xref: /netbsd-src/external/cddl/osnet/dev/dtrace/i386/dtrace_subr.c (revision 28ef056fc275729e9327322d9102bc5d9934cf36)
1 /*	$NetBSD: dtrace_subr.c,v 1.2 2010/02/21 01:46:33 darran Exp $	*/
2 
3 /*
4  * CDDL HEADER START
5  *
6  * The contents of this file are subject to the terms of the
7  * Common Development and Distribution License, Version 1.0 only
8  * (the "License").  You may not use this file except in compliance
9  * with the License.
10  *
11  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
12  * or http://www.opensolaris.org/os/licensing.
13  * See the License for the specific language governing permissions
14  * and limitations under the License.
15  *
16  * When distributing Covered Code, include this CDDL HEADER in each
17  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
18  * If applicable, add the following below this CDDL HEADER, with the
19  * fields enclosed by brackets "[]" replaced with your own identifying
20  * information: Portions Copyright [yyyy] [name of copyright owner]
21  *
22  * CDDL HEADER END
23  *
24  * $FreeBSD: src/sys/cddl/dev/dtrace/i386/dtrace_subr.c,v 1.3.2.1 2009/08/03 08:13:06 kensmith Exp $
25  *
26  */
27 /*
28  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
29  * Use is subject to license terms.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/kmem.h>
38 #include <sys/xcall.h>
39 #include <sys/cpu.h>
40 #include <sys/cpuvar.h>
41 //#include <sys/smp.h>
42 #include <sys/dtrace_impl.h>
43 #include <sys/dtrace_bsd.h>
44 #include <machine/cpu.h>
45 #include <machine/clock.h>
46 #include <machine/frame.h>
47 #include <uvm/uvm_pglist.h>
48 #include <uvm/uvm_prot.h>
49 #include <uvm/uvm_pmap.h>
50 
51 extern uintptr_t 	kernelbase;
52 extern uintptr_t 	dtrace_in_probe_addr;
53 extern int		dtrace_in_probe;
54 
55 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t);
56 
57 typedef struct dtrace_invop_hdlr {
58 	int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
59 	struct dtrace_invop_hdlr *dtih_next;
60 } dtrace_invop_hdlr_t;
61 
62 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
63 
64 int
65 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
66 {
67 	dtrace_invop_hdlr_t *hdlr;
68 	int rval;
69 
70 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
71 		if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
72 			return (rval);
73 
74 	return (0);
75 }
76 
77 void
78 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
79 {
80 	dtrace_invop_hdlr_t *hdlr;
81 
82 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
83 	hdlr->dtih_func = func;
84 	hdlr->dtih_next = dtrace_invop_hdlr;
85 	dtrace_invop_hdlr = hdlr;
86 }
87 
88 void
89 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
90 {
91 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
92 
93 	for (;;) {
94 		if (hdlr == NULL)
95 			panic("attempt to remove non-existent invop handler");
96 
97 		if (hdlr->dtih_func == func)
98 			break;
99 
100 		prev = hdlr;
101 		hdlr = hdlr->dtih_next;
102 	}
103 
104 	if (prev == NULL) {
105 		ASSERT(dtrace_invop_hdlr == hdlr);
106 		dtrace_invop_hdlr = hdlr->dtih_next;
107 	} else {
108 		ASSERT(dtrace_invop_hdlr != hdlr);
109 		prev->dtih_next = hdlr->dtih_next;
110 	}
111 
112 	kmem_free(hdlr, 0);
113 }
114 
115 void
116 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
117 {
118 	(*func)(0, kernelbase);
119 }
120 
121 static void
122 xcall_func(void *arg0, void *arg1)
123 {
124     	dtrace_xcall_t func = arg0;
125 
126     	(*func)(arg1);
127 }
128 
129 void
130 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
131 {
132 	uint64_t where;
133 
134 	if (cpu == DTRACE_CPUALL) {
135 		where = xc_broadcast(0, xcall_func, func, arg);
136 	} else {
137 		struct cpu_info *cinfo = cpu_lookup(cpu);
138 
139 		KASSERT(cinfo != NULL);
140 		where = xc_unicast(0, xcall_func, func, arg, cinfo);
141 	}
142 	xc_wait(where);
143 
144 	/* XXX Q. Do we really need the other cpus to wait also?
145 	 * (see solaris:xc_sync())
146 	 */
147 }
148 
149 static void
150 dtrace_sync_func(void)
151 {
152 }
153 
154 void
155 dtrace_sync(void)
156 {
157         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
158 }
159 
160 #ifdef notyet
161 int (*dtrace_fasttrap_probe_ptr)(struct regs *);
162 int (*dtrace_pid_probe_ptr)(struct regs *);
163 int (*dtrace_return_probe_ptr)(struct regs *);
164 
165 void
166 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid)
167 {
168 	krwlock_t *rwp;
169 	proc_t *p = curproc;
170 	extern void trap(struct regs *, caddr_t, processorid_t);
171 
172 	if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) {
173 		if (curthread->t_cred != p->p_cred) {
174 			cred_t *oldcred = curthread->t_cred;
175 			/*
176 			 * DTrace accesses t_cred in probe context.  t_cred
177 			 * must always be either NULL, or point to a valid,
178 			 * allocated cred structure.
179 			 */
180 			curthread->t_cred = crgetcred();
181 			crfree(oldcred);
182 		}
183 	}
184 
185 	if (rp->r_trapno == T_DTRACE_RET) {
186 		uint8_t step = curthread->t_dtrace_step;
187 		uint8_t ret = curthread->t_dtrace_ret;
188 		uintptr_t npc = curthread->t_dtrace_npc;
189 
190 		if (curthread->t_dtrace_ast) {
191 			aston(curthread);
192 			curthread->t_sig_check = 1;
193 		}
194 
195 		/*
196 		 * Clear all user tracing flags.
197 		 */
198 		curthread->t_dtrace_ft = 0;
199 
200 		/*
201 		 * If we weren't expecting to take a return probe trap, kill
202 		 * the process as though it had just executed an unassigned
203 		 * trap instruction.
204 		 */
205 		if (step == 0) {
206 			tsignal(curthread, SIGILL);
207 			return;
208 		}
209 
210 		/*
211 		 * If we hit this trap unrelated to a return probe, we're
212 		 * just here to reset the AST flag since we deferred a signal
213 		 * until after we logically single-stepped the instruction we
214 		 * copied out.
215 		 */
216 		if (ret == 0) {
217 			rp->r_pc = npc;
218 			return;
219 		}
220 
221 		/*
222 		 * We need to wait until after we've called the
223 		 * dtrace_return_probe_ptr function pointer to set %pc.
224 		 */
225 		rwp = &CPU->cpu_ft_lock;
226 		rw_enter(rwp, RW_READER);
227 		if (dtrace_return_probe_ptr != NULL)
228 			(void) (*dtrace_return_probe_ptr)(rp);
229 		rw_exit(rwp);
230 		rp->r_pc = npc;
231 
232 	} else if (rp->r_trapno == T_DTRACE_PROBE) {
233 		rwp = &CPU->cpu_ft_lock;
234 		rw_enter(rwp, RW_READER);
235 		if (dtrace_fasttrap_probe_ptr != NULL)
236 			(void) (*dtrace_fasttrap_probe_ptr)(rp);
237 		rw_exit(rwp);
238 
239 	} else if (rp->r_trapno == T_BPTFLT) {
240 		uint8_t instr;
241 		rwp = &CPU->cpu_ft_lock;
242 
243 		/*
244 		 * The DTrace fasttrap provider uses the breakpoint trap
245 		 * (int 3). We let DTrace take the first crack at handling
246 		 * this trap; if it's not a probe that DTrace knowns about,
247 		 * we call into the trap() routine to handle it like a
248 		 * breakpoint placed by a conventional debugger.
249 		 */
250 		rw_enter(rwp, RW_READER);
251 		if (dtrace_pid_probe_ptr != NULL &&
252 		    (*dtrace_pid_probe_ptr)(rp) == 0) {
253 			rw_exit(rwp);
254 			return;
255 		}
256 		rw_exit(rwp);
257 
258 		/*
259 		 * If the instruction that caused the breakpoint trap doesn't
260 		 * look like an int 3 anymore, it may be that this tracepoint
261 		 * was removed just after the user thread executed it. In
262 		 * that case, return to user land to retry the instuction.
263 		 */
264 		if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 &&
265 		    instr != FASTTRAP_INSTR) {
266 			rp->r_pc--;
267 			return;
268 		}
269 
270 		trap(rp, addr, cpuid);
271 
272 	} else {
273 		trap(rp, addr, cpuid);
274 	}
275 }
276 
277 void
278 dtrace_safe_synchronous_signal(void)
279 {
280 	kthread_t *t = curthread;
281 	struct regs *rp = lwptoregs(ttolwp(t));
282 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
283 
284 	ASSERT(t->t_dtrace_on);
285 
286 	/*
287 	 * If we're not in the range of scratch addresses, we're not actually
288 	 * tracing user instructions so turn off the flags. If the instruction
289 	 * we copied out caused a synchonous trap, reset the pc back to its
290 	 * original value and turn off the flags.
291 	 */
292 	if (rp->r_pc < t->t_dtrace_scrpc ||
293 	    rp->r_pc > t->t_dtrace_astpc + isz) {
294 		t->t_dtrace_ft = 0;
295 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
296 	    rp->r_pc == t->t_dtrace_astpc) {
297 		rp->r_pc = t->t_dtrace_pc;
298 		t->t_dtrace_ft = 0;
299 	}
300 }
301 
302 int
303 dtrace_safe_defer_signal(void)
304 {
305 	kthread_t *t = curthread;
306 	struct regs *rp = lwptoregs(ttolwp(t));
307 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
308 
309 	ASSERT(t->t_dtrace_on);
310 
311 	/*
312 	 * If we're not in the range of scratch addresses, we're not actually
313 	 * tracing user instructions so turn off the flags.
314 	 */
315 	if (rp->r_pc < t->t_dtrace_scrpc ||
316 	    rp->r_pc > t->t_dtrace_astpc + isz) {
317 		t->t_dtrace_ft = 0;
318 		return (0);
319 	}
320 
321 	/*
322 	 * If we've executed the original instruction, but haven't performed
323 	 * the jmp back to t->t_dtrace_npc or the clean up of any registers
324 	 * used to emulate %rip-relative instructions in 64-bit mode, do that
325 	 * here and take the signal right away. We detect this condition by
326 	 * seeing if the program counter is the range [scrpc + isz, astpc).
327 	 */
328 	if (t->t_dtrace_astpc - rp->r_pc <
329 	    t->t_dtrace_astpc - t->t_dtrace_scrpc - isz) {
330 #ifdef __amd64
331 		/*
332 		 * If there is a scratch register and we're on the
333 		 * instruction immediately after the modified instruction,
334 		 * restore the value of that scratch register.
335 		 */
336 		if (t->t_dtrace_reg != 0 &&
337 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
338 			switch (t->t_dtrace_reg) {
339 			case REG_RAX:
340 				rp->r_rax = t->t_dtrace_regv;
341 				break;
342 			case REG_RCX:
343 				rp->r_rcx = t->t_dtrace_regv;
344 				break;
345 			case REG_R8:
346 				rp->r_r8 = t->t_dtrace_regv;
347 				break;
348 			case REG_R9:
349 				rp->r_r9 = t->t_dtrace_regv;
350 				break;
351 			}
352 		}
353 #endif
354 		rp->r_pc = t->t_dtrace_npc;
355 		t->t_dtrace_ft = 0;
356 		return (0);
357 	}
358 
359 	/*
360 	 * Otherwise, make sure we'll return to the kernel after executing
361 	 * the copied out instruction and defer the signal.
362 	 */
363 	if (!t->t_dtrace_step) {
364 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
365 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
366 		t->t_dtrace_step = 1;
367 	}
368 
369 	t->t_dtrace_ast = 1;
370 
371 	return (1);
372 }
373 #endif
374 
375 static int64_t	tgt_cpu_tsc;
376 static int64_t	hst_cpu_tsc;
377 static int64_t	tsc_skew[MAXCPUS];
378 static uint64_t	nsec_scale;
379 
380 /* See below for the explanation of this macro. */
381 #define SCALE_SHIFT	28
382 
383 static __inline uint64_t
384 dtrace_rdtsc(void)
385 {
386 	uint64_t rv;
387 
388 	__asm __volatile("rdtsc" : "=A" (rv));
389 	return (rv);
390 }
391 
392 static void
393 dtrace_gethrtime_init_sync(void *arg)
394 {
395 #ifdef CHECK_SYNC
396 	/*
397 	 * Delay this function from returning on one
398 	 * of the CPUs to check that the synchronisation
399 	 * works.
400 	 */
401 	uintptr_t cpu = (uintptr_t) arg;
402 
403 	if (cpu == curcpu) {
404 		int i;
405 		for (i = 0; i < 1000000000; i++)
406 			tgt_cpu_tsc = dtrace_rdtsc();
407 		tgt_cpu_tsc = 0;
408 	}
409 #endif
410 }
411 
412 static void
413 dtrace_gethrtime_init_cpu(void *arg)
414 {
415 	uintptr_t cpu = (uintptr_t) arg;
416 
417 	if (cpu == cpu_number())
418 		tgt_cpu_tsc = dtrace_rdtsc();
419 	else
420 		hst_cpu_tsc = dtrace_rdtsc();
421 }
422 
423 void
424 dtrace_gethrtime_init(void *arg)
425 {
426 	uint64_t tsc_f;
427 	CPU_INFO_ITERATOR cpuind;
428 	struct cpu_info *cinfo = curcpu();
429 	cpuid_t cur_cpuid = cpu_number();	/* current cpu id */
430 
431 	/*
432 	 * Get TSC frequency known at this moment.
433 	 * This should be constant if TSC is invariant.
434 	 * Otherwise tick->time conversion will be inaccurate, but
435 	 * will preserve monotonic property of TSC.
436 	 */
437 	tsc_f = cpu_frequency(cinfo);
438 
439 	/*
440 	 * The following line checks that nsec_scale calculated below
441 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
442 	 * another 32-bit integer without overflowing 64-bit.
443 	 * Thus minimum supported TSC frequency is 62.5MHz.
444 	 */
445 	//KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low"));
446 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)));
447 
448 	/*
449 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
450 	 * as possible.
451 	 * 2^28 factor was chosen quite arbitrarily from practical
452 	 * considerations:
453 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
454 	 * - it provides quite good precision (e < 0.01%) up to THz
455 	 *   (terahertz) values;
456 	 */
457 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
458 
459 	/* The current CPU is the reference one. */
460 	tsc_skew[cur_cpuid] = 0;
461 
462 	for (CPU_INFO_FOREACH(cpuind, cinfo)) {
463 		/* use skew relative to cpu 0 */
464 		tsc_skew[cpu_index(cinfo)] = cinfo->ci_data.cpu_cc_skew;
465 	}
466 
467 	/* Already handled in x86/tsc.c for ci_data.cpu_cc_skew */
468 #if 0
469 	for (i = 0; i <= mp_maxid; i++) {
470 		if (i == curcpu)
471 			continue;
472 
473 		if (pcpu_find(i) == NULL)
474 			continue;
475 
476 		map = 0;
477 		map |= (1 << curcpu);
478 		map |= (1 << i);
479 
480 		smp_rendezvous_cpus(map, dtrace_gethrtime_init_sync,
481 		    dtrace_gethrtime_init_cpu,
482 		    smp_no_rendevous_barrier, (void *)(uintptr_t) i);
483 
484 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
485 	}
486 #endif
487 }
488 
489 /*
490  * DTrace needs a high resolution time function which can
491  * be called from a probe context and guaranteed not to have
492  * instrumented with probes itself.
493  *
494  * Returns nanoseconds since boot.
495  */
496 uint64_t
497 dtrace_gethrtime()
498 {
499 	uint64_t tsc;
500 	uint32_t lo;
501 	uint32_t hi;
502 
503 	/*
504 	 * We split TSC value into lower and higher 32-bit halves and separately
505 	 * scale them with nsec_scale, then we scale them down by 2^28
506 	 * (see nsec_scale calculations) taking into account 32-bit shift of
507 	 * the higher half and finally add.
508 	 */
509 	tsc = dtrace_rdtsc() + tsc_skew[cpu_number()];
510 	lo = tsc;
511 	hi = tsc >> 32;
512 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
513 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
514 }
515 
516 uint64_t
517 dtrace_gethrestime(void)
518 {
519 	printf("%s(%d): XXX\n",__func__,__LINE__);
520 	return (0);
521 }
522 
523 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */
524 int
525 dtrace_trap(struct trapframe *frame, u_int type)
526 {
527 	cpuid_t cpuid = cpu_number();	/* current cpu id */
528 
529 	/*
530 	 * A trap can occur while DTrace executes a probe. Before
531 	 * executing the probe, DTrace blocks re-scheduling and sets
532 	 * a flag in it's per-cpu flags to indicate that it doesn't
533 	 * want to fault. On returning from the the probe, the no-fault
534 	 * flag is cleared and finally re-scheduling is enabled.
535 	 *
536 	 * Check if DTrace has enabled 'no-fault' mode:
537 	 *
538 	 */
539 	if ((cpu_core[cpuid].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) {
540 		/*
541 		 * There are only a couple of trap types that are expected.
542 		 * All the rest will be handled in the usual way.
543 		 */
544 		switch (type) {
545 		/* General protection fault. */
546 		case T_PROTFLT:
547 			/* Flag an illegal operation. */
548 			cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
549 
550 			/*
551 			 * Offset the instruction pointer to the instruction
552 			 * following the one causing the fault.
553 			 */
554 			frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
555 			return (1);
556 		/* Page fault. */
557 		case T_PAGEFLT:
558 			/* Flag a bad address. */
559 			cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
560 			cpu_core[cpuid].cpuc_dtrace_illval = rcr2();
561 
562 			/*
563 			 * Offset the instruction pointer to the instruction
564 			 * following the one causing the fault.
565 			 */
566 			frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
567 			return (1);
568 		default:
569 			/* Handle all other traps in the usual way. */
570 			break;
571 		}
572 	}
573 
574 	/* Handle the trap in the usual way. */
575 	return (0);
576 }
577