1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright 2016 Nexenta Systems, Inc. 27 */ 28 29 /* 30 * Pool import support functions. 31 * 32 * To import a pool, we rely on reading the configuration information from the 33 * ZFS label of each device. If we successfully read the label, then we 34 * organize the configuration information in the following hierarchy: 35 * 36 * pool guid -> toplevel vdev guid -> label txg 37 * 38 * Duplicate entries matching this same tuple will be discarded. Once we have 39 * examined every device, we pick the best label txg config for each toplevel 40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 41 * update any paths that have changed. Finally, we attempt to import the pool 42 * using our derived config, and record the results. 43 */ 44 45 #include <ctype.h> 46 #include <devid.h> 47 #include <dirent.h> 48 #include <errno.h> 49 #include <libintl.h> 50 #include <stddef.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <sys/stat.h> 54 #include <unistd.h> 55 #include <fcntl.h> 56 #include <thread_pool.h> 57 #ifdef __FreeBSD__ 58 #include <libgeom.h> 59 #endif 60 #ifdef __NetBSD__ 61 #include <util.h> 62 static int native_ioctl(int fd, unsigned long cmd, void *arg); 63 #endif 64 65 #include <sys/vdev_impl.h> 66 67 #include "libzfs.h" 68 #include "libzfs_impl.h" 69 70 /* 71 * Intermediate structures used to gather configuration information. 72 */ 73 typedef struct config_entry { 74 uint64_t ce_txg; 75 nvlist_t *ce_config; 76 struct config_entry *ce_next; 77 } config_entry_t; 78 79 typedef struct vdev_entry { 80 uint64_t ve_guid; 81 config_entry_t *ve_configs; 82 struct vdev_entry *ve_next; 83 } vdev_entry_t; 84 85 typedef struct pool_entry { 86 uint64_t pe_guid; 87 vdev_entry_t *pe_vdevs; 88 struct pool_entry *pe_next; 89 } pool_entry_t; 90 91 typedef struct name_entry { 92 char *ne_name; 93 uint64_t ne_guid; 94 struct name_entry *ne_next; 95 } name_entry_t; 96 97 typedef struct pool_list { 98 pool_entry_t *pools; 99 name_entry_t *names; 100 } pool_list_t; 101 102 static char * 103 get_devid(const char *path) 104 { 105 #ifdef have_devid 106 int fd; 107 ddi_devid_t devid; 108 char *minor, *ret; 109 110 if ((fd = open(path, O_RDONLY)) < 0) 111 return (NULL); 112 113 minor = NULL; 114 ret = NULL; 115 if (devid_get(fd, &devid) == 0) { 116 if (devid_get_minor_name(fd, &minor) == 0) 117 ret = devid_str_encode(devid, minor); 118 if (minor != NULL) 119 devid_str_free(minor); 120 devid_free(devid); 121 } 122 (void) close(fd); 123 124 return (ret); 125 #else 126 return (NULL); 127 #endif 128 } 129 130 131 /* 132 * Go through and fix up any path and/or devid information for the given vdev 133 * configuration. 134 */ 135 static int 136 fix_paths(nvlist_t *nv, name_entry_t *names) 137 { 138 nvlist_t **child; 139 uint_t c, children; 140 uint64_t guid; 141 name_entry_t *ne, *best; 142 char *path, *devid; 143 int matched; 144 145 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 146 &child, &children) == 0) { 147 for (c = 0; c < children; c++) 148 if (fix_paths(child[c], names) != 0) 149 return (-1); 150 return (0); 151 } 152 153 /* 154 * This is a leaf (file or disk) vdev. In either case, go through 155 * the name list and see if we find a matching guid. If so, replace 156 * the path and see if we can calculate a new devid. 157 * 158 * There may be multiple names associated with a particular guid, in 159 * which case we have overlapping slices or multiple paths to the same 160 * disk. If this is the case, then we want to pick the path that is 161 * the most similar to the original, where "most similar" is the number 162 * of matching characters starting from the end of the path. This will 163 * preserve slice numbers even if the disks have been reorganized, and 164 * will also catch preferred disk names if multiple paths exist. 165 */ 166 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 167 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 168 path = NULL; 169 170 matched = 0; 171 best = NULL; 172 for (ne = names; ne != NULL; ne = ne->ne_next) { 173 if (ne->ne_guid == guid) { 174 const char *src, *dst; 175 int count; 176 177 if (path == NULL) { 178 best = ne; 179 break; 180 } 181 182 src = ne->ne_name + strlen(ne->ne_name) - 1; 183 dst = path + strlen(path) - 1; 184 for (count = 0; src >= ne->ne_name && dst >= path; 185 src--, dst--, count++) 186 if (*src != *dst) 187 break; 188 189 /* 190 * At this point, 'count' is the number of characters 191 * matched from the end. 192 */ 193 if (count > matched || best == NULL) { 194 best = ne; 195 matched = count; 196 } 197 } 198 } 199 200 if (best == NULL) 201 return (0); 202 203 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 204 return (-1); 205 206 if ((devid = get_devid(best->ne_name)) == NULL) { 207 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 208 } else { 209 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 210 devid_str_free(devid); 211 return (-1); 212 } 213 devid_str_free(devid); 214 } 215 216 return (0); 217 } 218 219 /* 220 * Add the given configuration to the list of known devices. 221 */ 222 static int 223 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 224 nvlist_t *config) 225 { 226 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 227 pool_entry_t *pe; 228 vdev_entry_t *ve; 229 config_entry_t *ce; 230 name_entry_t *ne; 231 232 /* 233 * If this is a hot spare not currently in use or level 2 cache 234 * device, add it to the list of names to translate, but don't do 235 * anything else. 236 */ 237 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 238 &state) == 0 && 239 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 240 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 241 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 242 return (-1); 243 244 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 245 free(ne); 246 return (-1); 247 } 248 ne->ne_guid = vdev_guid; 249 ne->ne_next = pl->names; 250 pl->names = ne; 251 return (0); 252 } 253 254 /* 255 * If we have a valid config but cannot read any of these fields, then 256 * it means we have a half-initialized label. In vdev_label_init() 257 * we write a label with txg == 0 so that we can identify the device 258 * in case the user refers to the same disk later on. If we fail to 259 * create the pool, we'll be left with a label in this state 260 * which should not be considered part of a valid pool. 261 */ 262 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 263 &pool_guid) != 0 || 264 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 265 &vdev_guid) != 0 || 266 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 267 &top_guid) != 0 || 268 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 269 &txg) != 0 || txg == 0) { 270 nvlist_free(config); 271 return (0); 272 } 273 274 /* 275 * First, see if we know about this pool. If not, then add it to the 276 * list of known pools. 277 */ 278 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 279 if (pe->pe_guid == pool_guid) 280 break; 281 } 282 283 if (pe == NULL) { 284 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 285 nvlist_free(config); 286 return (-1); 287 } 288 pe->pe_guid = pool_guid; 289 pe->pe_next = pl->pools; 290 pl->pools = pe; 291 } 292 293 /* 294 * Second, see if we know about this toplevel vdev. Add it if its 295 * missing. 296 */ 297 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 298 if (ve->ve_guid == top_guid) 299 break; 300 } 301 302 if (ve == NULL) { 303 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 304 nvlist_free(config); 305 return (-1); 306 } 307 ve->ve_guid = top_guid; 308 ve->ve_next = pe->pe_vdevs; 309 pe->pe_vdevs = ve; 310 } 311 312 /* 313 * Third, see if we have a config with a matching transaction group. If 314 * so, then we do nothing. Otherwise, add it to the list of known 315 * configs. 316 */ 317 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 318 if (ce->ce_txg == txg) 319 break; 320 } 321 322 if (ce == NULL) { 323 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 324 nvlist_free(config); 325 return (-1); 326 } 327 ce->ce_txg = txg; 328 ce->ce_config = config; 329 ce->ce_next = ve->ve_configs; 330 ve->ve_configs = ce; 331 } else { 332 nvlist_free(config); 333 } 334 335 /* 336 * At this point we've successfully added our config to the list of 337 * known configs. The last thing to do is add the vdev guid -> path 338 * mappings so that we can fix up the configuration as necessary before 339 * doing the import. 340 */ 341 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 342 return (-1); 343 344 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 345 free(ne); 346 return (-1); 347 } 348 349 ne->ne_guid = vdev_guid; 350 ne->ne_next = pl->names; 351 pl->names = ne; 352 353 return (0); 354 } 355 356 /* 357 * Returns true if the named pool matches the given GUID. 358 */ 359 static int 360 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 361 boolean_t *isactive) 362 { 363 zpool_handle_t *zhp; 364 uint64_t theguid; 365 366 if (zpool_open_silent(hdl, name, &zhp) != 0) 367 return (-1); 368 369 if (zhp == NULL) { 370 *isactive = B_FALSE; 371 return (0); 372 } 373 374 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 375 &theguid) == 0); 376 377 zpool_close(zhp); 378 379 *isactive = (theguid == guid); 380 return (0); 381 } 382 383 static nvlist_t * 384 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 385 { 386 nvlist_t *nvl; 387 zfs_cmd_t zc = { 0 }; 388 int err; 389 390 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 391 return (NULL); 392 393 if (zcmd_alloc_dst_nvlist(hdl, &zc, 394 zc.zc_nvlist_conf_size * 2) != 0) { 395 zcmd_free_nvlists(&zc); 396 return (NULL); 397 } 398 399 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 400 &zc)) != 0 && errno == ENOMEM) { 401 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 402 zcmd_free_nvlists(&zc); 403 return (NULL); 404 } 405 } 406 407 if (err) { 408 zcmd_free_nvlists(&zc); 409 return (NULL); 410 } 411 412 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 413 zcmd_free_nvlists(&zc); 414 return (NULL); 415 } 416 417 zcmd_free_nvlists(&zc); 418 return (nvl); 419 } 420 421 /* 422 * Determine if the vdev id is a hole in the namespace. 423 */ 424 boolean_t 425 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 426 { 427 for (int c = 0; c < holes; c++) { 428 429 /* Top-level is a hole */ 430 if (hole_array[c] == id) 431 return (B_TRUE); 432 } 433 return (B_FALSE); 434 } 435 436 /* 437 * Convert our list of pools into the definitive set of configurations. We 438 * start by picking the best config for each toplevel vdev. Once that's done, 439 * we assemble the toplevel vdevs into a full config for the pool. We make a 440 * pass to fix up any incorrect paths, and then add it to the main list to 441 * return to the user. 442 */ 443 static nvlist_t * 444 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 445 { 446 pool_entry_t *pe; 447 vdev_entry_t *ve; 448 config_entry_t *ce; 449 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 450 nvlist_t **spares, **l2cache; 451 uint_t i, nspares, nl2cache; 452 boolean_t config_seen; 453 uint64_t best_txg; 454 char *name, *hostname = NULL; 455 uint64_t guid; 456 uint_t children = 0; 457 nvlist_t **child = NULL; 458 uint_t holes; 459 uint64_t *hole_array, max_id; 460 uint_t c; 461 boolean_t isactive; 462 uint64_t hostid; 463 nvlist_t *nvl; 464 boolean_t found_one = B_FALSE; 465 boolean_t valid_top_config = B_FALSE; 466 467 if (nvlist_alloc(&ret, 0, 0) != 0) 468 goto nomem; 469 470 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 471 uint64_t id, max_txg = 0; 472 473 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 474 goto nomem; 475 config_seen = B_FALSE; 476 477 /* 478 * Iterate over all toplevel vdevs. Grab the pool configuration 479 * from the first one we find, and then go through the rest and 480 * add them as necessary to the 'vdevs' member of the config. 481 */ 482 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 483 484 /* 485 * Determine the best configuration for this vdev by 486 * selecting the config with the latest transaction 487 * group. 488 */ 489 best_txg = 0; 490 for (ce = ve->ve_configs; ce != NULL; 491 ce = ce->ce_next) { 492 493 if (ce->ce_txg > best_txg) { 494 tmp = ce->ce_config; 495 best_txg = ce->ce_txg; 496 } 497 } 498 499 /* 500 * We rely on the fact that the max txg for the 501 * pool will contain the most up-to-date information 502 * about the valid top-levels in the vdev namespace. 503 */ 504 if (best_txg > max_txg) { 505 (void) nvlist_remove(config, 506 ZPOOL_CONFIG_VDEV_CHILDREN, 507 DATA_TYPE_UINT64); 508 (void) nvlist_remove(config, 509 ZPOOL_CONFIG_HOLE_ARRAY, 510 DATA_TYPE_UINT64_ARRAY); 511 512 max_txg = best_txg; 513 hole_array = NULL; 514 holes = 0; 515 max_id = 0; 516 valid_top_config = B_FALSE; 517 518 if (nvlist_lookup_uint64(tmp, 519 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 520 verify(nvlist_add_uint64(config, 521 ZPOOL_CONFIG_VDEV_CHILDREN, 522 max_id) == 0); 523 valid_top_config = B_TRUE; 524 } 525 526 if (nvlist_lookup_uint64_array(tmp, 527 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 528 &holes) == 0) { 529 verify(nvlist_add_uint64_array(config, 530 ZPOOL_CONFIG_HOLE_ARRAY, 531 hole_array, holes) == 0); 532 } 533 } 534 535 if (!config_seen) { 536 /* 537 * Copy the relevant pieces of data to the pool 538 * configuration: 539 * 540 * version 541 * pool guid 542 * name 543 * comment (if available) 544 * pool state 545 * hostid (if available) 546 * hostname (if available) 547 */ 548 uint64_t state, version; 549 char *comment = NULL; 550 551 version = fnvlist_lookup_uint64(tmp, 552 ZPOOL_CONFIG_VERSION); 553 fnvlist_add_uint64(config, 554 ZPOOL_CONFIG_VERSION, version); 555 guid = fnvlist_lookup_uint64(tmp, 556 ZPOOL_CONFIG_POOL_GUID); 557 fnvlist_add_uint64(config, 558 ZPOOL_CONFIG_POOL_GUID, guid); 559 name = fnvlist_lookup_string(tmp, 560 ZPOOL_CONFIG_POOL_NAME); 561 fnvlist_add_string(config, 562 ZPOOL_CONFIG_POOL_NAME, name); 563 564 if (nvlist_lookup_string(tmp, 565 ZPOOL_CONFIG_COMMENT, &comment) == 0) 566 fnvlist_add_string(config, 567 ZPOOL_CONFIG_COMMENT, comment); 568 569 state = fnvlist_lookup_uint64(tmp, 570 ZPOOL_CONFIG_POOL_STATE); 571 fnvlist_add_uint64(config, 572 ZPOOL_CONFIG_POOL_STATE, state); 573 574 hostid = 0; 575 if (nvlist_lookup_uint64(tmp, 576 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 577 fnvlist_add_uint64(config, 578 ZPOOL_CONFIG_HOSTID, hostid); 579 hostname = fnvlist_lookup_string(tmp, 580 ZPOOL_CONFIG_HOSTNAME); 581 fnvlist_add_string(config, 582 ZPOOL_CONFIG_HOSTNAME, hostname); 583 } 584 585 config_seen = B_TRUE; 586 } 587 588 /* 589 * Add this top-level vdev to the child array. 590 */ 591 verify(nvlist_lookup_nvlist(tmp, 592 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 593 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 594 &id) == 0); 595 596 if (id >= children) { 597 nvlist_t **newchild; 598 599 newchild = zfs_alloc(hdl, (id + 1) * 600 sizeof (nvlist_t *)); 601 if (newchild == NULL) 602 goto nomem; 603 604 for (c = 0; c < children; c++) 605 newchild[c] = child[c]; 606 607 free(child); 608 child = newchild; 609 children = id + 1; 610 } 611 if (nvlist_dup(nvtop, &child[id], 0) != 0) 612 goto nomem; 613 614 } 615 616 /* 617 * If we have information about all the top-levels then 618 * clean up the nvlist which we've constructed. This 619 * means removing any extraneous devices that are 620 * beyond the valid range or adding devices to the end 621 * of our array which appear to be missing. 622 */ 623 if (valid_top_config) { 624 if (max_id < children) { 625 for (c = max_id; c < children; c++) 626 nvlist_free(child[c]); 627 children = max_id; 628 } else if (max_id > children) { 629 nvlist_t **newchild; 630 631 newchild = zfs_alloc(hdl, (max_id) * 632 sizeof (nvlist_t *)); 633 if (newchild == NULL) 634 goto nomem; 635 636 for (c = 0; c < children; c++) 637 newchild[c] = child[c]; 638 639 free(child); 640 child = newchild; 641 children = max_id; 642 } 643 } 644 645 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 646 &guid) == 0); 647 648 /* 649 * The vdev namespace may contain holes as a result of 650 * device removal. We must add them back into the vdev 651 * tree before we process any missing devices. 652 */ 653 if (holes > 0) { 654 ASSERT(valid_top_config); 655 656 for (c = 0; c < children; c++) { 657 nvlist_t *holey; 658 659 if (child[c] != NULL || 660 !vdev_is_hole(hole_array, holes, c)) 661 continue; 662 663 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 664 0) != 0) 665 goto nomem; 666 667 /* 668 * Holes in the namespace are treated as 669 * "hole" top-level vdevs and have a 670 * special flag set on them. 671 */ 672 if (nvlist_add_string(holey, 673 ZPOOL_CONFIG_TYPE, 674 VDEV_TYPE_HOLE) != 0 || 675 nvlist_add_uint64(holey, 676 ZPOOL_CONFIG_ID, c) != 0 || 677 nvlist_add_uint64(holey, 678 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 679 nvlist_free(holey); 680 goto nomem; 681 } 682 child[c] = holey; 683 } 684 } 685 686 /* 687 * Look for any missing top-level vdevs. If this is the case, 688 * create a faked up 'missing' vdev as a placeholder. We cannot 689 * simply compress the child array, because the kernel performs 690 * certain checks to make sure the vdev IDs match their location 691 * in the configuration. 692 */ 693 for (c = 0; c < children; c++) { 694 if (child[c] == NULL) { 695 nvlist_t *missing; 696 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 697 0) != 0) 698 goto nomem; 699 if (nvlist_add_string(missing, 700 ZPOOL_CONFIG_TYPE, 701 VDEV_TYPE_MISSING) != 0 || 702 nvlist_add_uint64(missing, 703 ZPOOL_CONFIG_ID, c) != 0 || 704 nvlist_add_uint64(missing, 705 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 706 nvlist_free(missing); 707 goto nomem; 708 } 709 child[c] = missing; 710 } 711 } 712 713 /* 714 * Put all of this pool's top-level vdevs into a root vdev. 715 */ 716 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 717 goto nomem; 718 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 719 VDEV_TYPE_ROOT) != 0 || 720 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 721 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 722 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 723 child, children) != 0) { 724 nvlist_free(nvroot); 725 goto nomem; 726 } 727 728 for (c = 0; c < children; c++) 729 nvlist_free(child[c]); 730 free(child); 731 children = 0; 732 child = NULL; 733 734 /* 735 * Go through and fix up any paths and/or devids based on our 736 * known list of vdev GUID -> path mappings. 737 */ 738 if (fix_paths(nvroot, pl->names) != 0) { 739 nvlist_free(nvroot); 740 goto nomem; 741 } 742 743 /* 744 * Add the root vdev to this pool's configuration. 745 */ 746 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 747 nvroot) != 0) { 748 nvlist_free(nvroot); 749 goto nomem; 750 } 751 nvlist_free(nvroot); 752 753 /* 754 * zdb uses this path to report on active pools that were 755 * imported or created using -R. 756 */ 757 if (active_ok) 758 goto add_pool; 759 760 /* 761 * Determine if this pool is currently active, in which case we 762 * can't actually import it. 763 */ 764 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 765 &name) == 0); 766 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 767 &guid) == 0); 768 769 if (pool_active(hdl, name, guid, &isactive) != 0) 770 goto error; 771 772 if (isactive) { 773 nvlist_free(config); 774 config = NULL; 775 continue; 776 } 777 778 if ((nvl = refresh_config(hdl, config)) == NULL) { 779 nvlist_free(config); 780 config = NULL; 781 continue; 782 } 783 784 nvlist_free(config); 785 config = nvl; 786 787 /* 788 * Go through and update the paths for spares, now that we have 789 * them. 790 */ 791 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 792 &nvroot) == 0); 793 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 794 &spares, &nspares) == 0) { 795 for (i = 0; i < nspares; i++) { 796 if (fix_paths(spares[i], pl->names) != 0) 797 goto nomem; 798 } 799 } 800 801 /* 802 * Update the paths for l2cache devices. 803 */ 804 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 805 &l2cache, &nl2cache) == 0) { 806 for (i = 0; i < nl2cache; i++) { 807 if (fix_paths(l2cache[i], pl->names) != 0) 808 goto nomem; 809 } 810 } 811 812 /* 813 * Restore the original information read from the actual label. 814 */ 815 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 816 DATA_TYPE_UINT64); 817 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 818 DATA_TYPE_STRING); 819 if (hostid != 0) { 820 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 821 hostid) == 0); 822 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 823 hostname) == 0); 824 } 825 826 add_pool: 827 /* 828 * Add this pool to the list of configs. 829 */ 830 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 831 &name) == 0); 832 if (nvlist_add_nvlist(ret, name, config) != 0) 833 goto nomem; 834 835 found_one = B_TRUE; 836 nvlist_free(config); 837 config = NULL; 838 } 839 840 if (!found_one) { 841 nvlist_free(ret); 842 ret = NULL; 843 } 844 845 return (ret); 846 847 nomem: 848 (void) no_memory(hdl); 849 error: 850 nvlist_free(config); 851 nvlist_free(ret); 852 for (c = 0; c < children; c++) 853 nvlist_free(child[c]); 854 free(child); 855 856 return (NULL); 857 } 858 859 /* 860 * Return the offset of the given label. 861 */ 862 static uint64_t 863 label_offset(uint64_t size, int l) 864 { 865 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 866 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 867 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 868 } 869 870 /* 871 * Given a file descriptor, read the label information and return an nvlist 872 * describing the configuration, if there is one. 873 */ 874 int 875 zpool_read_label(int fd, nvlist_t **config) 876 { 877 struct stat64 statbuf; 878 int l; 879 vdev_label_t *label; 880 uint64_t state, txg, size; 881 882 *config = NULL; 883 884 if (fstat64(fd, &statbuf) == -1) 885 return (0); 886 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 887 888 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 889 return (-1); 890 891 for (l = 0; l < VDEV_LABELS; l++) { 892 if (pread64(fd, label, sizeof (vdev_label_t), 893 label_offset(size, l)) != sizeof (vdev_label_t)) 894 continue; 895 896 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 897 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 898 continue; 899 900 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 901 &state) != 0 || state > POOL_STATE_L2CACHE) { 902 nvlist_free(*config); 903 continue; 904 } 905 906 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 907 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 908 &txg) != 0 || txg == 0)) { 909 nvlist_free(*config); 910 continue; 911 } 912 913 free(label); 914 return (0); 915 } 916 917 free(label); 918 *config = NULL; 919 return (0); 920 } 921 922 typedef struct rdsk_node { 923 char *rn_name; 924 int rn_dfd; 925 libzfs_handle_t *rn_hdl; 926 nvlist_t *rn_config; 927 avl_tree_t *rn_avl; 928 avl_node_t rn_node; 929 boolean_t rn_nozpool; 930 } rdsk_node_t; 931 932 static int 933 slice_cache_compare(const void *arg1, const void *arg2) 934 { 935 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 936 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 937 char *nm1slice, *nm2slice; 938 int rv; 939 940 /* 941 * slices zero and two are the most likely to provide results, 942 * so put those first 943 */ 944 nm1slice = strstr(nm1, "s0"); 945 nm2slice = strstr(nm2, "s0"); 946 if (nm1slice && !nm2slice) { 947 return (-1); 948 } 949 if (!nm1slice && nm2slice) { 950 return (1); 951 } 952 nm1slice = strstr(nm1, "s2"); 953 nm2slice = strstr(nm2, "s2"); 954 if (nm1slice && !nm2slice) { 955 return (-1); 956 } 957 if (!nm1slice && nm2slice) { 958 return (1); 959 } 960 961 rv = strcmp(nm1, nm2); 962 if (rv == 0) 963 return (0); 964 return (rv > 0 ? 1 : -1); 965 } 966 967 #ifdef illumos 968 static void 969 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 970 diskaddr_t size, uint_t blksz) 971 { 972 rdsk_node_t tmpnode; 973 rdsk_node_t *node; 974 char sname[MAXNAMELEN]; 975 976 tmpnode.rn_name = &sname[0]; 977 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 978 diskname, partno); 979 /* 980 * protect against division by zero for disk labels that 981 * contain a bogus sector size 982 */ 983 if (blksz == 0) 984 blksz = DEV_BSIZE; 985 /* too small to contain a zpool? */ 986 if ((size < (SPA_MINDEVSIZE / blksz)) && 987 (node = avl_find(r, &tmpnode, NULL))) 988 node->rn_nozpool = B_TRUE; 989 } 990 #endif /* illumos */ 991 992 static void 993 nozpool_all_slices(avl_tree_t *r, const char *sname) 994 { 995 #ifdef illumos 996 char diskname[MAXNAMELEN]; 997 char *ptr; 998 int i; 999 1000 (void) strncpy(diskname, sname, MAXNAMELEN); 1001 if (((ptr = strrchr(diskname, 's')) == NULL) && 1002 ((ptr = strrchr(diskname, 'p')) == NULL)) 1003 return; 1004 ptr[0] = 's'; 1005 ptr[1] = '\0'; 1006 for (i = 0; i < NDKMAP; i++) 1007 check_one_slice(r, diskname, i, 0, 1); 1008 ptr[0] = 'p'; 1009 for (i = 0; i <= FD_NUMPART; i++) 1010 check_one_slice(r, diskname, i, 0, 1); 1011 #endif /* illumos */ 1012 } 1013 1014 #ifdef illumos 1015 static void 1016 check_slices(avl_tree_t *r, int fd, const char *sname) 1017 { 1018 struct extvtoc vtoc; 1019 struct dk_gpt *gpt; 1020 char diskname[MAXNAMELEN]; 1021 char *ptr; 1022 int i; 1023 1024 (void) strncpy(diskname, sname, MAXNAMELEN); 1025 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1026 return; 1027 ptr[1] = '\0'; 1028 1029 if (read_extvtoc(fd, &vtoc) >= 0) { 1030 for (i = 0; i < NDKMAP; i++) 1031 check_one_slice(r, diskname, i, 1032 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1033 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1034 /* 1035 * on x86 we'll still have leftover links that point 1036 * to slices s[9-15], so use NDKMAP instead 1037 */ 1038 for (i = 0; i < NDKMAP; i++) 1039 check_one_slice(r, diskname, i, 1040 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1041 /* nodes p[1-4] are never used with EFI labels */ 1042 ptr[0] = 'p'; 1043 for (i = 1; i <= FD_NUMPART; i++) 1044 check_one_slice(r, diskname, i, 0, 1); 1045 efi_free(gpt); 1046 } 1047 } 1048 #endif /* illumos */ 1049 1050 static void 1051 zpool_open_func(void *arg) 1052 { 1053 rdsk_node_t *rn = arg; 1054 struct stat64 statbuf; 1055 nvlist_t *config; 1056 int fd; 1057 1058 if (rn->rn_nozpool) 1059 return; 1060 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1061 /* symlink to a device that's no longer there */ 1062 if (errno == ENOENT) 1063 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1064 return; 1065 } 1066 /* 1067 * Ignore failed stats. We only want regular 1068 * files, character devs and block devs. 1069 */ 1070 if (fstat64(fd, &statbuf) != 0 || 1071 (!S_ISREG(statbuf.st_mode) && 1072 !S_ISCHR(statbuf.st_mode) && 1073 !S_ISBLK(statbuf.st_mode))) { 1074 (void) close(fd); 1075 return; 1076 } 1077 /* this file is too small to hold a zpool */ 1078 #ifdef illumos 1079 if (S_ISREG(statbuf.st_mode) && 1080 statbuf.st_size < SPA_MINDEVSIZE) { 1081 (void) close(fd); 1082 return; 1083 } else if (!S_ISREG(statbuf.st_mode)) { 1084 /* 1085 * Try to read the disk label first so we don't have to 1086 * open a bunch of minor nodes that can't have a zpool. 1087 */ 1088 check_slices(rn->rn_avl, fd, rn->rn_name); 1089 } 1090 #endif /* illumos */ 1091 #ifdef __FreeBSD__ 1092 if (statbuf.st_size < SPA_MINDEVSIZE) { 1093 (void) close(fd); 1094 return; 1095 } 1096 #endif /* __FreeBSD__ */ 1097 #ifdef __NetBSD__ 1098 struct dkwedge_list dkwl; 1099 off_t size; 1100 1101 /* skip devices with wedges */ 1102 if (native_ioctl(fd, DIOCLWEDGES, &dkwl) == 0 && 1103 dkwl.dkwl_nwedges > 0) { 1104 (void) close(fd); 1105 return; 1106 } 1107 1108 if (native_ioctl(fd, DIOCGMEDIASIZE, &size) < 0 || 1109 size < SPA_MINDEVSIZE) { 1110 (void) close(fd); 1111 return; 1112 } 1113 #endif 1114 1115 if ((zpool_read_label(fd, &config)) != 0) { 1116 (void) close(fd); 1117 (void) no_memory(rn->rn_hdl); 1118 return; 1119 } 1120 (void) close(fd); 1121 1122 rn->rn_config = config; 1123 } 1124 1125 /* 1126 * Given a file descriptor, clear (zero) the label information. 1127 */ 1128 int 1129 zpool_clear_label(int fd) 1130 { 1131 struct stat64 statbuf; 1132 int l; 1133 vdev_label_t *label; 1134 uint64_t size; 1135 1136 if (fstat64(fd, &statbuf) == -1) 1137 return (0); 1138 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1139 1140 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1141 return (-1); 1142 1143 for (l = 0; l < VDEV_LABELS; l++) { 1144 if (pwrite64(fd, label, sizeof (vdev_label_t), 1145 label_offset(size, l)) != sizeof (vdev_label_t)) { 1146 free(label); 1147 return (-1); 1148 } 1149 } 1150 1151 free(label); 1152 return (0); 1153 } 1154 1155 /* 1156 * Given a list of directories to search, find all pools stored on disk. This 1157 * includes partial pools which are not available to import. If no args are 1158 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1159 * poolname or guid (but not both) are provided by the caller when trying 1160 * to import a specific pool. 1161 */ 1162 static nvlist_t * 1163 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1164 { 1165 int i, dirs = iarg->paths; 1166 struct dirent64 *dp; 1167 char path[MAXPATHLEN]; 1168 char *end, **dir = iarg->path; 1169 size_t pathleft; 1170 nvlist_t *ret = NULL; 1171 static char *default_dir = "/dev"; 1172 pool_list_t pools = { 0 }; 1173 pool_entry_t *pe, *penext; 1174 vdev_entry_t *ve, *venext; 1175 config_entry_t *ce, *cenext; 1176 name_entry_t *ne, *nenext; 1177 avl_tree_t slice_cache; 1178 rdsk_node_t *slice; 1179 void *cookie; 1180 1181 if (dirs == 0) { 1182 dirs = 1; 1183 dir = &default_dir; 1184 } 1185 1186 /* 1187 * Go through and read the label configuration information from every 1188 * possible device, organizing the information according to pool GUID 1189 * and toplevel GUID. 1190 */ 1191 for (i = 0; i < dirs; i++) { 1192 tpool_t *t; 1193 char rdsk[MAXPATHLEN]; 1194 int dfd; 1195 boolean_t config_failed = B_FALSE; 1196 DIR *dirp; 1197 1198 /* use realpath to normalize the path */ 1199 if (realpath(dir[i], path) == 0) { 1200 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1201 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1202 goto error; 1203 } 1204 end = &path[strlen(path)]; 1205 *end++ = '/'; 1206 *end = 0; 1207 pathleft = &path[sizeof (path)] - end; 1208 1209 #ifdef illumos 1210 /* 1211 * Using raw devices instead of block devices when we're 1212 * reading the labels skips a bunch of slow operations during 1213 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1214 */ 1215 if (strcmp(path, ZFS_DISK_ROOTD) == 0) 1216 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); 1217 else 1218 #endif 1219 (void) strlcpy(rdsk, path, sizeof (rdsk)); 1220 1221 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1222 (dirp = fdopendir(dfd)) == NULL) { 1223 if (dfd >= 0) 1224 (void) close(dfd); 1225 zfs_error_aux(hdl, strerror(errno)); 1226 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1227 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1228 rdsk); 1229 goto error; 1230 } 1231 1232 avl_create(&slice_cache, slice_cache_compare, 1233 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1234 1235 #ifdef __FreeBSD__ 1236 if (strcmp(rdsk, "/dev/") == 0) { 1237 struct gmesh mesh; 1238 struct gclass *mp; 1239 struct ggeom *gp; 1240 struct gprovider *pp; 1241 1242 errno = geom_gettree(&mesh); 1243 if (errno != 0) { 1244 zfs_error_aux(hdl, strerror(errno)); 1245 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1246 dgettext(TEXT_DOMAIN, "cannot get GEOM tree")); 1247 goto error; 1248 } 1249 1250 LIST_FOREACH(mp, &mesh.lg_class, lg_class) { 1251 LIST_FOREACH(gp, &mp->lg_geom, lg_geom) { 1252 LIST_FOREACH(pp, &gp->lg_provider, lg_provider) { 1253 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1254 slice->rn_name = zfs_strdup(hdl, pp->lg_name); 1255 slice->rn_avl = &slice_cache; 1256 slice->rn_dfd = dfd; 1257 slice->rn_hdl = hdl; 1258 slice->rn_nozpool = B_FALSE; 1259 avl_add(&slice_cache, slice); 1260 } 1261 } 1262 } 1263 1264 geom_deletetree(&mesh); 1265 goto skipdir; 1266 } 1267 #endif 1268 #ifdef __NetBSD__ 1269 if (strcmp(rdsk, "/dev/") == 0) { 1270 static const char mib_name[] = "hw.disknames"; 1271 size_t len; 1272 char *disknames, *last, *name; 1273 1274 if (sysctlbyname(mib_name, NULL, &len, NULL, 0) == -1) { 1275 zfs_error_aux(hdl, strerror(errno)); 1276 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1277 dgettext(TEXT_DOMAIN, "cannot get hw.disknames list")); 1278 1279 avl_destroy(&slice_cache); 1280 (void) closedir(dirp); 1281 goto error; 1282 } 1283 disknames = zfs_alloc(hdl, len + 2); 1284 (void)sysctlbyname(mib_name, disknames, &len, NULL, 0); 1285 1286 for ((name = strtok_r(disknames, " ", &last)); name; 1287 (name = strtok_r(NULL, " ", &last))) { 1288 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1289 slice->rn_name = zfs_strdup(hdl, name); 1290 slice->rn_avl = &slice_cache; 1291 slice->rn_dfd = dfd; 1292 slice->rn_hdl = hdl; 1293 slice->rn_nozpool = B_FALSE; 1294 avl_add(&slice_cache, slice); 1295 } 1296 free(disknames); 1297 1298 goto skipdir; 1299 } 1300 #endif 1301 1302 /* 1303 * This is not MT-safe, but we have no MT consumers of libzfs 1304 */ 1305 while ((dp = readdir64(dirp)) != NULL) { 1306 const char *name = dp->d_name; 1307 if (name[0] == '.' && 1308 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1309 continue; 1310 1311 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1312 slice->rn_name = zfs_strdup(hdl, name); 1313 slice->rn_avl = &slice_cache; 1314 slice->rn_dfd = dfd; 1315 slice->rn_hdl = hdl; 1316 slice->rn_nozpool = B_FALSE; 1317 avl_add(&slice_cache, slice); 1318 } 1319 skipdir: 1320 /* 1321 * create a thread pool to do all of this in parallel; 1322 * rn_nozpool is not protected, so this is racy in that 1323 * multiple tasks could decide that the same slice can 1324 * not hold a zpool, which is benign. Also choose 1325 * double the number of processors; we hold a lot of 1326 * locks in the kernel, so going beyond this doesn't 1327 * buy us much. 1328 */ 1329 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1330 0, NULL); 1331 for (slice = avl_first(&slice_cache); slice; 1332 (slice = avl_walk(&slice_cache, slice, 1333 AVL_AFTER))) 1334 (void) tpool_dispatch(t, zpool_open_func, slice); 1335 tpool_wait(t); 1336 tpool_destroy(t); 1337 1338 cookie = NULL; 1339 while ((slice = avl_destroy_nodes(&slice_cache, 1340 &cookie)) != NULL) { 1341 if (slice->rn_config != NULL && !config_failed) { 1342 nvlist_t *config = slice->rn_config; 1343 boolean_t matched = B_TRUE; 1344 1345 if (iarg->poolname != NULL) { 1346 char *pname; 1347 1348 matched = nvlist_lookup_string(config, 1349 ZPOOL_CONFIG_POOL_NAME, 1350 &pname) == 0 && 1351 strcmp(iarg->poolname, pname) == 0; 1352 } else if (iarg->guid != 0) { 1353 uint64_t this_guid; 1354 1355 matched = nvlist_lookup_uint64(config, 1356 ZPOOL_CONFIG_POOL_GUID, 1357 &this_guid) == 0 && 1358 iarg->guid == this_guid; 1359 } 1360 if (!matched) { 1361 nvlist_free(config); 1362 } else { 1363 /* 1364 * use the non-raw path for the config 1365 */ 1366 (void) strlcpy(end, slice->rn_name, 1367 pathleft); 1368 if (add_config(hdl, &pools, path, 1369 config) != 0) 1370 config_failed = B_TRUE; 1371 } 1372 } 1373 free(slice->rn_name); 1374 free(slice); 1375 } 1376 avl_destroy(&slice_cache); 1377 1378 (void) closedir(dirp); 1379 1380 if (config_failed) 1381 goto error; 1382 } 1383 1384 ret = get_configs(hdl, &pools, iarg->can_be_active); 1385 1386 error: 1387 for (pe = pools.pools; pe != NULL; pe = penext) { 1388 penext = pe->pe_next; 1389 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1390 venext = ve->ve_next; 1391 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1392 cenext = ce->ce_next; 1393 nvlist_free(ce->ce_config); 1394 free(ce); 1395 } 1396 free(ve); 1397 } 1398 free(pe); 1399 } 1400 1401 for (ne = pools.names; ne != NULL; ne = nenext) { 1402 nenext = ne->ne_next; 1403 free(ne->ne_name); 1404 free(ne); 1405 } 1406 1407 return (ret); 1408 } 1409 1410 nvlist_t * 1411 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1412 { 1413 importargs_t iarg = { 0 }; 1414 1415 iarg.paths = argc; 1416 iarg.path = argv; 1417 1418 return (zpool_find_import_impl(hdl, &iarg)); 1419 } 1420 1421 /* 1422 * Given a cache file, return the contents as a list of importable pools. 1423 * poolname or guid (but not both) are provided by the caller when trying 1424 * to import a specific pool. 1425 */ 1426 nvlist_t * 1427 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1428 char *poolname, uint64_t guid) 1429 { 1430 char *buf; 1431 int fd; 1432 struct stat64 statbuf; 1433 nvlist_t *raw, *src, *dst; 1434 nvlist_t *pools; 1435 nvpair_t *elem; 1436 char *name; 1437 uint64_t this_guid; 1438 boolean_t active; 1439 1440 verify(poolname == NULL || guid == 0); 1441 1442 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1443 zfs_error_aux(hdl, "%s", strerror(errno)); 1444 (void) zfs_error(hdl, EZFS_BADCACHE, 1445 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1446 return (NULL); 1447 } 1448 1449 if (fstat64(fd, &statbuf) != 0) { 1450 zfs_error_aux(hdl, "%s", strerror(errno)); 1451 (void) close(fd); 1452 (void) zfs_error(hdl, EZFS_BADCACHE, 1453 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1454 return (NULL); 1455 } 1456 1457 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1458 (void) close(fd); 1459 return (NULL); 1460 } 1461 1462 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1463 (void) close(fd); 1464 free(buf); 1465 (void) zfs_error(hdl, EZFS_BADCACHE, 1466 dgettext(TEXT_DOMAIN, 1467 "failed to read cache file contents")); 1468 return (NULL); 1469 } 1470 1471 (void) close(fd); 1472 1473 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1474 free(buf); 1475 (void) zfs_error(hdl, EZFS_BADCACHE, 1476 dgettext(TEXT_DOMAIN, 1477 "invalid or corrupt cache file contents")); 1478 return (NULL); 1479 } 1480 1481 free(buf); 1482 1483 /* 1484 * Go through and get the current state of the pools and refresh their 1485 * state. 1486 */ 1487 if (nvlist_alloc(&pools, 0, 0) != 0) { 1488 (void) no_memory(hdl); 1489 nvlist_free(raw); 1490 return (NULL); 1491 } 1492 1493 elem = NULL; 1494 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1495 src = fnvpair_value_nvlist(elem); 1496 1497 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1498 if (poolname != NULL && strcmp(poolname, name) != 0) 1499 continue; 1500 1501 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1502 if (guid != 0 && guid != this_guid) 1503 continue; 1504 1505 if (pool_active(hdl, name, this_guid, &active) != 0) { 1506 nvlist_free(raw); 1507 nvlist_free(pools); 1508 return (NULL); 1509 } 1510 1511 if (active) 1512 continue; 1513 1514 if ((dst = refresh_config(hdl, src)) == NULL) { 1515 nvlist_free(raw); 1516 nvlist_free(pools); 1517 return (NULL); 1518 } 1519 1520 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1521 (void) no_memory(hdl); 1522 nvlist_free(dst); 1523 nvlist_free(raw); 1524 nvlist_free(pools); 1525 return (NULL); 1526 } 1527 nvlist_free(dst); 1528 } 1529 1530 nvlist_free(raw); 1531 return (pools); 1532 } 1533 1534 static int 1535 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1536 { 1537 importargs_t *import = data; 1538 int found = 0; 1539 1540 if (import->poolname != NULL) { 1541 char *pool_name; 1542 1543 verify(nvlist_lookup_string(zhp->zpool_config, 1544 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1545 if (strcmp(pool_name, import->poolname) == 0) 1546 found = 1; 1547 } else { 1548 uint64_t pool_guid; 1549 1550 verify(nvlist_lookup_uint64(zhp->zpool_config, 1551 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1552 if (pool_guid == import->guid) 1553 found = 1; 1554 } 1555 1556 zpool_close(zhp); 1557 return (found); 1558 } 1559 1560 nvlist_t * 1561 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1562 { 1563 verify(import->poolname == NULL || import->guid == 0); 1564 1565 if (import->unique) 1566 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1567 1568 if (import->cachefile != NULL) 1569 return (zpool_find_import_cached(hdl, import->cachefile, 1570 import->poolname, import->guid)); 1571 1572 return (zpool_find_import_impl(hdl, import)); 1573 } 1574 1575 boolean_t 1576 find_guid(nvlist_t *nv, uint64_t guid) 1577 { 1578 uint64_t tmp; 1579 nvlist_t **child; 1580 uint_t c, children; 1581 1582 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1583 if (tmp == guid) 1584 return (B_TRUE); 1585 1586 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1587 &child, &children) == 0) { 1588 for (c = 0; c < children; c++) 1589 if (find_guid(child[c], guid)) 1590 return (B_TRUE); 1591 } 1592 1593 return (B_FALSE); 1594 } 1595 1596 typedef struct aux_cbdata { 1597 const char *cb_type; 1598 uint64_t cb_guid; 1599 zpool_handle_t *cb_zhp; 1600 } aux_cbdata_t; 1601 1602 static int 1603 find_aux(zpool_handle_t *zhp, void *data) 1604 { 1605 aux_cbdata_t *cbp = data; 1606 nvlist_t **list; 1607 uint_t i, count; 1608 uint64_t guid; 1609 nvlist_t *nvroot; 1610 1611 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1612 &nvroot) == 0); 1613 1614 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1615 &list, &count) == 0) { 1616 for (i = 0; i < count; i++) { 1617 verify(nvlist_lookup_uint64(list[i], 1618 ZPOOL_CONFIG_GUID, &guid) == 0); 1619 if (guid == cbp->cb_guid) { 1620 cbp->cb_zhp = zhp; 1621 return (1); 1622 } 1623 } 1624 } 1625 1626 zpool_close(zhp); 1627 return (0); 1628 } 1629 1630 /* 1631 * Determines if the pool is in use. If so, it returns true and the state of 1632 * the pool as well as the name of the pool. Both strings are allocated and 1633 * must be freed by the caller. 1634 */ 1635 int 1636 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1637 boolean_t *inuse) 1638 { 1639 nvlist_t *config; 1640 char *name; 1641 boolean_t ret; 1642 uint64_t guid, vdev_guid; 1643 zpool_handle_t *zhp; 1644 nvlist_t *pool_config; 1645 uint64_t stateval, isspare; 1646 aux_cbdata_t cb = { 0 }; 1647 boolean_t isactive; 1648 1649 *inuse = B_FALSE; 1650 1651 if (zpool_read_label(fd, &config) != 0) { 1652 (void) no_memory(hdl); 1653 return (-1); 1654 } 1655 1656 if (config == NULL) 1657 return (0); 1658 1659 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1660 &stateval) == 0); 1661 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1662 &vdev_guid) == 0); 1663 1664 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1665 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1666 &name) == 0); 1667 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1668 &guid) == 0); 1669 } 1670 1671 switch (stateval) { 1672 case POOL_STATE_EXPORTED: 1673 /* 1674 * A pool with an exported state may in fact be imported 1675 * read-only, so check the in-core state to see if it's 1676 * active and imported read-only. If it is, set 1677 * its state to active. 1678 */ 1679 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1680 (zhp = zpool_open_canfail(hdl, name)) != NULL) { 1681 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1682 stateval = POOL_STATE_ACTIVE; 1683 1684 /* 1685 * All we needed the zpool handle for is the 1686 * readonly prop check. 1687 */ 1688 zpool_close(zhp); 1689 } 1690 1691 ret = B_TRUE; 1692 break; 1693 1694 case POOL_STATE_ACTIVE: 1695 /* 1696 * For an active pool, we have to determine if it's really part 1697 * of a currently active pool (in which case the pool will exist 1698 * and the guid will be the same), or whether it's part of an 1699 * active pool that was disconnected without being explicitly 1700 * exported. 1701 */ 1702 if (pool_active(hdl, name, guid, &isactive) != 0) { 1703 nvlist_free(config); 1704 return (-1); 1705 } 1706 1707 if (isactive) { 1708 /* 1709 * Because the device may have been removed while 1710 * offlined, we only report it as active if the vdev is 1711 * still present in the config. Otherwise, pretend like 1712 * it's not in use. 1713 */ 1714 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1715 (pool_config = zpool_get_config(zhp, NULL)) 1716 != NULL) { 1717 nvlist_t *nvroot; 1718 1719 verify(nvlist_lookup_nvlist(pool_config, 1720 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1721 ret = find_guid(nvroot, vdev_guid); 1722 } else { 1723 ret = B_FALSE; 1724 } 1725 1726 /* 1727 * If this is an active spare within another pool, we 1728 * treat it like an unused hot spare. This allows the 1729 * user to create a pool with a hot spare that currently 1730 * in use within another pool. Since we return B_TRUE, 1731 * libdiskmgt will continue to prevent generic consumers 1732 * from using the device. 1733 */ 1734 if (ret && nvlist_lookup_uint64(config, 1735 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1736 stateval = POOL_STATE_SPARE; 1737 1738 if (zhp != NULL) 1739 zpool_close(zhp); 1740 } else { 1741 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1742 ret = B_TRUE; 1743 } 1744 break; 1745 1746 case POOL_STATE_SPARE: 1747 /* 1748 * For a hot spare, it can be either definitively in use, or 1749 * potentially active. To determine if it's in use, we iterate 1750 * over all pools in the system and search for one with a spare 1751 * with a matching guid. 1752 * 1753 * Due to the shared nature of spares, we don't actually report 1754 * the potentially active case as in use. This means the user 1755 * can freely create pools on the hot spares of exported pools, 1756 * but to do otherwise makes the resulting code complicated, and 1757 * we end up having to deal with this case anyway. 1758 */ 1759 cb.cb_zhp = NULL; 1760 cb.cb_guid = vdev_guid; 1761 cb.cb_type = ZPOOL_CONFIG_SPARES; 1762 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1763 name = (char *)zpool_get_name(cb.cb_zhp); 1764 ret = B_TRUE; 1765 } else { 1766 ret = B_FALSE; 1767 } 1768 break; 1769 1770 case POOL_STATE_L2CACHE: 1771 1772 /* 1773 * Check if any pool is currently using this l2cache device. 1774 */ 1775 cb.cb_zhp = NULL; 1776 cb.cb_guid = vdev_guid; 1777 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1778 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1779 name = (char *)zpool_get_name(cb.cb_zhp); 1780 ret = B_TRUE; 1781 } else { 1782 ret = B_FALSE; 1783 } 1784 break; 1785 1786 default: 1787 ret = B_FALSE; 1788 } 1789 1790 1791 if (ret) { 1792 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1793 if (cb.cb_zhp) 1794 zpool_close(cb.cb_zhp); 1795 nvlist_free(config); 1796 return (-1); 1797 } 1798 *state = (pool_state_t)stateval; 1799 } 1800 1801 if (cb.cb_zhp) 1802 zpool_close(cb.cb_zhp); 1803 1804 nvlist_free(config); 1805 *inuse = ret; 1806 return (0); 1807 } 1808 1809 #ifdef __NetBSD__ 1810 /* 1811 * This needs to be at the end of the file so that we can #undef ioctl 1812 * without affecting anything else. 1813 */ 1814 #undef ioctl 1815 1816 static int 1817 native_ioctl(int fd, unsigned long cmd, void *arg) 1818 { 1819 1820 return ioctl(fd, cmd, arg); 1821 } 1822 #endif 1823