1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 #include <assert.h> 28 #include <fcntl.h> 29 #include <poll.h> 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <string.h> 33 #include <zlib.h> 34 #include <libgen.h> 35 #include <sys/spa.h> 36 #include <sys/stat.h> 37 #include <sys/processor.h> 38 #include <sys/zfs_context.h> 39 #include <sys/rrwlock.h> 40 #include <sys/zmod.h> 41 #include <sys/utsname.h> 42 #include <sys/systeminfo.h> 43 44 /* 45 * Emulation of kernel services in userland. 46 */ 47 48 #ifndef __FreeBSD__ 49 int aok; 50 #endif 51 uint64_t physmem; 52 vnode_t *rootdir = (vnode_t *)0xabcd1234; 53 char hw_serial[HW_HOSTID_LEN]; 54 #ifdef illumos 55 kmutex_t cpu_lock; 56 #endif 57 58 /* If set, all blocks read will be copied to the specified directory. */ 59 char *vn_dumpdir = NULL; 60 61 struct utsname utsname = { 62 "userland", "libzpool", "1", "1", "na" 63 }; 64 65 /* this only exists to have its address taken */ 66 struct proc p0; 67 68 /* 69 * ========================================================================= 70 * threads 71 * ========================================================================= 72 */ 73 /*ARGSUSED*/ 74 kthread_t * 75 zk_thread_create(void (*func)(), void *arg) 76 { 77 thread_t tid; 78 79 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED, 80 &tid) == 0); 81 82 return ((void *)(uintptr_t)tid); 83 } 84 85 /* 86 * ========================================================================= 87 * kstats 88 * ========================================================================= 89 */ 90 /*ARGSUSED*/ 91 kstat_t * 92 kstat_create(char *module, int instance, char *name, char *class, 93 uchar_t type, ulong_t ndata, uchar_t ks_flag) 94 { 95 return (NULL); 96 } 97 98 /*ARGSUSED*/ 99 void 100 kstat_named_init(kstat_named_t *knp, const char *name, uchar_t type) 101 {} 102 103 /*ARGSUSED*/ 104 void 105 kstat_install(kstat_t *ksp) 106 {} 107 108 /*ARGSUSED*/ 109 void 110 kstat_delete(kstat_t *ksp) 111 {} 112 113 /* 114 * ========================================================================= 115 * mutexes 116 * ========================================================================= 117 */ 118 void 119 zmutex_init(kmutex_t *mp) 120 { 121 mp->m_owner = NULL; 122 mp->initialized = B_TRUE; 123 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL); 124 } 125 126 void 127 zmutex_destroy(kmutex_t *mp) 128 { 129 ASSERT(mp->initialized == B_TRUE); 130 ASSERT(mp->m_owner == NULL); 131 (void) _mutex_destroy(&(mp)->m_lock); 132 mp->m_owner = (void *)-1UL; 133 mp->initialized = B_FALSE; 134 } 135 136 int 137 zmutex_owned(kmutex_t *mp) 138 { 139 ASSERT(mp->initialized == B_TRUE); 140 141 return (mp->m_owner == curthread); 142 } 143 144 void 145 mutex_enter(kmutex_t *mp) 146 { 147 ASSERT(mp->initialized == B_TRUE); 148 ASSERT(mp->m_owner != (void *)-1UL); 149 ASSERT(mp->m_owner != curthread); 150 VERIFY(mutex_lock(&mp->m_lock) == 0); 151 ASSERT(mp->m_owner == NULL); 152 mp->m_owner = curthread; 153 } 154 155 int 156 mutex_tryenter(kmutex_t *mp) 157 { 158 ASSERT(mp->initialized == B_TRUE); 159 ASSERT(mp->m_owner != (void *)-1UL); 160 if (0 == mutex_trylock(&mp->m_lock)) { 161 ASSERT(mp->m_owner == NULL); 162 mp->m_owner = curthread; 163 return (1); 164 } else { 165 return (0); 166 } 167 } 168 169 void 170 mutex_exit(kmutex_t *mp) 171 { 172 ASSERT(mp->initialized == B_TRUE); 173 ASSERT(mutex_owner(mp) == curthread); 174 mp->m_owner = NULL; 175 VERIFY(mutex_unlock(&mp->m_lock) == 0); 176 } 177 178 void * 179 mutex_owner(kmutex_t *mp) 180 { 181 ASSERT(mp->initialized == B_TRUE); 182 return (mp->m_owner); 183 } 184 185 /* 186 * ========================================================================= 187 * rwlocks 188 * ========================================================================= 189 */ 190 /*ARGSUSED*/ 191 void 192 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 193 { 194 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL); 195 rwlp->rw_owner = NULL; 196 rwlp->initialized = B_TRUE; 197 rwlp->rw_count = 0; 198 } 199 200 void 201 rw_destroy(krwlock_t *rwlp) 202 { 203 ASSERT(rwlp->rw_count == 0); 204 rwlock_destroy(&rwlp->rw_lock); 205 rwlp->rw_owner = (void *)-1UL; 206 rwlp->initialized = B_FALSE; 207 } 208 209 void 210 rw_enter(krwlock_t *rwlp, krw_t rw) 211 { 212 //ASSERT(!RW_LOCK_HELD(rwlp)); 213 ASSERT(rwlp->initialized == B_TRUE); 214 ASSERT(rwlp->rw_owner != (void *)-1UL); 215 ASSERT(rwlp->rw_owner != curthread); 216 217 if (rw == RW_READER) { 218 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0); 219 ASSERT(rwlp->rw_count >= 0); 220 atomic_add_int(&rwlp->rw_count, 1); 221 } else { 222 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0); 223 ASSERT(rwlp->rw_count == 0); 224 rwlp->rw_count = -1; 225 rwlp->rw_owner = curthread; 226 } 227 } 228 229 void 230 rw_exit(krwlock_t *rwlp) 231 { 232 ASSERT(rwlp->initialized == B_TRUE); 233 ASSERT(rwlp->rw_owner != (void *)-1UL); 234 235 if (rwlp->rw_owner == curthread) { 236 /* Write locked. */ 237 ASSERT(rwlp->rw_count == -1); 238 rwlp->rw_count = 0; 239 rwlp->rw_owner = NULL; 240 } else { 241 /* Read locked. */ 242 ASSERT(rwlp->rw_count > 0); 243 atomic_add_int(&rwlp->rw_count, -1); 244 } 245 VERIFY(rw_unlock(&rwlp->rw_lock) == 0); 246 } 247 248 int 249 rw_tryenter(krwlock_t *rwlp, krw_t rw) 250 { 251 int rv; 252 253 ASSERT(rwlp->initialized == B_TRUE); 254 ASSERT(rwlp->rw_owner != (void *)-1UL); 255 ASSERT(rwlp->rw_owner != curthread); 256 257 if (rw == RW_READER) 258 rv = rw_tryrdlock(&rwlp->rw_lock); 259 else 260 rv = rw_trywrlock(&rwlp->rw_lock); 261 262 if (rv == 0) { 263 ASSERT(rwlp->rw_owner == NULL); 264 if (rw == RW_READER) { 265 ASSERT(rwlp->rw_count >= 0); 266 atomic_add_int(&rwlp->rw_count, 1); 267 } else { 268 ASSERT(rwlp->rw_count == 0); 269 rwlp->rw_count = -1; 270 rwlp->rw_owner = curthread; 271 } 272 return (1); 273 } 274 275 return (0); 276 } 277 278 /*ARGSUSED*/ 279 int 280 rw_tryupgrade(krwlock_t *rwlp) 281 { 282 ASSERT(rwlp->initialized == B_TRUE); 283 ASSERT(rwlp->rw_owner != (void *)-1UL); 284 285 return (0); 286 } 287 288 int 289 rw_lock_held(krwlock_t *rwlp) 290 { 291 292 return (rwlp->rw_count != 0); 293 } 294 295 /* 296 * ========================================================================= 297 * condition variables 298 * ========================================================================= 299 */ 300 /*ARGSUSED*/ 301 void 302 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 303 { 304 VERIFY(cond_init(cv, name, NULL) == 0); 305 } 306 307 void 308 cv_destroy(kcondvar_t *cv) 309 { 310 VERIFY(cond_destroy(cv) == 0); 311 } 312 313 void 314 cv_wait(kcondvar_t *cv, kmutex_t *mp) 315 { 316 ASSERT(mutex_owner(mp) == curthread); 317 mp->m_owner = NULL; 318 int ret = cond_wait(cv, &mp->m_lock); 319 VERIFY(ret == 0 || ret == EINTR); 320 mp->m_owner = curthread; 321 } 322 323 clock_t 324 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 325 { 326 int error; 327 struct timespec ts; 328 struct timeval tv; 329 clock_t delta; 330 331 abstime += ddi_get_lbolt(); 332 top: 333 delta = abstime - ddi_get_lbolt(); 334 if (delta <= 0) 335 return (-1); 336 337 if (gettimeofday(&tv, NULL) != 0) 338 assert(!"gettimeofday() failed"); 339 340 ts.tv_sec = tv.tv_sec + delta / hz; 341 ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz); 342 ASSERT(ts.tv_nsec >= 0); 343 344 if (ts.tv_nsec >= NANOSEC) { 345 ts.tv_sec++; 346 ts.tv_nsec -= NANOSEC; 347 } 348 349 ASSERT(mutex_owner(mp) == curthread); 350 mp->m_owner = NULL; 351 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 352 mp->m_owner = curthread; 353 354 if (error == EINTR) 355 goto top; 356 357 if (error == ETIMEDOUT) 358 return (-1); 359 360 ASSERT(error == 0); 361 362 return (1); 363 } 364 365 /*ARGSUSED*/ 366 clock_t 367 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, 368 int flag) 369 { 370 int error; 371 timestruc_t ts; 372 hrtime_t delta; 373 374 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); 375 376 top: 377 delta = tim; 378 if (flag & CALLOUT_FLAG_ABSOLUTE) 379 delta -= gethrtime(); 380 381 if (delta <= 0) 382 return (-1); 383 384 ts.tv_sec = delta / NANOSEC; 385 ts.tv_nsec = delta % NANOSEC; 386 387 ASSERT(mutex_owner(mp) == curthread); 388 mp->m_owner = NULL; 389 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); 390 mp->m_owner = curthread; 391 392 if (error == ETIMEDOUT) 393 return (-1); 394 395 if (error == EINTR) 396 goto top; 397 398 ASSERT(error == 0); 399 400 return (1); 401 } 402 403 void 404 cv_signal(kcondvar_t *cv) 405 { 406 VERIFY(cond_signal(cv) == 0); 407 } 408 409 void 410 cv_broadcast(kcondvar_t *cv) 411 { 412 VERIFY(cond_broadcast(cv) == 0); 413 } 414 415 /* 416 * ========================================================================= 417 * vnode operations 418 * ========================================================================= 419 */ 420 /* 421 * Note: for the xxxat() versions of these functions, we assume that the 422 * starting vp is always rootdir (which is true for spa_directory.c, the only 423 * ZFS consumer of these interfaces). We assert this is true, and then emulate 424 * them by adding '/' in front of the path. 425 */ 426 427 /*ARGSUSED*/ 428 int 429 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) 430 { 431 int fd; 432 int dump_fd; 433 vnode_t *vp; 434 int old_umask; 435 char realpath[MAXPATHLEN]; 436 struct stat64 st; 437 438 /* 439 * If we're accessing a real disk from userland, we need to use 440 * the character interface to avoid caching. This is particularly 441 * important if we're trying to look at a real in-kernel storage 442 * pool from userland, e.g. via zdb, because otherwise we won't 443 * see the changes occurring under the segmap cache. 444 * On the other hand, the stupid character device returns zero 445 * for its size. So -- gag -- we open the block device to get 446 * its size, and remember it for subsequent VOP_GETATTR(). 447 */ 448 if (strncmp(path, "/dev/", 5) == 0) { 449 char *dsk; 450 fd = open64(path, O_RDONLY); 451 if (fd == -1) 452 return (errno); 453 if (fstat64(fd, &st) == -1) { 454 close(fd); 455 return (errno); 456 } 457 close(fd); 458 (void) sprintf(realpath, "%s", path); 459 dsk = strstr(path, "/dsk/"); 460 if (dsk != NULL) 461 (void) sprintf(realpath + (dsk - path) + 1, "r%s", 462 dsk + 1); 463 } else { 464 (void) sprintf(realpath, "%s", path); 465 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) 466 return (errno); 467 } 468 469 if (flags & FCREAT) 470 old_umask = umask(0); 471 472 /* 473 * The construct 'flags - FREAD' conveniently maps combinations of 474 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. 475 */ 476 fd = open64(realpath, flags - FREAD, mode); 477 478 if (flags & FCREAT) 479 (void) umask(old_umask); 480 481 if (vn_dumpdir != NULL) { 482 char dumppath[MAXPATHLEN]; 483 (void) snprintf(dumppath, sizeof (dumppath), 484 "%s/%s", vn_dumpdir, basename(realpath)); 485 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); 486 if (dump_fd == -1) 487 return (errno); 488 } else { 489 dump_fd = -1; 490 } 491 492 if (fd == -1) 493 return (errno); 494 495 if (fstat64(fd, &st) == -1) { 496 close(fd); 497 return (errno); 498 } 499 500 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 501 502 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); 503 504 vp->v_fd = fd; 505 vp->v_size = st.st_size; 506 vp->v_path = spa_strdup(path); 507 vp->v_dump_fd = dump_fd; 508 509 return (0); 510 } 511 512 /*ARGSUSED*/ 513 int 514 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, 515 int x3, vnode_t *startvp, int fd) 516 { 517 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); 518 int ret; 519 520 ASSERT(startvp == rootdir); 521 (void) sprintf(realpath, "/%s", path); 522 523 /* fd ignored for now, need if want to simulate nbmand support */ 524 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); 525 526 umem_free(realpath, strlen(path) + 2); 527 528 return (ret); 529 } 530 531 /*ARGSUSED*/ 532 int 533 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, 534 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) 535 { 536 ssize_t iolen, split; 537 538 if (uio == UIO_READ) { 539 iolen = pread64(vp->v_fd, addr, len, offset); 540 if (vp->v_dump_fd != -1) { 541 int status = 542 pwrite64(vp->v_dump_fd, addr, iolen, offset); 543 ASSERT(status != -1); 544 } 545 } else { 546 /* 547 * To simulate partial disk writes, we split writes into two 548 * system calls so that the process can be killed in between. 549 */ 550 int sectors = len >> SPA_MINBLOCKSHIFT; 551 split = (sectors > 0 ? rand() % sectors : 0) << 552 SPA_MINBLOCKSHIFT; 553 iolen = pwrite64(vp->v_fd, addr, split, offset); 554 iolen += pwrite64(vp->v_fd, (char *)addr + split, 555 len - split, offset + split); 556 } 557 558 if (iolen == -1) 559 return (errno); 560 if (residp) 561 *residp = len - iolen; 562 else if (iolen != len) 563 return (EIO); 564 return (0); 565 } 566 567 void 568 vn_close(vnode_t *vp, int openflag, cred_t *cr, kthread_t *td) 569 { 570 close(vp->v_fd); 571 if (vp->v_dump_fd != -1) 572 close(vp->v_dump_fd); 573 spa_strfree(vp->v_path); 574 umem_free(vp, sizeof (vnode_t)); 575 } 576 577 /* 578 * At a minimum we need to update the size since vdev_reopen() 579 * will no longer call vn_openat(). 580 */ 581 int 582 fop_getattr(vnode_t *vp, vattr_t *vap) 583 { 584 struct stat64 st; 585 586 if (fstat64(vp->v_fd, &st) == -1) { 587 close(vp->v_fd); 588 return (errno); 589 } 590 591 vap->va_size = st.st_size; 592 return (0); 593 } 594 595 #ifdef ZFS_DEBUG 596 597 /* 598 * ========================================================================= 599 * Figure out which debugging statements to print 600 * ========================================================================= 601 */ 602 603 static char *dprintf_string; 604 static int dprintf_print_all; 605 606 int 607 dprintf_find_string(const char *string) 608 { 609 char *tmp_str = dprintf_string; 610 int len = strlen(string); 611 612 /* 613 * Find out if this is a string we want to print. 614 * String format: file1.c,function_name1,file2.c,file3.c 615 */ 616 617 while (tmp_str != NULL) { 618 if (strncmp(tmp_str, string, len) == 0 && 619 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 620 return (1); 621 tmp_str = strchr(tmp_str, ','); 622 if (tmp_str != NULL) 623 tmp_str++; /* Get rid of , */ 624 } 625 return (0); 626 } 627 628 void 629 dprintf_setup(int *argc, char **argv) 630 { 631 int i, j; 632 633 /* 634 * Debugging can be specified two ways: by setting the 635 * environment variable ZFS_DEBUG, or by including a 636 * "debug=..." argument on the command line. The command 637 * line setting overrides the environment variable. 638 */ 639 640 for (i = 1; i < *argc; i++) { 641 int len = strlen("debug="); 642 /* First look for a command line argument */ 643 if (strncmp("debug=", argv[i], len) == 0) { 644 dprintf_string = argv[i] + len; 645 /* Remove from args */ 646 for (j = i; j < *argc; j++) 647 argv[j] = argv[j+1]; 648 argv[j] = NULL; 649 (*argc)--; 650 } 651 } 652 653 if (dprintf_string == NULL) { 654 /* Look for ZFS_DEBUG environment variable */ 655 dprintf_string = getenv("ZFS_DEBUG"); 656 } 657 658 /* 659 * Are we just turning on all debugging? 660 */ 661 if (dprintf_find_string("on")) 662 dprintf_print_all = 1; 663 664 if (dprintf_string != NULL) 665 zfs_flags |= ZFS_DEBUG_DPRINTF; 666 } 667 668 int 669 sysctl_handle_64(SYSCTL_HANDLER_ARGS) 670 { 671 return (0); 672 } 673 674 /* 675 * ========================================================================= 676 * debug printfs 677 * ========================================================================= 678 */ 679 void 680 __dprintf(const char *file, const char *func, int line, const char *fmt, ...) 681 { 682 const char *newfile; 683 va_list adx; 684 685 /* 686 * Get rid of annoying "../common/" prefix to filename. 687 */ 688 newfile = strrchr(file, '/'); 689 if (newfile != NULL) { 690 newfile = newfile + 1; /* Get rid of leading / */ 691 } else { 692 newfile = file; 693 } 694 695 if (dprintf_print_all || 696 dprintf_find_string(newfile) || 697 dprintf_find_string(func)) { 698 /* Print out just the function name if requested */ 699 flockfile(stdout); 700 if (dprintf_find_string("pid")) 701 (void) printf("%d ", getpid()); 702 if (dprintf_find_string("tid")) 703 (void) printf("%lu ", thr_self()); 704 #if 0 705 if (dprintf_find_string("cpu")) 706 (void) printf("%u ", getcpuid()); 707 #endif 708 if (dprintf_find_string("time")) 709 (void) printf("%llu ", gethrtime()); 710 if (dprintf_find_string("long")) 711 (void) printf("%s, line %d: ", newfile, line); 712 (void) printf("%s: ", func); 713 va_start(adx, fmt); 714 (void) vprintf(fmt, adx); 715 va_end(adx); 716 funlockfile(stdout); 717 } 718 } 719 720 #endif /* ZFS_DEBUG */ 721 722 /* 723 * ========================================================================= 724 * cmn_err() and panic() 725 * ========================================================================= 726 */ 727 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 728 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 729 730 void 731 vpanic(const char *fmt, va_list adx) 732 { 733 (void) fprintf(stderr, "error: "); 734 (void) vfprintf(stderr, fmt, adx); 735 (void) fprintf(stderr, "\n"); 736 737 abort(); /* think of it as a "user-level crash dump" */ 738 } 739 740 void 741 panic(const char *fmt, ...) 742 { 743 va_list adx; 744 745 va_start(adx, fmt); 746 vpanic(fmt, adx); 747 va_end(adx); 748 } 749 750 void 751 vcmn_err(int ce, const char *fmt, va_list adx) 752 { 753 if (ce == CE_PANIC) 754 vpanic(fmt, adx); 755 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 756 (void) fprintf(stderr, "%s", ce_prefix[ce]); 757 (void) vfprintf(stderr, fmt, adx); 758 (void) fprintf(stderr, "%s", ce_suffix[ce]); 759 } 760 } 761 762 /*PRINTFLIKE2*/ 763 void 764 cmn_err(int ce, const char *fmt, ...) 765 { 766 va_list adx; 767 768 va_start(adx, fmt); 769 vcmn_err(ce, fmt, adx); 770 va_end(adx); 771 } 772 773 /* 774 * ========================================================================= 775 * kobj interfaces 776 * ========================================================================= 777 */ 778 struct _buf * 779 kobj_open_file(char *name) 780 { 781 struct _buf *file; 782 vnode_t *vp; 783 784 /* set vp as the _fd field of the file */ 785 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, 786 -1) != 0) 787 return ((void *)-1UL); 788 789 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); 790 file->_fd = (intptr_t)vp; 791 return (file); 792 } 793 794 int 795 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) 796 { 797 ssize_t resid; 798 799 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, 800 UIO_SYSSPACE, 0, 0, 0, &resid); 801 802 return (size - resid); 803 } 804 805 void 806 kobj_close_file(struct _buf *file) 807 { 808 vn_close((vnode_t *)file->_fd, 0, NULL, NULL); 809 umem_free(file, sizeof (struct _buf)); 810 } 811 812 int 813 kobj_get_filesize(struct _buf *file, uint64_t *size) 814 { 815 struct stat64 st; 816 vnode_t *vp = (vnode_t *)file->_fd; 817 818 if (fstat64(vp->v_fd, &st) == -1) { 819 vn_close(vp, 0, NULL, NULL); 820 return (errno); 821 } 822 *size = st.st_size; 823 return (0); 824 } 825 826 /* 827 * ========================================================================= 828 * misc routines 829 * ========================================================================= 830 */ 831 832 void 833 delay(clock_t ticks) 834 { 835 poll(0, 0, ticks * (1000 / hz)); 836 } 837 838 #if 0 839 /* 840 * Find highest one bit set. 841 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 842 */ 843 int 844 highbit64(uint64_t i) 845 { 846 int h = 1; 847 848 if (i == 0) 849 return (0); 850 if (i & 0xffffffff00000000ULL) { 851 h += 32; i >>= 32; 852 } 853 if (i & 0xffff0000) { 854 h += 16; i >>= 16; 855 } 856 if (i & 0xff00) { 857 h += 8; i >>= 8; 858 } 859 if (i & 0xf0) { 860 h += 4; i >>= 4; 861 } 862 if (i & 0xc) { 863 h += 2; i >>= 2; 864 } 865 if (i & 0x2) { 866 h += 1; 867 } 868 return (h); 869 } 870 #endif 871 872 static int random_fd = -1, urandom_fd = -1; 873 874 static int 875 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 876 { 877 size_t resid = len; 878 ssize_t bytes; 879 880 ASSERT(fd != -1); 881 882 while (resid != 0) { 883 bytes = read(fd, ptr, resid); 884 ASSERT3S(bytes, >=, 0); 885 ptr += bytes; 886 resid -= bytes; 887 } 888 889 return (0); 890 } 891 892 int 893 random_get_bytes(uint8_t *ptr, size_t len) 894 { 895 return (random_get_bytes_common(ptr, len, random_fd)); 896 } 897 898 int 899 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 900 { 901 return (random_get_bytes_common(ptr, len, urandom_fd)); 902 } 903 904 int 905 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 906 { 907 char *end; 908 909 *result = strtoul(hw_serial, &end, base); 910 if (*result == 0) 911 return (errno); 912 return (0); 913 } 914 915 int 916 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 917 { 918 char *end; 919 920 *result = strtoull(str, &end, base); 921 if (*result == 0) 922 return (errno); 923 return (0); 924 } 925 926 #ifndef __FreeBSD__ 927 /* ARGSUSED */ 928 cyclic_id_t 929 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when) 930 { 931 return (1); 932 } 933 934 /* ARGSUSED */ 935 void 936 cyclic_remove(cyclic_id_t id) 937 { 938 } 939 940 /* ARGSUSED */ 941 int 942 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration) 943 { 944 return (1); 945 } 946 #endif 947 948 /* 949 * ========================================================================= 950 * kernel emulation setup & teardown 951 * ========================================================================= 952 */ 953 static int 954 umem_out_of_memory(void) 955 { 956 char errmsg[] = "out of memory -- generating core dump\n"; 957 958 write(fileno(stderr), errmsg, sizeof (errmsg)); 959 abort(); 960 return (0); 961 } 962 963 void 964 kernel_init(int mode) 965 { 966 extern uint_t rrw_tsd_key; 967 968 umem_nofail_callback(umem_out_of_memory); 969 970 physmem = sysconf(_SC_PHYS_PAGES); 971 972 dprintf("physmem = %llu pages (%.2f GB)\n", physmem, 973 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 974 975 (void) snprintf(hw_serial, sizeof (hw_serial), "%lu", 976 (mode & FWRITE) ? (unsigned long)gethostid() : 0); 977 978 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); 979 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); 980 981 system_taskq_init(); 982 983 #ifdef illumos 984 mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL); 985 #endif 986 987 spa_init(mode); 988 989 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 990 } 991 992 void 993 kernel_fini(void) 994 { 995 spa_fini(); 996 997 system_taskq_fini(); 998 999 close(random_fd); 1000 close(urandom_fd); 1001 1002 random_fd = -1; 1003 urandom_fd = -1; 1004 } 1005 1006 int 1007 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 1008 { 1009 int ret; 1010 uLongf len = *dstlen; 1011 1012 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK) 1013 *dstlen = (size_t)len; 1014 1015 return (ret); 1016 } 1017 1018 int 1019 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen, 1020 int level) 1021 { 1022 int ret; 1023 uLongf len = *dstlen; 1024 1025 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK) 1026 *dstlen = (size_t)len; 1027 1028 return (ret); 1029 } 1030 1031 uid_t 1032 crgetuid(cred_t *cr) 1033 { 1034 return (0); 1035 } 1036 1037 uid_t 1038 crgetruid(cred_t *cr) 1039 { 1040 return (0); 1041 } 1042 1043 gid_t 1044 crgetgid(cred_t *cr) 1045 { 1046 return (0); 1047 } 1048 1049 int 1050 crgetngroups(cred_t *cr) 1051 { 1052 return (0); 1053 } 1054 1055 gid_t * 1056 crgetgroups(cred_t *cr) 1057 { 1058 return (NULL); 1059 } 1060 1061 int 1062 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 1063 { 1064 return (0); 1065 } 1066 1067 int 1068 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 1069 { 1070 return (0); 1071 } 1072 1073 int 1074 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 1075 { 1076 return (0); 1077 } 1078 1079 ksiddomain_t * 1080 ksid_lookupdomain(const char *dom) 1081 { 1082 ksiddomain_t *kd; 1083 1084 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 1085 kd->kd_name = spa_strdup(dom); 1086 return (kd); 1087 } 1088 1089 void 1090 ksiddomain_rele(ksiddomain_t *ksid) 1091 { 1092 spa_strfree(ksid->kd_name); 1093 umem_free(ksid, sizeof (ksiddomain_t)); 1094 } 1095 1096 /* 1097 * Do not change the length of the returned string; it must be freed 1098 * with strfree(). 1099 */ 1100 char * 1101 kmem_asprintf(const char *fmt, ...) 1102 { 1103 int size; 1104 va_list adx; 1105 char *buf; 1106 1107 va_start(adx, fmt); 1108 size = vsnprintf(NULL, 0, fmt, adx) + 1; 1109 va_end(adx); 1110 1111 buf = kmem_alloc(size, KM_SLEEP); 1112 1113 va_start(adx, fmt); 1114 size = vsnprintf(buf, size, fmt, adx); 1115 va_end(adx); 1116 1117 return (buf); 1118 } 1119 1120 /* ARGSUSED */ 1121 int 1122 zfs_onexit_fd_hold(int fd, minor_t *minorp) 1123 { 1124 *minorp = 0; 1125 return (0); 1126 } 1127 1128 /* ARGSUSED */ 1129 void 1130 zfs_onexit_fd_rele(int fd) 1131 { 1132 } 1133 1134 /* ARGSUSED */ 1135 int 1136 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 1137 uint64_t *action_handle) 1138 { 1139 return (0); 1140 } 1141 1142 /* ARGSUSED */ 1143 int 1144 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire) 1145 { 1146 return (0); 1147 } 1148 1149 /* ARGSUSED */ 1150 int 1151 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data) 1152 { 1153 return (0); 1154 } 1155 1156 #ifdef __FreeBSD__ 1157 /* ARGSUSED */ 1158 int 1159 zvol_create_minors(const char *name) 1160 { 1161 return (0); 1162 } 1163 #endif 1164 1165 #ifdef illumos 1166 void 1167 bioinit(buf_t *bp) 1168 { 1169 bzero(bp, sizeof (buf_t)); 1170 } 1171 1172 void 1173 biodone(buf_t *bp) 1174 { 1175 if (bp->b_iodone != NULL) { 1176 (*(bp->b_iodone))(bp); 1177 return; 1178 } 1179 ASSERT((bp->b_flags & B_DONE) == 0); 1180 bp->b_flags |= B_DONE; 1181 } 1182 1183 void 1184 bioerror(buf_t *bp, int error) 1185 { 1186 ASSERT(bp != NULL); 1187 ASSERT(error >= 0); 1188 1189 if (error != 0) { 1190 bp->b_flags |= B_ERROR; 1191 } else { 1192 bp->b_flags &= ~B_ERROR; 1193 } 1194 bp->b_error = error; 1195 } 1196 1197 1198 int 1199 geterror(struct buf *bp) 1200 { 1201 int error = 0; 1202 1203 if (bp->b_flags & B_ERROR) { 1204 error = bp->b_error; 1205 if (!error) 1206 error = EIO; 1207 } 1208 return (error); 1209 } 1210 #endif 1211