1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * DTrace Process Control 29 * 30 * This file provides a set of routines that permit libdtrace and its clients 31 * to create and grab process handles using libproc, and to share these handles 32 * between library mechanisms that need libproc access, such as ustack(), and 33 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p. 34 * The library provides several mechanisms in the libproc control layer: 35 * 36 * Reference Counting: The library code and client code can independently grab 37 * the same process handles without interfering with one another. Only when 38 * the reference count drops to zero and the handle is not being cached (see 39 * below for more information on caching) will Prelease() be called on it. 40 * 41 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and 42 * the reference count drops to zero, the handle is not immediately released. 43 * Instead, libproc handles are maintained on dph_lrulist in order from most- 44 * recently accessed to least-recently accessed. Idle handles are maintained 45 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls 46 * to ustack() to avoid the overhead of releasing and re-grabbing processes. 47 * 48 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY) 49 * or created by dt_proc_create(), a control thread is created to provide 50 * callbacks on process exit and symbol table caching on dlopen()s. 51 * 52 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock() 53 * are provided to synchronize access to the libproc handle between libdtrace 54 * code and client code and the control thread's use of the ps_prochandle. 55 * 56 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the 57 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace 58 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for 59 * synchronization between libdtrace control threads and the client thread. 60 * 61 * The ps_prochandles themselves are maintained along with a dt_proc_t struct 62 * in a hash table indexed by PID. This provides basic locking and reference 63 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist. 64 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and 65 * the current limit on the number of actively cached entries. 66 * 67 * The control thread for a process establishes breakpoints at the rtld_db 68 * locations of interest, updates mappings and symbol tables at these points, 69 * and handles exec and fork (by always following the parent). The control 70 * thread automatically exits when the process dies or control is lost. 71 * 72 * A simple notification mechanism is provided for libdtrace clients using 73 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If 74 * such an event occurs, the dt_proc_t itself is enqueued on a notification 75 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake 76 * up using this condition and will then call the client handler as necessary. 77 */ 78 79 #include <sys/wait.h> 80 #ifdef illumos 81 #include <sys/lwp.h> 82 #endif 83 #include <strings.h> 84 #include <signal.h> 85 #include <assert.h> 86 #include <errno.h> 87 88 #include <dt_proc.h> 89 #include <dt_pid.h> 90 #include <dt_impl.h> 91 92 #ifndef illumos 93 #include <sys/syscall.h> 94 #include <libproc_compat.h> 95 #define SYS_forksys SYS_fork 96 #endif 97 98 #define IS_SYS_EXEC(w) (w == SYS_execve) 99 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_forksys) 100 101 static dt_bkpt_t * 102 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data) 103 { 104 struct ps_prochandle *P = dpr->dpr_proc; 105 dt_bkpt_t *dbp; 106 107 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 108 109 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) { 110 dbp->dbp_func = func; 111 dbp->dbp_data = data; 112 dbp->dbp_addr = addr; 113 114 #ifdef __NetBSD__ 115 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0) 116 #else 117 if (Psetbkpt(P, dbp->dbp_addr, dbp->dbp_instr) == 0) 118 #endif 119 dbp->dbp_active = B_TRUE; 120 121 dt_list_append(&dpr->dpr_bps, dbp); 122 } 123 124 return (dbp); 125 } 126 127 static void 128 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts) 129 { 130 int state = Pstate(dpr->dpr_proc); 131 dt_bkpt_t *dbp, *nbp; 132 133 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 134 135 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) { 136 if (delbkpts && dbp->dbp_active && 137 state != PS_LOST && state != PS_UNDEAD) { 138 (void) Pdelbkpt(dpr->dpr_proc, 139 dbp->dbp_addr, &dbp->dbp_instr); 140 } 141 nbp = dt_list_next(dbp); 142 dt_list_delete(&dpr->dpr_bps, dbp); 143 dt_free(dpr->dpr_hdl, dbp); 144 } 145 } 146 147 static void 148 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr) 149 { 150 #ifdef illumos 151 const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp; 152 #else 153 unsigned long pc; 154 #endif 155 dt_bkpt_t *dbp; 156 157 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 158 159 #ifndef illumos 160 proc_regget(dpr->dpr_proc, REG_PC, &pc); 161 proc_bkptregadj(&pc); 162 #endif 163 164 for (dbp = dt_list_next(&dpr->dpr_bps); 165 dbp != NULL; dbp = dt_list_next(dbp)) { 166 #ifdef illumos 167 if (psp->pr_reg[R_PC] == dbp->dbp_addr) 168 break; 169 #else 170 if (pc == dbp->dbp_addr) 171 break; 172 #endif 173 } 174 175 if (dbp == NULL) { 176 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n", 177 #ifdef illumos 178 (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]); 179 #else 180 (int)dpr->dpr_pid, pc); 181 #endif 182 return; 183 } 184 185 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n", 186 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits); 187 188 dbp->dbp_func(dtp, dpr, dbp->dbp_data); 189 #ifdef __NetBSD__ 190 (void) Pxecbkpt(dpr->dpr_proc, &dbp->dbp_instr); 191 #else 192 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr); 193 #endif 194 } 195 196 static void 197 dt_proc_bpenable(dt_proc_t *dpr) 198 { 199 dt_bkpt_t *dbp; 200 201 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 202 203 for (dbp = dt_list_next(&dpr->dpr_bps); 204 dbp != NULL; dbp = dt_list_next(dbp)) { 205 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc, 206 dbp->dbp_addr, &dbp->dbp_instr) == 0) 207 dbp->dbp_active = B_TRUE; 208 } 209 210 dt_dprintf("breakpoints enabled\n"); 211 } 212 213 static void 214 dt_proc_bpdisable(dt_proc_t *dpr) 215 { 216 dt_bkpt_t *dbp; 217 218 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 219 220 for (dbp = dt_list_next(&dpr->dpr_bps); 221 dbp != NULL; dbp = dt_list_next(dbp)) { 222 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc, 223 dbp->dbp_addr, &dbp->dbp_instr) == 0) 224 dbp->dbp_active = B_FALSE; 225 } 226 227 dt_dprintf("breakpoints disabled\n"); 228 } 229 230 static void 231 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, 232 const char *msg) 233 { 234 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); 235 236 if (dprn == NULL) { 237 dt_dprintf("failed to allocate notification for %d %s\n", 238 (int)dpr->dpr_pid, msg); 239 } else { 240 dprn->dprn_dpr = dpr; 241 if (msg == NULL) 242 dprn->dprn_errmsg[0] = '\0'; 243 else 244 (void) strlcpy(dprn->dprn_errmsg, msg, 245 sizeof (dprn->dprn_errmsg)); 246 247 (void) pthread_mutex_lock(&dph->dph_lock); 248 249 dprn->dprn_next = dph->dph_notify; 250 dph->dph_notify = dprn; 251 252 (void) pthread_cond_broadcast(&dph->dph_cv); 253 (void) pthread_mutex_unlock(&dph->dph_lock); 254 } 255 } 256 257 /* 258 * Check to see if the control thread was requested to stop when the victim 259 * process reached a particular event (why) rather than continuing the victim. 260 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue(). 261 * If 'why' is not set, this function returns immediately and does nothing. 262 */ 263 static void 264 dt_proc_stop(dt_proc_t *dpr, uint8_t why) 265 { 266 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 267 assert(why != DT_PROC_STOP_IDLE); 268 269 if (dpr->dpr_stop & why) { 270 dpr->dpr_stop |= DT_PROC_STOP_IDLE; 271 dpr->dpr_stop &= ~why; 272 273 (void) pthread_cond_broadcast(&dpr->dpr_cv); 274 275 /* 276 * We disable breakpoints while stopped to preserve the 277 * integrity of the program text for both our own disassembly 278 * and that of the kernel. 279 */ 280 dt_proc_bpdisable(dpr); 281 282 while (dpr->dpr_stop & DT_PROC_STOP_IDLE) 283 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 284 285 dt_proc_bpenable(dpr); 286 } 287 } 288 289 /*ARGSUSED*/ 290 static void 291 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname) 292 { 293 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname); 294 dt_proc_stop(dpr, DT_PROC_STOP_MAIN); 295 } 296 297 static void 298 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname) 299 { 300 rd_event_msg_t rdm; 301 rd_err_e err; 302 303 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) { 304 dt_dprintf("pid %d: failed to get %s event message: %s\n", 305 (int)dpr->dpr_pid, evname, rd_errstr(err)); 306 return; 307 } 308 309 dt_dprintf("pid %d: rtld event %s type=%d state %d\n", 310 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state); 311 312 switch (rdm.type) { 313 case RD_NONE: 314 break; 315 case RD_DLACTIVITY: 316 if (rdm.u.state != RD_CONSISTENT) 317 break; 318 319 Pupdate_syms(dpr->dpr_proc); 320 if (dt_pid_create_probes_module(dtp, dpr) != 0) 321 dt_proc_notify(dtp, dtp->dt_procs, dpr, 322 dpr->dpr_errmsg); 323 324 break; 325 case RD_PREINIT: 326 Pupdate_syms(dpr->dpr_proc); 327 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT); 328 break; 329 case RD_POSTINIT: 330 Pupdate_syms(dpr->dpr_proc); 331 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT); 332 break; 333 } 334 } 335 336 static void 337 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname) 338 { 339 rd_notify_t rdn; 340 rd_err_e err; 341 342 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) { 343 dt_dprintf("pid %d: failed to get event address for %s: %s\n", 344 (int)dpr->dpr_pid, evname, rd_errstr(err)); 345 return; 346 } 347 348 if (rdn.type != RD_NOTIFY_BPT) { 349 dt_dprintf("pid %d: event %s has unexpected type %d\n", 350 (int)dpr->dpr_pid, evname, rdn.type); 351 return; 352 } 353 354 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr, 355 #ifdef illumos 356 (dt_bkpt_f *)dt_proc_rdevent, (void *)evname); 357 #else 358 /* XXX ugly */ 359 (dt_bkpt_f *)dt_proc_rdevent, __DECONST(void *, evname)); 360 #endif 361 } 362 363 /* 364 * Common code for enabling events associated with the run-time linker after 365 * attaching to a process or after a victim process completes an exec(2). 366 */ 367 static void 368 dt_proc_attach(dt_proc_t *dpr, int exec) 369 { 370 #ifdef illumos 371 const pstatus_t *psp = Pstatus(dpr->dpr_proc); 372 #endif 373 rd_err_e err; 374 GElf_Sym sym; 375 376 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 377 378 if (exec) { 379 #ifdef illumos 380 if (psp->pr_lwp.pr_errno != 0) 381 return; /* exec failed: nothing needs to be done */ 382 #endif 383 384 dt_proc_bpdestroy(dpr, B_FALSE); 385 #ifdef illumos 386 Preset_maps(dpr->dpr_proc); 387 #endif 388 } 389 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL && 390 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) { 391 #ifdef illumos 392 dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT"); 393 #endif 394 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT"); 395 #ifdef illumos 396 dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY"); 397 #endif 398 } else { 399 dt_dprintf("pid %d: failed to enable rtld events: %s\n", 400 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) : 401 "rtld_db agent initialization failed"); 402 } 403 404 Pupdate_maps(dpr->dpr_proc); 405 406 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE, 407 "a.out", "main", &sym, NULL) == 0) { 408 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value, 409 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main"); 410 } else { 411 dt_dprintf("pid %d: failed to find a.out`main: %s\n", 412 (int)dpr->dpr_pid, strerror(errno)); 413 } 414 } 415 416 /* 417 * Wait for a stopped process to be set running again by some other debugger. 418 * This is typically not required by /proc-based debuggers, since the usual 419 * model is that one debugger controls one victim. But DTrace, as usual, has 420 * its own needs: the stop() action assumes that prun(1) or some other tool 421 * will be applied to resume the victim process. This could be solved by 422 * adding a PCWRUN directive to /proc, but that seems like overkill unless 423 * other debuggers end up needing this functionality, so we implement a cheap 424 * equivalent to PCWRUN using the set of existing kernel mechanisms. 425 * 426 * Our intent is really not just to wait for the victim to run, but rather to 427 * wait for it to run and then stop again for a reason other than the current 428 * PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly 429 * to a stopped process and will return the same result without affecting the 430 * victim, we can just perform these operations repeatedly until Pstate() 431 * changes, the representative LWP ID changes, or the stop timestamp advances. 432 * dt_proc_control() will then rediscover the new state and continue as usual. 433 * When the process is still stopped in the same exact state, we sleep for a 434 * brief interval before waiting again so as not to spin consuming CPU cycles. 435 */ 436 static void 437 dt_proc_waitrun(dt_proc_t *dpr) 438 { 439 printf("%s:%s(%d): DOODAD\n",__FUNCTION__,__FILE__,__LINE__); 440 #ifdef DOODAD 441 struct ps_prochandle *P = dpr->dpr_proc; 442 const lwpstatus_t *psp = &Pstatus(P)->pr_lwp; 443 444 int krflag = psp->pr_flags & (PR_KLC | PR_RLC); 445 timestruc_t tstamp = psp->pr_tstamp; 446 lwpid_t lwpid = psp->pr_lwpid; 447 448 const long wstop = PCWSTOP; 449 int pfd = Pctlfd(P); 450 451 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 452 assert(psp->pr_flags & PR_STOPPED); 453 assert(Pstate(P) == PS_STOP); 454 455 /* 456 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC 457 * so that if the libdtrace client is killed, the victim stays stopped. 458 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG. 459 */ 460 (void) Punsetflags(P, krflag); 461 Psync(P); 462 463 (void) pthread_mutex_unlock(&dpr->dpr_lock); 464 465 while (!dpr->dpr_quit) { 466 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 467 continue; /* check dpr_quit and continue waiting */ 468 469 (void) pthread_mutex_lock(&dpr->dpr_lock); 470 (void) Pstopstatus(P, PCNULL, 0); 471 psp = &Pstatus(P)->pr_lwp; 472 473 /* 474 * If we've reached a new state, found a new representative, or 475 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its 476 * original setting and then return with dpr_lock held. 477 */ 478 if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid || 479 bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) { 480 (void) Psetflags(P, krflag); 481 Psync(P); 482 return; 483 } 484 485 (void) pthread_mutex_unlock(&dpr->dpr_lock); 486 (void) poll(NULL, 0, MILLISEC / 2); 487 } 488 489 (void) pthread_mutex_lock(&dpr->dpr_lock); 490 #endif 491 } 492 493 typedef struct dt_proc_control_data { 494 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */ 495 dt_proc_t *dpcd_proc; /* proccess to control */ 496 } dt_proc_control_data_t; 497 498 /* 499 * Main loop for all victim process control threads. We initialize all the 500 * appropriate /proc control mechanisms, and then enter a loop waiting for 501 * the process to stop on an event or die. We process any events by calling 502 * appropriate subroutines, and exit when the victim dies or we lose control. 503 * 504 * The control thread synchronizes the use of dpr_proc with other libdtrace 505 * threads using dpr_lock. We hold the lock for all of our operations except 506 * waiting while the process is running: this is accomplished by writing a 507 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the 508 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used. 509 */ 510 static void * 511 dt_proc_control(void *arg) 512 { 513 dt_proc_control_data_t *datap = arg; 514 dtrace_hdl_t *dtp = datap->dpcd_hdl; 515 dt_proc_t *dpr = datap->dpcd_proc; 516 dt_proc_hash_t *dph = dpr->dpr_hdl->dt_procs; 517 struct ps_prochandle *P = dpr->dpr_proc; 518 int pid = dpr->dpr_pid; 519 520 #ifdef illumos 521 int pfd = Pctlfd(P); 522 523 const long wstop = PCWSTOP; 524 #endif 525 int notify = B_FALSE; 526 527 /* 528 * We disable the POSIX thread cancellation mechanism so that the 529 * client program using libdtrace can't accidentally cancel our thread. 530 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out 531 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit. 532 */ 533 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); 534 535 /* 536 * Set up the corresponding process for tracing by libdtrace. We want 537 * to be able to catch breakpoints and efficiently single-step over 538 * them, and we need to enable librtld_db to watch libdl activity. 539 */ 540 (void) pthread_mutex_lock(&dpr->dpr_lock); 541 542 #ifdef illumos 543 (void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */ 544 (void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */ 545 (void) Punsetflags(P, PR_FORK); /* do not inherit on fork */ 546 547 (void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */ 548 (void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */ 549 550 /* 551 * We must trace exit from exec() system calls so that if the exec is 552 * successful, we can reset our breakpoints and re-initialize libproc. 553 */ 554 (void) Psysexit(P, SYS_execve, B_TRUE); 555 556 /* 557 * We must trace entry and exit for fork() system calls in order to 558 * disable our breakpoints temporarily during the fork. We do not set 559 * the PR_FORK flag, so if fork succeeds the child begins executing and 560 * does not inherit any other tracing behaviors or a control thread. 561 */ 562 (void) Psysentry(P, SYS_vfork, B_TRUE); 563 (void) Psysexit(P, SYS_vfork, B_TRUE); 564 (void) Psysentry(P, SYS_forksys, B_TRUE); 565 (void) Psysexit(P, SYS_forksys, B_TRUE); 566 567 Psync(P); /* enable all /proc changes */ 568 #endif 569 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */ 570 571 /* 572 * If PR_KLC is set, we created the process; otherwise we grabbed it. 573 * Check for an appropriate stop request and wait for dt_proc_continue. 574 */ 575 #ifdef illumos 576 if (Pstatus(P)->pr_flags & PR_KLC) 577 #else 578 if (proc_getflags(P) & PR_KLC) 579 #endif 580 dt_proc_stop(dpr, DT_PROC_STOP_CREATE); 581 else 582 dt_proc_stop(dpr, DT_PROC_STOP_GRAB); 583 584 if (Psetrun(P, 0, 0) == -1) { 585 dt_dprintf("pid %d: failed to set running: %s\n", 586 (int)dpr->dpr_pid, strerror(errno)); 587 } 588 589 (void) pthread_mutex_unlock(&dpr->dpr_lock); 590 591 /* 592 * Wait for the process corresponding to this control thread to stop, 593 * process the event, and then set it running again. We want to sleep 594 * with dpr_lock *unheld* so that other parts of libdtrace can use the 595 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write 596 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. 597 * Once the process stops, we wake up, grab dpr_lock, and then call 598 * Pwait() (which will return immediately) and do our processing. 599 */ 600 while (!dpr->dpr_quit) { 601 const lwpstatus_t *psp; 602 603 #ifdef illumos 604 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 605 continue; /* check dpr_quit and continue waiting */ 606 #else 607 /* Wait for the process to report status. */ 608 proc_wstatus(P); 609 if (errno == EINTR) 610 continue; /* check dpr_quit and continue waiting */ 611 #endif 612 613 (void) pthread_mutex_lock(&dpr->dpr_lock); 614 615 #ifdef illumos 616 pwait_locked: 617 if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) { 618 (void) pthread_mutex_unlock(&dpr->dpr_lock); 619 continue; /* check dpr_quit and continue waiting */ 620 } 621 #endif 622 623 switch (Pstate(P)) { 624 case PS_STOP: 625 #ifdef illumos 626 psp = &Pstatus(P)->pr_lwp; 627 #else 628 psp = proc_getlwpstatus(P); 629 #endif 630 631 dt_dprintf("pid %d: proc stopped showing %d/%d\n", 632 pid, psp->pr_why, psp->pr_what); 633 634 /* 635 * If the process stops showing PR_REQUESTED, then the 636 * DTrace stop() action was applied to it or another 637 * debugging utility (e.g. pstop(1)) asked it to stop. 638 * In either case, the user's intention is for the 639 * process to remain stopped until another external 640 * mechanism (e.g. prun(1)) is applied. So instead of 641 * setting the process running ourself, we wait for 642 * someone else to do so. Once that happens, we return 643 * to our normal loop waiting for an event of interest. 644 */ 645 if (psp->pr_why == PR_REQUESTED) { 646 dt_proc_waitrun(dpr); 647 (void) pthread_mutex_unlock(&dpr->dpr_lock); 648 continue; 649 } 650 651 /* 652 * If the process stops showing one of the events that 653 * we are tracing, perform the appropriate response. 654 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and 655 * PR_JOBCONTROL by design: if one of these conditions 656 * occurs, we will fall through to Psetrun() but the 657 * process will remain stopped in the kernel by the 658 * corresponding mechanism (e.g. job control stop). 659 */ 660 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT) 661 dt_proc_bpmatch(dtp, dpr); 662 else if (psp->pr_why == PR_SYSENTRY && 663 IS_SYS_FORK(psp->pr_what)) 664 dt_proc_bpdisable(dpr); 665 else if (psp->pr_why == PR_SYSEXIT && 666 IS_SYS_FORK(psp->pr_what)) 667 dt_proc_bpenable(dpr); 668 else if (psp->pr_why == PR_SYSEXIT && 669 IS_SYS_EXEC(psp->pr_what)) 670 dt_proc_attach(dpr, B_TRUE); 671 break; 672 673 case PS_LOST: 674 #ifdef illumos 675 if (Preopen(P) == 0) 676 goto pwait_locked; 677 #endif 678 679 dt_dprintf("pid %d: proc lost: %s\n", 680 pid, strerror(errno)); 681 682 dpr->dpr_quit = B_TRUE; 683 notify = B_TRUE; 684 break; 685 686 case PS_UNDEAD: 687 dt_dprintf("pid %d: proc died\n", pid); 688 dpr->dpr_quit = B_TRUE; 689 notify = B_TRUE; 690 break; 691 } 692 693 if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) { 694 dt_dprintf("pid %d: failed to set running: %s\n", 695 (int)dpr->dpr_pid, strerror(errno)); 696 } 697 698 (void) pthread_mutex_unlock(&dpr->dpr_lock); 699 } 700 701 /* 702 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue 703 * the dt_proc_t structure on the dt_proc_hash_t notification list. 704 */ 705 if (notify) 706 dt_proc_notify(dtp, dph, dpr, NULL); 707 708 /* 709 * Destroy and remove any remaining breakpoints, set dpr_done and clear 710 * dpr_tid to indicate the control thread has exited, and notify any 711 * waiting thread in dt_proc_destroy() that we have succesfully exited. 712 */ 713 (void) pthread_mutex_lock(&dpr->dpr_lock); 714 715 dt_proc_bpdestroy(dpr, B_TRUE); 716 dpr->dpr_done = B_TRUE; 717 dpr->dpr_tid = 0; 718 719 (void) pthread_cond_broadcast(&dpr->dpr_cv); 720 (void) pthread_mutex_unlock(&dpr->dpr_lock); 721 722 return (NULL); 723 } 724 725 /*PRINTFLIKE3*/ 726 static struct ps_prochandle * 727 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...) 728 { 729 va_list ap; 730 731 va_start(ap, format); 732 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); 733 va_end(ap); 734 735 if (dpr->dpr_proc != NULL) 736 Prelease(dpr->dpr_proc, 0); 737 738 dt_free(dtp, dpr); 739 (void) dt_set_errno(dtp, EDT_COMPILER); 740 return (NULL); 741 } 742 743 dt_proc_t * 744 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove) 745 { 746 dt_proc_hash_t *dph = dtp->dt_procs; 747 #ifdef illumos 748 pid_t pid = Pstatus(P)->pr_pid; 749 #else 750 pid_t pid = proc_getpid(P); 751 #endif 752 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)]; 753 754 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) { 755 if (dpr->dpr_pid == pid) 756 break; 757 else 758 dpp = &dpr->dpr_hash; 759 } 760 761 assert(dpr != NULL); 762 assert(dpr->dpr_proc == P); 763 764 if (remove) 765 *dpp = dpr->dpr_hash; /* remove from pid hash chain */ 766 767 return (dpr); 768 } 769 770 static void 771 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P) 772 { 773 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 774 dt_proc_hash_t *dph = dtp->dt_procs; 775 dt_proc_notify_t *npr, **npp; 776 int rflag; 777 778 assert(dpr != NULL); 779 780 /* 781 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by 782 * an external debugger and we were waiting in dt_proc_waitrun(). 783 * Leave the process in this condition using PRELEASE_HANG. 784 */ 785 #ifdef illumos 786 if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) { 787 #else 788 if (!(proc_getflags(dpr->dpr_proc) & (PR_KLC | PR_RLC))) { 789 #endif 790 dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid); 791 rflag = PRELEASE_HANG; 792 #ifdef illumos 793 } else if (Pstatus(dpr->dpr_proc)->pr_flags & PR_KLC) { 794 #else 795 } else if (proc_getflags(dpr->dpr_proc) & PR_KLC) { 796 #endif 797 dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid); 798 rflag = PRELEASE_KILL; /* apply kill-on-last-close */ 799 } else { 800 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid); 801 rflag = 0; /* apply run-on-last-close */ 802 } 803 804 if (dpr->dpr_tid) { 805 /* 806 * Set the dpr_quit flag to tell the daemon thread to exit. We 807 * send it a SIGCANCEL to poke it out of PCWSTOP or any other 808 * long-term /proc system call. Our daemon threads have POSIX 809 * cancellation disabled, so EINTR will be the only effect. We 810 * then wait for dpr_done to indicate the thread has exited. 811 * 812 * We can't use pthread_kill() to send SIGCANCEL because the 813 * interface forbids it and we can't use pthread_cancel() 814 * because with cancellation disabled it won't actually 815 * send SIGCANCEL to the target thread, so we use _lwp_kill() 816 * to do the job. This is all built on evil knowledge of 817 * the details of the cancellation mechanism in libc. 818 */ 819 (void) pthread_mutex_lock(&dpr->dpr_lock); 820 dpr->dpr_quit = B_TRUE; 821 #ifdef illumos 822 (void) _lwp_kill(dpr->dpr_tid, SIGCANCEL); 823 #elif defined(__FreeBSD__) 824 pthread_kill(dpr->dpr_tid, SIGTHR); 825 #else 826 pthread_cancel(dpr->dpr_tid); 827 #endif 828 829 /* 830 * If the process is currently idling in dt_proc_stop(), re- 831 * enable breakpoints and poke it into running again. 832 */ 833 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 834 dt_proc_bpenable(dpr); 835 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 836 (void) pthread_cond_broadcast(&dpr->dpr_cv); 837 } 838 839 while (!dpr->dpr_done) 840 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 841 842 (void) pthread_mutex_unlock(&dpr->dpr_lock); 843 } 844 845 /* 846 * Before we free the process structure, remove this dt_proc_t from the 847 * lookup hash, and then walk the dt_proc_hash_t's notification list 848 * and remove this dt_proc_t if it is enqueued. 849 */ 850 (void) pthread_mutex_lock(&dph->dph_lock); 851 (void) dt_proc_lookup(dtp, P, B_TRUE); 852 npp = &dph->dph_notify; 853 854 while ((npr = *npp) != NULL) { 855 if (npr->dprn_dpr == dpr) { 856 *npp = npr->dprn_next; 857 dt_free(dtp, npr); 858 } else { 859 npp = &npr->dprn_next; 860 } 861 } 862 863 (void) pthread_mutex_unlock(&dph->dph_lock); 864 865 /* 866 * Remove the dt_proc_list from the LRU list, release the underlying 867 * libproc handle, and free our dt_proc_t data structure. 868 */ 869 if (dpr->dpr_cacheable) { 870 assert(dph->dph_lrucnt != 0); 871 dph->dph_lrucnt--; 872 } 873 874 dt_list_delete(&dph->dph_lrulist, dpr); 875 Prelease(dpr->dpr_proc, rflag); 876 dt_free(dtp, dpr); 877 } 878 879 static int 880 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop) 881 { 882 dt_proc_control_data_t data; 883 sigset_t nset, oset; 884 pthread_attr_t a; 885 int err; 886 887 (void) pthread_mutex_lock(&dpr->dpr_lock); 888 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */ 889 890 (void) pthread_attr_init(&a); 891 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED); 892 893 (void) sigfillset(&nset); 894 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */ 895 #ifdef illumos 896 (void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */ 897 #else 898 (void) sigdelset(&nset, SIGUSR1); /* see dt_proc_destroy() */ 899 #endif 900 901 data.dpcd_hdl = dtp; 902 data.dpcd_proc = dpr; 903 904 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset); 905 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data); 906 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 907 908 /* 909 * If the control thread was created, then wait on dpr_cv for either 910 * dpr_done to be set (the victim died or the control thread failed) 911 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now 912 * stopped by /proc and the control thread is at the rendezvous event. 913 * On success, we return with the process and control thread stopped: 914 * the caller can then apply dt_proc_continue() to resume both. 915 */ 916 if (err == 0) { 917 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE)) 918 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 919 920 /* 921 * If dpr_done is set, the control thread aborted before it 922 * reached the rendezvous event. This is either due to PS_LOST 923 * or PS_UNDEAD (i.e. the process died). We try to provide a 924 * small amount of useful information to help figure it out. 925 */ 926 if (dpr->dpr_done) { 927 #ifdef illumos 928 const psinfo_t *prp = Ppsinfo(dpr->dpr_proc); 929 int stat = prp ? prp->pr_wstat : 0; 930 int pid = dpr->dpr_pid; 931 #else 932 int stat = proc_getwstat(dpr->dpr_proc); 933 int pid = proc_getpid(dpr->dpr_proc); 934 #endif 935 if (proc_state(dpr->dpr_proc) == PS_LOST) { 936 (void) dt_proc_error(dpr->dpr_hdl, dpr, 937 "failed to control pid %d: process exec'd " 938 "set-id or unobservable program\n", pid); 939 } else if (WIFSIGNALED(stat)) { 940 (void) dt_proc_error(dpr->dpr_hdl, dpr, 941 "failed to control pid %d: process died " 942 "from signal %d\n", pid, WTERMSIG(stat)); 943 } else { 944 (void) dt_proc_error(dpr->dpr_hdl, dpr, 945 "failed to control pid %d: process exited " 946 "with status %d\n", pid, WEXITSTATUS(stat)); 947 } 948 949 err = ESRCH; /* cause grab() or create() to fail */ 950 } 951 } else { 952 (void) dt_proc_error(dpr->dpr_hdl, dpr, 953 "failed to create control thread for process-id %d: %s\n", 954 (int)dpr->dpr_pid, strerror(err)); 955 } 956 957 if (err == 0) 958 (void) pthread_mutex_unlock(&dpr->dpr_lock); 959 (void) pthread_attr_destroy(&a); 960 961 return (err); 962 } 963 964 struct ps_prochandle * 965 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, 966 proc_child_func *pcf, void *child_arg) 967 { 968 dt_proc_hash_t *dph = dtp->dt_procs; 969 dt_proc_t *dpr; 970 int err; 971 972 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 973 return (NULL); /* errno is set for us */ 974 975 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 976 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 977 978 #ifdef illumos 979 if ((dpr->dpr_proc = Pcreate(file, argv, &err, NULL, 0)) == NULL) { 980 #else 981 if ((err = proc_create(file, argv, pcf, child_arg, 982 &dpr->dpr_proc)) != 0) { 983 #endif 984 return (dt_proc_error(dtp, dpr, 985 "failed to execute %s: %s\n", file, Pcreate_error(err))); 986 } 987 988 dpr->dpr_hdl = dtp; 989 #ifdef illumos 990 dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid; 991 #else 992 dpr->dpr_pid = proc_getpid(dpr->dpr_proc); 993 #endif 994 995 (void) Punsetflags(dpr->dpr_proc, PR_RLC); 996 (void) Psetflags(dpr->dpr_proc, PR_KLC); 997 998 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0) 999 return (NULL); /* dt_proc_error() has been called for us */ 1000 1001 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)]; 1002 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr; 1003 dt_list_prepend(&dph->dph_lrulist, dpr); 1004 1005 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid); 1006 dpr->dpr_refs++; 1007 1008 return (dpr->dpr_proc); 1009 } 1010 1011 struct ps_prochandle * 1012 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor) 1013 { 1014 dt_proc_hash_t *dph = dtp->dt_procs; 1015 uint_t h = pid & (dph->dph_hashlen - 1); 1016 dt_proc_t *dpr, *opr; 1017 int err; 1018 1019 /* 1020 * Search the hash table for the pid. If it is already grabbed or 1021 * created, move the handle to the front of the lrulist, increment 1022 * the reference count, and return the existing ps_prochandle. 1023 */ 1024 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) { 1025 if (dpr->dpr_pid == pid && !dpr->dpr_stale) { 1026 /* 1027 * If the cached handle was opened read-only and 1028 * this request is for a writeable handle, mark 1029 * the cached handle as stale and open a new handle. 1030 * Since it's stale, unmark it as cacheable. 1031 */ 1032 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) { 1033 dt_dprintf("upgrading pid %d\n", (int)pid); 1034 dpr->dpr_stale = B_TRUE; 1035 dpr->dpr_cacheable = B_FALSE; 1036 dph->dph_lrucnt--; 1037 break; 1038 } 1039 1040 dt_dprintf("grabbed pid %d (cached)\n", (int)pid); 1041 dt_list_delete(&dph->dph_lrulist, dpr); 1042 dt_list_prepend(&dph->dph_lrulist, dpr); 1043 dpr->dpr_refs++; 1044 return (dpr->dpr_proc); 1045 } 1046 } 1047 1048 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 1049 return (NULL); /* errno is set for us */ 1050 1051 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 1052 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 1053 1054 #ifdef illumos 1055 if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) { 1056 #else 1057 if ((err = proc_attach(pid, flags, &dpr->dpr_proc)) != 0) { 1058 #endif 1059 return (dt_proc_error(dtp, dpr, 1060 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err))); 1061 } 1062 1063 dpr->dpr_hdl = dtp; 1064 dpr->dpr_pid = pid; 1065 1066 (void) Punsetflags(dpr->dpr_proc, PR_KLC); 1067 (void) Psetflags(dpr->dpr_proc, PR_RLC); 1068 1069 /* 1070 * If we are attempting to grab the process without a monitor 1071 * thread, then mark the process cacheable only if it's being 1072 * grabbed read-only. If we're currently caching more process 1073 * handles than dph_lrulim permits, attempt to find the 1074 * least-recently-used handle that is currently unreferenced and 1075 * release it from the cache. Otherwise we are grabbing the process 1076 * for control: create a control thread for this process and store 1077 * its ID in dpr->dpr_tid. 1078 */ 1079 if (nomonitor || (flags & PGRAB_RDONLY)) { 1080 if (dph->dph_lrucnt >= dph->dph_lrulim) { 1081 for (opr = dt_list_prev(&dph->dph_lrulist); 1082 opr != NULL; opr = dt_list_prev(opr)) { 1083 if (opr->dpr_cacheable && opr->dpr_refs == 0) { 1084 dt_proc_destroy(dtp, opr->dpr_proc); 1085 break; 1086 } 1087 } 1088 } 1089 1090 if (flags & PGRAB_RDONLY) { 1091 dpr->dpr_cacheable = B_TRUE; 1092 dpr->dpr_rdonly = B_TRUE; 1093 dph->dph_lrucnt++; 1094 } 1095 1096 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0) 1097 return (NULL); /* dt_proc_error() has been called for us */ 1098 1099 dpr->dpr_hash = dph->dph_hash[h]; 1100 dph->dph_hash[h] = dpr; 1101 dt_list_prepend(&dph->dph_lrulist, dpr); 1102 1103 dt_dprintf("grabbed pid %d\n", (int)pid); 1104 dpr->dpr_refs++; 1105 1106 return (dpr->dpr_proc); 1107 } 1108 1109 void 1110 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1111 { 1112 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1113 dt_proc_hash_t *dph = dtp->dt_procs; 1114 1115 assert(dpr != NULL); 1116 assert(dpr->dpr_refs != 0); 1117 1118 if (--dpr->dpr_refs == 0 && 1119 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim)) 1120 dt_proc_destroy(dtp, P); 1121 } 1122 1123 void 1124 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1125 { 1126 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1127 1128 (void) pthread_mutex_lock(&dpr->dpr_lock); 1129 1130 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 1131 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 1132 (void) pthread_cond_broadcast(&dpr->dpr_cv); 1133 } 1134 1135 (void) pthread_mutex_unlock(&dpr->dpr_lock); 1136 } 1137 1138 void 1139 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1140 { 1141 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1142 int err = pthread_mutex_lock(&dpr->dpr_lock); 1143 assert(err == 0); /* check for recursion */ 1144 } 1145 1146 void 1147 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1148 { 1149 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1150 int err = pthread_mutex_unlock(&dpr->dpr_lock); 1151 assert(err == 0); /* check for unheld lock */ 1152 } 1153 1154 void 1155 dt_proc_hash_create(dtrace_hdl_t *dtp) 1156 { 1157 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) + 1158 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) != NULL) { 1159 1160 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL); 1161 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL); 1162 1163 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets; 1164 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim; 1165 } 1166 } 1167 1168 void 1169 dt_proc_hash_destroy(dtrace_hdl_t *dtp) 1170 { 1171 dt_proc_hash_t *dph = dtp->dt_procs; 1172 dt_proc_t *dpr; 1173 1174 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL) 1175 dt_proc_destroy(dtp, dpr->dpr_proc); 1176 1177 dtp->dt_procs = NULL; 1178 dt_free(dtp, dph); 1179 } 1180 1181 struct ps_prochandle * 1182 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, 1183 proc_child_func *pcf, void *child_arg) 1184 { 1185 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1186 struct ps_prochandle *P = dt_proc_create(dtp, file, argv, pcf, child_arg); 1187 1188 if (P != NULL && idp != NULL && idp->di_id == 0) { 1189 #ifdef illumos 1190 idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */ 1191 #else 1192 idp->di_id = proc_getpid(P); /* $target = created pid */ 1193 #endif 1194 } 1195 1196 return (P); 1197 } 1198 1199 struct ps_prochandle * 1200 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags) 1201 { 1202 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1203 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0); 1204 1205 if (P != NULL && idp != NULL && idp->di_id == 0) 1206 idp->di_id = pid; /* $target = grabbed pid */ 1207 1208 return (P); 1209 } 1210 1211 void 1212 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1213 { 1214 dt_proc_release(dtp, P); 1215 } 1216 1217 void 1218 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1219 { 1220 dt_proc_continue(dtp, P); 1221 } 1222