1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <stdlib.h> 29 #include <strings.h> 30 #include <errno.h> 31 #include <unistd.h> 32 #include <limits.h> 33 #include <assert.h> 34 #include <ctype.h> 35 #if defined(sun) 36 #include <alloca.h> 37 #endif 38 #include <dt_impl.h> 39 40 #define DT_MASK_LO 0x00000000FFFFFFFFULL 41 42 /* 43 * We declare this here because (1) we need it and (2) we want to avoid a 44 * dependency on libm in libdtrace. 45 */ 46 static long double 47 dt_fabsl(long double x) 48 { 49 if (x < 0) 50 return (-x); 51 52 return (x); 53 } 54 55 /* 56 * 128-bit arithmetic functions needed to support the stddev() aggregating 57 * action. 58 */ 59 static int 60 dt_gt_128(uint64_t *a, uint64_t *b) 61 { 62 return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0])); 63 } 64 65 static int 66 dt_ge_128(uint64_t *a, uint64_t *b) 67 { 68 return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0])); 69 } 70 71 static int 72 dt_le_128(uint64_t *a, uint64_t *b) 73 { 74 return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0])); 75 } 76 77 /* 78 * Shift the 128-bit value in a by b. If b is positive, shift left. 79 * If b is negative, shift right. 80 */ 81 static void 82 dt_shift_128(uint64_t *a, int b) 83 { 84 uint64_t mask; 85 86 if (b == 0) 87 return; 88 89 if (b < 0) { 90 b = -b; 91 if (b >= 64) { 92 a[0] = a[1] >> (b - 64); 93 a[1] = 0; 94 } else { 95 a[0] >>= b; 96 mask = 1LL << (64 - b); 97 mask -= 1; 98 a[0] |= ((a[1] & mask) << (64 - b)); 99 a[1] >>= b; 100 } 101 } else { 102 if (b >= 64) { 103 a[1] = a[0] << (b - 64); 104 a[0] = 0; 105 } else { 106 a[1] <<= b; 107 mask = a[0] >> (64 - b); 108 a[1] |= mask; 109 a[0] <<= b; 110 } 111 } 112 } 113 114 static int 115 dt_nbits_128(uint64_t *a) 116 { 117 int nbits = 0; 118 uint64_t tmp[2]; 119 uint64_t zero[2] = { 0, 0 }; 120 121 tmp[0] = a[0]; 122 tmp[1] = a[1]; 123 124 dt_shift_128(tmp, -1); 125 while (dt_gt_128(tmp, zero)) { 126 dt_shift_128(tmp, -1); 127 nbits++; 128 } 129 130 return (nbits); 131 } 132 133 static void 134 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference) 135 { 136 uint64_t result[2]; 137 138 result[0] = minuend[0] - subtrahend[0]; 139 result[1] = minuend[1] - subtrahend[1] - 140 (minuend[0] < subtrahend[0] ? 1 : 0); 141 142 difference[0] = result[0]; 143 difference[1] = result[1]; 144 } 145 146 static void 147 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 148 { 149 uint64_t result[2]; 150 151 result[0] = addend1[0] + addend2[0]; 152 result[1] = addend1[1] + addend2[1] + 153 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 154 155 sum[0] = result[0]; 156 sum[1] = result[1]; 157 } 158 159 /* 160 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 161 * use native multiplication on those, and then re-combine into the 162 * resulting 128-bit value. 163 * 164 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 165 * hi1 * hi2 << 64 + 166 * hi1 * lo2 << 32 + 167 * hi2 * lo1 << 32 + 168 * lo1 * lo2 169 */ 170 static void 171 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 172 { 173 uint64_t hi1, hi2, lo1, lo2; 174 uint64_t tmp[2]; 175 176 hi1 = factor1 >> 32; 177 hi2 = factor2 >> 32; 178 179 lo1 = factor1 & DT_MASK_LO; 180 lo2 = factor2 & DT_MASK_LO; 181 182 product[0] = lo1 * lo2; 183 product[1] = hi1 * hi2; 184 185 tmp[0] = hi1 * lo2; 186 tmp[1] = 0; 187 dt_shift_128(tmp, 32); 188 dt_add_128(product, tmp, product); 189 190 tmp[0] = hi2 * lo1; 191 tmp[1] = 0; 192 dt_shift_128(tmp, 32); 193 dt_add_128(product, tmp, product); 194 } 195 196 /* 197 * This is long-hand division. 198 * 199 * We initialize subtrahend by shifting divisor left as far as possible. We 200 * loop, comparing subtrahend to dividend: if subtrahend is smaller, we 201 * subtract and set the appropriate bit in the result. We then shift 202 * subtrahend right by one bit for the next comparison. 203 */ 204 static void 205 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient) 206 { 207 uint64_t result[2] = { 0, 0 }; 208 uint64_t remainder[2]; 209 uint64_t subtrahend[2]; 210 uint64_t divisor_128[2]; 211 uint64_t mask[2] = { 1, 0 }; 212 int log = 0; 213 214 assert(divisor != 0); 215 216 divisor_128[0] = divisor; 217 divisor_128[1] = 0; 218 219 remainder[0] = dividend[0]; 220 remainder[1] = dividend[1]; 221 222 subtrahend[0] = divisor; 223 subtrahend[1] = 0; 224 225 while (divisor > 0) { 226 log++; 227 divisor >>= 1; 228 } 229 230 dt_shift_128(subtrahend, 128 - log); 231 dt_shift_128(mask, 128 - log); 232 233 while (dt_ge_128(remainder, divisor_128)) { 234 if (dt_ge_128(remainder, subtrahend)) { 235 dt_subtract_128(remainder, subtrahend, remainder); 236 result[0] |= mask[0]; 237 result[1] |= mask[1]; 238 } 239 240 dt_shift_128(subtrahend, -1); 241 dt_shift_128(mask, -1); 242 } 243 244 quotient[0] = result[0]; 245 quotient[1] = result[1]; 246 } 247 248 /* 249 * This is the long-hand method of calculating a square root. 250 * The algorithm is as follows: 251 * 252 * 1. Group the digits by 2 from the right. 253 * 2. Over the leftmost group, find the largest single-digit number 254 * whose square is less than that group. 255 * 3. Subtract the result of the previous step (2 or 4, depending) and 256 * bring down the next two-digit group. 257 * 4. For the result R we have so far, find the largest single-digit number 258 * x such that 2 * R * 10 * x + x^2 is less than the result from step 3. 259 * (Note that this is doubling R and performing a decimal left-shift by 1 260 * and searching for the appropriate decimal to fill the one's place.) 261 * The value x is the next digit in the square root. 262 * Repeat steps 3 and 4 until the desired precision is reached. (We're 263 * dealing with integers, so the above is sufficient.) 264 * 265 * In decimal, the square root of 582,734 would be calculated as so: 266 * 267 * __7__6__3 268 * | 58 27 34 269 * -49 (7^2 == 49 => 7 is the first digit in the square root) 270 * -- 271 * 9 27 (Subtract and bring down the next group.) 272 * 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in 273 * ----- the square root) 274 * 51 34 (Subtract and bring down the next group.) 275 * 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in 276 * ----- the square root) 277 * 5 65 (remainder) 278 * 279 * The above algorithm applies similarly in binary, but note that the 280 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a 281 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the 282 * preceding difference? 283 * 284 * In binary, the square root of 11011011 would be calculated as so: 285 * 286 * __1__1__1__0 287 * | 11 01 10 11 288 * 01 (0 << 2 + 1 == 1 < 11 => this bit is 1) 289 * -- 290 * 10 01 10 11 291 * 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1) 292 * ----- 293 * 1 00 10 11 294 * 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1) 295 * ------- 296 * 1 01 11 297 * 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0) 298 * 299 */ 300 static uint64_t 301 dt_sqrt_128(uint64_t *square) 302 { 303 uint64_t result[2] = { 0, 0 }; 304 uint64_t diff[2] = { 0, 0 }; 305 uint64_t one[2] = { 1, 0 }; 306 uint64_t next_pair[2]; 307 uint64_t next_try[2]; 308 uint64_t bit_pairs, pair_shift; 309 int i; 310 311 bit_pairs = dt_nbits_128(square) / 2; 312 pair_shift = bit_pairs * 2; 313 314 for (i = 0; i <= bit_pairs; i++) { 315 /* 316 * Bring down the next pair of bits. 317 */ 318 next_pair[0] = square[0]; 319 next_pair[1] = square[1]; 320 dt_shift_128(next_pair, -pair_shift); 321 next_pair[0] &= 0x3; 322 next_pair[1] = 0; 323 324 dt_shift_128(diff, 2); 325 dt_add_128(diff, next_pair, diff); 326 327 /* 328 * next_try = R << 2 + 1 329 */ 330 next_try[0] = result[0]; 331 next_try[1] = result[1]; 332 dt_shift_128(next_try, 2); 333 dt_add_128(next_try, one, next_try); 334 335 if (dt_le_128(next_try, diff)) { 336 dt_subtract_128(diff, next_try, diff); 337 dt_shift_128(result, 1); 338 dt_add_128(result, one, result); 339 } else { 340 dt_shift_128(result, 1); 341 } 342 343 pair_shift -= 2; 344 } 345 346 assert(result[1] == 0); 347 348 return (result[0]); 349 } 350 351 uint64_t 352 dt_stddev(uint64_t *data, uint64_t normal) 353 { 354 uint64_t avg_of_squares[2]; 355 uint64_t square_of_avg[2]; 356 int64_t norm_avg; 357 uint64_t diff[2]; 358 359 /* 360 * The standard approximation for standard deviation is 361 * sqrt(average(x**2) - average(x)**2), i.e. the square root 362 * of the average of the squares minus the square of the average. 363 */ 364 dt_divide_128(data + 2, normal, avg_of_squares); 365 dt_divide_128(avg_of_squares, data[0], avg_of_squares); 366 367 norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0]; 368 369 if (norm_avg < 0) 370 norm_avg = -norm_avg; 371 372 dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg); 373 374 dt_subtract_128(avg_of_squares, square_of_avg, diff); 375 376 return (dt_sqrt_128(diff)); 377 } 378 379 static int 380 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last, 381 dtrace_bufdesc_t *buf, size_t offs) 382 { 383 dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd; 384 dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd; 385 char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub; 386 dtrace_flowkind_t flow = DTRACEFLOW_NONE; 387 const char *str = NULL; 388 static const char *e_str[2] = { " -> ", " => " }; 389 static const char *r_str[2] = { " <- ", " <= " }; 390 static const char *ent = "entry", *ret = "return"; 391 static int entlen = 0, retlen = 0; 392 dtrace_epid_t next, id = epd->dtepd_epid; 393 int rval; 394 395 if (entlen == 0) { 396 assert(retlen == 0); 397 entlen = strlen(ent); 398 retlen = strlen(ret); 399 } 400 401 /* 402 * If the name of the probe is "entry" or ends with "-entry", we 403 * treat it as an entry; if it is "return" or ends with "-return", 404 * we treat it as a return. (This allows application-provided probes 405 * like "method-entry" or "function-entry" to participate in flow 406 * indentation -- without accidentally misinterpreting popular probe 407 * names like "carpentry", "gentry" or "Coventry".) 408 */ 409 if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' && 410 (sub == n || sub[-1] == '-')) { 411 flow = DTRACEFLOW_ENTRY; 412 str = e_str[strcmp(p, "syscall") == 0]; 413 } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' && 414 (sub == n || sub[-1] == '-')) { 415 flow = DTRACEFLOW_RETURN; 416 str = r_str[strcmp(p, "syscall") == 0]; 417 } 418 419 /* 420 * If we're going to indent this, we need to check the ID of our last 421 * call. If we're looking at the same probe ID but a different EPID, 422 * we _don't_ want to indent. (Yes, there are some minor holes in 423 * this scheme -- it's a heuristic.) 424 */ 425 if (flow == DTRACEFLOW_ENTRY) { 426 if ((last != DTRACE_EPIDNONE && id != last && 427 pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id)) 428 flow = DTRACEFLOW_NONE; 429 } 430 431 /* 432 * If we're going to unindent this, it's more difficult to see if 433 * we don't actually want to unindent it -- we need to look at the 434 * _next_ EPID. 435 */ 436 if (flow == DTRACEFLOW_RETURN) { 437 offs += epd->dtepd_size; 438 439 do { 440 if (offs >= buf->dtbd_size) { 441 /* 442 * We're at the end -- maybe. If the oldest 443 * record is non-zero, we need to wrap. 444 */ 445 if (buf->dtbd_oldest != 0) { 446 offs = 0; 447 } else { 448 goto out; 449 } 450 } 451 452 next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); 453 454 if (next == DTRACE_EPIDNONE) 455 offs += sizeof (id); 456 } while (next == DTRACE_EPIDNONE); 457 458 if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0) 459 return (rval); 460 461 if (next != id && npd->dtpd_id == pd->dtpd_id) 462 flow = DTRACEFLOW_NONE; 463 } 464 465 out: 466 if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) { 467 data->dtpda_prefix = str; 468 } else { 469 data->dtpda_prefix = "| "; 470 } 471 472 if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0) 473 data->dtpda_indent -= 2; 474 475 data->dtpda_flow = flow; 476 477 return (0); 478 } 479 480 static int 481 dt_nullprobe() 482 { 483 return (DTRACE_CONSUME_THIS); 484 } 485 486 static int 487 dt_nullrec() 488 { 489 return (DTRACE_CONSUME_NEXT); 490 } 491 492 int 493 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val, 494 uint64_t normal, long double total, char positives, char negatives) 495 { 496 long double f; 497 uint_t depth, len = 40; 498 499 const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"; 500 const char *spaces = " "; 501 502 assert(strlen(ats) == len && strlen(spaces) == len); 503 assert(!(total == 0 && (positives || negatives))); 504 assert(!(val < 0 && !negatives)); 505 assert(!(val > 0 && !positives)); 506 assert(!(val != 0 && total == 0)); 507 508 if (!negatives) { 509 if (positives) { 510 f = (dt_fabsl((long double)val) * len) / total; 511 depth = (uint_t)(f + 0.5); 512 } else { 513 depth = 0; 514 } 515 516 return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth, 517 spaces + depth, (long long)val / normal)); 518 } 519 520 if (!positives) { 521 f = (dt_fabsl((long double)val) * len) / total; 522 depth = (uint_t)(f + 0.5); 523 524 return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth, 525 ats + len - depth, (long long)val / normal)); 526 } 527 528 /* 529 * If we're here, we have both positive and negative bucket values. 530 * To express this graphically, we're going to generate both positive 531 * and negative bars separated by a centerline. These bars are half 532 * the size of normal quantize()/lquantize() bars, so we divide the 533 * length in half before calculating the bar length. 534 */ 535 len /= 2; 536 ats = &ats[len]; 537 spaces = &spaces[len]; 538 539 f = (dt_fabsl((long double)val) * len) / total; 540 depth = (uint_t)(f + 0.5); 541 542 if (val <= 0) { 543 return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth, 544 ats + len - depth, len, "", (long long)val / normal)); 545 } else { 546 return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "", 547 ats + len - depth, spaces + depth, 548 (long long)val / normal)); 549 } 550 } 551 552 int 553 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 554 size_t size, uint64_t normal) 555 { 556 const int64_t *data = addr; 557 int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1; 558 long double total = 0; 559 char positives = 0, negatives = 0; 560 561 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) 562 return (dt_set_errno(dtp, EDT_DMISMATCH)); 563 564 while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0) 565 first_bin++; 566 567 if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) { 568 /* 569 * There isn't any data. This is possible if (and only if) 570 * negative increment values have been used. In this case, 571 * we'll print the buckets around 0. 572 */ 573 first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1; 574 last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1; 575 } else { 576 if (first_bin > 0) 577 first_bin--; 578 579 while (last_bin > 0 && data[last_bin] == 0) 580 last_bin--; 581 582 if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1) 583 last_bin++; 584 } 585 586 for (i = first_bin; i <= last_bin; i++) { 587 positives |= (data[i] > 0); 588 negatives |= (data[i] < 0); 589 total += dt_fabsl((long double)data[i]); 590 } 591 592 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 593 "------------- Distribution -------------", "count") < 0) 594 return (-1); 595 596 for (i = first_bin; i <= last_bin; i++) { 597 if (dt_printf(dtp, fp, "%16lld ", 598 (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0) 599 return (-1); 600 601 if (dt_print_quantline(dtp, fp, data[i], normal, total, 602 positives, negatives) < 0) 603 return (-1); 604 } 605 606 return (0); 607 } 608 609 int 610 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 611 size_t size, uint64_t normal) 612 { 613 const int64_t *data = addr; 614 int i, first_bin, last_bin, base; 615 uint64_t arg; 616 long double total = 0; 617 uint16_t step, levels; 618 char positives = 0, negatives = 0; 619 620 if (size < sizeof (uint64_t)) 621 return (dt_set_errno(dtp, EDT_DMISMATCH)); 622 623 arg = *data++; 624 size -= sizeof (uint64_t); 625 626 base = DTRACE_LQUANTIZE_BASE(arg); 627 step = DTRACE_LQUANTIZE_STEP(arg); 628 levels = DTRACE_LQUANTIZE_LEVELS(arg); 629 630 first_bin = 0; 631 last_bin = levels + 1; 632 633 if (size != sizeof (uint64_t) * (levels + 2)) 634 return (dt_set_errno(dtp, EDT_DMISMATCH)); 635 636 while (first_bin <= levels + 1 && data[first_bin] == 0) 637 first_bin++; 638 639 if (first_bin > levels + 1) { 640 first_bin = 0; 641 last_bin = 2; 642 } else { 643 if (first_bin > 0) 644 first_bin--; 645 646 while (last_bin > 0 && data[last_bin] == 0) 647 last_bin--; 648 649 if (last_bin < levels + 1) 650 last_bin++; 651 } 652 653 for (i = first_bin; i <= last_bin; i++) { 654 positives |= (data[i] > 0); 655 negatives |= (data[i] < 0); 656 total += dt_fabsl((long double)data[i]); 657 } 658 659 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 660 "------------- Distribution -------------", "count") < 0) 661 return (-1); 662 663 for (i = first_bin; i <= last_bin; i++) { 664 char c[32]; 665 int err; 666 667 if (i == 0) { 668 (void) snprintf(c, sizeof (c), "< %d", 669 base / (uint32_t)normal); 670 err = dt_printf(dtp, fp, "%16s ", c); 671 } else if (i == levels + 1) { 672 (void) snprintf(c, sizeof (c), ">= %d", 673 base + (levels * step)); 674 err = dt_printf(dtp, fp, "%16s ", c); 675 } else { 676 err = dt_printf(dtp, fp, "%16d ", 677 base + (i - 1) * step); 678 } 679 680 if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal, 681 total, positives, negatives) < 0) 682 return (-1); 683 } 684 685 return (0); 686 } 687 688 /*ARGSUSED*/ 689 static int 690 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 691 size_t size, uint64_t normal) 692 { 693 /* LINTED - alignment */ 694 int64_t *data = (int64_t *)addr; 695 696 return (dt_printf(dtp, fp, " %16lld", data[0] ? 697 (long long)(data[1] / (int64_t)normal / data[0]) : 0)); 698 } 699 700 /*ARGSUSED*/ 701 static int 702 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 703 size_t size, uint64_t normal) 704 { 705 /* LINTED - alignment */ 706 uint64_t *data = (uint64_t *)addr; 707 708 return (dt_printf(dtp, fp, " %16llu", data[0] ? 709 (unsigned long long) dt_stddev(data, normal) : 0)); 710 } 711 712 /*ARGSUSED*/ 713 int 714 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 715 size_t nbytes, int width, int quiet, int raw) 716 { 717 /* 718 * If the byte stream is a series of printable characters, followed by 719 * a terminating byte, we print it out as a string. Otherwise, we 720 * assume that it's something else and just print the bytes. 721 */ 722 int i, j, margin = 5; 723 char *c = (char *)addr; 724 725 if (nbytes == 0) 726 return (0); 727 728 if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET) 729 goto raw; 730 731 for (i = 0; i < nbytes; i++) { 732 /* 733 * We define a "printable character" to be one for which 734 * isprint(3C) returns non-zero, isspace(3C) returns non-zero, 735 * or a character which is either backspace or the bell. 736 * Backspace and the bell are regrettably special because 737 * they fail the first two tests -- and yet they are entirely 738 * printable. These are the only two control characters that 739 * have meaning for the terminal and for which isprint(3C) and 740 * isspace(3C) return 0. 741 */ 742 if (isprint(c[i]) || isspace(c[i]) || 743 c[i] == '\b' || c[i] == '\a') 744 continue; 745 746 if (c[i] == '\0' && i > 0) { 747 /* 748 * This looks like it might be a string. Before we 749 * assume that it is indeed a string, check the 750 * remainder of the byte range; if it contains 751 * additional non-nul characters, we'll assume that 752 * it's a binary stream that just happens to look like 753 * a string, and we'll print out the individual bytes. 754 */ 755 for (j = i + 1; j < nbytes; j++) { 756 if (c[j] != '\0') 757 break; 758 } 759 760 if (j != nbytes) 761 break; 762 763 if (quiet) 764 return (dt_printf(dtp, fp, "%s", c)); 765 else 766 return (dt_printf(dtp, fp, " %-*s", width, c)); 767 } 768 769 break; 770 } 771 772 if (i == nbytes) { 773 /* 774 * The byte range is all printable characters, but there is 775 * no trailing nul byte. We'll assume that it's a string and 776 * print it as such. 777 */ 778 char *s = alloca(nbytes + 1); 779 bcopy(c, s, nbytes); 780 s[nbytes] = '\0'; 781 return (dt_printf(dtp, fp, " %-*s", width, s)); 782 } 783 784 raw: 785 if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0) 786 return (-1); 787 788 for (i = 0; i < 16; i++) 789 if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0) 790 return (-1); 791 792 if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0) 793 return (-1); 794 795 796 for (i = 0; i < nbytes; i += 16) { 797 if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0) 798 return (-1); 799 800 for (j = i; j < i + 16 && j < nbytes; j++) { 801 if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0) 802 return (-1); 803 } 804 805 while (j++ % 16) { 806 if (dt_printf(dtp, fp, " ") < 0) 807 return (-1); 808 } 809 810 if (dt_printf(dtp, fp, " ") < 0) 811 return (-1); 812 813 for (j = i; j < i + 16 && j < nbytes; j++) { 814 if (dt_printf(dtp, fp, "%c", 815 c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0) 816 return (-1); 817 } 818 819 if (dt_printf(dtp, fp, "\n") < 0) 820 return (-1); 821 } 822 823 return (0); 824 } 825 826 int 827 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format, 828 caddr_t addr, int depth, int size) 829 { 830 dtrace_syminfo_t dts; 831 GElf_Sym sym; 832 int i, indent; 833 char c[PATH_MAX * 2]; 834 uint64_t pc; 835 836 if (dt_printf(dtp, fp, "\n") < 0) 837 return (-1); 838 839 if (format == NULL) 840 format = "%s"; 841 842 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) 843 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; 844 else 845 indent = _dtrace_stkindent; 846 847 for (i = 0; i < depth; i++) { 848 switch (size) { 849 case sizeof (uint32_t): 850 /* LINTED - alignment */ 851 pc = *((uint32_t *)addr); 852 break; 853 854 case sizeof (uint64_t): 855 /* LINTED - alignment */ 856 pc = *((uint64_t *)addr); 857 break; 858 859 default: 860 return (dt_set_errno(dtp, EDT_BADSTACKPC)); 861 } 862 863 if (pc == 0) 864 break; 865 866 addr += size; 867 868 if (dt_printf(dtp, fp, "%*s", indent, "") < 0) 869 return (-1); 870 871 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { 872 if (pc > sym.st_value) { 873 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx", 874 dts.dts_object, dts.dts_name, 875 pc - sym.st_value); 876 } else { 877 (void) snprintf(c, sizeof (c), "%s`%s", 878 dts.dts_object, dts.dts_name); 879 } 880 } else { 881 /* 882 * We'll repeat the lookup, but this time we'll specify 883 * a NULL GElf_Sym -- indicating that we're only 884 * interested in the containing module. 885 */ 886 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 887 (void) snprintf(c, sizeof (c), "%s`0x%llx", 888 dts.dts_object, pc); 889 } else { 890 (void) snprintf(c, sizeof (c), "0x%llx", pc); 891 } 892 } 893 894 if (dt_printf(dtp, fp, format, c) < 0) 895 return (-1); 896 897 if (dt_printf(dtp, fp, "\n") < 0) 898 return (-1); 899 } 900 901 return (0); 902 } 903 904 int 905 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format, 906 caddr_t addr, uint64_t arg) 907 { 908 #if 0 /* XXX TBD needs libproc */ 909 /* LINTED - alignment */ 910 uint64_t *pc = (uint64_t *)addr; 911 uint32_t depth = DTRACE_USTACK_NFRAMES(arg); 912 uint32_t strsize = DTRACE_USTACK_STRSIZE(arg); 913 const char *strbase = addr + (depth + 1) * sizeof (uint64_t); 914 const char *str = strsize ? strbase : NULL; 915 int err = 0; 916 917 char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2]; 918 struct ps_prochandle *P; 919 GElf_Sym sym; 920 int i, indent; 921 pid_t pid; 922 923 if (depth == 0) 924 return (0); 925 926 pid = (pid_t)*pc++; 927 928 if (dt_printf(dtp, fp, "\n") < 0) 929 return (-1); 930 931 if (format == NULL) 932 format = "%s"; 933 934 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) 935 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; 936 else 937 indent = _dtrace_stkindent; 938 939 /* 940 * Ultimately, we need to add an entry point in the library vector for 941 * determining <symbol, offset> from <pid, address>. For now, if 942 * this is a vector open, we just print the raw address or string. 943 */ 944 if (dtp->dt_vector == NULL) 945 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 946 else 947 P = NULL; 948 949 if (P != NULL) 950 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ 951 952 for (i = 0; i < depth && pc[i] != 0; i++) { 953 const prmap_t *map; 954 955 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) 956 break; 957 958 #if defined(sun) 959 if (P != NULL && Plookup_by_addr(P, pc[i], 960 #else 961 if (P != NULL && proc_addr2sym(P, pc[i], 962 #endif 963 name, sizeof (name), &sym) == 0) { 964 #if defined(sun) 965 (void) Pobjname(P, pc[i], objname, sizeof (objname)); 966 #else 967 (void) proc_objname(P, pc[i], objname, sizeof (objname)); 968 #endif 969 970 if (pc[i] > sym.st_value) { 971 (void) snprintf(c, sizeof (c), 972 "%s`%s+0x%llx", dt_basename(objname), name, 973 (u_longlong_t)(pc[i] - sym.st_value)); 974 } else { 975 (void) snprintf(c, sizeof (c), 976 "%s`%s", dt_basename(objname), name); 977 } 978 } else if (str != NULL && str[0] != '\0' && str[0] != '@' && 979 #if defined(sun) 980 (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL || 981 (map->pr_mflags & MA_WRITE)))) { 982 #else 983 (P != NULL && ((map = proc_addr2map(P, pc[i])) == NULL))) { 984 #endif 985 /* 986 * If the current string pointer in the string table 987 * does not point to an empty string _and_ the program 988 * counter falls in a writable region, we'll use the 989 * string from the string table instead of the raw 990 * address. This last condition is necessary because 991 * some (broken) ustack helpers will return a string 992 * even for a program counter that they can't 993 * identify. If we have a string for a program 994 * counter that falls in a segment that isn't 995 * writable, we assume that we have fallen into this 996 * case and we refuse to use the string. 997 */ 998 (void) snprintf(c, sizeof (c), "%s", str); 999 } else { 1000 #if defined(sun) 1001 if (P != NULL && Pobjname(P, pc[i], objname, 1002 #else 1003 if (P != NULL && proc_objname(P, pc[i], objname, 1004 #endif 1005 sizeof (objname)) != 0) { 1006 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1007 dt_basename(objname), (u_longlong_t)pc[i]); 1008 } else { 1009 (void) snprintf(c, sizeof (c), "0x%llx", 1010 (u_longlong_t)pc[i]); 1011 } 1012 } 1013 1014 if ((err = dt_printf(dtp, fp, format, c)) < 0) 1015 break; 1016 1017 if ((err = dt_printf(dtp, fp, "\n")) < 0) 1018 break; 1019 1020 if (str != NULL && str[0] == '@') { 1021 /* 1022 * If the first character of the string is an "at" sign, 1023 * then the string is inferred to be an annotation -- 1024 * and it is printed out beneath the frame and offset 1025 * with brackets. 1026 */ 1027 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) 1028 break; 1029 1030 (void) snprintf(c, sizeof (c), " [ %s ]", &str[1]); 1031 1032 if ((err = dt_printf(dtp, fp, format, c)) < 0) 1033 break; 1034 1035 if ((err = dt_printf(dtp, fp, "\n")) < 0) 1036 break; 1037 } 1038 1039 if (str != NULL) { 1040 str += strlen(str) + 1; 1041 if (str - strbase >= strsize) 1042 str = NULL; 1043 } 1044 } 1045 1046 if (P != NULL) { 1047 dt_proc_unlock(dtp, P); 1048 dt_proc_release(dtp, P); 1049 } 1050 1051 return (err); 1052 #else 1053 printf("XXX %s not implemented\n", __func__); 1054 return ENODEV; 1055 #endif 1056 } 1057 1058 static int 1059 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act) 1060 { 1061 #if 0 /* XXX TBD needs libproc */ 1062 /* LINTED - alignment */ 1063 uint64_t pid = ((uint64_t *)addr)[0]; 1064 /* LINTED - alignment */ 1065 uint64_t pc = ((uint64_t *)addr)[1]; 1066 const char *format = " %-50s"; 1067 char *s; 1068 int n, len = 256; 1069 1070 if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) { 1071 struct ps_prochandle *P; 1072 1073 if ((P = dt_proc_grab(dtp, pid, 1074 PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) { 1075 GElf_Sym sym; 1076 1077 dt_proc_lock(dtp, P); 1078 1079 #if defined(sun) 1080 if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0) 1081 #else 1082 if (proc_addr2sym(P, pc, NULL, 0, &sym) == 0) 1083 #endif 1084 pc = sym.st_value; 1085 1086 dt_proc_unlock(dtp, P); 1087 dt_proc_release(dtp, P); 1088 } 1089 } 1090 1091 do { 1092 n = len; 1093 s = alloca(n); 1094 } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) >= n); 1095 1096 return (dt_printf(dtp, fp, format, s)); 1097 #else 1098 printf("XXX %s not implemented\n", __func__); 1099 return ENODEV; 1100 #endif 1101 } 1102 1103 int 1104 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1105 { 1106 #if 0 /* XXX TBD needs libproc */ 1107 /* LINTED - alignment */ 1108 uint64_t pid = ((uint64_t *)addr)[0]; 1109 /* LINTED - alignment */ 1110 uint64_t pc = ((uint64_t *)addr)[1]; 1111 int err = 0; 1112 1113 char objname[PATH_MAX], c[PATH_MAX * 2]; 1114 struct ps_prochandle *P; 1115 1116 if (format == NULL) 1117 format = " %-50s"; 1118 1119 /* 1120 * See the comment in dt_print_ustack() for the rationale for 1121 * printing raw addresses in the vectored case. 1122 */ 1123 if (dtp->dt_vector == NULL) 1124 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 1125 else 1126 P = NULL; 1127 1128 if (P != NULL) 1129 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ 1130 1131 #if defined(sun) 1132 if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) { 1133 #else 1134 if (P != NULL && proc_objname(P, pc, objname, sizeof (objname)) != 0) { 1135 #endif 1136 (void) snprintf(c, sizeof (c), "%s", dt_basename(objname)); 1137 } else { 1138 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); 1139 } 1140 1141 err = dt_printf(dtp, fp, format, c); 1142 1143 if (P != NULL) { 1144 dt_proc_unlock(dtp, P); 1145 dt_proc_release(dtp, P); 1146 } 1147 1148 return (err); 1149 #else 1150 printf("XXX %s not implemented\n", __func__); 1151 return -1; 1152 #endif 1153 } 1154 1155 int 1156 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr) 1157 { 1158 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET); 1159 size_t nbytes = *((uintptr_t *) addr); 1160 1161 return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t), 1162 nbytes, 50, quiet, 1)); 1163 } 1164 1165 typedef struct dt_type_cbdata { 1166 dtrace_hdl_t *dtp; 1167 dtrace_typeinfo_t dtt; 1168 caddr_t addr; 1169 caddr_t addrend; 1170 const char *name; 1171 int f_type; 1172 int indent; 1173 int type_width; 1174 int name_width; 1175 FILE *fp; 1176 } dt_type_cbdata_t; 1177 1178 static int dt_print_type_data(dt_type_cbdata_t *, ctf_id_t); 1179 1180 static int 1181 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg) 1182 { 1183 dt_type_cbdata_t cbdata; 1184 dt_type_cbdata_t *cbdatap = arg; 1185 ssize_t ssz; 1186 1187 if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0) 1188 return (0); 1189 1190 off /= 8; 1191 1192 cbdata = *cbdatap; 1193 cbdata.name = name; 1194 cbdata.addr += off; 1195 cbdata.addrend = cbdata.addr + ssz; 1196 1197 return (dt_print_type_data(&cbdata, type)); 1198 } 1199 1200 static int 1201 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg) 1202 { 1203 char buf[DT_TYPE_NAMELEN]; 1204 char *p; 1205 dt_type_cbdata_t *cbdatap = arg; 1206 size_t sz = strlen(name); 1207 1208 ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf)); 1209 1210 if ((p = strchr(buf, '[')) != NULL) 1211 p[-1] = '\0'; 1212 else 1213 p = ""; 1214 1215 sz += strlen(p); 1216 1217 if (sz > cbdatap->name_width) 1218 cbdatap->name_width = sz; 1219 1220 sz = strlen(buf); 1221 1222 if (sz > cbdatap->type_width) 1223 cbdatap->type_width = sz; 1224 1225 return (0); 1226 } 1227 1228 static int 1229 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type) 1230 { 1231 caddr_t addr = cbdatap->addr; 1232 caddr_t addrend = cbdatap->addrend; 1233 char buf[DT_TYPE_NAMELEN]; 1234 char *p; 1235 int cnt = 0; 1236 uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type); 1237 ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type); 1238 1239 ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf)); 1240 1241 if ((p = strchr(buf, '[')) != NULL) 1242 p[-1] = '\0'; 1243 else 1244 p = ""; 1245 1246 if (cbdatap->f_type) { 1247 int type_width = roundup(cbdatap->type_width + 1, 4); 1248 int name_width = roundup(cbdatap->name_width + 1, 4); 1249 1250 name_width -= strlen(cbdatap->name); 1251 1252 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s = ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p); 1253 } 1254 1255 while (addr < addrend) { 1256 dt_type_cbdata_t cbdata; 1257 ctf_arinfo_t arinfo; 1258 ctf_encoding_t cte; 1259 uintptr_t *up; 1260 void *vp = addr; 1261 cbdata = *cbdatap; 1262 cbdata.name = ""; 1263 cbdata.addr = addr; 1264 cbdata.addrend = addr + ssz; 1265 cbdata.f_type = 0; 1266 cbdata.indent++; 1267 cbdata.type_width = 0; 1268 cbdata.name_width = 0; 1269 1270 if (cnt > 0) 1271 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,""); 1272 1273 switch (kind) { 1274 case CTF_K_INTEGER: 1275 if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0) 1276 return (-1); 1277 if ((cte.cte_format & CTF_INT_SIGNED) != 0) 1278 switch (cte.cte_bits) { 1279 case 8: 1280 if (isprint(*((char *) vp))) 1281 dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp)); 1282 dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp)); 1283 break; 1284 case 16: 1285 dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp)); 1286 break; 1287 case 32: 1288 dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp)); 1289 break; 1290 case 64: 1291 dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp)); 1292 break; 1293 default: 1294 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits); 1295 break; 1296 } 1297 else 1298 switch (cte.cte_bits) { 1299 case 8: 1300 dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff); 1301 break; 1302 case 16: 1303 dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp)); 1304 break; 1305 case 32: 1306 dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp)); 1307 break; 1308 case 64: 1309 dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp)); 1310 break; 1311 default: 1312 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits); 1313 break; 1314 } 1315 break; 1316 case CTF_K_FLOAT: 1317 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits); 1318 break; 1319 case CTF_K_POINTER: 1320 dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr)); 1321 break; 1322 case CTF_K_ARRAY: 1323 if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0) 1324 return (-1); 1325 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,""); 1326 dt_print_type_data(&cbdata, arinfo.ctr_contents); 1327 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,""); 1328 break; 1329 case CTF_K_FUNCTION: 1330 dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n"); 1331 break; 1332 case CTF_K_STRUCT: 1333 cbdata.f_type = 1; 1334 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type, 1335 dt_print_type_width, &cbdata) != 0) 1336 return (-1); 1337 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n"); 1338 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type, 1339 dt_print_type_member, &cbdata) != 0) 1340 return (-1); 1341 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,""); 1342 break; 1343 case CTF_K_UNION: 1344 cbdata.f_type = 1; 1345 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type, 1346 dt_print_type_width, &cbdata) != 0) 1347 return (-1); 1348 dt_printf(cbdatap->dtp, cbdatap->fp, "{\n"); 1349 if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type, 1350 dt_print_type_member, &cbdata) != 0) 1351 return (-1); 1352 dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,""); 1353 break; 1354 case CTF_K_ENUM: 1355 dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp))); 1356 break; 1357 case CTF_K_TYPEDEF: 1358 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type)); 1359 break; 1360 case CTF_K_VOLATILE: 1361 if (cbdatap->f_type) 1362 dt_printf(cbdatap->dtp, cbdatap->fp, "volatile "); 1363 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type)); 1364 break; 1365 case CTF_K_CONST: 1366 if (cbdatap->f_type) 1367 dt_printf(cbdatap->dtp, cbdatap->fp, "const "); 1368 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type)); 1369 break; 1370 case CTF_K_RESTRICT: 1371 if (cbdatap->f_type) 1372 dt_printf(cbdatap->dtp, cbdatap->fp, "restrict "); 1373 dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type)); 1374 break; 1375 default: 1376 break; 1377 } 1378 1379 addr += ssz; 1380 cnt++; 1381 } 1382 1383 return (0); 1384 } 1385 1386 static int 1387 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr) 1388 { 1389 caddr_t addrend; 1390 char *p; 1391 dtrace_typeinfo_t dtt; 1392 dt_type_cbdata_t cbdata; 1393 int num = 0; 1394 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET); 1395 ssize_t ssz; 1396 1397 if (!quiet) 1398 dt_printf(dtp, fp, "\n"); 1399 1400 /* Get the total number of bytes of data buffered. */ 1401 size_t nbytes = *((uintptr_t *) addr); 1402 addr += sizeof(uintptr_t); 1403 1404 /* 1405 * Get the size of the type so that we can check that it matches 1406 * the CTF data we look up and so that we can figure out how many 1407 * type elements are buffered. 1408 */ 1409 size_t typs = *((uintptr_t *) addr); 1410 addr += sizeof(uintptr_t); 1411 1412 /* 1413 * Point to the type string in the buffer. Get it's string 1414 * length and round it up to become the offset to the start 1415 * of the buffered type data which we would like to be aligned 1416 * for easy access. 1417 */ 1418 char *strp = (char *) addr; 1419 int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t)); 1420 1421 /* 1422 * The type string might have a format such as 'int [20]'. 1423 * Check if there is an array dimension present. 1424 */ 1425 if ((p = strchr(strp, '[')) != NULL) { 1426 /* Strip off the array dimension. */ 1427 *p++ = '\0'; 1428 1429 for (; *p != '\0' && *p != ']'; p++) 1430 num = num * 10 + *p - '0'; 1431 } else 1432 /* No array dimension, so default. */ 1433 num = 1; 1434 1435 /* Lookup the CTF type from the type string. */ 1436 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY, strp, &dtt) < 0) 1437 return (-1); 1438 1439 /* Offset the buffer address to the start of the data... */ 1440 addr += offset; 1441 1442 ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type); 1443 1444 if (typs != ssz) { 1445 printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz); 1446 return (-1); 1447 } 1448 1449 cbdata.dtp = dtp; 1450 cbdata.dtt = dtt; 1451 cbdata.name = ""; 1452 cbdata.addr = addr; 1453 cbdata.addrend = addr + nbytes; 1454 cbdata.indent = 1; 1455 cbdata.f_type = 1; 1456 cbdata.type_width = 0; 1457 cbdata.name_width = 0; 1458 cbdata.fp = fp; 1459 1460 return (dt_print_type_data(&cbdata, dtt.dtt_type)); 1461 } 1462 1463 static int 1464 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1465 { 1466 /* LINTED - alignment */ 1467 uint64_t pc = *((uint64_t *)addr); 1468 dtrace_syminfo_t dts; 1469 GElf_Sym sym; 1470 char c[PATH_MAX * 2]; 1471 1472 if (format == NULL) 1473 format = " %-50s"; 1474 1475 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { 1476 (void) snprintf(c, sizeof (c), "%s`%s", 1477 dts.dts_object, dts.dts_name); 1478 } else { 1479 /* 1480 * We'll repeat the lookup, but this time we'll specify a 1481 * NULL GElf_Sym -- indicating that we're only interested in 1482 * the containing module. 1483 */ 1484 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1485 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1486 dts.dts_object, (u_longlong_t)pc); 1487 } else { 1488 (void) snprintf(c, sizeof (c), "0x%llx", 1489 (u_longlong_t)pc); 1490 } 1491 } 1492 1493 if (dt_printf(dtp, fp, format, c) < 0) 1494 return (-1); 1495 1496 return (0); 1497 } 1498 1499 int 1500 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1501 { 1502 /* LINTED - alignment */ 1503 uint64_t pc = *((uint64_t *)addr); 1504 dtrace_syminfo_t dts; 1505 char c[PATH_MAX * 2]; 1506 1507 if (format == NULL) 1508 format = " %-50s"; 1509 1510 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1511 (void) snprintf(c, sizeof (c), "%s", dts.dts_object); 1512 } else { 1513 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); 1514 } 1515 1516 if (dt_printf(dtp, fp, format, c) < 0) 1517 return (-1); 1518 1519 return (0); 1520 } 1521 1522 typedef struct dt_normal { 1523 dtrace_aggvarid_t dtnd_id; 1524 uint64_t dtnd_normal; 1525 } dt_normal_t; 1526 1527 static int 1528 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg) 1529 { 1530 dt_normal_t *normal = arg; 1531 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1532 dtrace_aggvarid_t id = normal->dtnd_id; 1533 1534 if (agg->dtagd_nrecs == 0) 1535 return (DTRACE_AGGWALK_NEXT); 1536 1537 if (agg->dtagd_varid != id) 1538 return (DTRACE_AGGWALK_NEXT); 1539 1540 ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal; 1541 return (DTRACE_AGGWALK_NORMALIZE); 1542 } 1543 1544 static int 1545 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) 1546 { 1547 dt_normal_t normal; 1548 caddr_t addr; 1549 1550 /* 1551 * We (should) have two records: the aggregation ID followed by the 1552 * normalization value. 1553 */ 1554 addr = base + rec->dtrd_offset; 1555 1556 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) 1557 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1558 1559 /* LINTED - alignment */ 1560 normal.dtnd_id = *((dtrace_aggvarid_t *)addr); 1561 rec++; 1562 1563 if (rec->dtrd_action != DTRACEACT_LIBACT) 1564 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1565 1566 if (rec->dtrd_arg != DT_ACT_NORMALIZE) 1567 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1568 1569 addr = base + rec->dtrd_offset; 1570 1571 switch (rec->dtrd_size) { 1572 case sizeof (uint64_t): 1573 /* LINTED - alignment */ 1574 normal.dtnd_normal = *((uint64_t *)addr); 1575 break; 1576 case sizeof (uint32_t): 1577 /* LINTED - alignment */ 1578 normal.dtnd_normal = *((uint32_t *)addr); 1579 break; 1580 case sizeof (uint16_t): 1581 /* LINTED - alignment */ 1582 normal.dtnd_normal = *((uint16_t *)addr); 1583 break; 1584 case sizeof (uint8_t): 1585 normal.dtnd_normal = *((uint8_t *)addr); 1586 break; 1587 default: 1588 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1589 } 1590 1591 (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal); 1592 1593 return (0); 1594 } 1595 1596 static int 1597 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg) 1598 { 1599 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1600 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); 1601 1602 if (agg->dtagd_nrecs == 0) 1603 return (DTRACE_AGGWALK_NEXT); 1604 1605 if (agg->dtagd_varid != id) 1606 return (DTRACE_AGGWALK_NEXT); 1607 1608 return (DTRACE_AGGWALK_DENORMALIZE); 1609 } 1610 1611 static int 1612 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg) 1613 { 1614 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1615 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); 1616 1617 if (agg->dtagd_nrecs == 0) 1618 return (DTRACE_AGGWALK_NEXT); 1619 1620 if (agg->dtagd_varid != id) 1621 return (DTRACE_AGGWALK_NEXT); 1622 1623 return (DTRACE_AGGWALK_CLEAR); 1624 } 1625 1626 typedef struct dt_trunc { 1627 dtrace_aggvarid_t dttd_id; 1628 uint64_t dttd_remaining; 1629 } dt_trunc_t; 1630 1631 static int 1632 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg) 1633 { 1634 dt_trunc_t *trunc = arg; 1635 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1636 dtrace_aggvarid_t id = trunc->dttd_id; 1637 1638 if (agg->dtagd_nrecs == 0) 1639 return (DTRACE_AGGWALK_NEXT); 1640 1641 if (agg->dtagd_varid != id) 1642 return (DTRACE_AGGWALK_NEXT); 1643 1644 if (trunc->dttd_remaining == 0) 1645 return (DTRACE_AGGWALK_REMOVE); 1646 1647 trunc->dttd_remaining--; 1648 return (DTRACE_AGGWALK_NEXT); 1649 } 1650 1651 static int 1652 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) 1653 { 1654 dt_trunc_t trunc; 1655 caddr_t addr; 1656 int64_t remaining; 1657 int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *); 1658 1659 /* 1660 * We (should) have two records: the aggregation ID followed by the 1661 * number of aggregation entries after which the aggregation is to be 1662 * truncated. 1663 */ 1664 addr = base + rec->dtrd_offset; 1665 1666 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) 1667 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1668 1669 /* LINTED - alignment */ 1670 trunc.dttd_id = *((dtrace_aggvarid_t *)addr); 1671 rec++; 1672 1673 if (rec->dtrd_action != DTRACEACT_LIBACT) 1674 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1675 1676 if (rec->dtrd_arg != DT_ACT_TRUNC) 1677 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1678 1679 addr = base + rec->dtrd_offset; 1680 1681 switch (rec->dtrd_size) { 1682 case sizeof (uint64_t): 1683 /* LINTED - alignment */ 1684 remaining = *((int64_t *)addr); 1685 break; 1686 case sizeof (uint32_t): 1687 /* LINTED - alignment */ 1688 remaining = *((int32_t *)addr); 1689 break; 1690 case sizeof (uint16_t): 1691 /* LINTED - alignment */ 1692 remaining = *((int16_t *)addr); 1693 break; 1694 case sizeof (uint8_t): 1695 remaining = *((int8_t *)addr); 1696 break; 1697 default: 1698 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1699 } 1700 1701 if (remaining < 0) { 1702 func = dtrace_aggregate_walk_valsorted; 1703 remaining = -remaining; 1704 } else { 1705 func = dtrace_aggregate_walk_valrevsorted; 1706 } 1707 1708 assert(remaining >= 0); 1709 trunc.dttd_remaining = remaining; 1710 1711 (void) func(dtp, dt_trunc_agg, &trunc); 1712 1713 return (0); 1714 } 1715 1716 static int 1717 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec, 1718 caddr_t addr, size_t size, uint64_t normal) 1719 { 1720 int err; 1721 dtrace_actkind_t act = rec->dtrd_action; 1722 1723 switch (act) { 1724 case DTRACEACT_STACK: 1725 return (dt_print_stack(dtp, fp, NULL, addr, 1726 rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg)); 1727 1728 case DTRACEACT_USTACK: 1729 case DTRACEACT_JSTACK: 1730 return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg)); 1731 1732 case DTRACEACT_USYM: 1733 case DTRACEACT_UADDR: 1734 return (dt_print_usym(dtp, fp, addr, act)); 1735 1736 case DTRACEACT_UMOD: 1737 return (dt_print_umod(dtp, fp, NULL, addr)); 1738 1739 case DTRACEACT_SYM: 1740 return (dt_print_sym(dtp, fp, NULL, addr)); 1741 1742 case DTRACEACT_MOD: 1743 return (dt_print_mod(dtp, fp, NULL, addr)); 1744 1745 case DTRACEAGG_QUANTIZE: 1746 return (dt_print_quantize(dtp, fp, addr, size, normal)); 1747 1748 case DTRACEAGG_LQUANTIZE: 1749 return (dt_print_lquantize(dtp, fp, addr, size, normal)); 1750 1751 case DTRACEAGG_AVG: 1752 return (dt_print_average(dtp, fp, addr, size, normal)); 1753 1754 case DTRACEAGG_STDDEV: 1755 return (dt_print_stddev(dtp, fp, addr, size, normal)); 1756 1757 default: 1758 break; 1759 } 1760 1761 switch (size) { 1762 case sizeof (uint64_t): 1763 err = dt_printf(dtp, fp, " %16lld", 1764 /* LINTED - alignment */ 1765 (long long)*((uint64_t *)addr) / normal); 1766 break; 1767 case sizeof (uint32_t): 1768 /* LINTED - alignment */ 1769 err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) / 1770 (uint32_t)normal); 1771 break; 1772 case sizeof (uint16_t): 1773 /* LINTED - alignment */ 1774 err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) / 1775 (uint32_t)normal); 1776 break; 1777 case sizeof (uint8_t): 1778 err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) / 1779 (uint32_t)normal); 1780 break; 1781 default: 1782 err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0); 1783 break; 1784 } 1785 1786 return (err); 1787 } 1788 1789 int 1790 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg) 1791 { 1792 int i, aggact = 0; 1793 dt_print_aggdata_t *pd = arg; 1794 const dtrace_aggdata_t *aggdata = aggsdata[0]; 1795 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1796 FILE *fp = pd->dtpa_fp; 1797 dtrace_hdl_t *dtp = pd->dtpa_dtp; 1798 dtrace_recdesc_t *rec; 1799 dtrace_actkind_t act; 1800 caddr_t addr; 1801 size_t size; 1802 1803 /* 1804 * Iterate over each record description in the key, printing the traced 1805 * data, skipping the first datum (the tuple member created by the 1806 * compiler). 1807 */ 1808 for (i = 1; i < agg->dtagd_nrecs; i++) { 1809 rec = &agg->dtagd_rec[i]; 1810 act = rec->dtrd_action; 1811 addr = aggdata->dtada_data + rec->dtrd_offset; 1812 size = rec->dtrd_size; 1813 1814 if (DTRACEACT_ISAGG(act)) { 1815 aggact = i; 1816 break; 1817 } 1818 1819 if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0) 1820 return (-1); 1821 1822 if (dt_buffered_flush(dtp, NULL, rec, aggdata, 1823 DTRACE_BUFDATA_AGGKEY) < 0) 1824 return (-1); 1825 } 1826 1827 assert(aggact != 0); 1828 1829 for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) { 1830 uint64_t normal; 1831 1832 aggdata = aggsdata[i]; 1833 agg = aggdata->dtada_desc; 1834 rec = &agg->dtagd_rec[aggact]; 1835 act = rec->dtrd_action; 1836 addr = aggdata->dtada_data + rec->dtrd_offset; 1837 size = rec->dtrd_size; 1838 1839 assert(DTRACEACT_ISAGG(act)); 1840 normal = aggdata->dtada_normal; 1841 1842 if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0) 1843 return (-1); 1844 1845 if (dt_buffered_flush(dtp, NULL, rec, aggdata, 1846 DTRACE_BUFDATA_AGGVAL) < 0) 1847 return (-1); 1848 1849 if (!pd->dtpa_allunprint) 1850 agg->dtagd_flags |= DTRACE_AGD_PRINTED; 1851 } 1852 1853 if (dt_printf(dtp, fp, "\n") < 0) 1854 return (-1); 1855 1856 if (dt_buffered_flush(dtp, NULL, NULL, aggdata, 1857 DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0) 1858 return (-1); 1859 1860 return (0); 1861 } 1862 1863 int 1864 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg) 1865 { 1866 dt_print_aggdata_t *pd = arg; 1867 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1868 dtrace_aggvarid_t aggvarid = pd->dtpa_id; 1869 1870 if (pd->dtpa_allunprint) { 1871 if (agg->dtagd_flags & DTRACE_AGD_PRINTED) 1872 return (0); 1873 } else { 1874 /* 1875 * If we're not printing all unprinted aggregations, then the 1876 * aggregation variable ID denotes a specific aggregation 1877 * variable that we should print -- skip any other aggregations 1878 * that we encounter. 1879 */ 1880 if (agg->dtagd_nrecs == 0) 1881 return (0); 1882 1883 if (aggvarid != agg->dtagd_varid) 1884 return (0); 1885 } 1886 1887 return (dt_print_aggs(&aggdata, 1, arg)); 1888 } 1889 1890 int 1891 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data, 1892 const char *option, const char *value) 1893 { 1894 int len, rval; 1895 char *msg; 1896 const char *errstr; 1897 dtrace_setoptdata_t optdata; 1898 1899 bzero(&optdata, sizeof (optdata)); 1900 (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval); 1901 1902 if (dtrace_setopt(dtp, option, value) == 0) { 1903 (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval); 1904 optdata.dtsda_probe = data; 1905 optdata.dtsda_option = option; 1906 optdata.dtsda_handle = dtp; 1907 1908 if ((rval = dt_handle_setopt(dtp, &optdata)) != 0) 1909 return (rval); 1910 1911 return (0); 1912 } 1913 1914 errstr = dtrace_errmsg(dtp, dtrace_errno(dtp)); 1915 len = strlen(option) + strlen(value) + strlen(errstr) + 80; 1916 msg = alloca(len); 1917 1918 (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n", 1919 option, value, errstr); 1920 1921 if ((rval = dt_handle_liberr(dtp, data, msg)) == 0) 1922 return (0); 1923 1924 return (rval); 1925 } 1926 1927 static int 1928 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf, 1929 dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg) 1930 { 1931 dtrace_epid_t id; 1932 size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size; 1933 int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET); 1934 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET); 1935 int rval, i, n; 1936 dtrace_epid_t last = DTRACE_EPIDNONE; 1937 dtrace_probedata_t data; 1938 uint64_t drops; 1939 caddr_t addr; 1940 1941 bzero(&data, sizeof (data)); 1942 data.dtpda_handle = dtp; 1943 data.dtpda_cpu = cpu; 1944 1945 again: 1946 for (offs = start; offs < end; ) { 1947 dtrace_eprobedesc_t *epd; 1948 1949 /* 1950 * We're guaranteed to have an ID. 1951 */ 1952 id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); 1953 1954 if (id == DTRACE_EPIDNONE) { 1955 /* 1956 * This is filler to assure proper alignment of the 1957 * next record; we simply ignore it. 1958 */ 1959 offs += sizeof (id); 1960 continue; 1961 } 1962 1963 if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc, 1964 &data.dtpda_pdesc)) != 0) 1965 return (rval); 1966 1967 epd = data.dtpda_edesc; 1968 data.dtpda_data = buf->dtbd_data + offs; 1969 1970 if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) { 1971 rval = dt_handle(dtp, &data); 1972 1973 if (rval == DTRACE_CONSUME_NEXT) 1974 goto nextepid; 1975 1976 if (rval == DTRACE_CONSUME_ERROR) 1977 return (-1); 1978 } 1979 1980 if (flow) 1981 (void) dt_flowindent(dtp, &data, last, buf, offs); 1982 1983 rval = (*efunc)(&data, arg); 1984 1985 if (flow) { 1986 if (data.dtpda_flow == DTRACEFLOW_ENTRY) 1987 data.dtpda_indent += 2; 1988 } 1989 1990 if (rval == DTRACE_CONSUME_NEXT) 1991 goto nextepid; 1992 1993 if (rval == DTRACE_CONSUME_ABORT) 1994 return (dt_set_errno(dtp, EDT_DIRABORT)); 1995 1996 if (rval != DTRACE_CONSUME_THIS) 1997 return (dt_set_errno(dtp, EDT_BADRVAL)); 1998 1999 for (i = 0; i < epd->dtepd_nrecs; i++) { 2000 dtrace_recdesc_t *rec = &epd->dtepd_rec[i]; 2001 dtrace_actkind_t act = rec->dtrd_action; 2002 2003 data.dtpda_data = buf->dtbd_data + offs + 2004 rec->dtrd_offset; 2005 addr = data.dtpda_data; 2006 2007 if (act == DTRACEACT_LIBACT) { 2008 uint64_t arg = rec->dtrd_arg; 2009 dtrace_aggvarid_t id; 2010 2011 switch (arg) { 2012 case DT_ACT_CLEAR: 2013 /* LINTED - alignment */ 2014 id = *((dtrace_aggvarid_t *)addr); 2015 (void) dtrace_aggregate_walk(dtp, 2016 dt_clear_agg, &id); 2017 continue; 2018 2019 case DT_ACT_DENORMALIZE: 2020 /* LINTED - alignment */ 2021 id = *((dtrace_aggvarid_t *)addr); 2022 (void) dtrace_aggregate_walk(dtp, 2023 dt_denormalize_agg, &id); 2024 continue; 2025 2026 case DT_ACT_FTRUNCATE: 2027 if (fp == NULL) 2028 continue; 2029 2030 (void) fflush(fp); 2031 (void) ftruncate(fileno(fp), 0); 2032 (void) fseeko(fp, 0, SEEK_SET); 2033 continue; 2034 2035 case DT_ACT_NORMALIZE: 2036 if (i == epd->dtepd_nrecs - 1) 2037 return (dt_set_errno(dtp, 2038 EDT_BADNORMAL)); 2039 2040 if (dt_normalize(dtp, 2041 buf->dtbd_data + offs, rec) != 0) 2042 return (-1); 2043 2044 i++; 2045 continue; 2046 2047 case DT_ACT_SETOPT: { 2048 uint64_t *opts = dtp->dt_options; 2049 dtrace_recdesc_t *valrec; 2050 uint32_t valsize; 2051 caddr_t val; 2052 int rv; 2053 2054 if (i == epd->dtepd_nrecs - 1) { 2055 return (dt_set_errno(dtp, 2056 EDT_BADSETOPT)); 2057 } 2058 2059 valrec = &epd->dtepd_rec[++i]; 2060 valsize = valrec->dtrd_size; 2061 2062 if (valrec->dtrd_action != act || 2063 valrec->dtrd_arg != arg) { 2064 return (dt_set_errno(dtp, 2065 EDT_BADSETOPT)); 2066 } 2067 2068 if (valsize > sizeof (uint64_t)) { 2069 val = buf->dtbd_data + offs + 2070 valrec->dtrd_offset; 2071 } else { 2072 val = "1"; 2073 } 2074 2075 rv = dt_setopt(dtp, &data, addr, val); 2076 2077 if (rv != 0) 2078 return (-1); 2079 2080 flow = (opts[DTRACEOPT_FLOWINDENT] != 2081 DTRACEOPT_UNSET); 2082 quiet = (opts[DTRACEOPT_QUIET] != 2083 DTRACEOPT_UNSET); 2084 2085 continue; 2086 } 2087 2088 case DT_ACT_TRUNC: 2089 if (i == epd->dtepd_nrecs - 1) 2090 return (dt_set_errno(dtp, 2091 EDT_BADTRUNC)); 2092 2093 if (dt_trunc(dtp, 2094 buf->dtbd_data + offs, rec) != 0) 2095 return (-1); 2096 2097 i++; 2098 continue; 2099 2100 default: 2101 continue; 2102 } 2103 } 2104 2105 rval = (*rfunc)(&data, rec, arg); 2106 2107 if (rval == DTRACE_CONSUME_NEXT) 2108 continue; 2109 2110 if (rval == DTRACE_CONSUME_ABORT) 2111 return (dt_set_errno(dtp, EDT_DIRABORT)); 2112 2113 if (rval != DTRACE_CONSUME_THIS) 2114 return (dt_set_errno(dtp, EDT_BADRVAL)); 2115 2116 if (act == DTRACEACT_STACK) { 2117 int depth = rec->dtrd_arg; 2118 2119 if (dt_print_stack(dtp, fp, NULL, addr, depth, 2120 rec->dtrd_size / depth) < 0) 2121 return (-1); 2122 goto nextrec; 2123 } 2124 2125 if (act == DTRACEACT_USTACK || 2126 act == DTRACEACT_JSTACK) { 2127 if (dt_print_ustack(dtp, fp, NULL, 2128 addr, rec->dtrd_arg) < 0) 2129 return (-1); 2130 goto nextrec; 2131 } 2132 2133 if (act == DTRACEACT_SYM) { 2134 if (dt_print_sym(dtp, fp, NULL, addr) < 0) 2135 return (-1); 2136 goto nextrec; 2137 } 2138 2139 if (act == DTRACEACT_MOD) { 2140 if (dt_print_mod(dtp, fp, NULL, addr) < 0) 2141 return (-1); 2142 goto nextrec; 2143 } 2144 2145 if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) { 2146 if (dt_print_usym(dtp, fp, addr, act) < 0) 2147 return (-1); 2148 goto nextrec; 2149 } 2150 2151 if (act == DTRACEACT_UMOD) { 2152 if (dt_print_umod(dtp, fp, NULL, addr) < 0) 2153 return (-1); 2154 goto nextrec; 2155 } 2156 2157 if (act == DTRACEACT_PRINTM) { 2158 if (dt_print_memory(dtp, fp, addr) < 0) 2159 return (-1); 2160 goto nextrec; 2161 } 2162 2163 if (act == DTRACEACT_PRINTT) { 2164 if (dt_print_type(dtp, fp, addr) < 0) 2165 return (-1); 2166 goto nextrec; 2167 } 2168 2169 if (DTRACEACT_ISPRINTFLIKE(act)) { 2170 void *fmtdata; 2171 int (*func)(dtrace_hdl_t *, FILE *, void *, 2172 const dtrace_probedata_t *, 2173 const dtrace_recdesc_t *, uint_t, 2174 const void *buf, size_t); 2175 2176 if ((fmtdata = dt_format_lookup(dtp, 2177 rec->dtrd_format)) == NULL) 2178 goto nofmt; 2179 2180 switch (act) { 2181 case DTRACEACT_PRINTF: 2182 func = dtrace_fprintf; 2183 break; 2184 case DTRACEACT_PRINTA: 2185 func = dtrace_fprinta; 2186 break; 2187 case DTRACEACT_SYSTEM: 2188 func = dtrace_system; 2189 break; 2190 case DTRACEACT_FREOPEN: 2191 func = dtrace_freopen; 2192 break; 2193 } 2194 2195 n = (*func)(dtp, fp, fmtdata, &data, 2196 rec, epd->dtepd_nrecs - i, 2197 (uchar_t *)buf->dtbd_data + offs, 2198 buf->dtbd_size - offs); 2199 2200 if (n < 0) 2201 return (-1); /* errno is set for us */ 2202 2203 if (n > 0) 2204 i += n - 1; 2205 goto nextrec; 2206 } 2207 2208 nofmt: 2209 if (act == DTRACEACT_PRINTA) { 2210 dt_print_aggdata_t pd; 2211 dtrace_aggvarid_t *aggvars; 2212 int j, naggvars = 0; 2213 size_t size = ((epd->dtepd_nrecs - i) * 2214 sizeof (dtrace_aggvarid_t)); 2215 2216 if ((aggvars = dt_alloc(dtp, size)) == NULL) 2217 return (-1); 2218 2219 /* 2220 * This might be a printa() with multiple 2221 * aggregation variables. We need to scan 2222 * forward through the records until we find 2223 * a record from a different statement. 2224 */ 2225 for (j = i; j < epd->dtepd_nrecs; j++) { 2226 dtrace_recdesc_t *nrec; 2227 caddr_t naddr; 2228 2229 nrec = &epd->dtepd_rec[j]; 2230 2231 if (nrec->dtrd_uarg != rec->dtrd_uarg) 2232 break; 2233 2234 if (nrec->dtrd_action != act) { 2235 return (dt_set_errno(dtp, 2236 EDT_BADAGG)); 2237 } 2238 2239 naddr = buf->dtbd_data + offs + 2240 nrec->dtrd_offset; 2241 2242 aggvars[naggvars++] = 2243 /* LINTED - alignment */ 2244 *((dtrace_aggvarid_t *)naddr); 2245 } 2246 2247 i = j - 1; 2248 bzero(&pd, sizeof (pd)); 2249 pd.dtpa_dtp = dtp; 2250 pd.dtpa_fp = fp; 2251 2252 assert(naggvars >= 1); 2253 2254 if (naggvars == 1) { 2255 pd.dtpa_id = aggvars[0]; 2256 dt_free(dtp, aggvars); 2257 2258 if (dt_printf(dtp, fp, "\n") < 0 || 2259 dtrace_aggregate_walk_sorted(dtp, 2260 dt_print_agg, &pd) < 0) 2261 return (-1); 2262 goto nextrec; 2263 } 2264 2265 if (dt_printf(dtp, fp, "\n") < 0 || 2266 dtrace_aggregate_walk_joined(dtp, aggvars, 2267 naggvars, dt_print_aggs, &pd) < 0) { 2268 dt_free(dtp, aggvars); 2269 return (-1); 2270 } 2271 2272 dt_free(dtp, aggvars); 2273 goto nextrec; 2274 } 2275 2276 switch (rec->dtrd_size) { 2277 case sizeof (uint64_t): 2278 n = dt_printf(dtp, fp, 2279 quiet ? "%lld" : " %16lld", 2280 /* LINTED - alignment */ 2281 *((unsigned long long *)addr)); 2282 break; 2283 case sizeof (uint32_t): 2284 n = dt_printf(dtp, fp, quiet ? "%d" : " %8d", 2285 /* LINTED - alignment */ 2286 *((uint32_t *)addr)); 2287 break; 2288 case sizeof (uint16_t): 2289 n = dt_printf(dtp, fp, quiet ? "%d" : " %5d", 2290 /* LINTED - alignment */ 2291 *((uint16_t *)addr)); 2292 break; 2293 case sizeof (uint8_t): 2294 n = dt_printf(dtp, fp, quiet ? "%d" : " %3d", 2295 *((uint8_t *)addr)); 2296 break; 2297 default: 2298 n = dt_print_bytes(dtp, fp, addr, 2299 rec->dtrd_size, 33, quiet, 0); 2300 break; 2301 } 2302 2303 if (n < 0) 2304 return (-1); /* errno is set for us */ 2305 2306 nextrec: 2307 if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0) 2308 return (-1); /* errno is set for us */ 2309 } 2310 2311 /* 2312 * Call the record callback with a NULL record to indicate 2313 * that we're done processing this EPID. 2314 */ 2315 rval = (*rfunc)(&data, NULL, arg); 2316 nextepid: 2317 offs += epd->dtepd_size; 2318 last = id; 2319 } 2320 2321 if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) { 2322 end = buf->dtbd_oldest; 2323 start = 0; 2324 goto again; 2325 } 2326 2327 if ((drops = buf->dtbd_drops) == 0) 2328 return (0); 2329 2330 /* 2331 * Explicitly zero the drops to prevent us from processing them again. 2332 */ 2333 buf->dtbd_drops = 0; 2334 2335 return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops)); 2336 } 2337 2338 typedef struct dt_begin { 2339 dtrace_consume_probe_f *dtbgn_probefunc; 2340 dtrace_consume_rec_f *dtbgn_recfunc; 2341 void *dtbgn_arg; 2342 dtrace_handle_err_f *dtbgn_errhdlr; 2343 void *dtbgn_errarg; 2344 int dtbgn_beginonly; 2345 } dt_begin_t; 2346 2347 static int 2348 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg) 2349 { 2350 dt_begin_t *begin = (dt_begin_t *)arg; 2351 dtrace_probedesc_t *pd = data->dtpda_pdesc; 2352 2353 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); 2354 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); 2355 2356 if (begin->dtbgn_beginonly) { 2357 if (!(r1 && r2)) 2358 return (DTRACE_CONSUME_NEXT); 2359 } else { 2360 if (r1 && r2) 2361 return (DTRACE_CONSUME_NEXT); 2362 } 2363 2364 /* 2365 * We have a record that we're interested in. Now call the underlying 2366 * probe function... 2367 */ 2368 return (begin->dtbgn_probefunc(data, begin->dtbgn_arg)); 2369 } 2370 2371 static int 2372 dt_consume_begin_record(const dtrace_probedata_t *data, 2373 const dtrace_recdesc_t *rec, void *arg) 2374 { 2375 dt_begin_t *begin = (dt_begin_t *)arg; 2376 2377 return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg)); 2378 } 2379 2380 static int 2381 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg) 2382 { 2383 dt_begin_t *begin = (dt_begin_t *)arg; 2384 dtrace_probedesc_t *pd = data->dteda_pdesc; 2385 2386 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); 2387 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); 2388 2389 if (begin->dtbgn_beginonly) { 2390 if (!(r1 && r2)) 2391 return (DTRACE_HANDLE_OK); 2392 } else { 2393 if (r1 && r2) 2394 return (DTRACE_HANDLE_OK); 2395 } 2396 2397 return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg)); 2398 } 2399 2400 static int 2401 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf, 2402 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) 2403 { 2404 /* 2405 * There's this idea that the BEGIN probe should be processed before 2406 * everything else, and that the END probe should be processed after 2407 * anything else. In the common case, this is pretty easy to deal 2408 * with. However, a situation may arise where the BEGIN enabling and 2409 * END enabling are on the same CPU, and some enabling in the middle 2410 * occurred on a different CPU. To deal with this (blech!) we need to 2411 * consume the BEGIN buffer up until the end of the BEGIN probe, and 2412 * then set it aside. We will then process every other CPU, and then 2413 * we'll return to the BEGIN CPU and process the rest of the data 2414 * (which will inevitably include the END probe, if any). Making this 2415 * even more complicated (!) is the library's ERROR enabling. Because 2416 * this enabling is processed before we even get into the consume call 2417 * back, any ERROR firing would result in the library's ERROR enabling 2418 * being processed twice -- once in our first pass (for BEGIN probes), 2419 * and again in our second pass (for everything but BEGIN probes). To 2420 * deal with this, we interpose on the ERROR handler to assure that we 2421 * only process ERROR enablings induced by BEGIN enablings in the 2422 * first pass, and that we only process ERROR enablings _not_ induced 2423 * by BEGIN enablings in the second pass. 2424 */ 2425 dt_begin_t begin; 2426 processorid_t cpu = dtp->dt_beganon; 2427 dtrace_bufdesc_t nbuf; 2428 #if !defined(sun) 2429 dtrace_bufdesc_t *pbuf; 2430 #endif 2431 int rval, i; 2432 static int max_ncpus; 2433 dtrace_optval_t size; 2434 2435 dtp->dt_beganon = -1; 2436 2437 #if defined(sun) 2438 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { 2439 #else 2440 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) { 2441 #endif 2442 /* 2443 * We really don't expect this to fail, but it is at least 2444 * technically possible for this to fail with ENOENT. In this 2445 * case, we just drive on... 2446 */ 2447 if (errno == ENOENT) 2448 return (0); 2449 2450 return (dt_set_errno(dtp, errno)); 2451 } 2452 2453 if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) { 2454 /* 2455 * This is the simple case. We're either not stopped, or if 2456 * we are, we actually processed any END probes on another 2457 * CPU. We can simply consume this buffer and return. 2458 */ 2459 return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg)); 2460 } 2461 2462 begin.dtbgn_probefunc = pf; 2463 begin.dtbgn_recfunc = rf; 2464 begin.dtbgn_arg = arg; 2465 begin.dtbgn_beginonly = 1; 2466 2467 /* 2468 * We need to interpose on the ERROR handler to be sure that we 2469 * only process ERRORs induced by BEGIN. 2470 */ 2471 begin.dtbgn_errhdlr = dtp->dt_errhdlr; 2472 begin.dtbgn_errarg = dtp->dt_errarg; 2473 dtp->dt_errhdlr = dt_consume_begin_error; 2474 dtp->dt_errarg = &begin; 2475 2476 rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe, 2477 dt_consume_begin_record, &begin); 2478 2479 dtp->dt_errhdlr = begin.dtbgn_errhdlr; 2480 dtp->dt_errarg = begin.dtbgn_errarg; 2481 2482 if (rval != 0) 2483 return (rval); 2484 2485 /* 2486 * Now allocate a new buffer. We'll use this to deal with every other 2487 * CPU. 2488 */ 2489 bzero(&nbuf, sizeof (dtrace_bufdesc_t)); 2490 (void) dtrace_getopt(dtp, "bufsize", &size); 2491 if ((nbuf.dtbd_data = malloc(size)) == NULL) 2492 return (dt_set_errno(dtp, EDT_NOMEM)); 2493 2494 if (max_ncpus == 0) 2495 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 2496 2497 for (i = 0; i < max_ncpus; i++) { 2498 nbuf.dtbd_cpu = i; 2499 2500 if (i == cpu) 2501 continue; 2502 2503 #if defined(sun) 2504 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) { 2505 #else 2506 pbuf = &nbuf; 2507 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) { 2508 #endif 2509 /* 2510 * If we failed with ENOENT, it may be because the 2511 * CPU was unconfigured -- this is okay. Any other 2512 * error, however, is unexpected. 2513 */ 2514 if (errno == ENOENT) 2515 continue; 2516 2517 free(nbuf.dtbd_data); 2518 2519 return (dt_set_errno(dtp, errno)); 2520 } 2521 2522 if ((rval = dt_consume_cpu(dtp, fp, 2523 i, &nbuf, pf, rf, arg)) != 0) { 2524 free(nbuf.dtbd_data); 2525 return (rval); 2526 } 2527 } 2528 2529 free(nbuf.dtbd_data); 2530 2531 /* 2532 * Okay -- we're done with the other buffers. Now we want to 2533 * reconsume the first buffer -- but this time we're looking for 2534 * everything _but_ BEGIN. And of course, in order to only consume 2535 * those ERRORs _not_ associated with BEGIN, we need to reinstall our 2536 * ERROR interposition function... 2537 */ 2538 begin.dtbgn_beginonly = 0; 2539 2540 assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr); 2541 assert(begin.dtbgn_errarg == dtp->dt_errarg); 2542 dtp->dt_errhdlr = dt_consume_begin_error; 2543 dtp->dt_errarg = &begin; 2544 2545 rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe, 2546 dt_consume_begin_record, &begin); 2547 2548 dtp->dt_errhdlr = begin.dtbgn_errhdlr; 2549 dtp->dt_errarg = begin.dtbgn_errarg; 2550 2551 return (rval); 2552 } 2553 2554 int 2555 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp, 2556 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) 2557 { 2558 dtrace_bufdesc_t *buf = &dtp->dt_buf; 2559 dtrace_optval_t size; 2560 static int max_ncpus; 2561 int i, rval; 2562 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE]; 2563 hrtime_t now = gethrtime(); 2564 2565 if (dtp->dt_lastswitch != 0) { 2566 if (now - dtp->dt_lastswitch < interval) 2567 return (0); 2568 2569 dtp->dt_lastswitch += interval; 2570 } else { 2571 dtp->dt_lastswitch = now; 2572 } 2573 2574 if (!dtp->dt_active) 2575 return (dt_set_errno(dtp, EINVAL)); 2576 2577 if (max_ncpus == 0) 2578 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 2579 2580 if (pf == NULL) 2581 pf = (dtrace_consume_probe_f *)dt_nullprobe; 2582 2583 if (rf == NULL) 2584 rf = (dtrace_consume_rec_f *)dt_nullrec; 2585 2586 if (buf->dtbd_data == NULL) { 2587 (void) dtrace_getopt(dtp, "bufsize", &size); 2588 if ((buf->dtbd_data = malloc(size)) == NULL) 2589 return (dt_set_errno(dtp, EDT_NOMEM)); 2590 2591 buf->dtbd_size = size; 2592 } 2593 2594 /* 2595 * If we have just begun, we want to first process the CPU that 2596 * executed the BEGIN probe (if any). 2597 */ 2598 if (dtp->dt_active && dtp->dt_beganon != -1) { 2599 buf->dtbd_cpu = dtp->dt_beganon; 2600 if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0) 2601 return (rval); 2602 } 2603 2604 for (i = 0; i < max_ncpus; i++) { 2605 buf->dtbd_cpu = i; 2606 2607 /* 2608 * If we have stopped, we want to process the CPU on which the 2609 * END probe was processed only _after_ we have processed 2610 * everything else. 2611 */ 2612 if (dtp->dt_stopped && (i == dtp->dt_endedon)) 2613 continue; 2614 2615 #if defined(sun) 2616 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { 2617 #else 2618 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) { 2619 #endif 2620 /* 2621 * If we failed with ENOENT, it may be because the 2622 * CPU was unconfigured -- this is okay. Any other 2623 * error, however, is unexpected. 2624 */ 2625 if (errno == ENOENT) 2626 continue; 2627 2628 return (dt_set_errno(dtp, errno)); 2629 } 2630 2631 if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0) 2632 return (rval); 2633 } 2634 2635 if (!dtp->dt_stopped) 2636 return (0); 2637 2638 buf->dtbd_cpu = dtp->dt_endedon; 2639 2640 #if defined(sun) 2641 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { 2642 #else 2643 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) { 2644 #endif 2645 /* 2646 * This _really_ shouldn't fail, but it is strictly speaking 2647 * possible for this to return ENOENT if the CPU that called 2648 * the END enabling somehow managed to become unconfigured. 2649 * It's unclear how the user can possibly expect anything 2650 * rational to happen in this case -- the state has been thrown 2651 * out along with the unconfigured CPU -- so we'll just drive 2652 * on... 2653 */ 2654 if (errno == ENOENT) 2655 return (0); 2656 2657 return (dt_set_errno(dtp, errno)); 2658 } 2659 2660 return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg)); 2661 } 2662