xref: /netbsd-src/external/cddl/osnet/dev/dtrace/i386/dtrace_subr.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: dtrace_subr.c,v 1.11 2018/06/04 21:35:29 christos Exp $	*/
2 
3 /*
4  * CDDL HEADER START
5  *
6  * The contents of this file are subject to the terms of the
7  * Common Development and Distribution License, Version 1.0 only
8  * (the "License").  You may not use this file except in compliance
9  * with the License.
10  *
11  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
12  * or http://www.opensolaris.org/os/licensing.
13  * See the License for the specific language governing permissions
14  * and limitations under the License.
15  *
16  * When distributing Covered Code, include this CDDL HEADER in each
17  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
18  * If applicable, add the following below this CDDL HEADER, with the
19  * fields enclosed by brackets "[]" replaced with your own identifying
20  * information: Portions Copyright [yyyy] [name of copyright owner]
21  *
22  * CDDL HEADER END
23  *
24  * $FreeBSD: head/sys/cddl/dev/dtrace/i386/dtrace_subr.c 313850 2017-02-17 03:27:20Z markj $
25  *
26  */
27 /*
28  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
29  * Use is subject to license terms.
30  */
31 
32 /*
33  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/kmem.h>
42 #include <sys/xcall.h>
43 #include <sys/cpu.h>
44 #include <sys/cpuvar.h>
45 #include <sys/dtrace_impl.h>
46 #include <sys/dtrace_bsd.h>
47 #include <machine/cpu.h>
48 #include <machine/clock.h>
49 #include <machine/frame.h>
50 #include <uvm/uvm_pglist.h>
51 #include <uvm/uvm_prot.h>
52 #include <uvm/uvm_pmap.h>
53 
54 #include <x86/include/cpu_counter.h>
55 
56 extern uintptr_t 	kernelbase;
57 
58 extern void dtrace_getnanotime(struct timespec *tsp);
59 
60 int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);
61 
62 typedef struct dtrace_invop_hdlr {
63 	int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
64 	struct dtrace_invop_hdlr *dtih_next;
65 } dtrace_invop_hdlr_t;
66 
67 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
68 
69 void dtrace_gethrtime_init(void *arg);
70 
71 int
72 dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax)
73 {
74 	dtrace_invop_hdlr_t *hdlr;
75 	int rval;
76 
77 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
78 		if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0)
79 			return (rval);
80 
81 	return (0);
82 }
83 
84 void
85 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
86 {
87 	dtrace_invop_hdlr_t *hdlr;
88 
89 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
90 	hdlr->dtih_func = func;
91 	hdlr->dtih_next = dtrace_invop_hdlr;
92 	dtrace_invop_hdlr = hdlr;
93 }
94 
95 void
96 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
97 {
98 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
99 
100 	for (;;) {
101 		if (hdlr == NULL)
102 			panic("attempt to remove non-existent invop handler");
103 
104 		if (hdlr->dtih_func == func)
105 			break;
106 
107 		prev = hdlr;
108 		hdlr = hdlr->dtih_next;
109 	}
110 
111 	if (prev == NULL) {
112 		ASSERT(dtrace_invop_hdlr == hdlr);
113 		dtrace_invop_hdlr = hdlr->dtih_next;
114 	} else {
115 		ASSERT(dtrace_invop_hdlr != hdlr);
116 		prev->dtih_next = hdlr->dtih_next;
117 	}
118 
119 	kmem_free(hdlr, sizeof (dtrace_invop_hdlr_t));
120 }
121 
122 void
123 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
124 {
125 	(*func)(0, kernelbase);
126 }
127 
128 static void
129 xcall_func(void *arg0, void *arg1)
130 {
131     	dtrace_xcall_t func = arg0;
132 
133     	(*func)(arg1);
134 }
135 
136 void
137 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
138 {
139 	uint64_t where;
140 
141 	if (cpu == DTRACE_CPUALL) {
142 		where = xc_broadcast(0, xcall_func, func, arg);
143 	} else {
144 		struct cpu_info *cinfo = cpu_lookup(cpu);
145 
146 		KASSERT(cinfo != NULL);
147 		where = xc_unicast(0, xcall_func, func, arg, cinfo);
148 	}
149 	xc_wait(where);
150 
151 	/* XXX Q. Do we really need the other cpus to wait also?
152 	 * (see solaris:xc_sync())
153 	 */
154 }
155 
156 static void
157 dtrace_sync_func(void)
158 {
159 }
160 
161 void
162 dtrace_sync(void)
163 {
164         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
165 }
166 
167 #ifdef notyet
168 void
169 dtrace_safe_synchronous_signal(void)
170 {
171 	kthread_t *t = curthread;
172 	struct regs *rp = lwptoregs(ttolwp(t));
173 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
174 
175 	ASSERT(t->t_dtrace_on);
176 
177 	/*
178 	 * If we're not in the range of scratch addresses, we're not actually
179 	 * tracing user instructions so turn off the flags. If the instruction
180 	 * we copied out caused a synchonous trap, reset the pc back to its
181 	 * original value and turn off the flags.
182 	 */
183 	if (rp->r_pc < t->t_dtrace_scrpc ||
184 	    rp->r_pc > t->t_dtrace_astpc + isz) {
185 		t->t_dtrace_ft = 0;
186 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
187 	    rp->r_pc == t->t_dtrace_astpc) {
188 		rp->r_pc = t->t_dtrace_pc;
189 		t->t_dtrace_ft = 0;
190 	}
191 }
192 
193 int
194 dtrace_safe_defer_signal(void)
195 {
196 	kthread_t *t = curthread;
197 	struct regs *rp = lwptoregs(ttolwp(t));
198 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
199 
200 	ASSERT(t->t_dtrace_on);
201 
202 	/*
203 	 * If we're not in the range of scratch addresses, we're not actually
204 	 * tracing user instructions so turn off the flags.
205 	 */
206 	if (rp->r_pc < t->t_dtrace_scrpc ||
207 	    rp->r_pc > t->t_dtrace_astpc + isz) {
208 		t->t_dtrace_ft = 0;
209 		return (0);
210 	}
211 
212 	/*
213 	 * If we have executed the original instruction, but we have performed
214 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
215 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
216 	 * we'll save ourselves some effort by doing that here and taking the
217 	 * signal right away.  We detect this condition by seeing if the program
218 	 * counter is the range [scrpc + isz, astpc).
219 	 */
220 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
221 	    rp->r_pc < t->t_dtrace_astpc) {
222 #ifdef __amd64
223 		/*
224 		 * If there is a scratch register and we're on the
225 		 * instruction immediately after the modified instruction,
226 		 * restore the value of that scratch register.
227 		 */
228 		if (t->t_dtrace_reg != 0 &&
229 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
230 			switch (t->t_dtrace_reg) {
231 			case REG_RAX:
232 				rp->r_rax = t->t_dtrace_regv;
233 				break;
234 			case REG_RCX:
235 				rp->r_rcx = t->t_dtrace_regv;
236 				break;
237 			case REG_R8:
238 				rp->r_r8 = t->t_dtrace_regv;
239 				break;
240 			case REG_R9:
241 				rp->r_r9 = t->t_dtrace_regv;
242 				break;
243 			}
244 		}
245 #endif
246 		rp->r_pc = t->t_dtrace_npc;
247 		t->t_dtrace_ft = 0;
248 		return (0);
249 	}
250 
251 	/*
252 	 * Otherwise, make sure we'll return to the kernel after executing
253 	 * the copied out instruction and defer the signal.
254 	 */
255 	if (!t->t_dtrace_step) {
256 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
257 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
258 		t->t_dtrace_step = 1;
259 	}
260 
261 	t->t_dtrace_ast = 1;
262 
263 	return (1);
264 }
265 #endif
266 
267 static int64_t	tgt_cpu_tsc;
268 static int64_t	hst_cpu_tsc;
269 static int64_t	tsc_skew[MAXCPUS];
270 static uint64_t	nsec_scale;
271 
272 /* See below for the explanation of this macro. */
273 #define SCALE_SHIFT	28
274 
275 static __inline uint64_t
276 dtrace_rdtsc(void)
277 {
278 	uint64_t rv;
279 
280 	__asm __volatile("rdtsc" : "=A" (rv));
281 	return (rv);
282 }
283 
284 static void
285 dtrace_gethrtime_init_cpu(void *arg)
286 {
287 	uintptr_t cpu = (uintptr_t) arg;
288 
289 	if (cpu == cpu_number())
290 		tgt_cpu_tsc = dtrace_rdtsc();
291 	else
292 		hst_cpu_tsc = dtrace_rdtsc();
293 }
294 
295 void
296 dtrace_gethrtime_init(void *arg)
297 {
298 	uint64_t tsc_f;
299 	CPU_INFO_ITERATOR cpuind;
300 	struct cpu_info *cinfo = curcpu();
301 	cpuid_t cur_cpuid = cpu_number();	/* current cpu id */
302 
303 	/*
304 	 * Get TSC frequency known at this moment.
305 	 * This should be constant if TSC is invariant.
306 	 * Otherwise tick->time conversion will be inaccurate, but
307 	 * will preserve monotonic property of TSC.
308 	 */
309 	tsc_f = cpu_frequency(cinfo);
310 
311 	/*
312 	 * The following line checks that nsec_scale calculated below
313 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
314 	 * another 32-bit integer without overflowing 64-bit.
315 	 * Thus minimum supported TSC frequency is 62.5MHz.
316 	 */
317 	KASSERTMSG(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
318 	    "TSC frequency is too low");
319 
320 	/*
321 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
322 	 * as possible.
323 	 * 2^28 factor was chosen quite arbitrarily from practical
324 	 * considerations:
325 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
326 	 * - it provides quite good precision (e < 0.01%) up to THz
327 	 *   (terahertz) values;
328 	 */
329 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
330 
331 	/* The current CPU is the reference one. */
332 	tsc_skew[cur_cpuid] = 0;
333 
334 	for (CPU_INFO_FOREACH(cpuind, cinfo)) {
335 		/* use skew relative to cpu 0 */
336 		tsc_skew[cpu_index(cinfo)] = cinfo->ci_data.cpu_cc_skew;
337 	}
338 
339 	/* Already handled in x86/tsc.c for ci_data.cpu_cc_skew */
340 #if 0
341 	/* The current CPU is the reference one. */
342 	sched_pin();
343 	tsc_skew[curcpu] = 0;
344 	CPU_FOREACH(i) {
345 		if (i == curcpu)
346 			continue;
347 
348 		pc = pcpu_find(i);
349 		CPU_SETOF(PCPU_GET(cpuid), &map);
350 		CPU_SET(pc->pc_cpuid, &map);
351 
352 		smp_rendezvous_cpus(map, NULL,
353 		    dtrace_gethrtime_init_cpu,
354 		    smp_no_rendevous_barrier, (void *)(uintptr_t) i);
355 
356 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
357 	}
358 	sched_unpin();
359 #endif
360 }
361 
362 #ifdef __FreeBSD__
363 #ifdef EARLY_AP_STARTUP
364 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
365     dtrace_gethrtime_init, NULL);
366 #else
367 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
368     NULL);
369 #endif
370 #endif
371 
372 /*
373  * DTrace needs a high resolution time function which can
374  * be called from a probe context and guaranteed not to have
375  * instrumented with probes itself.
376  *
377  * Returns nanoseconds since boot.
378  */
379 uint64_t
380 dtrace_gethrtime()
381 {
382 	uint64_t tsc;
383 	uint32_t lo;
384 	uint32_t hi;
385 
386 	/*
387 	 * We split TSC value into lower and higher 32-bit halves and separately
388 	 * scale them with nsec_scale, then we scale them down by 2^28
389 	 * (see nsec_scale calculations) taking into account 32-bit shift of
390 	 * the higher half and finally add.
391 	 */
392 	tsc = dtrace_rdtsc() + tsc_skew[cpu_number()];
393 	lo = tsc;
394 	hi = tsc >> 32;
395 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
396 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
397 }
398 
399 uint64_t
400 dtrace_gethrestime(void)
401 {
402 	struct timespec current_time;
403 
404 	dtrace_getnanotime(&current_time);
405 
406 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
407 }
408 
409 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */
410 int
411 dtrace_trap(struct trapframe *frame, u_int type)
412 {
413 	bool nofault;
414 	cpuid_t cpuid = cpu_number();	/* current cpu id */
415 
416 	/*
417 	 * A trap can occur while DTrace executes a probe. Before
418 	 * executing the probe, DTrace blocks re-scheduling and sets
419 	 * a flag in its per-cpu flags to indicate that it doesn't
420 	 * want to fault. On returning from the probe, the no-fault
421 	 * flag is cleared and finally re-scheduling is enabled.
422 	 *
423 	 * Check if DTrace has enabled 'no-fault' mode:
424 	 */
425 	nofault = (cpu_core[cpuid].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0;
426 	if (nofault) {
427 		KASSERTMSG((read_eflags() & PSL_I) == 0, "interrupts enabled");
428 
429 		/*
430 		 * There are only a couple of trap types that are expected.
431 		 * All the rest will be handled in the usual way.
432 		 */
433 		switch (type) {
434 		/* General protection fault. */
435 		case T_PROTFLT:
436 			/* Flag an illegal operation. */
437 			cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
438 
439 			/*
440 			 * Offset the instruction pointer to the instruction
441 			 * following the one causing the fault.
442 			 */
443 			frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
444 			return (1);
445 		/* Page fault. */
446 		case T_PAGEFLT:
447 			/* Flag a bad address. */
448 			cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
449 			cpu_core[cpuid].cpuc_dtrace_illval = rcr2();
450 
451 			/*
452 			 * Offset the instruction pointer to the instruction
453 			 * following the one causing the fault.
454 			 */
455 			frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
456 			return (1);
457 		default:
458 			/* Handle all other traps in the usual way. */
459 			break;
460 		}
461 	}
462 
463 	/* Handle the trap in the usual way. */
464 	return (0);
465 }
466