xref: /netbsd-src/external/cddl/osnet/dist/tools/ctf/cvt/ctfmerge.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Given several files containing CTF data, merge and uniquify that data into
30  * a single CTF section in an output file.
31  *
32  * Merges can proceed independently.  As such, we perform the merges in parallel
33  * using a worker thread model.  A given glob of CTF data (either all of the CTF
34  * data from a single input file, or the result of one or more merges) can only
35  * be involved in a single merge at any given time, so the process decreases in
36  * parallelism, especially towards the end, as more and more files are
37  * consolidated, finally resulting in a single merge of two large CTF graphs.
38  * Unfortunately, the last merge is also the slowest, as the two graphs being
39  * merged are each the product of merges of half of the input files.
40  *
41  * The algorithm consists of two phases, described in detail below.  The first
42  * phase entails the merging of CTF data in groups of eight.  The second phase
43  * takes the results of Phase I, and merges them two at a time.  This disparity
44  * is due to an observation that the merge time increases at least quadratically
45  * with the size of the CTF data being merged.  As such, merges of CTF graphs
46  * newly read from input files are much faster than merges of CTF graphs that
47  * are themselves the results of prior merges.
48  *
49  * A further complication is the need to ensure the repeatability of CTF merges.
50  * That is, a merge should produce the same output every time, given the same
51  * input.  In both phases, this consistency requirement is met by imposing an
52  * ordering on the merge process, thus ensuring that a given set of input files
53  * are merged in the same order every time.
54  *
55  *   Phase I
56  *
57  *   The main thread reads the input files one by one, transforming the CTF
58  *   data they contain into tdata structures.  When a given file has been read
59  *   and parsed, it is placed on the work queue for retrieval by worker threads.
60  *
61  *   Central to Phase I is the Work In Progress (wip) array, which is used to
62  *   merge batches of files in a predictable order.  Files are read by the main
63  *   thread, and are merged into wip array elements in round-robin order.  When
64  *   the number of files merged into a given array slot equals the batch size,
65  *   the merged CTF graph in that array is added to the done slot in order by
66  *   array slot.
67  *
68  *   For example, consider a case where we have five input files, a batch size
69  *   of two, a wip array size of two, and two worker threads (T1 and T2).
70  *
71  *    1. The wip array elements are assigned initial batch numbers 0 and 1.
72  *    2. T1 reads an input file from the input queue (wq_queue).  This is the
73  *       first input file, so it is placed into wip[0].  The second file is
74  *       similarly read and placed into wip[1].  The wip array slots now contain
75  *       one file each (wip_nmerged == 1).
76  *    3. T1 reads the third input file, which it merges into wip[0].  The
77  *       number of files in wip[0] is equal to the batch size.
78  *    4. T2 reads the fourth input file, which it merges into wip[1].  wip[1]
79  *       is now full too.
80  *    5. T2 attempts to place the contents of wip[1] on the done queue
81  *       (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
82  *       Batch 0 needs to be on the done queue before batch 1 can be added, so
83  *       T2 blocks on wip[1]'s cv.
84  *    6. T1 attempts to place the contents of wip[0] on the done queue, and
85  *       succeeds, updating wq_lastdonebatch to 0.  It clears wip[0], and sets
86  *       its batch ID to 2.  T1 then signals wip[1]'s cv to awaken T2.
87  *    7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
88  *       batch 1 can now be added.  It adds wip[1] to the done queue, clears
89  *       wip[1], and sets its batch ID to 3.  It signals wip[0]'s cv, and
90  *       restarts.
91  *
92  *   The above process continues until all input files have been consumed.  At
93  *   this point, a pair of barriers are used to allow a single thread to move
94  *   any partial batches from the wip array to the done array in batch ID order.
95  *   When this is complete, wq_done_queue is moved to wq_queue, and Phase II
96  *   begins.
97  *
98  *	Locking Semantics (Phase I)
99  *
100  *	The input queue (wq_queue) and the done queue (wq_done_queue) are
101  *	protected by separate mutexes - wq_queue_lock and wq_done_queue.  wip
102  *	array slots are protected by their own mutexes, which must be grabbed
103  *	before releasing the input queue lock.  The wip array lock is dropped
104  *	when the thread restarts the loop.  If the array slot was full, the
105  *	array lock will be held while the slot contents are added to the done
106  *	queue.  The done queue lock is used to protect the wip slot cv's.
107  *
108  *	The pow number is protected by the queue lock.  The master batch ID
109  *	and last completed batch (wq_lastdonebatch) counters are protected *in
110  *	Phase I* by the done queue lock.
111  *
112  *   Phase II
113  *
114  *   When Phase II begins, the queue consists of the merged batches from the
115  *   first phase.  Assume we have five batches:
116  *
117  *	Q:	a b c d e
118  *
119  *   Using the same batch ID mechanism we used in Phase I, but without the wip
120  *   array, worker threads remove two entries at a time from the beginning of
121  *   the queue.  These two entries are merged, and are added back to the tail
122  *   of the queue, as follows:
123  *
124  *	Q:	a b c d e	# start
125  *	Q:	c d e ab	# a, b removed, merged, added to end
126  *	Q:	e ab cd		# c, d removed, merged, added to end
127  *	Q:	cd eab		# e, ab removed, merged, added to end
128  *	Q:	cdeab		# cd, eab removed, merged, added to end
129  *
130  *   When one entry remains on the queue, with no merges outstanding, Phase II
131  *   finishes.  We pre-determine the stopping point by pre-calculating the
132  *   number of nodes that will appear on the list.  In the example above, the
133  *   number (wq_ninqueue) is 9.  When ninqueue is 1, we conclude Phase II by
134  *   signaling the main thread via wq_done_cv.
135  *
136  *	Locking Semantics (Phase II)
137  *
138  *	The queue (wq_queue), ninqueue, and the master batch ID and last
139  *	completed batch counters are protected by wq_queue_lock.  The done
140  *	queue and corresponding lock are unused in Phase II as is the wip array.
141  *
142  *   Uniquification
143  *
144  *   We want the CTF data that goes into a given module to be as small as
145  *   possible.  For example, we don't want it to contain any type data that may
146  *   be present in another common module.  As such, after creating the master
147  *   tdata_t for a given module, we can, if requested by the user, uniquify it
148  *   against the tdata_t from another module (genunix in the case of the SunOS
149  *   kernel).  We perform a merge between the tdata_t for this module and the
150  *   tdata_t from genunix.  Nodes found in this module that are not present in
151  *   genunix are added to a third tdata_t - the uniquified tdata_t.
152  *
153  *   Additive Merges
154  *
155  *   In some cases, for example if we are issuing a new version of a common
156  *   module in a patch, we need to make sure that the CTF data already present
157  *   in that module does not change.  Changes to this data would void the CTF
158  *   data in any module that uniquified against the common module.  To preserve
159  *   the existing data, we can perform what is known as an additive merge.  In
160  *   this case, a final uniquification is performed against the CTF data in the
161  *   previous version of the module.  The result will be the placement of new
162  *   and changed data after the existing data, thus preserving the existing type
163  *   ID space.
164  *
165  *   Saving the result
166  *
167  *   When the merges are complete, the resulting tdata_t is placed into the
168  *   output file, replacing the .SUNW_ctf section (if any) already in that file.
169  *
170  * The person who changes the merging thread code in this file without updating
171  * this comment will not live to see the stock hit five.
172  */
173 
174 #if HAVE_NBTOOL_CONFIG_H
175 # include "nbtool_config.h"
176 #endif
177 
178 #include <stdio.h>
179 #include <stdlib.h>
180 #ifndef _NETBSD_SOURCE
181 #define _NETBSD_SOURCE /* XXX TBD fix this */
182 #include <unistd.h>
183 #undef _NETBSD_SOURCE
184 #else
185 #include <unistd.h>
186 #endif
187 #include <pthread.h>
188 #include <assert.h>
189 #if defined(sun)
190 #include <synch.h>
191 #endif
192 #include <signal.h>
193 #include <libgen.h>
194 #include <string.h>
195 #include <errno.h>
196 #if defined(sun)
197 #include <alloca.h>
198 #endif
199 #include <sys/param.h>
200 #include <sys/types.h>
201 #include <sys/mman.h>
202 #if defined(sun)
203 #include <sys/sysconf.h>
204 #endif
205 
206 #include "ctf_headers.h"
207 #include "ctftools.h"
208 #include "ctfmerge.h"
209 #include "traverse.h"
210 #include "memory.h"
211 #include "fifo.h"
212 #include "barrier.h"
213 
214 #pragma init(bigheap)
215 
216 #define	MERGE_PHASE1_BATCH_SIZE		8
217 #define	MERGE_PHASE1_MAX_SLOTS		5
218 #define	MERGE_INPUT_THROTTLE_LEN	10
219 
220 const char *progname;
221 static char *outfile = NULL;
222 static char *tmpname = NULL;
223 static int dynsym;
224 int debug_level = DEBUG_LEVEL;
225 #if 0
226 static size_t maxpgsize = 0x400000;
227 #endif
228 static int maxslots = MERGE_PHASE1_MAX_SLOTS;
229 
230 
231 static void
232 usage(void)
233 {
234 	(void) fprintf(stderr,
235 	    "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
236 	    "       %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
237 	    "       %*s [-g] [-D uniqlabel] file ...\n"
238 	    "       %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
239 	    "file ...\n"
240 	    "       %s [-g] -c srcfile destfile\n"
241 	    "\n"
242 	    "  Note: if -L labelenv is specified and labelenv is not set in\n"
243 	    "  the environment, a default value is used.\n",
244 	    progname, progname, (int)strlen(progname), " ",
245 	    progname, progname);
246 }
247 
248 #if defined(sun)
249 static void
250 bigheap(void)
251 {
252 	size_t big, *size;
253 	int sizes;
254 	struct memcntl_mha mha;
255 
256 	/*
257 	 * First, get the available pagesizes.
258 	 */
259 	if ((sizes = getpagesizes(NULL, 0)) == -1)
260 		return;
261 
262 	if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL)
263 		return;
264 
265 	if (getpagesizes(size, sizes) == -1)
266 		return;
267 
268 	while (size[sizes - 1] > maxpgsize)
269 		sizes--;
270 
271 	/* set big to the largest allowed page size */
272 	big = size[sizes - 1];
273 	if (big & (big - 1)) {
274 		/*
275 		 * The largest page size is not a power of two for some
276 		 * inexplicable reason; return.
277 		 */
278 		return;
279 	}
280 
281 	/*
282 	 * Now, align our break to the largest page size.
283 	 */
284 	if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
285 		return;
286 
287 	/*
288 	 * set the preferred page size for the heap
289 	 */
290 	mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
291 	mha.mha_flags = 0;
292 	mha.mha_pagesize = big;
293 
294 	(void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0);
295 }
296 #endif
297 
298 static void
299 finalize_phase_one(workqueue_t *wq)
300 {
301 	int startslot, i;
302 
303 	/*
304 	 * wip slots are cleared out only when maxbatchsz td's have been merged
305 	 * into them.  We're not guaranteed that the number of files we're
306 	 * merging is a multiple of maxbatchsz, so there will be some partial
307 	 * groups in the wip array.  Move them to the done queue in batch ID
308 	 * order, starting with the slot containing the next batch that would
309 	 * have been placed on the done queue, followed by the others.
310 	 * One thread will be doing this while the others wait at the barrier
311 	 * back in worker_thread(), so we don't need to worry about pesky things
312 	 * like locks.
313 	 */
314 
315 	for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
316 		if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
317 			startslot = i;
318 			break;
319 		}
320 	}
321 
322 	assert(startslot != -1);
323 
324 	for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
325 		int slotnum = i % wq->wq_nwipslots;
326 		wip_t *wipslot = &wq->wq_wip[slotnum];
327 
328 		if (wipslot->wip_td != NULL) {
329 			debug(2, "clearing slot %d (%d) (saving %d)\n",
330 			    slotnum, i, wipslot->wip_nmerged);
331 		} else
332 			debug(2, "clearing slot %d (%d)\n", slotnum, i);
333 
334 		if (wipslot->wip_td != NULL) {
335 			fifo_add(wq->wq_donequeue, wipslot->wip_td);
336 			wq->wq_wip[slotnum].wip_td = NULL;
337 		}
338 	}
339 
340 	wq->wq_lastdonebatch = wq->wq_next_batchid++;
341 
342 	debug(2, "phase one done: donequeue has %d items\n",
343 	    fifo_len(wq->wq_donequeue));
344 }
345 
346 static void
347 init_phase_two(workqueue_t *wq)
348 {
349 	int num;
350 
351 	/*
352 	 * We're going to continually merge the first two entries on the queue,
353 	 * placing the result on the end, until there's nothing left to merge.
354 	 * At that point, everything will have been merged into one.  The
355 	 * initial value of ninqueue needs to be equal to the total number of
356 	 * entries that will show up on the queue, both at the start of the
357 	 * phase and as generated by merges during the phase.
358 	 */
359 	wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
360 	while (num != 1) {
361 		wq->wq_ninqueue += num / 2;
362 		num = num / 2 + num % 2;
363 	}
364 
365 	/*
366 	 * Move the done queue to the work queue.  We won't be using the done
367 	 * queue in phase 2.
368 	 */
369 	assert(fifo_len(wq->wq_queue) == 0);
370 	fifo_free(wq->wq_queue, NULL);
371 	wq->wq_queue = wq->wq_donequeue;
372 }
373 
374 static void
375 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
376 {
377 	pthread_mutex_lock(&wq->wq_donequeue_lock);
378 
379 	while (wq->wq_lastdonebatch + 1 < slot->wip_batchid)
380 		pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock);
381 	assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);
382 
383 	fifo_add(wq->wq_donequeue, slot->wip_td);
384 	wq->wq_lastdonebatch++;
385 	pthread_cond_signal(&wq->wq_wip[(slotnum + 1) %
386 	    wq->wq_nwipslots].wip_cv);
387 
388 	/* reset the slot for next use */
389 	slot->wip_td = NULL;
390 	slot->wip_batchid = wq->wq_next_batchid++;
391 
392 	pthread_mutex_unlock(&wq->wq_donequeue_lock);
393 }
394 
395 static void
396 wip_add_work(wip_t *slot, tdata_t *pow)
397 {
398 	if (slot->wip_td == NULL) {
399 		slot->wip_td = pow;
400 		slot->wip_nmerged = 1;
401 	} else {
402 		debug(2, "0x%jx: merging %p into %p\n",
403 		    (uintmax_t)(uintptr_t)pthread_self(),
404 		    (void *)pow, (void *)slot->wip_td);
405 
406 		merge_into_master(pow, slot->wip_td, NULL, 0);
407 		tdata_free(pow);
408 
409 		slot->wip_nmerged++;
410 	}
411 }
412 
413 static void
414 worker_runphase1(workqueue_t *wq)
415 {
416 	wip_t *wipslot;
417 	tdata_t *pow;
418 	int wipslotnum, pownum;
419 
420 	for (;;) {
421 		pthread_mutex_lock(&wq->wq_queue_lock);
422 
423 		while (fifo_empty(wq->wq_queue)) {
424 			if (wq->wq_nomorefiles == 1) {
425 				pthread_cond_broadcast(&wq->wq_work_avail);
426 				pthread_mutex_unlock(&wq->wq_queue_lock);
427 
428 				/* on to phase 2 ... */
429 				return;
430 			}
431 
432 			pthread_cond_wait(&wq->wq_work_avail,
433 			    &wq->wq_queue_lock);
434 		}
435 
436 		/* there's work to be done! */
437 		pow = fifo_remove(wq->wq_queue);
438 		pownum = wq->wq_nextpownum++;
439 		pthread_cond_broadcast(&wq->wq_work_removed);
440 
441 		assert(pow != NULL);
442 
443 		/* merge it into the right slot */
444 		wipslotnum = pownum % wq->wq_nwipslots;
445 		wipslot = &wq->wq_wip[wipslotnum];
446 
447 		pthread_mutex_lock(&wipslot->wip_lock);
448 
449 		pthread_mutex_unlock(&wq->wq_queue_lock);
450 
451 		wip_add_work(wipslot, pow);
452 
453 		if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
454 			wip_save_work(wq, wipslot, wipslotnum);
455 
456 		pthread_mutex_unlock(&wipslot->wip_lock);
457 	}
458 }
459 
460 static void
461 worker_runphase2(workqueue_t *wq)
462 {
463 	tdata_t *pow1, *pow2;
464 	int batchid;
465 
466 	for (;;) {
467 		pthread_mutex_lock(&wq->wq_queue_lock);
468 
469 		if (wq->wq_ninqueue == 1) {
470 			pthread_cond_broadcast(&wq->wq_work_avail);
471 			pthread_mutex_unlock(&wq->wq_queue_lock);
472 
473 			debug(2, "0x%jx: entering p2 completion barrier\n",
474 			    (uintmax_t)(uintptr_t)pthread_self());
475 			if (barrier_wait(&wq->wq_bar1)) {
476 				pthread_mutex_lock(&wq->wq_queue_lock);
477 				wq->wq_alldone = 1;
478 				pthread_cond_signal(&wq->wq_alldone_cv);
479 				pthread_mutex_unlock(&wq->wq_queue_lock);
480 			}
481 
482 			return;
483 		}
484 
485 		if (fifo_len(wq->wq_queue) < 2) {
486 			pthread_cond_wait(&wq->wq_work_avail,
487 			    &wq->wq_queue_lock);
488 			pthread_mutex_unlock(&wq->wq_queue_lock);
489 			continue;
490 		}
491 
492 		/* there's work to be done! */
493 		pow1 = fifo_remove(wq->wq_queue);
494 		pow2 = fifo_remove(wq->wq_queue);
495 		wq->wq_ninqueue -= 2;
496 
497 		batchid = wq->wq_next_batchid++;
498 
499 		pthread_mutex_unlock(&wq->wq_queue_lock);
500 
501 		debug(2, "0x%jx: merging %p into %p\n",
502 		    (uintmax_t)(uintptr_t)pthread_self(),
503 		    (void *)pow1, (void *)pow2);
504 		merge_into_master(pow1, pow2, NULL, 0);
505 		tdata_free(pow1);
506 
507 		/*
508 		 * merging is complete.  place at the tail of the queue in
509 		 * proper order.
510 		 */
511 		pthread_mutex_lock(&wq->wq_queue_lock);
512 		while (wq->wq_lastdonebatch + 1 != batchid) {
513 			pthread_cond_wait(&wq->wq_done_cv,
514 			    &wq->wq_queue_lock);
515 		}
516 
517 		wq->wq_lastdonebatch = batchid;
518 
519 		fifo_add(wq->wq_queue, pow2);
520 		debug(2, "0x%jx: added %p to queue, len now %d, ninqueue %d\n",
521 		    (uintmax_t)(uintptr_t)pthread_self(), (void *)pow2,
522 		    fifo_len(wq->wq_queue), wq->wq_ninqueue);
523 		pthread_cond_broadcast(&wq->wq_done_cv);
524 		pthread_cond_signal(&wq->wq_work_avail);
525 		pthread_mutex_unlock(&wq->wq_queue_lock);
526 	}
527 }
528 
529 /*
530  * Main loop for worker threads.
531  */
532 static void
533 worker_thread(workqueue_t *wq)
534 {
535 	worker_runphase1(wq);
536 
537 	debug(2, "0x%jx: entering first barrier\n",
538 	    (uintmax_t)(uintptr_t)pthread_self());
539 
540 	if (barrier_wait(&wq->wq_bar1)) {
541 
542 		debug(2, "0x%jx: doing work in first barrier\n",
543 		    (uintmax_t)(uintptr_t)pthread_self());
544 
545 		finalize_phase_one(wq);
546 
547 		init_phase_two(wq);
548 
549 		debug(2, "0x%jx: ninqueue is %d, %d on queue\n",
550 		    (uintmax_t)(uintptr_t)pthread_self(),
551 		    wq->wq_ninqueue, fifo_len(wq->wq_queue));
552 	}
553 
554 	debug(2, "0x%jx: entering second barrier\n",
555 	    (uintmax_t)(uintptr_t)pthread_self());
556 
557 	(void) barrier_wait(&wq->wq_bar2);
558 
559 	debug(2, "0x%jx: phase 1 complete\n",
560 	    (uintmax_t)(uintptr_t)pthread_self());
561 
562 	worker_runphase2(wq);
563 }
564 
565 /*
566  * Pass a tdata_t tree, built from an input file, off to the work queue for
567  * consumption by worker threads.
568  */
569 static int
570 merge_ctf_cb(tdata_t *td, char *name, void *arg)
571 {
572 	workqueue_t *wq = arg;
573 
574 	debug(3, "Adding tdata %p for processing\n", (void *)td);
575 
576 	pthread_mutex_lock(&wq->wq_queue_lock);
577 	while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
578 		debug(2, "Throttling input (len = %d, throttle = %d)\n",
579 		    fifo_len(wq->wq_queue), wq->wq_ithrottle);
580 		pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock);
581 	}
582 
583 	fifo_add(wq->wq_queue, td);
584 	debug(1, "Thread 0x%jx announcing %s\n",
585 	    (uintmax_t)(uintptr_t)pthread_self(), name);
586 	pthread_cond_broadcast(&wq->wq_work_avail);
587 	pthread_mutex_unlock(&wq->wq_queue_lock);
588 
589 	return (1);
590 }
591 
592 /*
593  * This program is intended to be invoked from a Makefile, as part of the build.
594  * As such, in the event of a failure or user-initiated interrupt (^C), we need
595  * to ensure that a subsequent re-make will cause ctfmerge to be executed again.
596  * Unfortunately, ctfmerge will usually be invoked directly after (and as part
597  * of the same Makefile rule as) a link, and will operate on the linked file
598  * in place.  If we merely exit upon receipt of a SIGINT, a subsequent make
599  * will notice that the *linked* file is newer than the object files, and thus
600  * will not reinvoke ctfmerge.  The only way to ensure that a subsequent make
601  * reinvokes ctfmerge, is to remove the file to which we are adding CTF
602  * data (confusingly named the output file).  This means that the link will need
603  * to happen again, but links are generally fast, and we can't allow the merge
604  * to be skipped.
605  *
606  * Another possibility would be to block SIGINT entirely - to always run to
607  * completion.  The run time of ctfmerge can, however, be measured in minutes
608  * in some cases, so this is not a valid option.
609  */
610 static void __dead
611 handle_sig(int sig)
612 {
613 	terminate("Caught signal %d - exiting\n", sig);
614 }
615 
616 static void
617 terminate_cleanup(void)
618 {
619 	int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;
620 
621 	if (tmpname != NULL && dounlink)
622 		unlink(tmpname);
623 
624 	if (outfile == NULL)
625 		return;
626 
627 #if 0
628 	if (dounlink) {
629 		fprintf(stderr, "Removing %s\n", outfile);
630 		unlink(outfile);
631 	}
632 #endif
633 }
634 
635 static void
636 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
637 {
638 	tdata_t *srctd;
639 
640 	if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
641 		terminate("No CTF data found in source file %s\n", srcfile);
642 
643 	tmpname = mktmpname(destfile, ".ctf");
644 	write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs);
645 	if (rename(tmpname, destfile) != 0) {
646 		terminate("Couldn't rename temp file %s to %s", tmpname,
647 		    destfile);
648 	}
649 	free(tmpname);
650 	tdata_free(srctd);
651 }
652 
653 static void
654 wq_init(workqueue_t *wq, int nfiles)
655 {
656 	int throttle, nslots, i;
657 
658 	if (getenv("CTFMERGE_MAX_SLOTS"))
659 		nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
660 	else
661 		nslots = maxslots;
662 
663 	if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
664 		wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
665 	else
666 		wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;
667 
668 	nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
669 	    wq->wq_maxbatchsz);
670 
671 	wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
672 	wq->wq_nwipslots = nslots;
673 #ifdef _SC_NPROCESSORS_ONLN
674 	wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots);
675 #else
676 	wq->wq_nthreads = 2;
677 #endif
678 	wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads);
679 
680 	if (getenv("CTFMERGE_INPUT_THROTTLE"))
681 		throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE"));
682 	else
683 		throttle = MERGE_INPUT_THROTTLE_LEN;
684 	wq->wq_ithrottle = throttle * wq->wq_nthreads;
685 
686 	debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
687 	    wq->wq_nthreads);
688 
689 	wq->wq_next_batchid = 0;
690 
691 	for (i = 0; i < nslots; i++) {
692 		pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL);
693 		pthread_cond_init(&wq->wq_wip[i].wip_cv, NULL);
694 		wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
695 	}
696 
697 	pthread_mutex_init(&wq->wq_queue_lock, NULL);
698 	wq->wq_queue = fifo_new();
699 	pthread_cond_init(&wq->wq_work_avail, NULL);
700 	pthread_cond_init(&wq->wq_work_removed, NULL);
701 	wq->wq_ninqueue = nfiles;
702 	wq->wq_nextpownum = 0;
703 
704 	pthread_mutex_init(&wq->wq_donequeue_lock, NULL);
705 	wq->wq_donequeue = fifo_new();
706 	wq->wq_lastdonebatch = -1;
707 
708 	pthread_cond_init(&wq->wq_done_cv, NULL);
709 
710 	pthread_cond_init(&wq->wq_alldone_cv, NULL);
711 	wq->wq_alldone = 0;
712 
713 	barrier_init(&wq->wq_bar1, wq->wq_nthreads);
714 	barrier_init(&wq->wq_bar2, wq->wq_nthreads);
715 
716 	wq->wq_nomorefiles = 0;
717 }
718 
719 static void
720 start_threads(workqueue_t *wq)
721 {
722 	sigset_t sets;
723 	int i;
724 
725 	sigemptyset(&sets);
726 	sigaddset(&sets, SIGINT);
727 	sigaddset(&sets, SIGQUIT);
728 	sigaddset(&sets, SIGTERM);
729 	pthread_sigmask(SIG_BLOCK, &sets, NULL);
730 
731 	for (i = 0; i < wq->wq_nthreads; i++) {
732 		pthread_create(&wq->wq_thread[i], NULL,
733 		    (void *(*)(void *))worker_thread, wq);
734 	}
735 
736 #if defined(sun)
737 	sigset(SIGINT, handle_sig);
738 	sigset(SIGQUIT, handle_sig);
739 	sigset(SIGTERM, handle_sig);
740 #else
741 	signal(SIGINT, handle_sig);
742 	signal(SIGQUIT, handle_sig);
743 	signal(SIGTERM, handle_sig);
744 #endif
745 	pthread_sigmask(SIG_UNBLOCK, &sets, NULL);
746 }
747 
748 static void
749 join_threads(workqueue_t *wq)
750 {
751 	int i;
752 
753 	for (i = 0; i < wq->wq_nthreads; i++) {
754 		pthread_join(wq->wq_thread[i], NULL);
755 	}
756 }
757 
758 static int
759 strcompare(const void *p1, const void *p2)
760 {
761 	const char *s1 = *((const char * const *)p1);
762 	const char *s2 = *((const char * const *)p2);
763 
764 	return (strcmp(s1, s2));
765 }
766 
767 /*
768  * Core work queue structure; passed to worker threads on thread creation
769  * as the main point of coordination.  Allocate as a static structure; we
770  * could have put this into a local variable in main, but passing a pointer
771  * into your stack to another thread is fragile at best and leads to some
772  * hard-to-debug failure modes.
773  */
774 static workqueue_t wq;
775 
776 int
777 main(int argc, char **argv)
778 {
779 	tdata_t *mstrtd, *savetd;
780 	char *uniqfile = NULL, *uniqlabel = NULL;
781 	char *withfile = NULL;
782 	char *label = NULL;
783 	char **ifiles, **tifiles;
784 	int verbose = 0, docopy = 0;
785 	int write_fuzzy_match = 0;
786 	int keep_stabs = 0;
787 	int require_ctf = 0;
788 	int nifiles, nielems;
789 	int c, i, idx, tidx, err;
790 
791 	progname = basename(argv[0]);
792 
793 	if (getenv("CTFMERGE_DEBUG_LEVEL"))
794 		debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));
795 
796 	err = 0;
797 	while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
798 		switch (c) {
799 		case 'c':
800 			docopy = 1;
801 			break;
802 		case 'd':
803 			/* Uniquify against `uniqfile' */
804 			uniqfile = optarg;
805 			break;
806 		case 'D':
807 			/* Uniquify against label `uniqlabel' in `uniqfile' */
808 			uniqlabel = optarg;
809 			break;
810 		case 'f':
811 			write_fuzzy_match = CTF_FUZZY_MATCH;
812 			break;
813 		case 'g':
814 			keep_stabs = CTF_KEEP_STABS;
815 			break;
816 		case 'l':
817 			/* Label merged types with `label' */
818 			label = optarg;
819 			break;
820 		case 'L':
821 			/* Label merged types with getenv(`label`) */
822 			if ((label = getenv(optarg)) == NULL)
823 				label = __UNCONST(CTF_DEFAULT_LABEL);
824 			break;
825 		case 'o':
826 			/* Place merged types in CTF section in `outfile' */
827 			outfile = optarg;
828 			break;
829 		case 't':
830 			/* Insist *all* object files built from C have CTF */
831 			require_ctf = 1;
832 			break;
833 		case 'v':
834 			/* More debugging information */
835 			verbose = 1;
836 			break;
837 		case 'w':
838 			/* Additive merge with data from `withfile' */
839 			withfile = optarg;
840 			break;
841 		case 's':
842 			/* use the dynsym rather than the symtab */
843 			dynsym = CTF_USE_DYNSYM;
844 			break;
845 		default:
846 			usage();
847 			exit(2);
848 		}
849 	}
850 
851 	/* Validate arguments */
852 	if (docopy) {
853 		if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
854 		    outfile != NULL || withfile != NULL || dynsym != 0)
855 			err++;
856 
857 		if (argc - optind != 2)
858 			err++;
859 	} else {
860 		if (uniqfile != NULL && withfile != NULL)
861 			err++;
862 
863 		if (uniqlabel != NULL && uniqfile == NULL)
864 			err++;
865 
866 		if (outfile == NULL || label == NULL)
867 			err++;
868 
869 		if (argc - optind == 0)
870 			err++;
871 	}
872 
873 	if (err) {
874 		usage();
875 		exit(2);
876 	}
877 
878 	if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
879 		keep_stabs = CTF_KEEP_STABS;
880 
881 	if (uniqfile && access(uniqfile, R_OK) != 0) {
882 		warning("Uniquification file %s couldn't be opened and "
883 		    "will be ignored.\n", uniqfile);
884 		uniqfile = NULL;
885 	}
886 	if (withfile && access(withfile, R_OK) != 0) {
887 		warning("With file %s couldn't be opened and will be "
888 		    "ignored.\n", withfile);
889 		withfile = NULL;
890 	}
891 	if (outfile && access(outfile, R_OK|W_OK) != 0)
892 		terminate("Cannot open output file %s for r/w", outfile);
893 
894 	/*
895 	 * This is ugly, but we don't want to have to have a separate tool
896 	 * (yet) just for copying an ELF section with our specific requirements,
897 	 * so we shoe-horn a copier into ctfmerge.
898 	 */
899 	if (docopy) {
900 		copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);
901 
902 		exit(0);
903 	}
904 
905 	set_terminate_cleanup(terminate_cleanup);
906 
907 	/* Sort the input files and strip out duplicates */
908 	nifiles = argc - optind;
909 	ifiles = xmalloc(sizeof (char *) * nifiles);
910 	tifiles = xmalloc(sizeof (char *) * nifiles);
911 
912 	for (i = 0; i < nifiles; i++)
913 		tifiles[i] = argv[optind + i];
914 	qsort(tifiles, nifiles, sizeof (char *), strcompare);
915 
916 	ifiles[0] = tifiles[0];
917 	for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
918 		if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
919 			ifiles[++idx] = tifiles[tidx];
920 	}
921 	nifiles = idx + 1;
922 
923 	/* Make sure they all exist */
924 	if ((nielems = count_files(ifiles, nifiles)) < 0)
925 		terminate("Some input files were inaccessible\n");
926 
927 	/* Prepare for the merge */
928 	wq_init(&wq, nielems);
929 
930 	start_threads(&wq);
931 
932 	/*
933 	 * Start the merge
934 	 *
935 	 * We're reading everything from each of the object files, so we
936 	 * don't need to specify labels.
937 	 */
938 	if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
939 	    &wq, require_ctf) == 0) {
940 		/*
941 		 * If we're verifying that C files have CTF, it's safe to
942 		 * assume that in this case, we're building only from assembly
943 		 * inputs.
944 		 */
945 		if (require_ctf)
946 			exit(0);
947 		terminate("No ctf sections found to merge\n");
948 	}
949 
950 	pthread_mutex_lock(&wq.wq_queue_lock);
951 	wq.wq_nomorefiles = 1;
952 	pthread_cond_broadcast(&wq.wq_work_avail);
953 	pthread_mutex_unlock(&wq.wq_queue_lock);
954 
955 	pthread_mutex_lock(&wq.wq_queue_lock);
956 	while (wq.wq_alldone == 0)
957 		pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock);
958 	pthread_mutex_unlock(&wq.wq_queue_lock);
959 
960 	join_threads(&wq);
961 
962 	/*
963 	 * All requested files have been merged, with the resulting tree in
964 	 * mstrtd.  savetd is the tree that will be placed into the output file.
965 	 *
966 	 * Regardless of whether we're doing a normal uniquification or an
967 	 * additive merge, we need a type tree that has been uniquified
968 	 * against uniqfile or withfile, as appropriate.
969 	 *
970 	 * If we're doing a uniquification, we stuff the resulting tree into
971 	 * outfile.  Otherwise, we add the tree to the tree already in withfile.
972 	 */
973 	assert(fifo_len(wq.wq_queue) == 1);
974 	mstrtd = fifo_remove(wq.wq_queue);
975 
976 	if (verbose || debug_level) {
977 		debug(2, "Statistics for td %p\n", (void *)mstrtd);
978 
979 		iidesc_stats(mstrtd->td_iihash);
980 	}
981 
982 	if (uniqfile != NULL || withfile != NULL) {
983 		char *reffile, *reflabel = NULL;
984 		tdata_t *reftd;
985 
986 		if (uniqfile != NULL) {
987 			reffile = uniqfile;
988 			reflabel = uniqlabel;
989 		} else
990 			reffile = withfile;
991 
992 		if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
993 		    &reftd, require_ctf) == 0) {
994 			terminate("No CTF data found in reference file %s\n",
995 			    reffile);
996 		}
997 
998 		savetd = tdata_new();
999 
1000 		if (CTF_TYPE_ISCHILD(reftd->td_nextid))
1001 			terminate("No room for additional types in master\n");
1002 
1003 		savetd->td_nextid = withfile ? reftd->td_nextid :
1004 		    CTF_INDEX_TO_TYPE(1, TRUE);
1005 		merge_into_master(mstrtd, reftd, savetd, 0);
1006 
1007 		tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);
1008 
1009 		if (withfile) {
1010 			/*
1011 			 * savetd holds the new data to be added to the withfile
1012 			 */
1013 			tdata_t *withtd = reftd;
1014 
1015 			tdata_merge(withtd, savetd);
1016 
1017 			savetd = withtd;
1018 		} else {
1019 			char uniqname[MAXPATHLEN];
1020 			labelent_t *parle;
1021 
1022 			parle = tdata_label_top(reftd);
1023 
1024 			savetd->td_parlabel = xstrdup(parle->le_name);
1025 
1026 			strncpy(uniqname, reffile, sizeof (uniqname));
1027 			uniqname[MAXPATHLEN - 1] = '\0';
1028 			savetd->td_parname = xstrdup(basename(uniqname));
1029 		}
1030 
1031 	} else {
1032 		/*
1033 		 * No post processing.  Write the merged tree as-is into the
1034 		 * output file.
1035 		 */
1036 		tdata_label_free(mstrtd);
1037 		tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);
1038 
1039 		savetd = mstrtd;
1040 	}
1041 
1042 	tmpname = mktmpname(outfile, ".ctf");
1043 	write_ctf(savetd, outfile, tmpname,
1044 	    CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs);
1045 	if (rename(tmpname, outfile) != 0)
1046 		terminate("Couldn't rename output temp file %s", tmpname);
1047 	free(tmpname);
1048 
1049 	return (0);
1050 }
1051