1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zil.h> 90 #include <sys/zil_impl.h> 91 #include <sys/vdev_impl.h> 92 #include <sys/vdev_file.h> 93 #include <sys/spa_impl.h> 94 #include <sys/metaslab_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/dsl_dataset.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 #include <libnvpair.h> 109 110 static char cmdname[] = "ztest"; 111 static char *zopt_pool = cmdname; 112 113 static uint64_t zopt_vdevs = 5; 114 static uint64_t zopt_vdevtime; 115 static int zopt_ashift = SPA_MINBLOCKSHIFT; 116 static int zopt_mirrors = 2; 117 static int zopt_raidz = 4; 118 static int zopt_raidz_parity = 1; 119 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 120 static int zopt_datasets = 7; 121 static int zopt_threads = 23; 122 static uint64_t zopt_passtime = 60; /* 60 seconds */ 123 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 124 static int zopt_verbose = 0; 125 static int zopt_init = 1; 126 static char *zopt_dir = "/tmp"; 127 static uint64_t zopt_time = 300; /* 5 minutes */ 128 129 #define BT_MAGIC 0x123456789abcdefULL 130 #define MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1) 131 132 enum ztest_io_type { 133 ZTEST_IO_WRITE_TAG, 134 ZTEST_IO_WRITE_PATTERN, 135 ZTEST_IO_WRITE_ZEROES, 136 ZTEST_IO_TRUNCATE, 137 ZTEST_IO_SETATTR, 138 ZTEST_IO_TYPES 139 }; 140 141 typedef struct ztest_block_tag { 142 uint64_t bt_magic; 143 uint64_t bt_objset; 144 uint64_t bt_object; 145 uint64_t bt_offset; 146 uint64_t bt_gen; 147 uint64_t bt_txg; 148 uint64_t bt_crtxg; 149 } ztest_block_tag_t; 150 151 typedef struct bufwad { 152 uint64_t bw_index; 153 uint64_t bw_txg; 154 uint64_t bw_data; 155 } bufwad_t; 156 157 /* 158 * XXX -- fix zfs range locks to be generic so we can use them here. 159 */ 160 typedef enum { 161 RL_READER, 162 RL_WRITER, 163 RL_APPEND 164 } rl_type_t; 165 166 typedef struct rll { 167 void *rll_writer; 168 int rll_readers; 169 mutex_t rll_lock; 170 cond_t rll_cv; 171 } rll_t; 172 173 typedef struct rl { 174 uint64_t rl_object; 175 uint64_t rl_offset; 176 uint64_t rl_size; 177 rll_t *rl_lock; 178 } rl_t; 179 180 #define ZTEST_RANGE_LOCKS 64 181 #define ZTEST_OBJECT_LOCKS 64 182 183 /* 184 * Object descriptor. Used as a template for object lookup/create/remove. 185 */ 186 typedef struct ztest_od { 187 uint64_t od_dir; 188 uint64_t od_object; 189 dmu_object_type_t od_type; 190 dmu_object_type_t od_crtype; 191 uint64_t od_blocksize; 192 uint64_t od_crblocksize; 193 uint64_t od_gen; 194 uint64_t od_crgen; 195 char od_name[MAXNAMELEN]; 196 } ztest_od_t; 197 198 /* 199 * Per-dataset state. 200 */ 201 typedef struct ztest_ds { 202 objset_t *zd_os; 203 zilog_t *zd_zilog; 204 uint64_t zd_seq; 205 ztest_od_t *zd_od; /* debugging aid */ 206 char zd_name[MAXNAMELEN]; 207 mutex_t zd_dirobj_lock; 208 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 209 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 210 } ztest_ds_t; 211 212 /* 213 * Per-iteration state. 214 */ 215 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 216 217 typedef struct ztest_info { 218 ztest_func_t *zi_func; /* test function */ 219 uint64_t zi_iters; /* iterations per execution */ 220 uint64_t *zi_interval; /* execute every <interval> seconds */ 221 uint64_t zi_call_count; /* per-pass count */ 222 uint64_t zi_call_time; /* per-pass time */ 223 uint64_t zi_call_next; /* next time to call this function */ 224 } ztest_info_t; 225 226 /* 227 * Note: these aren't static because we want dladdr() to work. 228 */ 229 ztest_func_t ztest_dmu_read_write; 230 ztest_func_t ztest_dmu_write_parallel; 231 ztest_func_t ztest_dmu_object_alloc_free; 232 ztest_func_t ztest_dmu_commit_callbacks; 233 ztest_func_t ztest_zap; 234 ztest_func_t ztest_zap_parallel; 235 ztest_func_t ztest_zil_commit; 236 ztest_func_t ztest_dmu_read_write_zcopy; 237 ztest_func_t ztest_dmu_objset_create_destroy; 238 ztest_func_t ztest_dmu_prealloc; 239 ztest_func_t ztest_fzap; 240 ztest_func_t ztest_dmu_snapshot_create_destroy; 241 ztest_func_t ztest_dsl_prop_get_set; 242 ztest_func_t ztest_spa_prop_get_set; 243 ztest_func_t ztest_spa_create_destroy; 244 ztest_func_t ztest_fault_inject; 245 ztest_func_t ztest_ddt_repair; 246 ztest_func_t ztest_dmu_snapshot_hold; 247 ztest_func_t ztest_spa_rename; 248 ztest_func_t ztest_scrub; 249 ztest_func_t ztest_dsl_dataset_promote_busy; 250 ztest_func_t ztest_vdev_attach_detach; 251 ztest_func_t ztest_vdev_LUN_growth; 252 ztest_func_t ztest_vdev_add_remove; 253 ztest_func_t ztest_vdev_aux_add_remove; 254 ztest_func_t ztest_split_pool; 255 256 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 257 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 258 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 259 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 260 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 261 262 ztest_info_t ztest_info[] = { 263 { ztest_dmu_read_write, 1, &zopt_always }, 264 { ztest_dmu_write_parallel, 10, &zopt_always }, 265 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 266 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 267 { ztest_zap, 30, &zopt_always }, 268 { ztest_zap_parallel, 100, &zopt_always }, 269 { ztest_split_pool, 1, &zopt_always }, 270 { ztest_zil_commit, 1, &zopt_incessant }, 271 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 272 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 273 { ztest_dsl_prop_get_set, 1, &zopt_often }, 274 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 275 #if 0 276 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 277 #endif 278 { ztest_fzap, 1, &zopt_sometimes }, 279 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 280 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 281 { ztest_fault_inject, 1, &zopt_sometimes }, 282 { ztest_ddt_repair, 1, &zopt_sometimes }, 283 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 284 { ztest_spa_rename, 1, &zopt_rarely }, 285 { ztest_scrub, 1, &zopt_rarely }, 286 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 287 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 288 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 289 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 290 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 291 }; 292 293 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 294 295 /* 296 * The following struct is used to hold a list of uncalled commit callbacks. 297 * The callbacks are ordered by txg number. 298 */ 299 typedef struct ztest_cb_list { 300 mutex_t zcl_callbacks_lock; 301 list_t zcl_callbacks; 302 } ztest_cb_list_t; 303 304 /* 305 * Stuff we need to share writably between parent and child. 306 */ 307 typedef struct ztest_shared { 308 char *zs_pool; 309 spa_t *zs_spa; 310 hrtime_t zs_proc_start; 311 hrtime_t zs_proc_stop; 312 hrtime_t zs_thread_start; 313 hrtime_t zs_thread_stop; 314 hrtime_t zs_thread_kill; 315 uint64_t zs_enospc_count; 316 uint64_t zs_vdev_next_leaf; 317 uint64_t zs_vdev_aux; 318 uint64_t zs_alloc; 319 uint64_t zs_space; 320 mutex_t zs_vdev_lock; 321 rwlock_t zs_name_lock; 322 ztest_info_t zs_info[ZTEST_FUNCS]; 323 uint64_t zs_splits; 324 uint64_t zs_mirrors; 325 ztest_ds_t zs_zd[]; 326 } ztest_shared_t; 327 328 #define ID_PARALLEL -1ULL 329 330 static char ztest_dev_template[] = "%s/%s.%llua"; 331 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 332 ztest_shared_t *ztest_shared; 333 uint64_t *ztest_seq; 334 335 static int ztest_random_fd; 336 static int ztest_dump_core = 1; 337 338 static boolean_t ztest_exiting; 339 340 /* Global commit callback list */ 341 static ztest_cb_list_t zcl; 342 343 extern uint64_t metaslab_gang_bang; 344 extern uint64_t metaslab_df_alloc_threshold; 345 static uint64_t metaslab_sz; 346 347 enum ztest_object { 348 ZTEST_META_DNODE = 0, 349 ZTEST_DIROBJ, 350 ZTEST_OBJECTS 351 }; 352 353 static void usage(boolean_t) __NORETURN; 354 355 /* 356 * These libumem hooks provide a reasonable set of defaults for the allocator's 357 * debugging facilities. 358 */ 359 const char * 360 _umem_debug_init() 361 { 362 return ("default,verbose"); /* $UMEM_DEBUG setting */ 363 } 364 365 const char * 366 _umem_logging_init(void) 367 { 368 return ("fail,contents"); /* $UMEM_LOGGING setting */ 369 } 370 371 #define FATAL_MSG_SZ 1024 372 373 char *fatal_msg; 374 375 static void 376 fatal(int do_perror, char *message, ...) 377 { 378 va_list args; 379 int save_errno = errno; 380 char buf[FATAL_MSG_SZ]; 381 size_t len, blklen = sizeof(buf); 382 383 (void) fflush(stdout); 384 385 va_start(args, message); 386 len = snprintf(buf, blklen, "ztest: "); 387 if (len > blklen) 388 len = blklen; 389 /* LINTED */ 390 len += vsnprintf(buf + len, blklen - len, message, args); 391 va_end(args); 392 if (len > blklen) 393 len = blklen; 394 if (do_perror) { 395 snprintf(buf + len, blklen - len, ": %s", strerror(save_errno)); 396 } 397 (void) fprintf(stderr, "%s\n", buf); 398 fatal_msg = buf; /* to ease debugging */ 399 if (ztest_dump_core) 400 abort(); 401 exit(3); 402 } 403 404 static int 405 str2shift(const char *buf) 406 { 407 const char *ends = "BKMGTPEZ"; 408 int i; 409 410 if (buf[0] == '\0') 411 return (0); 412 for (i = 0; i < strlen(ends); i++) { 413 if (toupper(buf[0]) == ends[i]) 414 break; 415 } 416 if (i == strlen(ends)) { 417 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 418 buf); 419 usage(B_FALSE); 420 } 421 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 422 return (10*i); 423 } 424 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 425 usage(B_FALSE); 426 /* NOTREACHED */ 427 } 428 429 static uint64_t 430 nicenumtoull(const char *buf) 431 { 432 char *end; 433 uint64_t val; 434 435 val = strtoull(buf, &end, 0); 436 if (end == buf) { 437 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 438 usage(B_FALSE); 439 } else if (end[0] == '.') { 440 double fval = strtod(buf, &end); 441 fval *= pow(2, str2shift(end)); 442 if (fval > UINT64_MAX) { 443 (void) fprintf(stderr, "ztest: value too large: %s\n", 444 buf); 445 usage(B_FALSE); 446 } 447 val = (uint64_t)fval; 448 } else { 449 int shift = str2shift(end); 450 if (shift >= 64 || (val << shift) >> shift != val) { 451 (void) fprintf(stderr, "ztest: value too large: %s\n", 452 buf); 453 usage(B_FALSE); 454 } 455 val <<= shift; 456 } 457 return (val); 458 } 459 460 static void 461 usage(boolean_t requested) 462 { 463 char nice_vdev_size[10]; 464 char nice_gang_bang[10]; 465 FILE *fp = requested ? stdout : stderr; 466 467 nicenum(zopt_vdev_size, nice_vdev_size, sizeof(nice_vdev_size)); 468 nicenum(metaslab_gang_bang, nice_gang_bang, sizeof(nice_gang_bang)); 469 470 (void) fprintf(fp, "Usage: %s\n" 471 "\t[-v vdevs (default: %llu)]\n" 472 "\t[-s size_of_each_vdev (default: %s)]\n" 473 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 474 "\t[-m mirror_copies (default: %d)]\n" 475 "\t[-r raidz_disks (default: %d)]\n" 476 "\t[-R raidz_parity (default: %d)]\n" 477 "\t[-d datasets (default: %d)]\n" 478 "\t[-t threads (default: %d)]\n" 479 "\t[-g gang_block_threshold (default: %s)]\n" 480 "\t[-i initialize pool i times (default: %d)]\n" 481 "\t[-k kill percentage (default: %llu%%)]\n" 482 "\t[-p pool_name (default: %s)]\n" 483 "\t[-f file directory for vdev files (default: %s)]\n" 484 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 485 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 486 "\t[-T time] total run time (default: %llu sec)\n" 487 "\t[-P passtime] time per pass (default: %llu sec)\n" 488 "\t[-h] (print help)\n" 489 "", 490 cmdname, 491 (u_longlong_t)zopt_vdevs, /* -v */ 492 nice_vdev_size, /* -s */ 493 zopt_ashift, /* -a */ 494 zopt_mirrors, /* -m */ 495 zopt_raidz, /* -r */ 496 zopt_raidz_parity, /* -R */ 497 zopt_datasets, /* -d */ 498 zopt_threads, /* -t */ 499 nice_gang_bang, /* -g */ 500 zopt_init, /* -i */ 501 (u_longlong_t)zopt_killrate, /* -k */ 502 zopt_pool, /* -p */ 503 zopt_dir, /* -f */ 504 (u_longlong_t)zopt_time, /* -T */ 505 (u_longlong_t)zopt_passtime); /* -P */ 506 exit(requested ? 0 : 1); 507 } 508 509 static void 510 process_options(int argc, char **argv) 511 { 512 int opt; 513 uint64_t value; 514 515 /* By default, test gang blocks for blocks 32K and greater */ 516 metaslab_gang_bang = 32 << 10; 517 518 while ((opt = getopt(argc, argv, 519 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 520 value = 0; 521 switch (opt) { 522 case 'v': 523 case 's': 524 case 'a': 525 case 'm': 526 case 'r': 527 case 'R': 528 case 'd': 529 case 't': 530 case 'g': 531 case 'i': 532 case 'k': 533 case 'T': 534 case 'P': 535 value = nicenumtoull(optarg); 536 } 537 switch (opt) { 538 case 'v': 539 zopt_vdevs = value; 540 break; 541 case 's': 542 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 543 break; 544 case 'a': 545 zopt_ashift = value; 546 break; 547 case 'm': 548 zopt_mirrors = value; 549 break; 550 case 'r': 551 zopt_raidz = MAX(1, value); 552 break; 553 case 'R': 554 zopt_raidz_parity = MIN(MAX(value, 1), 3); 555 break; 556 case 'd': 557 zopt_datasets = MAX(1, value); 558 break; 559 case 't': 560 zopt_threads = MAX(1, value); 561 break; 562 case 'g': 563 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 564 break; 565 case 'i': 566 zopt_init = value; 567 break; 568 case 'k': 569 zopt_killrate = value; 570 break; 571 case 'p': 572 zopt_pool = strdup(optarg); 573 break; 574 case 'f': 575 zopt_dir = strdup(optarg); 576 break; 577 case 'V': 578 zopt_verbose++; 579 break; 580 case 'E': 581 zopt_init = 0; 582 break; 583 case 'T': 584 zopt_time = value; 585 break; 586 case 'P': 587 zopt_passtime = MAX(1, value); 588 break; 589 case 'h': 590 usage(B_TRUE); 591 break; 592 case '?': 593 default: 594 usage(B_FALSE); 595 break; 596 } 597 } 598 599 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 600 601 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs : 602 UINT64_MAX >> 2); 603 } 604 605 static void 606 ztest_kill(ztest_shared_t *zs) 607 { 608 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa)); 609 zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa)); 610 (void) kill(getpid(), SIGKILL); 611 } 612 613 static uint64_t 614 ztest_random(uint64_t range) 615 { 616 uint64_t r; 617 618 if (range == 0) 619 return (0); 620 621 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 622 fatal(1, "short read from /dev/urandom"); 623 624 return (r % range); 625 } 626 627 /* ARGSUSED */ 628 static void 629 ztest_record_enospc(const char *s) 630 { 631 ztest_shared->zs_enospc_count++; 632 } 633 634 static uint64_t 635 ztest_get_ashift(void) 636 { 637 if (zopt_ashift == 0) 638 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 639 return (zopt_ashift); 640 } 641 642 static nvlist_t * 643 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 644 { 645 char pathbuf[MAXPATHLEN]; 646 uint64_t vdev; 647 nvlist_t *file; 648 649 if (ashift == 0) 650 ashift = ztest_get_ashift(); 651 652 if (path == NULL) { 653 path = pathbuf; 654 655 if (aux != NULL) { 656 vdev = ztest_shared->zs_vdev_aux; 657 (void) snprintf(path, sizeof(pathbuf), ztest_aux_template, 658 zopt_dir, zopt_pool, aux, vdev); 659 } else { 660 vdev = ztest_shared->zs_vdev_next_leaf++; 661 (void) snprintf(path, sizeof(pathbuf), ztest_dev_template, 662 zopt_dir, zopt_pool, vdev); 663 } 664 } 665 666 if (size != 0) { 667 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 668 if (fd == -1) 669 fatal(1, "can't open %s", path); 670 if (ftruncate(fd, size) != 0) 671 fatal(1, "can't ftruncate %s", path); 672 (void) close(fd); 673 } 674 675 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 676 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 677 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 678 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 679 680 return (file); 681 } 682 683 static nvlist_t * 684 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 685 { 686 nvlist_t *raidz, **child; 687 int c; 688 689 if (r < 2) 690 return (make_vdev_file(path, aux, size, ashift)); 691 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 692 693 for (c = 0; c < r; c++) 694 child[c] = make_vdev_file(path, aux, size, ashift); 695 696 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 697 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 698 VDEV_TYPE_RAIDZ) == 0); 699 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 700 zopt_raidz_parity) == 0); 701 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 702 child, r) == 0); 703 704 for (c = 0; c < r; c++) 705 nvlist_free(child[c]); 706 707 umem_free(child, r * sizeof (nvlist_t *)); 708 709 return (raidz); 710 } 711 712 static nvlist_t * 713 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 714 int r, int m) 715 { 716 nvlist_t *mirror, **child; 717 int c; 718 719 if (m < 1) 720 return (make_vdev_raidz(path, aux, size, ashift, r)); 721 722 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 723 724 for (c = 0; c < m; c++) 725 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 726 727 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 728 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 729 VDEV_TYPE_MIRROR) == 0); 730 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 731 child, m) == 0); 732 733 for (c = 0; c < m; c++) 734 nvlist_free(child[c]); 735 736 umem_free(child, m * sizeof (nvlist_t *)); 737 738 return (mirror); 739 } 740 741 static nvlist_t * 742 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 743 int log, int r, int m, int t) 744 { 745 nvlist_t *root, **child; 746 int c; 747 748 ASSERT(t > 0); 749 750 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 751 752 for (c = 0; c < t; c++) { 753 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 754 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 755 log) == 0); 756 } 757 758 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 759 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 760 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 761 child, t) == 0); 762 763 for (c = 0; c < t; c++) 764 nvlist_free(child[c]); 765 766 umem_free(child, t * sizeof (nvlist_t *)); 767 768 return (root); 769 } 770 771 static int 772 ztest_random_blocksize(void) 773 { 774 return (1 << (SPA_MINBLOCKSHIFT + 775 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 776 } 777 778 static int 779 ztest_random_ibshift(void) 780 { 781 return (DN_MIN_INDBLKSHIFT + 782 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 783 } 784 785 static uint64_t 786 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 787 { 788 uint64_t top; 789 vdev_t *rvd = spa->spa_root_vdev; 790 vdev_t *tvd; 791 792 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 793 794 do { 795 top = ztest_random(rvd->vdev_children); 796 tvd = rvd->vdev_child[top]; 797 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 798 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 799 800 return (top); 801 } 802 803 static uint64_t 804 ztest_random_dsl_prop(zfs_prop_t prop) 805 { 806 uint64_t value; 807 808 do { 809 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 810 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 811 812 return (value); 813 } 814 815 static int 816 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 817 boolean_t inherit) 818 { 819 const char *propname = zfs_prop_to_name(prop); 820 const char *valname; 821 char setpoint[MAXPATHLEN]; 822 uint64_t curval; 823 int error; 824 825 error = dsl_prop_set(osname, propname, 826 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 827 sizeof (value), 1, &value); 828 829 if (error == ENOSPC) { 830 ztest_record_enospc(FTAG); 831 return (error); 832 } 833 ASSERT3U(error, ==, 0); 834 835 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 836 1, &curval, setpoint), ==, 0); 837 838 if (zopt_verbose >= 6) { 839 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 840 (void) printf("%s %s = %s at '%s'\n", 841 osname, propname, valname, setpoint); 842 } 843 844 return (error); 845 } 846 847 static int 848 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value) 849 { 850 spa_t *spa = zs->zs_spa; 851 nvlist_t *props = NULL; 852 int error; 853 854 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 855 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 856 857 error = spa_prop_set(spa, props); 858 859 nvlist_free(props); 860 861 if (error == ENOSPC) { 862 ztest_record_enospc(FTAG); 863 return (error); 864 } 865 ASSERT3U(error, ==, 0); 866 867 return (error); 868 } 869 870 static void 871 ztest_rll_init(rll_t *rll) 872 { 873 rll->rll_writer = NULL; 874 rll->rll_readers = 0; 875 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 876 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 877 } 878 879 static void 880 ztest_rll_destroy(rll_t *rll) 881 { 882 ASSERT(rll->rll_writer == NULL); 883 ASSERT(rll->rll_readers == 0); 884 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 885 VERIFY(cond_destroy(&rll->rll_cv) == 0); 886 } 887 888 static void 889 ztest_rll_lock(rll_t *rll, rl_type_t type) 890 { 891 VERIFY(mutex_lock(&rll->rll_lock) == 0); 892 893 if (type == RL_READER) { 894 while (rll->rll_writer != NULL) 895 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 896 rll->rll_readers++; 897 } else { 898 while (rll->rll_writer != NULL || rll->rll_readers) 899 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 900 rll->rll_writer = curthread; 901 } 902 903 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 904 } 905 906 static void 907 ztest_rll_unlock(rll_t *rll) 908 { 909 VERIFY(mutex_lock(&rll->rll_lock) == 0); 910 911 if (rll->rll_writer) { 912 ASSERT(rll->rll_readers == 0); 913 rll->rll_writer = NULL; 914 } else { 915 ASSERT(rll->rll_readers != 0); 916 ASSERT(rll->rll_writer == NULL); 917 rll->rll_readers--; 918 } 919 920 if (rll->rll_writer == NULL && rll->rll_readers == 0) 921 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 922 923 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 924 } 925 926 static void 927 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 928 { 929 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 930 931 ztest_rll_lock(rll, type); 932 } 933 934 static void 935 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 936 { 937 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 938 939 ztest_rll_unlock(rll); 940 } 941 942 static rl_t * 943 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 944 uint64_t size, rl_type_t type) 945 { 946 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 947 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 948 rl_t *rl; 949 950 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 951 rl->rl_object = object; 952 rl->rl_offset = offset; 953 rl->rl_size = size; 954 rl->rl_lock = rll; 955 956 ztest_rll_lock(rll, type); 957 958 return (rl); 959 } 960 961 static void 962 ztest_range_unlock(rl_t *rl) 963 { 964 rll_t *rll = rl->rl_lock; 965 966 ztest_rll_unlock(rll); 967 968 umem_free(rl, sizeof (*rl)); 969 } 970 971 static void 972 ztest_zd_init(ztest_ds_t *zd, objset_t *os) 973 { 974 zd->zd_os = os; 975 zd->zd_zilog = dmu_objset_zil(os); 976 zd->zd_seq = 0; 977 dmu_objset_name(os, zd->zd_name); 978 979 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 980 981 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 982 ztest_rll_init(&zd->zd_object_lock[l]); 983 984 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 985 ztest_rll_init(&zd->zd_range_lock[l]); 986 } 987 988 static void 989 ztest_zd_fini(ztest_ds_t *zd) 990 { 991 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 992 993 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 994 ztest_rll_destroy(&zd->zd_object_lock[l]); 995 996 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 997 ztest_rll_destroy(&zd->zd_range_lock[l]); 998 } 999 1000 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1001 1002 static uint64_t 1003 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1004 { 1005 uint64_t txg; 1006 int error; 1007 1008 /* 1009 * Attempt to assign tx to some transaction group. 1010 */ 1011 error = dmu_tx_assign(tx, txg_how); 1012 if (error) { 1013 if (error == ERESTART) { 1014 ASSERT(txg_how == TXG_NOWAIT); 1015 dmu_tx_wait(tx); 1016 } else { 1017 ASSERT3U(error, ==, ENOSPC); 1018 ztest_record_enospc(tag); 1019 } 1020 dmu_tx_abort(tx); 1021 return (0); 1022 } 1023 txg = dmu_tx_get_txg(tx); 1024 ASSERT(txg != 0); 1025 return (txg); 1026 } 1027 1028 static void 1029 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1030 { 1031 uint64_t *ip = buf; 1032 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1033 1034 while (ip < ip_end) 1035 *ip++ = value; 1036 } 1037 1038 static boolean_t 1039 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1040 { 1041 uint64_t *ip = buf; 1042 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1043 uint64_t diff = 0; 1044 1045 while (ip < ip_end) 1046 diff |= (value - *ip++); 1047 1048 return (diff == 0); 1049 } 1050 1051 static void 1052 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1053 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1054 { 1055 bt->bt_magic = BT_MAGIC; 1056 bt->bt_objset = dmu_objset_id(os); 1057 bt->bt_object = object; 1058 bt->bt_offset = offset; 1059 bt->bt_gen = gen; 1060 bt->bt_txg = txg; 1061 bt->bt_crtxg = crtxg; 1062 } 1063 1064 static void 1065 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1066 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1067 { 1068 ASSERT(bt->bt_magic == BT_MAGIC); 1069 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1070 ASSERT(bt->bt_object == object); 1071 ASSERT(bt->bt_offset == offset); 1072 ASSERT(bt->bt_gen <= gen); 1073 ASSERT(bt->bt_txg <= txg); 1074 ASSERT(bt->bt_crtxg == crtxg); 1075 } 1076 1077 static ztest_block_tag_t * 1078 ztest_bt_bonus(dmu_buf_t *db) 1079 { 1080 dmu_object_info_t doi; 1081 ztest_block_tag_t *bt; 1082 1083 dmu_object_info_from_db(db, &doi); 1084 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1085 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1086 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1087 1088 return (bt); 1089 } 1090 1091 /* 1092 * ZIL logging ops 1093 */ 1094 1095 #define lrz_type lr_mode 1096 #define lrz_blocksize lr_uid 1097 #define lrz_ibshift lr_gid 1098 #define lrz_bonustype lr_rdev 1099 #define lrz_bonuslen lr_crtime[1] 1100 1101 static uint64_t 1102 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1103 { 1104 char *name = (void *)(lr + 1); /* name follows lr */ 1105 size_t namesize = strlen(name) + 1; 1106 itx_t *itx; 1107 1108 if (zil_replaying(zd->zd_zilog, tx)) 1109 return (0); 1110 1111 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1112 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1113 sizeof (*lr) + namesize - sizeof (lr_t)); 1114 1115 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1116 } 1117 1118 static uint64_t 1119 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr) 1120 { 1121 char *name = (void *)(lr + 1); /* name follows lr */ 1122 size_t namesize = strlen(name) + 1; 1123 itx_t *itx; 1124 1125 if (zil_replaying(zd->zd_zilog, tx)) 1126 return (0); 1127 1128 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1129 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1130 sizeof (*lr) + namesize - sizeof (lr_t)); 1131 1132 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1133 } 1134 1135 static uint64_t 1136 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1137 { 1138 itx_t *itx; 1139 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1140 1141 if (zil_replaying(zd->zd_zilog, tx)) 1142 return (0); 1143 1144 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1145 write_state = WR_INDIRECT; 1146 1147 itx = zil_itx_create(TX_WRITE, 1148 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1149 1150 if (write_state == WR_COPIED && 1151 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1152 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1153 zil_itx_destroy(itx); 1154 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1155 write_state = WR_NEED_COPY; 1156 } 1157 itx->itx_private = zd; 1158 itx->itx_wr_state = write_state; 1159 itx->itx_sync = (ztest_random(8) == 0); 1160 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1161 1162 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1163 sizeof (*lr) - sizeof (lr_t)); 1164 1165 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1166 } 1167 1168 static uint64_t 1169 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1170 { 1171 itx_t *itx; 1172 1173 if (zil_replaying(zd->zd_zilog, tx)) 1174 return (0); 1175 1176 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1177 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1178 sizeof (*lr) - sizeof (lr_t)); 1179 1180 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1181 } 1182 1183 static uint64_t 1184 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1185 { 1186 itx_t *itx; 1187 1188 if (zil_replaying(zd->zd_zilog, tx)) 1189 return (0); 1190 1191 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1192 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1193 sizeof (*lr) - sizeof (lr_t)); 1194 1195 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1196 } 1197 1198 /* 1199 * ZIL replay ops 1200 */ 1201 static int 1202 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1203 { 1204 char *name = (void *)(lr + 1); /* name follows lr */ 1205 objset_t *os = zd->zd_os; 1206 ztest_block_tag_t *bbt; 1207 dmu_buf_t *db; 1208 dmu_tx_t *tx; 1209 uint64_t txg; 1210 int error = 0; 1211 1212 if (byteswap) 1213 byteswap_uint64_array(lr, sizeof (*lr)); 1214 1215 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1216 ASSERT(name[0] != '\0'); 1217 1218 tx = dmu_tx_create(os); 1219 1220 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1221 1222 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1223 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1224 } else { 1225 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1226 } 1227 1228 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1229 if (txg == 0) 1230 return (ENOSPC); 1231 1232 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1233 1234 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1235 if (lr->lr_foid == 0) { 1236 lr->lr_foid = zap_create(os, 1237 lr->lrz_type, lr->lrz_bonustype, 1238 lr->lrz_bonuslen, tx); 1239 } else { 1240 error = zap_create_claim(os, lr->lr_foid, 1241 lr->lrz_type, lr->lrz_bonustype, 1242 lr->lrz_bonuslen, tx); 1243 } 1244 } else { 1245 if (lr->lr_foid == 0) { 1246 lr->lr_foid = dmu_object_alloc(os, 1247 lr->lrz_type, 0, lr->lrz_bonustype, 1248 lr->lrz_bonuslen, tx); 1249 } else { 1250 error = dmu_object_claim(os, lr->lr_foid, 1251 lr->lrz_type, 0, lr->lrz_bonustype, 1252 lr->lrz_bonuslen, tx); 1253 } 1254 } 1255 1256 if (error) { 1257 ASSERT3U(error, ==, EEXIST); 1258 ASSERT(zd->zd_zilog->zl_replay); 1259 dmu_tx_commit(tx); 1260 return (error); 1261 } 1262 1263 ASSERT(lr->lr_foid != 0); 1264 1265 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1266 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1267 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1268 1269 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1270 bbt = ztest_bt_bonus(db); 1271 dmu_buf_will_dirty(db, tx); 1272 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1273 dmu_buf_rele(db, FTAG); 1274 1275 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1276 &lr->lr_foid, tx)); 1277 1278 (void) ztest_log_create(zd, tx, lr); 1279 1280 dmu_tx_commit(tx); 1281 1282 return (0); 1283 } 1284 1285 static int 1286 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1287 { 1288 char *name = (void *)(lr + 1); /* name follows lr */ 1289 objset_t *os = zd->zd_os; 1290 dmu_object_info_t doi; 1291 dmu_tx_t *tx; 1292 uint64_t object, txg; 1293 1294 if (byteswap) 1295 byteswap_uint64_array(lr, sizeof (*lr)); 1296 1297 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1298 ASSERT(name[0] != '\0'); 1299 1300 VERIFY3U(0, ==, 1301 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1302 ASSERT(object != 0); 1303 1304 ztest_object_lock(zd, object, RL_WRITER); 1305 1306 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1307 1308 tx = dmu_tx_create(os); 1309 1310 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1311 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1312 1313 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1314 if (txg == 0) { 1315 ztest_object_unlock(zd, object); 1316 return (ENOSPC); 1317 } 1318 1319 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1320 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1321 } else { 1322 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1323 } 1324 1325 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1326 1327 (void) ztest_log_remove(zd, tx, lr); 1328 1329 dmu_tx_commit(tx); 1330 1331 ztest_object_unlock(zd, object); 1332 1333 return (0); 1334 } 1335 1336 static int 1337 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1338 { 1339 objset_t *os = zd->zd_os; 1340 void *data = lr + 1; /* data follows lr */ 1341 uint64_t offset, length; 1342 ztest_block_tag_t *bt = data; 1343 ztest_block_tag_t *bbt; 1344 uint64_t gen, txg, lrtxg, crtxg; 1345 dmu_object_info_t doi; 1346 dmu_tx_t *tx; 1347 dmu_buf_t *db; 1348 arc_buf_t *abuf = NULL; 1349 rl_t *rl; 1350 1351 if (byteswap) 1352 byteswap_uint64_array(lr, sizeof (*lr)); 1353 1354 offset = lr->lr_offset; 1355 length = lr->lr_length; 1356 1357 /* If it's a dmu_sync() block, write the whole block */ 1358 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1359 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1360 if (length < blocksize) { 1361 offset -= offset % blocksize; 1362 length = blocksize; 1363 } 1364 } 1365 1366 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1367 byteswap_uint64_array(bt, sizeof (*bt)); 1368 1369 if (bt->bt_magic != BT_MAGIC) 1370 bt = NULL; 1371 1372 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1373 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1374 1375 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1376 1377 dmu_object_info_from_db(db, &doi); 1378 1379 bbt = ztest_bt_bonus(db); 1380 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1381 gen = bbt->bt_gen; 1382 crtxg = bbt->bt_crtxg; 1383 lrtxg = lr->lr_common.lrc_txg; 1384 1385 tx = dmu_tx_create(os); 1386 1387 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1388 1389 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1390 P2PHASE(offset, length) == 0) 1391 abuf = dmu_request_arcbuf(db, length); 1392 1393 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1394 if (txg == 0) { 1395 if (abuf != NULL) 1396 dmu_return_arcbuf(abuf); 1397 dmu_buf_rele(db, FTAG); 1398 ztest_range_unlock(rl); 1399 ztest_object_unlock(zd, lr->lr_foid); 1400 return (ENOSPC); 1401 } 1402 1403 if (bt != NULL) { 1404 /* 1405 * Usually, verify the old data before writing new data -- 1406 * but not always, because we also want to verify correct 1407 * behavior when the data was not recently read into cache. 1408 */ 1409 ASSERT(offset % doi.doi_data_block_size == 0); 1410 if (ztest_random(4) != 0) { 1411 int prefetch = ztest_random(2) ? 1412 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1413 ztest_block_tag_t rbt; 1414 1415 VERIFY(dmu_read(os, lr->lr_foid, offset, 1416 sizeof (rbt), &rbt, prefetch) == 0); 1417 if (rbt.bt_magic == BT_MAGIC) { 1418 ztest_bt_verify(&rbt, os, lr->lr_foid, 1419 offset, gen, txg, crtxg); 1420 } 1421 } 1422 1423 /* 1424 * Writes can appear to be newer than the bonus buffer because 1425 * the ztest_get_data() callback does a dmu_read() of the 1426 * open-context data, which may be different than the data 1427 * as it was when the write was generated. 1428 */ 1429 if (zd->zd_zilog->zl_replay) { 1430 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1431 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1432 bt->bt_crtxg); 1433 } 1434 1435 /* 1436 * Set the bt's gen/txg to the bonus buffer's gen/txg 1437 * so that all of the usual ASSERTs will work. 1438 */ 1439 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1440 } 1441 1442 if (abuf == NULL) { 1443 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1444 } else { 1445 bcopy(data, abuf->b_data, length); 1446 dmu_assign_arcbuf(db, offset, abuf, tx); 1447 } 1448 1449 (void) ztest_log_write(zd, tx, lr); 1450 1451 dmu_buf_rele(db, FTAG); 1452 1453 dmu_tx_commit(tx); 1454 1455 ztest_range_unlock(rl); 1456 ztest_object_unlock(zd, lr->lr_foid); 1457 1458 return (0); 1459 } 1460 1461 static int 1462 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1463 { 1464 objset_t *os = zd->zd_os; 1465 dmu_tx_t *tx; 1466 uint64_t txg; 1467 rl_t *rl; 1468 1469 if (byteswap) 1470 byteswap_uint64_array(lr, sizeof (*lr)); 1471 1472 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1473 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1474 RL_WRITER); 1475 1476 tx = dmu_tx_create(os); 1477 1478 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1479 1480 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1481 if (txg == 0) { 1482 ztest_range_unlock(rl); 1483 ztest_object_unlock(zd, lr->lr_foid); 1484 return (ENOSPC); 1485 } 1486 1487 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1488 lr->lr_length, tx) == 0); 1489 1490 (void) ztest_log_truncate(zd, tx, lr); 1491 1492 dmu_tx_commit(tx); 1493 1494 ztest_range_unlock(rl); 1495 ztest_object_unlock(zd, lr->lr_foid); 1496 1497 return (0); 1498 } 1499 1500 static int 1501 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1502 { 1503 objset_t *os = zd->zd_os; 1504 dmu_tx_t *tx; 1505 dmu_buf_t *db; 1506 ztest_block_tag_t *bbt; 1507 uint64_t txg, lrtxg, crtxg; 1508 1509 if (byteswap) 1510 byteswap_uint64_array(lr, sizeof (*lr)); 1511 1512 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1513 1514 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1515 1516 tx = dmu_tx_create(os); 1517 dmu_tx_hold_bonus(tx, lr->lr_foid); 1518 1519 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1520 if (txg == 0) { 1521 dmu_buf_rele(db, FTAG); 1522 ztest_object_unlock(zd, lr->lr_foid); 1523 return (ENOSPC); 1524 } 1525 1526 bbt = ztest_bt_bonus(db); 1527 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1528 crtxg = bbt->bt_crtxg; 1529 lrtxg = lr->lr_common.lrc_txg; 1530 1531 if (zd->zd_zilog->zl_replay) { 1532 ASSERT(lr->lr_size != 0); 1533 ASSERT(lr->lr_mode != 0); 1534 ASSERT(lrtxg != 0); 1535 } else { 1536 /* 1537 * Randomly change the size and increment the generation. 1538 */ 1539 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1540 sizeof (*bbt); 1541 lr->lr_mode = bbt->bt_gen + 1; 1542 ASSERT(lrtxg == 0); 1543 } 1544 1545 /* 1546 * Verify that the current bonus buffer is not newer than our txg. 1547 */ 1548 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1549 MAX(txg, lrtxg), crtxg); 1550 1551 dmu_buf_will_dirty(db, tx); 1552 1553 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1554 ASSERT3U(lr->lr_size, <=, db->db_size); 1555 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0); 1556 bbt = ztest_bt_bonus(db); 1557 1558 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1559 1560 dmu_buf_rele(db, FTAG); 1561 1562 (void) ztest_log_setattr(zd, tx, lr); 1563 1564 dmu_tx_commit(tx); 1565 1566 ztest_object_unlock(zd, lr->lr_foid); 1567 1568 return (0); 1569 } 1570 1571 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1572 NULL, /* 0 no such transaction type */ 1573 ztest_replay_create, /* TX_CREATE */ 1574 NULL, /* TX_MKDIR */ 1575 NULL, /* TX_MKXATTR */ 1576 NULL, /* TX_SYMLINK */ 1577 ztest_replay_remove, /* TX_REMOVE */ 1578 NULL, /* TX_RMDIR */ 1579 NULL, /* TX_LINK */ 1580 NULL, /* TX_RENAME */ 1581 ztest_replay_write, /* TX_WRITE */ 1582 ztest_replay_truncate, /* TX_TRUNCATE */ 1583 ztest_replay_setattr, /* TX_SETATTR */ 1584 NULL, /* TX_ACL */ 1585 NULL, /* TX_CREATE_ACL */ 1586 NULL, /* TX_CREATE_ATTR */ 1587 NULL, /* TX_CREATE_ACL_ATTR */ 1588 NULL, /* TX_MKDIR_ACL */ 1589 NULL, /* TX_MKDIR_ATTR */ 1590 NULL, /* TX_MKDIR_ACL_ATTR */ 1591 NULL, /* TX_WRITE2 */ 1592 }; 1593 1594 /* 1595 * ZIL get_data callbacks 1596 */ 1597 1598 static void 1599 ztest_get_done(zgd_t *zgd, int error) 1600 { 1601 ztest_ds_t *zd = zgd->zgd_private; 1602 uint64_t object = zgd->zgd_rl->rl_object; 1603 1604 if (zgd->zgd_db) 1605 dmu_buf_rele(zgd->zgd_db, zgd); 1606 1607 ztest_range_unlock(zgd->zgd_rl); 1608 ztest_object_unlock(zd, object); 1609 1610 if (error == 0 && zgd->zgd_bp) 1611 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1612 1613 umem_free(zgd, sizeof (*zgd)); 1614 } 1615 1616 static int 1617 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1618 { 1619 ztest_ds_t *zd = arg; 1620 objset_t *os = zd->zd_os; 1621 uint64_t object = lr->lr_foid; 1622 uint64_t offset = lr->lr_offset; 1623 uint64_t size = lr->lr_length; 1624 blkptr_t *bp = &lr->lr_blkptr; 1625 uint64_t txg = lr->lr_common.lrc_txg; 1626 uint64_t crtxg; 1627 dmu_object_info_t doi; 1628 dmu_buf_t *db; 1629 zgd_t *zgd; 1630 int error; 1631 1632 ztest_object_lock(zd, object, RL_READER); 1633 error = dmu_bonus_hold(os, object, FTAG, &db); 1634 if (error) { 1635 ztest_object_unlock(zd, object); 1636 return (error); 1637 } 1638 1639 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1640 1641 if (crtxg == 0 || crtxg > txg) { 1642 dmu_buf_rele(db, FTAG); 1643 ztest_object_unlock(zd, object); 1644 return (ENOENT); 1645 } 1646 1647 dmu_object_info_from_db(db, &doi); 1648 dmu_buf_rele(db, FTAG); 1649 db = NULL; 1650 1651 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1652 zgd->zgd_zilog = zd->zd_zilog; 1653 zgd->zgd_private = zd; 1654 1655 if (buf != NULL) { /* immediate write */ 1656 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1657 RL_READER); 1658 1659 error = dmu_read(os, object, offset, size, buf, 1660 DMU_READ_NO_PREFETCH); 1661 ASSERT(error == 0); 1662 } else { 1663 size = doi.doi_data_block_size; 1664 if (ISP2(size)) { 1665 offset = P2ALIGN(offset, size); 1666 } else { 1667 ASSERT(offset < size); 1668 offset = 0; 1669 } 1670 1671 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1672 RL_READER); 1673 1674 error = dmu_buf_hold(os, object, offset, zgd, &db); 1675 1676 if (error == 0) { 1677 zgd->zgd_db = db; 1678 zgd->zgd_bp = bp; 1679 1680 ASSERT(db->db_offset == offset); 1681 ASSERT(db->db_size == size); 1682 1683 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1684 ztest_get_done, zgd); 1685 1686 if (error == 0) 1687 return (0); 1688 } 1689 } 1690 1691 ztest_get_done(zgd, error); 1692 1693 return (error); 1694 } 1695 1696 static void * 1697 ztest_lr_alloc(size_t lrsize, char *name) 1698 { 1699 char *lr; 1700 size_t namesize = name ? strlen(name) + 1 : 0; 1701 1702 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1703 1704 if (name) 1705 bcopy(name, lr + lrsize, namesize); 1706 1707 return (lr); 1708 } 1709 1710 void 1711 ztest_lr_free(void *lr, size_t lrsize, char *name) 1712 { 1713 size_t namesize = name ? strlen(name) + 1 : 0; 1714 1715 umem_free(lr, lrsize + namesize); 1716 } 1717 1718 /* 1719 * Lookup a bunch of objects. Returns the number of objects not found. 1720 */ 1721 static int 1722 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1723 { 1724 int missing = 0; 1725 int error; 1726 1727 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1728 1729 for (int i = 0; i < count; i++, od++) { 1730 od->od_object = 0; 1731 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1732 sizeof (uint64_t), 1, &od->od_object); 1733 if (error) { 1734 ASSERT(error == ENOENT); 1735 ASSERT(od->od_object == 0); 1736 missing++; 1737 } else { 1738 dmu_buf_t *db; 1739 ztest_block_tag_t *bbt; 1740 dmu_object_info_t doi; 1741 1742 ASSERT(od->od_object != 0); 1743 ASSERT(missing == 0); /* there should be no gaps */ 1744 1745 ztest_object_lock(zd, od->od_object, RL_READER); 1746 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1747 od->od_object, FTAG, &db)); 1748 dmu_object_info_from_db(db, &doi); 1749 bbt = ztest_bt_bonus(db); 1750 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1751 od->od_type = doi.doi_type; 1752 od->od_blocksize = doi.doi_data_block_size; 1753 od->od_gen = bbt->bt_gen; 1754 dmu_buf_rele(db, FTAG); 1755 ztest_object_unlock(zd, od->od_object); 1756 } 1757 } 1758 1759 return (missing); 1760 } 1761 1762 static int 1763 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1764 { 1765 int missing = 0; 1766 1767 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1768 1769 for (int i = 0; i < count; i++, od++) { 1770 if (missing) { 1771 od->od_object = 0; 1772 missing++; 1773 continue; 1774 } 1775 1776 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1777 1778 lr->lr_doid = od->od_dir; 1779 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1780 lr->lrz_type = od->od_crtype; 1781 lr->lrz_blocksize = od->od_crblocksize; 1782 lr->lrz_ibshift = ztest_random_ibshift(); 1783 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1784 lr->lrz_bonuslen = dmu_bonus_max(); 1785 lr->lr_gen = od->od_crgen; 1786 lr->lr_crtime[0] = time(NULL); 1787 1788 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1789 ASSERT(missing == 0); 1790 od->od_object = 0; 1791 missing++; 1792 } else { 1793 od->od_object = lr->lr_foid; 1794 od->od_type = od->od_crtype; 1795 od->od_blocksize = od->od_crblocksize; 1796 od->od_gen = od->od_crgen; 1797 ASSERT(od->od_object != 0); 1798 } 1799 1800 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1801 } 1802 1803 return (missing); 1804 } 1805 1806 static int 1807 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1808 { 1809 int missing = 0; 1810 int error; 1811 1812 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1813 1814 od += count - 1; 1815 1816 for (int i = count - 1; i >= 0; i--, od--) { 1817 if (missing) { 1818 missing++; 1819 continue; 1820 } 1821 1822 if (od->od_object == 0) 1823 continue; 1824 1825 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1826 1827 lr->lr_doid = od->od_dir; 1828 1829 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1830 ASSERT3U(error, ==, ENOSPC); 1831 missing++; 1832 } else { 1833 od->od_object = 0; 1834 } 1835 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1836 } 1837 1838 return (missing); 1839 } 1840 1841 static int 1842 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 1843 void *data) 1844 { 1845 lr_write_t *lr; 1846 int error; 1847 1848 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 1849 1850 lr->lr_foid = object; 1851 lr->lr_offset = offset; 1852 lr->lr_length = size; 1853 lr->lr_blkoff = 0; 1854 BP_ZERO(&lr->lr_blkptr); 1855 1856 bcopy(data, lr + 1, size); 1857 1858 error = ztest_replay_write(zd, lr, B_FALSE); 1859 1860 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 1861 1862 return (error); 1863 } 1864 1865 static int 1866 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1867 { 1868 lr_truncate_t *lr; 1869 int error; 1870 1871 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1872 1873 lr->lr_foid = object; 1874 lr->lr_offset = offset; 1875 lr->lr_length = size; 1876 1877 error = ztest_replay_truncate(zd, lr, B_FALSE); 1878 1879 ztest_lr_free(lr, sizeof (*lr), NULL); 1880 1881 return (error); 1882 } 1883 1884 static int 1885 ztest_setattr(ztest_ds_t *zd, uint64_t object) 1886 { 1887 lr_setattr_t *lr; 1888 int error; 1889 1890 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1891 1892 lr->lr_foid = object; 1893 lr->lr_size = 0; 1894 lr->lr_mode = 0; 1895 1896 error = ztest_replay_setattr(zd, lr, B_FALSE); 1897 1898 ztest_lr_free(lr, sizeof (*lr), NULL); 1899 1900 return (error); 1901 } 1902 1903 static void 1904 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1905 { 1906 objset_t *os = zd->zd_os; 1907 dmu_tx_t *tx; 1908 uint64_t txg; 1909 rl_t *rl; 1910 1911 txg_wait_synced(dmu_objset_pool(os), 0); 1912 1913 ztest_object_lock(zd, object, RL_READER); 1914 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 1915 1916 tx = dmu_tx_create(os); 1917 1918 dmu_tx_hold_write(tx, object, offset, size); 1919 1920 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1921 1922 if (txg != 0) { 1923 dmu_prealloc(os, object, offset, size, tx); 1924 dmu_tx_commit(tx); 1925 txg_wait_synced(dmu_objset_pool(os), txg); 1926 } else { 1927 (void) dmu_free_long_range(os, object, offset, size); 1928 } 1929 1930 ztest_range_unlock(rl); 1931 ztest_object_unlock(zd, object); 1932 } 1933 1934 static void 1935 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 1936 { 1937 ztest_block_tag_t wbt; 1938 dmu_object_info_t doi; 1939 enum ztest_io_type io_type; 1940 uint64_t blocksize; 1941 void *data; 1942 1943 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 1944 blocksize = doi.doi_data_block_size; 1945 data = umem_alloc(blocksize, UMEM_NOFAIL); 1946 1947 /* 1948 * Pick an i/o type at random, biased toward writing block tags. 1949 */ 1950 io_type = ztest_random(ZTEST_IO_TYPES); 1951 if (ztest_random(2) == 0) 1952 io_type = ZTEST_IO_WRITE_TAG; 1953 1954 switch (io_type) { 1955 1956 case ZTEST_IO_WRITE_TAG: 1957 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 1958 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 1959 break; 1960 1961 case ZTEST_IO_WRITE_PATTERN: 1962 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 1963 if (ztest_random(2) == 0) { 1964 /* 1965 * Induce fletcher2 collisions to ensure that 1966 * zio_ddt_collision() detects and resolves them 1967 * when using fletcher2-verify for deduplication. 1968 */ 1969 ((uint64_t *)data)[0] ^= 1ULL << 63; 1970 ((uint64_t *)data)[4] ^= 1ULL << 63; 1971 } 1972 (void) ztest_write(zd, object, offset, blocksize, data); 1973 break; 1974 1975 case ZTEST_IO_WRITE_ZEROES: 1976 bzero(data, blocksize); 1977 (void) ztest_write(zd, object, offset, blocksize, data); 1978 break; 1979 1980 case ZTEST_IO_TRUNCATE: 1981 (void) ztest_truncate(zd, object, offset, blocksize); 1982 break; 1983 1984 case ZTEST_IO_SETATTR: 1985 (void) ztest_setattr(zd, object); 1986 break; 1987 } 1988 1989 umem_free(data, blocksize); 1990 } 1991 1992 /* 1993 * Initialize an object description template. 1994 */ 1995 static void 1996 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 1997 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 1998 { 1999 od->od_dir = ZTEST_DIROBJ; 2000 od->od_object = 0; 2001 2002 od->od_crtype = type; 2003 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2004 od->od_crgen = gen; 2005 2006 od->od_type = DMU_OT_NONE; 2007 od->od_blocksize = 0; 2008 od->od_gen = 0; 2009 2010 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2011 tag, (int64_t)id, index); 2012 } 2013 2014 /* 2015 * Lookup or create the objects for a test using the od template. 2016 * If the objects do not all exist, or if 'remove' is specified, 2017 * remove any existing objects and create new ones. Otherwise, 2018 * use the existing objects. 2019 */ 2020 static int 2021 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2022 { 2023 int count = size / sizeof (*od); 2024 int rv = 0; 2025 2026 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2027 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2028 (ztest_remove(zd, od, count) != 0 || 2029 ztest_create(zd, od, count) != 0)) 2030 rv = -1; 2031 zd->zd_od = od; 2032 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2033 2034 return (rv); 2035 } 2036 2037 /* ARGSUSED */ 2038 void 2039 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2040 { 2041 zilog_t *zilog = zd->zd_zilog; 2042 2043 zil_commit(zilog, UINT64_MAX, ztest_random(ZTEST_OBJECTS)); 2044 2045 /* 2046 * Remember the committed values in zd, which is in parent/child 2047 * shared memory. If we die, the next iteration of ztest_run() 2048 * will verify that the log really does contain this record. 2049 */ 2050 mutex_enter(&zilog->zl_lock); 2051 ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq); 2052 zd->zd_seq = zilog->zl_commit_lr_seq; 2053 mutex_exit(&zilog->zl_lock); 2054 } 2055 2056 /* 2057 * Verify that we can't destroy an active pool, create an existing pool, 2058 * or create a pool with a bad vdev spec. 2059 */ 2060 /* ARGSUSED */ 2061 void 2062 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2063 { 2064 ztest_shared_t *zs = ztest_shared; 2065 spa_t *spa; 2066 nvlist_t *nvroot; 2067 2068 /* 2069 * Attempt to create using a bad file. 2070 */ 2071 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2072 VERIFY3U(ENOENT, ==, 2073 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2074 nvlist_free(nvroot); 2075 2076 /* 2077 * Attempt to create using a bad mirror. 2078 */ 2079 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2080 VERIFY3U(ENOENT, ==, 2081 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2082 nvlist_free(nvroot); 2083 2084 /* 2085 * Attempt to create an existing pool. It shouldn't matter 2086 * what's in the nvroot; we should fail with EEXIST. 2087 */ 2088 (void) rw_rdlock(&zs->zs_name_lock); 2089 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2090 VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 2091 nvlist_free(nvroot); 2092 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 2093 VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool)); 2094 spa_close(spa, FTAG); 2095 2096 (void) rw_unlock(&zs->zs_name_lock); 2097 } 2098 2099 static vdev_t * 2100 vdev_lookup_by_path(vdev_t *vd, const char *path) 2101 { 2102 vdev_t *mvd; 2103 2104 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2105 return (vd); 2106 2107 for (int c = 0; c < vd->vdev_children; c++) 2108 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2109 NULL) 2110 return (mvd); 2111 2112 return (NULL); 2113 } 2114 2115 /* 2116 * Find the first available hole which can be used as a top-level. 2117 */ 2118 int 2119 find_vdev_hole(spa_t *spa) 2120 { 2121 vdev_t *rvd = spa->spa_root_vdev; 2122 int c; 2123 2124 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2125 2126 for (c = 0; c < rvd->vdev_children; c++) { 2127 vdev_t *cvd = rvd->vdev_child[c]; 2128 2129 if (cvd->vdev_ishole) 2130 break; 2131 } 2132 return (c); 2133 } 2134 2135 /* 2136 * Verify that vdev_add() works as expected. 2137 */ 2138 /* ARGSUSED */ 2139 void 2140 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2141 { 2142 ztest_shared_t *zs = ztest_shared; 2143 spa_t *spa = zs->zs_spa; 2144 uint64_t leaves; 2145 uint64_t guid; 2146 nvlist_t *nvroot; 2147 int error; 2148 2149 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2150 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz; 2151 2152 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2153 2154 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2155 2156 /* 2157 * If we have slogs then remove them 1/4 of the time. 2158 */ 2159 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2160 /* 2161 * Grab the guid from the head of the log class rotor. 2162 */ 2163 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2164 2165 spa_config_exit(spa, SCL_VDEV, FTAG); 2166 2167 /* 2168 * We have to grab the zs_name_lock as writer to 2169 * prevent a race between removing a slog (dmu_objset_find) 2170 * and destroying a dataset. Removing the slog will 2171 * grab a reference on the dataset which may cause 2172 * dmu_objset_destroy() to fail with EBUSY thus 2173 * leaving the dataset in an inconsistent state. 2174 */ 2175 VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0); 2176 error = spa_vdev_remove(spa, guid, B_FALSE); 2177 VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0); 2178 2179 if (error && error != EEXIST) 2180 fatal(0, "spa_vdev_remove() = %d", error); 2181 } else { 2182 spa_config_exit(spa, SCL_VDEV, FTAG); 2183 2184 /* 2185 * Make 1/4 of the devices be log devices. 2186 */ 2187 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 2188 ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1); 2189 2190 error = spa_vdev_add(spa, nvroot); 2191 nvlist_free(nvroot); 2192 2193 if (error == ENOSPC) 2194 ztest_record_enospc("spa_vdev_add"); 2195 else if (error != 0) 2196 fatal(0, "spa_vdev_add() = %d", error); 2197 } 2198 2199 VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0); 2200 } 2201 2202 /* 2203 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2204 */ 2205 /* ARGSUSED */ 2206 void 2207 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2208 { 2209 ztest_shared_t *zs = ztest_shared; 2210 spa_t *spa = zs->zs_spa; 2211 vdev_t *rvd = spa->spa_root_vdev; 2212 spa_aux_vdev_t *sav; 2213 char *aux; 2214 uint64_t guid = 0; 2215 int error; 2216 2217 if (ztest_random(2) == 0) { 2218 sav = &spa->spa_spares; 2219 aux = ZPOOL_CONFIG_SPARES; 2220 } else { 2221 sav = &spa->spa_l2cache; 2222 aux = ZPOOL_CONFIG_L2CACHE; 2223 } 2224 2225 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2226 2227 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2228 2229 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2230 /* 2231 * Pick a random device to remove. 2232 */ 2233 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2234 } else { 2235 /* 2236 * Find an unused device we can add. 2237 */ 2238 zs->zs_vdev_aux = 0; 2239 for (;;) { 2240 char path[MAXPATHLEN]; 2241 int c; 2242 (void) snprintf(path, sizeof(path), ztest_aux_template, zopt_dir, 2243 zopt_pool, aux, zs->zs_vdev_aux); 2244 for (c = 0; c < sav->sav_count; c++) 2245 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2246 path) == 0) 2247 break; 2248 if (c == sav->sav_count && 2249 vdev_lookup_by_path(rvd, path) == NULL) 2250 break; 2251 zs->zs_vdev_aux++; 2252 } 2253 } 2254 2255 spa_config_exit(spa, SCL_VDEV, FTAG); 2256 2257 if (guid == 0) { 2258 /* 2259 * Add a new device. 2260 */ 2261 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2262 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2263 error = spa_vdev_add(spa, nvroot); 2264 if (error != 0) 2265 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2266 nvlist_free(nvroot); 2267 } else { 2268 /* 2269 * Remove an existing device. Sometimes, dirty its 2270 * vdev state first to make sure we handle removal 2271 * of devices that have pending state changes. 2272 */ 2273 if (ztest_random(2) == 0) 2274 (void) vdev_online(spa, guid, 0, NULL); 2275 2276 error = spa_vdev_remove(spa, guid, B_FALSE); 2277 if (error != 0 && error != EBUSY) 2278 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2279 } 2280 2281 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2282 } 2283 2284 /* 2285 * split a pool if it has mirror tlvdevs 2286 */ 2287 /* ARGSUSED */ 2288 void 2289 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2290 { 2291 ztest_shared_t *zs = ztest_shared; 2292 spa_t *spa = zs->zs_spa; 2293 vdev_t *rvd = spa->spa_root_vdev; 2294 nvlist_t *tree, **child, *config, *split, **schild; 2295 uint_t c, children, schildren = 0, lastlogid = 0; 2296 int error = 0; 2297 2298 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2299 2300 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2301 if (zs->zs_mirrors < 3 || zopt_raidz > 1) { 2302 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2303 return; 2304 } 2305 2306 /* clean up the old pool, if any */ 2307 (void) spa_destroy("splitp"); 2308 2309 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2310 2311 /* generate a config from the existing config */ 2312 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2313 &tree) == 0); 2314 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2315 &children) == 0); 2316 2317 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2318 for (c = 0; c < children; c++) { 2319 vdev_t *tvd = rvd->vdev_child[c]; 2320 nvlist_t **mchild; 2321 uint_t mchildren; 2322 2323 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2324 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2325 0) == 0); 2326 VERIFY(nvlist_add_string(schild[schildren], 2327 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2328 VERIFY(nvlist_add_uint64(schild[schildren], 2329 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2330 if (lastlogid == 0) 2331 lastlogid = schildren; 2332 ++schildren; 2333 continue; 2334 } 2335 lastlogid = 0; 2336 VERIFY(nvlist_lookup_nvlist_array(child[c], 2337 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2338 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2339 } 2340 2341 /* OK, create a config that can be used to split */ 2342 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2343 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2344 VDEV_TYPE_ROOT) == 0); 2345 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2346 lastlogid != 0 ? lastlogid : schildren) == 0); 2347 2348 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2349 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2350 2351 for (c = 0; c < schildren; c++) 2352 nvlist_free(schild[c]); 2353 free(schild); 2354 nvlist_free(split); 2355 2356 spa_config_exit(spa, SCL_VDEV, FTAG); 2357 2358 (void) rw_wrlock(&zs->zs_name_lock); 2359 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2360 (void) rw_unlock(&zs->zs_name_lock); 2361 2362 nvlist_free(config); 2363 2364 if (error == 0) { 2365 (void) printf("successful split - results:\n"); 2366 mutex_enter(&spa_namespace_lock); 2367 show_pool_stats(spa); 2368 show_pool_stats(spa_lookup("splitp")); 2369 mutex_exit(&spa_namespace_lock); 2370 ++zs->zs_splits; 2371 --zs->zs_mirrors; 2372 } 2373 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2374 2375 } 2376 2377 /* 2378 * Verify that we can attach and detach devices. 2379 */ 2380 /* ARGSUSED */ 2381 void 2382 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2383 { 2384 ztest_shared_t *zs = ztest_shared; 2385 spa_t *spa = zs->zs_spa; 2386 spa_aux_vdev_t *sav = &spa->spa_spares; 2387 vdev_t *rvd = spa->spa_root_vdev; 2388 vdev_t *oldvd, *newvd, *pvd; 2389 nvlist_t *root; 2390 uint64_t leaves; 2391 uint64_t leaf, top; 2392 uint64_t ashift = ztest_get_ashift(); 2393 uint64_t oldguid, pguid; 2394 size_t oldsize, newsize; 2395 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2396 int replacing; 2397 int oldvd_has_siblings = B_FALSE; 2398 int newvd_is_spare = B_FALSE; 2399 int oldvd_is_log; 2400 int error, expected_error; 2401 2402 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2403 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 2404 2405 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2406 2407 /* 2408 * Decide whether to do an attach or a replace. 2409 */ 2410 replacing = ztest_random(2); 2411 2412 /* 2413 * Pick a random top-level vdev. 2414 */ 2415 top = ztest_random_vdev_top(spa, B_TRUE); 2416 2417 /* 2418 * Pick a random leaf within it. 2419 */ 2420 leaf = ztest_random(leaves); 2421 2422 /* 2423 * Locate this vdev. 2424 */ 2425 oldvd = rvd->vdev_child[top]; 2426 if (zs->zs_mirrors >= 1) { 2427 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2428 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2429 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 2430 } 2431 if (zopt_raidz > 1) { 2432 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2433 ASSERT(oldvd->vdev_children == zopt_raidz); 2434 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 2435 } 2436 2437 /* 2438 * If we're already doing an attach or replace, oldvd may be a 2439 * mirror vdev -- in which case, pick a random child. 2440 */ 2441 while (oldvd->vdev_children != 0) { 2442 oldvd_has_siblings = B_TRUE; 2443 ASSERT(oldvd->vdev_children >= 2); 2444 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2445 } 2446 2447 oldguid = oldvd->vdev_guid; 2448 oldsize = vdev_get_min_asize(oldvd); 2449 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2450 (void) strcpy(oldpath, oldvd->vdev_path); 2451 pvd = oldvd->vdev_parent; 2452 pguid = pvd->vdev_guid; 2453 2454 /* 2455 * If oldvd has siblings, then half of the time, detach it. 2456 */ 2457 if (oldvd_has_siblings && ztest_random(2) == 0) { 2458 spa_config_exit(spa, SCL_VDEV, FTAG); 2459 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2460 if (error != 0 && error != ENODEV && error != EBUSY && 2461 error != ENOTSUP) 2462 fatal(0, "detach (%s) returned %d", oldpath, error); 2463 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2464 return; 2465 } 2466 2467 /* 2468 * For the new vdev, choose with equal probability between the two 2469 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2470 */ 2471 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2472 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2473 newvd_is_spare = B_TRUE; 2474 (void) strcpy(newpath, newvd->vdev_path); 2475 } else { 2476 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2477 zopt_dir, zopt_pool, top * leaves + leaf); 2478 if (ztest_random(2) == 0) 2479 newpath[strlen(newpath) - 1] = 'b'; 2480 newvd = vdev_lookup_by_path(rvd, newpath); 2481 } 2482 2483 if (newvd) { 2484 newsize = vdev_get_min_asize(newvd); 2485 } else { 2486 /* 2487 * Make newsize a little bigger or smaller than oldsize. 2488 * If it's smaller, the attach should fail. 2489 * If it's larger, and we're doing a replace, 2490 * we should get dynamic LUN growth when we're done. 2491 */ 2492 newsize = 10 * oldsize / (9 + ztest_random(3)); 2493 } 2494 2495 /* 2496 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2497 * unless it's a replace; in that case any non-replacing parent is OK. 2498 * 2499 * If newvd is already part of the pool, it should fail with EBUSY. 2500 * 2501 * If newvd is too small, it should fail with EOVERFLOW. 2502 */ 2503 if (pvd->vdev_ops != &vdev_mirror_ops && 2504 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2505 pvd->vdev_ops == &vdev_replacing_ops || 2506 pvd->vdev_ops == &vdev_spare_ops)) 2507 expected_error = ENOTSUP; 2508 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2509 expected_error = ENOTSUP; 2510 else if (newvd == oldvd) 2511 expected_error = replacing ? 0 : EBUSY; 2512 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2513 expected_error = EBUSY; 2514 else if (newsize < oldsize) 2515 expected_error = EOVERFLOW; 2516 else if (ashift > oldvd->vdev_top->vdev_ashift) 2517 expected_error = EDOM; 2518 else 2519 expected_error = 0; 2520 2521 spa_config_exit(spa, SCL_VDEV, FTAG); 2522 2523 /* 2524 * Build the nvlist describing newpath. 2525 */ 2526 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2527 ashift, 0, 0, 0, 1); 2528 2529 error = spa_vdev_attach(spa, oldguid, root, replacing); 2530 2531 nvlist_free(root); 2532 2533 /* 2534 * If our parent was the replacing vdev, but the replace completed, 2535 * then instead of failing with ENOTSUP we may either succeed, 2536 * fail with ENODEV, or fail with EOVERFLOW. 2537 */ 2538 if (expected_error == ENOTSUP && 2539 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2540 expected_error = error; 2541 2542 /* 2543 * If someone grew the LUN, the replacement may be too small. 2544 */ 2545 if (error == EOVERFLOW || error == EBUSY) 2546 expected_error = error; 2547 2548 /* XXX workaround 6690467 */ 2549 if (error != expected_error && expected_error != EBUSY) { 2550 fatal(0, "attach (%s %llu, %s %llu, %d) " 2551 "returned %d, expected %d", 2552 oldpath, (longlong_t)oldsize, newpath, 2553 (longlong_t)newsize, replacing, error, expected_error); 2554 } 2555 2556 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2557 } 2558 2559 /* 2560 * Callback function which expands the physical size of the vdev. 2561 */ 2562 vdev_t * 2563 grow_vdev(vdev_t *vd, void *arg) 2564 { 2565 spa_t *spa = vd->vdev_spa; 2566 size_t *newsize = arg; 2567 size_t fsize; 2568 int fd; 2569 2570 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2571 ASSERT(vd->vdev_ops->vdev_op_leaf); 2572 2573 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2574 return (vd); 2575 2576 fsize = lseek(fd, 0, SEEK_END); 2577 (void) ftruncate(fd, *newsize); 2578 2579 if (zopt_verbose >= 6) { 2580 (void) printf("%s grew from %lu to %lu bytes\n", 2581 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2582 } 2583 (void) close(fd); 2584 return (NULL); 2585 } 2586 2587 /* 2588 * Callback function which expands a given vdev by calling vdev_online(). 2589 */ 2590 /* ARGSUSED */ 2591 vdev_t * 2592 online_vdev(vdev_t *vd, void *arg) 2593 { 2594 spa_t *spa = vd->vdev_spa; 2595 vdev_t *tvd = vd->vdev_top; 2596 uint64_t guid = vd->vdev_guid; 2597 uint64_t generation = spa->spa_config_generation + 1; 2598 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2599 int error; 2600 2601 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2602 ASSERT(vd->vdev_ops->vdev_op_leaf); 2603 2604 /* Calling vdev_online will initialize the new metaslabs */ 2605 spa_config_exit(spa, SCL_STATE, spa); 2606 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2607 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2608 2609 /* 2610 * If vdev_online returned an error or the underlying vdev_open 2611 * failed then we abort the expand. The only way to know that 2612 * vdev_open fails is by checking the returned newstate. 2613 */ 2614 if (error || newstate != VDEV_STATE_HEALTHY) { 2615 if (zopt_verbose >= 5) { 2616 (void) printf("Unable to expand vdev, state %llu, " 2617 "error %d\n", (u_longlong_t)newstate, error); 2618 } 2619 return (vd); 2620 } 2621 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2622 2623 /* 2624 * Since we dropped the lock we need to ensure that we're 2625 * still talking to the original vdev. It's possible this 2626 * vdev may have been detached/replaced while we were 2627 * trying to online it. 2628 */ 2629 if (generation != spa->spa_config_generation) { 2630 if (zopt_verbose >= 5) { 2631 (void) printf("vdev configuration has changed, " 2632 "guid %llu, state %llu, expected gen %llu, " 2633 "got gen %llu\n", 2634 (u_longlong_t)guid, 2635 (u_longlong_t)tvd->vdev_state, 2636 (u_longlong_t)generation, 2637 (u_longlong_t)spa->spa_config_generation); 2638 } 2639 return (vd); 2640 } 2641 return (NULL); 2642 } 2643 2644 /* 2645 * Traverse the vdev tree calling the supplied function. 2646 * We continue to walk the tree until we either have walked all 2647 * children or we receive a non-NULL return from the callback. 2648 * If a NULL callback is passed, then we just return back the first 2649 * leaf vdev we encounter. 2650 */ 2651 vdev_t * 2652 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2653 { 2654 if (vd->vdev_ops->vdev_op_leaf) { 2655 if (func == NULL) 2656 return (vd); 2657 else 2658 return (func(vd, arg)); 2659 } 2660 2661 for (uint_t c = 0; c < vd->vdev_children; c++) { 2662 vdev_t *cvd = vd->vdev_child[c]; 2663 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2664 return (cvd); 2665 } 2666 return (NULL); 2667 } 2668 2669 /* 2670 * Verify that dynamic LUN growth works as expected. 2671 */ 2672 /* ARGSUSED */ 2673 void 2674 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2675 { 2676 ztest_shared_t *zs = ztest_shared; 2677 spa_t *spa = zs->zs_spa; 2678 vdev_t *vd, *tvd; 2679 metaslab_class_t *mc; 2680 metaslab_group_t *mg; 2681 size_t psize, newsize; 2682 uint64_t top; 2683 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2684 2685 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2686 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2687 2688 top = ztest_random_vdev_top(spa, B_TRUE); 2689 2690 tvd = spa->spa_root_vdev->vdev_child[top]; 2691 mg = tvd->vdev_mg; 2692 mc = mg->mg_class; 2693 old_ms_count = tvd->vdev_ms_count; 2694 old_class_space = metaslab_class_get_space(mc); 2695 2696 /* 2697 * Determine the size of the first leaf vdev associated with 2698 * our top-level device. 2699 */ 2700 vd = vdev_walk_tree(tvd, NULL, NULL); 2701 ASSERT3P(vd, !=, NULL); 2702 ASSERT(vd->vdev_ops->vdev_op_leaf); 2703 2704 psize = vd->vdev_psize; 2705 2706 /* 2707 * We only try to expand the vdev if it's healthy, less than 4x its 2708 * original size, and it has a valid psize. 2709 */ 2710 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2711 psize == 0 || psize >= 4 * zopt_vdev_size) { 2712 spa_config_exit(spa, SCL_STATE, spa); 2713 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2714 return; 2715 } 2716 ASSERT(psize > 0); 2717 newsize = psize + psize / 8; 2718 ASSERT3U(newsize, >, psize); 2719 2720 if (zopt_verbose >= 6) { 2721 (void) printf("Expanding LUN %s from %lu to %lu\n", 2722 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2723 } 2724 2725 /* 2726 * Growing the vdev is a two step process: 2727 * 1). expand the physical size (i.e. relabel) 2728 * 2). online the vdev to create the new metaslabs 2729 */ 2730 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2731 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2732 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2733 if (zopt_verbose >= 5) { 2734 (void) printf("Could not expand LUN because " 2735 "the vdev configuration changed.\n"); 2736 } 2737 spa_config_exit(spa, SCL_STATE, spa); 2738 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2739 return; 2740 } 2741 2742 spa_config_exit(spa, SCL_STATE, spa); 2743 2744 /* 2745 * Expanding the LUN will update the config asynchronously, 2746 * thus we must wait for the async thread to complete any 2747 * pending tasks before proceeding. 2748 */ 2749 for (;;) { 2750 boolean_t done; 2751 mutex_enter(&spa->spa_async_lock); 2752 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2753 mutex_exit(&spa->spa_async_lock); 2754 if (done) 2755 break; 2756 txg_wait_synced(spa_get_dsl(spa), 0); 2757 (void) poll(NULL, 0, 100); 2758 } 2759 2760 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2761 2762 tvd = spa->spa_root_vdev->vdev_child[top]; 2763 new_ms_count = tvd->vdev_ms_count; 2764 new_class_space = metaslab_class_get_space(mc); 2765 2766 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2767 if (zopt_verbose >= 5) { 2768 (void) printf("Could not verify LUN expansion due to " 2769 "intervening vdev offline or remove.\n"); 2770 } 2771 spa_config_exit(spa, SCL_STATE, spa); 2772 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2773 return; 2774 } 2775 2776 /* 2777 * Make sure we were able to grow the vdev. 2778 */ 2779 if (new_ms_count <= old_ms_count) 2780 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2781 old_ms_count, new_ms_count); 2782 2783 /* 2784 * Make sure we were able to grow the pool. 2785 */ 2786 if (new_class_space <= old_class_space) 2787 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2788 old_class_space, new_class_space); 2789 2790 if (zopt_verbose >= 5) { 2791 char oldnumbuf[6], newnumbuf[6]; 2792 2793 nicenum(old_class_space, oldnumbuf, sizeof(oldnumbuf)); 2794 nicenum(new_class_space, newnumbuf, sizeof(newnumbuf)); 2795 (void) printf("%s grew from %s to %s\n", 2796 spa->spa_name, oldnumbuf, newnumbuf); 2797 } 2798 2799 spa_config_exit(spa, SCL_STATE, spa); 2800 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2801 } 2802 2803 /* 2804 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 2805 */ 2806 /* ARGSUSED */ 2807 static void 2808 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 2809 { 2810 /* 2811 * Create the objects common to all ztest datasets. 2812 */ 2813 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 2814 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 2815 } 2816 2817 /* ARGSUSED */ 2818 static int 2819 ztest_objset_destroy_cb(const char *name, void *arg) 2820 { 2821 objset_t *os; 2822 dmu_object_info_t doi; 2823 int error; 2824 2825 /* 2826 * Verify that the dataset contains a directory object. 2827 */ 2828 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 2829 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 2830 if (error != ENOENT) { 2831 /* We could have crashed in the middle of destroying it */ 2832 ASSERT3U(error, ==, 0); 2833 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 2834 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 2835 } 2836 dmu_objset_rele(os, FTAG); 2837 2838 /* 2839 * Destroy the dataset. 2840 */ 2841 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 2842 return (0); 2843 } 2844 2845 static boolean_t 2846 ztest_snapshot_create(char *osname, uint64_t id) 2847 { 2848 char snapname[MAXNAMELEN]; 2849 int error; 2850 2851 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2852 (u_longlong_t)id); 2853 2854 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1, 2855 NULL, B_FALSE); 2856 if (error == ENOSPC) { 2857 ztest_record_enospc(FTAG); 2858 return (B_FALSE); 2859 } 2860 if (error != 0 && error != EEXIST) 2861 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 2862 return (B_TRUE); 2863 } 2864 2865 static boolean_t 2866 ztest_snapshot_destroy(char *osname, uint64_t id) 2867 { 2868 char snapname[MAXNAMELEN]; 2869 int error; 2870 2871 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2872 (u_longlong_t)id); 2873 2874 error = dmu_objset_destroy(snapname, B_FALSE); 2875 if (error != 0 && error != ENOENT) 2876 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 2877 return (B_TRUE); 2878 } 2879 2880 /* ARGSUSED */ 2881 void 2882 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 2883 { 2884 ztest_shared_t *zs = ztest_shared; 2885 ztest_ds_t zdtmp; 2886 int iters; 2887 int error; 2888 objset_t *os, *os2; 2889 char name[MAXNAMELEN]; 2890 zilog_t *zilog; 2891 2892 (void) rw_rdlock(&zs->zs_name_lock); 2893 2894 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 2895 zs->zs_pool, (u_longlong_t)id); 2896 2897 /* 2898 * If this dataset exists from a previous run, process its replay log 2899 * half of the time. If we don't replay it, then dmu_objset_destroy() 2900 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 2901 */ 2902 if (ztest_random(2) == 0 && 2903 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 2904 ztest_zd_init(&zdtmp, os); 2905 zil_replay(os, &zdtmp, ztest_replay_vector); 2906 ztest_zd_fini(&zdtmp); 2907 dmu_objset_disown(os, FTAG); 2908 } 2909 2910 /* 2911 * There may be an old instance of the dataset we're about to 2912 * create lying around from a previous run. If so, destroy it 2913 * and all of its snapshots. 2914 */ 2915 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 2916 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2917 2918 /* 2919 * Verify that the destroyed dataset is no longer in the namespace. 2920 */ 2921 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 2922 2923 /* 2924 * Verify that we can create a new dataset. 2925 */ 2926 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 2927 ztest_objset_create_cb, NULL); 2928 if (error) { 2929 if (error == ENOSPC) { 2930 ztest_record_enospc(FTAG); 2931 (void) rw_unlock(&zs->zs_name_lock); 2932 return; 2933 } 2934 fatal(0, "dmu_objset_create(%s) = %d", name, error); 2935 } 2936 2937 VERIFY3U(0, ==, 2938 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 2939 2940 ztest_zd_init(&zdtmp, os); 2941 2942 /* 2943 * Open the intent log for it. 2944 */ 2945 zilog = zil_open(os, ztest_get_data); 2946 2947 /* 2948 * Put some objects in there, do a little I/O to them, 2949 * and randomly take a couple of snapshots along the way. 2950 */ 2951 iters = ztest_random(5); 2952 for (int i = 0; i < iters; i++) { 2953 ztest_dmu_object_alloc_free(&zdtmp, id); 2954 if (ztest_random(iters) == 0) 2955 (void) ztest_snapshot_create(name, i); 2956 } 2957 2958 /* 2959 * Verify that we cannot create an existing dataset. 2960 */ 2961 VERIFY3U(EEXIST, ==, 2962 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 2963 2964 /* 2965 * Verify that we can hold an objset that is also owned. 2966 */ 2967 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 2968 dmu_objset_rele(os2, FTAG); 2969 2970 /* 2971 * Verify that we cannot own an objset that is already owned. 2972 */ 2973 VERIFY3U(EBUSY, ==, 2974 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 2975 2976 zil_close(zilog); 2977 dmu_objset_disown(os, FTAG); 2978 ztest_zd_fini(&zdtmp); 2979 2980 (void) rw_unlock(&zs->zs_name_lock); 2981 } 2982 2983 /* 2984 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 2985 */ 2986 void 2987 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 2988 { 2989 ztest_shared_t *zs = ztest_shared; 2990 2991 (void) rw_rdlock(&zs->zs_name_lock); 2992 (void) ztest_snapshot_destroy(zd->zd_name, id); 2993 (void) ztest_snapshot_create(zd->zd_name, id); 2994 (void) rw_unlock(&zs->zs_name_lock); 2995 } 2996 2997 /* 2998 * Cleanup non-standard snapshots and clones. 2999 */ 3000 void 3001 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3002 { 3003 char snap1name[MAXNAMELEN]; 3004 char clone1name[MAXNAMELEN]; 3005 char snap2name[MAXNAMELEN]; 3006 char clone2name[MAXNAMELEN]; 3007 char snap3name[MAXNAMELEN]; 3008 int error; 3009 3010 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3011 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3012 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3013 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3014 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3015 3016 error = dmu_objset_destroy(clone2name, B_FALSE); 3017 if (error && error != ENOENT) 3018 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 3019 error = dmu_objset_destroy(snap3name, B_FALSE); 3020 if (error && error != ENOENT) 3021 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 3022 error = dmu_objset_destroy(snap2name, B_FALSE); 3023 if (error && error != ENOENT) 3024 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 3025 error = dmu_objset_destroy(clone1name, B_FALSE); 3026 if (error && error != ENOENT) 3027 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 3028 error = dmu_objset_destroy(snap1name, B_FALSE); 3029 if (error && error != ENOENT) 3030 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 3031 } 3032 3033 /* 3034 * Verify dsl_dataset_promote handles EBUSY 3035 */ 3036 void 3037 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3038 { 3039 ztest_shared_t *zs = ztest_shared; 3040 objset_t *clone; 3041 dsl_dataset_t *ds; 3042 char snap1name[MAXNAMELEN]; 3043 char clone1name[MAXNAMELEN]; 3044 char snap2name[MAXNAMELEN]; 3045 char clone2name[MAXNAMELEN]; 3046 char snap3name[MAXNAMELEN]; 3047 char *osname = zd->zd_name; 3048 int error; 3049 3050 (void) rw_rdlock(&zs->zs_name_lock); 3051 3052 ztest_dsl_dataset_cleanup(osname, id); 3053 3054 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3055 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3056 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3057 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3058 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3059 3060 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 3061 NULL, B_FALSE); 3062 if (error && error != EEXIST) { 3063 if (error == ENOSPC) { 3064 ztest_record_enospc(FTAG); 3065 goto out; 3066 } 3067 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3068 } 3069 3070 error = dmu_objset_hold(snap1name, FTAG, &clone); 3071 if (error) 3072 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 3073 3074 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 3075 dmu_objset_rele(clone, FTAG); 3076 if (error) { 3077 if (error == ENOSPC) { 3078 ztest_record_enospc(FTAG); 3079 goto out; 3080 } 3081 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3082 } 3083 3084 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 3085 NULL, B_FALSE); 3086 if (error && error != EEXIST) { 3087 if (error == ENOSPC) { 3088 ztest_record_enospc(FTAG); 3089 goto out; 3090 } 3091 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3092 } 3093 3094 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 3095 NULL, B_FALSE); 3096 if (error && error != EEXIST) { 3097 if (error == ENOSPC) { 3098 ztest_record_enospc(FTAG); 3099 goto out; 3100 } 3101 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3102 } 3103 3104 error = dmu_objset_hold(snap3name, FTAG, &clone); 3105 if (error) 3106 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3107 3108 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3109 dmu_objset_rele(clone, FTAG); 3110 if (error) { 3111 if (error == ENOSPC) { 3112 ztest_record_enospc(FTAG); 3113 goto out; 3114 } 3115 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3116 } 3117 3118 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 3119 if (error) 3120 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 3121 error = dsl_dataset_promote(clone2name, NULL); 3122 if (error != EBUSY) 3123 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3124 error); 3125 dsl_dataset_disown(ds, FTAG); 3126 3127 out: 3128 ztest_dsl_dataset_cleanup(osname, id); 3129 3130 (void) rw_unlock(&zs->zs_name_lock); 3131 } 3132 3133 /* 3134 * Verify that dmu_object_{alloc,free} work as expected. 3135 */ 3136 void 3137 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3138 { 3139 ztest_od_t od[4]; 3140 int batchsize = sizeof (od) / sizeof (od[0]); 3141 3142 for (int b = 0; b < batchsize; b++) 3143 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3144 3145 /* 3146 * Destroy the previous batch of objects, create a new batch, 3147 * and do some I/O on the new objects. 3148 */ 3149 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3150 return; 3151 3152 while (ztest_random(4 * batchsize) != 0) 3153 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3154 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3155 } 3156 3157 /* 3158 * Verify that dmu_{read,write} work as expected. 3159 */ 3160 void 3161 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3162 { 3163 objset_t *os = zd->zd_os; 3164 ztest_od_t od[2]; 3165 dmu_tx_t *tx; 3166 int i, freeit, error; 3167 uint64_t n, s, txg; 3168 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3169 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3170 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3171 uint64_t regions = 997; 3172 uint64_t stride = 123456789ULL; 3173 uint64_t width = 40; 3174 int free_percent = 5; 3175 3176 /* 3177 * This test uses two objects, packobj and bigobj, that are always 3178 * updated together (i.e. in the same tx) so that their contents are 3179 * in sync and can be compared. Their contents relate to each other 3180 * in a simple way: packobj is a dense array of 'bufwad' structures, 3181 * while bigobj is a sparse array of the same bufwads. Specifically, 3182 * for any index n, there are three bufwads that should be identical: 3183 * 3184 * packobj, at offset n * sizeof (bufwad_t) 3185 * bigobj, at the head of the nth chunk 3186 * bigobj, at the tail of the nth chunk 3187 * 3188 * The chunk size is arbitrary. It doesn't have to be a power of two, 3189 * and it doesn't have any relation to the object blocksize. 3190 * The only requirement is that it can hold at least two bufwads. 3191 * 3192 * Normally, we write the bufwad to each of these locations. 3193 * However, free_percent of the time we instead write zeroes to 3194 * packobj and perform a dmu_free_range() on bigobj. By comparing 3195 * bigobj to packobj, we can verify that the DMU is correctly 3196 * tracking which parts of an object are allocated and free, 3197 * and that the contents of the allocated blocks are correct. 3198 */ 3199 3200 /* 3201 * Read the directory info. If it's the first time, set things up. 3202 */ 3203 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3204 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3205 3206 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3207 return; 3208 3209 bigobj = od[0].od_object; 3210 packobj = od[1].od_object; 3211 chunksize = od[0].od_gen; 3212 ASSERT(chunksize == od[1].od_gen); 3213 3214 /* 3215 * Prefetch a random chunk of the big object. 3216 * Our aim here is to get some async reads in flight 3217 * for blocks that we may free below; the DMU should 3218 * handle this race correctly. 3219 */ 3220 n = ztest_random(regions) * stride + ztest_random(width); 3221 s = 1 + ztest_random(2 * width - 1); 3222 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3223 3224 /* 3225 * Pick a random index and compute the offsets into packobj and bigobj. 3226 */ 3227 n = ztest_random(regions) * stride + ztest_random(width); 3228 s = 1 + ztest_random(width - 1); 3229 3230 packoff = n * sizeof (bufwad_t); 3231 packsize = s * sizeof (bufwad_t); 3232 3233 bigoff = n * chunksize; 3234 bigsize = s * chunksize; 3235 3236 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3237 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3238 3239 /* 3240 * free_percent of the time, free a range of bigobj rather than 3241 * overwriting it. 3242 */ 3243 freeit = (ztest_random(100) < free_percent); 3244 3245 /* 3246 * Read the current contents of our objects. 3247 */ 3248 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3249 DMU_READ_PREFETCH); 3250 ASSERT3U(error, ==, 0); 3251 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3252 DMU_READ_PREFETCH); 3253 ASSERT3U(error, ==, 0); 3254 3255 /* 3256 * Get a tx for the mods to both packobj and bigobj. 3257 */ 3258 tx = dmu_tx_create(os); 3259 3260 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3261 3262 if (freeit) 3263 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3264 else 3265 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3266 3267 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3268 if (txg == 0) { 3269 umem_free(packbuf, packsize); 3270 umem_free(bigbuf, bigsize); 3271 return; 3272 } 3273 3274 dmu_object_set_checksum(os, bigobj, 3275 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3276 3277 dmu_object_set_compress(os, bigobj, 3278 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3279 3280 /* 3281 * For each index from n to n + s, verify that the existing bufwad 3282 * in packobj matches the bufwads at the head and tail of the 3283 * corresponding chunk in bigobj. Then update all three bufwads 3284 * with the new values we want to write out. 3285 */ 3286 for (i = 0; i < s; i++) { 3287 /* LINTED */ 3288 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3289 /* LINTED */ 3290 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3291 /* LINTED */ 3292 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3293 3294 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3295 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3296 3297 if (pack->bw_txg > txg) 3298 fatal(0, "future leak: got %llx, open txg is %llx", 3299 pack->bw_txg, txg); 3300 3301 if (pack->bw_data != 0 && pack->bw_index != n + i) 3302 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3303 pack->bw_index, n, i); 3304 3305 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3306 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3307 3308 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3309 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3310 3311 if (freeit) { 3312 bzero(pack, sizeof (bufwad_t)); 3313 } else { 3314 pack->bw_index = n + i; 3315 pack->bw_txg = txg; 3316 pack->bw_data = 1 + ztest_random(-2ULL); 3317 } 3318 *bigH = *pack; 3319 *bigT = *pack; 3320 } 3321 3322 /* 3323 * We've verified all the old bufwads, and made new ones. 3324 * Now write them out. 3325 */ 3326 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3327 3328 if (freeit) { 3329 if (zopt_verbose >= 7) { 3330 (void) printf("freeing offset %llx size %llx" 3331 " txg %llx\n", 3332 (u_longlong_t)bigoff, 3333 (u_longlong_t)bigsize, 3334 (u_longlong_t)txg); 3335 } 3336 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3337 } else { 3338 if (zopt_verbose >= 7) { 3339 (void) printf("writing offset %llx size %llx" 3340 " txg %llx\n", 3341 (u_longlong_t)bigoff, 3342 (u_longlong_t)bigsize, 3343 (u_longlong_t)txg); 3344 } 3345 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3346 } 3347 3348 dmu_tx_commit(tx); 3349 3350 /* 3351 * Sanity check the stuff we just wrote. 3352 */ 3353 { 3354 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3355 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3356 3357 VERIFY(0 == dmu_read(os, packobj, packoff, 3358 packsize, packcheck, DMU_READ_PREFETCH)); 3359 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3360 bigsize, bigcheck, DMU_READ_PREFETCH)); 3361 3362 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3363 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3364 3365 umem_free(packcheck, packsize); 3366 umem_free(bigcheck, bigsize); 3367 } 3368 3369 umem_free(packbuf, packsize); 3370 umem_free(bigbuf, bigsize); 3371 } 3372 3373 void 3374 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3375 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3376 { 3377 uint64_t i; 3378 bufwad_t *pack; 3379 bufwad_t *bigH; 3380 bufwad_t *bigT; 3381 3382 /* 3383 * For each index from n to n + s, verify that the existing bufwad 3384 * in packobj matches the bufwads at the head and tail of the 3385 * corresponding chunk in bigobj. Then update all three bufwads 3386 * with the new values we want to write out. 3387 */ 3388 for (i = 0; i < s; i++) { 3389 /* LINTED */ 3390 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3391 /* LINTED */ 3392 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3393 /* LINTED */ 3394 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3395 3396 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3397 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3398 3399 if (pack->bw_txg > txg) 3400 fatal(0, "future leak: got %llx, open txg is %llx", 3401 pack->bw_txg, txg); 3402 3403 if (pack->bw_data != 0 && pack->bw_index != n + i) 3404 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3405 pack->bw_index, n, i); 3406 3407 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3408 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3409 3410 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3411 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3412 3413 pack->bw_index = n + i; 3414 pack->bw_txg = txg; 3415 pack->bw_data = 1 + ztest_random(-2ULL); 3416 3417 *bigH = *pack; 3418 *bigT = *pack; 3419 } 3420 } 3421 3422 void 3423 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3424 { 3425 objset_t *os = zd->zd_os; 3426 ztest_od_t od[2]; 3427 dmu_tx_t *tx; 3428 uint64_t i; 3429 int error; 3430 uint64_t n, s, txg; 3431 bufwad_t *packbuf, *bigbuf; 3432 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3433 uint64_t blocksize = ztest_random_blocksize(); 3434 uint64_t chunksize = blocksize; 3435 uint64_t regions = 997; 3436 uint64_t stride = 123456789ULL; 3437 uint64_t width = 9; 3438 dmu_buf_t *bonus_db; 3439 arc_buf_t **bigbuf_arcbufs; 3440 dmu_object_info_t doi; 3441 3442 /* 3443 * This test uses two objects, packobj and bigobj, that are always 3444 * updated together (i.e. in the same tx) so that their contents are 3445 * in sync and can be compared. Their contents relate to each other 3446 * in a simple way: packobj is a dense array of 'bufwad' structures, 3447 * while bigobj is a sparse array of the same bufwads. Specifically, 3448 * for any index n, there are three bufwads that should be identical: 3449 * 3450 * packobj, at offset n * sizeof (bufwad_t) 3451 * bigobj, at the head of the nth chunk 3452 * bigobj, at the tail of the nth chunk 3453 * 3454 * The chunk size is set equal to bigobj block size so that 3455 * dmu_assign_arcbuf() can be tested for object updates. 3456 */ 3457 3458 /* 3459 * Read the directory info. If it's the first time, set things up. 3460 */ 3461 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3462 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3463 3464 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3465 return; 3466 3467 bigobj = od[0].od_object; 3468 packobj = od[1].od_object; 3469 blocksize = od[0].od_blocksize; 3470 chunksize = blocksize; 3471 ASSERT(chunksize == od[1].od_gen); 3472 3473 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3474 VERIFY(ISP2(doi.doi_data_block_size)); 3475 VERIFY(chunksize == doi.doi_data_block_size); 3476 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3477 3478 /* 3479 * Pick a random index and compute the offsets into packobj and bigobj. 3480 */ 3481 n = ztest_random(regions) * stride + ztest_random(width); 3482 s = 1 + ztest_random(width - 1); 3483 3484 packoff = n * sizeof (bufwad_t); 3485 packsize = s * sizeof (bufwad_t); 3486 3487 bigoff = n * chunksize; 3488 bigsize = s * chunksize; 3489 3490 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3491 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3492 3493 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3494 3495 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3496 3497 /* 3498 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3499 * Iteration 1 test zcopy to already referenced dbufs. 3500 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3501 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3502 * Iteration 4 test zcopy when dbuf is no longer dirty. 3503 * Iteration 5 test zcopy when it can't be done. 3504 * Iteration 6 one more zcopy write. 3505 */ 3506 for (i = 0; i < 7; i++) { 3507 uint64_t j; 3508 uint64_t off; 3509 3510 /* 3511 * In iteration 5 (i == 5) use arcbufs 3512 * that don't match bigobj blksz to test 3513 * dmu_assign_arcbuf() when it can't directly 3514 * assign an arcbuf to a dbuf. 3515 */ 3516 for (j = 0; j < s; j++) { 3517 if (i != 5) { 3518 bigbuf_arcbufs[j] = 3519 dmu_request_arcbuf(bonus_db, chunksize); 3520 } else { 3521 bigbuf_arcbufs[2 * j] = 3522 dmu_request_arcbuf(bonus_db, chunksize / 2); 3523 bigbuf_arcbufs[2 * j + 1] = 3524 dmu_request_arcbuf(bonus_db, chunksize / 2); 3525 } 3526 } 3527 3528 /* 3529 * Get a tx for the mods to both packobj and bigobj. 3530 */ 3531 tx = dmu_tx_create(os); 3532 3533 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3534 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3535 3536 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3537 if (txg == 0) { 3538 umem_free(packbuf, packsize); 3539 umem_free(bigbuf, bigsize); 3540 for (j = 0; j < s; j++) { 3541 if (i != 5) { 3542 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3543 } else { 3544 dmu_return_arcbuf( 3545 bigbuf_arcbufs[2 * j]); 3546 dmu_return_arcbuf( 3547 bigbuf_arcbufs[2 * j + 1]); 3548 } 3549 } 3550 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3551 dmu_buf_rele(bonus_db, FTAG); 3552 return; 3553 } 3554 3555 /* 3556 * 50% of the time don't read objects in the 1st iteration to 3557 * test dmu_assign_arcbuf() for the case when there're no 3558 * existing dbufs for the specified offsets. 3559 */ 3560 if (i != 0 || ztest_random(2) != 0) { 3561 error = dmu_read(os, packobj, packoff, 3562 packsize, packbuf, DMU_READ_PREFETCH); 3563 ASSERT3U(error, ==, 0); 3564 error = dmu_read(os, bigobj, bigoff, bigsize, 3565 bigbuf, DMU_READ_PREFETCH); 3566 ASSERT3U(error, ==, 0); 3567 } 3568 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3569 n, chunksize, txg); 3570 3571 /* 3572 * We've verified all the old bufwads, and made new ones. 3573 * Now write them out. 3574 */ 3575 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3576 if (zopt_verbose >= 7) { 3577 (void) printf("writing offset %llx size %llx" 3578 " txg %llx\n", 3579 (u_longlong_t)bigoff, 3580 (u_longlong_t)bigsize, 3581 (u_longlong_t)txg); 3582 } 3583 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3584 dmu_buf_t *dbt; 3585 if (i != 5) { 3586 bcopy((caddr_t)bigbuf + (off - bigoff), 3587 bigbuf_arcbufs[j]->b_data, chunksize); 3588 } else { 3589 bcopy((caddr_t)bigbuf + (off - bigoff), 3590 bigbuf_arcbufs[2 * j]->b_data, 3591 chunksize / 2); 3592 bcopy((caddr_t)bigbuf + (off - bigoff) + 3593 chunksize / 2, 3594 bigbuf_arcbufs[2 * j + 1]->b_data, 3595 chunksize / 2); 3596 } 3597 3598 if (i == 1) { 3599 VERIFY(dmu_buf_hold(os, bigobj, off, 3600 FTAG, &dbt) == 0); 3601 } 3602 if (i != 5) { 3603 dmu_assign_arcbuf(bonus_db, off, 3604 bigbuf_arcbufs[j], tx); 3605 } else { 3606 dmu_assign_arcbuf(bonus_db, off, 3607 bigbuf_arcbufs[2 * j], tx); 3608 dmu_assign_arcbuf(bonus_db, 3609 off + chunksize / 2, 3610 bigbuf_arcbufs[2 * j + 1], tx); 3611 } 3612 if (i == 1) { 3613 dmu_buf_rele(dbt, FTAG); 3614 } 3615 } 3616 dmu_tx_commit(tx); 3617 3618 /* 3619 * Sanity check the stuff we just wrote. 3620 */ 3621 { 3622 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3623 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3624 3625 VERIFY(0 == dmu_read(os, packobj, packoff, 3626 packsize, packcheck, DMU_READ_PREFETCH)); 3627 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3628 bigsize, bigcheck, DMU_READ_PREFETCH)); 3629 3630 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3631 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3632 3633 umem_free(packcheck, packsize); 3634 umem_free(bigcheck, bigsize); 3635 } 3636 if (i == 2) { 3637 txg_wait_open(dmu_objset_pool(os), 0); 3638 } else if (i == 3) { 3639 txg_wait_synced(dmu_objset_pool(os), 0); 3640 } 3641 } 3642 3643 dmu_buf_rele(bonus_db, FTAG); 3644 umem_free(packbuf, packsize); 3645 umem_free(bigbuf, bigsize); 3646 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3647 } 3648 3649 /* ARGSUSED */ 3650 void 3651 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3652 { 3653 ztest_od_t od[1]; 3654 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3655 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3656 3657 /* 3658 * Have multiple threads write to large offsets in an object 3659 * to verify that parallel writes to an object -- even to the 3660 * same blocks within the object -- doesn't cause any trouble. 3661 */ 3662 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3663 3664 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3665 return; 3666 3667 while (ztest_random(10) != 0) 3668 ztest_io(zd, od[0].od_object, offset); 3669 } 3670 3671 void 3672 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3673 { 3674 ztest_od_t od[1]; 3675 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3676 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3677 uint64_t count = ztest_random(20) + 1; 3678 uint64_t blocksize = ztest_random_blocksize(); 3679 void *data; 3680 3681 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3682 3683 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3684 return; 3685 3686 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3687 return; 3688 3689 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3690 3691 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3692 3693 while (ztest_random(count) != 0) { 3694 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3695 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3696 data) != 0) 3697 break; 3698 while (ztest_random(4) != 0) 3699 ztest_io(zd, od[0].od_object, randoff); 3700 } 3701 3702 umem_free(data, blocksize); 3703 } 3704 3705 /* 3706 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3707 */ 3708 #define ZTEST_ZAP_MIN_INTS 1 3709 #define ZTEST_ZAP_MAX_INTS 4 3710 #define ZTEST_ZAP_MAX_PROPS 1000 3711 3712 void 3713 ztest_zap(ztest_ds_t *zd, uint64_t id) 3714 { 3715 objset_t *os = zd->zd_os; 3716 ztest_od_t od[1]; 3717 uint64_t object; 3718 uint64_t txg, last_txg; 3719 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3720 uint64_t zl_ints, zl_intsize, prop; 3721 int i, ints; 3722 dmu_tx_t *tx; 3723 char propname[100], txgname[100]; 3724 int error; 3725 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3726 3727 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3728 3729 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3730 return; 3731 3732 object = od[0].od_object; 3733 3734 /* 3735 * Generate a known hash collision, and verify that 3736 * we can lookup and remove both entries. 3737 */ 3738 tx = dmu_tx_create(os); 3739 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3740 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3741 if (txg == 0) 3742 return; 3743 for (i = 0; i < 2; i++) { 3744 value[i] = i; 3745 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3746 1, &value[i], tx)); 3747 } 3748 for (i = 0; i < 2; i++) { 3749 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3750 sizeof (uint64_t), 1, &value[i], tx)); 3751 VERIFY3U(0, ==, 3752 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3753 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3754 ASSERT3U(zl_ints, ==, 1); 3755 } 3756 for (i = 0; i < 2; i++) { 3757 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3758 } 3759 dmu_tx_commit(tx); 3760 3761 /* 3762 * Generate a buch of random entries. 3763 */ 3764 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3765 3766 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3767 (void) snprintf(propname, sizeof(propname), "prop_%llu", (u_longlong_t)prop); 3768 (void) snprintf(txgname, sizeof(txgname), "txg_%llu", (u_longlong_t)prop); 3769 bzero(value, sizeof (value)); 3770 last_txg = 0; 3771 3772 /* 3773 * If these zap entries already exist, validate their contents. 3774 */ 3775 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3776 if (error == 0) { 3777 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3778 ASSERT3U(zl_ints, ==, 1); 3779 3780 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3781 zl_ints, &last_txg) == 0); 3782 3783 VERIFY(zap_length(os, object, propname, &zl_intsize, 3784 &zl_ints) == 0); 3785 3786 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3787 ASSERT3U(zl_ints, ==, ints); 3788 3789 VERIFY(zap_lookup(os, object, propname, zl_intsize, 3790 zl_ints, value) == 0); 3791 3792 for (i = 0; i < ints; i++) { 3793 ASSERT3U(value[i], ==, last_txg + object + i); 3794 } 3795 } else { 3796 ASSERT3U(error, ==, ENOENT); 3797 } 3798 3799 /* 3800 * Atomically update two entries in our zap object. 3801 * The first is named txg_%llu, and contains the txg 3802 * in which the property was last updated. The second 3803 * is named prop_%llu, and the nth element of its value 3804 * should be txg + object + n. 3805 */ 3806 tx = dmu_tx_create(os); 3807 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3808 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3809 if (txg == 0) 3810 return; 3811 3812 if (last_txg > txg) 3813 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 3814 3815 for (i = 0; i < ints; i++) 3816 value[i] = txg + object + i; 3817 3818 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 3819 1, &txg, tx)); 3820 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 3821 ints, value, tx)); 3822 3823 dmu_tx_commit(tx); 3824 3825 /* 3826 * Remove a random pair of entries. 3827 */ 3828 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3829 (void) snprintf(propname, sizeof(propname), "prop_%llu", (u_longlong_t)prop); 3830 (void) snprintf(txgname, sizeof(txgname), "txg_%llu", (u_longlong_t)prop); 3831 3832 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3833 3834 if (error == ENOENT) 3835 return; 3836 3837 ASSERT3U(error, ==, 0); 3838 3839 tx = dmu_tx_create(os); 3840 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3841 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3842 if (txg == 0) 3843 return; 3844 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 3845 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 3846 dmu_tx_commit(tx); 3847 } 3848 3849 /* 3850 * Testcase to test the upgrading of a microzap to fatzap. 3851 */ 3852 void 3853 ztest_fzap(ztest_ds_t *zd, uint64_t id) 3854 { 3855 objset_t *os = zd->zd_os; 3856 ztest_od_t od[1]; 3857 uint64_t object, txg; 3858 3859 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3860 3861 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3862 return; 3863 3864 object = od[0].od_object; 3865 3866 /* 3867 * Add entries to this ZAP and make sure it spills over 3868 * and gets upgraded to a fatzap. Also, since we are adding 3869 * 2050 entries we should see ptrtbl growth and leaf-block split. 3870 */ 3871 for (int i = 0; i < 2050; i++) { 3872 char name[MAXNAMELEN]; 3873 uint64_t value = i; 3874 dmu_tx_t *tx; 3875 int error; 3876 3877 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 3878 id, value); 3879 3880 tx = dmu_tx_create(os); 3881 dmu_tx_hold_zap(tx, object, B_TRUE, name); 3882 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3883 if (txg == 0) 3884 return; 3885 error = zap_add(os, object, name, sizeof (uint64_t), 1, 3886 &value, tx); 3887 ASSERT(error == 0 || error == EEXIST); 3888 dmu_tx_commit(tx); 3889 } 3890 } 3891 3892 /* ARGSUSED */ 3893 void 3894 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 3895 { 3896 objset_t *os = zd->zd_os; 3897 ztest_od_t od[1]; 3898 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3899 dmu_tx_t *tx; 3900 int i, namelen, error; 3901 int micro = ztest_random(2); 3902 char name[20], string_value[20]; 3903 void *data; 3904 3905 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 3906 3907 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3908 return; 3909 3910 object = od[0].od_object; 3911 3912 /* 3913 * Generate a random name of the form 'xxx.....' where each 3914 * x is a random printable character and the dots are dots. 3915 * There are 94 such characters, and the name length goes from 3916 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3917 */ 3918 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3919 3920 for (i = 0; i < 3; i++) 3921 name[i] = '!' + ztest_random('~' - '!' + 1); 3922 for (; i < namelen - 1; i++) 3923 name[i] = '.'; 3924 name[i] = '\0'; 3925 3926 if ((namelen & 1) || micro) { 3927 wsize = sizeof (txg); 3928 wc = 1; 3929 data = &txg; 3930 } else { 3931 wsize = 1; 3932 wc = namelen; 3933 data = string_value; 3934 } 3935 3936 count = -1ULL; 3937 VERIFY(zap_count(os, object, &count) == 0); 3938 ASSERT(count != -1ULL); 3939 3940 /* 3941 * Select an operation: length, lookup, add, update, remove. 3942 */ 3943 i = ztest_random(5); 3944 3945 if (i >= 2) { 3946 tx = dmu_tx_create(os); 3947 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3948 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3949 if (txg == 0) 3950 return; 3951 bcopy(name, string_value, namelen); 3952 } else { 3953 tx = NULL; 3954 txg = 0; 3955 bzero(string_value, namelen); 3956 } 3957 3958 switch (i) { 3959 3960 case 0: 3961 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3962 if (error == 0) { 3963 ASSERT3U(wsize, ==, zl_wsize); 3964 ASSERT3U(wc, ==, zl_wc); 3965 } else { 3966 ASSERT3U(error, ==, ENOENT); 3967 } 3968 break; 3969 3970 case 1: 3971 error = zap_lookup(os, object, name, wsize, wc, data); 3972 if (error == 0) { 3973 if (data == string_value && 3974 bcmp(name, data, namelen) != 0) 3975 fatal(0, "name '%s' != val '%s' len %d", 3976 name, data, namelen); 3977 } else { 3978 ASSERT3U(error, ==, ENOENT); 3979 } 3980 break; 3981 3982 case 2: 3983 error = zap_add(os, object, name, wsize, wc, data, tx); 3984 ASSERT(error == 0 || error == EEXIST); 3985 break; 3986 3987 case 3: 3988 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3989 break; 3990 3991 case 4: 3992 error = zap_remove(os, object, name, tx); 3993 ASSERT(error == 0 || error == ENOENT); 3994 break; 3995 } 3996 3997 if (tx != NULL) 3998 dmu_tx_commit(tx); 3999 } 4000 4001 /* 4002 * Commit callback data. 4003 */ 4004 typedef struct ztest_cb_data { 4005 list_node_t zcd_node; 4006 uint64_t zcd_txg; 4007 int zcd_expected_err; 4008 boolean_t zcd_added; 4009 boolean_t zcd_called; 4010 spa_t *zcd_spa; 4011 } ztest_cb_data_t; 4012 4013 /* This is the actual commit callback function */ 4014 static void 4015 ztest_commit_callback(void *arg, int error) 4016 { 4017 ztest_cb_data_t *data = arg; 4018 uint64_t synced_txg; 4019 4020 VERIFY(data != NULL); 4021 VERIFY3S(data->zcd_expected_err, ==, error); 4022 VERIFY(!data->zcd_called); 4023 4024 synced_txg = spa_last_synced_txg(data->zcd_spa); 4025 if (data->zcd_txg > synced_txg) 4026 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4027 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4028 synced_txg); 4029 4030 data->zcd_called = B_TRUE; 4031 4032 if (error == ECANCELED) { 4033 ASSERT3U(data->zcd_txg, ==, 0); 4034 ASSERT(!data->zcd_added); 4035 4036 /* 4037 * The private callback data should be destroyed here, but 4038 * since we are going to check the zcd_called field after 4039 * dmu_tx_abort(), we will destroy it there. 4040 */ 4041 return; 4042 } 4043 4044 /* Was this callback added to the global callback list? */ 4045 if (!data->zcd_added) 4046 goto out; 4047 4048 ASSERT3U(data->zcd_txg, !=, 0); 4049 4050 /* Remove our callback from the list */ 4051 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4052 list_remove(&zcl.zcl_callbacks, data); 4053 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4054 4055 out: 4056 umem_free(data, sizeof (ztest_cb_data_t)); 4057 } 4058 4059 /* Allocate and initialize callback data structure */ 4060 static ztest_cb_data_t * 4061 ztest_create_cb_data(objset_t *os, uint64_t txg) 4062 { 4063 ztest_cb_data_t *cb_data; 4064 4065 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4066 4067 cb_data->zcd_txg = txg; 4068 cb_data->zcd_spa = dmu_objset_spa(os); 4069 4070 return (cb_data); 4071 } 4072 4073 /* 4074 * If a number of txgs equal to this threshold have been created after a commit 4075 * callback has been registered but not called, then we assume there is an 4076 * implementation bug. 4077 */ 4078 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4079 4080 /* 4081 * Commit callback test. 4082 */ 4083 void 4084 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4085 { 4086 objset_t *os = zd->zd_os; 4087 ztest_od_t od[1]; 4088 dmu_tx_t *tx; 4089 ztest_cb_data_t *cb_data[3], *tmp_cb; 4090 uint64_t old_txg, txg; 4091 int i, error; 4092 4093 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4094 4095 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4096 return; 4097 4098 tx = dmu_tx_create(os); 4099 4100 cb_data[0] = ztest_create_cb_data(os, 0); 4101 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4102 4103 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4104 4105 /* Every once in a while, abort the transaction on purpose */ 4106 if (ztest_random(100) == 0) 4107 error = -1; 4108 4109 if (!error) 4110 error = dmu_tx_assign(tx, TXG_NOWAIT); 4111 4112 txg = error ? 0 : dmu_tx_get_txg(tx); 4113 4114 cb_data[0]->zcd_txg = txg; 4115 cb_data[1] = ztest_create_cb_data(os, txg); 4116 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4117 4118 if (error) { 4119 /* 4120 * It's not a strict requirement to call the registered 4121 * callbacks from inside dmu_tx_abort(), but that's what 4122 * it's supposed to happen in the current implementation 4123 * so we will check for that. 4124 */ 4125 for (i = 0; i < 2; i++) { 4126 cb_data[i]->zcd_expected_err = ECANCELED; 4127 VERIFY(!cb_data[i]->zcd_called); 4128 } 4129 4130 dmu_tx_abort(tx); 4131 4132 for (i = 0; i < 2; i++) { 4133 VERIFY(cb_data[i]->zcd_called); 4134 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4135 } 4136 4137 return; 4138 } 4139 4140 cb_data[2] = ztest_create_cb_data(os, txg); 4141 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4142 4143 /* 4144 * Read existing data to make sure there isn't a future leak. 4145 */ 4146 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4147 &old_txg, DMU_READ_PREFETCH)); 4148 4149 if (old_txg > txg) 4150 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4151 old_txg, txg); 4152 4153 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4154 4155 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4156 4157 /* 4158 * Since commit callbacks don't have any ordering requirement and since 4159 * it is theoretically possible for a commit callback to be called 4160 * after an arbitrary amount of time has elapsed since its txg has been 4161 * synced, it is difficult to reliably determine whether a commit 4162 * callback hasn't been called due to high load or due to a flawed 4163 * implementation. 4164 * 4165 * In practice, we will assume that if after a certain number of txgs a 4166 * commit callback hasn't been called, then most likely there's an 4167 * implementation bug.. 4168 */ 4169 tmp_cb = list_head(&zcl.zcl_callbacks); 4170 if (tmp_cb != NULL && 4171 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4172 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4173 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4174 } 4175 4176 /* 4177 * Let's find the place to insert our callbacks. 4178 * 4179 * Even though the list is ordered by txg, it is possible for the 4180 * insertion point to not be the end because our txg may already be 4181 * quiescing at this point and other callbacks in the open txg 4182 * (from other objsets) may have sneaked in. 4183 */ 4184 tmp_cb = list_tail(&zcl.zcl_callbacks); 4185 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4186 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4187 4188 /* Add the 3 callbacks to the list */ 4189 for (i = 0; i < 3; i++) { 4190 if (tmp_cb == NULL) 4191 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4192 else 4193 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4194 cb_data[i]); 4195 4196 cb_data[i]->zcd_added = B_TRUE; 4197 VERIFY(!cb_data[i]->zcd_called); 4198 4199 tmp_cb = cb_data[i]; 4200 } 4201 4202 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4203 4204 dmu_tx_commit(tx); 4205 } 4206 4207 /* ARGSUSED */ 4208 void 4209 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4210 { 4211 zfs_prop_t proplist[] = { 4212 ZFS_PROP_CHECKSUM, 4213 ZFS_PROP_COMPRESSION, 4214 ZFS_PROP_COPIES, 4215 ZFS_PROP_DEDUP 4216 }; 4217 ztest_shared_t *zs = ztest_shared; 4218 4219 (void) rw_rdlock(&zs->zs_name_lock); 4220 4221 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4222 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4223 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4224 4225 (void) rw_unlock(&zs->zs_name_lock); 4226 } 4227 4228 /* ARGSUSED */ 4229 void 4230 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4231 { 4232 ztest_shared_t *zs = ztest_shared; 4233 nvlist_t *props = NULL; 4234 4235 (void) rw_rdlock(&zs->zs_name_lock); 4236 4237 (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO, 4238 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4239 4240 VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0); 4241 4242 if (zopt_verbose >= 6) 4243 dump_nvlist(props, 4); 4244 4245 nvlist_free(props); 4246 4247 (void) rw_unlock(&zs->zs_name_lock); 4248 } 4249 4250 /* 4251 * Test snapshot hold/release and deferred destroy. 4252 */ 4253 void 4254 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4255 { 4256 int error; 4257 objset_t *os = zd->zd_os; 4258 objset_t *origin; 4259 char snapname[100]; 4260 char fullname[100]; 4261 char clonename[100]; 4262 char tag[100]; 4263 char osname[MAXNAMELEN]; 4264 4265 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4266 4267 dmu_objset_name(os, osname); 4268 4269 (void) snprintf(snapname, 100, "sh1_%llu", id); 4270 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4271 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4272 (void) snprintf(tag, 100, "%tag_%llu", id); 4273 4274 /* 4275 * Clean up from any previous run. 4276 */ 4277 (void) dmu_objset_destroy(clonename, B_FALSE); 4278 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4279 (void) dmu_objset_destroy(fullname, B_FALSE); 4280 4281 /* 4282 * Create snapshot, clone it, mark snap for deferred destroy, 4283 * destroy clone, verify snap was also destroyed. 4284 */ 4285 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4286 if (error) { 4287 if (error == ENOSPC) { 4288 ztest_record_enospc("dmu_objset_snapshot"); 4289 goto out; 4290 } 4291 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4292 } 4293 4294 error = dmu_objset_hold(fullname, FTAG, &origin); 4295 if (error) 4296 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4297 4298 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4299 dmu_objset_rele(origin, FTAG); 4300 if (error) { 4301 if (error == ENOSPC) { 4302 ztest_record_enospc("dmu_objset_clone"); 4303 goto out; 4304 } 4305 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4306 } 4307 4308 error = dmu_objset_destroy(fullname, B_TRUE); 4309 if (error) { 4310 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4311 fullname, error); 4312 } 4313 4314 error = dmu_objset_destroy(clonename, B_FALSE); 4315 if (error) 4316 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4317 4318 error = dmu_objset_hold(fullname, FTAG, &origin); 4319 if (error != ENOENT) 4320 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4321 4322 /* 4323 * Create snapshot, add temporary hold, verify that we can't 4324 * destroy a held snapshot, mark for deferred destroy, 4325 * release hold, verify snapshot was destroyed. 4326 */ 4327 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4328 if (error) { 4329 if (error == ENOSPC) { 4330 ztest_record_enospc("dmu_objset_snapshot"); 4331 goto out; 4332 } 4333 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4334 } 4335 4336 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 4337 if (error) 4338 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4339 4340 error = dmu_objset_destroy(fullname, B_FALSE); 4341 if (error != EBUSY) { 4342 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4343 fullname, error); 4344 } 4345 4346 error = dmu_objset_destroy(fullname, B_TRUE); 4347 if (error) { 4348 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4349 fullname, error); 4350 } 4351 4352 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4353 if (error) 4354 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4355 4356 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4357 4358 out: 4359 (void) rw_unlock(&ztest_shared->zs_name_lock); 4360 } 4361 4362 /* 4363 * Inject random faults into the on-disk data. 4364 */ 4365 /* ARGSUSED */ 4366 void 4367 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4368 { 4369 ztest_shared_t *zs = ztest_shared; 4370 spa_t *spa = zs->zs_spa; 4371 int fd; 4372 uint64_t offset; 4373 uint64_t leaves; 4374 uint64_t bad = 0x1990c0ffeedecade; 4375 uint64_t top, leaf; 4376 char path0[MAXPATHLEN]; 4377 char pathrand[MAXPATHLEN]; 4378 size_t fsize; 4379 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4380 int iters = 1000; 4381 int maxfaults; 4382 int mirror_save; 4383 vdev_t *vd0 = NULL; 4384 uint64_t guid0 = 0; 4385 boolean_t islog = B_FALSE; 4386 4387 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4388 maxfaults = MAXFAULTS(); 4389 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 4390 mirror_save = zs->zs_mirrors; 4391 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4392 4393 ASSERT(leaves >= 1); 4394 4395 /* 4396 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4397 */ 4398 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4399 4400 if (ztest_random(2) == 0) { 4401 /* 4402 * Inject errors on a normal data device or slog device. 4403 */ 4404 top = ztest_random_vdev_top(spa, B_TRUE); 4405 leaf = ztest_random(leaves) + zs->zs_splits; 4406 4407 /* 4408 * Generate paths to the first leaf in this top-level vdev, 4409 * and to the random leaf we selected. We'll induce transient 4410 * write failures and random online/offline activity on leaf 0, 4411 * and we'll write random garbage to the randomly chosen leaf. 4412 */ 4413 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4414 zopt_dir, zopt_pool, top * leaves + zs->zs_splits); 4415 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4416 zopt_dir, zopt_pool, top * leaves + leaf); 4417 4418 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4419 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4420 islog = B_TRUE; 4421 4422 if (vd0 != NULL && maxfaults != 1) { 4423 /* 4424 * Make vd0 explicitly claim to be unreadable, 4425 * or unwriteable, or reach behind its back 4426 * and close the underlying fd. We can do this if 4427 * maxfaults == 0 because we'll fail and reexecute, 4428 * and we can do it if maxfaults >= 2 because we'll 4429 * have enough redundancy. If maxfaults == 1, the 4430 * combination of this with injection of random data 4431 * corruption below exceeds the pool's fault tolerance. 4432 */ 4433 vdev_file_t *vf = vd0->vdev_tsd; 4434 4435 if (vf != NULL && ztest_random(3) == 0) { 4436 (void) close(vf->vf_vnode->v_fd); 4437 vf->vf_vnode->v_fd = -1; 4438 } else if (ztest_random(2) == 0) { 4439 vd0->vdev_cant_read = B_TRUE; 4440 } else { 4441 vd0->vdev_cant_write = B_TRUE; 4442 } 4443 guid0 = vd0->vdev_guid; 4444 } 4445 } else { 4446 /* 4447 * Inject errors on an l2cache device. 4448 */ 4449 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4450 4451 if (sav->sav_count == 0) { 4452 spa_config_exit(spa, SCL_STATE, FTAG); 4453 return; 4454 } 4455 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4456 guid0 = vd0->vdev_guid; 4457 (void) strcpy(path0, vd0->vdev_path); 4458 (void) strcpy(pathrand, vd0->vdev_path); 4459 4460 leaf = 0; 4461 leaves = 1; 4462 maxfaults = INT_MAX; /* no limit on cache devices */ 4463 } 4464 4465 spa_config_exit(spa, SCL_STATE, FTAG); 4466 4467 /* 4468 * If we can tolerate two or more faults, or we're dealing 4469 * with a slog, randomly online/offline vd0. 4470 */ 4471 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4472 if (ztest_random(10) < 6) { 4473 int flags = (ztest_random(2) == 0 ? 4474 ZFS_OFFLINE_TEMPORARY : 0); 4475 4476 /* 4477 * We have to grab the zs_name_lock as writer to 4478 * prevent a race between offlining a slog and 4479 * destroying a dataset. Offlining the slog will 4480 * grab a reference on the dataset which may cause 4481 * dmu_objset_destroy() to fail with EBUSY thus 4482 * leaving the dataset in an inconsistent state. 4483 */ 4484 if (islog) 4485 (void) rw_wrlock(&ztest_shared->zs_name_lock); 4486 4487 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4488 4489 if (islog) 4490 (void) rw_unlock(&ztest_shared->zs_name_lock); 4491 } else { 4492 (void) vdev_online(spa, guid0, 0, NULL); 4493 } 4494 } 4495 4496 if (maxfaults == 0) 4497 return; 4498 4499 /* 4500 * We have at least single-fault tolerance, so inject data corruption. 4501 */ 4502 fd = open(pathrand, O_RDWR); 4503 4504 if (fd == -1) /* we hit a gap in the device namespace */ 4505 return; 4506 4507 fsize = lseek(fd, 0, SEEK_END); 4508 4509 while (--iters != 0) { 4510 offset = ztest_random(fsize / (leaves << bshift)) * 4511 (leaves << bshift) + (leaf << bshift) + 4512 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4513 4514 if (offset >= fsize) 4515 continue; 4516 4517 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4518 if (mirror_save != zs->zs_mirrors) { 4519 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4520 (void) close(fd); 4521 return; 4522 } 4523 4524 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4525 fatal(1, "can't inject bad word at 0x%llx in %s", 4526 offset, pathrand); 4527 4528 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4529 4530 if (zopt_verbose >= 7) 4531 (void) printf("injected bad word into %s," 4532 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4533 } 4534 4535 (void) close(fd); 4536 } 4537 4538 /* 4539 * Verify that DDT repair works as expected. 4540 */ 4541 void 4542 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4543 { 4544 ztest_shared_t *zs = ztest_shared; 4545 spa_t *spa = zs->zs_spa; 4546 objset_t *os = zd->zd_os; 4547 ztest_od_t od[1]; 4548 uint64_t object, blocksize, txg, pattern, psize; 4549 enum zio_checksum checksum = spa_dedup_checksum(spa); 4550 dmu_buf_t *db; 4551 dmu_tx_t *tx; 4552 void *buf; 4553 blkptr_t blk; 4554 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4555 4556 blocksize = ztest_random_blocksize(); 4557 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4558 4559 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4560 4561 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4562 return; 4563 4564 /* 4565 * Take the name lock as writer to prevent anyone else from changing 4566 * the pool and dataset properies we need to maintain during this test. 4567 */ 4568 (void) rw_wrlock(&zs->zs_name_lock); 4569 4570 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4571 B_FALSE) != 0 || 4572 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4573 B_FALSE) != 0) { 4574 (void) rw_unlock(&zs->zs_name_lock); 4575 return; 4576 } 4577 4578 object = od[0].od_object; 4579 blocksize = od[0].od_blocksize; 4580 pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os); 4581 4582 ASSERT(object != 0); 4583 4584 tx = dmu_tx_create(os); 4585 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4586 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4587 if (txg == 0) { 4588 (void) rw_unlock(&zs->zs_name_lock); 4589 return; 4590 } 4591 4592 /* 4593 * Write all the copies of our block. 4594 */ 4595 for (int i = 0; i < copies; i++) { 4596 uint64_t offset = i * blocksize; 4597 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db) == 0); 4598 ASSERT(db->db_offset == offset); 4599 ASSERT(db->db_size == blocksize); 4600 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4601 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4602 dmu_buf_will_fill(db, tx); 4603 ztest_pattern_set(db->db_data, db->db_size, pattern); 4604 dmu_buf_rele(db, FTAG); 4605 } 4606 4607 dmu_tx_commit(tx); 4608 txg_wait_synced(spa_get_dsl(spa), txg); 4609 4610 /* 4611 * Find out what block we got. 4612 */ 4613 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db) == 0); 4614 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4615 dmu_buf_rele(db, FTAG); 4616 4617 /* 4618 * Damage the block. Dedup-ditto will save us when we read it later. 4619 */ 4620 psize = BP_GET_PSIZE(&blk); 4621 buf = zio_buf_alloc(psize); 4622 ztest_pattern_set(buf, psize, ~pattern); 4623 4624 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4625 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4626 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4627 4628 zio_buf_free(buf, psize); 4629 4630 (void) rw_unlock(&zs->zs_name_lock); 4631 } 4632 4633 /* 4634 * Scrub the pool. 4635 */ 4636 /* ARGSUSED */ 4637 void 4638 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4639 { 4640 ztest_shared_t *zs = ztest_shared; 4641 spa_t *spa = zs->zs_spa; 4642 4643 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4644 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4645 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4646 } 4647 4648 /* 4649 * Rename the pool to a different name and then rename it back. 4650 */ 4651 /* ARGSUSED */ 4652 void 4653 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4654 { 4655 ztest_shared_t *zs = ztest_shared; 4656 char *oldname, *newname; 4657 spa_t *spa; 4658 4659 (void) rw_wrlock(&zs->zs_name_lock); 4660 4661 oldname = zs->zs_pool; 4662 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4663 (void) strcpy(newname, oldname); 4664 (void) strcat(newname, "_tmp"); 4665 4666 /* 4667 * Do the rename 4668 */ 4669 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4670 4671 /* 4672 * Try to open it under the old name, which shouldn't exist 4673 */ 4674 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4675 4676 /* 4677 * Open it under the new name and make sure it's still the same spa_t. 4678 */ 4679 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4680 4681 ASSERT(spa == zs->zs_spa); 4682 spa_close(spa, FTAG); 4683 4684 /* 4685 * Rename it back to the original 4686 */ 4687 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4688 4689 /* 4690 * Make sure it can still be opened 4691 */ 4692 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4693 4694 ASSERT(spa == zs->zs_spa); 4695 spa_close(spa, FTAG); 4696 4697 umem_free(newname, strlen(newname) + 1); 4698 4699 (void) rw_unlock(&zs->zs_name_lock); 4700 } 4701 4702 /* 4703 * Verify pool integrity by running zdb. 4704 */ 4705 static void 4706 ztest_run_zdb(char *pool) 4707 { 4708 int status; 4709 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4710 char zbuf[1024]; 4711 char *bin; 4712 char *ztest; 4713 char *isa; 4714 int isalen; 4715 FILE *fp; 4716 4717 (void) realpath(getexecname(), zdb); 4718 4719 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4720 bin = strstr(zdb, "/usr/bin/"); 4721 ztest = strstr(bin, "/ztest"); 4722 isa = bin + 8; 4723 isalen = ztest - isa; 4724 isa = strdup(isa); 4725 /* LINTED */ 4726 (void) snprintf(bin, sizeof(zdb) - (bin - zdb), 4727 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 4728 isalen, 4729 isa, 4730 zopt_verbose >= 3 ? "s" : "", 4731 zopt_verbose >= 4 ? "v" : "", 4732 pool); 4733 free(isa); 4734 4735 if (zopt_verbose >= 5) 4736 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4737 4738 fp = popen(zdb, "r"); 4739 4740 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4741 if (zopt_verbose >= 3) 4742 (void) printf("%s", zbuf); 4743 4744 status = pclose(fp); 4745 4746 if (status == 0) 4747 return; 4748 4749 ztest_dump_core = 0; 4750 if (WIFEXITED(status)) 4751 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 4752 else 4753 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 4754 } 4755 4756 static void 4757 ztest_walk_pool_directory(char *header) 4758 { 4759 spa_t *spa = NULL; 4760 4761 if (zopt_verbose >= 6) 4762 (void) printf("%s\n", header); 4763 4764 mutex_enter(&spa_namespace_lock); 4765 while ((spa = spa_next(spa)) != NULL) 4766 if (zopt_verbose >= 6) 4767 (void) printf("\t%s\n", spa_name(spa)); 4768 mutex_exit(&spa_namespace_lock); 4769 } 4770 4771 static void 4772 ztest_spa_import_export(char *oldname, char *newname) 4773 { 4774 nvlist_t *config, *newconfig; 4775 uint64_t pool_guid; 4776 spa_t *spa; 4777 4778 if (zopt_verbose >= 4) { 4779 (void) printf("import/export: old = %s, new = %s\n", 4780 oldname, newname); 4781 } 4782 4783 /* 4784 * Clean up from previous runs. 4785 */ 4786 (void) spa_destroy(newname); 4787 4788 /* 4789 * Get the pool's configuration and guid. 4790 */ 4791 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4792 4793 /* 4794 * Kick off a scrub to tickle scrub/export races. 4795 */ 4796 if (ztest_random(2) == 0) 4797 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4798 4799 pool_guid = spa_guid(spa); 4800 spa_close(spa, FTAG); 4801 4802 ztest_walk_pool_directory("pools before export"); 4803 4804 /* 4805 * Export it. 4806 */ 4807 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 4808 4809 ztest_walk_pool_directory("pools after export"); 4810 4811 /* 4812 * Try to import it. 4813 */ 4814 newconfig = spa_tryimport(config); 4815 ASSERT(newconfig != NULL); 4816 nvlist_free(newconfig); 4817 4818 /* 4819 * Import it under the new name. 4820 */ 4821 VERIFY3U(0, ==, spa_import(newname, config, NULL)); 4822 4823 ztest_walk_pool_directory("pools after import"); 4824 4825 /* 4826 * Try to import it again -- should fail with EEXIST. 4827 */ 4828 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL)); 4829 4830 /* 4831 * Try to import it under a different name -- should fail with EEXIST. 4832 */ 4833 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL)); 4834 4835 /* 4836 * Verify that the pool is no longer visible under the old name. 4837 */ 4838 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4839 4840 /* 4841 * Verify that we can open and close the pool using the new name. 4842 */ 4843 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4844 ASSERT(pool_guid == spa_guid(spa)); 4845 spa_close(spa, FTAG); 4846 4847 nvlist_free(config); 4848 } 4849 4850 static void 4851 ztest_resume(spa_t *spa) 4852 { 4853 if (spa_suspended(spa) && zopt_verbose >= 6) 4854 (void) printf("resuming from suspended state\n"); 4855 spa_vdev_state_enter(spa, SCL_NONE); 4856 vdev_clear(spa, NULL); 4857 (void) spa_vdev_state_exit(spa, NULL, 0); 4858 (void) zio_resume(spa); 4859 } 4860 4861 static void * 4862 ztest_resume_thread(void *arg) 4863 { 4864 spa_t *spa = arg; 4865 4866 while (!ztest_exiting) { 4867 if (spa_suspended(spa)) 4868 ztest_resume(spa); 4869 (void) poll(NULL, 0, 100); 4870 } 4871 return (NULL); 4872 } 4873 4874 static void * 4875 ztest_deadman_thread(void *arg) 4876 { 4877 ztest_shared_t *zs = arg; 4878 int grace = 300; 4879 hrtime_t delta; 4880 4881 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 4882 4883 (void) poll(NULL, 0, (int)(1000 * delta)); 4884 4885 fatal(0, "failed to complete within %d seconds of deadline", grace); 4886 4887 return (NULL); 4888 } 4889 4890 static void 4891 ztest_execute(ztest_info_t *zi, uint64_t id) 4892 { 4893 ztest_shared_t *zs = ztest_shared; 4894 ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets]; 4895 hrtime_t functime = gethrtime(); 4896 4897 for (int i = 0; i < zi->zi_iters; i++) 4898 zi->zi_func(zd, id); 4899 4900 functime = gethrtime() - functime; 4901 4902 atomic_add_64(&zi->zi_call_count, 1); 4903 atomic_add_64(&zi->zi_call_time, functime); 4904 4905 if (zopt_verbose >= 4) { 4906 Dl_info dli; 4907 (void) dladdr((void *)zi->zi_func, &dli); 4908 (void) printf("%6.2f sec in %s\n", 4909 (double)functime / NANOSEC, dli.dli_sname); 4910 } 4911 } 4912 4913 static void * 4914 ztest_thread(void *arg) 4915 { 4916 uint64_t id = (uintptr_t)arg; 4917 ztest_shared_t *zs = ztest_shared; 4918 uint64_t call_next; 4919 hrtime_t now; 4920 ztest_info_t *zi; 4921 4922 while ((now = gethrtime()) < zs->zs_thread_stop) { 4923 /* 4924 * See if it's time to force a crash. 4925 */ 4926 if (now > zs->zs_thread_kill) 4927 ztest_kill(zs); 4928 4929 /* 4930 * If we're getting ENOSPC with some regularity, stop. 4931 */ 4932 if (zs->zs_enospc_count > 10) 4933 break; 4934 4935 /* 4936 * Pick a random function to execute. 4937 */ 4938 zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)]; 4939 call_next = zi->zi_call_next; 4940 4941 if (now >= call_next && 4942 atomic_cas_64(&zi->zi_call_next, call_next, call_next + 4943 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) 4944 ztest_execute(zi, id); 4945 } 4946 4947 return (NULL); 4948 } 4949 4950 static void 4951 ztest_dataset_name(char *dsname, char *pool, int d) 4952 { 4953 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 4954 } 4955 4956 static void 4957 ztest_dataset_destroy(ztest_shared_t *zs, int d) 4958 { 4959 char name[MAXNAMELEN]; 4960 4961 ztest_dataset_name(name, zs->zs_pool, d); 4962 4963 if (zopt_verbose >= 3) 4964 (void) printf("Destroying %s to free up space\n", name); 4965 4966 /* 4967 * Cleanup any non-standard clones and snapshots. In general, 4968 * ztest thread t operates on dataset (t % zopt_datasets), 4969 * so there may be more than one thing to clean up. 4970 */ 4971 for (int t = d; t < zopt_threads; t += zopt_datasets) 4972 ztest_dsl_dataset_cleanup(name, t); 4973 4974 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 4975 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 4976 } 4977 4978 static void 4979 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 4980 { 4981 uint64_t usedobjs, dirobjs, scratch; 4982 4983 /* 4984 * ZTEST_DIROBJ is the object directory for the entire dataset. 4985 * Therefore, the number of objects in use should equal the 4986 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 4987 * If not, we have an object leak. 4988 * 4989 * Note that we can only check this in ztest_dataset_open(), 4990 * when the open-context and syncing-context values agree. 4991 * That's because zap_count() returns the open-context value, 4992 * while dmu_objset_space() returns the rootbp fill count. 4993 */ 4994 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 4995 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 4996 ASSERT3U(dirobjs + 1, ==, usedobjs); 4997 } 4998 4999 static int 5000 ztest_dataset_open(ztest_shared_t *zs, int d) 5001 { 5002 ztest_ds_t *zd = &zs->zs_zd[d]; 5003 uint64_t committed_seq = zd->zd_seq; 5004 objset_t *os; 5005 zilog_t *zilog; 5006 char name[MAXNAMELEN]; 5007 int error; 5008 5009 ztest_dataset_name(name, zs->zs_pool, d); 5010 5011 (void) rw_rdlock(&zs->zs_name_lock); 5012 5013 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 5014 ztest_objset_create_cb, NULL); 5015 if (error == ENOSPC) { 5016 (void) rw_unlock(&zs->zs_name_lock); 5017 ztest_record_enospc(FTAG); 5018 return (error); 5019 } 5020 ASSERT(error == 0 || error == EEXIST); 5021 5022 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0); 5023 (void) rw_unlock(&zs->zs_name_lock); 5024 5025 ztest_zd_init(zd, os); 5026 5027 zilog = zd->zd_zilog; 5028 5029 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5030 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5031 fatal(0, "missing log records: claimed %llu < committed %llu", 5032 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5033 5034 ztest_dataset_dirobj_verify(zd); 5035 5036 zil_replay(os, zd, ztest_replay_vector); 5037 5038 ztest_dataset_dirobj_verify(zd); 5039 5040 if (zopt_verbose >= 6) 5041 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5042 zd->zd_name, 5043 (u_longlong_t)zilog->zl_parse_blk_count, 5044 (u_longlong_t)zilog->zl_parse_lr_count, 5045 (u_longlong_t)zilog->zl_replaying_seq); 5046 5047 zilog = zil_open(os, ztest_get_data); 5048 5049 if (zilog->zl_replaying_seq != 0 && 5050 zilog->zl_replaying_seq < committed_seq) 5051 fatal(0, "missing log records: replayed %llu < committed %llu", 5052 zilog->zl_replaying_seq, committed_seq); 5053 5054 return (0); 5055 } 5056 5057 static void 5058 ztest_dataset_close(ztest_shared_t *zs, int d) 5059 { 5060 ztest_ds_t *zd = &zs->zs_zd[d]; 5061 5062 zil_close(zd->zd_zilog); 5063 dmu_objset_rele(zd->zd_os, zd); 5064 5065 ztest_zd_fini(zd); 5066 } 5067 5068 /* 5069 * Kick off threads to run tests on all datasets in parallel. 5070 */ 5071 static void 5072 ztest_run(ztest_shared_t *zs) 5073 { 5074 thread_t *tid; 5075 spa_t *spa; 5076 thread_t resume_tid; 5077 int error; 5078 5079 ztest_exiting = B_FALSE; 5080 5081 /* 5082 * Initialize parent/child shared state. 5083 */ 5084 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5085 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5086 5087 zs->zs_thread_start = gethrtime(); 5088 zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC; 5089 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5090 zs->zs_thread_kill = zs->zs_thread_stop; 5091 if (ztest_random(100) < zopt_killrate) 5092 zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC); 5093 5094 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5095 5096 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5097 offsetof(ztest_cb_data_t, zcd_node)); 5098 5099 /* 5100 * Open our pool. 5101 */ 5102 kernel_init(FREAD | FWRITE); 5103 VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0); 5104 zs->zs_spa = spa; 5105 5106 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5107 5108 /* 5109 * We don't expect the pool to suspend unless maxfaults == 0, 5110 * in which case ztest_fault_inject() temporarily takes away 5111 * the only valid replica. 5112 */ 5113 if (MAXFAULTS() == 0) 5114 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5115 else 5116 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5117 5118 /* 5119 * Create a thread to periodically resume suspended I/O. 5120 */ 5121 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5122 &resume_tid) == 0); 5123 5124 /* 5125 * Create a deadman thread to abort() if we hang. 5126 */ 5127 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5128 NULL) == 0); 5129 5130 /* 5131 * Verify that we can safely inquire about about any object, 5132 * whether it's allocated or not. To make it interesting, 5133 * we probe a 5-wide window around each power of two. 5134 * This hits all edge cases, including zero and the max. 5135 */ 5136 for (int t = 0; t < 64; t++) { 5137 for (int d = -5; d <= 5; d++) { 5138 error = dmu_object_info(spa->spa_meta_objset, 5139 (1ULL << t) + d, NULL); 5140 ASSERT(error == 0 || error == ENOENT || 5141 error == EINVAL); 5142 } 5143 } 5144 5145 /* 5146 * If we got any ENOSPC errors on the previous run, destroy something. 5147 */ 5148 if (zs->zs_enospc_count != 0) { 5149 int d = ztest_random(zopt_datasets); 5150 ztest_dataset_destroy(zs, d); 5151 } 5152 zs->zs_enospc_count = 0; 5153 5154 tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL); 5155 5156 if (zopt_verbose >= 4) 5157 (void) printf("starting main threads...\n"); 5158 5159 /* 5160 * Kick off all the tests that run in parallel. 5161 */ 5162 for (int t = 0; t < zopt_threads; t++) { 5163 if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0) 5164 return; 5165 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5166 THR_BOUND, &tid[t]) == 0); 5167 } 5168 5169 /* 5170 * Wait for all of the tests to complete. We go in reverse order 5171 * so we don't close datasets while threads are still using them. 5172 */ 5173 for (int t = zopt_threads - 1; t >= 0; t--) { 5174 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5175 if (t < zopt_datasets) 5176 ztest_dataset_close(zs, t); 5177 } 5178 5179 txg_wait_synced(spa_get_dsl(spa), 0); 5180 5181 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5182 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5183 5184 umem_free(tid, zopt_threads * sizeof (thread_t)); 5185 5186 /* Kill the resume thread */ 5187 ztest_exiting = B_TRUE; 5188 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5189 ztest_resume(spa); 5190 5191 /* 5192 * Right before closing the pool, kick off a bunch of async I/O; 5193 * spa_close() should wait for it to complete. 5194 */ 5195 for (uint64_t object = 1; object < 50; object++) 5196 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5197 5198 spa_close(spa, FTAG); 5199 5200 /* 5201 * Verify that we can loop over all pools. 5202 */ 5203 mutex_enter(&spa_namespace_lock); 5204 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5205 if (zopt_verbose > 3) 5206 (void) printf("spa_next: found %s\n", spa_name(spa)); 5207 mutex_exit(&spa_namespace_lock); 5208 5209 /* 5210 * Verify that we can export the pool and reimport it under a 5211 * different name. 5212 */ 5213 if (ztest_random(2) == 0) { 5214 char name[MAXNAMELEN]; 5215 (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool); 5216 ztest_spa_import_export(zs->zs_pool, name); 5217 ztest_spa_import_export(name, zs->zs_pool); 5218 } 5219 5220 kernel_fini(); 5221 } 5222 5223 static void 5224 ztest_freeze(ztest_shared_t *zs) 5225 { 5226 ztest_ds_t *zd = &zs->zs_zd[0]; 5227 spa_t *spa; 5228 5229 if (zopt_verbose >= 3) 5230 (void) printf("testing spa_freeze()...\n"); 5231 5232 kernel_init(FREAD | FWRITE); 5233 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5234 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5235 5236 /* 5237 * Force the first log block to be transactionally allocated. 5238 * We have to do this before we freeze the pool -- otherwise 5239 * the log chain won't be anchored. 5240 */ 5241 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5242 ztest_dmu_object_alloc_free(zd, 0); 5243 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5244 } 5245 5246 txg_wait_synced(spa_get_dsl(spa), 0); 5247 5248 /* 5249 * Freeze the pool. This stops spa_sync() from doing anything, 5250 * so that the only way to record changes from now on is the ZIL. 5251 */ 5252 spa_freeze(spa); 5253 5254 /* 5255 * Run tests that generate log records but don't alter the pool config 5256 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5257 * We do a txg_wait_synced() after each iteration to force the txg 5258 * to increase well beyond the last synced value in the uberblock. 5259 * The ZIL should be OK with that. 5260 */ 5261 while (ztest_random(20) != 0) { 5262 ztest_dmu_write_parallel(zd, 0); 5263 ztest_dmu_object_alloc_free(zd, 0); 5264 txg_wait_synced(spa_get_dsl(spa), 0); 5265 } 5266 5267 /* 5268 * Commit all of the changes we just generated. 5269 */ 5270 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5271 txg_wait_synced(spa_get_dsl(spa), 0); 5272 5273 /* 5274 * Close our dataset and close the pool. 5275 */ 5276 ztest_dataset_close(zs, 0); 5277 spa_close(spa, FTAG); 5278 kernel_fini(); 5279 5280 /* 5281 * Open and close the pool and dataset to induce log replay. 5282 */ 5283 kernel_init(FREAD | FWRITE); 5284 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5285 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5286 ztest_dataset_close(zs, 0); 5287 spa_close(spa, FTAG); 5288 kernel_fini(); 5289 5290 list_destroy(&zcl.zcl_callbacks); 5291 5292 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5293 5294 (void) rwlock_destroy(&zs->zs_name_lock); 5295 (void) _mutex_destroy(&zs->zs_vdev_lock); 5296 } 5297 5298 void 5299 print_time(hrtime_t t, char *timebuf, size_t timelen) 5300 { 5301 hrtime_t s = t / NANOSEC; 5302 hrtime_t m = s / 60; 5303 hrtime_t h = m / 60; 5304 hrtime_t d = h / 24; 5305 5306 s -= m * 60; 5307 m -= h * 60; 5308 h -= d * 24; 5309 5310 timebuf[0] = '\0'; 5311 5312 if (d) 5313 (void) snprintf(timebuf, timelen, 5314 "%llud%02lluh%02llum%02llus", d, h, m, s); 5315 else if (h) 5316 (void) snprintf(timebuf, timelen, "%lluh%02llum%02llus", h, m, s); 5317 else if (m) 5318 (void) snprintf(timebuf, timelen, "%llum%02llus", m, s); 5319 else 5320 (void) snprintf(timebuf, timelen, "%llus", s); 5321 } 5322 5323 static nvlist_t * 5324 make_random_props() 5325 { 5326 nvlist_t *props; 5327 5328 if (ztest_random(2) == 0) 5329 return (NULL); 5330 5331 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5332 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5333 5334 (void) printf("props:\n"); 5335 dump_nvlist(props, 4); 5336 5337 return (props); 5338 } 5339 5340 /* 5341 * Create a storage pool with the given name and initial vdev size. 5342 * Then test spa_freeze() functionality. 5343 */ 5344 static void 5345 ztest_init(ztest_shared_t *zs) 5346 { 5347 spa_t *spa; 5348 nvlist_t *nvroot, *props; 5349 5350 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5351 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5352 5353 kernel_init(FREAD | FWRITE); 5354 5355 /* 5356 * Create the storage pool. 5357 */ 5358 (void) spa_destroy(zs->zs_pool); 5359 ztest_shared->zs_vdev_next_leaf = 0; 5360 zs->zs_splits = 0; 5361 zs->zs_mirrors = zopt_mirrors; 5362 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 5363 0, zopt_raidz, zs->zs_mirrors, 1); 5364 props = make_random_props(); 5365 VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL)); 5366 nvlist_free(nvroot); 5367 5368 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5369 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5370 spa_close(spa, FTAG); 5371 5372 kernel_fini(); 5373 5374 ztest_run_zdb(zs->zs_pool); 5375 5376 ztest_freeze(zs); 5377 5378 ztest_run_zdb(zs->zs_pool); 5379 } 5380 5381 int 5382 main(int argc, char **argv) 5383 { 5384 int kills = 0; 5385 int iters = 0; 5386 ztest_shared_t *zs; 5387 size_t shared_size; 5388 ztest_info_t *zi; 5389 char timebuf[100]; 5390 char numbuf[6]; 5391 spa_t *spa; 5392 5393 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5394 5395 /* Override location of zpool.cache */ 5396 spa_config_path = "/tmp/zpool.cache"; 5397 5398 ztest_random_fd = open("/dev/urandom", O_RDONLY); 5399 5400 process_options(argc, argv); 5401 5402 /* 5403 * Blow away any existing copy of zpool.cache 5404 */ 5405 if (zopt_init != 0) 5406 (void) remove("/tmp/zpool.cache"); 5407 5408 shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t); 5409 5410 zs = ztest_shared = (void *)mmap(0, 5411 P2ROUNDUP(shared_size, getpagesize()), 5412 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 5413 5414 if (zopt_verbose >= 1) { 5415 (void) printf("%llu vdevs, %d datasets, %d threads," 5416 " %llu seconds...\n", 5417 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 5418 (u_longlong_t)zopt_time); 5419 } 5420 5421 /* 5422 * Create and initialize our storage pool. 5423 */ 5424 for (int i = 1; i <= zopt_init; i++) { 5425 bzero(zs, sizeof (ztest_shared_t)); 5426 if (zopt_verbose >= 3 && zopt_init != 1) 5427 (void) printf("ztest_init(), pass %d\n", i); 5428 zs->zs_pool = zopt_pool; 5429 ztest_init(zs); 5430 } 5431 5432 zs->zs_pool = zopt_pool; 5433 zs->zs_proc_start = gethrtime(); 5434 zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC; 5435 5436 for (int f = 0; f < ZTEST_FUNCS; f++) { 5437 zi = &zs->zs_info[f]; 5438 *zi = ztest_info[f]; 5439 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5440 zi->zi_call_next = UINT64_MAX; 5441 else 5442 zi->zi_call_next = zs->zs_proc_start + 5443 ztest_random(2 * zi->zi_interval[0] + 1); 5444 } 5445 5446 /* 5447 * Run the tests in a loop. These tests include fault injection 5448 * to verify that self-healing data works, and forced crashes 5449 * to verify that we never lose on-disk consistency. 5450 */ 5451 while (gethrtime() < zs->zs_proc_stop) { 5452 int status; 5453 pid_t pid; 5454 5455 /* 5456 * Initialize the workload counters for each function. 5457 */ 5458 for (int f = 0; f < ZTEST_FUNCS; f++) { 5459 zi = &zs->zs_info[f]; 5460 zi->zi_call_count = 0; 5461 zi->zi_call_time = 0; 5462 } 5463 5464 /* Set the allocation switch size */ 5465 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 5466 5467 pid = fork(); 5468 5469 if (pid == -1) 5470 fatal(1, "fork failed"); 5471 5472 if (pid == 0) { /* child */ 5473 struct rlimit rl = { 1024, 1024 }; 5474 (void) setrlimit(RLIMIT_NOFILE, &rl); 5475 (void) enable_extended_FILE_stdio(-1, -1); 5476 ztest_run(zs); 5477 exit(0); 5478 } 5479 5480 while (waitpid(pid, &status, 0) != pid) 5481 continue; 5482 5483 if (WIFEXITED(status)) { 5484 if (WEXITSTATUS(status) != 0) { 5485 (void) fprintf(stderr, 5486 "child exited with code %d\n", 5487 WEXITSTATUS(status)); 5488 exit(2); 5489 } 5490 } else if (WIFSIGNALED(status)) { 5491 if (WTERMSIG(status) != SIGKILL) { 5492 (void) fprintf(stderr, 5493 "child died with signal %d\n", 5494 WTERMSIG(status)); 5495 exit(3); 5496 } 5497 kills++; 5498 } else { 5499 (void) fprintf(stderr, "something strange happened " 5500 "to child\n"); 5501 exit(4); 5502 } 5503 5504 iters++; 5505 5506 if (zopt_verbose >= 1) { 5507 hrtime_t now = gethrtime(); 5508 5509 now = MIN(now, zs->zs_proc_stop); 5510 print_time(zs->zs_proc_stop - now, timebuf, sizeof(timebuf)); 5511 nicenum(zs->zs_space, numbuf, sizeof(numbuf)); 5512 5513 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5514 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5515 iters, 5516 WIFEXITED(status) ? "Complete" : "SIGKILL", 5517 (u_longlong_t)zs->zs_enospc_count, 5518 100.0 * zs->zs_alloc / zs->zs_space, 5519 numbuf, 5520 100.0 * (now - zs->zs_proc_start) / 5521 (zopt_time * NANOSEC), timebuf); 5522 } 5523 5524 if (zopt_verbose >= 2) { 5525 (void) printf("\nWorkload summary:\n\n"); 5526 (void) printf("%7s %9s %s\n", 5527 "Calls", "Time", "Function"); 5528 (void) printf("%7s %9s %s\n", 5529 "-----", "----", "--------"); 5530 for (int f = 0; f < ZTEST_FUNCS; f++) { 5531 Dl_info dli; 5532 5533 zi = &zs->zs_info[f]; 5534 print_time(zi->zi_call_time, timebuf, sizeof(timebuf)); 5535 (void) dladdr((void *)zi->zi_func, &dli); 5536 (void) printf("%7llu %9s %s\n", 5537 (u_longlong_t)zi->zi_call_count, timebuf, 5538 dli.dli_sname); 5539 } 5540 (void) printf("\n"); 5541 } 5542 5543 /* 5544 * It's possible that we killed a child during a rename test, 5545 * in which case we'll have a 'ztest_tmp' pool lying around 5546 * instead of 'ztest'. Do a blind rename in case this happened. 5547 */ 5548 kernel_init(FREAD); 5549 if (spa_open(zopt_pool, &spa, FTAG) == 0) { 5550 spa_close(spa, FTAG); 5551 } else { 5552 char tmpname[MAXNAMELEN]; 5553 kernel_fini(); 5554 kernel_init(FREAD | FWRITE); 5555 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 5556 zopt_pool); 5557 (void) spa_rename(tmpname, zopt_pool); 5558 } 5559 kernel_fini(); 5560 5561 ztest_run_zdb(zopt_pool); 5562 } 5563 5564 if (zopt_verbose >= 1) { 5565 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 5566 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 5567 } 5568 5569 return (0); 5570 } 5571