xref: /netbsd-src/external/cddl/osnet/dist/lib/libdtrace/common/dt_consume.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #ifdef illumos
39 #include <alloca.h>
40 #endif
41 #include <dt_impl.h>
42 #include <dt_pq.h>
43 #include <dt_printf.h>
44 #ifndef illumos
45 #include <libproc_compat.h>
46 #endif
47 
48 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
49 
50 /*
51  * We declare this here because (1) we need it and (2) we want to avoid a
52  * dependency on libm in libdtrace.
53  */
54 static long double
55 dt_fabsl(long double x)
56 {
57 	if (x < 0)
58 		return (-x);
59 
60 	return (x);
61 }
62 
63 static int
64 dt_ndigits(long long val)
65 {
66 	int rval = 1;
67 	long long cmp = 10;
68 
69 	if (val < 0) {
70 		val = val == INT64_MIN ? INT64_MAX : -val;
71 		rval++;
72 	}
73 
74 	while (val > cmp && cmp > 0) {
75 		rval++;
76 		cmp *= 10;
77 	}
78 
79 	return (rval < 4 ? 4 : rval);
80 }
81 
82 /*
83  * 128-bit arithmetic functions needed to support the stddev() aggregating
84  * action.
85  */
86 static int
87 dt_gt_128(uint64_t *a, uint64_t *b)
88 {
89 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
90 }
91 
92 static int
93 dt_ge_128(uint64_t *a, uint64_t *b)
94 {
95 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
96 }
97 
98 static int
99 dt_le_128(uint64_t *a, uint64_t *b)
100 {
101 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
102 }
103 
104 /*
105  * Shift the 128-bit value in a by b. If b is positive, shift left.
106  * If b is negative, shift right.
107  */
108 static void
109 dt_shift_128(uint64_t *a, int b)
110 {
111 	uint64_t mask;
112 
113 	if (b == 0)
114 		return;
115 
116 	if (b < 0) {
117 		b = -b;
118 		if (b >= 64) {
119 			a[0] = a[1] >> (b - 64);
120 			a[1] = 0;
121 		} else {
122 			a[0] >>= b;
123 			mask = 1LL << (64 - b);
124 			mask -= 1;
125 			a[0] |= ((a[1] & mask) << (64 - b));
126 			a[1] >>= b;
127 		}
128 	} else {
129 		if (b >= 64) {
130 			a[1] = a[0] << (b - 64);
131 			a[0] = 0;
132 		} else {
133 			a[1] <<= b;
134 			mask = a[0] >> (64 - b);
135 			a[1] |= mask;
136 			a[0] <<= b;
137 		}
138 	}
139 }
140 
141 static int
142 dt_nbits_128(uint64_t *a)
143 {
144 	int nbits = 0;
145 	uint64_t tmp[2];
146 	uint64_t zero[2] = { 0, 0 };
147 
148 	tmp[0] = a[0];
149 	tmp[1] = a[1];
150 
151 	dt_shift_128(tmp, -1);
152 	while (dt_gt_128(tmp, zero)) {
153 		dt_shift_128(tmp, -1);
154 		nbits++;
155 	}
156 
157 	return (nbits);
158 }
159 
160 static void
161 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
162 {
163 	uint64_t result[2];
164 
165 	result[0] = minuend[0] - subtrahend[0];
166 	result[1] = minuend[1] - subtrahend[1] -
167 	    (minuend[0] < subtrahend[0] ? 1 : 0);
168 
169 	difference[0] = result[0];
170 	difference[1] = result[1];
171 }
172 
173 static void
174 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
175 {
176 	uint64_t result[2];
177 
178 	result[0] = addend1[0] + addend2[0];
179 	result[1] = addend1[1] + addend2[1] +
180 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
181 
182 	sum[0] = result[0];
183 	sum[1] = result[1];
184 }
185 
186 /*
187  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
188  * use native multiplication on those, and then re-combine into the
189  * resulting 128-bit value.
190  *
191  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
192  *     hi1 * hi2 << 64 +
193  *     hi1 * lo2 << 32 +
194  *     hi2 * lo1 << 32 +
195  *     lo1 * lo2
196  */
197 static void
198 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
199 {
200 	uint64_t hi1, hi2, lo1, lo2;
201 	uint64_t tmp[2];
202 
203 	hi1 = factor1 >> 32;
204 	hi2 = factor2 >> 32;
205 
206 	lo1 = factor1 & DT_MASK_LO;
207 	lo2 = factor2 & DT_MASK_LO;
208 
209 	product[0] = lo1 * lo2;
210 	product[1] = hi1 * hi2;
211 
212 	tmp[0] = hi1 * lo2;
213 	tmp[1] = 0;
214 	dt_shift_128(tmp, 32);
215 	dt_add_128(product, tmp, product);
216 
217 	tmp[0] = hi2 * lo1;
218 	tmp[1] = 0;
219 	dt_shift_128(tmp, 32);
220 	dt_add_128(product, tmp, product);
221 }
222 
223 /*
224  * This is long-hand division.
225  *
226  * We initialize subtrahend by shifting divisor left as far as possible. We
227  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
228  * subtract and set the appropriate bit in the result.  We then shift
229  * subtrahend right by one bit for the next comparison.
230  */
231 static void
232 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
233 {
234 	uint64_t result[2] = { 0, 0 };
235 	uint64_t remainder[2];
236 	uint64_t subtrahend[2];
237 	uint64_t divisor_128[2];
238 	uint64_t mask[2] = { 1, 0 };
239 	int log = 0;
240 
241 	assert(divisor != 0);
242 
243 	divisor_128[0] = divisor;
244 	divisor_128[1] = 0;
245 
246 	remainder[0] = dividend[0];
247 	remainder[1] = dividend[1];
248 
249 	subtrahend[0] = divisor;
250 	subtrahend[1] = 0;
251 
252 	while (divisor > 0) {
253 		log++;
254 		divisor >>= 1;
255 	}
256 
257 	dt_shift_128(subtrahend, 128 - log);
258 	dt_shift_128(mask, 128 - log);
259 
260 	while (dt_ge_128(remainder, divisor_128)) {
261 		if (dt_ge_128(remainder, subtrahend)) {
262 			dt_subtract_128(remainder, subtrahend, remainder);
263 			result[0] |= mask[0];
264 			result[1] |= mask[1];
265 		}
266 
267 		dt_shift_128(subtrahend, -1);
268 		dt_shift_128(mask, -1);
269 	}
270 
271 	quotient[0] = result[0];
272 	quotient[1] = result[1];
273 }
274 
275 /*
276  * This is the long-hand method of calculating a square root.
277  * The algorithm is as follows:
278  *
279  * 1. Group the digits by 2 from the right.
280  * 2. Over the leftmost group, find the largest single-digit number
281  *    whose square is less than that group.
282  * 3. Subtract the result of the previous step (2 or 4, depending) and
283  *    bring down the next two-digit group.
284  * 4. For the result R we have so far, find the largest single-digit number
285  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
286  *    (Note that this is doubling R and performing a decimal left-shift by 1
287  *    and searching for the appropriate decimal to fill the one's place.)
288  *    The value x is the next digit in the square root.
289  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
290  * dealing with integers, so the above is sufficient.)
291  *
292  * In decimal, the square root of 582,734 would be calculated as so:
293  *
294  *     __7__6__3
295  *    | 58 27 34
296  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
297  *      --
298  *       9 27    (Subtract and bring down the next group.)
299  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
300  *      -----     the square root)
301  *         51 34 (Subtract and bring down the next group.)
302  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
303  *         -----  the square root)
304  *          5 65 (remainder)
305  *
306  * The above algorithm applies similarly in binary, but note that the
307  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
308  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
309  * preceding difference?
310  *
311  * In binary, the square root of 11011011 would be calculated as so:
312  *
313  *     __1__1__1__0
314  *    | 11 01 10 11
315  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
316  *      --
317  *      10 01 10 11
318  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
319  *      -----
320  *       1 00 10 11
321  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
322  *       -------
323  *          1 01 11
324  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
325  *
326  */
327 static uint64_t
328 dt_sqrt_128(uint64_t *square)
329 {
330 	uint64_t result[2] = { 0, 0 };
331 	uint64_t diff[2] = { 0, 0 };
332 	uint64_t one[2] = { 1, 0 };
333 	uint64_t next_pair[2];
334 	uint64_t next_try[2];
335 	uint64_t bit_pairs, pair_shift;
336 	int i;
337 
338 	bit_pairs = dt_nbits_128(square) / 2;
339 	pair_shift = bit_pairs * 2;
340 
341 	for (i = 0; i <= bit_pairs; i++) {
342 		/*
343 		 * Bring down the next pair of bits.
344 		 */
345 		next_pair[0] = square[0];
346 		next_pair[1] = square[1];
347 		dt_shift_128(next_pair, -pair_shift);
348 		next_pair[0] &= 0x3;
349 		next_pair[1] = 0;
350 
351 		dt_shift_128(diff, 2);
352 		dt_add_128(diff, next_pair, diff);
353 
354 		/*
355 		 * next_try = R << 2 + 1
356 		 */
357 		next_try[0] = result[0];
358 		next_try[1] = result[1];
359 		dt_shift_128(next_try, 2);
360 		dt_add_128(next_try, one, next_try);
361 
362 		if (dt_le_128(next_try, diff)) {
363 			dt_subtract_128(diff, next_try, diff);
364 			dt_shift_128(result, 1);
365 			dt_add_128(result, one, result);
366 		} else {
367 			dt_shift_128(result, 1);
368 		}
369 
370 		pair_shift -= 2;
371 	}
372 
373 	assert(result[1] == 0);
374 
375 	return (result[0]);
376 }
377 
378 uint64_t
379 dt_stddev(uint64_t *data, uint64_t normal)
380 {
381 	uint64_t avg_of_squares[2];
382 	uint64_t square_of_avg[2];
383 	int64_t norm_avg;
384 	uint64_t diff[2];
385 
386 	if (data[0] == 0)
387 		return (0);
388 
389 	/*
390 	 * The standard approximation for standard deviation is
391 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
392 	 * of the average of the squares minus the square of the average.
393 	 */
394 	dt_divide_128(data + 2, normal, avg_of_squares);
395 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
396 
397 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
398 
399 	if (norm_avg < 0)
400 		norm_avg = -norm_avg;
401 
402 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
403 
404 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
405 
406 	return (dt_sqrt_128(diff));
407 }
408 
409 static int
410 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
411     dtrace_bufdesc_t *buf, size_t offs)
412 {
413 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
414 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
415 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
416 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
417 	const char *str = NULL;
418 	static const char *e_str[2] = { " -> ", " => " };
419 	static const char *r_str[2] = { " <- ", " <= " };
420 	static const char *ent = "entry", *ret = "return";
421 	static int entlen = 0, retlen = 0;
422 	dtrace_epid_t next, id = epd->dtepd_epid;
423 	int rval;
424 
425 	if (entlen == 0) {
426 		assert(retlen == 0);
427 		entlen = strlen(ent);
428 		retlen = strlen(ret);
429 	}
430 
431 	/*
432 	 * If the name of the probe is "entry" or ends with "-entry", we
433 	 * treat it as an entry; if it is "return" or ends with "-return",
434 	 * we treat it as a return.  (This allows application-provided probes
435 	 * like "method-entry" or "function-entry" to participate in flow
436 	 * indentation -- without accidentally misinterpreting popular probe
437 	 * names like "carpentry", "gentry" or "Coventry".)
438 	 */
439 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
440 	    (sub == n || sub[-1] == '-')) {
441 		flow = DTRACEFLOW_ENTRY;
442 		str = e_str[strcmp(p, "syscall") == 0];
443 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
444 	    (sub == n || sub[-1] == '-')) {
445 		flow = DTRACEFLOW_RETURN;
446 		str = r_str[strcmp(p, "syscall") == 0];
447 	}
448 
449 	/*
450 	 * If we're going to indent this, we need to check the ID of our last
451 	 * call.  If we're looking at the same probe ID but a different EPID,
452 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
453 	 * this scheme -- it's a heuristic.)
454 	 */
455 	if (flow == DTRACEFLOW_ENTRY) {
456 		if ((last != DTRACE_EPIDNONE && id != last &&
457 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
458 			flow = DTRACEFLOW_NONE;
459 	}
460 
461 	/*
462 	 * If we're going to unindent this, it's more difficult to see if
463 	 * we don't actually want to unindent it -- we need to look at the
464 	 * _next_ EPID.
465 	 */
466 	if (flow == DTRACEFLOW_RETURN) {
467 		offs += epd->dtepd_size;
468 
469 		do {
470 			if (offs >= buf->dtbd_size)
471 				goto out;
472 
473 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
474 
475 			if (next == DTRACE_EPIDNONE)
476 				offs += sizeof (id);
477 		} while (next == DTRACE_EPIDNONE);
478 
479 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
480 			return (rval);
481 
482 		if (next != id && npd->dtpd_id == pd->dtpd_id)
483 			flow = DTRACEFLOW_NONE;
484 	}
485 
486 out:
487 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
488 		data->dtpda_prefix = str;
489 	} else {
490 		data->dtpda_prefix = "| ";
491 	}
492 
493 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
494 		data->dtpda_indent -= 2;
495 
496 	data->dtpda_flow = flow;
497 
498 	return (0);
499 }
500 
501 static int
502 dt_nullprobe(void)
503 {
504 	return (DTRACE_CONSUME_THIS);
505 }
506 
507 static int
508 dt_nullrec(void)
509 {
510 	return (DTRACE_CONSUME_NEXT);
511 }
512 
513 static void
514 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
515 {
516 	long double val = dt_fabsl((long double)datum);
517 
518 	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
519 		*total += val;
520 		return;
521 	}
522 
523 	/*
524 	 * If we're zooming in on an aggregation, we want the height of the
525 	 * highest value to be approximately 95% of total bar height -- so we
526 	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
527 	 * our highest value.
528 	 */
529 	val *= 1 / DTRACE_AGGZOOM_MAX;
530 
531 	if (*total < val)
532 		*total = val;
533 }
534 
535 static int
536 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
537 {
538 	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
539 	    width ? width : 16, width ? "key" : "value",
540 	    "------------- Distribution -------------", "count"));
541 }
542 
543 static int
544 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
545     const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
546 {
547 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
548 	int minwidth, maxwidth, i;
549 
550 	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
551 
552 	if (action == DTRACEAGG_QUANTIZE) {
553 		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
554 			min--;
555 
556 		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
557 			max++;
558 
559 		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
560 		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
561 	} else {
562 		maxwidth = 8;
563 		minwidth = maxwidth - 1;
564 		max++;
565 	}
566 
567 	if (dt_printf(dtp, fp, "\n%*s %*s .",
568 	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
569 		return (-1);
570 
571 	for (i = min; i <= max; i++) {
572 		if (dt_printf(dtp, fp, "-") < 0)
573 			return (-1);
574 	}
575 
576 	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
577 }
578 
579 /*
580  * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
581  * inclusive) to represent aggregations via UTF-8 -- which are expressed via
582  * 3-byte UTF-8 sequences.
583  */
584 #define	DTRACE_AGGUTF8_FULL	0x2588
585 #define	DTRACE_AGGUTF8_BASE	0x258f
586 #define	DTRACE_AGGUTF8_LEVELS	8
587 
588 #define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
589 #define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
590 #define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
591 
592 static int
593 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
594     uint64_t normal, long double total)
595 {
596 	uint_t len = 40, i, whole, partial;
597 	long double f = (dt_fabsl((long double)val) * len) / total;
598 	const char *spaces = "                                        ";
599 
600 	whole = (uint_t)f;
601 	partial = (uint_t)((f - (long double)(uint_t)f) *
602 	    (long double)DTRACE_AGGUTF8_LEVELS);
603 
604 	if (dt_printf(dtp, fp, "|") < 0)
605 		return (-1);
606 
607 	for (i = 0; i < whole; i++) {
608 		if (dt_printf(dtp, fp, "%c%c%c",
609 		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
610 		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
611 		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
612 			return (-1);
613 	}
614 
615 	if (partial != 0) {
616 		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
617 
618 		if (dt_printf(dtp, fp, "%c%c%c",
619 		    DTRACE_AGGUTF8_BYTE0(partial),
620 		    DTRACE_AGGUTF8_BYTE1(partial),
621 		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
622 			return (-1);
623 
624 		i++;
625 	}
626 
627 	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
628 	    (long long)val / normal));
629 }
630 
631 static int
632 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
633     uint64_t normal, long double total, char positives, char negatives)
634 {
635 	long double f;
636 	uint_t depth, len = 40;
637 
638 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
639 	const char *spaces = "                                        ";
640 
641 	assert(strlen(ats) == len && strlen(spaces) == len);
642 	assert(!(total == 0 && (positives || negatives)));
643 	assert(!(val < 0 && !negatives));
644 	assert(!(val > 0 && !positives));
645 	assert(!(val != 0 && total == 0));
646 
647 	if (!negatives) {
648 		if (positives) {
649 			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
650 				return (dt_print_quantline_utf8(dtp, fp, val,
651 				    normal, total));
652 			}
653 
654 			f = (dt_fabsl((long double)val) * len) / total;
655 			depth = (uint_t)(f + 0.5);
656 		} else {
657 			depth = 0;
658 		}
659 
660 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
661 		    spaces + depth, (long long)val / normal));
662 	}
663 
664 	if (!positives) {
665 		f = (dt_fabsl((long double)val) * len) / total;
666 		depth = (uint_t)(f + 0.5);
667 
668 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
669 		    ats + len - depth, (long long)val / normal));
670 	}
671 
672 	/*
673 	 * If we're here, we have both positive and negative bucket values.
674 	 * To express this graphically, we're going to generate both positive
675 	 * and negative bars separated by a centerline.  These bars are half
676 	 * the size of normal quantize()/lquantize() bars, so we divide the
677 	 * length in half before calculating the bar length.
678 	 */
679 	len /= 2;
680 	ats = &ats[len];
681 	spaces = &spaces[len];
682 
683 	f = (dt_fabsl((long double)val) * len) / total;
684 	depth = (uint_t)(f + 0.5);
685 
686 	if (val <= 0) {
687 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
688 		    ats + len - depth, len, "", (long long)val / normal));
689 	} else {
690 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
691 		    ats + len - depth, spaces + depth,
692 		    (long long)val / normal));
693 	}
694 }
695 
696 /*
697  * As with UTF-8 printing of aggregations, we use a subset of the Unicode
698  * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
699  * aggregation.
700  */
701 #define	DTRACE_AGGPACK_BASE	0x2581
702 #define	DTRACE_AGGPACK_LEVELS	8
703 
704 static int
705 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
706     long double datum, long double total)
707 {
708 	static boolean_t utf8_checked = B_FALSE;
709 	static boolean_t utf8;
710 	char *ascii = "__xxxxXX";
711 	char *neg = "vvvvVV";
712 	unsigned int len;
713 	long double val;
714 
715 	if (!utf8_checked) {
716 		char *term;
717 
718 		/*
719 		 * We want to determine if we can reasonably emit UTF-8 for our
720 		 * packed aggregation.  To do this, we will check for terminals
721 		 * that are known to be primitive to emit UTF-8 on these.
722 		 */
723 		utf8_checked = B_TRUE;
724 
725 		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
726 			utf8 = B_FALSE;
727 		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
728 			utf8 = B_TRUE;
729 		} else if ((term = getenv("TERM")) != NULL &&
730 		    (strcmp(term, "sun") == 0 ||
731 		    strcmp(term, "sun-color") == 0 ||
732 		    strcmp(term, "dumb") == 0)) {
733 			utf8 = B_FALSE;
734 		} else {
735 			utf8 = B_TRUE;
736 		}
737 	}
738 
739 	if (datum == 0)
740 		return (dt_printf(dtp, fp, " "));
741 
742 	if (datum < 0) {
743 		len = strlen(neg);
744 		val = dt_fabsl(datum * (len - 1)) / total;
745 		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
746 	}
747 
748 	if (utf8) {
749 		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
750 		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
751 
752 		return (dt_printf(dtp, fp, "%c%c%c",
753 		    DTRACE_AGGUTF8_BYTE0(block),
754 		    DTRACE_AGGUTF8_BYTE1(block),
755 		    DTRACE_AGGUTF8_BYTE2(block)));
756 	}
757 
758 	len = strlen(ascii);
759 	val = (datum * (len - 1)) / total;
760 	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
761 }
762 
763 int
764 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
765     size_t size, uint64_t normal)
766 {
767 	const int64_t *data = addr;
768 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
769 	long double total = 0;
770 	char positives = 0, negatives = 0;
771 
772 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
773 		return (dt_set_errno(dtp, EDT_DMISMATCH));
774 
775 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
776 		first_bin++;
777 
778 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
779 		/*
780 		 * There isn't any data.  This is possible if the aggregation
781 		 * has been clear()'d or if negative increment values have been
782 		 * used.  Regardless, we'll print the buckets around 0.
783 		 */
784 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
785 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
786 	} else {
787 		if (first_bin > 0)
788 			first_bin--;
789 
790 		while (last_bin > 0 && data[last_bin] == 0)
791 			last_bin--;
792 
793 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
794 			last_bin++;
795 	}
796 
797 	for (i = first_bin; i <= last_bin; i++) {
798 		positives |= (data[i] > 0);
799 		negatives |= (data[i] < 0);
800 		dt_quantize_total(dtp, data[i], &total);
801 	}
802 
803 	if (dt_print_quanthdr(dtp, fp, 0) < 0)
804 		return (-1);
805 
806 	for (i = first_bin; i <= last_bin; i++) {
807 		if (dt_printf(dtp, fp, "%16lld ",
808 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
809 			return (-1);
810 
811 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
812 		    positives, negatives) < 0)
813 			return (-1);
814 	}
815 
816 	return (0);
817 }
818 
819 static int
820 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
821     size_t size, const dtrace_aggdata_t *aggdata)
822 {
823 	const int64_t *data = addr;
824 	long double total = 0, count = 0;
825 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
826 	int64_t minval, maxval;
827 
828 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
829 		return (dt_set_errno(dtp, EDT_DMISMATCH));
830 
831 	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
832 		min--;
833 
834 	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
835 		max++;
836 
837 	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
838 	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
839 
840 	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
841 	    (long long)minval) < 0)
842 		return (-1);
843 
844 	for (i = min; i <= max; i++) {
845 		dt_quantize_total(dtp, data[i], &total);
846 		count += data[i];
847 	}
848 
849 	for (i = min; i <= max; i++) {
850 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
851 			return (-1);
852 	}
853 
854 	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
855 	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
856 		return (-1);
857 
858 	return (0);
859 }
860 
861 int
862 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
863     size_t size, uint64_t normal)
864 {
865 	const int64_t *data = addr;
866 	int i, first_bin, last_bin, base;
867 	uint64_t arg;
868 	long double total = 0;
869 	uint16_t step, levels;
870 	char positives = 0, negatives = 0;
871 
872 	if (size < sizeof (uint64_t))
873 		return (dt_set_errno(dtp, EDT_DMISMATCH));
874 
875 	arg = *data++;
876 	size -= sizeof (uint64_t);
877 
878 	base = DTRACE_LQUANTIZE_BASE(arg);
879 	step = DTRACE_LQUANTIZE_STEP(arg);
880 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
881 
882 	first_bin = 0;
883 	last_bin = levels + 1;
884 
885 	if (size != sizeof (uint64_t) * (levels + 2))
886 		return (dt_set_errno(dtp, EDT_DMISMATCH));
887 
888 	while (first_bin <= levels + 1 && data[first_bin] == 0)
889 		first_bin++;
890 
891 	if (first_bin > levels + 1) {
892 		first_bin = 0;
893 		last_bin = 2;
894 	} else {
895 		if (first_bin > 0)
896 			first_bin--;
897 
898 		while (last_bin > 0 && data[last_bin] == 0)
899 			last_bin--;
900 
901 		if (last_bin < levels + 1)
902 			last_bin++;
903 	}
904 
905 	for (i = first_bin; i <= last_bin; i++) {
906 		positives |= (data[i] > 0);
907 		negatives |= (data[i] < 0);
908 		dt_quantize_total(dtp, data[i], &total);
909 	}
910 
911 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
912 	    "------------- Distribution -------------", "count") < 0)
913 		return (-1);
914 
915 	for (i = first_bin; i <= last_bin; i++) {
916 		char c[32];
917 		int err;
918 
919 		if (i == 0) {
920 			(void) snprintf(c, sizeof (c), "< %d", base);
921 			err = dt_printf(dtp, fp, "%16s ", c);
922 		} else if (i == levels + 1) {
923 			(void) snprintf(c, sizeof (c), ">= %d",
924 			    base + (levels * step));
925 			err = dt_printf(dtp, fp, "%16s ", c);
926 		} else {
927 			err = dt_printf(dtp, fp, "%16d ",
928 			    base + (i - 1) * step);
929 		}
930 
931 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
932 		    total, positives, negatives) < 0)
933 			return (-1);
934 	}
935 
936 	return (0);
937 }
938 
939 /*ARGSUSED*/
940 static int
941 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
942     size_t size, const dtrace_aggdata_t *aggdata)
943 {
944 	const int64_t *data = addr;
945 	long double total = 0, count = 0;
946 	int min, max, base, err;
947 	uint64_t arg;
948 	uint16_t step, levels;
949 	char c[32];
950 	unsigned int i;
951 
952 	if (size < sizeof (uint64_t))
953 		return (dt_set_errno(dtp, EDT_DMISMATCH));
954 
955 	arg = *data++;
956 	size -= sizeof (uint64_t);
957 
958 	base = DTRACE_LQUANTIZE_BASE(arg);
959 	step = DTRACE_LQUANTIZE_STEP(arg);
960 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
961 
962 	if (size != sizeof (uint64_t) * (levels + 2))
963 		return (dt_set_errno(dtp, EDT_DMISMATCH));
964 
965 	min = 0;
966 	max = levels + 1;
967 
968 	if (min == 0) {
969 		(void) snprintf(c, sizeof (c), "< %d", base);
970 		err = dt_printf(dtp, fp, "%8s :", c);
971 	} else {
972 		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
973 	}
974 
975 	if (err < 0)
976 		return (-1);
977 
978 	for (i = min; i <= max; i++) {
979 		dt_quantize_total(dtp, data[i], &total);
980 		count += data[i];
981 	}
982 
983 	for (i = min; i <= max; i++) {
984 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
985 			return (-1);
986 	}
987 
988 	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
989 	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
990 }
991 
992 int
993 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
994     size_t size, uint64_t normal)
995 {
996 	int i, first_bin, last_bin, bin = 1, order, levels;
997 	uint16_t factor, low, high, nsteps;
998 	const int64_t *data = addr;
999 	int64_t value = 1, next, step;
1000 	char positives = 0, negatives = 0;
1001 	long double total = 0;
1002 	uint64_t arg;
1003 	char c[32];
1004 
1005 	if (size < sizeof (uint64_t))
1006 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1007 
1008 	arg = *data++;
1009 	size -= sizeof (uint64_t);
1010 
1011 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1012 	low = DTRACE_LLQUANTIZE_LOW(arg);
1013 	high = DTRACE_LLQUANTIZE_HIGH(arg);
1014 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1015 
1016 	/*
1017 	 * We don't expect to be handed invalid llquantize() parameters here,
1018 	 * but sanity check them (to a degree) nonetheless.
1019 	 */
1020 	if (size > INT32_MAX || factor < 2 || low >= high ||
1021 	    nsteps == 0 || factor > nsteps)
1022 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1023 
1024 	levels = (int)size / sizeof (uint64_t);
1025 
1026 	first_bin = 0;
1027 	last_bin = levels - 1;
1028 
1029 	while (first_bin < levels && data[first_bin] == 0)
1030 		first_bin++;
1031 
1032 	if (first_bin == levels) {
1033 		first_bin = 0;
1034 		last_bin = 1;
1035 	} else {
1036 		if (first_bin > 0)
1037 			first_bin--;
1038 
1039 		while (last_bin > 0 && data[last_bin] == 0)
1040 			last_bin--;
1041 
1042 		if (last_bin < levels - 1)
1043 			last_bin++;
1044 	}
1045 
1046 	for (i = first_bin; i <= last_bin; i++) {
1047 		positives |= (data[i] > 0);
1048 		negatives |= (data[i] < 0);
1049 		dt_quantize_total(dtp, data[i], &total);
1050 	}
1051 
1052 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1053 	    "------------- Distribution -------------", "count") < 0)
1054 		return (-1);
1055 
1056 	for (order = 0; order < low; order++)
1057 		value *= factor;
1058 
1059 	next = value * factor;
1060 	step = next > nsteps ? next / nsteps : 1;
1061 
1062 	if (first_bin == 0) {
1063 		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
1064 
1065 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1066 			return (-1);
1067 
1068 		if (dt_print_quantline(dtp, fp, data[0], normal,
1069 		    total, positives, negatives) < 0)
1070 			return (-1);
1071 	}
1072 
1073 	while (order <= high) {
1074 		if (bin >= first_bin && bin <= last_bin) {
1075 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1076 				return (-1);
1077 
1078 			if (dt_print_quantline(dtp, fp, data[bin],
1079 			    normal, total, positives, negatives) < 0)
1080 				return (-1);
1081 		}
1082 
1083 		assert(value < next);
1084 		bin++;
1085 
1086 		if ((value += step) != next)
1087 			continue;
1088 
1089 		next = value * factor;
1090 		step = next > nsteps ? next / nsteps : 1;
1091 		order++;
1092 	}
1093 
1094 	if (last_bin < bin)
1095 		return (0);
1096 
1097 	assert(last_bin == bin);
1098 	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
1099 
1100 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1101 		return (-1);
1102 
1103 	return (dt_print_quantline(dtp, fp, data[bin], normal,
1104 	    total, positives, negatives));
1105 }
1106 
1107 /*ARGSUSED*/
1108 static int
1109 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1110     size_t size, uint64_t normal)
1111 {
1112 	/* LINTED - alignment */
1113 	int64_t *data = (int64_t *)addr;
1114 
1115 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1116 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1117 }
1118 
1119 /*ARGSUSED*/
1120 static int
1121 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1122     size_t size, uint64_t normal)
1123 {
1124 	/* LINTED - alignment */
1125 	uint64_t *data = (uint64_t *)addr;
1126 
1127 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1128 	    (unsigned long long) dt_stddev(data, normal) : 0));
1129 }
1130 
1131 /*ARGSUSED*/
1132 static int
1133 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1134     size_t nbytes, int width, int quiet, int forceraw)
1135 {
1136 	/*
1137 	 * If the byte stream is a series of printable characters, followed by
1138 	 * a terminating byte, we print it out as a string.  Otherwise, we
1139 	 * assume that it's something else and just print the bytes.
1140 	 */
1141 	int i, j, margin = 5;
1142 	char *c = (char *)addr;
1143 
1144 	if (nbytes == 0)
1145 		return (0);
1146 
1147 	if (forceraw)
1148 		goto raw;
1149 
1150 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1151 		goto raw;
1152 
1153 	for (i = 0; i < nbytes; i++) {
1154 		/*
1155 		 * We define a "printable character" to be one for which
1156 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1157 		 * or a character which is either backspace or the bell.
1158 		 * Backspace and the bell are regrettably special because
1159 		 * they fail the first two tests -- and yet they are entirely
1160 		 * printable.  These are the only two control characters that
1161 		 * have meaning for the terminal and for which isprint(3C) and
1162 		 * isspace(3C) return 0.
1163 		 */
1164 		if (isprint((unsigned char)c[i]) ||
1165 		    isspace((unsigned char)c[i]) ||
1166 		    c[i] == '\b' || c[i] == '\a')
1167 			continue;
1168 
1169 		if (c[i] == '\0' && i > 0) {
1170 			/*
1171 			 * This looks like it might be a string.  Before we
1172 			 * assume that it is indeed a string, check the
1173 			 * remainder of the byte range; if it contains
1174 			 * additional non-nul characters, we'll assume that
1175 			 * it's a binary stream that just happens to look like
1176 			 * a string, and we'll print out the individual bytes.
1177 			 */
1178 			for (j = i + 1; j < nbytes; j++) {
1179 				if (c[j] != '\0')
1180 					break;
1181 			}
1182 
1183 			if (j != nbytes)
1184 				break;
1185 
1186 			if (quiet) {
1187 				return (dt_printf(dtp, fp, "%s", c));
1188 			} else {
1189 				return (dt_printf(dtp, fp, " %s%*s",
1190 				    width < 0 ? " " : "", width, c));
1191 			}
1192 		}
1193 
1194 		break;
1195 	}
1196 
1197 	if (i == nbytes) {
1198 		/*
1199 		 * The byte range is all printable characters, but there is
1200 		 * no trailing nul byte.  We'll assume that it's a string and
1201 		 * print it as such.
1202 		 */
1203 		char *s = alloca(nbytes + 1);
1204 		bcopy(c, s, nbytes);
1205 		s[nbytes] = '\0';
1206 		return (dt_printf(dtp, fp, "  %-*s", width, s));
1207 	}
1208 
1209 raw:
1210 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1211 		return (-1);
1212 
1213 	for (i = 0; i < 16; i++)
1214 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1215 			return (-1);
1216 
1217 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1218 		return (-1);
1219 
1220 
1221 	for (i = 0; i < nbytes; i += 16) {
1222 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1223 			return (-1);
1224 
1225 		for (j = i; j < i + 16 && j < nbytes; j++) {
1226 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1227 				return (-1);
1228 		}
1229 
1230 		while (j++ % 16) {
1231 			if (dt_printf(dtp, fp, "   ") < 0)
1232 				return (-1);
1233 		}
1234 
1235 		if (dt_printf(dtp, fp, "  ") < 0)
1236 			return (-1);
1237 
1238 		for (j = i; j < i + 16 && j < nbytes; j++) {
1239 			if (dt_printf(dtp, fp, "%c",
1240 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1241 				return (-1);
1242 		}
1243 
1244 		if (dt_printf(dtp, fp, "\n") < 0)
1245 			return (-1);
1246 	}
1247 
1248 	return (0);
1249 }
1250 
1251 int
1252 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1253     caddr_t addr, int depth, int size)
1254 {
1255 	dtrace_syminfo_t dts;
1256 	GElf_Sym sym;
1257 	int i, indent;
1258 	char c[PATH_MAX * 2];
1259 	uint64_t pc;
1260 
1261 	if (dt_printf(dtp, fp, "\n") < 0)
1262 		return (-1);
1263 
1264 	if (format == NULL)
1265 		format = "%s";
1266 
1267 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1268 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1269 	else
1270 		indent = _dtrace_stkindent;
1271 
1272 	for (i = 0; i < depth; i++) {
1273 		switch (size) {
1274 		case sizeof (uint32_t):
1275 			/* LINTED - alignment */
1276 			pc = *((uint32_t *)addr);
1277 			break;
1278 
1279 		case sizeof (uint64_t):
1280 			/* LINTED - alignment */
1281 			pc = *((uint64_t *)addr);
1282 			break;
1283 
1284 		default:
1285 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1286 		}
1287 
1288 		if (pc == 0)
1289 			break;
1290 
1291 		addr += size;
1292 
1293 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1294 			return (-1);
1295 
1296 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1297 			if (pc > sym.st_value) {
1298 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1299 				    dts.dts_object, dts.dts_name,
1300 				    (unsigned long long)(pc - sym.st_value));
1301 			} else {
1302 				(void) snprintf(c, sizeof (c), "%s`%s",
1303 				    dts.dts_object, dts.dts_name);
1304 			}
1305 		} else {
1306 			/*
1307 			 * We'll repeat the lookup, but this time we'll specify
1308 			 * a NULL GElf_Sym -- indicating that we're only
1309 			 * interested in the containing module.
1310 			 */
1311 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1312 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1313 				    dts.dts_object, (unsigned long long)pc);
1314 			} else {
1315 				(void) snprintf(c, sizeof (c), "0x%llx",
1316 				    (unsigned long long)pc);
1317 			}
1318 		}
1319 
1320 		if (dt_printf(dtp, fp, format, c) < 0)
1321 			return (-1);
1322 
1323 		if (dt_printf(dtp, fp, "\n") < 0)
1324 			return (-1);
1325 	}
1326 
1327 	return (0);
1328 }
1329 
1330 int
1331 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1332     caddr_t addr, uint64_t arg)
1333 {
1334 	/* LINTED - alignment */
1335 	uint64_t *pc = (uint64_t *)addr;
1336 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1337 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1338 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1339 	const char *str = strsize ? strbase : NULL;
1340 	int err = 0;
1341 
1342 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1343 	struct ps_prochandle *P;
1344 	GElf_Sym sym;
1345 	int i, indent;
1346 	pid_t pid;
1347 
1348 	if (depth == 0)
1349 		return (0);
1350 
1351 	pid = (pid_t)*pc++;
1352 
1353 	if (dt_printf(dtp, fp, "\n") < 0)
1354 		return (-1);
1355 
1356 	if (format == NULL)
1357 		format = "%s";
1358 
1359 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1360 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1361 	else
1362 		indent = _dtrace_stkindent;
1363 
1364 	/*
1365 	 * Ultimately, we need to add an entry point in the library vector for
1366 	 * determining <symbol, offset> from <pid, address>.  For now, if
1367 	 * this is a vector open, we just print the raw address or string.
1368 	 */
1369 	if (dtp->dt_vector == NULL)
1370 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1371 	else
1372 		P = NULL;
1373 
1374 	if (P != NULL)
1375 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1376 
1377 	for (i = 0; i < depth && pc[i] != 0; i++) {
1378 		const prmap_t *map;
1379 
1380 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1381 			break;
1382 
1383 		if (P != NULL && Plookup_by_addr(P, pc[i],
1384 		    name, sizeof (name), &sym) == 0) {
1385 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1386 
1387 			if (pc[i] > sym.st_value) {
1388 				(void) snprintf(c, sizeof (c),
1389 				    "%s`%s+0x%llx", dt_basename(objname), name,
1390 				    (unsigned long long)(pc[i] - sym.st_value));
1391 			} else {
1392 				(void) snprintf(c, sizeof (c),
1393 				    "%s`%s", dt_basename(objname), name);
1394 			}
1395 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1396 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1397 		    (map->pr_mflags & MA_WRITE)))) {
1398 			/*
1399 			 * If the current string pointer in the string table
1400 			 * does not point to an empty string _and_ the program
1401 			 * counter falls in a writable region, we'll use the
1402 			 * string from the string table instead of the raw
1403 			 * address.  This last condition is necessary because
1404 			 * some (broken) ustack helpers will return a string
1405 			 * even for a program counter that they can't
1406 			 * identify.  If we have a string for a program
1407 			 * counter that falls in a segment that isn't
1408 			 * writable, we assume that we have fallen into this
1409 			 * case and we refuse to use the string.
1410 			 */
1411 			(void) snprintf(c, sizeof (c), "%s", str);
1412 		} else {
1413 			if (P != NULL && Pobjname(P, pc[i], objname,
1414 			    sizeof (objname)) != 0) {
1415 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1416 				    dt_basename(objname), (unsigned long long)pc[i]);
1417 			} else {
1418 				(void) snprintf(c, sizeof (c), "0x%llx",
1419 				    (unsigned long long)pc[i]);
1420 			}
1421 		}
1422 
1423 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1424 			break;
1425 
1426 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1427 			break;
1428 
1429 		if (str != NULL && str[0] == '@') {
1430 			/*
1431 			 * If the first character of the string is an "at" sign,
1432 			 * then the string is inferred to be an annotation --
1433 			 * and it is printed out beneath the frame and offset
1434 			 * with brackets.
1435 			 */
1436 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1437 				break;
1438 
1439 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1440 
1441 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1442 				break;
1443 
1444 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1445 				break;
1446 		}
1447 
1448 		if (str != NULL) {
1449 			str += strlen(str) + 1;
1450 			if (str - strbase >= strsize)
1451 				str = NULL;
1452 		}
1453 	}
1454 
1455 	if (P != NULL) {
1456 		dt_proc_unlock(dtp, P);
1457 		dt_proc_release(dtp, P);
1458 	}
1459 
1460 	return (err);
1461 }
1462 
1463 static int
1464 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1465 {
1466 	/* LINTED - alignment */
1467 	uint64_t pid = ((uint64_t *)addr)[0];
1468 	/* LINTED - alignment */
1469 	uint64_t pc = ((uint64_t *)addr)[1];
1470 	const char *format = "  %-50s";
1471 	char *s;
1472 	int n, len = 256;
1473 
1474 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1475 		struct ps_prochandle *P;
1476 
1477 		if ((P = dt_proc_grab(dtp, pid,
1478 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1479 			GElf_Sym sym;
1480 
1481 			dt_proc_lock(dtp, P);
1482 
1483 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1484 				pc = sym.st_value;
1485 
1486 			dt_proc_unlock(dtp, P);
1487 			dt_proc_release(dtp, P);
1488 		}
1489 	}
1490 
1491 	do {
1492 		n = len;
1493 		s = alloca(n);
1494 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1495 
1496 	return (dt_printf(dtp, fp, format, s));
1497 }
1498 
1499 int
1500 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1501 {
1502 	/* LINTED - alignment */
1503 	uint64_t pid = ((uint64_t *)addr)[0];
1504 	/* LINTED - alignment */
1505 	uint64_t pc = ((uint64_t *)addr)[1];
1506 	int err = 0;
1507 
1508 	char objname[PATH_MAX], c[PATH_MAX * 2];
1509 	struct ps_prochandle *P;
1510 
1511 	if (format == NULL)
1512 		format = "  %-50s";
1513 
1514 	/*
1515 	 * See the comment in dt_print_ustack() for the rationale for
1516 	 * printing raw addresses in the vectored case.
1517 	 */
1518 	if (dtp->dt_vector == NULL)
1519 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1520 	else
1521 		P = NULL;
1522 
1523 	if (P != NULL)
1524 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1525 
1526 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1527 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1528 	} else {
1529 		(void) snprintf(c, sizeof (c), "0x%llx", (unsigned long long)pc);
1530 	}
1531 
1532 	err = dt_printf(dtp, fp, format, c);
1533 
1534 	if (P != NULL) {
1535 		dt_proc_unlock(dtp, P);
1536 		dt_proc_release(dtp, P);
1537 	}
1538 
1539 	return (err);
1540 }
1541 
1542 static int
1543 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1544 {
1545 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1546 	size_t nbytes = *((uintptr_t *) addr);
1547 
1548 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1549 	    nbytes, 50, quiet, 1));
1550 }
1551 
1552 typedef struct dt_type_cbdata {
1553 	dtrace_hdl_t		*dtp;
1554 	dtrace_typeinfo_t	dtt;
1555 	caddr_t			addr;
1556 	caddr_t			addrend;
1557 	const char		*name;
1558 	int			f_type;
1559 	int			indent;
1560 	int			type_width;
1561 	int			name_width;
1562 	FILE			*fp;
1563 } dt_type_cbdata_t;
1564 
1565 static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1566 
1567 static int
1568 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1569 {
1570 	dt_type_cbdata_t cbdata;
1571 	dt_type_cbdata_t *cbdatap = arg;
1572 	ssize_t ssz;
1573 
1574 	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1575 		return (0);
1576 
1577 	off /= 8;
1578 
1579 	cbdata = *cbdatap;
1580 	cbdata.name = name;
1581 	cbdata.addr += off;
1582 	cbdata.addrend = cbdata.addr + ssz;
1583 
1584 	return (dt_print_type_data(&cbdata, type));
1585 }
1586 
1587 static int
1588 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1589 {
1590 	char buf[DT_TYPE_NAMELEN];
1591 	char *p;
1592 	dt_type_cbdata_t *cbdatap = arg;
1593 	size_t sz = strlen(name);
1594 
1595 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1596 
1597 	if ((p = strchr(buf, '[')) != NULL)
1598 		p[-1] = '\0';
1599 	else
1600 		p = __UNCONST("");
1601 
1602 	sz += strlen(p);
1603 
1604 	if (sz > cbdatap->name_width)
1605 		cbdatap->name_width = sz;
1606 
1607 	sz = strlen(buf);
1608 
1609 	if (sz > cbdatap->type_width)
1610 		cbdatap->type_width = sz;
1611 
1612 	return (0);
1613 }
1614 
1615 static int
1616 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1617 {
1618 	caddr_t addr = cbdatap->addr;
1619 	caddr_t addrend = cbdatap->addrend;
1620 	char buf[DT_TYPE_NAMELEN];
1621 	char *p;
1622 	int cnt = 0;
1623 	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1624 	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1625 
1626 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1627 
1628 	if ((p = strchr(buf, '[')) != NULL)
1629 		p[-1] = '\0';
1630 	else
1631 		p = __UNCONST("");
1632 
1633 	if (cbdatap->f_type) {
1634 		int type_width = roundup(cbdatap->type_width + 1, 4);
1635 		int name_width = roundup(cbdatap->name_width + 1, 4);
1636 
1637 		name_width -= strlen(cbdatap->name);
1638 
1639 		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1640 	}
1641 
1642 	while (addr < addrend) {
1643 		dt_type_cbdata_t cbdata;
1644 		ctf_arinfo_t arinfo;
1645 		ctf_encoding_t cte;
1646 		void *vp = addr;
1647 		cbdata = *cbdatap;
1648 		cbdata.name = "";
1649 		cbdata.addr = addr;
1650 		cbdata.addrend = addr + ssz;
1651 		cbdata.f_type = 0;
1652 		cbdata.indent++;
1653 		cbdata.type_width = 0;
1654 		cbdata.name_width = 0;
1655 
1656 		if (cnt > 0)
1657 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1658 
1659 		switch (kind) {
1660 		case CTF_K_INTEGER:
1661 			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1662 				return (-1);
1663 			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1664 				switch (cte.cte_bits) {
1665 				case 8:
1666 					if (isprint(*((unsigned char *) vp)))
1667 						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1668 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1669 					break;
1670 				case 16:
1671 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1672 					break;
1673 				case 32:
1674 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1675 					break;
1676 				case 64:
1677 					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1678 					break;
1679 				default:
1680 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1681 					break;
1682 				}
1683 			else
1684 				switch (cte.cte_bits) {
1685 				case 8:
1686 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1687 					break;
1688 				case 16:
1689 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1690 					break;
1691 				case 32:
1692 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1693 					break;
1694 				case 64:
1695 					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1696 					break;
1697 				default:
1698 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1699 					break;
1700 				}
1701 			break;
1702 		case CTF_K_FLOAT:
1703 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1704 			break;
1705 		case CTF_K_POINTER:
1706 			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1707 			break;
1708 		case CTF_K_ARRAY:
1709 			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1710 				return (-1);
1711 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1712 			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1713 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1714 			break;
1715 		case CTF_K_FUNCTION:
1716 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1717 			break;
1718 		case CTF_K_STRUCT:
1719 			cbdata.f_type = 1;
1720 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1721 			    dt_print_type_width, &cbdata) != 0)
1722 				return (-1);
1723 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1724 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1725 			    dt_print_type_member, &cbdata) != 0)
1726 				return (-1);
1727 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1728 			break;
1729 		case CTF_K_UNION:
1730 			cbdata.f_type = 1;
1731 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1732 			    dt_print_type_width, &cbdata) != 0)
1733 				return (-1);
1734 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1735 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1736 			    dt_print_type_member, &cbdata) != 0)
1737 				return (-1);
1738 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1739 			break;
1740 		case CTF_K_ENUM:
1741 			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1742 			break;
1743 		case CTF_K_TYPEDEF:
1744 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1745 			break;
1746 		case CTF_K_VOLATILE:
1747 			if (cbdatap->f_type)
1748 				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1749 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1750 			break;
1751 		case CTF_K_CONST:
1752 			if (cbdatap->f_type)
1753 				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1754 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1755 			break;
1756 		case CTF_K_RESTRICT:
1757 			if (cbdatap->f_type)
1758 				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1759 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1760 			break;
1761 		default:
1762 			break;
1763 		}
1764 
1765 		addr += ssz;
1766 		cnt++;
1767 	}
1768 
1769 	return (0);
1770 }
1771 
1772 static int
1773 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1774 {
1775 	char *p;
1776 	dtrace_typeinfo_t dtt;
1777 	dt_type_cbdata_t cbdata;
1778 	int num = 0;
1779 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1780 	ssize_t ssz;
1781 
1782 	if (!quiet)
1783 		dt_printf(dtp, fp, "\n");
1784 
1785 	/* Get the total number of bytes of data buffered. */
1786 	size_t nbytes = *((uintptr_t *) addr);
1787 	addr += sizeof(uintptr_t);
1788 
1789 	/*
1790 	 * Get the size of the type so that we can check that it matches
1791 	 * the CTF data we look up and so that we can figure out how many
1792 	 * type elements are buffered.
1793 	 */
1794 	size_t typs = *((uintptr_t *) addr);
1795 	addr += sizeof(uintptr_t);
1796 
1797 	/*
1798 	 * Point to the type string in the buffer. Get it's string
1799 	 * length and round it up to become the offset to the start
1800 	 * of the buffered type data which we would like to be aligned
1801 	 * for easy access.
1802 	 */
1803 	char *strp = (char *) addr;
1804 	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1805 
1806 	/*
1807 	 * The type string might have a format such as 'int [20]'.
1808 	 * Check if there is an array dimension present.
1809 	 */
1810 	if ((p = strchr(strp, '[')) != NULL) {
1811 		/* Strip off the array dimension. */
1812 		*p++ = '\0';
1813 
1814 		for (; *p != '\0' && *p != ']'; p++)
1815 			num = num * 10 + *p - '0';
1816 	} else
1817 		/* No array dimension, so default. */
1818 		num = 1;
1819 
1820 	/* Lookup the CTF type from the type string. */
1821 	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1822 		return (-1);
1823 
1824 	/* Offset the buffer address to the start of the data... */
1825 	addr += offset;
1826 
1827 	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1828 
1829 	if (typs != ssz) {
1830 		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1831 		return (-1);
1832 	}
1833 
1834 	cbdata.dtp = dtp;
1835 	cbdata.dtt = dtt;
1836 	cbdata.name = "";
1837 	cbdata.addr = addr;
1838 	cbdata.addrend = addr + nbytes;
1839 	cbdata.indent = 1;
1840 	cbdata.f_type = 1;
1841 	cbdata.type_width = 0;
1842 	cbdata.name_width = 0;
1843 	cbdata.fp = fp;
1844 
1845 	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1846 }
1847 
1848 static int
1849 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1850 {
1851 	/* LINTED - alignment */
1852 	uint64_t pc = *((uint64_t *)addr);
1853 	dtrace_syminfo_t dts;
1854 	GElf_Sym sym;
1855 	char c[PATH_MAX * 2];
1856 
1857 	if (format == NULL)
1858 		format = "  %-50s";
1859 
1860 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1861 		(void) snprintf(c, sizeof (c), "%s`%s",
1862 		    dts.dts_object, dts.dts_name);
1863 	} else {
1864 		/*
1865 		 * We'll repeat the lookup, but this time we'll specify a
1866 		 * NULL GElf_Sym -- indicating that we're only interested in
1867 		 * the containing module.
1868 		 */
1869 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1870 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1871 			    dts.dts_object, (unsigned long long)pc);
1872 		} else {
1873 			(void) snprintf(c, sizeof (c), "0x%llx",
1874 			    (unsigned long long)pc);
1875 		}
1876 	}
1877 
1878 	if (dt_printf(dtp, fp, format, c) < 0)
1879 		return (-1);
1880 
1881 	return (0);
1882 }
1883 
1884 int
1885 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1886 {
1887 	/* LINTED - alignment */
1888 	uint64_t pc = *((uint64_t *)addr);
1889 	dtrace_syminfo_t dts;
1890 	char c[PATH_MAX * 2];
1891 
1892 	if (format == NULL)
1893 		format = "  %-50s";
1894 
1895 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1896 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1897 	} else {
1898 		(void) snprintf(c, sizeof (c), "0x%llx", (unsigned long long)pc);
1899 	}
1900 
1901 	if (dt_printf(dtp, fp, format, c) < 0)
1902 		return (-1);
1903 
1904 	return (0);
1905 }
1906 
1907 typedef struct dt_normal {
1908 	dtrace_aggvarid_t dtnd_id;
1909 	uint64_t dtnd_normal;
1910 } dt_normal_t;
1911 
1912 static int
1913 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1914 {
1915 	dt_normal_t *normal = arg;
1916 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1917 	dtrace_aggvarid_t id = normal->dtnd_id;
1918 
1919 	if (agg->dtagd_nrecs == 0)
1920 		return (DTRACE_AGGWALK_NEXT);
1921 
1922 	if (agg->dtagd_varid != id)
1923 		return (DTRACE_AGGWALK_NEXT);
1924 
1925 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1926 	return (DTRACE_AGGWALK_NORMALIZE);
1927 }
1928 
1929 static int
1930 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1931 {
1932 	dt_normal_t normal;
1933 	caddr_t addr;
1934 
1935 	/*
1936 	 * We (should) have two records:  the aggregation ID followed by the
1937 	 * normalization value.
1938 	 */
1939 	addr = base + rec->dtrd_offset;
1940 
1941 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1942 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1943 
1944 	/* LINTED - alignment */
1945 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1946 	rec++;
1947 
1948 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1949 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1950 
1951 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1952 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1953 
1954 	addr = base + rec->dtrd_offset;
1955 
1956 	switch (rec->dtrd_size) {
1957 	case sizeof (uint64_t):
1958 		/* LINTED - alignment */
1959 		normal.dtnd_normal = *((uint64_t *)addr);
1960 		break;
1961 	case sizeof (uint32_t):
1962 		/* LINTED - alignment */
1963 		normal.dtnd_normal = *((uint32_t *)addr);
1964 		break;
1965 	case sizeof (uint16_t):
1966 		/* LINTED - alignment */
1967 		normal.dtnd_normal = *((uint16_t *)addr);
1968 		break;
1969 	case sizeof (uint8_t):
1970 		normal.dtnd_normal = *((uint8_t *)addr);
1971 		break;
1972 	default:
1973 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1974 	}
1975 
1976 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1977 
1978 	return (0);
1979 }
1980 
1981 static int
1982 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1983 {
1984 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1985 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1986 
1987 	if (agg->dtagd_nrecs == 0)
1988 		return (DTRACE_AGGWALK_NEXT);
1989 
1990 	if (agg->dtagd_varid != id)
1991 		return (DTRACE_AGGWALK_NEXT);
1992 
1993 	return (DTRACE_AGGWALK_DENORMALIZE);
1994 }
1995 
1996 static int
1997 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1998 {
1999 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2000 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
2001 
2002 	if (agg->dtagd_nrecs == 0)
2003 		return (DTRACE_AGGWALK_NEXT);
2004 
2005 	if (agg->dtagd_varid != id)
2006 		return (DTRACE_AGGWALK_NEXT);
2007 
2008 	return (DTRACE_AGGWALK_CLEAR);
2009 }
2010 
2011 typedef struct dt_trunc {
2012 	dtrace_aggvarid_t dttd_id;
2013 	uint64_t dttd_remaining;
2014 } dt_trunc_t;
2015 
2016 static int
2017 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
2018 {
2019 	dt_trunc_t *trunc = arg;
2020 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2021 	dtrace_aggvarid_t id = trunc->dttd_id;
2022 
2023 	if (agg->dtagd_nrecs == 0)
2024 		return (DTRACE_AGGWALK_NEXT);
2025 
2026 	if (agg->dtagd_varid != id)
2027 		return (DTRACE_AGGWALK_NEXT);
2028 
2029 	if (trunc->dttd_remaining == 0)
2030 		return (DTRACE_AGGWALK_REMOVE);
2031 
2032 	trunc->dttd_remaining--;
2033 	return (DTRACE_AGGWALK_NEXT);
2034 }
2035 
2036 static int
2037 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
2038 {
2039 	dt_trunc_t trunc;
2040 	caddr_t addr;
2041 	int64_t remaining;
2042 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
2043 
2044 	/*
2045 	 * We (should) have two records:  the aggregation ID followed by the
2046 	 * number of aggregation entries after which the aggregation is to be
2047 	 * truncated.
2048 	 */
2049 	addr = base + rec->dtrd_offset;
2050 
2051 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
2052 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2053 
2054 	/* LINTED - alignment */
2055 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
2056 	rec++;
2057 
2058 	if (rec->dtrd_action != DTRACEACT_LIBACT)
2059 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2060 
2061 	if (rec->dtrd_arg != DT_ACT_TRUNC)
2062 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2063 
2064 	addr = base + rec->dtrd_offset;
2065 
2066 	switch (rec->dtrd_size) {
2067 	case sizeof (uint64_t):
2068 		/* LINTED - alignment */
2069 		remaining = *((int64_t *)addr);
2070 		break;
2071 	case sizeof (uint32_t):
2072 		/* LINTED - alignment */
2073 		remaining = *((int32_t *)addr);
2074 		break;
2075 	case sizeof (uint16_t):
2076 		/* LINTED - alignment */
2077 		remaining = *((int16_t *)addr);
2078 		break;
2079 	case sizeof (uint8_t):
2080 		remaining = *((int8_t *)addr);
2081 		break;
2082 	default:
2083 		return (dt_set_errno(dtp, EDT_BADNORMAL));
2084 	}
2085 
2086 	if (remaining < 0) {
2087 		func = dtrace_aggregate_walk_valsorted;
2088 		remaining = -remaining;
2089 	} else {
2090 		func = dtrace_aggregate_walk_valrevsorted;
2091 	}
2092 
2093 	assert(remaining >= 0);
2094 	trunc.dttd_remaining = remaining;
2095 
2096 	(void) func(dtp, dt_trunc_agg, &trunc);
2097 
2098 	return (0);
2099 }
2100 
2101 static int
2102 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
2103     caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
2104     uint64_t normal, dt_print_aggdata_t *pd)
2105 {
2106 	int err, width;
2107 	dtrace_actkind_t act = rec->dtrd_action;
2108 	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
2109 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2110 
2111 	static struct {
2112 		size_t size;
2113 		int width;
2114 		int packedwidth;
2115 	} *fmt, fmttab[] = {
2116 		{ sizeof (uint8_t),	3,	3 },
2117 		{ sizeof (uint16_t),	5,	5 },
2118 		{ sizeof (uint32_t),	8,	8 },
2119 		{ sizeof (uint64_t),	16,	16 },
2120 		{ 0,			-50,	16 }
2121 	};
2122 
2123 	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
2124 		dtrace_recdesc_t *r;
2125 
2126 		width = 0;
2127 
2128 		/*
2129 		 * To print our quantization header for either an agghist or
2130 		 * aggpack aggregation, we need to iterate through all of our
2131 		 * of our records to determine their width.
2132 		 */
2133 		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
2134 			for (fmt = fmttab; fmt->size &&
2135 			    fmt->size != r->dtrd_size; fmt++)
2136 				continue;
2137 
2138 			width += fmt->packedwidth + 1;
2139 		}
2140 
2141 		if (pd->dtpa_agghist) {
2142 			if (dt_print_quanthdr(dtp, fp, width) < 0)
2143 				return (-1);
2144 		} else {
2145 			if (dt_print_quanthdr_packed(dtp, fp,
2146 			    width, aggdata, r->dtrd_action) < 0)
2147 				return (-1);
2148 		}
2149 
2150 		pd->dtpa_agghisthdr = agg->dtagd_varid;
2151 	}
2152 
2153 	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
2154 		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
2155 		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
2156 		int64_t val;
2157 
2158 		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
2159 		val = (long long)*((uint64_t *)addr);
2160 
2161 		if (dt_printf(dtp, fp, " ") < 0)
2162 			return (-1);
2163 
2164 		return (dt_print_quantline(dtp, fp, val, normal,
2165 		    aggdata->dtada_total, positives, negatives));
2166 	}
2167 
2168 	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
2169 		switch (act) {
2170 		case DTRACEAGG_QUANTIZE:
2171 			return (dt_print_quantize_packed(dtp,
2172 			    fp, addr, size, aggdata));
2173 		case DTRACEAGG_LQUANTIZE:
2174 			return (dt_print_lquantize_packed(dtp,
2175 			    fp, addr, size, aggdata));
2176 		default:
2177 			break;
2178 		}
2179 	}
2180 
2181 	switch (act) {
2182 	case DTRACEACT_STACK:
2183 		return (dt_print_stack(dtp, fp, NULL, addr,
2184 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
2185 
2186 	case DTRACEACT_USTACK:
2187 	case DTRACEACT_JSTACK:
2188 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
2189 
2190 	case DTRACEACT_USYM:
2191 	case DTRACEACT_UADDR:
2192 		return (dt_print_usym(dtp, fp, addr, act));
2193 
2194 	case DTRACEACT_UMOD:
2195 		return (dt_print_umod(dtp, fp, NULL, addr));
2196 
2197 	case DTRACEACT_SYM:
2198 		return (dt_print_sym(dtp, fp, NULL, addr));
2199 
2200 	case DTRACEACT_MOD:
2201 		return (dt_print_mod(dtp, fp, NULL, addr));
2202 
2203 	case DTRACEAGG_QUANTIZE:
2204 		return (dt_print_quantize(dtp, fp, addr, size, normal));
2205 
2206 	case DTRACEAGG_LQUANTIZE:
2207 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
2208 
2209 	case DTRACEAGG_LLQUANTIZE:
2210 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
2211 
2212 	case DTRACEAGG_AVG:
2213 		return (dt_print_average(dtp, fp, addr, size, normal));
2214 
2215 	case DTRACEAGG_STDDEV:
2216 		return (dt_print_stddev(dtp, fp, addr, size, normal));
2217 
2218 	default:
2219 		break;
2220 	}
2221 
2222 	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
2223 		continue;
2224 
2225 	width = packed ? fmt->packedwidth : fmt->width;
2226 
2227 	switch (size) {
2228 	case sizeof (uint64_t):
2229 		err = dt_printf(dtp, fp, " %*lld", width,
2230 		    /* LINTED - alignment */
2231 		    (long long)*((uint64_t *)addr) / normal);
2232 		break;
2233 	case sizeof (uint32_t):
2234 		/* LINTED - alignment */
2235 		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
2236 		    (uint32_t)normal);
2237 		break;
2238 	case sizeof (uint16_t):
2239 		/* LINTED - alignment */
2240 		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
2241 		    (uint32_t)normal);
2242 		break;
2243 	case sizeof (uint8_t):
2244 		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
2245 		    (uint32_t)normal);
2246 		break;
2247 	default:
2248 		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
2249 		break;
2250 	}
2251 
2252 	return (err);
2253 }
2254 
2255 static int
2256 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
2257 {
2258 	int i, aggact = 0;
2259 	dt_print_aggdata_t *pd = arg;
2260 	const dtrace_aggdata_t *aggdata = aggsdata[0];
2261 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2262 	FILE *fp = pd->dtpa_fp;
2263 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
2264 	dtrace_recdesc_t *rec;
2265 	dtrace_actkind_t act;
2266 	caddr_t addr;
2267 	size_t size;
2268 
2269 	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
2270 	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
2271 
2272 	/*
2273 	 * Iterate over each record description in the key, printing the traced
2274 	 * data, skipping the first datum (the tuple member created by the
2275 	 * compiler).
2276 	 */
2277 	for (i = 1; i < agg->dtagd_nrecs; i++) {
2278 		rec = &agg->dtagd_rec[i];
2279 		act = rec->dtrd_action;
2280 		addr = aggdata->dtada_data + rec->dtrd_offset;
2281 		size = rec->dtrd_size;
2282 
2283 		if (DTRACEACT_ISAGG(act)) {
2284 			aggact = i;
2285 			break;
2286 		}
2287 
2288 		if (dt_print_datum(dtp, fp, rec, addr,
2289 		    size, aggdata, 1, pd) < 0)
2290 			return (-1);
2291 
2292 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2293 		    DTRACE_BUFDATA_AGGKEY) < 0)
2294 			return (-1);
2295 	}
2296 
2297 	assert(aggact != 0);
2298 
2299 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
2300 		uint64_t normal;
2301 
2302 		aggdata = aggsdata[i];
2303 		agg = aggdata->dtada_desc;
2304 		rec = &agg->dtagd_rec[aggact];
2305 		act = rec->dtrd_action;
2306 		addr = aggdata->dtada_data + rec->dtrd_offset;
2307 		size = rec->dtrd_size;
2308 
2309 		assert(DTRACEACT_ISAGG(act));
2310 		normal = aggdata->dtada_normal;
2311 
2312 		if (dt_print_datum(dtp, fp, rec, addr,
2313 		    size, aggdata, normal, pd) < 0)
2314 			return (-1);
2315 
2316 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2317 		    DTRACE_BUFDATA_AGGVAL) < 0)
2318 			return (-1);
2319 
2320 		if (!pd->dtpa_allunprint)
2321 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2322 	}
2323 
2324 	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2325 		if (dt_printf(dtp, fp, "\n") < 0)
2326 			return (-1);
2327 	}
2328 
2329 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2330 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2331 		return (-1);
2332 
2333 	return (0);
2334 }
2335 
2336 int
2337 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2338 {
2339 	dt_print_aggdata_t *pd = arg;
2340 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2341 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2342 
2343 	if (pd->dtpa_allunprint) {
2344 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2345 			return (0);
2346 	} else {
2347 		/*
2348 		 * If we're not printing all unprinted aggregations, then the
2349 		 * aggregation variable ID denotes a specific aggregation
2350 		 * variable that we should print -- skip any other aggregations
2351 		 * that we encounter.
2352 		 */
2353 		if (agg->dtagd_nrecs == 0)
2354 			return (0);
2355 
2356 		if (aggvarid != agg->dtagd_varid)
2357 			return (0);
2358 	}
2359 
2360 	return (dt_print_aggs(&aggdata, 1, arg));
2361 }
2362 
2363 static int
2364 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2365     const char *option, const char *value)
2366 {
2367 	int len, rval;
2368 	char *msg;
2369 	const char *errstr;
2370 	dtrace_setoptdata_t optdata;
2371 
2372 	bzero(&optdata, sizeof (optdata));
2373 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2374 
2375 	if (dtrace_setopt(dtp, option, value) == 0) {
2376 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2377 		optdata.dtsda_probe = data;
2378 		optdata.dtsda_option = option;
2379 		optdata.dtsda_handle = dtp;
2380 
2381 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2382 			return (rval);
2383 
2384 		return (0);
2385 	}
2386 
2387 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2388 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2389 	msg = alloca(len);
2390 
2391 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2392 	    option, value, errstr);
2393 
2394 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2395 		return (0);
2396 
2397 	return (rval);
2398 }
2399 
2400 static int
2401 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2402     dtrace_bufdesc_t *buf, boolean_t just_one,
2403     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2404 {
2405 	dtrace_epid_t id;
2406 	size_t offs;
2407 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2408 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2409 	int rval, i, n;
2410 	uint64_t tracememsize = 0;
2411 	dtrace_probedata_t data;
2412 	uint64_t drops;
2413 
2414 	bzero(&data, sizeof (data));
2415 	data.dtpda_handle = dtp;
2416 	data.dtpda_cpu = cpu;
2417 	data.dtpda_flow = dtp->dt_flow;
2418 	data.dtpda_indent = dtp->dt_indent;
2419 	data.dtpda_prefix = dtp->dt_prefix;
2420 
2421 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2422 		dtrace_eprobedesc_t *epd;
2423 
2424 		/*
2425 		 * We're guaranteed to have an ID.
2426 		 */
2427 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2428 
2429 		if (id == DTRACE_EPIDNONE) {
2430 			/*
2431 			 * This is filler to assure proper alignment of the
2432 			 * next record; we simply ignore it.
2433 			 */
2434 			offs += sizeof (id);
2435 			continue;
2436 		}
2437 
2438 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2439 		    &data.dtpda_pdesc)) != 0)
2440 			return (rval);
2441 
2442 		epd = data.dtpda_edesc;
2443 		data.dtpda_data = buf->dtbd_data + offs;
2444 
2445 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2446 			rval = dt_handle(dtp, &data);
2447 
2448 			if (rval == DTRACE_CONSUME_NEXT)
2449 				goto nextepid;
2450 
2451 			if (rval == DTRACE_CONSUME_ERROR)
2452 				return (-1);
2453 		}
2454 
2455 		if (flow)
2456 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2457 			    buf, offs);
2458 
2459 		rval = (*efunc)(&data, arg);
2460 
2461 		if (flow) {
2462 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2463 				data.dtpda_indent += 2;
2464 		}
2465 
2466 		if (rval == DTRACE_CONSUME_NEXT)
2467 			goto nextepid;
2468 
2469 		if (rval == DTRACE_CONSUME_ABORT)
2470 			return (dt_set_errno(dtp, EDT_DIRABORT));
2471 
2472 		if (rval != DTRACE_CONSUME_THIS)
2473 			return (dt_set_errno(dtp, EDT_BADRVAL));
2474 
2475 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2476 			caddr_t addr;
2477 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2478 			dtrace_actkind_t act = rec->dtrd_action;
2479 
2480 			data.dtpda_data = buf->dtbd_data + offs +
2481 			    rec->dtrd_offset;
2482 			addr = data.dtpda_data;
2483 
2484 			if (act == DTRACEACT_LIBACT) {
2485 				uint64_t arg = rec->dtrd_arg;
2486 				dtrace_aggvarid_t id;
2487 
2488 				switch (arg) {
2489 				case DT_ACT_CLEAR:
2490 					/* LINTED - alignment */
2491 					id = *((dtrace_aggvarid_t *)addr);
2492 					(void) dtrace_aggregate_walk(dtp,
2493 					    dt_clear_agg, &id);
2494 					continue;
2495 
2496 				case DT_ACT_DENORMALIZE:
2497 					/* LINTED - alignment */
2498 					id = *((dtrace_aggvarid_t *)addr);
2499 					(void) dtrace_aggregate_walk(dtp,
2500 					    dt_denormalize_agg, &id);
2501 					continue;
2502 
2503 				case DT_ACT_FTRUNCATE:
2504 					if (fp == NULL)
2505 						continue;
2506 
2507 					(void) fflush(fp);
2508 					(void) ftruncate(fileno(fp), 0);
2509 					(void) fseeko(fp, 0, SEEK_SET);
2510 					continue;
2511 
2512 				case DT_ACT_NORMALIZE:
2513 					if (i == epd->dtepd_nrecs - 1)
2514 						return (dt_set_errno(dtp,
2515 						    EDT_BADNORMAL));
2516 
2517 					if (dt_normalize(dtp,
2518 					    buf->dtbd_data + offs, rec) != 0)
2519 						return (-1);
2520 
2521 					i++;
2522 					continue;
2523 
2524 				case DT_ACT_SETOPT: {
2525 					uint64_t *opts = dtp->dt_options;
2526 					dtrace_recdesc_t *valrec;
2527 					uint32_t valsize;
2528 					caddr_t val;
2529 					int rv;
2530 
2531 					if (i == epd->dtepd_nrecs - 1) {
2532 						return (dt_set_errno(dtp,
2533 						    EDT_BADSETOPT));
2534 					}
2535 
2536 					valrec = &epd->dtepd_rec[++i];
2537 					valsize = valrec->dtrd_size;
2538 
2539 					if (valrec->dtrd_action != act ||
2540 					    valrec->dtrd_arg != arg) {
2541 						return (dt_set_errno(dtp,
2542 						    EDT_BADSETOPT));
2543 					}
2544 
2545 					if (valsize > sizeof (uint64_t)) {
2546 						val = buf->dtbd_data + offs +
2547 						    valrec->dtrd_offset;
2548 					} else {
2549 						val = "1";
2550 					}
2551 
2552 					rv = dt_setopt(dtp, &data, addr, val);
2553 
2554 					if (rv != 0)
2555 						return (-1);
2556 
2557 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2558 					    DTRACEOPT_UNSET);
2559 					quiet = (opts[DTRACEOPT_QUIET] !=
2560 					    DTRACEOPT_UNSET);
2561 
2562 					continue;
2563 				}
2564 
2565 				case DT_ACT_TRUNC:
2566 					if (i == epd->dtepd_nrecs - 1)
2567 						return (dt_set_errno(dtp,
2568 						    EDT_BADTRUNC));
2569 
2570 					if (dt_trunc(dtp,
2571 					    buf->dtbd_data + offs, rec) != 0)
2572 						return (-1);
2573 
2574 					i++;
2575 					continue;
2576 
2577 				default:
2578 					continue;
2579 				}
2580 			}
2581 
2582 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2583 			    rec->dtrd_size == sizeof (uint64_t)) {
2584 			    	/* LINTED - alignment */
2585 				tracememsize = *((unsigned long long *)addr);
2586 				continue;
2587 			}
2588 
2589 			rval = (*rfunc)(&data, rec, arg);
2590 
2591 			if (rval == DTRACE_CONSUME_NEXT)
2592 				continue;
2593 
2594 			if (rval == DTRACE_CONSUME_ABORT)
2595 				return (dt_set_errno(dtp, EDT_DIRABORT));
2596 
2597 			if (rval != DTRACE_CONSUME_THIS)
2598 				return (dt_set_errno(dtp, EDT_BADRVAL));
2599 
2600 			if (act == DTRACEACT_STACK) {
2601 				int depth = rec->dtrd_arg;
2602 
2603 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2604 				    rec->dtrd_size / depth) < 0)
2605 					return (-1);
2606 				goto nextrec;
2607 			}
2608 
2609 			if (act == DTRACEACT_USTACK ||
2610 			    act == DTRACEACT_JSTACK) {
2611 				if (dt_print_ustack(dtp, fp, NULL,
2612 				    addr, rec->dtrd_arg) < 0)
2613 					return (-1);
2614 				goto nextrec;
2615 			}
2616 
2617 			if (act == DTRACEACT_SYM) {
2618 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2619 					return (-1);
2620 				goto nextrec;
2621 			}
2622 
2623 			if (act == DTRACEACT_MOD) {
2624 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2625 					return (-1);
2626 				goto nextrec;
2627 			}
2628 
2629 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2630 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2631 					return (-1);
2632 				goto nextrec;
2633 			}
2634 
2635 			if (act == DTRACEACT_UMOD) {
2636 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2637 					return (-1);
2638 				goto nextrec;
2639 			}
2640 
2641 			if (act == DTRACEACT_PRINTM) {
2642 				if (dt_print_memory(dtp, fp, addr) < 0)
2643 					return (-1);
2644 				goto nextrec;
2645 			}
2646 
2647 			if (act == DTRACEACT_PRINTT) {
2648 				if (dt_print_type(dtp, fp, addr) < 0)
2649 					return (-1);
2650 				goto nextrec;
2651 			}
2652 
2653 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2654 				void *fmtdata;
2655 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2656 				    const dtrace_probedata_t *,
2657 				    const dtrace_recdesc_t *, uint_t,
2658 				    const void *buf, size_t);
2659 
2660 				if ((fmtdata = dt_format_lookup(dtp,
2661 				    rec->dtrd_format)) == NULL)
2662 					goto nofmt;
2663 
2664 				switch (act) {
2665 				case DTRACEACT_PRINTF:
2666 					func = dtrace_fprintf;
2667 					break;
2668 				case DTRACEACT_PRINTA:
2669 					func = dtrace_fprinta;
2670 					break;
2671 				case DTRACEACT_SYSTEM:
2672 					func = dtrace_system;
2673 					break;
2674 				case DTRACEACT_FREOPEN:
2675 					func = dtrace_freopen;
2676 					break;
2677 				default:
2678 					return (dt_set_errno(dtp, EDT_BADAGG));
2679 				}
2680 
2681 				n = (*func)(dtp, fp, fmtdata, &data,
2682 				    rec, epd->dtepd_nrecs - i,
2683 				    (uchar_t *)buf->dtbd_data + offs,
2684 				    buf->dtbd_size - offs);
2685 
2686 				if (n < 0)
2687 					return (-1); /* errno is set for us */
2688 
2689 				if (n > 0)
2690 					i += n - 1;
2691 				goto nextrec;
2692 			}
2693 
2694 			/*
2695 			 * If this is a DIF expression, and the record has a
2696 			 * format set, this indicates we have a CTF type name
2697 			 * associated with the data and we should try to print
2698 			 * it out by type.
2699 			 */
2700 			if (act == DTRACEACT_DIFEXPR) {
2701 				const char *strdata = dt_strdata_lookup(dtp,
2702 				    rec->dtrd_format);
2703 				if (strdata != NULL) {
2704 					n = dtrace_print(dtp, fp, strdata,
2705 					    addr, rec->dtrd_size);
2706 
2707 					/*
2708 					 * dtrace_print() will return -1 on
2709 					 * error, or return the number of bytes
2710 					 * consumed.  It will return 0 if the
2711 					 * type couldn't be determined, and we
2712 					 * should fall through to the normal
2713 					 * trace method.
2714 					 */
2715 					if (n < 0)
2716 						return (-1);
2717 
2718 					if (n > 0)
2719 						goto nextrec;
2720 				}
2721 			}
2722 
2723 nofmt:
2724 			if (act == DTRACEACT_PRINTA) {
2725 				dt_print_aggdata_t pd;
2726 				dtrace_aggvarid_t *aggvars;
2727 				int j, naggvars = 0;
2728 				size_t size = ((epd->dtepd_nrecs - i) *
2729 				    sizeof (dtrace_aggvarid_t));
2730 
2731 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2732 					return (-1);
2733 
2734 				/*
2735 				 * This might be a printa() with multiple
2736 				 * aggregation variables.  We need to scan
2737 				 * forward through the records until we find
2738 				 * a record from a different statement.
2739 				 */
2740 				for (j = i; j < epd->dtepd_nrecs; j++) {
2741 					dtrace_recdesc_t *nrec;
2742 					caddr_t naddr;
2743 
2744 					nrec = &epd->dtepd_rec[j];
2745 
2746 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2747 						break;
2748 
2749 					if (nrec->dtrd_action != act) {
2750 						return (dt_set_errno(dtp,
2751 						    EDT_BADAGG));
2752 					}
2753 
2754 					naddr = buf->dtbd_data + offs +
2755 					    nrec->dtrd_offset;
2756 
2757 					aggvars[naggvars++] =
2758 					    /* LINTED - alignment */
2759 					    *((dtrace_aggvarid_t *)naddr);
2760 				}
2761 
2762 				i = j - 1;
2763 				bzero(&pd, sizeof (pd));
2764 				pd.dtpa_dtp = dtp;
2765 				pd.dtpa_fp = fp;
2766 
2767 				assert(naggvars >= 1);
2768 
2769 				if (naggvars == 1) {
2770 					pd.dtpa_id = aggvars[0];
2771 					dt_free(dtp, aggvars);
2772 
2773 					if (dt_printf(dtp, fp, "\n") < 0 ||
2774 					    dtrace_aggregate_walk_sorted(dtp,
2775 					    dt_print_agg, &pd) < 0)
2776 						return (-1);
2777 					goto nextrec;
2778 				}
2779 
2780 				if (dt_printf(dtp, fp, "\n") < 0 ||
2781 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2782 				    naggvars, dt_print_aggs, &pd) < 0) {
2783 					dt_free(dtp, aggvars);
2784 					return (-1);
2785 				}
2786 
2787 				dt_free(dtp, aggvars);
2788 				goto nextrec;
2789 			}
2790 
2791 			if (act == DTRACEACT_TRACEMEM) {
2792 				if (tracememsize == 0 ||
2793 				    tracememsize > rec->dtrd_size) {
2794 					tracememsize = rec->dtrd_size;
2795 				}
2796 
2797 				n = dt_print_bytes(dtp, fp, addr,
2798 				    tracememsize, -33, quiet, 1);
2799 
2800 				tracememsize = 0;
2801 
2802 				if (n < 0)
2803 					return (-1);
2804 
2805 				goto nextrec;
2806 			}
2807 
2808 			switch (rec->dtrd_size) {
2809 			case sizeof (uint64_t):
2810 				n = dt_printf(dtp, fp,
2811 				    quiet ? "%lld" : " %16lld",
2812 				    /* LINTED - alignment */
2813 				    *((unsigned long long *)addr));
2814 				break;
2815 			case sizeof (uint32_t):
2816 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2817 				    /* LINTED - alignment */
2818 				    *((uint32_t *)addr));
2819 				break;
2820 			case sizeof (uint16_t):
2821 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2822 				    /* LINTED - alignment */
2823 				    *((uint16_t *)addr));
2824 				break;
2825 			case sizeof (uint8_t):
2826 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2827 				    *((uint8_t *)addr));
2828 				break;
2829 			default:
2830 				n = dt_print_bytes(dtp, fp, addr,
2831 				    rec->dtrd_size, -33, quiet, 0);
2832 				break;
2833 			}
2834 
2835 			if (n < 0)
2836 				return (-1); /* errno is set for us */
2837 
2838 nextrec:
2839 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2840 				return (-1); /* errno is set for us */
2841 		}
2842 
2843 		/*
2844 		 * Call the record callback with a NULL record to indicate
2845 		 * that we're done processing this EPID.
2846 		 */
2847 		rval = (*rfunc)(&data, NULL, arg);
2848 nextepid:
2849 		offs += epd->dtepd_size;
2850 		dtp->dt_last_epid = id;
2851 		if (just_one) {
2852 			buf->dtbd_oldest = offs;
2853 			break;
2854 		}
2855 	}
2856 
2857 	dtp->dt_flow = data.dtpda_flow;
2858 	dtp->dt_indent = data.dtpda_indent;
2859 	dtp->dt_prefix = data.dtpda_prefix;
2860 
2861 	if ((drops = buf->dtbd_drops) == 0)
2862 		return (0);
2863 
2864 	/*
2865 	 * Explicitly zero the drops to prevent us from processing them again.
2866 	 */
2867 	buf->dtbd_drops = 0;
2868 
2869 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2870 }
2871 
2872 /*
2873  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2874  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2875  * only 4-byte aligned.
2876  */
2877 static void
2878 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2879 {
2880 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2881 	if (used < cursize / 2) {
2882 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2883 		char *newdata = dt_alloc(dtp, used + misalign);
2884 		if (newdata == NULL)
2885 			return;
2886 		bzero(newdata, misalign);
2887 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2888 		    newdata + misalign, used);
2889 		dt_free(dtp, buf->dtbd_data);
2890 		buf->dtbd_oldest = misalign;
2891 		buf->dtbd_size = used + misalign;
2892 		buf->dtbd_data = newdata;
2893 	}
2894 }
2895 
2896 /*
2897  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2898  * so that it is.  Note, we need to preserve the alignment of the data at
2899  * dtbd_oldest, which is only 4-byte aligned.
2900  */
2901 static int
2902 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2903 {
2904 	int misalign;
2905 	char *newdata, *ndp;
2906 
2907 	if (buf->dtbd_oldest == 0)
2908 		return (0);
2909 
2910 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2911 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2912 
2913 	if (newdata == NULL)
2914 		return (-1);
2915 
2916 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2917 
2918 	bzero(ndp, misalign);
2919 	ndp += misalign;
2920 
2921 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2922 	    buf->dtbd_size - buf->dtbd_oldest);
2923 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2924 
2925 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2926 
2927 	dt_free(dtp, buf->dtbd_data);
2928 	buf->dtbd_oldest = 0;
2929 	buf->dtbd_data = newdata;
2930 	buf->dtbd_size += misalign;
2931 
2932 	return (0);
2933 }
2934 
2935 static void
2936 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2937 {
2938 	dt_free(dtp, buf->dtbd_data);
2939 	dt_free(dtp, buf);
2940 }
2941 
2942 /*
2943  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2944  * data, or NULL if there is no data for this CPU.
2945  * Returns -1 on failure and sets dt_errno.
2946  */
2947 static int
2948 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2949 {
2950 	dtrace_optval_t size;
2951 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2952 	int error, rval;
2953 
2954 	if (buf == NULL)
2955 		return (-1);
2956 
2957 	(void) dtrace_getopt(dtp, "bufsize", &size);
2958 	buf->dtbd_data = dt_alloc(dtp, size);
2959 	if (buf->dtbd_data == NULL) {
2960 		dt_free(dtp, buf);
2961 		return (-1);
2962 	}
2963 	buf->dtbd_size = size;
2964 	buf->dtbd_cpu = cpu;
2965 
2966 #ifdef illumos
2967 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2968 #else
2969 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2970 #endif
2971 		/*
2972 		 * If we failed with ENOENT, it may be because the
2973 		 * CPU was unconfigured -- this is okay.  Any other
2974 		 * error, however, is unexpected.
2975 		 */
2976 		if (errno == ENOENT) {
2977 			*bufp = NULL;
2978 			rval = 0;
2979 		} else
2980 			rval = dt_set_errno(dtp, errno);
2981 
2982 		dt_put_buf(dtp, buf);
2983 		return (rval);
2984 	}
2985 
2986 	error = dt_unring_buf(dtp, buf);
2987 	if (error != 0) {
2988 		dt_put_buf(dtp, buf);
2989 		return (error);
2990 	}
2991 	dt_realloc_buf(dtp, buf, size);
2992 
2993 	*bufp = buf;
2994 	return (0);
2995 }
2996 
2997 typedef struct dt_begin {
2998 	dtrace_consume_probe_f *dtbgn_probefunc;
2999 	dtrace_consume_rec_f *dtbgn_recfunc;
3000 	void *dtbgn_arg;
3001 	dtrace_handle_err_f *dtbgn_errhdlr;
3002 	void *dtbgn_errarg;
3003 	int dtbgn_beginonly;
3004 } dt_begin_t;
3005 
3006 static int
3007 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
3008 {
3009 	dt_begin_t *begin = arg;
3010 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
3011 
3012 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3013 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3014 
3015 	if (begin->dtbgn_beginonly) {
3016 		if (!(r1 && r2))
3017 			return (DTRACE_CONSUME_NEXT);
3018 	} else {
3019 		if (r1 && r2)
3020 			return (DTRACE_CONSUME_NEXT);
3021 	}
3022 
3023 	/*
3024 	 * We have a record that we're interested in.  Now call the underlying
3025 	 * probe function...
3026 	 */
3027 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
3028 }
3029 
3030 static int
3031 dt_consume_begin_record(const dtrace_probedata_t *data,
3032     const dtrace_recdesc_t *rec, void *arg)
3033 {
3034 	dt_begin_t *begin = arg;
3035 
3036 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
3037 }
3038 
3039 static int
3040 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
3041 {
3042 	dt_begin_t *begin = (dt_begin_t *)arg;
3043 	dtrace_probedesc_t *pd = data->dteda_pdesc;
3044 
3045 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3046 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3047 
3048 	if (begin->dtbgn_beginonly) {
3049 		if (!(r1 && r2))
3050 			return (DTRACE_HANDLE_OK);
3051 	} else {
3052 		if (r1 && r2)
3053 			return (DTRACE_HANDLE_OK);
3054 	}
3055 
3056 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
3057 }
3058 
3059 static int
3060 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
3061     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3062 {
3063 	/*
3064 	 * There's this idea that the BEGIN probe should be processed before
3065 	 * everything else, and that the END probe should be processed after
3066 	 * anything else.  In the common case, this is pretty easy to deal
3067 	 * with.  However, a situation may arise where the BEGIN enabling and
3068 	 * END enabling are on the same CPU, and some enabling in the middle
3069 	 * occurred on a different CPU.  To deal with this (blech!) we need to
3070 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
3071 	 * then set it aside.  We will then process every other CPU, and then
3072 	 * we'll return to the BEGIN CPU and process the rest of the data
3073 	 * (which will inevitably include the END probe, if any).  Making this
3074 	 * even more complicated (!) is the library's ERROR enabling.  Because
3075 	 * this enabling is processed before we even get into the consume call
3076 	 * back, any ERROR firing would result in the library's ERROR enabling
3077 	 * being processed twice -- once in our first pass (for BEGIN probes),
3078 	 * and again in our second pass (for everything but BEGIN probes).  To
3079 	 * deal with this, we interpose on the ERROR handler to assure that we
3080 	 * only process ERROR enablings induced by BEGIN enablings in the
3081 	 * first pass, and that we only process ERROR enablings _not_ induced
3082 	 * by BEGIN enablings in the second pass.
3083 	 */
3084 
3085 	dt_begin_t begin;
3086 	processorid_t cpu = dtp->dt_beganon;
3087 	int rval, i;
3088 	static int max_ncpus;
3089 	dtrace_bufdesc_t *buf;
3090 
3091 	dtp->dt_beganon = -1;
3092 
3093 	if (dt_get_buf(dtp, cpu, &buf) != 0)
3094 		return (-1);
3095 	if (buf == NULL)
3096 		return (0);
3097 
3098 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
3099 		/*
3100 		 * This is the simple case.  We're either not stopped, or if
3101 		 * we are, we actually processed any END probes on another
3102 		 * CPU.  We can simply consume this buffer and return.
3103 		 */
3104 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3105 		    pf, rf, arg);
3106 		dt_put_buf(dtp, buf);
3107 		return (rval);
3108 	}
3109 
3110 	begin.dtbgn_probefunc = pf;
3111 	begin.dtbgn_recfunc = rf;
3112 	begin.dtbgn_arg = arg;
3113 	begin.dtbgn_beginonly = 1;
3114 
3115 	/*
3116 	 * We need to interpose on the ERROR handler to be sure that we
3117 	 * only process ERRORs induced by BEGIN.
3118 	 */
3119 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
3120 	begin.dtbgn_errarg = dtp->dt_errarg;
3121 	dtp->dt_errhdlr = dt_consume_begin_error;
3122 	dtp->dt_errarg = &begin;
3123 
3124 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3125 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3126 
3127 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3128 	dtp->dt_errarg = begin.dtbgn_errarg;
3129 
3130 	if (rval != 0) {
3131 		dt_put_buf(dtp, buf);
3132 		return (rval);
3133 	}
3134 
3135 	if (max_ncpus == 0)
3136 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3137 
3138 	for (i = 0; i < max_ncpus; i++) {
3139 		dtrace_bufdesc_t *nbuf;
3140 		if (i == cpu)
3141 			continue;
3142 
3143 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
3144 			dt_put_buf(dtp, buf);
3145 			return (-1);
3146 		}
3147 		if (nbuf == NULL)
3148 			continue;
3149 
3150 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
3151 		    pf, rf, arg);
3152 		dt_put_buf(dtp, nbuf);
3153 		if (rval != 0) {
3154 			dt_put_buf(dtp, buf);
3155 			return (rval);
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * Okay -- we're done with the other buffers.  Now we want to
3161 	 * reconsume the first buffer -- but this time we're looking for
3162 	 * everything _but_ BEGIN.  And of course, in order to only consume
3163 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
3164 	 * ERROR interposition function...
3165 	 */
3166 	begin.dtbgn_beginonly = 0;
3167 
3168 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
3169 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
3170 	dtp->dt_errhdlr = dt_consume_begin_error;
3171 	dtp->dt_errarg = &begin;
3172 
3173 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3174 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3175 
3176 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3177 	dtp->dt_errarg = begin.dtbgn_errarg;
3178 
3179 	return (rval);
3180 }
3181 
3182 /* ARGSUSED */
3183 static uint64_t
3184 dt_buf_oldest(void *elem, void *arg)
3185 {
3186 	dtrace_bufdesc_t *buf = elem;
3187 	size_t offs = buf->dtbd_oldest;
3188 
3189 	while (offs < buf->dtbd_size) {
3190 		dtrace_rechdr_t *dtrh =
3191 		    /* LINTED - alignment */
3192 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
3193 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
3194 			offs += sizeof (dtrace_epid_t);
3195 		} else {
3196 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
3197 		}
3198 	}
3199 
3200 	/* There are no records left; use the time the buffer was retrieved. */
3201 	return (buf->dtbd_timestamp);
3202 }
3203 
3204 int
3205 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
3206     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3207 {
3208 	dtrace_optval_t size;
3209 	static int max_ncpus;
3210 	int i, rval;
3211 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
3212 	hrtime_t now = gethrtime();
3213 
3214 	if (dtp->dt_lastswitch != 0) {
3215 		if (now - dtp->dt_lastswitch < interval)
3216 			return (0);
3217 
3218 		dtp->dt_lastswitch += interval;
3219 	} else {
3220 		dtp->dt_lastswitch = now;
3221 	}
3222 
3223 	if (!dtp->dt_active)
3224 		return (dt_set_errno(dtp, EINVAL));
3225 
3226 	if (max_ncpus == 0)
3227 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3228 
3229 	if (pf == NULL)
3230 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
3231 
3232 	if (rf == NULL)
3233 		rf = (dtrace_consume_rec_f *)dt_nullrec;
3234 
3235 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
3236 		/*
3237 		 * The output will not be in the order it was traced.  Rather,
3238 		 * we will consume all of the data from each CPU's buffer in
3239 		 * turn.  We apply special handling for the records from BEGIN
3240 		 * and END probes so that they are consumed first and last,
3241 		 * respectively.
3242 		 *
3243 		 * If we have just begun, we want to first process the CPU that
3244 		 * executed the BEGIN probe (if any).
3245 		 */
3246 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
3247 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
3248 			return (rval);
3249 
3250 		for (i = 0; i < max_ncpus; i++) {
3251 			dtrace_bufdesc_t *buf;
3252 
3253 			/*
3254 			 * If we have stopped, we want to process the CPU on
3255 			 * which the END probe was processed only _after_ we
3256 			 * have processed everything else.
3257 			 */
3258 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
3259 				continue;
3260 
3261 			if (dt_get_buf(dtp, i, &buf) != 0)
3262 				return (-1);
3263 			if (buf == NULL)
3264 				continue;
3265 
3266 			dtp->dt_flow = 0;
3267 			dtp->dt_indent = 0;
3268 			dtp->dt_prefix = NULL;
3269 			rval = dt_consume_cpu(dtp, fp, i,
3270 			    buf, B_FALSE, pf, rf, arg);
3271 			dt_put_buf(dtp, buf);
3272 			if (rval != 0)
3273 				return (rval);
3274 		}
3275 		if (dtp->dt_stopped) {
3276 			dtrace_bufdesc_t *buf;
3277 
3278 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
3279 				return (-1);
3280 			if (buf == NULL)
3281 				return (0);
3282 
3283 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
3284 			    buf, B_FALSE, pf, rf, arg);
3285 			dt_put_buf(dtp, buf);
3286 			return (rval);
3287 		}
3288 	} else {
3289 		/*
3290 		 * The output will be in the order it was traced (or for
3291 		 * speculations, when it was committed).  We retrieve a buffer
3292 		 * from each CPU and put it into a priority queue, which sorts
3293 		 * based on the first entry in the buffer.  This is sufficient
3294 		 * because entries within a buffer are already sorted.
3295 		 *
3296 		 * We then consume records one at a time, always consuming the
3297 		 * oldest record, as determined by the priority queue.  When
3298 		 * we reach the end of the time covered by these buffers,
3299 		 * we need to stop and retrieve more records on the next pass.
3300 		 * The kernel tells us the time covered by each buffer, in
3301 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
3302 		 * time covered by all buffers, as subsequently retrieved
3303 		 * buffers will cover to a more recent time.
3304 		 */
3305 
3306 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
3307 		uint64_t first_timestamp = 0;
3308 		uint_t cookie = 0;
3309 		dtrace_bufdesc_t *buf;
3310 
3311 		bzero(drops, max_ncpus * sizeof (uint64_t));
3312 
3313 		if (dtp->dt_bufq == NULL) {
3314 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
3315 			    dt_buf_oldest, NULL);
3316 			if (dtp->dt_bufq == NULL) /* ENOMEM */
3317 				return (-1);
3318 		}
3319 
3320 		/* Retrieve data from each CPU. */
3321 		(void) dtrace_getopt(dtp, "bufsize", &size);
3322 		for (i = 0; i < max_ncpus; i++) {
3323 			dtrace_bufdesc_t *buf;
3324 
3325 			if (dt_get_buf(dtp, i, &buf) != 0)
3326 				return (-1);
3327 			if (buf != NULL) {
3328 				if (first_timestamp == 0)
3329 					first_timestamp = buf->dtbd_timestamp;
3330 				assert(buf->dtbd_timestamp >= first_timestamp);
3331 
3332 				dt_pq_insert(dtp->dt_bufq, buf);
3333 				drops[i] = buf->dtbd_drops;
3334 				buf->dtbd_drops = 0;
3335 			}
3336 		}
3337 
3338 		/* Consume records. */
3339 		for (;;) {
3340 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3341 			uint64_t timestamp;
3342 
3343 			if (buf == NULL)
3344 				break;
3345 
3346 			timestamp = dt_buf_oldest(buf, dtp);
3347 			assert(timestamp >= dtp->dt_last_timestamp);
3348 			dtp->dt_last_timestamp = timestamp;
3349 
3350 			if (timestamp == buf->dtbd_timestamp) {
3351 				/*
3352 				 * We've reached the end of the time covered
3353 				 * by this buffer.  If this is the oldest
3354 				 * buffer, we must do another pass
3355 				 * to retrieve more data.
3356 				 */
3357 				dt_put_buf(dtp, buf);
3358 				if (timestamp == first_timestamp &&
3359 				    !dtp->dt_stopped)
3360 					break;
3361 				continue;
3362 			}
3363 
3364 			if ((rval = dt_consume_cpu(dtp, fp,
3365 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3366 				return (rval);
3367 			dt_pq_insert(dtp->dt_bufq, buf);
3368 		}
3369 
3370 		/* Consume drops. */
3371 		for (i = 0; i < max_ncpus; i++) {
3372 			if (drops[i] != 0) {
3373 				int error = dt_handle_cpudrop(dtp, i,
3374 				    DTRACEDROP_PRINCIPAL, drops[i]);
3375 				if (error != 0)
3376 					return (error);
3377 			}
3378 		}
3379 
3380 		/*
3381 		 * Reduce memory usage by re-allocating smaller buffers
3382 		 * for the "remnants".
3383 		 */
3384 		while ((buf = dt_pq_walk(dtp->dt_bufq, &cookie)) != NULL)
3385 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3386 	}
3387 
3388 	return (0);
3389 }
3390