1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * DTrace Process Control 29 * 30 * This file provides a set of routines that permit libdtrace and its clients 31 * to create and grab process handles using libproc, and to share these handles 32 * between library mechanisms that need libproc access, such as ustack(), and 33 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p. 34 * The library provides several mechanisms in the libproc control layer: 35 * 36 * Reference Counting: The library code and client code can independently grab 37 * the same process handles without interfering with one another. Only when 38 * the reference count drops to zero and the handle is not being cached (see 39 * below for more information on caching) will Prelease() be called on it. 40 * 41 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and 42 * the reference count drops to zero, the handle is not immediately released. 43 * Instead, libproc handles are maintained on dph_lrulist in order from most- 44 * recently accessed to least-recently accessed. Idle handles are maintained 45 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls 46 * to ustack() to avoid the overhead of releasing and re-grabbing processes. 47 * 48 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY) 49 * or created by dt_proc_create(), a control thread is created to provide 50 * callbacks on process exit and symbol table caching on dlopen()s. 51 * 52 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock() 53 * are provided to synchronize access to the libproc handle between libdtrace 54 * code and client code and the control thread's use of the ps_prochandle. 55 * 56 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the 57 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace 58 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for 59 * synchronization between libdtrace control threads and the client thread. 60 * 61 * The ps_prochandles themselves are maintained along with a dt_proc_t struct 62 * in a hash table indexed by PID. This provides basic locking and reference 63 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist. 64 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and 65 * the current limit on the number of actively cached entries. 66 * 67 * The control thread for a process establishes breakpoints at the rtld_db 68 * locations of interest, updates mappings and symbol tables at these points, 69 * and handles exec and fork (by always following the parent). The control 70 * thread automatically exits when the process dies or control is lost. 71 * 72 * A simple notification mechanism is provided for libdtrace clients using 73 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If 74 * such an event occurs, the dt_proc_t itself is enqueued on a notification 75 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake 76 * up using this condition and will then call the client handler as necessary. 77 */ 78 79 #include <sys/wait.h> 80 #ifdef illumos 81 #include <sys/lwp.h> 82 #endif 83 #include <strings.h> 84 #include <signal.h> 85 #include <assert.h> 86 #include <errno.h> 87 88 #include <dt_proc.h> 89 #include <dt_pid.h> 90 #include <dt_impl.h> 91 92 #ifndef illumos 93 #include <sys/syscall.h> 94 #include <libproc_compat.h> 95 #define SYS_forksys SYS_fork 96 #endif 97 98 #define IS_SYS_EXEC(w) (w == SYS_execve) 99 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_forksys) 100 101 #if !defined(__DECONST) && defined(__UNCONST) 102 #define __DECONST(a, b) __UNCONST(b) 103 #endif 104 105 static dt_bkpt_t * 106 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data) 107 { 108 struct ps_prochandle *P = dpr->dpr_proc; 109 dt_bkpt_t *dbp; 110 111 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 112 113 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) { 114 dbp->dbp_func = func; 115 dbp->dbp_data = data; 116 dbp->dbp_addr = addr; 117 118 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0) 119 dbp->dbp_active = B_TRUE; 120 121 dt_list_append(&dpr->dpr_bps, dbp); 122 } 123 124 return (dbp); 125 } 126 127 static void 128 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts) 129 { 130 int state = Pstate(dpr->dpr_proc); 131 dt_bkpt_t *dbp, *nbp; 132 133 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 134 135 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) { 136 if (delbkpts && dbp->dbp_active && 137 state != PS_LOST && state != PS_UNDEAD) { 138 (void) Pdelbkpt(dpr->dpr_proc, 139 dbp->dbp_addr, &dbp->dbp_instr); 140 } 141 nbp = dt_list_next(dbp); 142 dt_list_delete(&dpr->dpr_bps, dbp); 143 dt_free(dpr->dpr_hdl, dbp); 144 } 145 } 146 147 static void 148 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr) 149 { 150 #ifdef illumos 151 const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp; 152 #else 153 unsigned long pc; 154 #endif 155 dt_bkpt_t *dbp; 156 157 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 158 159 #ifndef illumos 160 proc_regget(dpr->dpr_proc, REG_PC, &pc); 161 proc_bkptregadj(&pc); 162 #endif 163 164 for (dbp = dt_list_next(&dpr->dpr_bps); 165 dbp != NULL; dbp = dt_list_next(dbp)) { 166 #ifdef illumos 167 if (psp->pr_reg[R_PC] == dbp->dbp_addr) 168 break; 169 #else 170 if (pc == dbp->dbp_addr) 171 break; 172 #endif 173 } 174 175 if (dbp == NULL) { 176 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n", 177 #ifdef illumos 178 (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]); 179 #else 180 (int)dpr->dpr_pid, pc); 181 #endif 182 return; 183 } 184 185 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n", 186 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits); 187 188 dbp->dbp_func(dtp, dpr, dbp->dbp_data); 189 (void) Pxecbkpt(dpr->dpr_proc, &dbp->dbp_instr); 190 } 191 192 static void 193 dt_proc_bpenable(dt_proc_t *dpr) 194 { 195 dt_bkpt_t *dbp; 196 197 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 198 199 for (dbp = dt_list_next(&dpr->dpr_bps); 200 dbp != NULL; dbp = dt_list_next(dbp)) { 201 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc, 202 dbp->dbp_addr, &dbp->dbp_instr) == 0) 203 dbp->dbp_active = B_TRUE; 204 } 205 206 dt_dprintf("breakpoints enabled\n"); 207 } 208 209 static void 210 dt_proc_bpdisable(dt_proc_t *dpr) 211 { 212 dt_bkpt_t *dbp; 213 214 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 215 216 for (dbp = dt_list_next(&dpr->dpr_bps); 217 dbp != NULL; dbp = dt_list_next(dbp)) { 218 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc, 219 dbp->dbp_addr, &dbp->dbp_instr) == 0) 220 dbp->dbp_active = B_FALSE; 221 } 222 223 dt_dprintf("breakpoints disabled\n"); 224 } 225 226 static void 227 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, 228 const char *msg) 229 { 230 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); 231 232 if (dprn == NULL) { 233 dt_dprintf("failed to allocate notification for %d %s\n", 234 (int)dpr->dpr_pid, msg); 235 } else { 236 dprn->dprn_dpr = dpr; 237 if (msg == NULL) 238 dprn->dprn_errmsg[0] = '\0'; 239 else 240 (void) strlcpy(dprn->dprn_errmsg, msg, 241 sizeof (dprn->dprn_errmsg)); 242 243 (void) pthread_mutex_lock(&dph->dph_lock); 244 245 dprn->dprn_next = dph->dph_notify; 246 dph->dph_notify = dprn; 247 248 (void) pthread_cond_broadcast(&dph->dph_cv); 249 (void) pthread_mutex_unlock(&dph->dph_lock); 250 } 251 } 252 253 /* 254 * Check to see if the control thread was requested to stop when the victim 255 * process reached a particular event (why) rather than continuing the victim. 256 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue(). 257 * If 'why' is not set, this function returns immediately and does nothing. 258 */ 259 static void 260 dt_proc_stop(dt_proc_t *dpr, uint8_t why) 261 { 262 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 263 assert(why != DT_PROC_STOP_IDLE); 264 265 if (dpr->dpr_stop & why) { 266 dpr->dpr_stop |= DT_PROC_STOP_IDLE; 267 dpr->dpr_stop &= ~why; 268 269 (void) pthread_cond_broadcast(&dpr->dpr_cv); 270 271 /* 272 * We disable breakpoints while stopped to preserve the 273 * integrity of the program text for both our own disassembly 274 * and that of the kernel. 275 */ 276 dt_proc_bpdisable(dpr); 277 278 while (dpr->dpr_stop & DT_PROC_STOP_IDLE) 279 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 280 281 dt_proc_bpenable(dpr); 282 } 283 } 284 285 /*ARGSUSED*/ 286 static void 287 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname) 288 { 289 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname); 290 dt_proc_stop(dpr, DT_PROC_STOP_MAIN); 291 } 292 293 static void 294 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname) 295 { 296 rd_event_msg_t rdm; 297 rd_err_e err; 298 299 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) { 300 dt_dprintf("pid %d: failed to get %s event message: %s\n", 301 (int)dpr->dpr_pid, evname, rd_errstr(err)); 302 return; 303 } 304 305 dt_dprintf("pid %d: rtld event %s type=%d state %d\n", 306 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state); 307 308 switch (rdm.type) { 309 case RD_NONE: 310 break; 311 case RD_DLACTIVITY: 312 if (rdm.u.state != RD_CONSISTENT) 313 break; 314 315 Pupdate_syms(dpr->dpr_proc); 316 if (dt_pid_create_probes_module(dtp, dpr) != 0) 317 dt_proc_notify(dtp, dtp->dt_procs, dpr, 318 dpr->dpr_errmsg); 319 320 break; 321 case RD_PREINIT: 322 Pupdate_syms(dpr->dpr_proc); 323 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT); 324 break; 325 case RD_POSTINIT: 326 Pupdate_syms(dpr->dpr_proc); 327 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT); 328 break; 329 } 330 } 331 332 static void 333 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname) 334 { 335 rd_notify_t rdn; 336 rd_err_e err; 337 338 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) { 339 dt_dprintf("pid %d: failed to get event address for %s: %s\n", 340 (int)dpr->dpr_pid, evname, rd_errstr(err)); 341 return; 342 } 343 344 if (rdn.type != RD_NOTIFY_BPT) { 345 dt_dprintf("pid %d: event %s has unexpected type %d\n", 346 (int)dpr->dpr_pid, evname, rdn.type); 347 return; 348 } 349 350 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr, 351 #ifdef illumos 352 (dt_bkpt_f *)dt_proc_rdevent, (void *)evname); 353 #else 354 /* XXX ugly */ 355 (dt_bkpt_f *)dt_proc_rdevent, __DECONST(void *, evname)); 356 #endif 357 } 358 359 /* 360 * Common code for enabling events associated with the run-time linker after 361 * attaching to a process or after a victim process completes an exec(2). 362 */ 363 static void 364 dt_proc_attach(dt_proc_t *dpr, int exec) 365 { 366 #ifdef illumos 367 const pstatus_t *psp = Pstatus(dpr->dpr_proc); 368 #endif 369 rd_err_e err; 370 GElf_Sym sym; 371 372 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 373 374 if (exec) { 375 #ifdef illumos 376 if (psp->pr_lwp.pr_errno != 0) 377 return; /* exec failed: nothing needs to be done */ 378 #endif 379 380 dt_proc_bpdestroy(dpr, B_FALSE); 381 #ifdef illumos 382 Preset_maps(dpr->dpr_proc); 383 #endif 384 } 385 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL && 386 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) { 387 #ifdef illumos 388 dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT"); 389 #endif 390 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT"); 391 #ifdef illumos 392 dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY"); 393 #endif 394 } else { 395 dt_dprintf("pid %d: failed to enable rtld events: %s\n", 396 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) : 397 "rtld_db agent initialization failed"); 398 } 399 400 Pupdate_maps(dpr->dpr_proc); 401 402 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE, 403 "a.out", "main", &sym, NULL) == 0) { 404 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value, 405 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main"); 406 } else { 407 dt_dprintf("pid %d: failed to find a.out`main: %s\n", 408 (int)dpr->dpr_pid, strerror(errno)); 409 } 410 } 411 412 /* 413 * Wait for a stopped process to be set running again by some other debugger. 414 * This is typically not required by /proc-based debuggers, since the usual 415 * model is that one debugger controls one victim. But DTrace, as usual, has 416 * its own needs: the stop() action assumes that prun(1) or some other tool 417 * will be applied to resume the victim process. This could be solved by 418 * adding a PCWRUN directive to /proc, but that seems like overkill unless 419 * other debuggers end up needing this functionality, so we implement a cheap 420 * equivalent to PCWRUN using the set of existing kernel mechanisms. 421 * 422 * Our intent is really not just to wait for the victim to run, but rather to 423 * wait for it to run and then stop again for a reason other than the current 424 * PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly 425 * to a stopped process and will return the same result without affecting the 426 * victim, we can just perform these operations repeatedly until Pstate() 427 * changes, the representative LWP ID changes, or the stop timestamp advances. 428 * dt_proc_control() will then rediscover the new state and continue as usual. 429 * When the process is still stopped in the same exact state, we sleep for a 430 * brief interval before waiting again so as not to spin consuming CPU cycles. 431 */ 432 static void 433 dt_proc_waitrun(dt_proc_t *dpr) 434 { 435 printf("%s:%s(%d): DOODAD\n",__FUNCTION__,__FILE__,__LINE__); 436 #ifdef DOODAD 437 struct ps_prochandle *P = dpr->dpr_proc; 438 const lwpstatus_t *psp = &Pstatus(P)->pr_lwp; 439 440 int krflag = psp->pr_flags & (PR_KLC | PR_RLC); 441 timestruc_t tstamp = psp->pr_tstamp; 442 lwpid_t lwpid = psp->pr_lwpid; 443 444 const long wstop = PCWSTOP; 445 int pfd = Pctlfd(P); 446 447 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 448 assert(psp->pr_flags & PR_STOPPED); 449 assert(Pstate(P) == PS_STOP); 450 451 /* 452 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC 453 * so that if the libdtrace client is killed, the victim stays stopped. 454 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG. 455 */ 456 (void) Punsetflags(P, krflag); 457 Psync(P); 458 459 (void) pthread_mutex_unlock(&dpr->dpr_lock); 460 461 while (!dpr->dpr_quit) { 462 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 463 continue; /* check dpr_quit and continue waiting */ 464 465 (void) pthread_mutex_lock(&dpr->dpr_lock); 466 (void) Pstopstatus(P, PCNULL, 0); 467 psp = &Pstatus(P)->pr_lwp; 468 469 /* 470 * If we've reached a new state, found a new representative, or 471 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its 472 * original setting and then return with dpr_lock held. 473 */ 474 if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid || 475 bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) { 476 (void) Psetflags(P, krflag); 477 Psync(P); 478 return; 479 } 480 481 (void) pthread_mutex_unlock(&dpr->dpr_lock); 482 (void) poll(NULL, 0, MILLISEC / 2); 483 } 484 485 (void) pthread_mutex_lock(&dpr->dpr_lock); 486 #endif 487 } 488 489 typedef struct dt_proc_control_data { 490 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */ 491 dt_proc_t *dpcd_proc; /* proccess to control */ 492 } dt_proc_control_data_t; 493 494 /* 495 * Main loop for all victim process control threads. We initialize all the 496 * appropriate /proc control mechanisms, and then enter a loop waiting for 497 * the process to stop on an event or die. We process any events by calling 498 * appropriate subroutines, and exit when the victim dies or we lose control. 499 * 500 * The control thread synchronizes the use of dpr_proc with other libdtrace 501 * threads using dpr_lock. We hold the lock for all of our operations except 502 * waiting while the process is running: this is accomplished by writing a 503 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the 504 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used. 505 */ 506 static void * 507 dt_proc_control(void *arg) 508 { 509 dt_proc_control_data_t *datap = arg; 510 dtrace_hdl_t *dtp = datap->dpcd_hdl; 511 dt_proc_t *dpr = datap->dpcd_proc; 512 dt_proc_hash_t *dph = dpr->dpr_hdl->dt_procs; 513 struct ps_prochandle *P = dpr->dpr_proc; 514 int pid = dpr->dpr_pid; 515 516 #ifdef illumos 517 int pfd = Pctlfd(P); 518 519 const long wstop = PCWSTOP; 520 #endif 521 int notify = B_FALSE; 522 523 /* 524 * We disable the POSIX thread cancellation mechanism so that the 525 * client program using libdtrace can't accidentally cancel our thread. 526 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out 527 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit. 528 */ 529 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); 530 531 /* 532 * Set up the corresponding process for tracing by libdtrace. We want 533 * to be able to catch breakpoints and efficiently single-step over 534 * them, and we need to enable librtld_db to watch libdl activity. 535 */ 536 (void) pthread_mutex_lock(&dpr->dpr_lock); 537 538 #ifdef illumos 539 (void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */ 540 (void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */ 541 (void) Punsetflags(P, PR_FORK); /* do not inherit on fork */ 542 543 (void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */ 544 (void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */ 545 546 /* 547 * We must trace exit from exec() system calls so that if the exec is 548 * successful, we can reset our breakpoints and re-initialize libproc. 549 */ 550 (void) Psysexit(P, SYS_execve, B_TRUE); 551 552 /* 553 * We must trace entry and exit for fork() system calls in order to 554 * disable our breakpoints temporarily during the fork. We do not set 555 * the PR_FORK flag, so if fork succeeds the child begins executing and 556 * does not inherit any other tracing behaviors or a control thread. 557 */ 558 (void) Psysentry(P, SYS_vfork, B_TRUE); 559 (void) Psysexit(P, SYS_vfork, B_TRUE); 560 (void) Psysentry(P, SYS_forksys, B_TRUE); 561 (void) Psysexit(P, SYS_forksys, B_TRUE); 562 563 Psync(P); /* enable all /proc changes */ 564 #endif 565 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */ 566 567 /* 568 * If PR_KLC is set, we created the process; otherwise we grabbed it. 569 * Check for an appropriate stop request and wait for dt_proc_continue. 570 */ 571 #ifdef illumos 572 if (Pstatus(P)->pr_flags & PR_KLC) 573 #else 574 if (proc_getflags(P) & PR_KLC) 575 #endif 576 dt_proc_stop(dpr, DT_PROC_STOP_CREATE); 577 else 578 dt_proc_stop(dpr, DT_PROC_STOP_GRAB); 579 580 if (Psetrun(P, 0, 0) == -1) { 581 dt_dprintf("pid %d: failed to set running: %s\n", 582 (int)dpr->dpr_pid, strerror(errno)); 583 } 584 585 (void) pthread_mutex_unlock(&dpr->dpr_lock); 586 587 /* 588 * Wait for the process corresponding to this control thread to stop, 589 * process the event, and then set it running again. We want to sleep 590 * with dpr_lock *unheld* so that other parts of libdtrace can use the 591 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write 592 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. 593 * Once the process stops, we wake up, grab dpr_lock, and then call 594 * Pwait() (which will return immediately) and do our processing. 595 */ 596 while (!dpr->dpr_quit) { 597 const lwpstatus_t *psp; 598 599 #ifdef illumos 600 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 601 continue; /* check dpr_quit and continue waiting */ 602 #else 603 /* Wait for the process to report status. */ 604 proc_wstatus(P); 605 if (errno == EINTR) 606 continue; /* check dpr_quit and continue waiting */ 607 #endif 608 609 (void) pthread_mutex_lock(&dpr->dpr_lock); 610 611 #ifdef illumos 612 pwait_locked: 613 if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) { 614 (void) pthread_mutex_unlock(&dpr->dpr_lock); 615 continue; /* check dpr_quit and continue waiting */ 616 } 617 #endif 618 619 switch (Pstate(P)) { 620 case PS_STOP: 621 #ifdef illumos 622 psp = &Pstatus(P)->pr_lwp; 623 #else 624 psp = proc_getlwpstatus(P); 625 #endif 626 627 dt_dprintf("pid %d: proc stopped showing %d/%d\n", 628 pid, psp->pr_why, psp->pr_what); 629 630 /* 631 * If the process stops showing PR_REQUESTED, then the 632 * DTrace stop() action was applied to it or another 633 * debugging utility (e.g. pstop(1)) asked it to stop. 634 * In either case, the user's intention is for the 635 * process to remain stopped until another external 636 * mechanism (e.g. prun(1)) is applied. So instead of 637 * setting the process running ourself, we wait for 638 * someone else to do so. Once that happens, we return 639 * to our normal loop waiting for an event of interest. 640 */ 641 if (psp->pr_why == PR_REQUESTED) { 642 dt_proc_waitrun(dpr); 643 (void) pthread_mutex_unlock(&dpr->dpr_lock); 644 continue; 645 } 646 647 /* 648 * If the process stops showing one of the events that 649 * we are tracing, perform the appropriate response. 650 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and 651 * PR_JOBCONTROL by design: if one of these conditions 652 * occurs, we will fall through to Psetrun() but the 653 * process will remain stopped in the kernel by the 654 * corresponding mechanism (e.g. job control stop). 655 */ 656 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT) 657 dt_proc_bpmatch(dtp, dpr); 658 else if (psp->pr_why == PR_SYSENTRY && 659 IS_SYS_FORK(psp->pr_what)) 660 dt_proc_bpdisable(dpr); 661 else if (psp->pr_why == PR_SYSEXIT && 662 IS_SYS_FORK(psp->pr_what)) 663 dt_proc_bpenable(dpr); 664 else if (psp->pr_why == PR_SYSEXIT && 665 IS_SYS_EXEC(psp->pr_what)) 666 dt_proc_attach(dpr, B_TRUE); 667 break; 668 669 case PS_LOST: 670 #ifdef illumos 671 if (Preopen(P) == 0) 672 goto pwait_locked; 673 #endif 674 675 dt_dprintf("pid %d: proc lost: %s\n", 676 pid, strerror(errno)); 677 678 dpr->dpr_quit = B_TRUE; 679 notify = B_TRUE; 680 break; 681 682 case PS_UNDEAD: 683 dt_dprintf("pid %d: proc died\n", pid); 684 dpr->dpr_quit = B_TRUE; 685 notify = B_TRUE; 686 break; 687 } 688 689 if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) { 690 dt_dprintf("pid %d: failed to set running: %s\n", 691 (int)dpr->dpr_pid, strerror(errno)); 692 } 693 694 (void) pthread_mutex_unlock(&dpr->dpr_lock); 695 } 696 697 /* 698 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue 699 * the dt_proc_t structure on the dt_proc_hash_t notification list. 700 */ 701 if (notify) 702 dt_proc_notify(dtp, dph, dpr, NULL); 703 704 /* 705 * Destroy and remove any remaining breakpoints, set dpr_done and clear 706 * dpr_tid to indicate the control thread has exited, and notify any 707 * waiting thread in dt_proc_destroy() that we have succesfully exited. 708 */ 709 (void) pthread_mutex_lock(&dpr->dpr_lock); 710 711 dt_proc_bpdestroy(dpr, B_TRUE); 712 dpr->dpr_done = B_TRUE; 713 dpr->dpr_tid = 0; 714 715 (void) pthread_cond_broadcast(&dpr->dpr_cv); 716 (void) pthread_mutex_unlock(&dpr->dpr_lock); 717 718 return (NULL); 719 } 720 721 /*PRINTFLIKE3*/ 722 static struct ps_prochandle * 723 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...) 724 { 725 va_list ap; 726 727 va_start(ap, format); 728 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); 729 va_end(ap); 730 731 if (dpr->dpr_proc != NULL) 732 Prelease(dpr->dpr_proc, 0); 733 734 dt_free(dtp, dpr); 735 (void) dt_set_errno(dtp, EDT_COMPILER); 736 return (NULL); 737 } 738 739 dt_proc_t * 740 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove) 741 { 742 dt_proc_hash_t *dph = dtp->dt_procs; 743 #ifdef illumos 744 pid_t pid = Pstatus(P)->pr_pid; 745 #else 746 pid_t pid = proc_getpid(P); 747 #endif 748 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)]; 749 750 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) { 751 if (dpr->dpr_pid == pid) 752 break; 753 else 754 dpp = &dpr->dpr_hash; 755 } 756 757 assert(dpr != NULL); 758 assert(dpr->dpr_proc == P); 759 760 if (remove) 761 *dpp = dpr->dpr_hash; /* remove from pid hash chain */ 762 763 return (dpr); 764 } 765 766 static void 767 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P) 768 { 769 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 770 dt_proc_hash_t *dph = dtp->dt_procs; 771 dt_proc_notify_t *npr, **npp; 772 int rflag; 773 774 assert(dpr != NULL); 775 776 /* 777 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by 778 * an external debugger and we were waiting in dt_proc_waitrun(). 779 * Leave the process in this condition using PRELEASE_HANG. 780 */ 781 #ifdef illumos 782 if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) { 783 #else 784 if (!(proc_getflags(dpr->dpr_proc) & (PR_KLC | PR_RLC))) { 785 #endif 786 dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid); 787 rflag = PRELEASE_HANG; 788 #ifdef illumos 789 } else if (Pstatus(dpr->dpr_proc)->pr_flags & PR_KLC) { 790 #else 791 } else if (proc_getflags(dpr->dpr_proc) & PR_KLC) { 792 #endif 793 dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid); 794 rflag = PRELEASE_KILL; /* apply kill-on-last-close */ 795 } else { 796 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid); 797 rflag = 0; /* apply run-on-last-close */ 798 } 799 800 if (dpr->dpr_tid) { 801 /* 802 * Set the dpr_quit flag to tell the daemon thread to exit. We 803 * send it a SIGCANCEL to poke it out of PCWSTOP or any other 804 * long-term /proc system call. Our daemon threads have POSIX 805 * cancellation disabled, so EINTR will be the only effect. We 806 * then wait for dpr_done to indicate the thread has exited. 807 * 808 * We can't use pthread_kill() to send SIGCANCEL because the 809 * interface forbids it and we can't use pthread_cancel() 810 * because with cancellation disabled it won't actually 811 * send SIGCANCEL to the target thread, so we use _lwp_kill() 812 * to do the job. This is all built on evil knowledge of 813 * the details of the cancellation mechanism in libc. 814 */ 815 (void) pthread_mutex_lock(&dpr->dpr_lock); 816 dpr->dpr_quit = B_TRUE; 817 #ifdef illumos 818 (void) _lwp_kill(dpr->dpr_tid, SIGCANCEL); 819 #elif defined(__FreeBSD__) 820 pthread_kill(dpr->dpr_tid, SIGTHR); 821 #else 822 pthread_cancel(dpr->dpr_tid); 823 #endif 824 825 /* 826 * If the process is currently idling in dt_proc_stop(), re- 827 * enable breakpoints and poke it into running again. 828 */ 829 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 830 dt_proc_bpenable(dpr); 831 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 832 (void) pthread_cond_broadcast(&dpr->dpr_cv); 833 } 834 835 while (!dpr->dpr_done) 836 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 837 838 (void) pthread_mutex_unlock(&dpr->dpr_lock); 839 } 840 841 /* 842 * Before we free the process structure, remove this dt_proc_t from the 843 * lookup hash, and then walk the dt_proc_hash_t's notification list 844 * and remove this dt_proc_t if it is enqueued. 845 */ 846 (void) pthread_mutex_lock(&dph->dph_lock); 847 (void) dt_proc_lookup(dtp, P, B_TRUE); 848 npp = &dph->dph_notify; 849 850 while ((npr = *npp) != NULL) { 851 if (npr->dprn_dpr == dpr) { 852 *npp = npr->dprn_next; 853 dt_free(dtp, npr); 854 } else { 855 npp = &npr->dprn_next; 856 } 857 } 858 859 (void) pthread_mutex_unlock(&dph->dph_lock); 860 861 /* 862 * Remove the dt_proc_list from the LRU list, release the underlying 863 * libproc handle, and free our dt_proc_t data structure. 864 */ 865 if (dpr->dpr_cacheable) { 866 assert(dph->dph_lrucnt != 0); 867 dph->dph_lrucnt--; 868 } 869 870 dt_list_delete(&dph->dph_lrulist, dpr); 871 Prelease(dpr->dpr_proc, rflag); 872 dt_free(dtp, dpr); 873 } 874 875 static int 876 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop) 877 { 878 dt_proc_control_data_t data; 879 sigset_t nset, oset; 880 pthread_attr_t a; 881 int err; 882 883 (void) pthread_mutex_lock(&dpr->dpr_lock); 884 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */ 885 886 (void) pthread_attr_init(&a); 887 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED); 888 889 (void) sigfillset(&nset); 890 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */ 891 #ifdef illumos 892 (void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */ 893 #else 894 (void) sigdelset(&nset, SIGUSR1); /* see dt_proc_destroy() */ 895 #endif 896 897 data.dpcd_hdl = dtp; 898 data.dpcd_proc = dpr; 899 900 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset); 901 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data); 902 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 903 904 /* 905 * If the control thread was created, then wait on dpr_cv for either 906 * dpr_done to be set (the victim died or the control thread failed) 907 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now 908 * stopped by /proc and the control thread is at the rendezvous event. 909 * On success, we return with the process and control thread stopped: 910 * the caller can then apply dt_proc_continue() to resume both. 911 */ 912 if (err == 0) { 913 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE)) 914 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 915 916 /* 917 * If dpr_done is set, the control thread aborted before it 918 * reached the rendezvous event. This is either due to PS_LOST 919 * or PS_UNDEAD (i.e. the process died). We try to provide a 920 * small amount of useful information to help figure it out. 921 */ 922 if (dpr->dpr_done) { 923 #ifdef illumos 924 const psinfo_t *prp = Ppsinfo(dpr->dpr_proc); 925 int stat = prp ? prp->pr_wstat : 0; 926 int pid = dpr->dpr_pid; 927 #else 928 int stat = proc_getwstat(dpr->dpr_proc); 929 int pid = proc_getpid(dpr->dpr_proc); 930 #endif 931 if (proc_state(dpr->dpr_proc) == PS_LOST) { 932 (void) dt_proc_error(dpr->dpr_hdl, dpr, 933 "failed to control pid %d: process exec'd " 934 "set-id or unobservable program\n", pid); 935 } else if (WIFSIGNALED(stat)) { 936 (void) dt_proc_error(dpr->dpr_hdl, dpr, 937 "failed to control pid %d: process died " 938 "from signal %d\n", pid, WTERMSIG(stat)); 939 } else { 940 (void) dt_proc_error(dpr->dpr_hdl, dpr, 941 "failed to control pid %d: process exited " 942 "with status %d\n", pid, WEXITSTATUS(stat)); 943 } 944 945 err = ESRCH; /* cause grab() or create() to fail */ 946 } 947 } else { 948 (void) dt_proc_error(dpr->dpr_hdl, dpr, 949 "failed to create control thread for process-id %d: %s\n", 950 (int)dpr->dpr_pid, strerror(err)); 951 } 952 953 if (err == 0) 954 (void) pthread_mutex_unlock(&dpr->dpr_lock); 955 (void) pthread_attr_destroy(&a); 956 957 return (err); 958 } 959 960 struct ps_prochandle * 961 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, 962 proc_child_func *pcf, void *child_arg) 963 { 964 dt_proc_hash_t *dph = dtp->dt_procs; 965 dt_proc_t *dpr; 966 int err; 967 968 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 969 return (NULL); /* errno is set for us */ 970 971 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 972 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 973 974 #ifdef illumos 975 if ((dpr->dpr_proc = Pcreate(file, argv, &err, NULL, 0)) == NULL) { 976 #else 977 if ((err = proc_create(file, argv, pcf, child_arg, 978 &dpr->dpr_proc)) != 0) { 979 #endif 980 return (dt_proc_error(dtp, dpr, 981 "failed to execute %s: %s\n", file, Pcreate_error(err))); 982 } 983 984 dpr->dpr_hdl = dtp; 985 #ifdef illumos 986 dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid; 987 #else 988 dpr->dpr_pid = proc_getpid(dpr->dpr_proc); 989 #endif 990 991 (void) Punsetflags(dpr->dpr_proc, PR_RLC); 992 (void) Psetflags(dpr->dpr_proc, PR_KLC); 993 994 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0) 995 return (NULL); /* dt_proc_error() has been called for us */ 996 997 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)]; 998 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr; 999 dt_list_prepend(&dph->dph_lrulist, dpr); 1000 1001 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid); 1002 dpr->dpr_refs++; 1003 1004 return (dpr->dpr_proc); 1005 } 1006 1007 struct ps_prochandle * 1008 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor) 1009 { 1010 dt_proc_hash_t *dph = dtp->dt_procs; 1011 uint_t h = pid & (dph->dph_hashlen - 1); 1012 dt_proc_t *dpr, *opr; 1013 int err; 1014 1015 /* 1016 * Search the hash table for the pid. If it is already grabbed or 1017 * created, move the handle to the front of the lrulist, increment 1018 * the reference count, and return the existing ps_prochandle. 1019 */ 1020 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) { 1021 if (dpr->dpr_pid == pid && !dpr->dpr_stale) { 1022 /* 1023 * If the cached handle was opened read-only and 1024 * this request is for a writeable handle, mark 1025 * the cached handle as stale and open a new handle. 1026 * Since it's stale, unmark it as cacheable. 1027 */ 1028 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) { 1029 dt_dprintf("upgrading pid %d\n", (int)pid); 1030 dpr->dpr_stale = B_TRUE; 1031 dpr->dpr_cacheable = B_FALSE; 1032 dph->dph_lrucnt--; 1033 break; 1034 } 1035 1036 dt_dprintf("grabbed pid %d (cached)\n", (int)pid); 1037 dt_list_delete(&dph->dph_lrulist, dpr); 1038 dt_list_prepend(&dph->dph_lrulist, dpr); 1039 dpr->dpr_refs++; 1040 return (dpr->dpr_proc); 1041 } 1042 } 1043 1044 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 1045 return (NULL); /* errno is set for us */ 1046 1047 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 1048 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 1049 1050 #ifdef illumos 1051 if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) { 1052 #else 1053 if ((err = proc_attach(pid, flags, &dpr->dpr_proc)) != 0) { 1054 #endif 1055 return (dt_proc_error(dtp, dpr, 1056 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err))); 1057 } 1058 1059 dpr->dpr_hdl = dtp; 1060 dpr->dpr_pid = pid; 1061 1062 (void) Punsetflags(dpr->dpr_proc, PR_KLC); 1063 (void) Psetflags(dpr->dpr_proc, PR_RLC); 1064 1065 /* 1066 * If we are attempting to grab the process without a monitor 1067 * thread, then mark the process cacheable only if it's being 1068 * grabbed read-only. If we're currently caching more process 1069 * handles than dph_lrulim permits, attempt to find the 1070 * least-recently-used handle that is currently unreferenced and 1071 * release it from the cache. Otherwise we are grabbing the process 1072 * for control: create a control thread for this process and store 1073 * its ID in dpr->dpr_tid. 1074 */ 1075 if (nomonitor || (flags & PGRAB_RDONLY)) { 1076 if (dph->dph_lrucnt >= dph->dph_lrulim) { 1077 for (opr = dt_list_prev(&dph->dph_lrulist); 1078 opr != NULL; opr = dt_list_prev(opr)) { 1079 if (opr->dpr_cacheable && opr->dpr_refs == 0) { 1080 dt_proc_destroy(dtp, opr->dpr_proc); 1081 break; 1082 } 1083 } 1084 } 1085 1086 if (flags & PGRAB_RDONLY) { 1087 dpr->dpr_cacheable = B_TRUE; 1088 dpr->dpr_rdonly = B_TRUE; 1089 dph->dph_lrucnt++; 1090 } 1091 1092 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0) 1093 return (NULL); /* dt_proc_error() has been called for us */ 1094 1095 dpr->dpr_hash = dph->dph_hash[h]; 1096 dph->dph_hash[h] = dpr; 1097 dt_list_prepend(&dph->dph_lrulist, dpr); 1098 1099 dt_dprintf("grabbed pid %d\n", (int)pid); 1100 dpr->dpr_refs++; 1101 1102 return (dpr->dpr_proc); 1103 } 1104 1105 void 1106 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1107 { 1108 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1109 dt_proc_hash_t *dph = dtp->dt_procs; 1110 1111 assert(dpr != NULL); 1112 assert(dpr->dpr_refs != 0); 1113 1114 if (--dpr->dpr_refs == 0 && 1115 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim)) 1116 dt_proc_destroy(dtp, P); 1117 } 1118 1119 void 1120 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1121 { 1122 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1123 1124 (void) pthread_mutex_lock(&dpr->dpr_lock); 1125 1126 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 1127 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 1128 (void) pthread_cond_broadcast(&dpr->dpr_cv); 1129 } 1130 1131 (void) pthread_mutex_unlock(&dpr->dpr_lock); 1132 } 1133 1134 void 1135 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1136 { 1137 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1138 int err = pthread_mutex_lock(&dpr->dpr_lock); 1139 assert(err == 0); /* check for recursion */ 1140 } 1141 1142 void 1143 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1144 { 1145 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1146 int err = pthread_mutex_unlock(&dpr->dpr_lock); 1147 assert(err == 0); /* check for unheld lock */ 1148 } 1149 1150 void 1151 dt_proc_hash_create(dtrace_hdl_t *dtp) 1152 { 1153 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) + 1154 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) != NULL) { 1155 1156 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL); 1157 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL); 1158 1159 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets; 1160 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim; 1161 } 1162 } 1163 1164 void 1165 dt_proc_hash_destroy(dtrace_hdl_t *dtp) 1166 { 1167 dt_proc_hash_t *dph = dtp->dt_procs; 1168 dt_proc_t *dpr; 1169 1170 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL) 1171 dt_proc_destroy(dtp, dpr->dpr_proc); 1172 1173 dtp->dt_procs = NULL; 1174 dt_free(dtp, dph); 1175 } 1176 1177 struct ps_prochandle * 1178 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, 1179 proc_child_func *pcf, void *child_arg) 1180 { 1181 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1182 struct ps_prochandle *P = dt_proc_create(dtp, file, argv, pcf, child_arg); 1183 1184 if (P != NULL && idp != NULL && idp->di_id == 0) { 1185 #ifdef illumos 1186 idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */ 1187 #else 1188 idp->di_id = proc_getpid(P); /* $target = created pid */ 1189 #endif 1190 } 1191 1192 return (P); 1193 } 1194 1195 struct ps_prochandle * 1196 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags) 1197 { 1198 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1199 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0); 1200 1201 if (P != NULL && idp != NULL && idp->di_id == 0) 1202 idp->di_id = pid; /* $target = grabbed pid */ 1203 1204 return (P); 1205 } 1206 1207 void 1208 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1209 { 1210 dt_proc_release(dtp, P); 1211 } 1212 1213 void 1214 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1215 { 1216 dt_proc_continue(dtp, P); 1217 } 1218