1778 } 1779 1780 static void 1781 die_create_one(dwarf_t *dw, Dwarf_Die die) 1782 { 1783 Dwarf_Off off = die_off(dw, die); 1784 const die_creator_t *dc; 1785 Dwarf_Half tag; 1786 tdesc_t *tdp; 1787 1788 debug(3, "die %llu <%llx>: create_one\n", off, off); 1789 1790 if (off > dw->dw_maxoff) { 1791 terminate("illegal die offset %llu (max %llu)\n", off, 1792 dw->dw_maxoff); 1793 } 1794 1795 tag = die_tag(dw, die); 1796 1797 if ((dc = die_tag2ctor(tag)) == NULL) { 1798 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1799 return; 1800 } 1801 1802 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1803 !(dc->dc_flags & DW_F_NOTDP)) { 1804 tdp = xcalloc(sizeof (tdesc_t)); 1805 tdp->t_id = off; 1806 tdesc_add(dw, tdp); 1807 } 1808 1809 if (tdp != NULL) 1810 tdp->t_name = die_name(dw, die); 1811 1812 dc->dc_create(dw, die, off, tdp); 1813 } 1814 1815 static void 1816 die_create(dwarf_t *dw, Dwarf_Die die) 1817 { 1818 do { 1819 die_create_one(dw, die); 1820 } while ((die = die_sibling(dw, die)) != NULL); 1821 } 1822 1823 static tdtrav_cb_f die_resolvers[] = { 1824 NULL, 1825 NULL, /* intrinsic */ 1826 NULL, /* pointer */ 1827 die_array_resolve, /* array */ 1828 NULL, /* function */ 1829 die_sou_resolve, /* struct */ 1830 die_sou_resolve, /* union */ 1831 die_enum_resolve, /* enum */ 1832 die_fwd_resolve, /* forward */ 1833 NULL, /* typedef */ 1834 NULL, /* typedef unres */ 1835 NULL, /* volatile */ 1836 NULL, /* const */ 1837 NULL, /* restrict */ 1838 }; 1839 1840 static tdtrav_cb_f die_fail_reporters[] = { 1841 NULL, 1842 NULL, /* intrinsic */ 1843 NULL, /* pointer */ 1844 die_array_failed, /* array */ 1845 NULL, /* function */ 1846 die_sou_failed, /* struct */ 1847 die_sou_failed, /* union */ 1848 NULL, /* enum */ 1849 NULL, /* forward */ 1850 NULL, /* typedef */ 1851 NULL, /* typedef unres */ 1852 NULL, /* volatile */ 1853 NULL, /* const */ 1854 NULL, /* restrict */ 1855 }; 1856 1857 static void 1858 die_resolve(dwarf_t *dw) 1859 { 1860 int last = -1; 1861 int pass = 0; 1862 1863 do { 1864 pass++; 1865 dw->dw_nunres = 0; 1866 1867 (void) iitraverse_hash(dw->dw_td->td_iihash, 1868 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1869 1870 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1871 1872 if ((int) dw->dw_nunres == last) { 1873 fprintf(stderr, "%s: failed to resolve the following " 1874 "types:\n", progname); 1875 1876 (void) iitraverse_hash(dw->dw_td->td_iihash, 1877 &dw->dw_td->td_curvgen, NULL, NULL, 1878 die_fail_reporters, dw); 1879 1880 terminate("failed to resolve types\n"); 1881 } 1882 1883 last = dw->dw_nunres; 1884 1885 } while (dw->dw_nunres != 0); 1886 } 1887 1888 /* 1889 * Any object containing a function or object symbol at any scope should also 1890 * contain DWARF data. 1891 */ 1892 static boolean_t 1893 should_have_dwarf(Elf *elf) 1894 { 1895 Elf_Scn *scn = NULL; 1896 Elf_Data *data = NULL; 1897 GElf_Shdr shdr; 1898 GElf_Sym sym; 1899 uint32_t symdx = 0; 1900 size_t nsyms = 0; 1901 boolean_t found = B_FALSE; 1902 1903 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1904 gelf_getshdr(scn, &shdr); 1905 1906 if (shdr.sh_type == SHT_SYMTAB) { 1907 found = B_TRUE; 1908 break; 1909 } 1910 } 1911 1912 if (!found) 1913 terminate("cannot convert stripped objects\n"); 1914 1915 data = elf_getdata(scn, NULL); 1916 nsyms = shdr.sh_size / shdr.sh_entsize; 1917 1918 for (symdx = 0; symdx < nsyms; symdx++) { 1919 gelf_getsym(data, symdx, &sym); 1920 1921 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) || 1922 (GELF_ST_TYPE(sym.st_info) == STT_TLS) || 1923 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) { 1924 char *name; 1925 1926 name = elf_strptr(elf, shdr.sh_link, sym.st_name); 1927 1928 /* Studio emits these local symbols regardless */ 1929 if ((strcmp(name, "Bbss.bss") != 0) && 1930 (strcmp(name, "Ttbss.bss") != 0) && 1931 (strcmp(name, "Ddata.data") != 0) && 1932 (strcmp(name, "Ttdata.data") != 0) && 1933 (strcmp(name, "Drodata.rodata") != 0)) 1934 return (B_TRUE); 1935 } 1936 } 1937 1938 return (B_FALSE); 1939 } 1940 1941 /*ARGSUSED*/ 1942 int 1943 dw_read(tdata_t *td, Elf *elf, char *filename __unused) 1944 { 1945 Dwarf_Unsigned abboff, hdrlen, nxthdr; 1946 Dwarf_Half vers, addrsz, offsz; 1947 Dwarf_Die cu = 0; 1948 Dwarf_Die child = 0; 1949 dwarf_t dw; 1950 char *prod = NULL; 1951 int rc; 1952 1953 bzero(&dw, sizeof (dwarf_t)); 1954 dw.dw_td = td; 1955 dw.dw_ptrsz = elf_ptrsz(elf); 1956 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1957 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1958 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1959 tdesc_namecmp); 1960 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1961 tdesc_namecmp); 1962 1963 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1964 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1965 /* The new library does that */ 1966 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1967 /* 1968 * There's no type data in the DWARF section, but 1969 * libdwarf is too clever to handle that properly. 1970 */ 1971 return (0); 1972 } 1973 if (should_have_dwarf(elf)) { 1974 errno = ENOENT; 1975 return (-1); 1976 } else { 1977 1978 return (0); 1979 } 1980 } else if (rc != DW_DLV_OK) { 1981 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1982 /* 1983 * There's no type data in the DWARF section, but 1984 * libdwarf is too clever to handle that properly. 1985 */ 1986 return (0); 1987 } 1988 1989 terminate("failed to initialize DWARF: %s\n", 1990 dwarf_errmsg(dw.dw_err)); 1991 } 1992 1993 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 1994 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) 1995 terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err)); 1996 1997 if ((cu = die_sibling(&dw, NULL)) == NULL) 1998 goto out; 1999 2000 if ((child = die_child(&dw, cu)) == NULL) { 2001 Dwarf_Unsigned lang; 2002 if (die_unsigned(&dw, cu, DW_AT_language, &lang, 0)) { 2003 debug(1, "DWARF language: %u\n", lang); 2004 /* 2005 * Assembly languages are typically that. 2006 * They have some dwarf info, but not what 2007 * we expect. They have local symbols for 2008 * example, but they are missing the child info. 2009 */ 2010 if (lang >= DW_LANG_lo_user) 2011 return 0; 2012 } 2013 if (should_have_dwarf(elf)) 2014 goto out; 2015 } 2016 2017 if (child == NULL) 2018 return (0); 2019 2020 dw.dw_maxoff = nxthdr - 1; 2021 2022 if (dw.dw_maxoff > TID_FILEMAX) 2023 terminate("file contains too many types\n"); 2024 2025 debug(1, "DWARF version: %d\n", vers); 2026 if (vers < 2 || vers > 4) { 2027 terminate("file contains incompatible version %d DWARF code " 2028 "(version 2, 3 or 4 required)\n", vers); 2029 } 2030 2031 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 2032 debug(1, "DWARF emitter: %s\n", prod); 2033 free(prod); 2034 } 2035 2036 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 2037 char *base = xstrdup(basename(dw.dw_cuname)); 2038 free(dw.dw_cuname); 2039 dw.dw_cuname = base; 2040 2041 debug(1, "CU name: %s\n", dw.dw_cuname); 2042 } 2043 2044 if ((child = die_child(&dw, cu)) != NULL) 2045 die_create(&dw, child); 2046 2047 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 2048 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 2049 terminate("multiple compilation units not supported\n"); 2050 2051 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 2052 2053 die_resolve(&dw); 2054 2055 cvt_fixups(td, dw.dw_ptrsz); 2056 2057 /* leak the dwarf_t */ 2058 2059 return (0); 2060 out: 2061 terminate("file does not contain dwarf type data " 2062 "(try compiling with -g)\n"); 2063 } 2064