1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Given several files containing CTF data, merge and uniquify that data into 30 * a single CTF section in an output file. 31 * 32 * Merges can proceed independently. As such, we perform the merges in parallel 33 * using a worker thread model. A given glob of CTF data (either all of the CTF 34 * data from a single input file, or the result of one or more merges) can only 35 * be involved in a single merge at any given time, so the process decreases in 36 * parallelism, especially towards the end, as more and more files are 37 * consolidated, finally resulting in a single merge of two large CTF graphs. 38 * Unfortunately, the last merge is also the slowest, as the two graphs being 39 * merged are each the product of merges of half of the input files. 40 * 41 * The algorithm consists of two phases, described in detail below. The first 42 * phase entails the merging of CTF data in groups of eight. The second phase 43 * takes the results of Phase I, and merges them two at a time. This disparity 44 * is due to an observation that the merge time increases at least quadratically 45 * with the size of the CTF data being merged. As such, merges of CTF graphs 46 * newly read from input files are much faster than merges of CTF graphs that 47 * are themselves the results of prior merges. 48 * 49 * A further complication is the need to ensure the repeatability of CTF merges. 50 * That is, a merge should produce the same output every time, given the same 51 * input. In both phases, this consistency requirement is met by imposing an 52 * ordering on the merge process, thus ensuring that a given set of input files 53 * are merged in the same order every time. 54 * 55 * Phase I 56 * 57 * The main thread reads the input files one by one, transforming the CTF 58 * data they contain into tdata structures. When a given file has been read 59 * and parsed, it is placed on the work queue for retrieval by worker threads. 60 * 61 * Central to Phase I is the Work In Progress (wip) array, which is used to 62 * merge batches of files in a predictable order. Files are read by the main 63 * thread, and are merged into wip array elements in round-robin order. When 64 * the number of files merged into a given array slot equals the batch size, 65 * the merged CTF graph in that array is added to the done slot in order by 66 * array slot. 67 * 68 * For example, consider a case where we have five input files, a batch size 69 * of two, a wip array size of two, and two worker threads (T1 and T2). 70 * 71 * 1. The wip array elements are assigned initial batch numbers 0 and 1. 72 * 2. T1 reads an input file from the input queue (wq_queue). This is the 73 * first input file, so it is placed into wip[0]. The second file is 74 * similarly read and placed into wip[1]. The wip array slots now contain 75 * one file each (wip_nmerged == 1). 76 * 3. T1 reads the third input file, which it merges into wip[0]. The 77 * number of files in wip[0] is equal to the batch size. 78 * 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1] 79 * is now full too. 80 * 5. T2 attempts to place the contents of wip[1] on the done queue 81 * (wq_done_queue), but it can't, since the batch ID for wip[1] is 1. 82 * Batch 0 needs to be on the done queue before batch 1 can be added, so 83 * T2 blocks on wip[1]'s cv. 84 * 6. T1 attempts to place the contents of wip[0] on the done queue, and 85 * succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets 86 * its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2. 87 * 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that 88 * batch 1 can now be added. It adds wip[1] to the done queue, clears 89 * wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and 90 * restarts. 91 * 92 * The above process continues until all input files have been consumed. At 93 * this point, a pair of barriers are used to allow a single thread to move 94 * any partial batches from the wip array to the done array in batch ID order. 95 * When this is complete, wq_done_queue is moved to wq_queue, and Phase II 96 * begins. 97 * 98 * Locking Semantics (Phase I) 99 * 100 * The input queue (wq_queue) and the done queue (wq_done_queue) are 101 * protected by separate mutexes - wq_queue_lock and wq_done_queue. wip 102 * array slots are protected by their own mutexes, which must be grabbed 103 * before releasing the input queue lock. The wip array lock is dropped 104 * when the thread restarts the loop. If the array slot was full, the 105 * array lock will be held while the slot contents are added to the done 106 * queue. The done queue lock is used to protect the wip slot cv's. 107 * 108 * The pow number is protected by the queue lock. The master batch ID 109 * and last completed batch (wq_lastdonebatch) counters are protected *in 110 * Phase I* by the done queue lock. 111 * 112 * Phase II 113 * 114 * When Phase II begins, the queue consists of the merged batches from the 115 * first phase. Assume we have five batches: 116 * 117 * Q: a b c d e 118 * 119 * Using the same batch ID mechanism we used in Phase I, but without the wip 120 * array, worker threads remove two entries at a time from the beginning of 121 * the queue. These two entries are merged, and are added back to the tail 122 * of the queue, as follows: 123 * 124 * Q: a b c d e # start 125 * Q: c d e ab # a, b removed, merged, added to end 126 * Q: e ab cd # c, d removed, merged, added to end 127 * Q: cd eab # e, ab removed, merged, added to end 128 * Q: cdeab # cd, eab removed, merged, added to end 129 * 130 * When one entry remains on the queue, with no merges outstanding, Phase II 131 * finishes. We pre-determine the stopping point by pre-calculating the 132 * number of nodes that will appear on the list. In the example above, the 133 * number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by 134 * signaling the main thread via wq_done_cv. 135 * 136 * Locking Semantics (Phase II) 137 * 138 * The queue (wq_queue), ninqueue, and the master batch ID and last 139 * completed batch counters are protected by wq_queue_lock. The done 140 * queue and corresponding lock are unused in Phase II as is the wip array. 141 * 142 * Uniquification 143 * 144 * We want the CTF data that goes into a given module to be as small as 145 * possible. For example, we don't want it to contain any type data that may 146 * be present in another common module. As such, after creating the master 147 * tdata_t for a given module, we can, if requested by the user, uniquify it 148 * against the tdata_t from another module (genunix in the case of the SunOS 149 * kernel). We perform a merge between the tdata_t for this module and the 150 * tdata_t from genunix. Nodes found in this module that are not present in 151 * genunix are added to a third tdata_t - the uniquified tdata_t. 152 * 153 * Additive Merges 154 * 155 * In some cases, for example if we are issuing a new version of a common 156 * module in a patch, we need to make sure that the CTF data already present 157 * in that module does not change. Changes to this data would void the CTF 158 * data in any module that uniquified against the common module. To preserve 159 * the existing data, we can perform what is known as an additive merge. In 160 * this case, a final uniquification is performed against the CTF data in the 161 * previous version of the module. The result will be the placement of new 162 * and changed data after the existing data, thus preserving the existing type 163 * ID space. 164 * 165 * Saving the result 166 * 167 * When the merges are complete, the resulting tdata_t is placed into the 168 * output file, replacing the .SUNW_ctf section (if any) already in that file. 169 * 170 * The person who changes the merging thread code in this file without updating 171 * this comment will not live to see the stock hit five. 172 */ 173 174 #if HAVE_NBTOOL_CONFIG_H 175 # include "nbtool_config.h" 176 #endif 177 178 #include <stdio.h> 179 #include <stdlib.h> 180 #include <unistd.h> 181 #include <pthread.h> 182 #include <assert.h> 183 #if defined(sun) 184 #include <synch.h> 185 #endif 186 #include <signal.h> 187 #include <libgen.h> 188 #include <string.h> 189 #include <errno.h> 190 #if defined(sun) 191 #include <alloca.h> 192 #endif 193 #include <sys/param.h> 194 #include <sys/types.h> 195 #include <sys/mman.h> 196 #if defined(sun) 197 #include <sys/sysconf.h> 198 #endif 199 200 #include "ctf_headers.h" 201 #include "ctftools.h" 202 #include "ctfmerge.h" 203 #include "traverse.h" 204 #include "memory.h" 205 #include "fifo.h" 206 #include "barrier.h" 207 208 #pragma init(bigheap) 209 210 #define MERGE_PHASE1_BATCH_SIZE 8 211 #define MERGE_PHASE1_MAX_SLOTS 5 212 #define MERGE_INPUT_THROTTLE_LEN 10 213 214 const char *progname; 215 static char *outfile = NULL; 216 static char *tmpname = NULL; 217 static int dynsym; 218 int debug_level = DEBUG_LEVEL; 219 static size_t maxpgsize = 0x400000; 220 static int maxslots = MERGE_PHASE1_MAX_SLOTS; 221 222 223 void 224 usage(void) 225 { 226 (void) fprintf(stderr, 227 "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n" 228 " %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n" 229 " %*s [-g] [-D uniqlabel] file ...\n" 230 " %s [-fgstv] -l label | -L labelenv -o outfile -w withfile " 231 "file ...\n" 232 " %s [-g] -c srcfile destfile\n" 233 "\n" 234 " Note: if -L labelenv is specified and labelenv is not set in\n" 235 " the environment, a default value is used.\n", 236 progname, progname, (int)strlen(progname), " ", 237 progname, progname); 238 } 239 240 #if defined(sun) 241 static void 242 bigheap(void) 243 { 244 size_t big, *size; 245 int sizes; 246 struct memcntl_mha mha; 247 248 /* 249 * First, get the available pagesizes. 250 */ 251 if ((sizes = getpagesizes(NULL, 0)) == -1) 252 return; 253 254 if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL) 255 return; 256 257 if (getpagesizes(size, sizes) == -1) 258 return; 259 260 while (size[sizes - 1] > maxpgsize) 261 sizes--; 262 263 /* set big to the largest allowed page size */ 264 big = size[sizes - 1]; 265 if (big & (big - 1)) { 266 /* 267 * The largest page size is not a power of two for some 268 * inexplicable reason; return. 269 */ 270 return; 271 } 272 273 /* 274 * Now, align our break to the largest page size. 275 */ 276 if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0) 277 return; 278 279 /* 280 * set the preferred page size for the heap 281 */ 282 mha.mha_cmd = MHA_MAPSIZE_BSSBRK; 283 mha.mha_flags = 0; 284 mha.mha_pagesize = big; 285 286 (void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0); 287 } 288 #endif 289 290 static void 291 finalize_phase_one(workqueue_t *wq) 292 { 293 int startslot, i; 294 295 /* 296 * wip slots are cleared out only when maxbatchsz td's have been merged 297 * into them. We're not guaranteed that the number of files we're 298 * merging is a multiple of maxbatchsz, so there will be some partial 299 * groups in the wip array. Move them to the done queue in batch ID 300 * order, starting with the slot containing the next batch that would 301 * have been placed on the done queue, followed by the others. 302 * One thread will be doing this while the others wait at the barrier 303 * back in worker_thread(), so we don't need to worry about pesky things 304 * like locks. 305 */ 306 307 for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) { 308 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) { 309 startslot = i; 310 break; 311 } 312 } 313 314 assert(startslot != -1); 315 316 for (i = startslot; i < startslot + wq->wq_nwipslots; i++) { 317 int slotnum = i % wq->wq_nwipslots; 318 wip_t *wipslot = &wq->wq_wip[slotnum]; 319 320 if (wipslot->wip_td != NULL) { 321 debug(2, "clearing slot %d (%d) (saving %d)\n", 322 slotnum, i, wipslot->wip_nmerged); 323 } else 324 debug(2, "clearing slot %d (%d)\n", slotnum, i); 325 326 if (wipslot->wip_td != NULL) { 327 fifo_add(wq->wq_donequeue, wipslot->wip_td); 328 wq->wq_wip[slotnum].wip_td = NULL; 329 } 330 } 331 332 wq->wq_lastdonebatch = wq->wq_next_batchid++; 333 334 debug(2, "phase one done: donequeue has %d items\n", 335 fifo_len(wq->wq_donequeue)); 336 } 337 338 static void 339 init_phase_two(workqueue_t *wq) 340 { 341 int num; 342 343 /* 344 * We're going to continually merge the first two entries on the queue, 345 * placing the result on the end, until there's nothing left to merge. 346 * At that point, everything will have been merged into one. The 347 * initial value of ninqueue needs to be equal to the total number of 348 * entries that will show up on the queue, both at the start of the 349 * phase and as generated by merges during the phase. 350 */ 351 wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue); 352 while (num != 1) { 353 wq->wq_ninqueue += num / 2; 354 num = num / 2 + num % 2; 355 } 356 357 /* 358 * Move the done queue to the work queue. We won't be using the done 359 * queue in phase 2. 360 */ 361 assert(fifo_len(wq->wq_queue) == 0); 362 fifo_free(wq->wq_queue, NULL); 363 wq->wq_queue = wq->wq_donequeue; 364 } 365 366 static void 367 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum) 368 { 369 pthread_mutex_lock(&wq->wq_donequeue_lock); 370 371 while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) 372 pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock); 373 assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid); 374 375 fifo_add(wq->wq_donequeue, slot->wip_td); 376 wq->wq_lastdonebatch++; 377 pthread_cond_signal(&wq->wq_wip[(slotnum + 1) % 378 wq->wq_nwipslots].wip_cv); 379 380 /* reset the slot for next use */ 381 slot->wip_td = NULL; 382 slot->wip_batchid = wq->wq_next_batchid++; 383 384 pthread_mutex_unlock(&wq->wq_donequeue_lock); 385 } 386 387 static void 388 wip_add_work(wip_t *slot, tdata_t *pow) 389 { 390 if (slot->wip_td == NULL) { 391 slot->wip_td = pow; 392 slot->wip_nmerged = 1; 393 } else { 394 debug(2, "%d: merging %p into %p\n", pthread_self(), 395 (void *)pow, (void *)slot->wip_td); 396 397 merge_into_master(pow, slot->wip_td, NULL, 0); 398 tdata_free(pow); 399 400 slot->wip_nmerged++; 401 } 402 } 403 404 static void 405 worker_runphase1(workqueue_t *wq) 406 { 407 wip_t *wipslot; 408 tdata_t *pow; 409 int wipslotnum, pownum; 410 411 for (;;) { 412 pthread_mutex_lock(&wq->wq_queue_lock); 413 414 while (fifo_empty(wq->wq_queue)) { 415 if (wq->wq_nomorefiles == 1) { 416 pthread_cond_broadcast(&wq->wq_work_avail); 417 pthread_mutex_unlock(&wq->wq_queue_lock); 418 419 /* on to phase 2 ... */ 420 return; 421 } 422 423 pthread_cond_wait(&wq->wq_work_avail, 424 &wq->wq_queue_lock); 425 } 426 427 /* there's work to be done! */ 428 pow = fifo_remove(wq->wq_queue); 429 pownum = wq->wq_nextpownum++; 430 pthread_cond_broadcast(&wq->wq_work_removed); 431 432 assert(pow != NULL); 433 434 /* merge it into the right slot */ 435 wipslotnum = pownum % wq->wq_nwipslots; 436 wipslot = &wq->wq_wip[wipslotnum]; 437 438 pthread_mutex_lock(&wipslot->wip_lock); 439 440 pthread_mutex_unlock(&wq->wq_queue_lock); 441 442 wip_add_work(wipslot, pow); 443 444 if (wipslot->wip_nmerged == wq->wq_maxbatchsz) 445 wip_save_work(wq, wipslot, wipslotnum); 446 447 pthread_mutex_unlock(&wipslot->wip_lock); 448 } 449 } 450 451 static void 452 worker_runphase2(workqueue_t *wq) 453 { 454 tdata_t *pow1, *pow2; 455 int batchid; 456 457 for (;;) { 458 pthread_mutex_lock(&wq->wq_queue_lock); 459 460 if (wq->wq_ninqueue == 1) { 461 pthread_cond_broadcast(&wq->wq_work_avail); 462 pthread_mutex_unlock(&wq->wq_queue_lock); 463 464 debug(2, "%d: entering p2 completion barrier\n", 465 pthread_self()); 466 if (barrier_wait(&wq->wq_bar1)) { 467 pthread_mutex_lock(&wq->wq_queue_lock); 468 wq->wq_alldone = 1; 469 pthread_cond_signal(&wq->wq_alldone_cv); 470 pthread_mutex_unlock(&wq->wq_queue_lock); 471 } 472 473 return; 474 } 475 476 if (fifo_len(wq->wq_queue) < 2) { 477 pthread_cond_wait(&wq->wq_work_avail, 478 &wq->wq_queue_lock); 479 pthread_mutex_unlock(&wq->wq_queue_lock); 480 continue; 481 } 482 483 /* there's work to be done! */ 484 pow1 = fifo_remove(wq->wq_queue); 485 pow2 = fifo_remove(wq->wq_queue); 486 wq->wq_ninqueue -= 2; 487 488 batchid = wq->wq_next_batchid++; 489 490 pthread_mutex_unlock(&wq->wq_queue_lock); 491 492 debug(2, "%d: merging %p into %p\n", pthread_self(), 493 (void *)pow1, (void *)pow2); 494 merge_into_master(pow1, pow2, NULL, 0); 495 tdata_free(pow1); 496 497 /* 498 * merging is complete. place at the tail of the queue in 499 * proper order. 500 */ 501 pthread_mutex_lock(&wq->wq_queue_lock); 502 while (wq->wq_lastdonebatch + 1 != batchid) { 503 pthread_cond_wait(&wq->wq_done_cv, 504 &wq->wq_queue_lock); 505 } 506 507 wq->wq_lastdonebatch = batchid; 508 509 fifo_add(wq->wq_queue, pow2); 510 debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n", 511 pthread_self(), (void *)pow2, fifo_len(wq->wq_queue), 512 wq->wq_ninqueue); 513 pthread_cond_broadcast(&wq->wq_done_cv); 514 pthread_cond_signal(&wq->wq_work_avail); 515 pthread_mutex_unlock(&wq->wq_queue_lock); 516 } 517 } 518 519 /* 520 * Main loop for worker threads. 521 */ 522 static void 523 worker_thread(workqueue_t *wq) 524 { 525 worker_runphase1(wq); 526 527 debug(2, "%d: entering first barrier\n", pthread_self()); 528 529 if (barrier_wait(&wq->wq_bar1)) { 530 531 debug(2, "%d: doing work in first barrier\n", pthread_self()); 532 533 finalize_phase_one(wq); 534 535 init_phase_two(wq); 536 537 debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(), 538 wq->wq_ninqueue, fifo_len(wq->wq_queue)); 539 } 540 541 debug(2, "%d: entering second barrier\n", pthread_self()); 542 543 (void) barrier_wait(&wq->wq_bar2); 544 545 debug(2, "%d: phase 1 complete\n", pthread_self()); 546 547 worker_runphase2(wq); 548 } 549 550 /* 551 * Pass a tdata_t tree, built from an input file, off to the work queue for 552 * consumption by worker threads. 553 */ 554 static int 555 merge_ctf_cb(tdata_t *td, char *name, void *arg) 556 { 557 workqueue_t *wq = arg; 558 559 debug(3, "Adding tdata %p for processing\n", (void *)td); 560 561 pthread_mutex_lock(&wq->wq_queue_lock); 562 while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) { 563 debug(2, "Throttling input (len = %d, throttle = %d)\n", 564 fifo_len(wq->wq_queue), wq->wq_ithrottle); 565 pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock); 566 } 567 568 fifo_add(wq->wq_queue, td); 569 debug(1, "Thread %d announcing %s\n", pthread_self(), name); 570 pthread_cond_broadcast(&wq->wq_work_avail); 571 pthread_mutex_unlock(&wq->wq_queue_lock); 572 573 return (1); 574 } 575 576 /* 577 * This program is intended to be invoked from a Makefile, as part of the build. 578 * As such, in the event of a failure or user-initiated interrupt (^C), we need 579 * to ensure that a subsequent re-make will cause ctfmerge to be executed again. 580 * Unfortunately, ctfmerge will usually be invoked directly after (and as part 581 * of the same Makefile rule as) a link, and will operate on the linked file 582 * in place. If we merely exit upon receipt of a SIGINT, a subsequent make 583 * will notice that the *linked* file is newer than the object files, and thus 584 * will not reinvoke ctfmerge. The only way to ensure that a subsequent make 585 * reinvokes ctfmerge, is to remove the file to which we are adding CTF 586 * data (confusingly named the output file). This means that the link will need 587 * to happen again, but links are generally fast, and we can't allow the merge 588 * to be skipped. 589 * 590 * Another possibility would be to block SIGINT entirely - to always run to 591 * completion. The run time of ctfmerge can, however, be measured in minutes 592 * in some cases, so this is not a valid option. 593 */ 594 static void 595 handle_sig(int sig) 596 { 597 terminate("Caught signal %d - exiting\n", sig); 598 } 599 600 static void 601 terminate_cleanup(void) 602 { 603 int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1; 604 605 if (tmpname != NULL && dounlink) 606 unlink(tmpname); 607 608 if (outfile == NULL) 609 return; 610 611 #if !defined(__FreeBSD__) 612 if (dounlink) { 613 fprintf(stderr, "Removing %s\n", outfile); 614 unlink(outfile); 615 } 616 #endif 617 } 618 619 static void 620 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs) 621 { 622 tdata_t *srctd; 623 624 if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0) 625 terminate("No CTF data found in source file %s\n", srcfile); 626 627 tmpname = mktmpname(destfile, ".ctf"); 628 write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs); 629 if (rename(tmpname, destfile) != 0) { 630 terminate("Couldn't rename temp file %s to %s", tmpname, 631 destfile); 632 } 633 free(tmpname); 634 tdata_free(srctd); 635 } 636 637 static void 638 wq_init(workqueue_t *wq, int nfiles) 639 { 640 int throttle, nslots, i; 641 642 if (getenv("CTFMERGE_MAX_SLOTS")) 643 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS")); 644 else 645 nslots = maxslots; 646 647 if (getenv("CTFMERGE_PHASE1_BATCH_SIZE")) 648 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE")); 649 else 650 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE; 651 652 nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) / 653 wq->wq_maxbatchsz); 654 655 wq->wq_wip = xcalloc(sizeof (wip_t) * nslots); 656 wq->wq_nwipslots = nslots; 657 #ifdef _SC_NPROCESSORS_ONLN 658 wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots); 659 #else 660 wq->wq_nthreads = 2; 661 #endif 662 wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads); 663 664 if (getenv("CTFMERGE_INPUT_THROTTLE")) 665 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE")); 666 else 667 throttle = MERGE_INPUT_THROTTLE_LEN; 668 wq->wq_ithrottle = throttle * wq->wq_nthreads; 669 670 debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots, 671 wq->wq_nthreads); 672 673 wq->wq_next_batchid = 0; 674 675 for (i = 0; i < nslots; i++) { 676 pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL); 677 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++; 678 } 679 680 pthread_mutex_init(&wq->wq_queue_lock, NULL); 681 wq->wq_queue = fifo_new(); 682 pthread_cond_init(&wq->wq_work_avail, NULL); 683 pthread_cond_init(&wq->wq_work_removed, NULL); 684 wq->wq_ninqueue = nfiles; 685 wq->wq_nextpownum = 0; 686 687 pthread_mutex_init(&wq->wq_donequeue_lock, NULL); 688 wq->wq_donequeue = fifo_new(); 689 wq->wq_lastdonebatch = -1; 690 691 pthread_cond_init(&wq->wq_done_cv, NULL); 692 693 pthread_cond_init(&wq->wq_alldone_cv, NULL); 694 wq->wq_alldone = 0; 695 696 barrier_init(&wq->wq_bar1, wq->wq_nthreads); 697 barrier_init(&wq->wq_bar2, wq->wq_nthreads); 698 699 wq->wq_nomorefiles = 0; 700 } 701 702 static void 703 start_threads(workqueue_t *wq) 704 { 705 sigset_t sets; 706 int i; 707 708 sigemptyset(&sets); 709 sigaddset(&sets, SIGINT); 710 sigaddset(&sets, SIGQUIT); 711 sigaddset(&sets, SIGTERM); 712 pthread_sigmask(SIG_BLOCK, &sets, NULL); 713 714 for (i = 0; i < wq->wq_nthreads; i++) { 715 pthread_create(&wq->wq_thread[i], NULL, 716 (void *(*)(void *))worker_thread, wq); 717 } 718 719 #if defined(sun) 720 sigset(SIGINT, handle_sig); 721 sigset(SIGQUIT, handle_sig); 722 sigset(SIGTERM, handle_sig); 723 #else 724 signal(SIGINT, handle_sig); 725 signal(SIGQUIT, handle_sig); 726 signal(SIGTERM, handle_sig); 727 #endif 728 pthread_sigmask(SIG_UNBLOCK, &sets, NULL); 729 } 730 731 static void 732 join_threads(workqueue_t *wq) 733 { 734 int i; 735 736 for (i = 0; i < wq->wq_nthreads; i++) { 737 pthread_join(wq->wq_thread[i], NULL); 738 } 739 } 740 741 static int 742 strcompare(const void *p1, const void *p2) 743 { 744 char *s1 = *((char **)p1); 745 char *s2 = *((char **)p2); 746 747 return (strcmp(s1, s2)); 748 } 749 750 /* 751 * Core work queue structure; passed to worker threads on thread creation 752 * as the main point of coordination. Allocate as a static structure; we 753 * could have put this into a local variable in main, but passing a pointer 754 * into your stack to another thread is fragile at best and leads to some 755 * hard-to-debug failure modes. 756 */ 757 static workqueue_t wq; 758 759 int 760 main(int argc, char **argv) 761 { 762 tdata_t *mstrtd, *savetd; 763 char *uniqfile = NULL, *uniqlabel = NULL; 764 char *withfile = NULL; 765 char *label = NULL; 766 char **ifiles, **tifiles; 767 int verbose = 0, docopy = 0; 768 int write_fuzzy_match = 0; 769 int keep_stabs = 0; 770 int require_ctf = 0; 771 int nifiles, nielems; 772 int c, i, idx, tidx, err; 773 774 progname = basename(argv[0]); 775 776 if (getenv("CTFMERGE_DEBUG_LEVEL")) 777 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL")); 778 779 err = 0; 780 while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:sS:")) != EOF) { 781 switch (c) { 782 case 'c': 783 docopy = 1; 784 break; 785 case 'd': 786 /* Uniquify against `uniqfile' */ 787 uniqfile = optarg; 788 break; 789 case 'D': 790 /* Uniquify against label `uniqlabel' in `uniqfile' */ 791 uniqlabel = optarg; 792 break; 793 case 'f': 794 write_fuzzy_match = CTF_FUZZY_MATCH; 795 break; 796 case 'g': 797 keep_stabs = CTF_KEEP_STABS; 798 break; 799 case 'l': 800 /* Label merged types with `label' */ 801 label = optarg; 802 break; 803 case 'L': 804 /* Label merged types with getenv(`label`) */ 805 if ((label = getenv(optarg)) == NULL) 806 label = CTF_DEFAULT_LABEL; 807 break; 808 case 'o': 809 /* Place merged types in CTF section in `outfile' */ 810 outfile = optarg; 811 break; 812 case 't': 813 /* Insist *all* object files built from C have CTF */ 814 require_ctf = 1; 815 break; 816 case 'v': 817 /* More debugging information */ 818 verbose = 1; 819 break; 820 case 'w': 821 /* Additive merge with data from `withfile' */ 822 withfile = optarg; 823 break; 824 case 's': 825 /* use the dynsym rather than the symtab */ 826 dynsym = CTF_USE_DYNSYM; 827 break; 828 case 'S': 829 maxslots = atoi(optarg); 830 break; 831 default: 832 usage(); 833 exit(2); 834 } 835 } 836 837 /* Validate arguments */ 838 if (docopy) { 839 if (uniqfile != NULL || uniqlabel != NULL || label != NULL || 840 outfile != NULL || withfile != NULL || dynsym != 0) 841 err++; 842 843 if (argc - optind != 2) 844 err++; 845 } else { 846 if (uniqfile != NULL && withfile != NULL) 847 err++; 848 849 if (uniqlabel != NULL && uniqfile == NULL) 850 err++; 851 852 if (outfile == NULL || label == NULL) 853 err++; 854 855 if (argc - optind == 0) 856 err++; 857 } 858 859 if (err) { 860 usage(); 861 exit(2); 862 } 863 864 if (getenv("STRIPSTABS_KEEP_STABS") != NULL) 865 keep_stabs = CTF_KEEP_STABS; 866 867 if (uniqfile && access(uniqfile, R_OK) != 0) { 868 warning("Uniquification file %s couldn't be opened and " 869 "will be ignored.\n", uniqfile); 870 uniqfile = NULL; 871 } 872 if (withfile && access(withfile, R_OK) != 0) { 873 warning("With file %s couldn't be opened and will be " 874 "ignored.\n", withfile); 875 withfile = NULL; 876 } 877 if (outfile && access(outfile, R_OK|W_OK) != 0) 878 terminate("Cannot open output file %s for r/w", outfile); 879 880 /* 881 * This is ugly, but we don't want to have to have a separate tool 882 * (yet) just for copying an ELF section with our specific requirements, 883 * so we shoe-horn a copier into ctfmerge. 884 */ 885 if (docopy) { 886 copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs); 887 888 exit(0); 889 } 890 891 set_terminate_cleanup(terminate_cleanup); 892 893 /* Sort the input files and strip out duplicates */ 894 nifiles = argc - optind; 895 ifiles = xmalloc(sizeof (char *) * nifiles); 896 tifiles = xmalloc(sizeof (char *) * nifiles); 897 898 for (i = 0; i < nifiles; i++) 899 tifiles[i] = argv[optind + i]; 900 qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare); 901 902 ifiles[0] = tifiles[0]; 903 for (idx = 0, tidx = 1; tidx < nifiles; tidx++) { 904 if (strcmp(ifiles[idx], tifiles[tidx]) != 0) 905 ifiles[++idx] = tifiles[tidx]; 906 } 907 nifiles = idx + 1; 908 909 /* Make sure they all exist */ 910 if ((nielems = count_files(ifiles, nifiles)) < 0) 911 terminate("Some input files were inaccessible\n"); 912 913 /* Prepare for the merge */ 914 wq_init(&wq, nielems); 915 916 start_threads(&wq); 917 918 /* 919 * Start the merge 920 * 921 * We're reading everything from each of the object files, so we 922 * don't need to specify labels. 923 */ 924 if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb, 925 &wq, require_ctf) == 0) { 926 /* 927 * If we're verifying that C files have CTF, it's safe to 928 * assume that in this case, we're building only from assembly 929 * inputs. 930 */ 931 if (require_ctf) 932 exit(0); 933 terminate("No ctf sections found to merge\n"); 934 } 935 936 pthread_mutex_lock(&wq.wq_queue_lock); 937 wq.wq_nomorefiles = 1; 938 pthread_cond_broadcast(&wq.wq_work_avail); 939 pthread_mutex_unlock(&wq.wq_queue_lock); 940 941 pthread_mutex_lock(&wq.wq_queue_lock); 942 while (wq.wq_alldone == 0) 943 pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock); 944 pthread_mutex_unlock(&wq.wq_queue_lock); 945 946 join_threads(&wq); 947 948 /* 949 * All requested files have been merged, with the resulting tree in 950 * mstrtd. savetd is the tree that will be placed into the output file. 951 * 952 * Regardless of whether we're doing a normal uniquification or an 953 * additive merge, we need a type tree that has been uniquified 954 * against uniqfile or withfile, as appropriate. 955 * 956 * If we're doing a uniquification, we stuff the resulting tree into 957 * outfile. Otherwise, we add the tree to the tree already in withfile. 958 */ 959 assert(fifo_len(wq.wq_queue) == 1); 960 mstrtd = fifo_remove(wq.wq_queue); 961 962 if (verbose || debug_level) { 963 debug(2, "Statistics for td %p\n", (void *)mstrtd); 964 965 iidesc_stats(mstrtd->td_iihash); 966 } 967 968 if (uniqfile != NULL || withfile != NULL) { 969 char *reffile, *reflabel = NULL; 970 tdata_t *reftd; 971 972 if (uniqfile != NULL) { 973 reffile = uniqfile; 974 reflabel = uniqlabel; 975 } else 976 reffile = withfile; 977 978 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb, 979 &reftd, require_ctf) == 0) { 980 terminate("No CTF data found in reference file %s\n", 981 reffile); 982 } 983 984 savetd = tdata_new(); 985 986 if (CTF_TYPE_ISCHILD(reftd->td_nextid)) 987 terminate("No room for additional types in master\n"); 988 989 savetd->td_nextid = withfile ? reftd->td_nextid : 990 CTF_INDEX_TO_TYPE(1, TRUE); 991 merge_into_master(mstrtd, reftd, savetd, 0); 992 993 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX); 994 995 if (withfile) { 996 /* 997 * savetd holds the new data to be added to the withfile 998 */ 999 tdata_t *withtd = reftd; 1000 1001 tdata_merge(withtd, savetd); 1002 1003 savetd = withtd; 1004 } else { 1005 char uniqname[MAXPATHLEN]; 1006 labelent_t *parle; 1007 1008 parle = tdata_label_top(reftd); 1009 1010 savetd->td_parlabel = xstrdup(parle->le_name); 1011 1012 strncpy(uniqname, reffile, sizeof (uniqname)); 1013 uniqname[MAXPATHLEN - 1] = '\0'; 1014 savetd->td_parname = xstrdup(basename(uniqname)); 1015 } 1016 1017 } else { 1018 /* 1019 * No post processing. Write the merged tree as-is into the 1020 * output file. 1021 */ 1022 tdata_label_free(mstrtd); 1023 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX); 1024 1025 savetd = mstrtd; 1026 } 1027 1028 tmpname = mktmpname(outfile, ".ctf"); 1029 write_ctf(savetd, outfile, tmpname, 1030 CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs); 1031 if (rename(tmpname, outfile) != 0) 1032 terminate("Couldn't rename output temp file %s", tmpname); 1033 free(tmpname); 1034 1035 return (0); 1036 } 1037