xref: /netbsd-src/external/cddl/osnet/dist/lib/libdtrace/common/dt_consume.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <stdlib.h>
27 #include <strings.h>
28 #include <errno.h>
29 #include <unistd.h>
30 #include <limits.h>
31 #include <assert.h>
32 #include <ctype.h>
33 #if defined(sun)
34 #include <alloca.h>
35 #endif
36 #include <dt_impl.h>
37 
38 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
39 
40 /*
41  * We declare this here because (1) we need it and (2) we want to avoid a
42  * dependency on libm in libdtrace.
43  */
44 static long double
45 dt_fabsl(long double x)
46 {
47 	if (x < 0)
48 		return (-x);
49 
50 	return (x);
51 }
52 
53 /*
54  * 128-bit arithmetic functions needed to support the stddev() aggregating
55  * action.
56  */
57 static int
58 dt_gt_128(uint64_t *a, uint64_t *b)
59 {
60 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
61 }
62 
63 static int
64 dt_ge_128(uint64_t *a, uint64_t *b)
65 {
66 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
67 }
68 
69 static int
70 dt_le_128(uint64_t *a, uint64_t *b)
71 {
72 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
73 }
74 
75 /*
76  * Shift the 128-bit value in a by b. If b is positive, shift left.
77  * If b is negative, shift right.
78  */
79 static void
80 dt_shift_128(uint64_t *a, int b)
81 {
82 	uint64_t mask;
83 
84 	if (b == 0)
85 		return;
86 
87 	if (b < 0) {
88 		b = -b;
89 		if (b >= 64) {
90 			a[0] = a[1] >> (b - 64);
91 			a[1] = 0;
92 		} else {
93 			a[0] >>= b;
94 			mask = 1LL << (64 - b);
95 			mask -= 1;
96 			a[0] |= ((a[1] & mask) << (64 - b));
97 			a[1] >>= b;
98 		}
99 	} else {
100 		if (b >= 64) {
101 			a[1] = a[0] << (b - 64);
102 			a[0] = 0;
103 		} else {
104 			a[1] <<= b;
105 			mask = a[0] >> (64 - b);
106 			a[1] |= mask;
107 			a[0] <<= b;
108 		}
109 	}
110 }
111 
112 static int
113 dt_nbits_128(uint64_t *a)
114 {
115 	int nbits = 0;
116 	uint64_t tmp[2];
117 	uint64_t zero[2] = { 0, 0 };
118 
119 	tmp[0] = a[0];
120 	tmp[1] = a[1];
121 
122 	dt_shift_128(tmp, -1);
123 	while (dt_gt_128(tmp, zero)) {
124 		dt_shift_128(tmp, -1);
125 		nbits++;
126 	}
127 
128 	return (nbits);
129 }
130 
131 static void
132 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
133 {
134 	uint64_t result[2];
135 
136 	result[0] = minuend[0] - subtrahend[0];
137 	result[1] = minuend[1] - subtrahend[1] -
138 	    (minuend[0] < subtrahend[0] ? 1 : 0);
139 
140 	difference[0] = result[0];
141 	difference[1] = result[1];
142 }
143 
144 static void
145 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
146 {
147 	uint64_t result[2];
148 
149 	result[0] = addend1[0] + addend2[0];
150 	result[1] = addend1[1] + addend2[1] +
151 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
152 
153 	sum[0] = result[0];
154 	sum[1] = result[1];
155 }
156 
157 /*
158  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
159  * use native multiplication on those, and then re-combine into the
160  * resulting 128-bit value.
161  *
162  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
163  *     hi1 * hi2 << 64 +
164  *     hi1 * lo2 << 32 +
165  *     hi2 * lo1 << 32 +
166  *     lo1 * lo2
167  */
168 static void
169 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
170 {
171 	uint64_t hi1, hi2, lo1, lo2;
172 	uint64_t tmp[2];
173 
174 	hi1 = factor1 >> 32;
175 	hi2 = factor2 >> 32;
176 
177 	lo1 = factor1 & DT_MASK_LO;
178 	lo2 = factor2 & DT_MASK_LO;
179 
180 	product[0] = lo1 * lo2;
181 	product[1] = hi1 * hi2;
182 
183 	tmp[0] = hi1 * lo2;
184 	tmp[1] = 0;
185 	dt_shift_128(tmp, 32);
186 	dt_add_128(product, tmp, product);
187 
188 	tmp[0] = hi2 * lo1;
189 	tmp[1] = 0;
190 	dt_shift_128(tmp, 32);
191 	dt_add_128(product, tmp, product);
192 }
193 
194 /*
195  * This is long-hand division.
196  *
197  * We initialize subtrahend by shifting divisor left as far as possible. We
198  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
199  * subtract and set the appropriate bit in the result.  We then shift
200  * subtrahend right by one bit for the next comparison.
201  */
202 static void
203 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
204 {
205 	uint64_t result[2] = { 0, 0 };
206 	uint64_t remainder[2];
207 	uint64_t subtrahend[2];
208 	uint64_t divisor_128[2];
209 	uint64_t mask[2] = { 1, 0 };
210 	int log = 0;
211 
212 	assert(divisor != 0);
213 
214 	divisor_128[0] = divisor;
215 	divisor_128[1] = 0;
216 
217 	remainder[0] = dividend[0];
218 	remainder[1] = dividend[1];
219 
220 	subtrahend[0] = divisor;
221 	subtrahend[1] = 0;
222 
223 	while (divisor > 0) {
224 		log++;
225 		divisor >>= 1;
226 	}
227 
228 	dt_shift_128(subtrahend, 128 - log);
229 	dt_shift_128(mask, 128 - log);
230 
231 	while (dt_ge_128(remainder, divisor_128)) {
232 		if (dt_ge_128(remainder, subtrahend)) {
233 			dt_subtract_128(remainder, subtrahend, remainder);
234 			result[0] |= mask[0];
235 			result[1] |= mask[1];
236 		}
237 
238 		dt_shift_128(subtrahend, -1);
239 		dt_shift_128(mask, -1);
240 	}
241 
242 	quotient[0] = result[0];
243 	quotient[1] = result[1];
244 }
245 
246 /*
247  * This is the long-hand method of calculating a square root.
248  * The algorithm is as follows:
249  *
250  * 1. Group the digits by 2 from the right.
251  * 2. Over the leftmost group, find the largest single-digit number
252  *    whose square is less than that group.
253  * 3. Subtract the result of the previous step (2 or 4, depending) and
254  *    bring down the next two-digit group.
255  * 4. For the result R we have so far, find the largest single-digit number
256  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
257  *    (Note that this is doubling R and performing a decimal left-shift by 1
258  *    and searching for the appropriate decimal to fill the one's place.)
259  *    The value x is the next digit in the square root.
260  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
261  * dealing with integers, so the above is sufficient.)
262  *
263  * In decimal, the square root of 582,734 would be calculated as so:
264  *
265  *     __7__6__3
266  *    | 58 27 34
267  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
268  *      --
269  *       9 27    (Subtract and bring down the next group.)
270  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
271  *      -----     the square root)
272  *         51 34 (Subtract and bring down the next group.)
273  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
274  *         -----  the square root)
275  *          5 65 (remainder)
276  *
277  * The above algorithm applies similarly in binary, but note that the
278  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
279  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
280  * preceding difference?
281  *
282  * In binary, the square root of 11011011 would be calculated as so:
283  *
284  *     __1__1__1__0
285  *    | 11 01 10 11
286  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
287  *      --
288  *      10 01 10 11
289  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
290  *      -----
291  *       1 00 10 11
292  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
293  *       -------
294  *          1 01 11
295  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
296  *
297  */
298 static uint64_t
299 dt_sqrt_128(uint64_t *square)
300 {
301 	uint64_t result[2] = { 0, 0 };
302 	uint64_t diff[2] = { 0, 0 };
303 	uint64_t one[2] = { 1, 0 };
304 	uint64_t next_pair[2];
305 	uint64_t next_try[2];
306 	uint64_t bit_pairs, pair_shift;
307 	int i;
308 
309 	bit_pairs = dt_nbits_128(square) / 2;
310 	pair_shift = bit_pairs * 2;
311 
312 	for (i = 0; i <= bit_pairs; i++) {
313 		/*
314 		 * Bring down the next pair of bits.
315 		 */
316 		next_pair[0] = square[0];
317 		next_pair[1] = square[1];
318 		dt_shift_128(next_pair, -pair_shift);
319 		next_pair[0] &= 0x3;
320 		next_pair[1] = 0;
321 
322 		dt_shift_128(diff, 2);
323 		dt_add_128(diff, next_pair, diff);
324 
325 		/*
326 		 * next_try = R << 2 + 1
327 		 */
328 		next_try[0] = result[0];
329 		next_try[1] = result[1];
330 		dt_shift_128(next_try, 2);
331 		dt_add_128(next_try, one, next_try);
332 
333 		if (dt_le_128(next_try, diff)) {
334 			dt_subtract_128(diff, next_try, diff);
335 			dt_shift_128(result, 1);
336 			dt_add_128(result, one, result);
337 		} else {
338 			dt_shift_128(result, 1);
339 		}
340 
341 		pair_shift -= 2;
342 	}
343 
344 	assert(result[1] == 0);
345 
346 	return (result[0]);
347 }
348 
349 uint64_t
350 dt_stddev(uint64_t *data, uint64_t normal)
351 {
352 	uint64_t avg_of_squares[2];
353 	uint64_t square_of_avg[2];
354 	int64_t norm_avg;
355 	uint64_t diff[2];
356 
357 	/*
358 	 * The standard approximation for standard deviation is
359 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
360 	 * of the average of the squares minus the square of the average.
361 	 */
362 	dt_divide_128(data + 2, normal, avg_of_squares);
363 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
364 
365 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
366 
367 	if (norm_avg < 0)
368 		norm_avg = -norm_avg;
369 
370 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
371 
372 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
373 
374 	return (dt_sqrt_128(diff));
375 }
376 
377 static int
378 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
379     dtrace_bufdesc_t *buf, size_t offs)
380 {
381 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
382 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
383 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
384 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
385 	const char *str = NULL;
386 	static const char *e_str[2] = { " -> ", " => " };
387 	static const char *r_str[2] = { " <- ", " <= " };
388 	static const char *ent = "entry", *ret = "return";
389 	static int entlen = 0, retlen = 0;
390 	dtrace_epid_t next, id = epd->dtepd_epid;
391 	int rval;
392 
393 	if (entlen == 0) {
394 		assert(retlen == 0);
395 		entlen = strlen(ent);
396 		retlen = strlen(ret);
397 	}
398 
399 	/*
400 	 * If the name of the probe is "entry" or ends with "-entry", we
401 	 * treat it as an entry; if it is "return" or ends with "-return",
402 	 * we treat it as a return.  (This allows application-provided probes
403 	 * like "method-entry" or "function-entry" to participate in flow
404 	 * indentation -- without accidentally misinterpreting popular probe
405 	 * names like "carpentry", "gentry" or "Coventry".)
406 	 */
407 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
408 	    (sub == n || sub[-1] == '-')) {
409 		flow = DTRACEFLOW_ENTRY;
410 		str = e_str[strcmp(p, "syscall") == 0];
411 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
412 	    (sub == n || sub[-1] == '-')) {
413 		flow = DTRACEFLOW_RETURN;
414 		str = r_str[strcmp(p, "syscall") == 0];
415 	}
416 
417 	/*
418 	 * If we're going to indent this, we need to check the ID of our last
419 	 * call.  If we're looking at the same probe ID but a different EPID,
420 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
421 	 * this scheme -- it's a heuristic.)
422 	 */
423 	if (flow == DTRACEFLOW_ENTRY) {
424 		if ((last != DTRACE_EPIDNONE && id != last &&
425 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
426 			flow = DTRACEFLOW_NONE;
427 	}
428 
429 	/*
430 	 * If we're going to unindent this, it's more difficult to see if
431 	 * we don't actually want to unindent it -- we need to look at the
432 	 * _next_ EPID.
433 	 */
434 	if (flow == DTRACEFLOW_RETURN) {
435 		offs += epd->dtepd_size;
436 
437 		do {
438 			if (offs >= buf->dtbd_size) {
439 				/*
440 				 * We're at the end -- maybe.  If the oldest
441 				 * record is non-zero, we need to wrap.
442 				 */
443 				if (buf->dtbd_oldest != 0) {
444 					offs = 0;
445 				} else {
446 					goto out;
447 				}
448 			}
449 
450 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
451 
452 			if (next == DTRACE_EPIDNONE)
453 				offs += sizeof (id);
454 		} while (next == DTRACE_EPIDNONE);
455 
456 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
457 			return (rval);
458 
459 		if (next != id && npd->dtpd_id == pd->dtpd_id)
460 			flow = DTRACEFLOW_NONE;
461 	}
462 
463 out:
464 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
465 		data->dtpda_prefix = str;
466 	} else {
467 		data->dtpda_prefix = "| ";
468 	}
469 
470 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
471 		data->dtpda_indent -= 2;
472 
473 	data->dtpda_flow = flow;
474 
475 	return (0);
476 }
477 
478 static int
479 dt_nullprobe()
480 {
481 	return (DTRACE_CONSUME_THIS);
482 }
483 
484 static int
485 dt_nullrec()
486 {
487 	return (DTRACE_CONSUME_NEXT);
488 }
489 
490 int
491 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
492     uint64_t normal, long double total, char positives, char negatives)
493 {
494 	long double f;
495 	uint_t depth, len = 40;
496 
497 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
498 	const char *spaces = "                                        ";
499 
500 	assert(strlen(ats) == len && strlen(spaces) == len);
501 	assert(!(total == 0 && (positives || negatives)));
502 	assert(!(val < 0 && !negatives));
503 	assert(!(val > 0 && !positives));
504 	assert(!(val != 0 && total == 0));
505 
506 	if (!negatives) {
507 		if (positives) {
508 			f = (dt_fabsl((long double)val) * len) / total;
509 			depth = (uint_t)(f + 0.5);
510 		} else {
511 			depth = 0;
512 		}
513 
514 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
515 		    spaces + depth, (long long)val / normal));
516 	}
517 
518 	if (!positives) {
519 		f = (dt_fabsl((long double)val) * len) / total;
520 		depth = (uint_t)(f + 0.5);
521 
522 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
523 		    ats + len - depth, (long long)val / normal));
524 	}
525 
526 	/*
527 	 * If we're here, we have both positive and negative bucket values.
528 	 * To express this graphically, we're going to generate both positive
529 	 * and negative bars separated by a centerline.  These bars are half
530 	 * the size of normal quantize()/lquantize() bars, so we divide the
531 	 * length in half before calculating the bar length.
532 	 */
533 	len /= 2;
534 	ats = &ats[len];
535 	spaces = &spaces[len];
536 
537 	f = (dt_fabsl((long double)val) * len) / total;
538 	depth = (uint_t)(f + 0.5);
539 
540 	if (val <= 0) {
541 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
542 		    ats + len - depth, len, "", (long long)val / normal));
543 	} else {
544 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
545 		    ats + len - depth, spaces + depth,
546 		    (long long)val / normal));
547 	}
548 }
549 
550 int
551 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
552     size_t size, uint64_t normal)
553 {
554 	const int64_t *data = addr;
555 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
556 	long double total = 0;
557 	char positives = 0, negatives = 0;
558 
559 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
560 		return (dt_set_errno(dtp, EDT_DMISMATCH));
561 
562 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
563 		first_bin++;
564 
565 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
566 		/*
567 		 * There isn't any data.  This is possible if (and only if)
568 		 * negative increment values have been used.  In this case,
569 		 * we'll print the buckets around 0.
570 		 */
571 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
572 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
573 	} else {
574 		if (first_bin > 0)
575 			first_bin--;
576 
577 		while (last_bin > 0 && data[last_bin] == 0)
578 			last_bin--;
579 
580 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
581 			last_bin++;
582 	}
583 
584 	for (i = first_bin; i <= last_bin; i++) {
585 		positives |= (data[i] > 0);
586 		negatives |= (data[i] < 0);
587 		total += dt_fabsl((long double)data[i]);
588 	}
589 
590 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
591 	    "------------- Distribution -------------", "count") < 0)
592 		return (-1);
593 
594 	for (i = first_bin; i <= last_bin; i++) {
595 		if (dt_printf(dtp, fp, "%16lld ",
596 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
597 			return (-1);
598 
599 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
600 		    positives, negatives) < 0)
601 			return (-1);
602 	}
603 
604 	return (0);
605 }
606 
607 int
608 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
609     size_t size, uint64_t normal)
610 {
611 	const int64_t *data = addr;
612 	int i, first_bin, last_bin, base;
613 	uint64_t arg;
614 	long double total = 0;
615 	uint16_t step, levels;
616 	char positives = 0, negatives = 0;
617 
618 	if (size < sizeof (uint64_t))
619 		return (dt_set_errno(dtp, EDT_DMISMATCH));
620 
621 	arg = *data++;
622 	size -= sizeof (uint64_t);
623 
624 	base = DTRACE_LQUANTIZE_BASE(arg);
625 	step = DTRACE_LQUANTIZE_STEP(arg);
626 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
627 
628 	first_bin = 0;
629 	last_bin = levels + 1;
630 
631 	if (size != sizeof (uint64_t) * (levels + 2))
632 		return (dt_set_errno(dtp, EDT_DMISMATCH));
633 
634 	while (first_bin <= levels + 1 && data[first_bin] == 0)
635 		first_bin++;
636 
637 	if (first_bin > levels + 1) {
638 		first_bin = 0;
639 		last_bin = 2;
640 	} else {
641 		if (first_bin > 0)
642 			first_bin--;
643 
644 		while (last_bin > 0 && data[last_bin] == 0)
645 			last_bin--;
646 
647 		if (last_bin < levels + 1)
648 			last_bin++;
649 	}
650 
651 	for (i = first_bin; i <= last_bin; i++) {
652 		positives |= (data[i] > 0);
653 		negatives |= (data[i] < 0);
654 		total += dt_fabsl((long double)data[i]);
655 	}
656 
657 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
658 	    "------------- Distribution -------------", "count") < 0)
659 		return (-1);
660 
661 	for (i = first_bin; i <= last_bin; i++) {
662 		char c[32];
663 		int err;
664 
665 		if (i == 0) {
666 			(void) snprintf(c, sizeof (c), "< %d",
667 			    base / (uint32_t)normal);
668 			err = dt_printf(dtp, fp, "%16s ", c);
669 		} else if (i == levels + 1) {
670 			(void) snprintf(c, sizeof (c), ">= %d",
671 			    base + (levels * step));
672 			err = dt_printf(dtp, fp, "%16s ", c);
673 		} else {
674 			err = dt_printf(dtp, fp, "%16d ",
675 			    base + (i - 1) * step);
676 		}
677 
678 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
679 		    total, positives, negatives) < 0)
680 			return (-1);
681 	}
682 
683 	return (0);
684 }
685 
686 /*ARGSUSED*/
687 static int
688 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
689     size_t size, uint64_t normal)
690 {
691 	/* LINTED - alignment */
692 	int64_t *data = (int64_t *)addr;
693 
694 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
695 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
696 }
697 
698 /*ARGSUSED*/
699 static int
700 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
701     size_t size, uint64_t normal)
702 {
703 	/* LINTED - alignment */
704 	uint64_t *data = (uint64_t *)addr;
705 
706 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
707 	    (unsigned long long) dt_stddev(data, normal) : 0));
708 }
709 
710 /*ARGSUSED*/
711 int
712 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
713     size_t nbytes, int width, int quiet, int raw)
714 {
715 	/*
716 	 * If the byte stream is a series of printable characters, followed by
717 	 * a terminating byte, we print it out as a string.  Otherwise, we
718 	 * assume that it's something else and just print the bytes.
719 	 */
720 	int i, j, margin = 5;
721 	char *c = (char *)addr;
722 
723 	if (nbytes == 0)
724 		return (0);
725 
726 	if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
727 		goto raw;
728 
729 	for (i = 0; i < nbytes; i++) {
730 		/*
731 		 * We define a "printable character" to be one for which
732 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
733 		 * or a character which is either backspace or the bell.
734 		 * Backspace and the bell are regrettably special because
735 		 * they fail the first two tests -- and yet they are entirely
736 		 * printable.  These are the only two control characters that
737 		 * have meaning for the terminal and for which isprint(3C) and
738 		 * isspace(3C) return 0.
739 		 */
740 		if (isprint(c[i]) || isspace(c[i]) ||
741 		    c[i] == '\b' || c[i] == '\a')
742 			continue;
743 
744 		if (c[i] == '\0' && i > 0) {
745 			/*
746 			 * This looks like it might be a string.  Before we
747 			 * assume that it is indeed a string, check the
748 			 * remainder of the byte range; if it contains
749 			 * additional non-nul characters, we'll assume that
750 			 * it's a binary stream that just happens to look like
751 			 * a string, and we'll print out the individual bytes.
752 			 */
753 			for (j = i + 1; j < nbytes; j++) {
754 				if (c[j] != '\0')
755 					break;
756 			}
757 
758 			if (j != nbytes)
759 				break;
760 
761 			if (quiet)
762 				return (dt_printf(dtp, fp, "%s", c));
763 			else
764 				return (dt_printf(dtp, fp, "  %-*s", width, c));
765 		}
766 
767 		break;
768 	}
769 
770 	if (i == nbytes) {
771 		/*
772 		 * The byte range is all printable characters, but there is
773 		 * no trailing nul byte.  We'll assume that it's a string and
774 		 * print it as such.
775 		 */
776 		char *s = alloca(nbytes + 1);
777 		bcopy(c, s, nbytes);
778 		s[nbytes] = '\0';
779 		return (dt_printf(dtp, fp, "  %-*s", width, s));
780 	}
781 
782 raw:
783 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
784 		return (-1);
785 
786 	for (i = 0; i < 16; i++)
787 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
788 			return (-1);
789 
790 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
791 		return (-1);
792 
793 
794 	for (i = 0; i < nbytes; i += 16) {
795 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
796 			return (-1);
797 
798 		for (j = i; j < i + 16 && j < nbytes; j++) {
799 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
800 				return (-1);
801 		}
802 
803 		while (j++ % 16) {
804 			if (dt_printf(dtp, fp, "   ") < 0)
805 				return (-1);
806 		}
807 
808 		if (dt_printf(dtp, fp, "  ") < 0)
809 			return (-1);
810 
811 		for (j = i; j < i + 16 && j < nbytes; j++) {
812 			if (dt_printf(dtp, fp, "%c",
813 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
814 				return (-1);
815 		}
816 
817 		if (dt_printf(dtp, fp, "\n") < 0)
818 			return (-1);
819 	}
820 
821 	return (0);
822 }
823 
824 int
825 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
826     caddr_t addr, int depth, int size)
827 {
828 	dtrace_syminfo_t dts;
829 	GElf_Sym sym;
830 	int i, indent;
831 	char c[PATH_MAX * 2];
832 	uint64_t pc;
833 
834 	if (dt_printf(dtp, fp, "\n") < 0)
835 		return (-1);
836 
837 	if (format == NULL)
838 		format = "%s";
839 
840 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
841 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
842 	else
843 		indent = _dtrace_stkindent;
844 
845 	for (i = 0; i < depth; i++) {
846 		switch (size) {
847 		case sizeof (uint32_t):
848 			/* LINTED - alignment */
849 			pc = *((uint32_t *)addr);
850 			break;
851 
852 		case sizeof (uint64_t):
853 			/* LINTED - alignment */
854 			pc = *((uint64_t *)addr);
855 			break;
856 
857 		default:
858 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
859 		}
860 
861 		if (pc == 0)
862 			break;
863 
864 		addr += size;
865 
866 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
867 			return (-1);
868 
869 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
870 			if (pc > sym.st_value) {
871 				(void) snprintf(c, sizeof (c),
872 				    "%s`%s+0x%" PRIx64, dts.dts_object,
873 				    dts.dts_name, pc - sym.st_value);
874 			} else {
875 				(void) snprintf(c, sizeof (c), "%s`%s",
876 				    dts.dts_object, dts.dts_name);
877 			}
878 		} else {
879 			/*
880 			 * We'll repeat the lookup, but this time we'll specify
881 			 * a NULL GElf_Sym -- indicating that we're only
882 			 * interested in the containing module.
883 			 */
884 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
885 				(void) snprintf(c, sizeof (c), "%s`0x%" PRIx64,
886 				    dts.dts_object, pc);
887 			} else {
888 				(void) snprintf(c, sizeof (c),
889 				    "0x%" PRIx64, pc);
890 			}
891 		}
892 
893 		if (dt_printf(dtp, fp, format, c) < 0)
894 			return (-1);
895 
896 		if (dt_printf(dtp, fp, "\n") < 0)
897 			return (-1);
898 	}
899 
900 	return (0);
901 }
902 
903 int
904 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
905     caddr_t addr, uint64_t arg)
906 {
907 #if 0	/* XXX TBD needs libproc */
908 	/* LINTED - alignment */
909 	uint64_t *pc = (uint64_t *)addr;
910 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
911 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
912 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
913 	const char *str = strsize ? strbase : NULL;
914 	int err = 0;
915 
916 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
917 	struct ps_prochandle *P;
918 	GElf_Sym sym;
919 	int i, indent;
920 	pid_t pid;
921 
922 	if (depth == 0)
923 		return (0);
924 
925 	pid = (pid_t)*pc++;
926 
927 	if (dt_printf(dtp, fp, "\n") < 0)
928 		return (-1);
929 
930 	if (format == NULL)
931 		format = "%s";
932 
933 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
934 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
935 	else
936 		indent = _dtrace_stkindent;
937 
938 	/*
939 	 * Ultimately, we need to add an entry point in the library vector for
940 	 * determining <symbol, offset> from <pid, address>.  For now, if
941 	 * this is a vector open, we just print the raw address or string.
942 	 */
943 	if (dtp->dt_vector == NULL)
944 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
945 	else
946 		P = NULL;
947 
948 	if (P != NULL)
949 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
950 
951 	for (i = 0; i < depth && pc[i] != 0; i++) {
952 		const prmap_t *map;
953 
954 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
955 			break;
956 
957 #if defined(sun)
958 		if (P != NULL && Plookup_by_addr(P, pc[i],
959 #else
960 		if (P != NULL && proc_addr2sym(P, pc[i],
961 #endif
962 		    name, sizeof (name), &sym) == 0) {
963 #if defined(sun)
964 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
965 #else
966 			(void) proc_objname(P, pc[i], objname, sizeof (objname));
967 #endif
968 
969 			if (pc[i] > sym.st_value) {
970 				(void) snprintf(c, sizeof (c),
971 				    "%s`%s+0x%" PRIx64, dt_basename(objname),
972 				    name, (pc[i] - sym.st_value));
973 			} else {
974 				(void) snprintf(c, sizeof (c),
975 				    "%s`%s", dt_basename(objname), name);
976 			}
977 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
978 #if defined(sun)
979 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
980 		    (map->pr_mflags & MA_WRITE)))) {
981 #else
982 		    (P != NULL && ((map = proc_addr2map(P, pc[i])) == NULL))) {
983 #endif
984 			/*
985 			 * If the current string pointer in the string table
986 			 * does not point to an empty string _and_ the program
987 			 * counter falls in a writable region, we'll use the
988 			 * string from the string table instead of the raw
989 			 * address.  This last condition is necessary because
990 			 * some (broken) ustack helpers will return a string
991 			 * even for a program counter that they can't
992 			 * identify.  If we have a string for a program
993 			 * counter that falls in a segment that isn't
994 			 * writable, we assume that we have fallen into this
995 			 * case and we refuse to use the string.
996 			 */
997 			(void) snprintf(c, sizeof (c), "%s", str);
998 		} else {
999 #if defined(sun)
1000 			if (P != NULL && Pobjname(P, pc[i], objname,
1001 #else
1002 			if (P != NULL && proc_objname(P, pc[i], objname,
1003 #endif
1004 			    sizeof (objname)) != 0) {
1005 				(void) snprintf(c, sizeof (c), "%s`0x%" PRIx64,
1006 				    dt_basename(objname), pc[i]);
1007 			} else {
1008 				(void) snprintf(c, sizeof (c), "0x%" PRIx64,
1009 				    pc[i]);
1010 			}
1011 		}
1012 
1013 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1014 			break;
1015 
1016 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1017 			break;
1018 
1019 		if (str != NULL && str[0] == '@') {
1020 			/*
1021 			 * If the first character of the string is an "at" sign,
1022 			 * then the string is inferred to be an annotation --
1023 			 * and it is printed out beneath the frame and offset
1024 			 * with brackets.
1025 			 */
1026 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1027 				break;
1028 
1029 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1030 
1031 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1032 				break;
1033 
1034 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1035 				break;
1036 		}
1037 
1038 		if (str != NULL) {
1039 			str += strlen(str) + 1;
1040 			if (str - strbase >= strsize)
1041 				str = NULL;
1042 		}
1043 	}
1044 
1045 	if (P != NULL) {
1046 		dt_proc_unlock(dtp, P);
1047 		dt_proc_release(dtp, P);
1048 	}
1049 
1050 	return (err);
1051 #else
1052 	printf("XXX %s not implemented\n", __func__);
1053 	return ENODEV;
1054 #endif
1055 }
1056 
1057 static int
1058 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1059 {
1060 #if 0	/* XXX TBD needs libproc */
1061 	/* LINTED - alignment */
1062 	uint64_t pid = ((uint64_t *)addr)[0];
1063 	/* LINTED - alignment */
1064 	uint64_t pc = ((uint64_t *)addr)[1];
1065 	const char *format = "  %-50s";
1066 	char *s;
1067 	int n, len = 256;
1068 
1069 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1070 		struct ps_prochandle *P;
1071 
1072 		if ((P = dt_proc_grab(dtp, pid,
1073 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1074 			GElf_Sym sym;
1075 
1076 			dt_proc_lock(dtp, P);
1077 
1078 #if defined(sun)
1079 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1080 #else
1081 			if (proc_addr2sym(P, pc, NULL, 0, &sym) == 0)
1082 #endif
1083 				pc = sym.st_value;
1084 
1085 			dt_proc_unlock(dtp, P);
1086 			dt_proc_release(dtp, P);
1087 		}
1088 	}
1089 
1090 	do {
1091 		n = len;
1092 		s = alloca(n);
1093 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1094 
1095 	return (dt_printf(dtp, fp, format, s));
1096 #else
1097 	printf("XXX %s not implemented\n", __func__);
1098 	return ENODEV;
1099 #endif
1100 }
1101 
1102 int
1103 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1104 {
1105 #if 0	/* XXX TBD needs libproc */
1106 	/* LINTED - alignment */
1107 	uint64_t pid = ((uint64_t *)addr)[0];
1108 	/* LINTED - alignment */
1109 	uint64_t pc = ((uint64_t *)addr)[1];
1110 	int err = 0;
1111 
1112 	char objname[PATH_MAX], c[PATH_MAX * 2];
1113 	struct ps_prochandle *P;
1114 
1115 	if (format == NULL)
1116 		format = "  %-50s";
1117 
1118 	/*
1119 	 * See the comment in dt_print_ustack() for the rationale for
1120 	 * printing raw addresses in the vectored case.
1121 	 */
1122 	if (dtp->dt_vector == NULL)
1123 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1124 	else
1125 		P = NULL;
1126 
1127 	if (P != NULL)
1128 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1129 
1130 #if defined(sun)
1131 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1132 #else
1133 	if (P != NULL && proc_objname(P, pc, objname, sizeof (objname)) != 0) {
1134 #endif
1135 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1136 	} else {
1137 		(void) snprintf(c, sizeof (c), "0x%" PRIx64, pc);
1138 	}
1139 
1140 	err = dt_printf(dtp, fp, format, c);
1141 
1142 	if (P != NULL) {
1143 		dt_proc_unlock(dtp, P);
1144 		dt_proc_release(dtp, P);
1145 	}
1146 
1147 	return (err);
1148 #else
1149 	printf("XXX %s not implemented\n", __func__);
1150 	return -1;
1151 #endif
1152 }
1153 
1154 int
1155 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1156 {
1157 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1158 	size_t nbytes = *((uintptr_t *) addr);
1159 
1160 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1161 	    nbytes, 50, quiet, 1));
1162 }
1163 
1164 typedef struct dt_type_cbdata {
1165 	dtrace_hdl_t		*dtp;
1166 	dtrace_typeinfo_t	dtt;
1167 	caddr_t			addr;
1168 	caddr_t			addrend;
1169 	const char		*name;
1170 	int			f_type;
1171 	int			indent;
1172 	int			type_width;
1173 	int			name_width;
1174 	FILE			*fp;
1175 } dt_type_cbdata_t;
1176 
1177 static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1178 
1179 static int
1180 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1181 {
1182 	dt_type_cbdata_t cbdata;
1183 	dt_type_cbdata_t *cbdatap = arg;
1184 	ssize_t ssz;
1185 
1186 	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1187 		return (0);
1188 
1189 	off /= 8;
1190 
1191 	cbdata = *cbdatap;
1192 	cbdata.name = name;
1193 	cbdata.addr += off;
1194 	cbdata.addrend = cbdata.addr + ssz;
1195 
1196 	return (dt_print_type_data(&cbdata, type));
1197 }
1198 
1199 static int
1200 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1201 {
1202 	char buf[DT_TYPE_NAMELEN];
1203 	char *p;
1204 	dt_type_cbdata_t *cbdatap = arg;
1205 	size_t sz = strlen(name);
1206 
1207 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1208 
1209 	if ((p = strchr(buf, '[')) != NULL)
1210 		p[-1] = '\0';
1211 	else
1212 		p = "";
1213 
1214 	sz += strlen(p);
1215 
1216 	if (sz > cbdatap->name_width)
1217 		cbdatap->name_width = sz;
1218 
1219 	sz = strlen(buf);
1220 
1221 	if (sz > cbdatap->type_width)
1222 		cbdatap->type_width = sz;
1223 
1224 	return (0);
1225 }
1226 
1227 static int
1228 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1229 {
1230 	caddr_t addr = cbdatap->addr;
1231 	caddr_t addrend = cbdatap->addrend;
1232 	char buf[DT_TYPE_NAMELEN];
1233 	char *p;
1234 	int cnt = 0;
1235 	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1236 	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1237 
1238 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1239 
1240 	if ((p = strchr(buf, '[')) != NULL)
1241 		p[-1] = '\0';
1242 	else
1243 		p = "";
1244 
1245 	if (cbdatap->f_type) {
1246 		int type_width = roundup(cbdatap->type_width + 1, 4);
1247 		int name_width = roundup(cbdatap->name_width + 1, 4);
1248 
1249 		name_width -= strlen(cbdatap->name);
1250 
1251 		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1252 	}
1253 
1254 	while (addr < addrend) {
1255 		dt_type_cbdata_t cbdata;
1256 		ctf_arinfo_t arinfo;
1257 		ctf_encoding_t cte;
1258 		uintptr_t *up;
1259 		void *vp = addr;
1260 		cbdata = *cbdatap;
1261 		cbdata.name = "";
1262 		cbdata.addr = addr;
1263 		cbdata.addrend = addr + ssz;
1264 		cbdata.f_type = 0;
1265 		cbdata.indent++;
1266 		cbdata.type_width = 0;
1267 		cbdata.name_width = 0;
1268 
1269 		if (cnt > 0)
1270 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1271 
1272 		switch (kind) {
1273 		case CTF_K_INTEGER:
1274 			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1275 				return (-1);
1276 			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1277 				switch (cte.cte_bits) {
1278 				case 8:
1279 					if (isprint(*((char *) vp)))
1280 						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1281 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1282 					break;
1283 				case 16:
1284 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1285 					break;
1286 				case 32:
1287 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1288 					break;
1289 				case 64:
1290 					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1291 					break;
1292 				default:
1293 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1294 					break;
1295 				}
1296 			else
1297 				switch (cte.cte_bits) {
1298 				case 8:
1299 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1300 					break;
1301 				case 16:
1302 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1303 					break;
1304 				case 32:
1305 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1306 					break;
1307 				case 64:
1308 					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1309 					break;
1310 				default:
1311 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1312 					break;
1313 				}
1314 			break;
1315 		case CTF_K_FLOAT:
1316 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1317 			break;
1318 		case CTF_K_POINTER:
1319 			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1320 			break;
1321 		case CTF_K_ARRAY:
1322 			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1323 				return (-1);
1324 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1325 			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1326 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1327 			break;
1328 		case CTF_K_FUNCTION:
1329 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1330 			break;
1331 		case CTF_K_STRUCT:
1332 			cbdata.f_type = 1;
1333 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1334 			    dt_print_type_width, &cbdata) != 0)
1335 				return (-1);
1336 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1337 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1338 			    dt_print_type_member, &cbdata) != 0)
1339 				return (-1);
1340 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1341 			break;
1342 		case CTF_K_UNION:
1343 			cbdata.f_type = 1;
1344 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1345 			    dt_print_type_width, &cbdata) != 0)
1346 				return (-1);
1347 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1348 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1349 			    dt_print_type_member, &cbdata) != 0)
1350 				return (-1);
1351 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1352 			break;
1353 		case CTF_K_ENUM:
1354 			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1355 			break;
1356 		case CTF_K_TYPEDEF:
1357 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1358 			break;
1359 		case CTF_K_VOLATILE:
1360 			if (cbdatap->f_type)
1361 				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1362 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1363 			break;
1364 		case CTF_K_CONST:
1365 			if (cbdatap->f_type)
1366 				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1367 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1368 			break;
1369 		case CTF_K_RESTRICT:
1370 			if (cbdatap->f_type)
1371 				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1372 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1373 			break;
1374 		default:
1375 			break;
1376 		}
1377 
1378 		addr += ssz;
1379 		cnt++;
1380 	}
1381 
1382 	return (0);
1383 }
1384 
1385 static int
1386 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1387 {
1388 	caddr_t addrend;
1389 	char *p;
1390 	dtrace_typeinfo_t dtt;
1391 	dt_type_cbdata_t cbdata;
1392 	int num = 0;
1393 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1394 	ssize_t ssz;
1395 
1396 	if (!quiet)
1397 		dt_printf(dtp, fp, "\n");
1398 
1399 	/* Get the total number of bytes of data buffered. */
1400 	size_t nbytes = *((uintptr_t *) addr);
1401 	addr += sizeof(uintptr_t);
1402 
1403 	/*
1404 	 * Get the size of the type so that we can check that it matches
1405 	 * the CTF data we look up and so that we can figure out how many
1406 	 * type elements are buffered.
1407 	 */
1408 	size_t typs = *((uintptr_t *) addr);
1409 	addr += sizeof(uintptr_t);
1410 
1411 	/*
1412 	 * Point to the type string in the buffer. Get it's string
1413 	 * length and round it up to become the offset to the start
1414 	 * of the buffered type data which we would like to be aligned
1415 	 * for easy access.
1416 	 */
1417 	char *strp = (char *) addr;
1418 	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1419 
1420 	/*
1421 	 * The type string might have a format such as 'int [20]'.
1422 	 * Check if there is an array dimension present.
1423 	 */
1424 	if ((p = strchr(strp, '[')) != NULL) {
1425 		/* Strip off the array dimension. */
1426 		*p++ = '\0';
1427 
1428 		for (; *p != '\0' && *p != ']'; p++)
1429 			num = num * 10 + *p - '0';
1430 	} else
1431 		/* No array dimension, so default. */
1432 		num = 1;
1433 
1434 	/* Lookup the CTF type from the type string. */
1435 	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1436 		return (-1);
1437 
1438 	/* Offset the buffer address to the start of the data... */
1439 	addr += offset;
1440 
1441 	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1442 
1443 	if (typs != ssz) {
1444 		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1445 		return (-1);
1446 	}
1447 
1448 	cbdata.dtp = dtp;
1449 	cbdata.dtt = dtt;
1450 	cbdata.name = "";
1451 	cbdata.addr = addr;
1452 	cbdata.addrend = addr + nbytes;
1453 	cbdata.indent = 1;
1454 	cbdata.f_type = 1;
1455 	cbdata.type_width = 0;
1456 	cbdata.name_width = 0;
1457 	cbdata.fp = fp;
1458 
1459 	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1460 }
1461 
1462 static int
1463 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1464 {
1465 	/* LINTED - alignment */
1466 	uint64_t pc = *((uint64_t *)addr);
1467 	dtrace_syminfo_t dts;
1468 	GElf_Sym sym;
1469 	char c[PATH_MAX * 2];
1470 
1471 	if (format == NULL)
1472 		format = "  %-50s";
1473 
1474 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1475 		(void) snprintf(c, sizeof (c), "%s`%s",
1476 		    dts.dts_object, dts.dts_name);
1477 	} else {
1478 		/*
1479 		 * We'll repeat the lookup, but this time we'll specify a
1480 		 * NULL GElf_Sym -- indicating that we're only interested in
1481 		 * the containing module.
1482 		 */
1483 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1484 			(void) snprintf(c, sizeof (c), "%s`0x%" PRIx64,
1485 			    dts.dts_object, pc);
1486 		} else {
1487 			(void) snprintf(c, sizeof (c), "0x%" PRIx64, pc);
1488 		}
1489 	}
1490 
1491 	if (dt_printf(dtp, fp, format, c) < 0)
1492 		return (-1);
1493 
1494 	return (0);
1495 }
1496 
1497 int
1498 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1499 {
1500 	/* LINTED - alignment */
1501 	uint64_t pc = *((uint64_t *)addr);
1502 	dtrace_syminfo_t dts;
1503 	char c[PATH_MAX * 2];
1504 
1505 	if (format == NULL)
1506 		format = "  %-50s";
1507 
1508 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1509 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1510 	} else {
1511 		(void) snprintf(c, sizeof (c), "0x%" PRIx64, pc);
1512 	}
1513 
1514 	if (dt_printf(dtp, fp, format, c) < 0)
1515 		return (-1);
1516 
1517 	return (0);
1518 }
1519 
1520 typedef struct dt_normal {
1521 	dtrace_aggvarid_t dtnd_id;
1522 	uint64_t dtnd_normal;
1523 } dt_normal_t;
1524 
1525 static int
1526 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1527 {
1528 	dt_normal_t *normal = arg;
1529 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1530 	dtrace_aggvarid_t id = normal->dtnd_id;
1531 
1532 	if (agg->dtagd_nrecs == 0)
1533 		return (DTRACE_AGGWALK_NEXT);
1534 
1535 	if (agg->dtagd_varid != id)
1536 		return (DTRACE_AGGWALK_NEXT);
1537 
1538 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1539 	return (DTRACE_AGGWALK_NORMALIZE);
1540 }
1541 
1542 static int
1543 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1544 {
1545 	dt_normal_t normal;
1546 	caddr_t addr;
1547 
1548 	/*
1549 	 * We (should) have two records:  the aggregation ID followed by the
1550 	 * normalization value.
1551 	 */
1552 	addr = base + rec->dtrd_offset;
1553 
1554 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1555 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1556 
1557 	/* LINTED - alignment */
1558 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1559 	rec++;
1560 
1561 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1562 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1563 
1564 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1565 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1566 
1567 	addr = base + rec->dtrd_offset;
1568 
1569 	switch (rec->dtrd_size) {
1570 	case sizeof (uint64_t):
1571 		/* LINTED - alignment */
1572 		normal.dtnd_normal = *((uint64_t *)addr);
1573 		break;
1574 	case sizeof (uint32_t):
1575 		/* LINTED - alignment */
1576 		normal.dtnd_normal = *((uint32_t *)addr);
1577 		break;
1578 	case sizeof (uint16_t):
1579 		/* LINTED - alignment */
1580 		normal.dtnd_normal = *((uint16_t *)addr);
1581 		break;
1582 	case sizeof (uint8_t):
1583 		normal.dtnd_normal = *((uint8_t *)addr);
1584 		break;
1585 	default:
1586 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1587 	}
1588 
1589 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1590 
1591 	return (0);
1592 }
1593 
1594 static int
1595 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1596 {
1597 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1598 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1599 
1600 	if (agg->dtagd_nrecs == 0)
1601 		return (DTRACE_AGGWALK_NEXT);
1602 
1603 	if (agg->dtagd_varid != id)
1604 		return (DTRACE_AGGWALK_NEXT);
1605 
1606 	return (DTRACE_AGGWALK_DENORMALIZE);
1607 }
1608 
1609 static int
1610 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1611 {
1612 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1613 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1614 
1615 	if (agg->dtagd_nrecs == 0)
1616 		return (DTRACE_AGGWALK_NEXT);
1617 
1618 	if (agg->dtagd_varid != id)
1619 		return (DTRACE_AGGWALK_NEXT);
1620 
1621 	return (DTRACE_AGGWALK_CLEAR);
1622 }
1623 
1624 typedef struct dt_trunc {
1625 	dtrace_aggvarid_t dttd_id;
1626 	uint64_t dttd_remaining;
1627 } dt_trunc_t;
1628 
1629 static int
1630 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1631 {
1632 	dt_trunc_t *trunc = arg;
1633 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1634 	dtrace_aggvarid_t id = trunc->dttd_id;
1635 
1636 	if (agg->dtagd_nrecs == 0)
1637 		return (DTRACE_AGGWALK_NEXT);
1638 
1639 	if (agg->dtagd_varid != id)
1640 		return (DTRACE_AGGWALK_NEXT);
1641 
1642 	if (trunc->dttd_remaining == 0)
1643 		return (DTRACE_AGGWALK_REMOVE);
1644 
1645 	trunc->dttd_remaining--;
1646 	return (DTRACE_AGGWALK_NEXT);
1647 }
1648 
1649 static int
1650 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1651 {
1652 	dt_trunc_t trunc;
1653 	caddr_t addr;
1654 	int64_t remaining;
1655 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1656 
1657 	/*
1658 	 * We (should) have two records:  the aggregation ID followed by the
1659 	 * number of aggregation entries after which the aggregation is to be
1660 	 * truncated.
1661 	 */
1662 	addr = base + rec->dtrd_offset;
1663 
1664 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1665 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1666 
1667 	/* LINTED - alignment */
1668 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1669 	rec++;
1670 
1671 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1672 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1673 
1674 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1675 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1676 
1677 	addr = base + rec->dtrd_offset;
1678 
1679 	switch (rec->dtrd_size) {
1680 	case sizeof (uint64_t):
1681 		/* LINTED - alignment */
1682 		remaining = *((int64_t *)addr);
1683 		break;
1684 	case sizeof (uint32_t):
1685 		/* LINTED - alignment */
1686 		remaining = *((int32_t *)addr);
1687 		break;
1688 	case sizeof (uint16_t):
1689 		/* LINTED - alignment */
1690 		remaining = *((int16_t *)addr);
1691 		break;
1692 	case sizeof (uint8_t):
1693 		remaining = *((int8_t *)addr);
1694 		break;
1695 	default:
1696 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1697 	}
1698 
1699 	if (remaining < 0) {
1700 		func = dtrace_aggregate_walk_valsorted;
1701 		remaining = -remaining;
1702 	} else {
1703 		func = dtrace_aggregate_walk_valrevsorted;
1704 	}
1705 
1706 	assert(remaining >= 0);
1707 	trunc.dttd_remaining = remaining;
1708 
1709 	(void) func(dtp, dt_trunc_agg, &trunc);
1710 
1711 	return (0);
1712 }
1713 
1714 static int
1715 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1716     caddr_t addr, size_t size, uint64_t normal)
1717 {
1718 	int err;
1719 	dtrace_actkind_t act = rec->dtrd_action;
1720 
1721 	switch (act) {
1722 	case DTRACEACT_STACK:
1723 		return (dt_print_stack(dtp, fp, NULL, addr,
1724 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1725 
1726 	case DTRACEACT_USTACK:
1727 	case DTRACEACT_JSTACK:
1728 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1729 
1730 	case DTRACEACT_USYM:
1731 	case DTRACEACT_UADDR:
1732 		return (dt_print_usym(dtp, fp, addr, act));
1733 
1734 	case DTRACEACT_UMOD:
1735 		return (dt_print_umod(dtp, fp, NULL, addr));
1736 
1737 	case DTRACEACT_SYM:
1738 		return (dt_print_sym(dtp, fp, NULL, addr));
1739 
1740 	case DTRACEACT_MOD:
1741 		return (dt_print_mod(dtp, fp, NULL, addr));
1742 
1743 	case DTRACEAGG_QUANTIZE:
1744 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1745 
1746 	case DTRACEAGG_LQUANTIZE:
1747 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1748 
1749 	case DTRACEAGG_AVG:
1750 		return (dt_print_average(dtp, fp, addr, size, normal));
1751 
1752 	case DTRACEAGG_STDDEV:
1753 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1754 
1755 	default:
1756 		break;
1757 	}
1758 
1759 	switch (size) {
1760 	case sizeof (uint64_t):
1761 		err = dt_printf(dtp, fp, " %16lld",
1762 		    /* LINTED - alignment */
1763 		    (long long)*((uint64_t *)addr) / normal);
1764 		break;
1765 	case sizeof (uint32_t):
1766 		/* LINTED - alignment */
1767 		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1768 		    (uint32_t)normal);
1769 		break;
1770 	case sizeof (uint16_t):
1771 		/* LINTED - alignment */
1772 		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1773 		    (uint32_t)normal);
1774 		break;
1775 	case sizeof (uint8_t):
1776 		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1777 		    (uint32_t)normal);
1778 		break;
1779 	default:
1780 		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1781 		break;
1782 	}
1783 
1784 	return (err);
1785 }
1786 
1787 int
1788 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1789 {
1790 	int i, aggact = 0;
1791 	dt_print_aggdata_t *pd = arg;
1792 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1793 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1794 	FILE *fp = pd->dtpa_fp;
1795 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1796 	dtrace_recdesc_t *rec;
1797 	dtrace_actkind_t act;
1798 	caddr_t addr;
1799 	size_t size;
1800 
1801 	/*
1802 	 * Iterate over each record description in the key, printing the traced
1803 	 * data, skipping the first datum (the tuple member created by the
1804 	 * compiler).
1805 	 */
1806 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1807 		rec = &agg->dtagd_rec[i];
1808 		act = rec->dtrd_action;
1809 		addr = aggdata->dtada_data + rec->dtrd_offset;
1810 		size = rec->dtrd_size;
1811 
1812 		if (DTRACEACT_ISAGG(act)) {
1813 			aggact = i;
1814 			break;
1815 		}
1816 
1817 		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1818 			return (-1);
1819 
1820 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1821 		    DTRACE_BUFDATA_AGGKEY) < 0)
1822 			return (-1);
1823 	}
1824 
1825 	assert(aggact != 0);
1826 
1827 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1828 		uint64_t normal;
1829 
1830 		aggdata = aggsdata[i];
1831 		agg = aggdata->dtada_desc;
1832 		rec = &agg->dtagd_rec[aggact];
1833 		act = rec->dtrd_action;
1834 		addr = aggdata->dtada_data + rec->dtrd_offset;
1835 		size = rec->dtrd_size;
1836 
1837 		assert(DTRACEACT_ISAGG(act));
1838 		normal = aggdata->dtada_normal;
1839 
1840 		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1841 			return (-1);
1842 
1843 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1844 		    DTRACE_BUFDATA_AGGVAL) < 0)
1845 			return (-1);
1846 
1847 		if (!pd->dtpa_allunprint)
1848 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1849 	}
1850 
1851 	if (dt_printf(dtp, fp, "\n") < 0)
1852 		return (-1);
1853 
1854 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1855 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1856 		return (-1);
1857 
1858 	return (0);
1859 }
1860 
1861 int
1862 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1863 {
1864 	dt_print_aggdata_t *pd = arg;
1865 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1866 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1867 
1868 	if (pd->dtpa_allunprint) {
1869 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1870 			return (0);
1871 	} else {
1872 		/*
1873 		 * If we're not printing all unprinted aggregations, then the
1874 		 * aggregation variable ID denotes a specific aggregation
1875 		 * variable that we should print -- skip any other aggregations
1876 		 * that we encounter.
1877 		 */
1878 		if (agg->dtagd_nrecs == 0)
1879 			return (0);
1880 
1881 		if (aggvarid != agg->dtagd_varid)
1882 			return (0);
1883 	}
1884 
1885 	return (dt_print_aggs(&aggdata, 1, arg));
1886 }
1887 
1888 int
1889 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1890     const char *option, const char *value)
1891 {
1892 	int len, rval;
1893 	char *msg;
1894 	const char *errstr;
1895 	dtrace_setoptdata_t optdata;
1896 
1897 	bzero(&optdata, sizeof (optdata));
1898 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1899 
1900 	if (dtrace_setopt(dtp, option, value) == 0) {
1901 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1902 		optdata.dtsda_probe = data;
1903 		optdata.dtsda_option = option;
1904 		optdata.dtsda_handle = dtp;
1905 
1906 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1907 			return (rval);
1908 
1909 		return (0);
1910 	}
1911 
1912 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1913 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1914 	msg = alloca(len);
1915 
1916 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1917 	    option, value, errstr);
1918 
1919 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1920 		return (0);
1921 
1922 	return (rval);
1923 }
1924 
1925 static int
1926 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1927     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1928 {
1929 	dtrace_epid_t id;
1930 	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1931 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1932 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1933 	int rval, i, n;
1934 	dtrace_epid_t last = DTRACE_EPIDNONE;
1935 	dtrace_probedata_t data;
1936 	uint64_t drops;
1937 	caddr_t addr;
1938 
1939 	bzero(&data, sizeof (data));
1940 	data.dtpda_handle = dtp;
1941 	data.dtpda_cpu = cpu;
1942 
1943 again:
1944 	for (offs = start; offs < end; ) {
1945 		dtrace_eprobedesc_t *epd;
1946 
1947 		/*
1948 		 * We're guaranteed to have an ID.
1949 		 */
1950 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1951 
1952 		if (id == DTRACE_EPIDNONE) {
1953 			/*
1954 			 * This is filler to assure proper alignment of the
1955 			 * next record; we simply ignore it.
1956 			 */
1957 			offs += sizeof (id);
1958 			continue;
1959 		}
1960 
1961 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1962 		    &data.dtpda_pdesc)) != 0)
1963 			return (rval);
1964 
1965 		epd = data.dtpda_edesc;
1966 		data.dtpda_data = buf->dtbd_data + offs;
1967 
1968 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1969 			rval = dt_handle(dtp, &data);
1970 
1971 			if (rval == DTRACE_CONSUME_NEXT)
1972 				goto nextepid;
1973 
1974 			if (rval == DTRACE_CONSUME_ERROR)
1975 				return (-1);
1976 		}
1977 
1978 		if (flow)
1979 			(void) dt_flowindent(dtp, &data, last, buf, offs);
1980 
1981 		rval = (*efunc)(&data, arg);
1982 
1983 		if (flow) {
1984 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1985 				data.dtpda_indent += 2;
1986 		}
1987 
1988 		if (rval == DTRACE_CONSUME_NEXT)
1989 			goto nextepid;
1990 
1991 		if (rval == DTRACE_CONSUME_ABORT)
1992 			return (dt_set_errno(dtp, EDT_DIRABORT));
1993 
1994 		if (rval != DTRACE_CONSUME_THIS)
1995 			return (dt_set_errno(dtp, EDT_BADRVAL));
1996 
1997 		for (i = 0; i < epd->dtepd_nrecs; i++) {
1998 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1999 			dtrace_actkind_t act = rec->dtrd_action;
2000 
2001 			data.dtpda_data = buf->dtbd_data + offs +
2002 			    rec->dtrd_offset;
2003 			addr = data.dtpda_data;
2004 
2005 			if (act == DTRACEACT_LIBACT) {
2006 				uint64_t arg = rec->dtrd_arg;
2007 				dtrace_aggvarid_t id;
2008 
2009 				switch (arg) {
2010 				case DT_ACT_CLEAR:
2011 					/* LINTED - alignment */
2012 					id = *((dtrace_aggvarid_t *)addr);
2013 					(void) dtrace_aggregate_walk(dtp,
2014 					    dt_clear_agg, &id);
2015 					continue;
2016 
2017 				case DT_ACT_DENORMALIZE:
2018 					/* LINTED - alignment */
2019 					id = *((dtrace_aggvarid_t *)addr);
2020 					(void) dtrace_aggregate_walk(dtp,
2021 					    dt_denormalize_agg, &id);
2022 					continue;
2023 
2024 				case DT_ACT_FTRUNCATE:
2025 					if (fp == NULL)
2026 						continue;
2027 
2028 					(void) fflush(fp);
2029 					(void) ftruncate(fileno(fp), 0);
2030 					(void) fseeko(fp, 0, SEEK_SET);
2031 					continue;
2032 
2033 				case DT_ACT_NORMALIZE:
2034 					if (i == epd->dtepd_nrecs - 1)
2035 						return (dt_set_errno(dtp,
2036 						    EDT_BADNORMAL));
2037 
2038 					if (dt_normalize(dtp,
2039 					    buf->dtbd_data + offs, rec) != 0)
2040 						return (-1);
2041 
2042 					i++;
2043 					continue;
2044 
2045 				case DT_ACT_SETOPT: {
2046 					uint64_t *opts = dtp->dt_options;
2047 					dtrace_recdesc_t *valrec;
2048 					uint32_t valsize;
2049 					caddr_t val;
2050 					int rv;
2051 
2052 					if (i == epd->dtepd_nrecs - 1) {
2053 						return (dt_set_errno(dtp,
2054 						    EDT_BADSETOPT));
2055 					}
2056 
2057 					valrec = &epd->dtepd_rec[++i];
2058 					valsize = valrec->dtrd_size;
2059 
2060 					if (valrec->dtrd_action != act ||
2061 					    valrec->dtrd_arg != arg) {
2062 						return (dt_set_errno(dtp,
2063 						    EDT_BADSETOPT));
2064 					}
2065 
2066 					if (valsize > sizeof (uint64_t)) {
2067 						val = buf->dtbd_data + offs +
2068 						    valrec->dtrd_offset;
2069 					} else {
2070 						val = "1";
2071 					}
2072 
2073 					rv = dt_setopt(dtp, &data, addr, val);
2074 
2075 					if (rv != 0)
2076 						return (-1);
2077 
2078 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2079 					    DTRACEOPT_UNSET);
2080 					quiet = (opts[DTRACEOPT_QUIET] !=
2081 					    DTRACEOPT_UNSET);
2082 
2083 					continue;
2084 				}
2085 
2086 				case DT_ACT_TRUNC:
2087 					if (i == epd->dtepd_nrecs - 1)
2088 						return (dt_set_errno(dtp,
2089 						    EDT_BADTRUNC));
2090 
2091 					if (dt_trunc(dtp,
2092 					    buf->dtbd_data + offs, rec) != 0)
2093 						return (-1);
2094 
2095 					i++;
2096 					continue;
2097 
2098 				default:
2099 					continue;
2100 				}
2101 			}
2102 
2103 			rval = (*rfunc)(&data, rec, arg);
2104 
2105 			if (rval == DTRACE_CONSUME_NEXT)
2106 				continue;
2107 
2108 			if (rval == DTRACE_CONSUME_ABORT)
2109 				return (dt_set_errno(dtp, EDT_DIRABORT));
2110 
2111 			if (rval != DTRACE_CONSUME_THIS)
2112 				return (dt_set_errno(dtp, EDT_BADRVAL));
2113 
2114 			if (act == DTRACEACT_STACK) {
2115 				int depth = rec->dtrd_arg;
2116 
2117 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2118 				    rec->dtrd_size / depth) < 0)
2119 					return (-1);
2120 				goto nextrec;
2121 			}
2122 
2123 			if (act == DTRACEACT_USTACK ||
2124 			    act == DTRACEACT_JSTACK) {
2125 				if (dt_print_ustack(dtp, fp, NULL,
2126 				    addr, rec->dtrd_arg) < 0)
2127 					return (-1);
2128 				goto nextrec;
2129 			}
2130 
2131 			if (act == DTRACEACT_SYM) {
2132 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2133 					return (-1);
2134 				goto nextrec;
2135 			}
2136 
2137 			if (act == DTRACEACT_MOD) {
2138 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2139 					return (-1);
2140 				goto nextrec;
2141 			}
2142 
2143 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2144 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2145 					return (-1);
2146 				goto nextrec;
2147 			}
2148 
2149 			if (act == DTRACEACT_UMOD) {
2150 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2151 					return (-1);
2152 				goto nextrec;
2153 			}
2154 
2155 			if (act == DTRACEACT_PRINTM) {
2156 				if (dt_print_memory(dtp, fp, addr) < 0)
2157 					return (-1);
2158 				goto nextrec;
2159 			}
2160 
2161 			if (act == DTRACEACT_PRINTT) {
2162 				if (dt_print_type(dtp, fp, addr) < 0)
2163 					return (-1);
2164 				goto nextrec;
2165 			}
2166 
2167 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2168 				void *fmtdata;
2169 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2170 				    const dtrace_probedata_t *,
2171 				    const dtrace_recdesc_t *, uint_t,
2172 				    const void *buf, size_t);
2173 
2174 				if ((fmtdata = dt_format_lookup(dtp,
2175 				    rec->dtrd_format)) == NULL)
2176 					goto nofmt;
2177 
2178 				switch (act) {
2179 				case DTRACEACT_PRINTF:
2180 					func = dtrace_fprintf;
2181 					break;
2182 				case DTRACEACT_PRINTA:
2183 					func = dtrace_fprinta;
2184 					break;
2185 				case DTRACEACT_SYSTEM:
2186 					func = dtrace_system;
2187 					break;
2188 				case DTRACEACT_FREOPEN:
2189 					func = dtrace_freopen;
2190 					break;
2191 				}
2192 
2193 				n = (*func)(dtp, fp, fmtdata, &data,
2194 				    rec, epd->dtepd_nrecs - i,
2195 				    (uchar_t *)buf->dtbd_data + offs,
2196 				    buf->dtbd_size - offs);
2197 
2198 				if (n < 0)
2199 					return (-1); /* errno is set for us */
2200 
2201 				if (n > 0)
2202 					i += n - 1;
2203 				goto nextrec;
2204 			}
2205 
2206 nofmt:
2207 			if (act == DTRACEACT_PRINTA) {
2208 				dt_print_aggdata_t pd;
2209 				dtrace_aggvarid_t *aggvars;
2210 				int j, naggvars = 0;
2211 				size_t size = ((epd->dtepd_nrecs - i) *
2212 				    sizeof (dtrace_aggvarid_t));
2213 
2214 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2215 					return (-1);
2216 
2217 				/*
2218 				 * This might be a printa() with multiple
2219 				 * aggregation variables.  We need to scan
2220 				 * forward through the records until we find
2221 				 * a record from a different statement.
2222 				 */
2223 				for (j = i; j < epd->dtepd_nrecs; j++) {
2224 					dtrace_recdesc_t *nrec;
2225 					caddr_t naddr;
2226 
2227 					nrec = &epd->dtepd_rec[j];
2228 
2229 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2230 						break;
2231 
2232 					if (nrec->dtrd_action != act) {
2233 						return (dt_set_errno(dtp,
2234 						    EDT_BADAGG));
2235 					}
2236 
2237 					naddr = buf->dtbd_data + offs +
2238 					    nrec->dtrd_offset;
2239 
2240 					aggvars[naggvars++] =
2241 					    /* LINTED - alignment */
2242 					    *((dtrace_aggvarid_t *)naddr);
2243 				}
2244 
2245 				i = j - 1;
2246 				bzero(&pd, sizeof (pd));
2247 				pd.dtpa_dtp = dtp;
2248 				pd.dtpa_fp = fp;
2249 
2250 				assert(naggvars >= 1);
2251 
2252 				if (naggvars == 1) {
2253 					pd.dtpa_id = aggvars[0];
2254 					dt_free(dtp, aggvars);
2255 
2256 					if (dt_printf(dtp, fp, "\n") < 0 ||
2257 					    dtrace_aggregate_walk_sorted(dtp,
2258 					    dt_print_agg, &pd) < 0)
2259 						return (-1);
2260 					goto nextrec;
2261 				}
2262 
2263 				if (dt_printf(dtp, fp, "\n") < 0 ||
2264 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2265 				    naggvars, dt_print_aggs, &pd) < 0) {
2266 					dt_free(dtp, aggvars);
2267 					return (-1);
2268 				}
2269 
2270 				dt_free(dtp, aggvars);
2271 				goto nextrec;
2272 			}
2273 
2274 			switch (rec->dtrd_size) {
2275 			case sizeof (uint64_t):
2276 				n = dt_printf(dtp, fp,
2277 				    quiet ? "%lld" : " %16lld",
2278 				    /* LINTED - alignment */
2279 				    *((unsigned long long *)addr));
2280 				break;
2281 			case sizeof (uint32_t):
2282 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2283 				    /* LINTED - alignment */
2284 				    *((uint32_t *)addr));
2285 				break;
2286 			case sizeof (uint16_t):
2287 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2288 				    /* LINTED - alignment */
2289 				    *((uint16_t *)addr));
2290 				break;
2291 			case sizeof (uint8_t):
2292 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2293 				    *((uint8_t *)addr));
2294 				break;
2295 			default:
2296 				n = dt_print_bytes(dtp, fp, addr,
2297 				    rec->dtrd_size, 33, quiet, 0);
2298 				break;
2299 			}
2300 
2301 			if (n < 0)
2302 				return (-1); /* errno is set for us */
2303 
2304 nextrec:
2305 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2306 				return (-1); /* errno is set for us */
2307 		}
2308 
2309 		/*
2310 		 * Call the record callback with a NULL record to indicate
2311 		 * that we're done processing this EPID.
2312 		 */
2313 		rval = (*rfunc)(&data, NULL, arg);
2314 nextepid:
2315 		offs += epd->dtepd_size;
2316 		last = id;
2317 	}
2318 
2319 	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2320 		end = buf->dtbd_oldest;
2321 		start = 0;
2322 		goto again;
2323 	}
2324 
2325 	if ((drops = buf->dtbd_drops) == 0)
2326 		return (0);
2327 
2328 	/*
2329 	 * Explicitly zero the drops to prevent us from processing them again.
2330 	 */
2331 	buf->dtbd_drops = 0;
2332 
2333 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2334 }
2335 
2336 typedef struct dt_begin {
2337 	dtrace_consume_probe_f *dtbgn_probefunc;
2338 	dtrace_consume_rec_f *dtbgn_recfunc;
2339 	void *dtbgn_arg;
2340 	dtrace_handle_err_f *dtbgn_errhdlr;
2341 	void *dtbgn_errarg;
2342 	int dtbgn_beginonly;
2343 } dt_begin_t;
2344 
2345 static int
2346 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2347 {
2348 	dt_begin_t *begin = (dt_begin_t *)arg;
2349 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2350 
2351 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2352 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2353 
2354 	if (begin->dtbgn_beginonly) {
2355 		if (!(r1 && r2))
2356 			return (DTRACE_CONSUME_NEXT);
2357 	} else {
2358 		if (r1 && r2)
2359 			return (DTRACE_CONSUME_NEXT);
2360 	}
2361 
2362 	/*
2363 	 * We have a record that we're interested in.  Now call the underlying
2364 	 * probe function...
2365 	 */
2366 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2367 }
2368 
2369 static int
2370 dt_consume_begin_record(const dtrace_probedata_t *data,
2371     const dtrace_recdesc_t *rec, void *arg)
2372 {
2373 	dt_begin_t *begin = (dt_begin_t *)arg;
2374 
2375 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2376 }
2377 
2378 static int
2379 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2380 {
2381 	dt_begin_t *begin = (dt_begin_t *)arg;
2382 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2383 
2384 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2385 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2386 
2387 	if (begin->dtbgn_beginonly) {
2388 		if (!(r1 && r2))
2389 			return (DTRACE_HANDLE_OK);
2390 	} else {
2391 		if (r1 && r2)
2392 			return (DTRACE_HANDLE_OK);
2393 	}
2394 
2395 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2396 }
2397 
2398 static int
2399 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2400     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2401 {
2402 	/*
2403 	 * There's this idea that the BEGIN probe should be processed before
2404 	 * everything else, and that the END probe should be processed after
2405 	 * anything else.  In the common case, this is pretty easy to deal
2406 	 * with.  However, a situation may arise where the BEGIN enabling and
2407 	 * END enabling are on the same CPU, and some enabling in the middle
2408 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2409 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2410 	 * then set it aside.  We will then process every other CPU, and then
2411 	 * we'll return to the BEGIN CPU and process the rest of the data
2412 	 * (which will inevitably include the END probe, if any).  Making this
2413 	 * even more complicated (!) is the library's ERROR enabling.  Because
2414 	 * this enabling is processed before we even get into the consume call
2415 	 * back, any ERROR firing would result in the library's ERROR enabling
2416 	 * being processed twice -- once in our first pass (for BEGIN probes),
2417 	 * and again in our second pass (for everything but BEGIN probes).  To
2418 	 * deal with this, we interpose on the ERROR handler to assure that we
2419 	 * only process ERROR enablings induced by BEGIN enablings in the
2420 	 * first pass, and that we only process ERROR enablings _not_ induced
2421 	 * by BEGIN enablings in the second pass.
2422 	 */
2423 	dt_begin_t begin;
2424 	processorid_t cpu = dtp->dt_beganon;
2425 	dtrace_bufdesc_t nbuf;
2426 #if !defined(sun)
2427 	dtrace_bufdesc_t *pbuf;
2428 #endif
2429 	int rval, i;
2430 	static int max_ncpus;
2431 	dtrace_optval_t size;
2432 
2433 	dtp->dt_beganon = -1;
2434 
2435 #if defined(sun)
2436 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2437 #else
2438 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2439 #endif
2440 		/*
2441 		 * We really don't expect this to fail, but it is at least
2442 		 * technically possible for this to fail with ENOENT.  In this
2443 		 * case, we just drive on...
2444 		 */
2445 		if (errno == ENOENT)
2446 			return (0);
2447 
2448 		return (dt_set_errno(dtp, errno));
2449 	}
2450 
2451 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2452 		/*
2453 		 * This is the simple case.  We're either not stopped, or if
2454 		 * we are, we actually processed any END probes on another
2455 		 * CPU.  We can simply consume this buffer and return.
2456 		 */
2457 		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2458 	}
2459 
2460 	begin.dtbgn_probefunc = pf;
2461 	begin.dtbgn_recfunc = rf;
2462 	begin.dtbgn_arg = arg;
2463 	begin.dtbgn_beginonly = 1;
2464 
2465 	/*
2466 	 * We need to interpose on the ERROR handler to be sure that we
2467 	 * only process ERRORs induced by BEGIN.
2468 	 */
2469 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2470 	begin.dtbgn_errarg = dtp->dt_errarg;
2471 	dtp->dt_errhdlr = dt_consume_begin_error;
2472 	dtp->dt_errarg = &begin;
2473 
2474 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2475 	    dt_consume_begin_record, &begin);
2476 
2477 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2478 	dtp->dt_errarg = begin.dtbgn_errarg;
2479 
2480 	if (rval != 0)
2481 		return (rval);
2482 
2483 	/*
2484 	 * Now allocate a new buffer.  We'll use this to deal with every other
2485 	 * CPU.
2486 	 */
2487 	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2488 	(void) dtrace_getopt(dtp, "bufsize", &size);
2489 	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2490 		return (dt_set_errno(dtp, EDT_NOMEM));
2491 
2492 	if (max_ncpus == 0)
2493 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2494 
2495 	for (i = 0; i < max_ncpus; i++) {
2496 		nbuf.dtbd_cpu = i;
2497 
2498 		if (i == cpu)
2499 			continue;
2500 
2501 #if defined(sun)
2502 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2503 #else
2504 		pbuf = &nbuf;
2505 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2506 #endif
2507 			/*
2508 			 * If we failed with ENOENT, it may be because the
2509 			 * CPU was unconfigured -- this is okay.  Any other
2510 			 * error, however, is unexpected.
2511 			 */
2512 			if (errno == ENOENT)
2513 				continue;
2514 
2515 			free(nbuf.dtbd_data);
2516 
2517 			return (dt_set_errno(dtp, errno));
2518 		}
2519 
2520 		if ((rval = dt_consume_cpu(dtp, fp,
2521 		    i, &nbuf, pf, rf, arg)) != 0) {
2522 			free(nbuf.dtbd_data);
2523 			return (rval);
2524 		}
2525 	}
2526 
2527 	free(nbuf.dtbd_data);
2528 
2529 	/*
2530 	 * Okay -- we're done with the other buffers.  Now we want to
2531 	 * reconsume the first buffer -- but this time we're looking for
2532 	 * everything _but_ BEGIN.  And of course, in order to only consume
2533 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2534 	 * ERROR interposition function...
2535 	 */
2536 	begin.dtbgn_beginonly = 0;
2537 
2538 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2539 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2540 	dtp->dt_errhdlr = dt_consume_begin_error;
2541 	dtp->dt_errarg = &begin;
2542 
2543 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2544 	    dt_consume_begin_record, &begin);
2545 
2546 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2547 	dtp->dt_errarg = begin.dtbgn_errarg;
2548 
2549 	return (rval);
2550 }
2551 
2552 int
2553 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2554     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2555 {
2556 	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2557 	dtrace_optval_t size;
2558 	static int max_ncpus;
2559 	int i, rval;
2560 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2561 	hrtime_t now = gethrtime();
2562 
2563 	if (dtp->dt_lastswitch != 0) {
2564 		if (now - dtp->dt_lastswitch < interval)
2565 			return (0);
2566 
2567 		dtp->dt_lastswitch += interval;
2568 	} else {
2569 		dtp->dt_lastswitch = now;
2570 	}
2571 
2572 	if (!dtp->dt_active)
2573 		return (dt_set_errno(dtp, EINVAL));
2574 
2575 	if (max_ncpus == 0)
2576 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2577 
2578 	if (pf == NULL)
2579 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2580 
2581 	if (rf == NULL)
2582 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2583 
2584 	if (buf->dtbd_data == NULL) {
2585 		(void) dtrace_getopt(dtp, "bufsize", &size);
2586 		if ((buf->dtbd_data = malloc(size)) == NULL)
2587 			return (dt_set_errno(dtp, EDT_NOMEM));
2588 
2589 		buf->dtbd_size = size;
2590 	}
2591 
2592 	/*
2593 	 * If we have just begun, we want to first process the CPU that
2594 	 * executed the BEGIN probe (if any).
2595 	 */
2596 	if (dtp->dt_active && dtp->dt_beganon != -1) {
2597 		buf->dtbd_cpu = dtp->dt_beganon;
2598 		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2599 			return (rval);
2600 	}
2601 
2602 	for (i = 0; i < max_ncpus; i++) {
2603 		buf->dtbd_cpu = i;
2604 
2605 		/*
2606 		 * If we have stopped, we want to process the CPU on which the
2607 		 * END probe was processed only _after_ we have processed
2608 		 * everything else.
2609 		 */
2610 		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2611 			continue;
2612 
2613 #if defined(sun)
2614 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2615 #else
2616 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2617 #endif
2618 			/*
2619 			 * If we failed with ENOENT, it may be because the
2620 			 * CPU was unconfigured -- this is okay.  Any other
2621 			 * error, however, is unexpected.
2622 			 */
2623 			if (errno == ENOENT)
2624 				continue;
2625 
2626 			return (dt_set_errno(dtp, errno));
2627 		}
2628 
2629 		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2630 			return (rval);
2631 	}
2632 
2633 	if (!dtp->dt_stopped)
2634 		return (0);
2635 
2636 	buf->dtbd_cpu = dtp->dt_endedon;
2637 
2638 #if defined(sun)
2639 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2640 #else
2641 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2642 #endif
2643 		/*
2644 		 * This _really_ shouldn't fail, but it is strictly speaking
2645 		 * possible for this to return ENOENT if the CPU that called
2646 		 * the END enabling somehow managed to become unconfigured.
2647 		 * It's unclear how the user can possibly expect anything
2648 		 * rational to happen in this case -- the state has been thrown
2649 		 * out along with the unconfigured CPU -- so we'll just drive
2650 		 * on...
2651 		 */
2652 		if (errno == ENOENT)
2653 			return (0);
2654 
2655 		return (dt_set_errno(dtp, errno));
2656 	}
2657 
2658 	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2659 }
2660