1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Given several files containing CTF data, merge and uniquify that data into 30 * a single CTF section in an output file. 31 * 32 * Merges can proceed independently. As such, we perform the merges in parallel 33 * using a worker thread model. A given glob of CTF data (either all of the CTF 34 * data from a single input file, or the result of one or more merges) can only 35 * be involved in a single merge at any given time, so the process decreases in 36 * parallelism, especially towards the end, as more and more files are 37 * consolidated, finally resulting in a single merge of two large CTF graphs. 38 * Unfortunately, the last merge is also the slowest, as the two graphs being 39 * merged are each the product of merges of half of the input files. 40 * 41 * The algorithm consists of two phases, described in detail below. The first 42 * phase entails the merging of CTF data in groups of eight. The second phase 43 * takes the results of Phase I, and merges them two at a time. This disparity 44 * is due to an observation that the merge time increases at least quadratically 45 * with the size of the CTF data being merged. As such, merges of CTF graphs 46 * newly read from input files are much faster than merges of CTF graphs that 47 * are themselves the results of prior merges. 48 * 49 * A further complication is the need to ensure the repeatability of CTF merges. 50 * That is, a merge should produce the same output every time, given the same 51 * input. In both phases, this consistency requirement is met by imposing an 52 * ordering on the merge process, thus ensuring that a given set of input files 53 * are merged in the same order every time. 54 * 55 * Phase I 56 * 57 * The main thread reads the input files one by one, transforming the CTF 58 * data they contain into tdata structures. When a given file has been read 59 * and parsed, it is placed on the work queue for retrieval by worker threads. 60 * 61 * Central to Phase I is the Work In Progress (wip) array, which is used to 62 * merge batches of files in a predictable order. Files are read by the main 63 * thread, and are merged into wip array elements in round-robin order. When 64 * the number of files merged into a given array slot equals the batch size, 65 * the merged CTF graph in that array is added to the done slot in order by 66 * array slot. 67 * 68 * For example, consider a case where we have five input files, a batch size 69 * of two, a wip array size of two, and two worker threads (T1 and T2). 70 * 71 * 1. The wip array elements are assigned initial batch numbers 0 and 1. 72 * 2. T1 reads an input file from the input queue (wq_queue). This is the 73 * first input file, so it is placed into wip[0]. The second file is 74 * similarly read and placed into wip[1]. The wip array slots now contain 75 * one file each (wip_nmerged == 1). 76 * 3. T1 reads the third input file, which it merges into wip[0]. The 77 * number of files in wip[0] is equal to the batch size. 78 * 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1] 79 * is now full too. 80 * 5. T2 attempts to place the contents of wip[1] on the done queue 81 * (wq_done_queue), but it can't, since the batch ID for wip[1] is 1. 82 * Batch 0 needs to be on the done queue before batch 1 can be added, so 83 * T2 blocks on wip[1]'s cv. 84 * 6. T1 attempts to place the contents of wip[0] on the done queue, and 85 * succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets 86 * its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2. 87 * 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that 88 * batch 1 can now be added. It adds wip[1] to the done queue, clears 89 * wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and 90 * restarts. 91 * 92 * The above process continues until all input files have been consumed. At 93 * this point, a pair of barriers are used to allow a single thread to move 94 * any partial batches from the wip array to the done array in batch ID order. 95 * When this is complete, wq_done_queue is moved to wq_queue, and Phase II 96 * begins. 97 * 98 * Locking Semantics (Phase I) 99 * 100 * The input queue (wq_queue) and the done queue (wq_done_queue) are 101 * protected by separate mutexes - wq_queue_lock and wq_done_queue. wip 102 * array slots are protected by their own mutexes, which must be grabbed 103 * before releasing the input queue lock. The wip array lock is dropped 104 * when the thread restarts the loop. If the array slot was full, the 105 * array lock will be held while the slot contents are added to the done 106 * queue. The done queue lock is used to protect the wip slot cv's. 107 * 108 * The pow number is protected by the queue lock. The master batch ID 109 * and last completed batch (wq_lastdonebatch) counters are protected *in 110 * Phase I* by the done queue lock. 111 * 112 * Phase II 113 * 114 * When Phase II begins, the queue consists of the merged batches from the 115 * first phase. Assume we have five batches: 116 * 117 * Q: a b c d e 118 * 119 * Using the same batch ID mechanism we used in Phase I, but without the wip 120 * array, worker threads remove two entries at a time from the beginning of 121 * the queue. These two entries are merged, and are added back to the tail 122 * of the queue, as follows: 123 * 124 * Q: a b c d e # start 125 * Q: c d e ab # a, b removed, merged, added to end 126 * Q: e ab cd # c, d removed, merged, added to end 127 * Q: cd eab # e, ab removed, merged, added to end 128 * Q: cdeab # cd, eab removed, merged, added to end 129 * 130 * When one entry remains on the queue, with no merges outstanding, Phase II 131 * finishes. We pre-determine the stopping point by pre-calculating the 132 * number of nodes that will appear on the list. In the example above, the 133 * number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by 134 * signaling the main thread via wq_done_cv. 135 * 136 * Locking Semantics (Phase II) 137 * 138 * The queue (wq_queue), ninqueue, and the master batch ID and last 139 * completed batch counters are protected by wq_queue_lock. The done 140 * queue and corresponding lock are unused in Phase II as is the wip array. 141 * 142 * Uniquification 143 * 144 * We want the CTF data that goes into a given module to be as small as 145 * possible. For example, we don't want it to contain any type data that may 146 * be present in another common module. As such, after creating the master 147 * tdata_t for a given module, we can, if requested by the user, uniquify it 148 * against the tdata_t from another module (genunix in the case of the SunOS 149 * kernel). We perform a merge between the tdata_t for this module and the 150 * tdata_t from genunix. Nodes found in this module that are not present in 151 * genunix are added to a third tdata_t - the uniquified tdata_t. 152 * 153 * Additive Merges 154 * 155 * In some cases, for example if we are issuing a new version of a common 156 * module in a patch, we need to make sure that the CTF data already present 157 * in that module does not change. Changes to this data would void the CTF 158 * data in any module that uniquified against the common module. To preserve 159 * the existing data, we can perform what is known as an additive merge. In 160 * this case, a final uniquification is performed against the CTF data in the 161 * previous version of the module. The result will be the placement of new 162 * and changed data after the existing data, thus preserving the existing type 163 * ID space. 164 * 165 * Saving the result 166 * 167 * When the merges are complete, the resulting tdata_t is placed into the 168 * output file, replacing the .SUNW_ctf section (if any) already in that file. 169 * 170 * The person who changes the merging thread code in this file without updating 171 * this comment will not live to see the stock hit five. 172 */ 173 174 #if HAVE_NBTOOL_CONFIG_H 175 # include "nbtool_config.h" 176 #endif 177 178 #include <stdio.h> 179 #include <stdlib.h> 180 #ifndef _NETBSD_SOURCE 181 #define _NETBSD_SOURCE /* XXX TBD fix this */ 182 #include <unistd.h> 183 #undef _NETBSD_SOURCE 184 #else 185 #include <unistd.h> 186 #endif 187 #include <pthread.h> 188 #include <assert.h> 189 #if defined(sun) 190 #include <synch.h> 191 #endif 192 #include <signal.h> 193 #include <libgen.h> 194 #include <string.h> 195 #include <errno.h> 196 #if defined(sun) 197 #include <alloca.h> 198 #endif 199 #include <sys/param.h> 200 #include <sys/types.h> 201 #include <sys/mman.h> 202 #if defined(sun) 203 #include <sys/sysconf.h> 204 #endif 205 206 #include "ctf_headers.h" 207 #include "ctftools.h" 208 #include "ctfmerge.h" 209 #include "traverse.h" 210 #include "memory.h" 211 #include "fifo.h" 212 #include "barrier.h" 213 214 #pragma init(bigheap) 215 216 #define MERGE_PHASE1_BATCH_SIZE 8 217 #define MERGE_PHASE1_MAX_SLOTS 5 218 #define MERGE_INPUT_THROTTLE_LEN 10 219 220 const char *progname; 221 static char *outfile = NULL; 222 static char *tmpname = NULL; 223 static int dynsym; 224 int debug_level = DEBUG_LEVEL; 225 #if 0 226 static size_t maxpgsize = 0x400000; 227 #endif 228 static int maxslots = MERGE_PHASE1_MAX_SLOTS; 229 230 231 static void 232 usage(void) 233 { 234 (void) fprintf(stderr, 235 "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n" 236 " %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n" 237 " %*s [-g] [-D uniqlabel] file ...\n" 238 " %s [-fgstv] -l label | -L labelenv -o outfile -w withfile " 239 "file ...\n" 240 " %s [-g] -c srcfile destfile\n" 241 "\n" 242 " Note: if -L labelenv is specified and labelenv is not set in\n" 243 " the environment, a default value is used.\n", 244 progname, progname, (int)strlen(progname), " ", 245 progname, progname); 246 } 247 248 #if defined(sun) 249 static void 250 bigheap(void) 251 { 252 size_t big, *size; 253 int sizes; 254 struct memcntl_mha mha; 255 256 /* 257 * First, get the available pagesizes. 258 */ 259 if ((sizes = getpagesizes(NULL, 0)) == -1) 260 return; 261 262 if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL) 263 return; 264 265 if (getpagesizes(size, sizes) == -1) 266 return; 267 268 while (size[sizes - 1] > maxpgsize) 269 sizes--; 270 271 /* set big to the largest allowed page size */ 272 big = size[sizes - 1]; 273 if (big & (big - 1)) { 274 /* 275 * The largest page size is not a power of two for some 276 * inexplicable reason; return. 277 */ 278 return; 279 } 280 281 /* 282 * Now, align our break to the largest page size. 283 */ 284 if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0) 285 return; 286 287 /* 288 * set the preferred page size for the heap 289 */ 290 mha.mha_cmd = MHA_MAPSIZE_BSSBRK; 291 mha.mha_flags = 0; 292 mha.mha_pagesize = big; 293 294 (void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0); 295 } 296 #endif 297 298 static void 299 finalize_phase_one(workqueue_t *wq) 300 { 301 int startslot, i; 302 303 /* 304 * wip slots are cleared out only when maxbatchsz td's have been merged 305 * into them. We're not guaranteed that the number of files we're 306 * merging is a multiple of maxbatchsz, so there will be some partial 307 * groups in the wip array. Move them to the done queue in batch ID 308 * order, starting with the slot containing the next batch that would 309 * have been placed on the done queue, followed by the others. 310 * One thread will be doing this while the others wait at the barrier 311 * back in worker_thread(), so we don't need to worry about pesky things 312 * like locks. 313 */ 314 315 for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) { 316 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) { 317 startslot = i; 318 break; 319 } 320 } 321 322 assert(startslot != -1); 323 324 for (i = startslot; i < startslot + wq->wq_nwipslots; i++) { 325 int slotnum = i % wq->wq_nwipslots; 326 wip_t *wipslot = &wq->wq_wip[slotnum]; 327 328 if (wipslot->wip_td != NULL) { 329 debug(2, "clearing slot %d (%d) (saving %d)\n", 330 slotnum, i, wipslot->wip_nmerged); 331 } else 332 debug(2, "clearing slot %d (%d)\n", slotnum, i); 333 334 if (wipslot->wip_td != NULL) { 335 fifo_add(wq->wq_donequeue, wipslot->wip_td); 336 wq->wq_wip[slotnum].wip_td = NULL; 337 } 338 } 339 340 wq->wq_lastdonebatch = wq->wq_next_batchid++; 341 342 debug(2, "phase one done: donequeue has %d items\n", 343 fifo_len(wq->wq_donequeue)); 344 } 345 346 static void 347 init_phase_two(workqueue_t *wq) 348 { 349 int num; 350 351 /* 352 * We're going to continually merge the first two entries on the queue, 353 * placing the result on the end, until there's nothing left to merge. 354 * At that point, everything will have been merged into one. The 355 * initial value of ninqueue needs to be equal to the total number of 356 * entries that will show up on the queue, both at the start of the 357 * phase and as generated by merges during the phase. 358 */ 359 wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue); 360 while (num != 1) { 361 wq->wq_ninqueue += num / 2; 362 num = num / 2 + num % 2; 363 } 364 365 /* 366 * Move the done queue to the work queue. We won't be using the done 367 * queue in phase 2. 368 */ 369 assert(fifo_len(wq->wq_queue) == 0); 370 fifo_free(wq->wq_queue, NULL); 371 wq->wq_queue = wq->wq_donequeue; 372 } 373 374 static void 375 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum) 376 { 377 pthread_mutex_lock(&wq->wq_donequeue_lock); 378 379 while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) 380 pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock); 381 assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid); 382 383 fifo_add(wq->wq_donequeue, slot->wip_td); 384 wq->wq_lastdonebatch++; 385 pthread_cond_signal(&wq->wq_wip[(slotnum + 1) % 386 wq->wq_nwipslots].wip_cv); 387 388 /* reset the slot for next use */ 389 slot->wip_td = NULL; 390 slot->wip_batchid = wq->wq_next_batchid++; 391 392 pthread_mutex_unlock(&wq->wq_donequeue_lock); 393 } 394 395 static void 396 wip_add_work(wip_t *slot, tdata_t *pow) 397 { 398 if (slot->wip_td == NULL) { 399 slot->wip_td = pow; 400 slot->wip_nmerged = 1; 401 } else { 402 debug(2, "0x%jx: merging %p into %p\n", 403 (uintptr_t)pthread_self(), 404 (void *)pow, (void *)slot->wip_td); 405 406 merge_into_master(pow, slot->wip_td, NULL, 0); 407 tdata_free(pow); 408 409 slot->wip_nmerged++; 410 } 411 } 412 413 static void 414 worker_runphase1(workqueue_t *wq) 415 { 416 wip_t *wipslot; 417 tdata_t *pow; 418 int wipslotnum, pownum; 419 420 for (;;) { 421 pthread_mutex_lock(&wq->wq_queue_lock); 422 423 while (fifo_empty(wq->wq_queue)) { 424 if (wq->wq_nomorefiles == 1) { 425 pthread_cond_broadcast(&wq->wq_work_avail); 426 pthread_mutex_unlock(&wq->wq_queue_lock); 427 428 /* on to phase 2 ... */ 429 return; 430 } 431 432 pthread_cond_wait(&wq->wq_work_avail, 433 &wq->wq_queue_lock); 434 } 435 436 /* there's work to be done! */ 437 pow = fifo_remove(wq->wq_queue); 438 pownum = wq->wq_nextpownum++; 439 pthread_cond_broadcast(&wq->wq_work_removed); 440 441 assert(pow != NULL); 442 443 /* merge it into the right slot */ 444 wipslotnum = pownum % wq->wq_nwipslots; 445 wipslot = &wq->wq_wip[wipslotnum]; 446 447 pthread_mutex_lock(&wipslot->wip_lock); 448 449 pthread_mutex_unlock(&wq->wq_queue_lock); 450 451 wip_add_work(wipslot, pow); 452 453 if (wipslot->wip_nmerged == wq->wq_maxbatchsz) 454 wip_save_work(wq, wipslot, wipslotnum); 455 456 pthread_mutex_unlock(&wipslot->wip_lock); 457 } 458 } 459 460 static void 461 worker_runphase2(workqueue_t *wq) 462 { 463 tdata_t *pow1, *pow2; 464 int batchid; 465 466 for (;;) { 467 pthread_mutex_lock(&wq->wq_queue_lock); 468 469 if (wq->wq_ninqueue == 1) { 470 pthread_cond_broadcast(&wq->wq_work_avail); 471 pthread_mutex_unlock(&wq->wq_queue_lock); 472 473 debug(2, "0x%jx: entering p2 completion barrier\n", 474 (uintptr_t)pthread_self()); 475 if (barrier_wait(&wq->wq_bar1)) { 476 pthread_mutex_lock(&wq->wq_queue_lock); 477 wq->wq_alldone = 1; 478 pthread_cond_signal(&wq->wq_alldone_cv); 479 pthread_mutex_unlock(&wq->wq_queue_lock); 480 } 481 482 return; 483 } 484 485 if (fifo_len(wq->wq_queue) < 2) { 486 pthread_cond_wait(&wq->wq_work_avail, 487 &wq->wq_queue_lock); 488 pthread_mutex_unlock(&wq->wq_queue_lock); 489 continue; 490 } 491 492 /* there's work to be done! */ 493 pow1 = fifo_remove(wq->wq_queue); 494 pow2 = fifo_remove(wq->wq_queue); 495 wq->wq_ninqueue -= 2; 496 497 batchid = wq->wq_next_batchid++; 498 499 pthread_mutex_unlock(&wq->wq_queue_lock); 500 501 debug(2, "0x%jx: merging %p into %p\n", 502 (uintptr_t)pthread_self(), 503 (void *)pow1, (void *)pow2); 504 merge_into_master(pow1, pow2, NULL, 0); 505 tdata_free(pow1); 506 507 /* 508 * merging is complete. place at the tail of the queue in 509 * proper order. 510 */ 511 pthread_mutex_lock(&wq->wq_queue_lock); 512 while (wq->wq_lastdonebatch + 1 != batchid) { 513 pthread_cond_wait(&wq->wq_done_cv, 514 &wq->wq_queue_lock); 515 } 516 517 wq->wq_lastdonebatch = batchid; 518 519 fifo_add(wq->wq_queue, pow2); 520 debug(2, "0x%jx: added %p to queue, len now %d, ninqueue %d\n", 521 (uintptr_t)pthread_self(), (void *)pow2, 522 fifo_len(wq->wq_queue), wq->wq_ninqueue); 523 pthread_cond_broadcast(&wq->wq_done_cv); 524 pthread_cond_signal(&wq->wq_work_avail); 525 pthread_mutex_unlock(&wq->wq_queue_lock); 526 } 527 } 528 529 /* 530 * Main loop for worker threads. 531 */ 532 static void 533 worker_thread(workqueue_t *wq) 534 { 535 worker_runphase1(wq); 536 537 debug(2, "0x%jx: entering first barrier\n", (uintptr_t)pthread_self()); 538 539 if (barrier_wait(&wq->wq_bar1)) { 540 541 debug(2, "0x%jx: doing work in first barrier\n", 542 (uintptr_t)pthread_self()); 543 544 finalize_phase_one(wq); 545 546 init_phase_two(wq); 547 548 debug(2, "0x%jx: ninqueue is %d, %d on queue\n", 549 (uintptr_t)pthread_self(), 550 wq->wq_ninqueue, fifo_len(wq->wq_queue)); 551 } 552 553 debug(2, "0x%jx: entering second barrier\n", (uintptr_t)pthread_self()); 554 555 (void) barrier_wait(&wq->wq_bar2); 556 557 debug(2, "0x%jx: phase 1 complete\n", (uintptr_t)pthread_self()); 558 559 worker_runphase2(wq); 560 } 561 562 /* 563 * Pass a tdata_t tree, built from an input file, off to the work queue for 564 * consumption by worker threads. 565 */ 566 static int 567 merge_ctf_cb(tdata_t *td, char *name, void *arg) 568 { 569 workqueue_t *wq = arg; 570 571 debug(3, "Adding tdata %p for processing\n", (void *)td); 572 573 pthread_mutex_lock(&wq->wq_queue_lock); 574 while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) { 575 debug(2, "Throttling input (len = %d, throttle = %d)\n", 576 fifo_len(wq->wq_queue), wq->wq_ithrottle); 577 pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock); 578 } 579 580 fifo_add(wq->wq_queue, td); 581 debug(1, "Thread 0x%jx announcing %s\n", (uintptr_t)pthread_self(), 582 name); 583 pthread_cond_broadcast(&wq->wq_work_avail); 584 pthread_mutex_unlock(&wq->wq_queue_lock); 585 586 return (1); 587 } 588 589 /* 590 * This program is intended to be invoked from a Makefile, as part of the build. 591 * As such, in the event of a failure or user-initiated interrupt (^C), we need 592 * to ensure that a subsequent re-make will cause ctfmerge to be executed again. 593 * Unfortunately, ctfmerge will usually be invoked directly after (and as part 594 * of the same Makefile rule as) a link, and will operate on the linked file 595 * in place. If we merely exit upon receipt of a SIGINT, a subsequent make 596 * will notice that the *linked* file is newer than the object files, and thus 597 * will not reinvoke ctfmerge. The only way to ensure that a subsequent make 598 * reinvokes ctfmerge, is to remove the file to which we are adding CTF 599 * data (confusingly named the output file). This means that the link will need 600 * to happen again, but links are generally fast, and we can't allow the merge 601 * to be skipped. 602 * 603 * Another possibility would be to block SIGINT entirely - to always run to 604 * completion. The run time of ctfmerge can, however, be measured in minutes 605 * in some cases, so this is not a valid option. 606 */ 607 static void 608 handle_sig(int sig) 609 { 610 terminate("Caught signal %d - exiting\n", sig); 611 } 612 613 static void 614 terminate_cleanup(void) 615 { 616 int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1; 617 618 if (tmpname != NULL && dounlink) 619 unlink(tmpname); 620 621 if (outfile == NULL) 622 return; 623 624 #if !defined(__FreeBSD__) 625 if (dounlink) { 626 fprintf(stderr, "Removing %s\n", outfile); 627 unlink(outfile); 628 } 629 #endif 630 } 631 632 static void 633 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs) 634 { 635 tdata_t *srctd; 636 637 if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0) 638 terminate("No CTF data found in source file %s\n", srcfile); 639 640 tmpname = mktmpname(destfile, ".ctf"); 641 write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs); 642 if (rename(tmpname, destfile) != 0) { 643 terminate("Couldn't rename temp file %s to %s", tmpname, 644 destfile); 645 } 646 free(tmpname); 647 tdata_free(srctd); 648 } 649 650 static void 651 wq_init(workqueue_t *wq, int nfiles) 652 { 653 int throttle, nslots, i; 654 655 if (getenv("CTFMERGE_MAX_SLOTS")) 656 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS")); 657 else 658 nslots = maxslots; 659 660 if (getenv("CTFMERGE_PHASE1_BATCH_SIZE")) 661 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE")); 662 else 663 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE; 664 665 nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) / 666 wq->wq_maxbatchsz); 667 668 wq->wq_wip = xcalloc(sizeof (wip_t) * nslots); 669 wq->wq_nwipslots = nslots; 670 #ifdef _SC_NPROCESSORS_ONLN 671 wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots); 672 #else 673 wq->wq_nthreads = 2; 674 #endif 675 wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads); 676 677 if (getenv("CTFMERGE_INPUT_THROTTLE")) 678 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE")); 679 else 680 throttle = MERGE_INPUT_THROTTLE_LEN; 681 wq->wq_ithrottle = throttle * wq->wq_nthreads; 682 683 debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots, 684 wq->wq_nthreads); 685 686 wq->wq_next_batchid = 0; 687 688 for (i = 0; i < nslots; i++) { 689 pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL); 690 pthread_cond_init(&wq->wq_wip[i].wip_cv, NULL); 691 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++; 692 } 693 694 pthread_mutex_init(&wq->wq_queue_lock, NULL); 695 wq->wq_queue = fifo_new(); 696 pthread_cond_init(&wq->wq_work_avail, NULL); 697 pthread_cond_init(&wq->wq_work_removed, NULL); 698 wq->wq_ninqueue = nfiles; 699 wq->wq_nextpownum = 0; 700 701 pthread_mutex_init(&wq->wq_donequeue_lock, NULL); 702 wq->wq_donequeue = fifo_new(); 703 wq->wq_lastdonebatch = -1; 704 705 pthread_cond_init(&wq->wq_done_cv, NULL); 706 707 pthread_cond_init(&wq->wq_alldone_cv, NULL); 708 wq->wq_alldone = 0; 709 710 barrier_init(&wq->wq_bar1, wq->wq_nthreads); 711 barrier_init(&wq->wq_bar2, wq->wq_nthreads); 712 713 wq->wq_nomorefiles = 0; 714 } 715 716 static void 717 start_threads(workqueue_t *wq) 718 { 719 sigset_t sets; 720 int i; 721 722 sigemptyset(&sets); 723 sigaddset(&sets, SIGINT); 724 sigaddset(&sets, SIGQUIT); 725 sigaddset(&sets, SIGTERM); 726 pthread_sigmask(SIG_BLOCK, &sets, NULL); 727 728 for (i = 0; i < wq->wq_nthreads; i++) { 729 pthread_create(&wq->wq_thread[i], NULL, 730 (void *(*)(void *))worker_thread, wq); 731 } 732 733 #if defined(sun) 734 sigset(SIGINT, handle_sig); 735 sigset(SIGQUIT, handle_sig); 736 sigset(SIGTERM, handle_sig); 737 #else 738 signal(SIGINT, handle_sig); 739 signal(SIGQUIT, handle_sig); 740 signal(SIGTERM, handle_sig); 741 #endif 742 pthread_sigmask(SIG_UNBLOCK, &sets, NULL); 743 } 744 745 static void 746 join_threads(workqueue_t *wq) 747 { 748 int i; 749 750 for (i = 0; i < wq->wq_nthreads; i++) { 751 pthread_join(wq->wq_thread[i], NULL); 752 } 753 } 754 755 static int 756 strcompare(const void *p1, const void *p2) 757 { 758 const char *s1 = *((const char * const *)p1); 759 const char *s2 = *((const char * const *)p2); 760 761 return (strcmp(s1, s2)); 762 } 763 764 /* 765 * Core work queue structure; passed to worker threads on thread creation 766 * as the main point of coordination. Allocate as a static structure; we 767 * could have put this into a local variable in main, but passing a pointer 768 * into your stack to another thread is fragile at best and leads to some 769 * hard-to-debug failure modes. 770 */ 771 static workqueue_t wq; 772 773 int 774 main(int argc, char **argv) 775 { 776 tdata_t *mstrtd, *savetd; 777 char *uniqfile = NULL, *uniqlabel = NULL; 778 char *withfile = NULL; 779 char *label = NULL; 780 char **ifiles, **tifiles; 781 int verbose = 0, docopy = 0; 782 int write_fuzzy_match = 0; 783 int keep_stabs = 0; 784 int require_ctf = 0; 785 int nifiles, nielems; 786 int c, i, idx, tidx, err; 787 788 progname = basename(argv[0]); 789 790 if (getenv("CTFMERGE_DEBUG_LEVEL")) 791 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL")); 792 793 err = 0; 794 while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) { 795 switch (c) { 796 case 'c': 797 docopy = 1; 798 break; 799 case 'd': 800 /* Uniquify against `uniqfile' */ 801 uniqfile = optarg; 802 break; 803 case 'D': 804 /* Uniquify against label `uniqlabel' in `uniqfile' */ 805 uniqlabel = optarg; 806 break; 807 case 'f': 808 write_fuzzy_match = CTF_FUZZY_MATCH; 809 break; 810 case 'g': 811 keep_stabs = CTF_KEEP_STABS; 812 break; 813 case 'l': 814 /* Label merged types with `label' */ 815 label = optarg; 816 break; 817 case 'L': 818 /* Label merged types with getenv(`label`) */ 819 if ((label = getenv(optarg)) == NULL) 820 label = __UNCONST(CTF_DEFAULT_LABEL); 821 break; 822 case 'o': 823 /* Place merged types in CTF section in `outfile' */ 824 outfile = optarg; 825 break; 826 case 't': 827 /* Insist *all* object files built from C have CTF */ 828 require_ctf = 1; 829 break; 830 case 'v': 831 /* More debugging information */ 832 verbose = 1; 833 break; 834 case 'w': 835 /* Additive merge with data from `withfile' */ 836 withfile = optarg; 837 break; 838 case 's': 839 /* use the dynsym rather than the symtab */ 840 dynsym = CTF_USE_DYNSYM; 841 break; 842 default: 843 usage(); 844 exit(2); 845 } 846 } 847 848 /* Validate arguments */ 849 if (docopy) { 850 if (uniqfile != NULL || uniqlabel != NULL || label != NULL || 851 outfile != NULL || withfile != NULL || dynsym != 0) 852 err++; 853 854 if (argc - optind != 2) 855 err++; 856 } else { 857 if (uniqfile != NULL && withfile != NULL) 858 err++; 859 860 if (uniqlabel != NULL && uniqfile == NULL) 861 err++; 862 863 if (outfile == NULL || label == NULL) 864 err++; 865 866 if (argc - optind == 0) 867 err++; 868 } 869 870 if (err) { 871 usage(); 872 exit(2); 873 } 874 875 if (getenv("STRIPSTABS_KEEP_STABS") != NULL) 876 keep_stabs = CTF_KEEP_STABS; 877 878 if (uniqfile && access(uniqfile, R_OK) != 0) { 879 warning("Uniquification file %s couldn't be opened and " 880 "will be ignored.\n", uniqfile); 881 uniqfile = NULL; 882 } 883 if (withfile && access(withfile, R_OK) != 0) { 884 warning("With file %s couldn't be opened and will be " 885 "ignored.\n", withfile); 886 withfile = NULL; 887 } 888 if (outfile && access(outfile, R_OK|W_OK) != 0) 889 terminate("Cannot open output file %s for r/w", outfile); 890 891 /* 892 * This is ugly, but we don't want to have to have a separate tool 893 * (yet) just for copying an ELF section with our specific requirements, 894 * so we shoe-horn a copier into ctfmerge. 895 */ 896 if (docopy) { 897 copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs); 898 899 exit(0); 900 } 901 902 set_terminate_cleanup(terminate_cleanup); 903 904 /* Sort the input files and strip out duplicates */ 905 nifiles = argc - optind; 906 ifiles = xmalloc(sizeof (char *) * nifiles); 907 tifiles = xmalloc(sizeof (char *) * nifiles); 908 909 for (i = 0; i < nifiles; i++) 910 tifiles[i] = argv[optind + i]; 911 qsort(tifiles, nifiles, sizeof (char *), strcompare); 912 913 ifiles[0] = tifiles[0]; 914 for (idx = 0, tidx = 1; tidx < nifiles; tidx++) { 915 if (strcmp(ifiles[idx], tifiles[tidx]) != 0) 916 ifiles[++idx] = tifiles[tidx]; 917 } 918 nifiles = idx + 1; 919 920 /* Make sure they all exist */ 921 if ((nielems = count_files(ifiles, nifiles)) < 0) 922 terminate("Some input files were inaccessible\n"); 923 924 /* Prepare for the merge */ 925 wq_init(&wq, nielems); 926 927 start_threads(&wq); 928 929 /* 930 * Start the merge 931 * 932 * We're reading everything from each of the object files, so we 933 * don't need to specify labels. 934 */ 935 if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb, 936 &wq, require_ctf) == 0) { 937 /* 938 * If we're verifying that C files have CTF, it's safe to 939 * assume that in this case, we're building only from assembly 940 * inputs. 941 */ 942 if (require_ctf) 943 exit(0); 944 terminate("No ctf sections found to merge\n"); 945 } 946 947 pthread_mutex_lock(&wq.wq_queue_lock); 948 wq.wq_nomorefiles = 1; 949 pthread_cond_broadcast(&wq.wq_work_avail); 950 pthread_mutex_unlock(&wq.wq_queue_lock); 951 952 pthread_mutex_lock(&wq.wq_queue_lock); 953 while (wq.wq_alldone == 0) 954 pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock); 955 pthread_mutex_unlock(&wq.wq_queue_lock); 956 957 join_threads(&wq); 958 959 /* 960 * All requested files have been merged, with the resulting tree in 961 * mstrtd. savetd is the tree that will be placed into the output file. 962 * 963 * Regardless of whether we're doing a normal uniquification or an 964 * additive merge, we need a type tree that has been uniquified 965 * against uniqfile or withfile, as appropriate. 966 * 967 * If we're doing a uniquification, we stuff the resulting tree into 968 * outfile. Otherwise, we add the tree to the tree already in withfile. 969 */ 970 assert(fifo_len(wq.wq_queue) == 1); 971 mstrtd = fifo_remove(wq.wq_queue); 972 973 if (verbose || debug_level) { 974 debug(2, "Statistics for td %p\n", (void *)mstrtd); 975 976 iidesc_stats(mstrtd->td_iihash); 977 } 978 979 if (uniqfile != NULL || withfile != NULL) { 980 char *reffile, *reflabel = NULL; 981 tdata_t *reftd; 982 983 if (uniqfile != NULL) { 984 reffile = uniqfile; 985 reflabel = uniqlabel; 986 } else 987 reffile = withfile; 988 989 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb, 990 &reftd, require_ctf) == 0) { 991 terminate("No CTF data found in reference file %s\n", 992 reffile); 993 } 994 995 savetd = tdata_new(); 996 997 if (CTF_TYPE_ISCHILD(reftd->td_nextid)) 998 terminate("No room for additional types in master\n"); 999 1000 savetd->td_nextid = withfile ? reftd->td_nextid : 1001 CTF_INDEX_TO_TYPE(1, TRUE); 1002 merge_into_master(mstrtd, reftd, savetd, 0); 1003 1004 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX); 1005 1006 if (withfile) { 1007 /* 1008 * savetd holds the new data to be added to the withfile 1009 */ 1010 tdata_t *withtd = reftd; 1011 1012 tdata_merge(withtd, savetd); 1013 1014 savetd = withtd; 1015 } else { 1016 char uniqname[MAXPATHLEN]; 1017 labelent_t *parle; 1018 1019 parle = tdata_label_top(reftd); 1020 1021 savetd->td_parlabel = xstrdup(parle->le_name); 1022 1023 strncpy(uniqname, reffile, sizeof (uniqname)); 1024 uniqname[MAXPATHLEN - 1] = '\0'; 1025 savetd->td_parname = xstrdup(basename(uniqname)); 1026 } 1027 1028 } else { 1029 /* 1030 * No post processing. Write the merged tree as-is into the 1031 * output file. 1032 */ 1033 tdata_label_free(mstrtd); 1034 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX); 1035 1036 savetd = mstrtd; 1037 } 1038 1039 tmpname = mktmpname(outfile, ".ctf"); 1040 write_ctf(savetd, outfile, tmpname, 1041 CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs); 1042 if (rename(tmpname, outfile) != 0) 1043 terminate("Couldn't rename output temp file %s", tmpname); 1044 free(tmpname); 1045 1046 return (0); 1047 } 1048