1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Given several files containing CTF data, merge and uniquify that data into 30 * a single CTF section in an output file. 31 * 32 * Merges can proceed independently. As such, we perform the merges in parallel 33 * using a worker thread model. A given glob of CTF data (either all of the CTF 34 * data from a single input file, or the result of one or more merges) can only 35 * be involved in a single merge at any given time, so the process decreases in 36 * parallelism, especially towards the end, as more and more files are 37 * consolidated, finally resulting in a single merge of two large CTF graphs. 38 * Unfortunately, the last merge is also the slowest, as the two graphs being 39 * merged are each the product of merges of half of the input files. 40 * 41 * The algorithm consists of two phases, described in detail below. The first 42 * phase entails the merging of CTF data in groups of eight. The second phase 43 * takes the results of Phase I, and merges them two at a time. This disparity 44 * is due to an observation that the merge time increases at least quadratically 45 * with the size of the CTF data being merged. As such, merges of CTF graphs 46 * newly read from input files are much faster than merges of CTF graphs that 47 * are themselves the results of prior merges. 48 * 49 * A further complication is the need to ensure the repeatability of CTF merges. 50 * That is, a merge should produce the same output every time, given the same 51 * input. In both phases, this consistency requirement is met by imposing an 52 * ordering on the merge process, thus ensuring that a given set of input files 53 * are merged in the same order every time. 54 * 55 * Phase I 56 * 57 * The main thread reads the input files one by one, transforming the CTF 58 * data they contain into tdata structures. When a given file has been read 59 * and parsed, it is placed on the work queue for retrieval by worker threads. 60 * 61 * Central to Phase I is the Work In Progress (wip) array, which is used to 62 * merge batches of files in a predictable order. Files are read by the main 63 * thread, and are merged into wip array elements in round-robin order. When 64 * the number of files merged into a given array slot equals the batch size, 65 * the merged CTF graph in that array is added to the done slot in order by 66 * array slot. 67 * 68 * For example, consider a case where we have five input files, a batch size 69 * of two, a wip array size of two, and two worker threads (T1 and T2). 70 * 71 * 1. The wip array elements are assigned initial batch numbers 0 and 1. 72 * 2. T1 reads an input file from the input queue (wq_queue). This is the 73 * first input file, so it is placed into wip[0]. The second file is 74 * similarly read and placed into wip[1]. The wip array slots now contain 75 * one file each (wip_nmerged == 1). 76 * 3. T1 reads the third input file, which it merges into wip[0]. The 77 * number of files in wip[0] is equal to the batch size. 78 * 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1] 79 * is now full too. 80 * 5. T2 attempts to place the contents of wip[1] on the done queue 81 * (wq_done_queue), but it can't, since the batch ID for wip[1] is 1. 82 * Batch 0 needs to be on the done queue before batch 1 can be added, so 83 * T2 blocks on wip[1]'s cv. 84 * 6. T1 attempts to place the contents of wip[0] on the done queue, and 85 * succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets 86 * its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2. 87 * 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that 88 * batch 1 can now be added. It adds wip[1] to the done queue, clears 89 * wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and 90 * restarts. 91 * 92 * The above process continues until all input files have been consumed. At 93 * this point, a pair of barriers are used to allow a single thread to move 94 * any partial batches from the wip array to the done array in batch ID order. 95 * When this is complete, wq_done_queue is moved to wq_queue, and Phase II 96 * begins. 97 * 98 * Locking Semantics (Phase I) 99 * 100 * The input queue (wq_queue) and the done queue (wq_done_queue) are 101 * protected by separate mutexes - wq_queue_lock and wq_done_queue. wip 102 * array slots are protected by their own mutexes, which must be grabbed 103 * before releasing the input queue lock. The wip array lock is dropped 104 * when the thread restarts the loop. If the array slot was full, the 105 * array lock will be held while the slot contents are added to the done 106 * queue. The done queue lock is used to protect the wip slot cv's. 107 * 108 * The pow number is protected by the queue lock. The master batch ID 109 * and last completed batch (wq_lastdonebatch) counters are protected *in 110 * Phase I* by the done queue lock. 111 * 112 * Phase II 113 * 114 * When Phase II begins, the queue consists of the merged batches from the 115 * first phase. Assume we have five batches: 116 * 117 * Q: a b c d e 118 * 119 * Using the same batch ID mechanism we used in Phase I, but without the wip 120 * array, worker threads remove two entries at a time from the beginning of 121 * the queue. These two entries are merged, and are added back to the tail 122 * of the queue, as follows: 123 * 124 * Q: a b c d e # start 125 * Q: c d e ab # a, b removed, merged, added to end 126 * Q: e ab cd # c, d removed, merged, added to end 127 * Q: cd eab # e, ab removed, merged, added to end 128 * Q: cdeab # cd, eab removed, merged, added to end 129 * 130 * When one entry remains on the queue, with no merges outstanding, Phase II 131 * finishes. We pre-determine the stopping point by pre-calculating the 132 * number of nodes that will appear on the list. In the example above, the 133 * number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by 134 * signaling the main thread via wq_done_cv. 135 * 136 * Locking Semantics (Phase II) 137 * 138 * The queue (wq_queue), ninqueue, and the master batch ID and last 139 * completed batch counters are protected by wq_queue_lock. The done 140 * queue and corresponding lock are unused in Phase II as is the wip array. 141 * 142 * Uniquification 143 * 144 * We want the CTF data that goes into a given module to be as small as 145 * possible. For example, we don't want it to contain any type data that may 146 * be present in another common module. As such, after creating the master 147 * tdata_t for a given module, we can, if requested by the user, uniquify it 148 * against the tdata_t from another module (genunix in the case of the SunOS 149 * kernel). We perform a merge between the tdata_t for this module and the 150 * tdata_t from genunix. Nodes found in this module that are not present in 151 * genunix are added to a third tdata_t - the uniquified tdata_t. 152 * 153 * Additive Merges 154 * 155 * In some cases, for example if we are issuing a new version of a common 156 * module in a patch, we need to make sure that the CTF data already present 157 * in that module does not change. Changes to this data would void the CTF 158 * data in any module that uniquified against the common module. To preserve 159 * the existing data, we can perform what is known as an additive merge. In 160 * this case, a final uniquification is performed against the CTF data in the 161 * previous version of the module. The result will be the placement of new 162 * and changed data after the existing data, thus preserving the existing type 163 * ID space. 164 * 165 * Saving the result 166 * 167 * When the merges are complete, the resulting tdata_t is placed into the 168 * output file, replacing the .SUNW_ctf section (if any) already in that file. 169 * 170 * The person who changes the merging thread code in this file without updating 171 * this comment will not live to see the stock hit five. 172 */ 173 174 #if HAVE_NBTOOL_CONFIG_H 175 # include "nbtool_config.h" 176 #endif 177 178 #include <stdio.h> 179 #include <stdlib.h> 180 #ifndef _NETBSD_SOURCE 181 #define _NETBSD_SOURCE /* XXX TBD fix this */ 182 #include <unistd.h> 183 #undef _NETBSD_SOURCE 184 #else 185 #include <unistd.h> 186 #endif 187 #include <pthread.h> 188 #include <assert.h> 189 #ifdef illumos 190 #include <synch.h> 191 #endif 192 #include <signal.h> 193 #include <libgen.h> 194 #include <string.h> 195 #include <errno.h> 196 #ifdef illumos 197 #include <alloca.h> 198 #endif 199 #include <sys/param.h> 200 #include <sys/types.h> 201 #include <sys/mman.h> 202 #ifdef illumos 203 #include <sys/sysconf.h> 204 #endif 205 206 #include "ctf_headers.h" 207 #include "ctftools.h" 208 #include "ctfmerge.h" 209 #include "traverse.h" 210 #include "memory.h" 211 #include "fifo.h" 212 #include "barrier.h" 213 214 #pragma init(bigheap) 215 216 #define MERGE_PHASE1_BATCH_SIZE 8 217 #define MERGE_PHASE1_MAX_SLOTS 5 218 #define MERGE_INPUT_THROTTLE_LEN 10 219 220 const char *progname; 221 static char *outfile = NULL; 222 static char *tmpname = NULL; 223 static int dynsym; 224 int debug_level = DEBUG_LEVEL; 225 #ifdef illumos 226 static size_t maxpgsize = 0x400000; 227 #endif 228 229 230 static void 231 usage(void) 232 { 233 (void) fprintf(stderr, 234 "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n" 235 " %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n" 236 " %*s [-g] [-D uniqlabel] file ...\n" 237 " %s [-fgstv] -l label | -L labelenv -o outfile -w withfile " 238 "file ...\n" 239 " %s [-g] -c srcfile destfile\n" 240 "\n" 241 " Note: if -L labelenv is specified and labelenv is not set in\n" 242 " the environment, a default value is used.\n", 243 progname, progname, (int)strlen(progname), " ", 244 progname, progname); 245 } 246 247 #ifdef illumos 248 static void 249 bigheap(void) 250 { 251 size_t big, *size; 252 int sizes; 253 struct memcntl_mha mha; 254 255 /* 256 * First, get the available pagesizes. 257 */ 258 if ((sizes = getpagesizes(NULL, 0)) == -1) 259 return; 260 261 if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL) 262 return; 263 264 if (getpagesizes(size, sizes) == -1) 265 return; 266 267 while (size[sizes - 1] > maxpgsize) 268 sizes--; 269 270 /* set big to the largest allowed page size */ 271 big = size[sizes - 1]; 272 if (big & (big - 1)) { 273 /* 274 * The largest page size is not a power of two for some 275 * inexplicable reason; return. 276 */ 277 return; 278 } 279 280 /* 281 * Now, align our break to the largest page size. 282 */ 283 if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0) 284 return; 285 286 /* 287 * set the preferred page size for the heap 288 */ 289 mha.mha_cmd = MHA_MAPSIZE_BSSBRK; 290 mha.mha_flags = 0; 291 mha.mha_pagesize = big; 292 293 (void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0); 294 } 295 #endif 296 297 static void 298 finalize_phase_one(workqueue_t *wq) 299 { 300 int startslot, i; 301 302 /* 303 * wip slots are cleared out only when maxbatchsz td's have been merged 304 * into them. We're not guaranteed that the number of files we're 305 * merging is a multiple of maxbatchsz, so there will be some partial 306 * groups in the wip array. Move them to the done queue in batch ID 307 * order, starting with the slot containing the next batch that would 308 * have been placed on the done queue, followed by the others. 309 * One thread will be doing this while the others wait at the barrier 310 * back in worker_thread(), so we don't need to worry about pesky things 311 * like locks. 312 */ 313 314 for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) { 315 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) { 316 startslot = i; 317 break; 318 } 319 } 320 321 assert(startslot != -1); 322 323 for (i = startslot; i < startslot + wq->wq_nwipslots; i++) { 324 int slotnum = i % wq->wq_nwipslots; 325 wip_t *wipslot = &wq->wq_wip[slotnum]; 326 327 if (wipslot->wip_td != NULL) { 328 debug(2, "clearing slot %d (%d) (saving %d)\n", 329 slotnum, i, wipslot->wip_nmerged); 330 } else 331 debug(2, "clearing slot %d (%d)\n", slotnum, i); 332 333 if (wipslot->wip_td != NULL) { 334 fifo_add(wq->wq_donequeue, wipslot->wip_td); 335 wq->wq_wip[slotnum].wip_td = NULL; 336 } 337 } 338 339 wq->wq_lastdonebatch = wq->wq_next_batchid++; 340 341 debug(2, "phase one done: donequeue has %d items\n", 342 fifo_len(wq->wq_donequeue)); 343 } 344 345 static void 346 init_phase_two(workqueue_t *wq) 347 { 348 int num; 349 350 /* 351 * We're going to continually merge the first two entries on the queue, 352 * placing the result on the end, until there's nothing left to merge. 353 * At that point, everything will have been merged into one. The 354 * initial value of ninqueue needs to be equal to the total number of 355 * entries that will show up on the queue, both at the start of the 356 * phase and as generated by merges during the phase. 357 */ 358 wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue); 359 while (num != 1) { 360 wq->wq_ninqueue += num / 2; 361 num = num / 2 + num % 2; 362 } 363 364 /* 365 * Move the done queue to the work queue. We won't be using the done 366 * queue in phase 2. 367 */ 368 assert(fifo_len(wq->wq_queue) == 0); 369 fifo_free(wq->wq_queue, NULL); 370 wq->wq_queue = wq->wq_donequeue; 371 } 372 373 static void 374 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum) 375 { 376 pthread_mutex_lock(&wq->wq_donequeue_lock); 377 378 while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) 379 pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock); 380 assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid); 381 382 fifo_add(wq->wq_donequeue, slot->wip_td); 383 wq->wq_lastdonebatch++; 384 pthread_cond_signal(&wq->wq_wip[(slotnum + 1) % 385 wq->wq_nwipslots].wip_cv); 386 387 /* reset the slot for next use */ 388 slot->wip_td = NULL; 389 slot->wip_batchid = wq->wq_next_batchid++; 390 391 pthread_mutex_unlock(&wq->wq_donequeue_lock); 392 } 393 394 static void 395 wip_add_work(wip_t *slot, tdata_t *pow) 396 { 397 if (slot->wip_td == NULL) { 398 slot->wip_td = pow; 399 slot->wip_nmerged = 1; 400 } else { 401 debug(2, "0x%jx: merging %p into %p\n", 402 (uintmax_t)(uintptr_t)pthread_self(), 403 (void *)pow, (void *)slot->wip_td); 404 405 merge_into_master(pow, slot->wip_td, NULL, 0); 406 tdata_free(pow); 407 408 slot->wip_nmerged++; 409 } 410 } 411 412 static void 413 worker_runphase1(workqueue_t *wq) 414 { 415 wip_t *wipslot; 416 tdata_t *pow; 417 int wipslotnum, pownum; 418 419 for (;;) { 420 pthread_mutex_lock(&wq->wq_queue_lock); 421 422 while (fifo_empty(wq->wq_queue)) { 423 if (wq->wq_nomorefiles == 1) { 424 pthread_cond_broadcast(&wq->wq_work_avail); 425 pthread_mutex_unlock(&wq->wq_queue_lock); 426 427 /* on to phase 2 ... */ 428 return; 429 } 430 431 pthread_cond_wait(&wq->wq_work_avail, 432 &wq->wq_queue_lock); 433 } 434 435 /* there's work to be done! */ 436 pow = fifo_remove(wq->wq_queue); 437 pownum = wq->wq_nextpownum++; 438 pthread_cond_broadcast(&wq->wq_work_removed); 439 440 assert(pow != NULL); 441 442 /* merge it into the right slot */ 443 wipslotnum = pownum % wq->wq_nwipslots; 444 wipslot = &wq->wq_wip[wipslotnum]; 445 446 pthread_mutex_lock(&wipslot->wip_lock); 447 448 pthread_mutex_unlock(&wq->wq_queue_lock); 449 450 wip_add_work(wipslot, pow); 451 452 if (wipslot->wip_nmerged == wq->wq_maxbatchsz) 453 wip_save_work(wq, wipslot, wipslotnum); 454 455 pthread_mutex_unlock(&wipslot->wip_lock); 456 } 457 } 458 459 static void 460 worker_runphase2(workqueue_t *wq) 461 { 462 tdata_t *pow1, *pow2; 463 int batchid; 464 465 for (;;) { 466 pthread_mutex_lock(&wq->wq_queue_lock); 467 468 if (wq->wq_ninqueue == 1) { 469 pthread_cond_broadcast(&wq->wq_work_avail); 470 pthread_mutex_unlock(&wq->wq_queue_lock); 471 472 debug(2, "0x%jx: entering p2 completion barrier\n", 473 (uintmax_t)(uintptr_t)pthread_self()); 474 if (barrier_wait(&wq->wq_bar1)) { 475 pthread_mutex_lock(&wq->wq_queue_lock); 476 wq->wq_alldone = 1; 477 pthread_cond_signal(&wq->wq_alldone_cv); 478 pthread_mutex_unlock(&wq->wq_queue_lock); 479 } 480 481 return; 482 } 483 484 if (fifo_len(wq->wq_queue) < 2) { 485 pthread_cond_wait(&wq->wq_work_avail, 486 &wq->wq_queue_lock); 487 pthread_mutex_unlock(&wq->wq_queue_lock); 488 continue; 489 } 490 491 /* there's work to be done! */ 492 pow1 = fifo_remove(wq->wq_queue); 493 pow2 = fifo_remove(wq->wq_queue); 494 wq->wq_ninqueue -= 2; 495 496 batchid = wq->wq_next_batchid++; 497 498 pthread_mutex_unlock(&wq->wq_queue_lock); 499 500 debug(2, "0x%jx: merging %p into %p\n", 501 (uintmax_t)(uintptr_t)pthread_self(), 502 (void *)pow1, (void *)pow2); 503 merge_into_master(pow1, pow2, NULL, 0); 504 tdata_free(pow1); 505 506 /* 507 * merging is complete. place at the tail of the queue in 508 * proper order. 509 */ 510 pthread_mutex_lock(&wq->wq_queue_lock); 511 while (wq->wq_lastdonebatch + 1 != batchid) { 512 pthread_cond_wait(&wq->wq_done_cv, 513 &wq->wq_queue_lock); 514 } 515 516 wq->wq_lastdonebatch = batchid; 517 518 fifo_add(wq->wq_queue, pow2); 519 debug(2, "0x%jx: added %p to queue, len now %d, ninqueue %d\n", 520 (uintmax_t)(uintptr_t)pthread_self(), (void *)pow2, 521 fifo_len(wq->wq_queue), wq->wq_ninqueue); 522 pthread_cond_broadcast(&wq->wq_done_cv); 523 pthread_cond_signal(&wq->wq_work_avail); 524 pthread_mutex_unlock(&wq->wq_queue_lock); 525 } 526 } 527 528 /* 529 * Main loop for worker threads. 530 */ 531 static void 532 worker_thread(workqueue_t *wq) 533 { 534 worker_runphase1(wq); 535 536 debug(2, "0x%jx: entering first barrier\n", 537 (uintmax_t)(uintptr_t)pthread_self()); 538 539 if (barrier_wait(&wq->wq_bar1)) { 540 541 debug(2, "0x%jx: doing work in first barrier\n", 542 (uintmax_t)(uintptr_t)pthread_self()); 543 544 finalize_phase_one(wq); 545 546 init_phase_two(wq); 547 548 debug(2, "0x%jx: ninqueue is %d, %d on queue\n", 549 (uintmax_t)(uintptr_t)pthread_self(), 550 wq->wq_ninqueue, fifo_len(wq->wq_queue)); 551 } 552 553 debug(2, "0x%jx: entering second barrier\n", 554 (uintmax_t)(uintptr_t)pthread_self()); 555 556 (void) barrier_wait(&wq->wq_bar2); 557 558 debug(2, "0x%jx: phase 1 complete\n", 559 (uintmax_t)(uintptr_t)pthread_self()); 560 561 worker_runphase2(wq); 562 } 563 564 /* 565 * Pass a tdata_t tree, built from an input file, off to the work queue for 566 * consumption by worker threads. 567 */ 568 static int 569 merge_ctf_cb(tdata_t *td, char *name, void *arg) 570 { 571 workqueue_t *wq = arg; 572 573 debug(3, "Adding tdata %p for processing\n", (void *)td); 574 575 pthread_mutex_lock(&wq->wq_queue_lock); 576 while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) { 577 debug(2, "Throttling input (len = %d, throttle = %d)\n", 578 fifo_len(wq->wq_queue), wq->wq_ithrottle); 579 pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock); 580 } 581 582 fifo_add(wq->wq_queue, td); 583 debug(1, "Thread 0x%jx announcing %s\n", 584 (uintmax_t)(uintptr_t)pthread_self(), name); 585 pthread_cond_broadcast(&wq->wq_work_avail); 586 pthread_mutex_unlock(&wq->wq_queue_lock); 587 588 return (1); 589 } 590 591 /* 592 * This program is intended to be invoked from a Makefile, as part of the build. 593 * As such, in the event of a failure or user-initiated interrupt (^C), we need 594 * to ensure that a subsequent re-make will cause ctfmerge to be executed again. 595 * Unfortunately, ctfmerge will usually be invoked directly after (and as part 596 * of the same Makefile rule as) a link, and will operate on the linked file 597 * in place. If we merely exit upon receipt of a SIGINT, a subsequent make 598 * will notice that the *linked* file is newer than the object files, and thus 599 * will not reinvoke ctfmerge. The only way to ensure that a subsequent make 600 * reinvokes ctfmerge, is to remove the file to which we are adding CTF 601 * data (confusingly named the output file). This means that the link will need 602 * to happen again, but links are generally fast, and we can't allow the merge 603 * to be skipped. 604 * 605 * Another possibility would be to block SIGINT entirely - to always run to 606 * completion. The run time of ctfmerge can, however, be measured in minutes 607 * in some cases, so this is not a valid option. 608 */ 609 static void __dead 610 handle_sig(int sig) 611 { 612 terminate("Caught signal %d - exiting\n", sig); 613 } 614 615 static void 616 terminate_cleanup(void) 617 { 618 int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1; 619 620 if (tmpname != NULL && dounlink) 621 unlink(tmpname); 622 623 if (outfile == NULL) 624 return; 625 626 #if !defined (__FreeBSD__) && !defined(__NetBSD__) 627 if (dounlink) { 628 fprintf(stderr, "Removing %s\n", outfile); 629 unlink(outfile); 630 } 631 #endif 632 } 633 634 static void 635 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs) 636 { 637 tdata_t *srctd; 638 639 if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0) 640 terminate("No CTF data found in source file %s\n", srcfile); 641 642 tmpname = mktmpname(destfile, ".ctf"); 643 write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs); 644 if (rename(tmpname, destfile) != 0) { 645 terminate("Couldn't rename temp file %s to %s", tmpname, 646 destfile); 647 } 648 free(tmpname); 649 tdata_free(srctd); 650 } 651 652 static void 653 wq_init(workqueue_t *wq, int nfiles) 654 { 655 int throttle, nslots, i; 656 657 if (getenv("CTFMERGE_MAX_SLOTS")) 658 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS")); 659 else 660 nslots = MERGE_PHASE1_MAX_SLOTS; 661 662 if (getenv("CTFMERGE_PHASE1_BATCH_SIZE")) 663 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE")); 664 else 665 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE; 666 667 nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) / 668 wq->wq_maxbatchsz); 669 670 wq->wq_wip = xcalloc(sizeof (wip_t) * nslots); 671 wq->wq_nwipslots = nslots; 672 #ifdef _SC_NPROCESSORS_ONLN 673 wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots); 674 #else 675 wq->wq_nthreads = 2; 676 #endif 677 wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads); 678 679 if (getenv("CTFMERGE_INPUT_THROTTLE")) 680 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE")); 681 else 682 throttle = MERGE_INPUT_THROTTLE_LEN; 683 wq->wq_ithrottle = throttle * wq->wq_nthreads; 684 685 debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots, 686 wq->wq_nthreads); 687 688 wq->wq_next_batchid = 0; 689 690 for (i = 0; i < nslots; i++) { 691 pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL); 692 pthread_cond_init(&wq->wq_wip[i].wip_cv, NULL); 693 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++; 694 } 695 696 pthread_mutex_init(&wq->wq_queue_lock, NULL); 697 wq->wq_queue = fifo_new(); 698 pthread_cond_init(&wq->wq_work_avail, NULL); 699 pthread_cond_init(&wq->wq_work_removed, NULL); 700 wq->wq_ninqueue = nfiles; 701 wq->wq_nextpownum = 0; 702 703 pthread_mutex_init(&wq->wq_donequeue_lock, NULL); 704 wq->wq_donequeue = fifo_new(); 705 wq->wq_lastdonebatch = -1; 706 707 pthread_cond_init(&wq->wq_done_cv, NULL); 708 709 pthread_cond_init(&wq->wq_alldone_cv, NULL); 710 wq->wq_alldone = 0; 711 712 barrier_init(&wq->wq_bar1, wq->wq_nthreads); 713 barrier_init(&wq->wq_bar2, wq->wq_nthreads); 714 715 wq->wq_nomorefiles = 0; 716 } 717 718 static void 719 start_threads(workqueue_t *wq) 720 { 721 sigset_t sets; 722 int i; 723 724 sigemptyset(&sets); 725 sigaddset(&sets, SIGINT); 726 sigaddset(&sets, SIGQUIT); 727 sigaddset(&sets, SIGTERM); 728 pthread_sigmask(SIG_BLOCK, &sets, NULL); 729 730 for (i = 0; i < wq->wq_nthreads; i++) { 731 pthread_create(&wq->wq_thread[i], NULL, 732 (void *(*)(void *))worker_thread, wq); 733 } 734 735 #ifdef illumos 736 sigset(SIGINT, handle_sig); 737 sigset(SIGQUIT, handle_sig); 738 sigset(SIGTERM, handle_sig); 739 #else 740 signal(SIGINT, handle_sig); 741 signal(SIGQUIT, handle_sig); 742 signal(SIGTERM, handle_sig); 743 #endif 744 pthread_sigmask(SIG_UNBLOCK, &sets, NULL); 745 } 746 747 static void 748 join_threads(workqueue_t *wq) 749 { 750 int i; 751 752 for (i = 0; i < wq->wq_nthreads; i++) { 753 pthread_join(wq->wq_thread[i], NULL); 754 } 755 } 756 757 static int 758 strcompare(const void *p1, const void *p2) 759 { 760 const char *s1 = *((const char * const *)p1); 761 const char *s2 = *((const char * const *)p2); 762 763 return (strcmp(s1, s2)); 764 } 765 766 /* 767 * Core work queue structure; passed to worker threads on thread creation 768 * as the main point of coordination. Allocate as a static structure; we 769 * could have put this into a local variable in main, but passing a pointer 770 * into your stack to another thread is fragile at best and leads to some 771 * hard-to-debug failure modes. 772 */ 773 static workqueue_t wq; 774 775 int 776 main(int argc, char **argv) 777 { 778 tdata_t *mstrtd, *savetd; 779 char *uniqfile = NULL, *uniqlabel = NULL; 780 char *withfile = NULL; 781 char *label = NULL; 782 char **ifiles, **tifiles; 783 int verbose = 0, docopy = 0; 784 int write_fuzzy_match = 0; 785 int keep_stabs = 0; 786 int require_ctf = 0; 787 int nifiles, nielems; 788 int c, i, idx, tidx, err; 789 790 progname = basename(argv[0]); 791 792 if (getenv("CTFMERGE_DEBUG_LEVEL")) 793 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL")); 794 795 err = 0; 796 while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) { 797 switch (c) { 798 case 'c': 799 docopy = 1; 800 break; 801 case 'd': 802 /* Uniquify against `uniqfile' */ 803 uniqfile = optarg; 804 break; 805 case 'D': 806 /* Uniquify against label `uniqlabel' in `uniqfile' */ 807 uniqlabel = optarg; 808 break; 809 case 'f': 810 write_fuzzy_match = CTF_FUZZY_MATCH; 811 break; 812 case 'g': 813 keep_stabs = CTF_KEEP_STABS; 814 break; 815 case 'l': 816 /* Label merged types with `label' */ 817 label = optarg; 818 break; 819 case 'L': 820 /* Label merged types with getenv(`label`) */ 821 if ((label = getenv(optarg)) == NULL) 822 label = __UNCONST(CTF_DEFAULT_LABEL); 823 break; 824 case 'o': 825 /* Place merged types in CTF section in `outfile' */ 826 outfile = optarg; 827 break; 828 case 't': 829 /* Insist *all* object files built from C have CTF */ 830 require_ctf = 1; 831 break; 832 case 'v': 833 /* More debugging information */ 834 verbose = 1; 835 break; 836 case 'w': 837 /* Additive merge with data from `withfile' */ 838 withfile = optarg; 839 break; 840 case 's': 841 /* use the dynsym rather than the symtab */ 842 dynsym = CTF_USE_DYNSYM; 843 break; 844 default: 845 usage(); 846 exit(2); 847 } 848 } 849 850 /* Validate arguments */ 851 if (docopy) { 852 if (uniqfile != NULL || uniqlabel != NULL || label != NULL || 853 outfile != NULL || withfile != NULL || dynsym != 0) 854 err++; 855 856 if (argc - optind != 2) 857 err++; 858 } else { 859 if (uniqfile != NULL && withfile != NULL) 860 err++; 861 862 if (uniqlabel != NULL && uniqfile == NULL) 863 err++; 864 865 if (outfile == NULL || label == NULL) 866 err++; 867 868 if (argc - optind == 0) 869 err++; 870 } 871 872 if (err) { 873 usage(); 874 exit(2); 875 } 876 877 if (getenv("STRIPSTABS_KEEP_STABS") != NULL) 878 keep_stabs = CTF_KEEP_STABS; 879 880 if (uniqfile && access(uniqfile, R_OK) != 0) { 881 warning("Uniquification file %s couldn't be opened and " 882 "will be ignored.\n", uniqfile); 883 uniqfile = NULL; 884 } 885 if (withfile && access(withfile, R_OK) != 0) { 886 warning("With file %s couldn't be opened and will be " 887 "ignored.\n", withfile); 888 withfile = NULL; 889 } 890 if (outfile && access(outfile, R_OK|W_OK) != 0) 891 terminate("Cannot open output file %s for r/w", outfile); 892 893 /* 894 * This is ugly, but we don't want to have to have a separate tool 895 * (yet) just for copying an ELF section with our specific requirements, 896 * so we shoe-horn a copier into ctfmerge. 897 */ 898 if (docopy) { 899 copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs); 900 901 exit(0); 902 } 903 904 set_terminate_cleanup(terminate_cleanup); 905 906 /* Sort the input files and strip out duplicates */ 907 nifiles = argc - optind; 908 ifiles = xmalloc(sizeof (char *) * nifiles); 909 tifiles = xmalloc(sizeof (char *) * nifiles); 910 911 for (i = 0; i < nifiles; i++) 912 tifiles[i] = argv[optind + i]; 913 qsort(tifiles, nifiles, sizeof (char *), strcompare); 914 915 ifiles[0] = tifiles[0]; 916 for (idx = 0, tidx = 1; tidx < nifiles; tidx++) { 917 if (strcmp(ifiles[idx], tifiles[tidx]) != 0) 918 ifiles[++idx] = tifiles[tidx]; 919 } 920 nifiles = idx + 1; 921 922 /* Make sure they all exist */ 923 if ((nielems = count_files(ifiles, nifiles)) < 0) 924 terminate("Some input files were inaccessible\n"); 925 926 /* Prepare for the merge */ 927 wq_init(&wq, nielems); 928 929 start_threads(&wq); 930 931 /* 932 * Start the merge 933 * 934 * We're reading everything from each of the object files, so we 935 * don't need to specify labels. 936 */ 937 if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb, 938 &wq, require_ctf) == 0) { 939 /* 940 * If we're verifying that C files have CTF, it's safe to 941 * assume that in this case, we're building only from assembly 942 * inputs. 943 */ 944 if (require_ctf) 945 exit(0); 946 terminate("No ctf sections found to merge\n"); 947 } 948 949 pthread_mutex_lock(&wq.wq_queue_lock); 950 wq.wq_nomorefiles = 1; 951 pthread_cond_broadcast(&wq.wq_work_avail); 952 pthread_mutex_unlock(&wq.wq_queue_lock); 953 954 pthread_mutex_lock(&wq.wq_queue_lock); 955 while (wq.wq_alldone == 0) 956 pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock); 957 pthread_mutex_unlock(&wq.wq_queue_lock); 958 959 join_threads(&wq); 960 961 /* 962 * All requested files have been merged, with the resulting tree in 963 * mstrtd. savetd is the tree that will be placed into the output file. 964 * 965 * Regardless of whether we're doing a normal uniquification or an 966 * additive merge, we need a type tree that has been uniquified 967 * against uniqfile or withfile, as appropriate. 968 * 969 * If we're doing a uniquification, we stuff the resulting tree into 970 * outfile. Otherwise, we add the tree to the tree already in withfile. 971 */ 972 assert(fifo_len(wq.wq_queue) == 1); 973 mstrtd = fifo_remove(wq.wq_queue); 974 975 if (verbose || debug_level) { 976 debug(2, "Statistics for td %p\n", (void *)mstrtd); 977 978 iidesc_stats(mstrtd->td_iihash); 979 } 980 981 if (uniqfile != NULL || withfile != NULL) { 982 char *reffile, *reflabel = NULL; 983 tdata_t *reftd; 984 985 if (uniqfile != NULL) { 986 reffile = uniqfile; 987 reflabel = uniqlabel; 988 } else 989 reffile = withfile; 990 991 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb, 992 &reftd, require_ctf) == 0) { 993 terminate("No CTF data found in reference file %s\n", 994 reffile); 995 } 996 997 savetd = tdata_new(); 998 999 if (CTF_TYPE_ISCHILD(reftd->td_nextid)) 1000 terminate("No room for additional types in master\n"); 1001 1002 savetd->td_nextid = withfile ? reftd->td_nextid : 1003 CTF_INDEX_TO_TYPE(1, TRUE); 1004 merge_into_master(mstrtd, reftd, savetd, 0); 1005 1006 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX); 1007 1008 if (withfile) { 1009 /* 1010 * savetd holds the new data to be added to the withfile 1011 */ 1012 tdata_t *withtd = reftd; 1013 1014 tdata_merge(withtd, savetd); 1015 1016 savetd = withtd; 1017 } else { 1018 char uniqname[MAXPATHLEN]; 1019 labelent_t *parle; 1020 1021 parle = tdata_label_top(reftd); 1022 1023 savetd->td_parlabel = xstrdup(parle->le_name); 1024 1025 strncpy(uniqname, reffile, sizeof (uniqname)); 1026 uniqname[MAXPATHLEN - 1] = '\0'; 1027 savetd->td_parname = xstrdup(basename(uniqname)); 1028 } 1029 1030 } else { 1031 /* 1032 * No post processing. Write the merged tree as-is into the 1033 * output file. 1034 */ 1035 tdata_label_free(mstrtd); 1036 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX); 1037 1038 savetd = mstrtd; 1039 } 1040 1041 tmpname = mktmpname(outfile, ".ctf"); 1042 write_ctf(savetd, outfile, tmpname, 1043 CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs); 1044 if (rename(tmpname, outfile) != 0) 1045 terminate("Couldn't rename output temp file %s", tmpname); 1046 free(tmpname); 1047 1048 return (0); 1049 } 1050