1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Given several files containing CTF data, merge and uniquify that data into 30 * a single CTF section in an output file. 31 * 32 * Merges can proceed independently. As such, we perform the merges in parallel 33 * using a worker thread model. A given glob of CTF data (either all of the CTF 34 * data from a single input file, or the result of one or more merges) can only 35 * be involved in a single merge at any given time, so the process decreases in 36 * parallelism, especially towards the end, as more and more files are 37 * consolidated, finally resulting in a single merge of two large CTF graphs. 38 * Unfortunately, the last merge is also the slowest, as the two graphs being 39 * merged are each the product of merges of half of the input files. 40 * 41 * The algorithm consists of two phases, described in detail below. The first 42 * phase entails the merging of CTF data in groups of eight. The second phase 43 * takes the results of Phase I, and merges them two at a time. This disparity 44 * is due to an observation that the merge time increases at least quadratically 45 * with the size of the CTF data being merged. As such, merges of CTF graphs 46 * newly read from input files are much faster than merges of CTF graphs that 47 * are themselves the results of prior merges. 48 * 49 * A further complication is the need to ensure the repeatability of CTF merges. 50 * That is, a merge should produce the same output every time, given the same 51 * input. In both phases, this consistency requirement is met by imposing an 52 * ordering on the merge process, thus ensuring that a given set of input files 53 * are merged in the same order every time. 54 * 55 * Phase I 56 * 57 * The main thread reads the input files one by one, transforming the CTF 58 * data they contain into tdata structures. When a given file has been read 59 * and parsed, it is placed on the work queue for retrieval by worker threads. 60 * 61 * Central to Phase I is the Work In Progress (wip) array, which is used to 62 * merge batches of files in a predictable order. Files are read by the main 63 * thread, and are merged into wip array elements in round-robin order. When 64 * the number of files merged into a given array slot equals the batch size, 65 * the merged CTF graph in that array is added to the done slot in order by 66 * array slot. 67 * 68 * For example, consider a case where we have five input files, a batch size 69 * of two, a wip array size of two, and two worker threads (T1 and T2). 70 * 71 * 1. The wip array elements are assigned initial batch numbers 0 and 1. 72 * 2. T1 reads an input file from the input queue (wq_queue). This is the 73 * first input file, so it is placed into wip[0]. The second file is 74 * similarly read and placed into wip[1]. The wip array slots now contain 75 * one file each (wip_nmerged == 1). 76 * 3. T1 reads the third input file, which it merges into wip[0]. The 77 * number of files in wip[0] is equal to the batch size. 78 * 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1] 79 * is now full too. 80 * 5. T2 attempts to place the contents of wip[1] on the done queue 81 * (wq_done_queue), but it can't, since the batch ID for wip[1] is 1. 82 * Batch 0 needs to be on the done queue before batch 1 can be added, so 83 * T2 blocks on wip[1]'s cv. 84 * 6. T1 attempts to place the contents of wip[0] on the done queue, and 85 * succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets 86 * its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2. 87 * 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that 88 * batch 1 can now be added. It adds wip[1] to the done queue, clears 89 * wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and 90 * restarts. 91 * 92 * The above process continues until all input files have been consumed. At 93 * this point, a pair of barriers are used to allow a single thread to move 94 * any partial batches from the wip array to the done array in batch ID order. 95 * When this is complete, wq_done_queue is moved to wq_queue, and Phase II 96 * begins. 97 * 98 * Locking Semantics (Phase I) 99 * 100 * The input queue (wq_queue) and the done queue (wq_done_queue) are 101 * protected by separate mutexes - wq_queue_lock and wq_done_queue. wip 102 * array slots are protected by their own mutexes, which must be grabbed 103 * before releasing the input queue lock. The wip array lock is dropped 104 * when the thread restarts the loop. If the array slot was full, the 105 * array lock will be held while the slot contents are added to the done 106 * queue. The done queue lock is used to protect the wip slot cv's. 107 * 108 * The pow number is protected by the queue lock. The master batch ID 109 * and last completed batch (wq_lastdonebatch) counters are protected *in 110 * Phase I* by the done queue lock. 111 * 112 * Phase II 113 * 114 * When Phase II begins, the queue consists of the merged batches from the 115 * first phase. Assume we have five batches: 116 * 117 * Q: a b c d e 118 * 119 * Using the same batch ID mechanism we used in Phase I, but without the wip 120 * array, worker threads remove two entries at a time from the beginning of 121 * the queue. These two entries are merged, and are added back to the tail 122 * of the queue, as follows: 123 * 124 * Q: a b c d e # start 125 * Q: c d e ab # a, b removed, merged, added to end 126 * Q: e ab cd # c, d removed, merged, added to end 127 * Q: cd eab # e, ab removed, merged, added to end 128 * Q: cdeab # cd, eab removed, merged, added to end 129 * 130 * When one entry remains on the queue, with no merges outstanding, Phase II 131 * finishes. We pre-determine the stopping point by pre-calculating the 132 * number of nodes that will appear on the list. In the example above, the 133 * number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by 134 * signaling the main thread via wq_done_cv. 135 * 136 * Locking Semantics (Phase II) 137 * 138 * The queue (wq_queue), ninqueue, and the master batch ID and last 139 * completed batch counters are protected by wq_queue_lock. The done 140 * queue and corresponding lock are unused in Phase II as is the wip array. 141 * 142 * Uniquification 143 * 144 * We want the CTF data that goes into a given module to be as small as 145 * possible. For example, we don't want it to contain any type data that may 146 * be present in another common module. As such, after creating the master 147 * tdata_t for a given module, we can, if requested by the user, uniquify it 148 * against the tdata_t from another module (genunix in the case of the SunOS 149 * kernel). We perform a merge between the tdata_t for this module and the 150 * tdata_t from genunix. Nodes found in this module that are not present in 151 * genunix are added to a third tdata_t - the uniquified tdata_t. 152 * 153 * Additive Merges 154 * 155 * In some cases, for example if we are issuing a new version of a common 156 * module in a patch, we need to make sure that the CTF data already present 157 * in that module does not change. Changes to this data would void the CTF 158 * data in any module that uniquified against the common module. To preserve 159 * the existing data, we can perform what is known as an additive merge. In 160 * this case, a final uniquification is performed against the CTF data in the 161 * previous version of the module. The result will be the placement of new 162 * and changed data after the existing data, thus preserving the existing type 163 * ID space. 164 * 165 * Saving the result 166 * 167 * When the merges are complete, the resulting tdata_t is placed into the 168 * output file, replacing the .SUNW_ctf section (if any) already in that file. 169 * 170 * The person who changes the merging thread code in this file without updating 171 * this comment will not live to see the stock hit five. 172 */ 173 174 #if HAVE_NBTOOL_CONFIG_H 175 # include "nbtool_config.h" 176 #endif 177 178 #include <stdio.h> 179 #include <stdlib.h> 180 #ifndef _NETBSD_SOURCE 181 #define _NETBSD_SOURCE /* XXX TBD fix this */ 182 #include <unistd.h> 183 #undef _NETBSD_SOURCE 184 #else 185 #include <unistd.h> 186 #endif 187 #include <pthread.h> 188 #include <assert.h> 189 #ifdef illumos 190 #include <synch.h> 191 #endif 192 #include <signal.h> 193 #include <libgen.h> 194 #include <string.h> 195 #include <errno.h> 196 #ifdef illumos 197 #include <alloca.h> 198 #endif 199 #include <sys/param.h> 200 #include <sys/types.h> 201 #include <sys/mman.h> 202 #ifdef illumos 203 #include <sys/sysconf.h> 204 #endif 205 206 #include "ctf_headers.h" 207 #include "ctftools.h" 208 #include "ctfmerge.h" 209 #include "traverse.h" 210 #include "memory.h" 211 #include "fifo.h" 212 #include "barrier.h" 213 214 #pragma init(bigheap) 215 216 #define MERGE_PHASE1_BATCH_SIZE 8 217 #define MERGE_PHASE1_MAX_SLOTS 5 218 #define MERGE_INPUT_THROTTLE_LEN 10 219 220 const char *progname; 221 static char *outfile = NULL; 222 static char *tmpname = NULL; 223 static int dynsym; 224 int debug_level = DEBUG_LEVEL; 225 #ifdef illumos 226 static size_t maxpgsize = 0x400000; 227 #endif 228 229 230 static void 231 usage(void) 232 { 233 (void) fprintf(stderr, 234 "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n" 235 " %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n" 236 " %*s [-g] [-D uniqlabel] file ...\n" 237 " %s [-fgstv] -l label | -L labelenv -o outfile -w withfile " 238 "file ...\n" 239 " %s [-g] -c srcfile destfile\n" 240 "\n" 241 " Note: if -L labelenv is specified and labelenv is not set in\n" 242 " the environment, a default value is used.\n", 243 progname, progname, (int)strlen(progname), " ", 244 progname, progname); 245 } 246 247 #ifdef illumos 248 static void 249 bigheap(void) 250 { 251 size_t big, *size; 252 int sizes; 253 struct memcntl_mha mha; 254 255 /* 256 * First, get the available pagesizes. 257 */ 258 if ((sizes = getpagesizes(NULL, 0)) == -1) 259 return; 260 261 if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL) 262 return; 263 264 if (getpagesizes(size, sizes) == -1) 265 return; 266 267 while (size[sizes - 1] > maxpgsize) 268 sizes--; 269 270 /* set big to the largest allowed page size */ 271 big = size[sizes - 1]; 272 if (big & (big - 1)) { 273 /* 274 * The largest page size is not a power of two for some 275 * inexplicable reason; return. 276 */ 277 return; 278 } 279 280 /* 281 * Now, align our break to the largest page size. 282 */ 283 if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0) 284 return; 285 286 /* 287 * set the preferred page size for the heap 288 */ 289 mha.mha_cmd = MHA_MAPSIZE_BSSBRK; 290 mha.mha_flags = 0; 291 mha.mha_pagesize = big; 292 293 (void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0); 294 } 295 #endif 296 297 static void 298 finalize_phase_one(workqueue_t *wq) 299 { 300 int startslot, i; 301 302 /* 303 * wip slots are cleared out only when maxbatchsz td's have been merged 304 * into them. We're not guaranteed that the number of files we're 305 * merging is a multiple of maxbatchsz, so there will be some partial 306 * groups in the wip array. Move them to the done queue in batch ID 307 * order, starting with the slot containing the next batch that would 308 * have been placed on the done queue, followed by the others. 309 * One thread will be doing this while the others wait at the barrier 310 * back in worker_thread(), so we don't need to worry about pesky things 311 * like locks. 312 */ 313 314 for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) { 315 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) { 316 startslot = i; 317 break; 318 } 319 } 320 321 assert(startslot != -1); 322 323 for (i = startslot; i < startslot + wq->wq_nwipslots; i++) { 324 int slotnum = i % wq->wq_nwipslots; 325 wip_t *wipslot = &wq->wq_wip[slotnum]; 326 327 if (wipslot->wip_td != NULL) { 328 debug(2, "clearing slot %d (%d) (saving %d)\n", 329 slotnum, i, wipslot->wip_nmerged); 330 } else 331 debug(2, "clearing slot %d (%d)\n", slotnum, i); 332 333 if (wipslot->wip_td != NULL) { 334 fifo_add(wq->wq_donequeue, wipslot->wip_td); 335 wq->wq_wip[slotnum].wip_td = NULL; 336 } 337 } 338 339 wq->wq_lastdonebatch = wq->wq_next_batchid++; 340 341 debug(2, "phase one done: donequeue has %d items\n", 342 fifo_len(wq->wq_donequeue)); 343 } 344 345 static void 346 init_phase_two(workqueue_t *wq) 347 { 348 int num; 349 350 /* 351 * We're going to continually merge the first two entries on the queue, 352 * placing the result on the end, until there's nothing left to merge. 353 * At that point, everything will have been merged into one. The 354 * initial value of ninqueue needs to be equal to the total number of 355 * entries that will show up on the queue, both at the start of the 356 * phase and as generated by merges during the phase. 357 */ 358 wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue); 359 while (num != 1) { 360 wq->wq_ninqueue += num / 2; 361 num = num / 2 + num % 2; 362 } 363 364 /* 365 * Move the done queue to the work queue. We won't be using the done 366 * queue in phase 2. 367 */ 368 assert(fifo_len(wq->wq_queue) == 0); 369 fifo_free(wq->wq_queue, NULL); 370 wq->wq_queue = wq->wq_donequeue; 371 } 372 373 static void 374 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum) 375 { 376 if ((errno = pthread_mutex_lock(&wq->wq_donequeue_lock)) != 0) 377 terminate("%s: pthread_mutex_lock(wq_donequeue_lock)", 378 __func__); 379 380 while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) { 381 if ((errno = pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock)) != 0) 382 terminate("%s: pthread_cond_wait(wip_cv,wq_donequeue_lock)", 383 __func__); 384 } 385 assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid); 386 387 fifo_add(wq->wq_donequeue, slot->wip_td); 388 wq->wq_lastdonebatch++; 389 const int nextslot = (slotnum + 1) % wq->wq_nwipslots; 390 if ((errno = pthread_cond_signal(&wq->wq_wip[nextslot].wip_cv)) != 0) 391 terminate("%s: pthread_cond_signal(wq_wip[%d].wip_cv)", 392 __func__, nextslot); 393 394 /* reset the slot for next use */ 395 slot->wip_td = NULL; 396 slot->wip_batchid = wq->wq_next_batchid++; 397 398 if ((errno = pthread_mutex_unlock(&wq->wq_donequeue_lock)) != 0) 399 terminate("%s: pthread_mutex_unlock(wq_donequeue_lock)", 400 __func__); 401 } 402 403 static void 404 wip_add_work(wip_t *slot, tdata_t *pow) 405 { 406 if (slot->wip_td == NULL) { 407 slot->wip_td = pow; 408 slot->wip_nmerged = 1; 409 } else { 410 debug(2, "0x%jx: merging %p into %p\n", 411 (uintmax_t)(uintptr_t)pthread_self(), 412 (void *)pow, (void *)slot->wip_td); 413 414 merge_into_master(pow, slot->wip_td, NULL, 0); 415 tdata_free(pow); 416 417 slot->wip_nmerged++; 418 } 419 } 420 421 static void 422 worker_runphase1(workqueue_t *wq) 423 { 424 wip_t *wipslot; 425 tdata_t *pow; 426 int wipslotnum, pownum; 427 428 for (;;) { 429 if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0) 430 terminate("%s: pthread_mutex_lock(wq_queue_lock)", 431 __func__); 432 433 while (fifo_empty(wq->wq_queue)) { 434 if (wq->wq_nomorefiles == 1) { 435 if ((errno = pthread_cond_broadcast(&wq->wq_work_avail)) != 0) 436 terminate("%s: pthread_cond_broadcast(wq_work_avail)", 437 __func__); 438 if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0) 439 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", 440 __func__); 441 442 /* on to phase 2 ... */ 443 return; 444 } 445 446 if ((errno = pthread_cond_wait(&wq->wq_work_avail, 447 &wq->wq_queue_lock)) != 0) 448 terminate("%s: pthread_cond_wait(wq_work_avail,wq_queue_lock)", 449 __func__); 450 } 451 452 /* there's work to be done! */ 453 pow = fifo_remove(wq->wq_queue); 454 pownum = wq->wq_nextpownum++; 455 if ((errno = pthread_cond_broadcast(&wq->wq_work_removed)) != 0) 456 terminate("%s: pthread_cond_broadcast(wq_work_removed)", 457 __func__); 458 459 assert(pow != NULL); 460 461 /* merge it into the right slot */ 462 wipslotnum = pownum % wq->wq_nwipslots; 463 wipslot = &wq->wq_wip[wipslotnum]; 464 465 if ((errno = pthread_mutex_lock(&wipslot->wip_lock)) != 0) 466 terminate("%s: pthread_mutex_lock(wip_lock)", __func__); 467 468 if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0) 469 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", 470 __func__); 471 472 wip_add_work(wipslot, pow); 473 474 if (wipslot->wip_nmerged == wq->wq_maxbatchsz) 475 wip_save_work(wq, wipslot, wipslotnum); 476 477 if ((errno = pthread_mutex_unlock(&wipslot->wip_lock)) != 0) 478 terminate("%s: pthread_mutex_unlock(wip_lock)", 479 __func__); 480 } 481 } 482 483 static void 484 worker_runphase2(workqueue_t *wq) 485 { 486 tdata_t *pow1, *pow2; 487 int batchid; 488 489 for (;;) { 490 if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0) 491 terminate("%s: pthread_mutex_lock(wq_queue_lock)", 492 __func__); 493 494 if (wq->wq_ninqueue == 1) { 495 if ((errno = pthread_cond_broadcast(&wq->wq_work_avail)) != 0) 496 terminate("%s: pthread_cond_broadcast(wq_work_avail)", 497 __func__); 498 if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0) 499 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", 500 __func__); 501 502 debug(2, "0x%jx: entering p2 completion barrier\n", 503 (uintmax_t)(uintptr_t)pthread_self()); 504 if (barrier_wait(&wq->wq_bar1)) { 505 if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0) 506 terminate("%s: pthread_mutex_lock(wq_queue_lock)", 507 __func__); 508 wq->wq_alldone = 1; 509 if ((errno = pthread_cond_signal(&wq->wq_alldone_cv)) != 0) 510 terminate("%s: pthread_cond_signal(wq_alldone_cv)", 511 __func__); 512 if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0) 513 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", 514 __func__); 515 } 516 517 return; 518 } 519 520 if (fifo_len(wq->wq_queue) < 2) { 521 if ((errno = pthread_cond_wait(&wq->wq_work_avail, 522 &wq->wq_queue_lock)) != 0) 523 terminate("%s: pthread_cond_wait(wq_work_avail,wq_queue_lock)", 524 __func__); 525 if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0) 526 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", 527 __func__); 528 continue; 529 } 530 531 /* there's work to be done! */ 532 pow1 = fifo_remove(wq->wq_queue); 533 pow2 = fifo_remove(wq->wq_queue); 534 wq->wq_ninqueue -= 2; 535 536 batchid = wq->wq_next_batchid++; 537 538 if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0) 539 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", 540 __func__); 541 542 debug(2, "0x%jx: merging %p into %p\n", 543 (uintmax_t)(uintptr_t)pthread_self(), 544 (void *)pow1, (void *)pow2); 545 merge_into_master(pow1, pow2, NULL, 0); 546 tdata_free(pow1); 547 548 /* 549 * merging is complete. place at the tail of the queue in 550 * proper order. 551 */ 552 if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0) 553 terminate("%s: pthread_mutex_lock(wq_queue_lock)", 554 __func__); 555 while (wq->wq_lastdonebatch + 1 != batchid) { 556 if ((errno = pthread_cond_wait(&wq->wq_done_cv, 557 &wq->wq_queue_lock)) != 0) 558 terminate("%s: pthread_cond_wait(wq_done_cv,wq_queue_lock)", 559 __func__); 560 } 561 562 wq->wq_lastdonebatch = batchid; 563 564 fifo_add(wq->wq_queue, pow2); 565 debug(2, "0x%jx: added %p to queue, len now %d, ninqueue %d\n", 566 (uintmax_t)(uintptr_t)pthread_self(), (void *)pow2, 567 fifo_len(wq->wq_queue), wq->wq_ninqueue); 568 if ((errno = pthread_cond_broadcast(&wq->wq_done_cv)) != 0) 569 terminate("%s: pthread_cond_broadcast(wq_done_cv)", 570 __func__); 571 if ((errno = pthread_cond_signal(&wq->wq_work_avail)) != 0) 572 terminate("%s: pthread_cond_signal(wq_work_avail)", 573 __func__); 574 if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0) 575 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", 576 __func__); 577 } 578 } 579 580 /* 581 * Main loop for worker threads. 582 */ 583 static void * 584 worker_thread(void *v) 585 { 586 workqueue_t *wq = v; 587 worker_runphase1(wq); 588 589 debug(2, "0x%jx: entering first barrier\n", 590 (uintmax_t)(uintptr_t)pthread_self()); 591 592 if (barrier_wait(&wq->wq_bar1)) { 593 594 debug(2, "0x%jx: doing work in first barrier\n", 595 (uintmax_t)(uintptr_t)pthread_self()); 596 597 finalize_phase_one(wq); 598 599 init_phase_two(wq); 600 601 debug(2, "0x%jx: ninqueue is %d, %d on queue\n", 602 (uintmax_t)(uintptr_t)pthread_self(), 603 wq->wq_ninqueue, fifo_len(wq->wq_queue)); 604 } 605 606 debug(2, "0x%jx: entering second barrier\n", 607 (uintmax_t)(uintptr_t)pthread_self()); 608 609 (void) barrier_wait(&wq->wq_bar2); 610 611 debug(2, "0x%jx: phase 1 complete\n", 612 (uintmax_t)(uintptr_t)pthread_self()); 613 614 worker_runphase2(wq); 615 return NULL; 616 } 617 618 /* 619 * Pass a tdata_t tree, built from an input file, off to the work queue for 620 * consumption by worker threads. 621 */ 622 static int 623 merge_ctf_cb(tdata_t *td, char *name, void *arg) 624 { 625 workqueue_t *wq = arg; 626 627 debug(3, "Adding tdata %p for processing\n", (void *)td); 628 629 if ((errno = pthread_mutex_lock(&wq->wq_queue_lock)) != 0) 630 terminate("%s: pthread_mutex_lock(wq_queue_lock)", __func__); 631 while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) { 632 debug(2, "Throttling input (len = %d, throttle = %d)\n", 633 fifo_len(wq->wq_queue), wq->wq_ithrottle); 634 if ((errno = pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock)) != 0) 635 terminate("%s: pthread_cond_wait(wq_work_removed,wq_queue_lock)", 636 __func__); 637 } 638 639 fifo_add(wq->wq_queue, td); 640 debug(1, "Thread 0x%jx announcing %s\n", 641 (uintmax_t)(uintptr_t)pthread_self(), name); 642 if ((errno = pthread_cond_broadcast(&wq->wq_work_avail)) != 0) 643 terminate("%s: pthread_cond_broadcast(wq_work_avail)", __func__); 644 if ((errno = pthread_mutex_unlock(&wq->wq_queue_lock)) != 0) 645 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", __func__); 646 647 return (1); 648 } 649 650 /* 651 * This program is intended to be invoked from a Makefile, as part of the build. 652 * As such, in the event of a failure or user-initiated interrupt (^C), we need 653 * to ensure that a subsequent re-make will cause ctfmerge to be executed again. 654 * Unfortunately, ctfmerge will usually be invoked directly after (and as part 655 * of the same Makefile rule as) a link, and will operate on the linked file 656 * in place. If we merely exit upon receipt of a SIGINT, a subsequent make 657 * will notice that the *linked* file is newer than the object files, and thus 658 * will not reinvoke ctfmerge. The only way to ensure that a subsequent make 659 * reinvokes ctfmerge, is to remove the file to which we are adding CTF 660 * data (confusingly named the output file). This means that the link will need 661 * to happen again, but links are generally fast, and we can't allow the merge 662 * to be skipped. 663 * 664 * Another possibility would be to block SIGINT entirely - to always run to 665 * completion. The run time of ctfmerge can, however, be measured in minutes 666 * in some cases, so this is not a valid option. 667 */ 668 static void __dead 669 handle_sig(int sig) 670 { 671 terminate("Caught signal %d - exiting\n", sig); 672 } 673 674 static void 675 terminate_cleanup(void) 676 { 677 int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1; 678 679 if (tmpname != NULL && dounlink) 680 unlink(tmpname); 681 682 if (outfile == NULL) 683 return; 684 685 #if !defined (__FreeBSD__) && !defined(__NetBSD__) 686 if (dounlink) { 687 fprintf(stderr, "Removing %s\n", outfile); 688 unlink(outfile); 689 } 690 #endif 691 } 692 693 static void 694 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs) 695 { 696 tdata_t *srctd; 697 698 if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0) 699 terminate("No CTF data found in source file %s\n", srcfile); 700 701 tmpname = mktmpname(destfile, ".ctf"); 702 write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs); 703 if (rename(tmpname, destfile) != 0) { 704 terminate("Couldn't rename temp file %s to %s", tmpname, 705 destfile); 706 } 707 free(tmpname); 708 tdata_free(srctd); 709 } 710 711 static void 712 wq_init(workqueue_t *wq, int nfiles) 713 { 714 int throttle, nslots, i; 715 716 if (getenv("CTFMERGE_MAX_SLOTS")) 717 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS")); 718 else 719 nslots = MERGE_PHASE1_MAX_SLOTS; 720 721 if (getenv("CTFMERGE_PHASE1_BATCH_SIZE")) 722 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE")); 723 else 724 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE; 725 726 nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) / 727 wq->wq_maxbatchsz); 728 729 wq->wq_wip = xcalloc(sizeof (wip_t) * nslots); 730 wq->wq_nwipslots = nslots; 731 #ifdef _SC_NPROCESSORS_ONLN 732 wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots); 733 #else 734 wq->wq_nthreads = 2; 735 #endif 736 wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads); 737 738 if (getenv("CTFMERGE_INPUT_THROTTLE")) 739 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE")); 740 else 741 throttle = MERGE_INPUT_THROTTLE_LEN; 742 wq->wq_ithrottle = throttle * wq->wq_nthreads; 743 744 debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots, 745 wq->wq_nthreads); 746 747 wq->wq_next_batchid = 0; 748 749 for (i = 0; i < nslots; i++) { 750 if ((errno = pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL)) != 0) 751 terminate("%s: pthread_mutex_init(wip[%d].wip_lock", 752 __func__, i); 753 if ((errno = pthread_cond_init(&wq->wq_wip[i].wip_cv, NULL)) != 0) 754 terminate("%s: pthread_cond_init(wip[%d].wip_cv", 755 __func__, i); 756 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++; 757 } 758 759 if ((errno = pthread_mutex_init(&wq->wq_queue_lock, NULL)) != 0) 760 terminate("%s: pthread_mutex_init(wq_queue_lock)", __func__); 761 wq->wq_queue = fifo_new(); 762 if ((errno = pthread_cond_init(&wq->wq_work_avail, NULL)) != 0) 763 terminate("%s: pthread_cond_init(wq_work_avail)", __func__); 764 if ((errno = pthread_cond_init(&wq->wq_work_removed, NULL)) != 0) 765 terminate("%s: pthread_cond_init(wq_work_removed", __func__); 766 wq->wq_ninqueue = nfiles; 767 wq->wq_nextpownum = 0; 768 769 if ((errno = pthread_mutex_init(&wq->wq_donequeue_lock, NULL)) != 0) 770 terminate("%s: pthread_mutex_init(wq_donequeue_lock)", __func__); 771 wq->wq_donequeue = fifo_new(); 772 wq->wq_lastdonebatch = -1; 773 774 if ((errno = pthread_cond_init(&wq->wq_done_cv, NULL)) != 0) 775 terminate("%s: pthread_cond_init(wq_done_cv)", __func__); 776 777 if ((errno = pthread_cond_init(&wq->wq_alldone_cv, NULL)) != 0) 778 terminate("%s: pthread_cond_init(wq_alldone_cv)", __func__); 779 wq->wq_alldone = 0; 780 781 barrier_init(&wq->wq_bar1, wq->wq_nthreads); 782 barrier_init(&wq->wq_bar2, wq->wq_nthreads); 783 784 wq->wq_nomorefiles = 0; 785 } 786 787 static void 788 start_threads(workqueue_t *wq) 789 { 790 sigset_t sets; 791 int i; 792 793 sigemptyset(&sets); 794 sigaddset(&sets, SIGINT); 795 sigaddset(&sets, SIGQUIT); 796 sigaddset(&sets, SIGTERM); 797 if ((errno = pthread_sigmask(SIG_BLOCK, &sets, NULL)) != 0) 798 terminate("%s: pthread_sigmask(SIG_BLOCK)", __func__); 799 800 for (i = 0; i < wq->wq_nthreads; i++) { 801 if ((errno = pthread_create(&wq->wq_thread[i], NULL, worker_thread, wq)) != 0) 802 terminate("%s: pthread_create(wq_thread[%d]", 803 __func__, i); 804 } 805 806 #ifdef illumos 807 sigset(SIGINT, handle_sig); 808 sigset(SIGQUIT, handle_sig); 809 sigset(SIGTERM, handle_sig); 810 #else 811 signal(SIGINT, handle_sig); 812 signal(SIGQUIT, handle_sig); 813 signal(SIGTERM, handle_sig); 814 #endif 815 if ((errno = pthread_sigmask(SIG_UNBLOCK, &sets, NULL)) != 0) 816 terminate("%s: pthread_sigmask(SIG_UNBLOCK)", __func__); 817 } 818 819 static void 820 join_threads(workqueue_t *wq) 821 { 822 int i; 823 824 for (i = 0; i < wq->wq_nthreads; i++) { 825 if ((errno = pthread_join(wq->wq_thread[i], NULL)) != 0) 826 terminate("%s: pthread_join(wq_thread[%d]", 827 __func__, i); 828 } 829 } 830 831 static int 832 strcompare(const void *p1, const void *p2) 833 { 834 const char *s1 = *((const char * const *)p1); 835 const char *s2 = *((const char * const *)p2); 836 837 return (strcmp(s1, s2)); 838 } 839 840 /* 841 * Core work queue structure; passed to worker threads on thread creation 842 * as the main point of coordination. Allocate as a static structure; we 843 * could have put this into a local variable in main, but passing a pointer 844 * into your stack to another thread is fragile at best and leads to some 845 * hard-to-debug failure modes. 846 */ 847 static workqueue_t wq; 848 849 int 850 main(int argc, char **argv) 851 { 852 tdata_t *mstrtd, *savetd; 853 char *uniqfile = NULL, *uniqlabel = NULL; 854 char *withfile = NULL; 855 char *label = NULL; 856 char **ifiles, **tifiles; 857 int verbose = 0, docopy = 0; 858 int write_fuzzy_match = 0; 859 int keep_stabs = 0; 860 int require_ctf = 0; 861 int nifiles, nielems; 862 int c, i, idx, tidx, err; 863 864 progname = basename(argv[0]); 865 866 if (getenv("CTFMERGE_DEBUG_LEVEL")) 867 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL")); 868 869 err = 0; 870 while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) { 871 switch (c) { 872 case 'c': 873 docopy = 1; 874 break; 875 case 'd': 876 /* Uniquify against `uniqfile' */ 877 uniqfile = optarg; 878 break; 879 case 'D': 880 /* Uniquify against label `uniqlabel' in `uniqfile' */ 881 uniqlabel = optarg; 882 break; 883 case 'f': 884 write_fuzzy_match = CTF_FUZZY_MATCH; 885 break; 886 case 'g': 887 keep_stabs = CTF_KEEP_STABS; 888 break; 889 case 'l': 890 /* Label merged types with `label' */ 891 label = optarg; 892 break; 893 case 'L': 894 /* Label merged types with getenv(`label`) */ 895 if ((label = getenv(optarg)) == NULL) 896 label = __UNCONST(CTF_DEFAULT_LABEL); 897 break; 898 case 'o': 899 /* Place merged types in CTF section in `outfile' */ 900 outfile = optarg; 901 break; 902 case 't': 903 /* Insist *all* object files built from C have CTF */ 904 require_ctf = 1; 905 break; 906 case 'v': 907 /* More debugging information */ 908 verbose = 1; 909 break; 910 case 'w': 911 /* Additive merge with data from `withfile' */ 912 withfile = optarg; 913 break; 914 case 's': 915 /* use the dynsym rather than the symtab */ 916 dynsym = CTF_USE_DYNSYM; 917 break; 918 default: 919 usage(); 920 exit(2); 921 } 922 } 923 924 /* Validate arguments */ 925 if (docopy) { 926 if (uniqfile != NULL || uniqlabel != NULL || label != NULL || 927 outfile != NULL || withfile != NULL || dynsym != 0) 928 err++; 929 930 if (argc - optind != 2) 931 err++; 932 } else { 933 if (uniqfile != NULL && withfile != NULL) 934 err++; 935 936 if (uniqlabel != NULL && uniqfile == NULL) 937 err++; 938 939 if (outfile == NULL || label == NULL) 940 err++; 941 942 if (argc - optind == 0) 943 err++; 944 } 945 946 if (err) { 947 usage(); 948 exit(2); 949 } 950 951 if (getenv("STRIPSTABS_KEEP_STABS") != NULL) 952 keep_stabs = CTF_KEEP_STABS; 953 954 if (uniqfile && access(uniqfile, R_OK) != 0) { 955 warning("Uniquification file %s couldn't be opened and " 956 "will be ignored.\n", uniqfile); 957 uniqfile = NULL; 958 } 959 if (withfile && access(withfile, R_OK) != 0) { 960 warning("With file %s couldn't be opened and will be " 961 "ignored.\n", withfile); 962 withfile = NULL; 963 } 964 if (outfile && access(outfile, R_OK|W_OK) != 0) 965 terminate("Cannot open output file %s for r/w", outfile); 966 967 /* 968 * This is ugly, but we don't want to have to have a separate tool 969 * (yet) just for copying an ELF section with our specific requirements, 970 * so we shoe-horn a copier into ctfmerge. 971 */ 972 if (docopy) { 973 copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs); 974 975 exit(0); 976 } 977 978 set_terminate_cleanup(terminate_cleanup); 979 980 /* Sort the input files and strip out duplicates */ 981 nifiles = argc - optind; 982 ifiles = xmalloc(sizeof (char *) * nifiles); 983 tifiles = xmalloc(sizeof (char *) * nifiles); 984 985 for (i = 0; i < nifiles; i++) 986 tifiles[i] = argv[optind + i]; 987 qsort(tifiles, nifiles, sizeof (char *), strcompare); 988 989 ifiles[0] = tifiles[0]; 990 for (idx = 0, tidx = 1; tidx < nifiles; tidx++) { 991 if (strcmp(ifiles[idx], tifiles[tidx]) != 0) 992 ifiles[++idx] = tifiles[tidx]; 993 } 994 nifiles = idx + 1; 995 996 /* Make sure they all exist */ 997 if ((nielems = count_files(ifiles, nifiles)) < 0) 998 terminate("Some input files were inaccessible\n"); 999 1000 /* Prepare for the merge */ 1001 wq_init(&wq, nielems); 1002 1003 start_threads(&wq); 1004 1005 /* 1006 * Start the merge 1007 * 1008 * We're reading everything from each of the object files, so we 1009 * don't need to specify labels. 1010 */ 1011 if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb, 1012 &wq, require_ctf) == 0) { 1013 /* 1014 * If we're verifying that C files have CTF, it's safe to 1015 * assume that in this case, we're building only from assembly 1016 * inputs. 1017 */ 1018 if (require_ctf) 1019 exit(0); 1020 terminate("No ctf sections found to merge\n"); 1021 } 1022 1023 if ((errno = pthread_mutex_lock(&wq.wq_queue_lock)) != 0) 1024 terminate("%s: pthread_mutex_lock(wq_queue_lock)", __func__); 1025 wq.wq_nomorefiles = 1; 1026 if ((errno = pthread_cond_broadcast(&wq.wq_work_avail)) != 0) 1027 terminate("%s: pthread_cond_broadcast(wq_work_avail)", __func__); 1028 if ((errno = pthread_mutex_unlock(&wq.wq_queue_lock)) != 0) 1029 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", __func__); 1030 1031 if ((errno = pthread_mutex_lock(&wq.wq_queue_lock)) != 0) 1032 terminate("%s: pthread_mutex_lock(wq_queue_lock)", __func__); 1033 while (wq.wq_alldone == 0) { 1034 if ((errno = pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock)) != 0) 1035 terminate("%s: pthread_cond_wait(wq_alldone_cv,wq_queue_lock)", 1036 __func__); 1037 } 1038 if ((errno = pthread_mutex_unlock(&wq.wq_queue_lock)) != 0) 1039 terminate("%s: pthread_mutex_unlock(wq_queue_lock)", __func__); 1040 1041 join_threads(&wq); 1042 1043 /* 1044 * All requested files have been merged, with the resulting tree in 1045 * mstrtd. savetd is the tree that will be placed into the output file. 1046 * 1047 * Regardless of whether we're doing a normal uniquification or an 1048 * additive merge, we need a type tree that has been uniquified 1049 * against uniqfile or withfile, as appropriate. 1050 * 1051 * If we're doing a uniquification, we stuff the resulting tree into 1052 * outfile. Otherwise, we add the tree to the tree already in withfile. 1053 */ 1054 assert(fifo_len(wq.wq_queue) == 1); 1055 mstrtd = fifo_remove(wq.wq_queue); 1056 1057 if (verbose || debug_level) { 1058 debug(2, "Statistics for td %p\n", (void *)mstrtd); 1059 1060 iidesc_stats(mstrtd->td_iihash); 1061 } 1062 1063 if (uniqfile != NULL || withfile != NULL) { 1064 char *reffile, *reflabel = NULL; 1065 tdata_t *reftd; 1066 1067 if (uniqfile != NULL) { 1068 reffile = uniqfile; 1069 reflabel = uniqlabel; 1070 } else 1071 reffile = withfile; 1072 1073 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb, 1074 &reftd, require_ctf) == 0) { 1075 terminate("No CTF data found in reference file %s\n", 1076 reffile); 1077 } 1078 1079 savetd = tdata_new(); 1080 1081 if (CTF_TYPE_ISCHILD(reftd->td_nextid)) 1082 terminate("No room for additional types in master\n"); 1083 1084 savetd->td_nextid = withfile ? reftd->td_nextid : 1085 CTF_INDEX_TO_TYPE(1, TRUE); 1086 merge_into_master(mstrtd, reftd, savetd, 0); 1087 1088 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX); 1089 1090 if (withfile) { 1091 /* 1092 * savetd holds the new data to be added to the withfile 1093 */ 1094 tdata_t *withtd = reftd; 1095 1096 tdata_merge(withtd, savetd); 1097 1098 savetd = withtd; 1099 } else { 1100 char uniqname[MAXPATHLEN]; 1101 labelent_t *parle; 1102 1103 parle = tdata_label_top(reftd); 1104 1105 savetd->td_parlabel = xstrdup(parle->le_name); 1106 1107 strncpy(uniqname, reffile, sizeof (uniqname)); 1108 uniqname[MAXPATHLEN - 1] = '\0'; 1109 savetd->td_parname = xstrdup(basename(uniqname)); 1110 } 1111 1112 } else { 1113 /* 1114 * No post processing. Write the merged tree as-is into the 1115 * output file. 1116 */ 1117 tdata_label_free(mstrtd); 1118 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX); 1119 1120 savetd = mstrtd; 1121 } 1122 1123 tmpname = mktmpname(outfile, ".ctf"); 1124 write_ctf(savetd, outfile, tmpname, 1125 CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs); 1126 if (rename(tmpname, outfile) != 0) 1127 terminate("Couldn't rename output temp file %s", tmpname); 1128 free(tmpname); 1129 1130 return (0); 1131 } 1132