1 /* 2 * EAP peer state machines (RFC 4137) 3 * Copyright (c) 2004-2010, Jouni Malinen <j@w1.fi> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Alternatively, this software may be distributed under the terms of BSD 10 * license. 11 * 12 * See README and COPYING for more details. 13 * 14 * This file implements the Peer State Machine as defined in RFC 4137. The used 15 * states and state transitions match mostly with the RFC. However, there are 16 * couple of additional transitions for working around small issues noticed 17 * during testing. These exceptions are explained in comments within the 18 * functions in this file. The method functions, m.func(), are similar to the 19 * ones used in RFC 4137, but some small changes have used here to optimize 20 * operations and to add functionality needed for fast re-authentication 21 * (session resumption). 22 */ 23 24 #include "includes.h" 25 26 #include "common.h" 27 #include "pcsc_funcs.h" 28 #include "state_machine.h" 29 #include "crypto/crypto.h" 30 #include "crypto/tls.h" 31 #include "common/wpa_ctrl.h" 32 #include "eap_common/eap_wsc_common.h" 33 #include "eap_i.h" 34 #include "eap_config.h" 35 36 #define STATE_MACHINE_DATA struct eap_sm 37 #define STATE_MACHINE_DEBUG_PREFIX "EAP" 38 39 #define EAP_MAX_AUTH_ROUNDS 50 40 #define EAP_CLIENT_TIMEOUT_DEFAULT 60 41 42 43 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 44 EapType method); 45 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); 46 static void eap_sm_processIdentity(struct eap_sm *sm, 47 const struct wpabuf *req); 48 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); 49 static struct wpabuf * eap_sm_buildNotify(int id); 50 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); 51 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 52 static const char * eap_sm_method_state_txt(EapMethodState state); 53 static const char * eap_sm_decision_txt(EapDecision decision); 54 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 55 56 57 58 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) 59 { 60 return sm->eapol_cb->get_bool(sm->eapol_ctx, var); 61 } 62 63 64 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, 65 Boolean value) 66 { 67 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); 68 } 69 70 71 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) 72 { 73 return sm->eapol_cb->get_int(sm->eapol_ctx, var); 74 } 75 76 77 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, 78 unsigned int value) 79 { 80 sm->eapol_cb->set_int(sm->eapol_ctx, var, value); 81 } 82 83 84 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) 85 { 86 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); 87 } 88 89 90 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) 91 { 92 if (sm->m == NULL || sm->eap_method_priv == NULL) 93 return; 94 95 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " 96 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); 97 sm->m->deinit(sm, sm->eap_method_priv); 98 sm->eap_method_priv = NULL; 99 sm->m = NULL; 100 } 101 102 103 /** 104 * eap_allowed_method - Check whether EAP method is allowed 105 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 106 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types 107 * @method: EAP type 108 * Returns: 1 = allowed EAP method, 0 = not allowed 109 */ 110 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) 111 { 112 struct eap_peer_config *config = eap_get_config(sm); 113 int i; 114 struct eap_method_type *m; 115 116 if (config == NULL || config->eap_methods == NULL) 117 return 1; 118 119 m = config->eap_methods; 120 for (i = 0; m[i].vendor != EAP_VENDOR_IETF || 121 m[i].method != EAP_TYPE_NONE; i++) { 122 if (m[i].vendor == vendor && m[i].method == method) 123 return 1; 124 } 125 return 0; 126 } 127 128 129 /* 130 * This state initializes state machine variables when the machine is 131 * activated (portEnabled = TRUE). This is also used when re-starting 132 * authentication (eapRestart == TRUE). 133 */ 134 SM_STATE(EAP, INITIALIZE) 135 { 136 SM_ENTRY(EAP, INITIALIZE); 137 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && 138 sm->m->has_reauth_data(sm, sm->eap_method_priv) && 139 !sm->prev_failure) { 140 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " 141 "fast reauthentication"); 142 sm->m->deinit_for_reauth(sm, sm->eap_method_priv); 143 } else { 144 eap_deinit_prev_method(sm, "INITIALIZE"); 145 } 146 sm->selectedMethod = EAP_TYPE_NONE; 147 sm->methodState = METHOD_NONE; 148 sm->allowNotifications = TRUE; 149 sm->decision = DECISION_FAIL; 150 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 151 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 152 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 153 eapol_set_bool(sm, EAPOL_eapFail, FALSE); 154 os_free(sm->eapKeyData); 155 sm->eapKeyData = NULL; 156 sm->eapKeyAvailable = FALSE; 157 eapol_set_bool(sm, EAPOL_eapRestart, FALSE); 158 sm->lastId = -1; /* new session - make sure this does not match with 159 * the first EAP-Packet */ 160 /* 161 * RFC 4137 does not reset eapResp and eapNoResp here. However, this 162 * seemed to be able to trigger cases where both were set and if EAPOL 163 * state machine uses eapNoResp first, it may end up not sending a real 164 * reply correctly. This occurred when the workaround in FAIL state set 165 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do 166 * something else(?) 167 */ 168 eapol_set_bool(sm, EAPOL_eapResp, FALSE); 169 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); 170 sm->num_rounds = 0; 171 sm->prev_failure = 0; 172 } 173 174 175 /* 176 * This state is reached whenever service from the lower layer is interrupted 177 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE 178 * occurs when the port becomes enabled. 179 */ 180 SM_STATE(EAP, DISABLED) 181 { 182 SM_ENTRY(EAP, DISABLED); 183 sm->num_rounds = 0; 184 } 185 186 187 /* 188 * The state machine spends most of its time here, waiting for something to 189 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and 190 * SEND_RESPONSE states. 191 */ 192 SM_STATE(EAP, IDLE) 193 { 194 SM_ENTRY(EAP, IDLE); 195 } 196 197 198 /* 199 * This state is entered when an EAP packet is received (eapReq == TRUE) to 200 * parse the packet header. 201 */ 202 SM_STATE(EAP, RECEIVED) 203 { 204 const struct wpabuf *eapReqData; 205 206 SM_ENTRY(EAP, RECEIVED); 207 eapReqData = eapol_get_eapReqData(sm); 208 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ 209 eap_sm_parseEapReq(sm, eapReqData); 210 sm->num_rounds++; 211 } 212 213 214 /* 215 * This state is entered when a request for a new type comes in. Either the 216 * correct method is started, or a Nak response is built. 217 */ 218 SM_STATE(EAP, GET_METHOD) 219 { 220 int reinit; 221 EapType method; 222 223 SM_ENTRY(EAP, GET_METHOD); 224 225 if (sm->reqMethod == EAP_TYPE_EXPANDED) 226 method = sm->reqVendorMethod; 227 else 228 method = sm->reqMethod; 229 230 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { 231 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", 232 sm->reqVendor, method); 233 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 234 "vendor=%u method=%u -> NAK", 235 sm->reqVendor, method); 236 goto nak; 237 } 238 239 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 240 "vendor=%u method=%u", sm->reqVendor, method); 241 242 /* 243 * RFC 4137 does not define specific operation for fast 244 * re-authentication (session resumption). The design here is to allow 245 * the previously used method data to be maintained for 246 * re-authentication if the method support session resumption. 247 * Otherwise, the previously used method data is freed and a new method 248 * is allocated here. 249 */ 250 if (sm->fast_reauth && 251 sm->m && sm->m->vendor == sm->reqVendor && 252 sm->m->method == method && 253 sm->m->has_reauth_data && 254 sm->m->has_reauth_data(sm, sm->eap_method_priv)) { 255 wpa_printf(MSG_DEBUG, "EAP: Using previous method data" 256 " for fast re-authentication"); 257 reinit = 1; 258 } else { 259 eap_deinit_prev_method(sm, "GET_METHOD"); 260 reinit = 0; 261 } 262 263 sm->selectedMethod = sm->reqMethod; 264 if (sm->m == NULL) 265 sm->m = eap_peer_get_eap_method(sm->reqVendor, method); 266 if (!sm->m) { 267 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " 268 "vendor %d method %d", 269 sm->reqVendor, method); 270 goto nak; 271 } 272 273 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 274 275 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " 276 "vendor %u method %u (%s)", 277 sm->reqVendor, method, sm->m->name); 278 if (reinit) 279 sm->eap_method_priv = sm->m->init_for_reauth( 280 sm, sm->eap_method_priv); 281 else 282 sm->eap_method_priv = sm->m->init(sm); 283 284 if (sm->eap_method_priv == NULL) { 285 struct eap_peer_config *config = eap_get_config(sm); 286 wpa_msg(sm->msg_ctx, MSG_INFO, 287 "EAP: Failed to initialize EAP method: vendor %u " 288 "method %u (%s)", 289 sm->reqVendor, method, sm->m->name); 290 sm->m = NULL; 291 sm->methodState = METHOD_NONE; 292 sm->selectedMethod = EAP_TYPE_NONE; 293 if (sm->reqMethod == EAP_TYPE_TLS && config && 294 (config->pending_req_pin || 295 config->pending_req_passphrase)) { 296 /* 297 * Return without generating Nak in order to allow 298 * entering of PIN code or passphrase to retry the 299 * current EAP packet. 300 */ 301 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " 302 "request - skip Nak"); 303 return; 304 } 305 306 goto nak; 307 } 308 309 sm->methodState = METHOD_INIT; 310 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD 311 "EAP vendor %u method %u (%s) selected", 312 sm->reqVendor, method, sm->m->name); 313 return; 314 315 nak: 316 wpabuf_free(sm->eapRespData); 317 sm->eapRespData = NULL; 318 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); 319 } 320 321 322 /* 323 * The method processing happens here. The request from the authenticator is 324 * processed, and an appropriate response packet is built. 325 */ 326 SM_STATE(EAP, METHOD) 327 { 328 struct wpabuf *eapReqData; 329 struct eap_method_ret ret; 330 331 SM_ENTRY(EAP, METHOD); 332 if (sm->m == NULL) { 333 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); 334 return; 335 } 336 337 eapReqData = eapol_get_eapReqData(sm); 338 339 /* 340 * Get ignore, methodState, decision, allowNotifications, and 341 * eapRespData. RFC 4137 uses three separate method procedure (check, 342 * process, and buildResp) in this state. These have been combined into 343 * a single function call to m->process() in order to optimize EAP 344 * method implementation interface a bit. These procedures are only 345 * used from within this METHOD state, so there is no need to keep 346 * these as separate C functions. 347 * 348 * The RFC 4137 procedures return values as follows: 349 * ignore = m.check(eapReqData) 350 * (methodState, decision, allowNotifications) = m.process(eapReqData) 351 * eapRespData = m.buildResp(reqId) 352 */ 353 os_memset(&ret, 0, sizeof(ret)); 354 ret.ignore = sm->ignore; 355 ret.methodState = sm->methodState; 356 ret.decision = sm->decision; 357 ret.allowNotifications = sm->allowNotifications; 358 wpabuf_free(sm->eapRespData); 359 sm->eapRespData = NULL; 360 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, 361 eapReqData); 362 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " 363 "methodState=%s decision=%s", 364 ret.ignore ? "TRUE" : "FALSE", 365 eap_sm_method_state_txt(ret.methodState), 366 eap_sm_decision_txt(ret.decision)); 367 368 sm->ignore = ret.ignore; 369 if (sm->ignore) 370 return; 371 sm->methodState = ret.methodState; 372 sm->decision = ret.decision; 373 sm->allowNotifications = ret.allowNotifications; 374 375 if (sm->m->isKeyAvailable && sm->m->getKey && 376 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { 377 os_free(sm->eapKeyData); 378 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, 379 &sm->eapKeyDataLen); 380 } 381 } 382 383 384 /* 385 * This state signals the lower layer that a response packet is ready to be 386 * sent. 387 */ 388 SM_STATE(EAP, SEND_RESPONSE) 389 { 390 SM_ENTRY(EAP, SEND_RESPONSE); 391 wpabuf_free(sm->lastRespData); 392 if (sm->eapRespData) { 393 if (sm->workaround) 394 os_memcpy(sm->last_md5, sm->req_md5, 16); 395 sm->lastId = sm->reqId; 396 sm->lastRespData = wpabuf_dup(sm->eapRespData); 397 eapol_set_bool(sm, EAPOL_eapResp, TRUE); 398 } else 399 sm->lastRespData = NULL; 400 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 401 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 402 } 403 404 405 /* 406 * This state signals the lower layer that the request was discarded, and no 407 * response packet will be sent at this time. 408 */ 409 SM_STATE(EAP, DISCARD) 410 { 411 SM_ENTRY(EAP, DISCARD); 412 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 413 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 414 } 415 416 417 /* 418 * Handles requests for Identity method and builds a response. 419 */ 420 SM_STATE(EAP, IDENTITY) 421 { 422 const struct wpabuf *eapReqData; 423 424 SM_ENTRY(EAP, IDENTITY); 425 eapReqData = eapol_get_eapReqData(sm); 426 eap_sm_processIdentity(sm, eapReqData); 427 wpabuf_free(sm->eapRespData); 428 sm->eapRespData = NULL; 429 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); 430 } 431 432 433 /* 434 * Handles requests for Notification method and builds a response. 435 */ 436 SM_STATE(EAP, NOTIFICATION) 437 { 438 const struct wpabuf *eapReqData; 439 440 SM_ENTRY(EAP, NOTIFICATION); 441 eapReqData = eapol_get_eapReqData(sm); 442 eap_sm_processNotify(sm, eapReqData); 443 wpabuf_free(sm->eapRespData); 444 sm->eapRespData = NULL; 445 sm->eapRespData = eap_sm_buildNotify(sm->reqId); 446 } 447 448 449 /* 450 * This state retransmits the previous response packet. 451 */ 452 SM_STATE(EAP, RETRANSMIT) 453 { 454 SM_ENTRY(EAP, RETRANSMIT); 455 wpabuf_free(sm->eapRespData); 456 if (sm->lastRespData) 457 sm->eapRespData = wpabuf_dup(sm->lastRespData); 458 else 459 sm->eapRespData = NULL; 460 } 461 462 463 /* 464 * This state is entered in case of a successful completion of authentication 465 * and state machine waits here until port is disabled or EAP authentication is 466 * restarted. 467 */ 468 SM_STATE(EAP, SUCCESS) 469 { 470 SM_ENTRY(EAP, SUCCESS); 471 if (sm->eapKeyData != NULL) 472 sm->eapKeyAvailable = TRUE; 473 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 474 475 /* 476 * RFC 4137 does not clear eapReq here, but this seems to be required 477 * to avoid processing the same request twice when state machine is 478 * initialized. 479 */ 480 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 481 482 /* 483 * RFC 4137 does not set eapNoResp here, but this seems to be required 484 * to get EAPOL Supplicant backend state machine into SUCCESS state. In 485 * addition, either eapResp or eapNoResp is required to be set after 486 * processing the received EAP frame. 487 */ 488 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 489 490 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 491 "EAP authentication completed successfully"); 492 } 493 494 495 /* 496 * This state is entered in case of a failure and state machine waits here 497 * until port is disabled or EAP authentication is restarted. 498 */ 499 SM_STATE(EAP, FAILURE) 500 { 501 SM_ENTRY(EAP, FAILURE); 502 eapol_set_bool(sm, EAPOL_eapFail, TRUE); 503 504 /* 505 * RFC 4137 does not clear eapReq here, but this seems to be required 506 * to avoid processing the same request twice when state machine is 507 * initialized. 508 */ 509 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 510 511 /* 512 * RFC 4137 does not set eapNoResp here. However, either eapResp or 513 * eapNoResp is required to be set after processing the received EAP 514 * frame. 515 */ 516 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 517 518 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE 519 "EAP authentication failed"); 520 521 sm->prev_failure = 1; 522 } 523 524 525 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) 526 { 527 /* 528 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending 529 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and 530 * RFC 4137 require that reqId == lastId. In addition, it looks like 531 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. 532 * 533 * Accept this kind of Id if EAP workarounds are enabled. These are 534 * unauthenticated plaintext messages, so this should have minimal 535 * security implications (bit easier to fake EAP-Success/Failure). 536 */ 537 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || 538 reqId == ((lastId + 2) & 0xff))) { 539 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " 540 "identifier field in EAP Success: " 541 "reqId=%d lastId=%d (these are supposed to be " 542 "same)", reqId, lastId); 543 return 1; 544 } 545 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " 546 "lastId=%d", reqId, lastId); 547 return 0; 548 } 549 550 551 /* 552 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions 553 */ 554 555 static void eap_peer_sm_step_idle(struct eap_sm *sm) 556 { 557 /* 558 * The first three transitions are from RFC 4137. The last two are 559 * local additions to handle special cases with LEAP and PEAP server 560 * not sending EAP-Success in some cases. 561 */ 562 if (eapol_get_bool(sm, EAPOL_eapReq)) 563 SM_ENTER(EAP, RECEIVED); 564 else if ((eapol_get_bool(sm, EAPOL_altAccept) && 565 sm->decision != DECISION_FAIL) || 566 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 567 sm->decision == DECISION_UNCOND_SUCC)) 568 SM_ENTER(EAP, SUCCESS); 569 else if (eapol_get_bool(sm, EAPOL_altReject) || 570 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 571 sm->decision != DECISION_UNCOND_SUCC) || 572 (eapol_get_bool(sm, EAPOL_altAccept) && 573 sm->methodState != METHOD_CONT && 574 sm->decision == DECISION_FAIL)) 575 SM_ENTER(EAP, FAILURE); 576 else if (sm->selectedMethod == EAP_TYPE_LEAP && 577 sm->leap_done && sm->decision != DECISION_FAIL && 578 sm->methodState == METHOD_DONE) 579 SM_ENTER(EAP, SUCCESS); 580 else if (sm->selectedMethod == EAP_TYPE_PEAP && 581 sm->peap_done && sm->decision != DECISION_FAIL && 582 sm->methodState == METHOD_DONE) 583 SM_ENTER(EAP, SUCCESS); 584 } 585 586 587 static int eap_peer_req_is_duplicate(struct eap_sm *sm) 588 { 589 int duplicate; 590 591 duplicate = (sm->reqId == sm->lastId) && sm->rxReq; 592 if (sm->workaround && duplicate && 593 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { 594 /* 595 * RFC 4137 uses (reqId == lastId) as the only verification for 596 * duplicate EAP requests. However, this misses cases where the 597 * AS is incorrectly using the same id again; and 598 * unfortunately, such implementations exist. Use MD5 hash as 599 * an extra verification for the packets being duplicate to 600 * workaround these issues. 601 */ 602 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " 603 "EAP packets were not identical"); 604 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " 605 "duplicate packet"); 606 duplicate = 0; 607 } 608 609 return duplicate; 610 } 611 612 613 static void eap_peer_sm_step_received(struct eap_sm *sm) 614 { 615 int duplicate = eap_peer_req_is_duplicate(sm); 616 617 /* 618 * Two special cases below for LEAP are local additions to work around 619 * odd LEAP behavior (EAP-Success in the middle of authentication and 620 * then swapped roles). Other transitions are based on RFC 4137. 621 */ 622 if (sm->rxSuccess && sm->decision != DECISION_FAIL && 623 (sm->reqId == sm->lastId || 624 eap_success_workaround(sm, sm->reqId, sm->lastId))) 625 SM_ENTER(EAP, SUCCESS); 626 else if (sm->methodState != METHOD_CONT && 627 ((sm->rxFailure && 628 sm->decision != DECISION_UNCOND_SUCC) || 629 (sm->rxSuccess && sm->decision == DECISION_FAIL && 630 (sm->selectedMethod != EAP_TYPE_LEAP || 631 sm->methodState != METHOD_MAY_CONT))) && 632 (sm->reqId == sm->lastId || 633 eap_success_workaround(sm, sm->reqId, sm->lastId))) 634 SM_ENTER(EAP, FAILURE); 635 else if (sm->rxReq && duplicate) 636 SM_ENTER(EAP, RETRANSMIT); 637 else if (sm->rxReq && !duplicate && 638 sm->reqMethod == EAP_TYPE_NOTIFICATION && 639 sm->allowNotifications) 640 SM_ENTER(EAP, NOTIFICATION); 641 else if (sm->rxReq && !duplicate && 642 sm->selectedMethod == EAP_TYPE_NONE && 643 sm->reqMethod == EAP_TYPE_IDENTITY) 644 SM_ENTER(EAP, IDENTITY); 645 else if (sm->rxReq && !duplicate && 646 sm->selectedMethod == EAP_TYPE_NONE && 647 sm->reqMethod != EAP_TYPE_IDENTITY && 648 sm->reqMethod != EAP_TYPE_NOTIFICATION) 649 SM_ENTER(EAP, GET_METHOD); 650 else if (sm->rxReq && !duplicate && 651 sm->reqMethod == sm->selectedMethod && 652 sm->methodState != METHOD_DONE) 653 SM_ENTER(EAP, METHOD); 654 else if (sm->selectedMethod == EAP_TYPE_LEAP && 655 (sm->rxSuccess || sm->rxResp)) 656 SM_ENTER(EAP, METHOD); 657 else 658 SM_ENTER(EAP, DISCARD); 659 } 660 661 662 static void eap_peer_sm_step_local(struct eap_sm *sm) 663 { 664 switch (sm->EAP_state) { 665 case EAP_INITIALIZE: 666 SM_ENTER(EAP, IDLE); 667 break; 668 case EAP_DISABLED: 669 if (eapol_get_bool(sm, EAPOL_portEnabled) && 670 !sm->force_disabled) 671 SM_ENTER(EAP, INITIALIZE); 672 break; 673 case EAP_IDLE: 674 eap_peer_sm_step_idle(sm); 675 break; 676 case EAP_RECEIVED: 677 eap_peer_sm_step_received(sm); 678 break; 679 case EAP_GET_METHOD: 680 if (sm->selectedMethod == sm->reqMethod) 681 SM_ENTER(EAP, METHOD); 682 else 683 SM_ENTER(EAP, SEND_RESPONSE); 684 break; 685 case EAP_METHOD: 686 if (sm->ignore) 687 SM_ENTER(EAP, DISCARD); 688 else 689 SM_ENTER(EAP, SEND_RESPONSE); 690 break; 691 case EAP_SEND_RESPONSE: 692 SM_ENTER(EAP, IDLE); 693 break; 694 case EAP_DISCARD: 695 SM_ENTER(EAP, IDLE); 696 break; 697 case EAP_IDENTITY: 698 SM_ENTER(EAP, SEND_RESPONSE); 699 break; 700 case EAP_NOTIFICATION: 701 SM_ENTER(EAP, SEND_RESPONSE); 702 break; 703 case EAP_RETRANSMIT: 704 SM_ENTER(EAP, SEND_RESPONSE); 705 break; 706 case EAP_SUCCESS: 707 break; 708 case EAP_FAILURE: 709 break; 710 } 711 } 712 713 714 SM_STEP(EAP) 715 { 716 /* Global transitions */ 717 if (eapol_get_bool(sm, EAPOL_eapRestart) && 718 eapol_get_bool(sm, EAPOL_portEnabled)) 719 SM_ENTER_GLOBAL(EAP, INITIALIZE); 720 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) 721 SM_ENTER_GLOBAL(EAP, DISABLED); 722 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { 723 /* RFC 4137 does not place any limit on number of EAP messages 724 * in an authentication session. However, some error cases have 725 * ended up in a state were EAP messages were sent between the 726 * peer and server in a loop (e.g., TLS ACK frame in both 727 * direction). Since this is quite undesired outcome, limit the 728 * total number of EAP round-trips and abort authentication if 729 * this limit is exceeded. 730 */ 731 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { 732 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " 733 "authentication rounds - abort", 734 EAP_MAX_AUTH_ROUNDS); 735 sm->num_rounds++; 736 SM_ENTER_GLOBAL(EAP, FAILURE); 737 } 738 } else { 739 /* Local transitions */ 740 eap_peer_sm_step_local(sm); 741 } 742 } 743 744 745 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 746 EapType method) 747 { 748 if (!eap_allowed_method(sm, vendor, method)) { 749 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " 750 "vendor %u method %u", vendor, method); 751 return FALSE; 752 } 753 if (eap_peer_get_eap_method(vendor, method)) 754 return TRUE; 755 wpa_printf(MSG_DEBUG, "EAP: not included in build: " 756 "vendor %u method %u", vendor, method); 757 return FALSE; 758 } 759 760 761 static struct wpabuf * eap_sm_build_expanded_nak( 762 struct eap_sm *sm, int id, const struct eap_method *methods, 763 size_t count) 764 { 765 struct wpabuf *resp; 766 int found = 0; 767 const struct eap_method *m; 768 769 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); 770 771 /* RFC 3748 - 5.3.2: Expanded Nak */ 772 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 773 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); 774 if (resp == NULL) 775 return NULL; 776 777 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 778 wpabuf_put_be32(resp, EAP_TYPE_NAK); 779 780 for (m = methods; m; m = m->next) { 781 if (sm->reqVendor == m->vendor && 782 sm->reqVendorMethod == m->method) 783 continue; /* do not allow the current method again */ 784 if (eap_allowed_method(sm, m->vendor, m->method)) { 785 wpa_printf(MSG_DEBUG, "EAP: allowed type: " 786 "vendor=%u method=%u", 787 m->vendor, m->method); 788 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 789 wpabuf_put_be24(resp, m->vendor); 790 wpabuf_put_be32(resp, m->method); 791 792 found++; 793 } 794 } 795 if (!found) { 796 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); 797 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 798 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 799 wpabuf_put_be32(resp, EAP_TYPE_NONE); 800 } 801 802 eap_update_len(resp); 803 804 return resp; 805 } 806 807 808 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) 809 { 810 struct wpabuf *resp; 811 u8 *start; 812 int found = 0, expanded_found = 0; 813 size_t count; 814 const struct eap_method *methods, *m; 815 816 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " 817 "vendor=%u method=%u not allowed)", sm->reqMethod, 818 sm->reqVendor, sm->reqVendorMethod); 819 methods = eap_peer_get_methods(&count); 820 if (methods == NULL) 821 return NULL; 822 if (sm->reqMethod == EAP_TYPE_EXPANDED) 823 return eap_sm_build_expanded_nak(sm, id, methods, count); 824 825 /* RFC 3748 - 5.3.1: Legacy Nak */ 826 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, 827 sizeof(struct eap_hdr) + 1 + count + 1, 828 EAP_CODE_RESPONSE, id); 829 if (resp == NULL) 830 return NULL; 831 832 start = wpabuf_put(resp, 0); 833 for (m = methods; m; m = m->next) { 834 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) 835 continue; /* do not allow the current method again */ 836 if (eap_allowed_method(sm, m->vendor, m->method)) { 837 if (m->vendor != EAP_VENDOR_IETF) { 838 if (expanded_found) 839 continue; 840 expanded_found = 1; 841 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 842 } else 843 wpabuf_put_u8(resp, m->method); 844 found++; 845 } 846 } 847 if (!found) 848 wpabuf_put_u8(resp, EAP_TYPE_NONE); 849 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); 850 851 eap_update_len(resp); 852 853 return resp; 854 } 855 856 857 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) 858 { 859 const struct eap_hdr *hdr = wpabuf_head(req); 860 const u8 *pos = (const u8 *) (hdr + 1); 861 pos++; 862 863 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED 864 "EAP authentication started"); 865 866 /* 867 * RFC 3748 - 5.1: Identity 868 * Data field may contain a displayable message in UTF-8. If this 869 * includes NUL-character, only the data before that should be 870 * displayed. Some EAP implementasitons may piggy-back additional 871 * options after the NUL. 872 */ 873 /* TODO: could save displayable message so that it can be shown to the 874 * user in case of interaction is required */ 875 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", 876 pos, be_to_host16(hdr->length) - 5); 877 } 878 879 880 #ifdef PCSC_FUNCS 881 static int eap_sm_imsi_identity(struct eap_sm *sm, 882 struct eap_peer_config *conf) 883 { 884 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM; 885 char imsi[100]; 886 size_t imsi_len; 887 struct eap_method_type *m = conf->eap_methods; 888 int i; 889 890 imsi_len = sizeof(imsi); 891 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { 892 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); 893 return -1; 894 } 895 896 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); 897 898 if (imsi_len < 7) { 899 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity"); 900 return -1; 901 } 902 903 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || 904 m[i].method != EAP_TYPE_NONE); i++) { 905 if (m[i].vendor == EAP_VENDOR_IETF && 906 m[i].method == EAP_TYPE_AKA_PRIME) { 907 method = EAP_SM_AKA_PRIME; 908 break; 909 } 910 911 if (m[i].vendor == EAP_VENDOR_IETF && 912 m[i].method == EAP_TYPE_AKA) { 913 method = EAP_SM_AKA; 914 break; 915 } 916 } 917 918 os_free(conf->identity); 919 conf->identity = os_malloc(1 + imsi_len); 920 if (conf->identity == NULL) { 921 wpa_printf(MSG_WARNING, "Failed to allocate buffer for " 922 "IMSI-based identity"); 923 return -1; 924 } 925 926 switch (method) { 927 case EAP_SM_SIM: 928 conf->identity[0] = '1'; 929 break; 930 case EAP_SM_AKA: 931 conf->identity[0] = '0'; 932 break; 933 case EAP_SM_AKA_PRIME: 934 conf->identity[0] = '6'; 935 break; 936 } 937 os_memcpy(conf->identity + 1, imsi, imsi_len); 938 conf->identity_len = 1 + imsi_len; 939 940 return 0; 941 } 942 #endif /* PCSC_FUNCS */ 943 944 945 static int eap_sm_set_scard_pin(struct eap_sm *sm, 946 struct eap_peer_config *conf) 947 { 948 #ifdef PCSC_FUNCS 949 if (scard_set_pin(sm->scard_ctx, conf->pin)) { 950 /* 951 * Make sure the same PIN is not tried again in order to avoid 952 * blocking SIM. 953 */ 954 os_free(conf->pin); 955 conf->pin = NULL; 956 957 wpa_printf(MSG_WARNING, "PIN validation failed"); 958 eap_sm_request_pin(sm); 959 return -1; 960 } 961 return 0; 962 #else /* PCSC_FUNCS */ 963 return -1; 964 #endif /* PCSC_FUNCS */ 965 } 966 967 static int eap_sm_get_scard_identity(struct eap_sm *sm, 968 struct eap_peer_config *conf) 969 { 970 #ifdef PCSC_FUNCS 971 if (eap_sm_set_scard_pin(sm, conf)) 972 return -1; 973 974 return eap_sm_imsi_identity(sm, conf); 975 #else /* PCSC_FUNCS */ 976 return -1; 977 #endif /* PCSC_FUNCS */ 978 } 979 980 981 /** 982 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network 983 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 984 * @id: EAP identifier for the packet 985 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) 986 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on 987 * failure 988 * 989 * This function allocates and builds an EAP-Identity/Response packet for the 990 * current network. The caller is responsible for freeing the returned data. 991 */ 992 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) 993 { 994 struct eap_peer_config *config = eap_get_config(sm); 995 struct wpabuf *resp; 996 const u8 *identity; 997 size_t identity_len; 998 999 if (config == NULL) { 1000 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " 1001 "was not available"); 1002 return NULL; 1003 } 1004 1005 if (sm->m && sm->m->get_identity && 1006 (identity = sm->m->get_identity(sm, sm->eap_method_priv, 1007 &identity_len)) != NULL) { 1008 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " 1009 "identity", identity, identity_len); 1010 } else if (!encrypted && config->anonymous_identity) { 1011 identity = config->anonymous_identity; 1012 identity_len = config->anonymous_identity_len; 1013 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", 1014 identity, identity_len); 1015 } else { 1016 identity = config->identity; 1017 identity_len = config->identity_len; 1018 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", 1019 identity, identity_len); 1020 } 1021 1022 if (identity == NULL) { 1023 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " 1024 "configuration was not available"); 1025 if (config->pcsc) { 1026 if (eap_sm_get_scard_identity(sm, config) < 0) 1027 return NULL; 1028 identity = config->identity; 1029 identity_len = config->identity_len; 1030 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " 1031 "IMSI", identity, identity_len); 1032 } else { 1033 eap_sm_request_identity(sm); 1034 return NULL; 1035 } 1036 } else if (config->pcsc) { 1037 if (eap_sm_set_scard_pin(sm, config) < 0) 1038 return NULL; 1039 } 1040 1041 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, 1042 EAP_CODE_RESPONSE, id); 1043 if (resp == NULL) 1044 return NULL; 1045 1046 wpabuf_put_data(resp, identity, identity_len); 1047 1048 return resp; 1049 } 1050 1051 1052 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) 1053 { 1054 const u8 *pos; 1055 char *msg; 1056 size_t i, msg_len; 1057 1058 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, 1059 &msg_len); 1060 if (pos == NULL) 1061 return; 1062 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", 1063 pos, msg_len); 1064 1065 msg = os_malloc(msg_len + 1); 1066 if (msg == NULL) 1067 return; 1068 for (i = 0; i < msg_len; i++) 1069 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; 1070 msg[msg_len] = '\0'; 1071 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", 1072 WPA_EVENT_EAP_NOTIFICATION, msg); 1073 os_free(msg); 1074 } 1075 1076 1077 static struct wpabuf * eap_sm_buildNotify(int id) 1078 { 1079 struct wpabuf *resp; 1080 1081 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); 1082 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, 1083 EAP_CODE_RESPONSE, id); 1084 if (resp == NULL) 1085 return NULL; 1086 1087 return resp; 1088 } 1089 1090 1091 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) 1092 { 1093 const struct eap_hdr *hdr; 1094 size_t plen; 1095 const u8 *pos; 1096 1097 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; 1098 sm->reqId = 0; 1099 sm->reqMethod = EAP_TYPE_NONE; 1100 sm->reqVendor = EAP_VENDOR_IETF; 1101 sm->reqVendorMethod = EAP_TYPE_NONE; 1102 1103 if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) 1104 return; 1105 1106 hdr = wpabuf_head(req); 1107 plen = be_to_host16(hdr->length); 1108 if (plen > wpabuf_len(req)) { 1109 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " 1110 "(len=%lu plen=%lu)", 1111 (unsigned long) wpabuf_len(req), 1112 (unsigned long) plen); 1113 return; 1114 } 1115 1116 sm->reqId = hdr->identifier; 1117 1118 if (sm->workaround) { 1119 const u8 *addr[1]; 1120 addr[0] = wpabuf_head(req); 1121 md5_vector(1, addr, &plen, sm->req_md5); 1122 } 1123 1124 switch (hdr->code) { 1125 case EAP_CODE_REQUEST: 1126 if (plen < sizeof(*hdr) + 1) { 1127 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " 1128 "no Type field"); 1129 return; 1130 } 1131 sm->rxReq = TRUE; 1132 pos = (const u8 *) (hdr + 1); 1133 sm->reqMethod = *pos++; 1134 if (sm->reqMethod == EAP_TYPE_EXPANDED) { 1135 if (plen < sizeof(*hdr) + 8) { 1136 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " 1137 "expanded EAP-Packet (plen=%lu)", 1138 (unsigned long) plen); 1139 return; 1140 } 1141 sm->reqVendor = WPA_GET_BE24(pos); 1142 pos += 3; 1143 sm->reqVendorMethod = WPA_GET_BE32(pos); 1144 } 1145 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " 1146 "method=%u vendor=%u vendorMethod=%u", 1147 sm->reqId, sm->reqMethod, sm->reqVendor, 1148 sm->reqVendorMethod); 1149 break; 1150 case EAP_CODE_RESPONSE: 1151 if (sm->selectedMethod == EAP_TYPE_LEAP) { 1152 /* 1153 * LEAP differs from RFC 4137 by using reversed roles 1154 * for mutual authentication and because of this, we 1155 * need to accept EAP-Response frames if LEAP is used. 1156 */ 1157 if (plen < sizeof(*hdr) + 1) { 1158 wpa_printf(MSG_DEBUG, "EAP: Too short " 1159 "EAP-Response - no Type field"); 1160 return; 1161 } 1162 sm->rxResp = TRUE; 1163 pos = (const u8 *) (hdr + 1); 1164 sm->reqMethod = *pos; 1165 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " 1166 "LEAP method=%d id=%d", 1167 sm->reqMethod, sm->reqId); 1168 break; 1169 } 1170 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); 1171 break; 1172 case EAP_CODE_SUCCESS: 1173 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); 1174 sm->rxSuccess = TRUE; 1175 break; 1176 case EAP_CODE_FAILURE: 1177 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); 1178 sm->rxFailure = TRUE; 1179 break; 1180 default: 1181 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " 1182 "code %d", hdr->code); 1183 break; 1184 } 1185 } 1186 1187 1188 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev, 1189 union tls_event_data *data) 1190 { 1191 struct eap_sm *sm = ctx; 1192 char *hash_hex = NULL; 1193 1194 switch (ev) { 1195 case TLS_CERT_CHAIN_FAILURE: 1196 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR 1197 "reason=%d depth=%d subject='%s' err='%s'", 1198 data->cert_fail.reason, 1199 data->cert_fail.depth, 1200 data->cert_fail.subject, 1201 data->cert_fail.reason_txt); 1202 break; 1203 case TLS_PEER_CERTIFICATE: 1204 if (!sm->eapol_cb->notify_cert) 1205 break; 1206 1207 if (data->peer_cert.hash) { 1208 size_t len = data->peer_cert.hash_len * 2 + 1; 1209 hash_hex = os_malloc(len); 1210 if (hash_hex) { 1211 wpa_snprintf_hex(hash_hex, len, 1212 data->peer_cert.hash, 1213 data->peer_cert.hash_len); 1214 } 1215 } 1216 1217 sm->eapol_cb->notify_cert(sm->eapol_ctx, 1218 data->peer_cert.depth, 1219 data->peer_cert.subject, 1220 hash_hex, data->peer_cert.cert); 1221 break; 1222 } 1223 1224 os_free(hash_hex); 1225 } 1226 1227 1228 /** 1229 * eap_peer_sm_init - Allocate and initialize EAP peer state machine 1230 * @eapol_ctx: Context data to be used with eapol_cb calls 1231 * @eapol_cb: Pointer to EAPOL callback functions 1232 * @msg_ctx: Context data for wpa_msg() calls 1233 * @conf: EAP configuration 1234 * Returns: Pointer to the allocated EAP state machine or %NULL on failure 1235 * 1236 * This function allocates and initializes an EAP state machine. In addition, 1237 * this initializes TLS library for the new EAP state machine. eapol_cb pointer 1238 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP 1239 * state machine. Consequently, the caller must make sure that this data 1240 * structure remains alive while the EAP state machine is active. 1241 */ 1242 struct eap_sm * eap_peer_sm_init(void *eapol_ctx, 1243 struct eapol_callbacks *eapol_cb, 1244 void *msg_ctx, struct eap_config *conf) 1245 { 1246 struct eap_sm *sm; 1247 struct tls_config tlsconf; 1248 1249 sm = os_zalloc(sizeof(*sm)); 1250 if (sm == NULL) 1251 return NULL; 1252 sm->eapol_ctx = eapol_ctx; 1253 sm->eapol_cb = eapol_cb; 1254 sm->msg_ctx = msg_ctx; 1255 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 1256 sm->wps = conf->wps; 1257 1258 os_memset(&tlsconf, 0, sizeof(tlsconf)); 1259 tlsconf.opensc_engine_path = conf->opensc_engine_path; 1260 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; 1261 tlsconf.pkcs11_module_path = conf->pkcs11_module_path; 1262 #ifdef CONFIG_FIPS 1263 tlsconf.fips_mode = 1; 1264 #endif /* CONFIG_FIPS */ 1265 tlsconf.event_cb = eap_peer_sm_tls_event; 1266 tlsconf.cb_ctx = sm; 1267 tlsconf.cert_in_cb = conf->cert_in_cb; 1268 sm->ssl_ctx = tls_init(&tlsconf); 1269 if (sm->ssl_ctx == NULL) { 1270 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " 1271 "context."); 1272 os_free(sm); 1273 return NULL; 1274 } 1275 1276 return sm; 1277 } 1278 1279 1280 /** 1281 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine 1282 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1283 * 1284 * This function deinitializes EAP state machine and frees all allocated 1285 * resources. 1286 */ 1287 void eap_peer_sm_deinit(struct eap_sm *sm) 1288 { 1289 if (sm == NULL) 1290 return; 1291 eap_deinit_prev_method(sm, "EAP deinit"); 1292 eap_sm_abort(sm); 1293 tls_deinit(sm->ssl_ctx); 1294 os_free(sm); 1295 } 1296 1297 1298 /** 1299 * eap_peer_sm_step - Step EAP peer state machine 1300 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1301 * Returns: 1 if EAP state was changed or 0 if not 1302 * 1303 * This function advances EAP state machine to a new state to match with the 1304 * current variables. This should be called whenever variables used by the EAP 1305 * state machine have changed. 1306 */ 1307 int eap_peer_sm_step(struct eap_sm *sm) 1308 { 1309 int res = 0; 1310 do { 1311 sm->changed = FALSE; 1312 SM_STEP_RUN(EAP); 1313 if (sm->changed) 1314 res = 1; 1315 } while (sm->changed); 1316 return res; 1317 } 1318 1319 1320 /** 1321 * eap_sm_abort - Abort EAP authentication 1322 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1323 * 1324 * Release system resources that have been allocated for the authentication 1325 * session without fully deinitializing the EAP state machine. 1326 */ 1327 void eap_sm_abort(struct eap_sm *sm) 1328 { 1329 wpabuf_free(sm->lastRespData); 1330 sm->lastRespData = NULL; 1331 wpabuf_free(sm->eapRespData); 1332 sm->eapRespData = NULL; 1333 os_free(sm->eapKeyData); 1334 sm->eapKeyData = NULL; 1335 1336 /* This is not clearly specified in the EAP statemachines draft, but 1337 * it seems necessary to make sure that some of the EAPOL variables get 1338 * cleared for the next authentication. */ 1339 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 1340 } 1341 1342 1343 #ifdef CONFIG_CTRL_IFACE 1344 static const char * eap_sm_state_txt(int state) 1345 { 1346 switch (state) { 1347 case EAP_INITIALIZE: 1348 return "INITIALIZE"; 1349 case EAP_DISABLED: 1350 return "DISABLED"; 1351 case EAP_IDLE: 1352 return "IDLE"; 1353 case EAP_RECEIVED: 1354 return "RECEIVED"; 1355 case EAP_GET_METHOD: 1356 return "GET_METHOD"; 1357 case EAP_METHOD: 1358 return "METHOD"; 1359 case EAP_SEND_RESPONSE: 1360 return "SEND_RESPONSE"; 1361 case EAP_DISCARD: 1362 return "DISCARD"; 1363 case EAP_IDENTITY: 1364 return "IDENTITY"; 1365 case EAP_NOTIFICATION: 1366 return "NOTIFICATION"; 1367 case EAP_RETRANSMIT: 1368 return "RETRANSMIT"; 1369 case EAP_SUCCESS: 1370 return "SUCCESS"; 1371 case EAP_FAILURE: 1372 return "FAILURE"; 1373 default: 1374 return "UNKNOWN"; 1375 } 1376 } 1377 #endif /* CONFIG_CTRL_IFACE */ 1378 1379 1380 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1381 static const char * eap_sm_method_state_txt(EapMethodState state) 1382 { 1383 switch (state) { 1384 case METHOD_NONE: 1385 return "NONE"; 1386 case METHOD_INIT: 1387 return "INIT"; 1388 case METHOD_CONT: 1389 return "CONT"; 1390 case METHOD_MAY_CONT: 1391 return "MAY_CONT"; 1392 case METHOD_DONE: 1393 return "DONE"; 1394 default: 1395 return "UNKNOWN"; 1396 } 1397 } 1398 1399 1400 static const char * eap_sm_decision_txt(EapDecision decision) 1401 { 1402 switch (decision) { 1403 case DECISION_FAIL: 1404 return "FAIL"; 1405 case DECISION_COND_SUCC: 1406 return "COND_SUCC"; 1407 case DECISION_UNCOND_SUCC: 1408 return "UNCOND_SUCC"; 1409 default: 1410 return "UNKNOWN"; 1411 } 1412 } 1413 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1414 1415 1416 #ifdef CONFIG_CTRL_IFACE 1417 1418 /** 1419 * eap_sm_get_status - Get EAP state machine status 1420 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1421 * @buf: Buffer for status information 1422 * @buflen: Maximum buffer length 1423 * @verbose: Whether to include verbose status information 1424 * Returns: Number of bytes written to buf. 1425 * 1426 * Query EAP state machine for status information. This function fills in a 1427 * text area with current status information from the EAPOL state machine. If 1428 * the buffer (buf) is not large enough, status information will be truncated 1429 * to fit the buffer. 1430 */ 1431 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) 1432 { 1433 int len, ret; 1434 1435 if (sm == NULL) 1436 return 0; 1437 1438 len = os_snprintf(buf, buflen, 1439 "EAP state=%s\n", 1440 eap_sm_state_txt(sm->EAP_state)); 1441 if (len < 0 || (size_t) len >= buflen) 1442 return 0; 1443 1444 if (sm->selectedMethod != EAP_TYPE_NONE) { 1445 const char *name; 1446 if (sm->m) { 1447 name = sm->m->name; 1448 } else { 1449 const struct eap_method *m = 1450 eap_peer_get_eap_method(EAP_VENDOR_IETF, 1451 sm->selectedMethod); 1452 if (m) 1453 name = m->name; 1454 else 1455 name = "?"; 1456 } 1457 ret = os_snprintf(buf + len, buflen - len, 1458 "selectedMethod=%d (EAP-%s)\n", 1459 sm->selectedMethod, name); 1460 if (ret < 0 || (size_t) ret >= buflen - len) 1461 return len; 1462 len += ret; 1463 1464 if (sm->m && sm->m->get_status) { 1465 len += sm->m->get_status(sm, sm->eap_method_priv, 1466 buf + len, buflen - len, 1467 verbose); 1468 } 1469 } 1470 1471 if (verbose) { 1472 ret = os_snprintf(buf + len, buflen - len, 1473 "reqMethod=%d\n" 1474 "methodState=%s\n" 1475 "decision=%s\n" 1476 "ClientTimeout=%d\n", 1477 sm->reqMethod, 1478 eap_sm_method_state_txt(sm->methodState), 1479 eap_sm_decision_txt(sm->decision), 1480 sm->ClientTimeout); 1481 if (ret < 0 || (size_t) ret >= buflen - len) 1482 return len; 1483 len += ret; 1484 } 1485 1486 return len; 1487 } 1488 #endif /* CONFIG_CTRL_IFACE */ 1489 1490 1491 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1492 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field, 1493 const char *msg, size_t msglen) 1494 { 1495 struct eap_peer_config *config; 1496 char *txt = NULL, *tmp; 1497 1498 if (sm == NULL) 1499 return; 1500 config = eap_get_config(sm); 1501 if (config == NULL) 1502 return; 1503 1504 switch (field) { 1505 case WPA_CTRL_REQ_EAP_IDENTITY: 1506 config->pending_req_identity++; 1507 break; 1508 case WPA_CTRL_REQ_EAP_PASSWORD: 1509 config->pending_req_password++; 1510 break; 1511 case WPA_CTRL_REQ_EAP_NEW_PASSWORD: 1512 config->pending_req_new_password++; 1513 break; 1514 case WPA_CTRL_REQ_EAP_PIN: 1515 config->pending_req_pin++; 1516 break; 1517 case WPA_CTRL_REQ_EAP_OTP: 1518 if (msg) { 1519 tmp = os_malloc(msglen + 3); 1520 if (tmp == NULL) 1521 return; 1522 tmp[0] = '['; 1523 os_memcpy(tmp + 1, msg, msglen); 1524 tmp[msglen + 1] = ']'; 1525 tmp[msglen + 2] = '\0'; 1526 txt = tmp; 1527 os_free(config->pending_req_otp); 1528 config->pending_req_otp = tmp; 1529 config->pending_req_otp_len = msglen + 3; 1530 } else { 1531 if (config->pending_req_otp == NULL) 1532 return; 1533 txt = config->pending_req_otp; 1534 } 1535 break; 1536 case WPA_CTRL_REQ_EAP_PASSPHRASE: 1537 config->pending_req_passphrase++; 1538 break; 1539 default: 1540 return; 1541 } 1542 1543 if (sm->eapol_cb->eap_param_needed) 1544 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); 1545 } 1546 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1547 #define eap_sm_request(sm, type, msg, msglen) do { } while (0) 1548 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1549 1550 const char * eap_sm_get_method_name(struct eap_sm *sm) 1551 { 1552 if (sm->m == NULL) 1553 return "UNKNOWN"; 1554 return sm->m->name; 1555 } 1556 1557 1558 /** 1559 * eap_sm_request_identity - Request identity from user (ctrl_iface) 1560 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1561 * 1562 * EAP methods can call this function to request identity information for the 1563 * current network. This is normally called when the identity is not included 1564 * in the network configuration. The request will be sent to monitor programs 1565 * through the control interface. 1566 */ 1567 void eap_sm_request_identity(struct eap_sm *sm) 1568 { 1569 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0); 1570 } 1571 1572 1573 /** 1574 * eap_sm_request_password - Request password from user (ctrl_iface) 1575 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1576 * 1577 * EAP methods can call this function to request password information for the 1578 * current network. This is normally called when the password is not included 1579 * in the network configuration. The request will be sent to monitor programs 1580 * through the control interface. 1581 */ 1582 void eap_sm_request_password(struct eap_sm *sm) 1583 { 1584 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0); 1585 } 1586 1587 1588 /** 1589 * eap_sm_request_new_password - Request new password from user (ctrl_iface) 1590 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1591 * 1592 * EAP methods can call this function to request new password information for 1593 * the current network. This is normally called when the EAP method indicates 1594 * that the current password has expired and password change is required. The 1595 * request will be sent to monitor programs through the control interface. 1596 */ 1597 void eap_sm_request_new_password(struct eap_sm *sm) 1598 { 1599 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0); 1600 } 1601 1602 1603 /** 1604 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) 1605 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1606 * 1607 * EAP methods can call this function to request SIM or smart card PIN 1608 * information for the current network. This is normally called when the PIN is 1609 * not included in the network configuration. The request will be sent to 1610 * monitor programs through the control interface. 1611 */ 1612 void eap_sm_request_pin(struct eap_sm *sm) 1613 { 1614 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0); 1615 } 1616 1617 1618 /** 1619 * eap_sm_request_otp - Request one time password from user (ctrl_iface) 1620 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1621 * @msg: Message to be displayed to the user when asking for OTP 1622 * @msg_len: Length of the user displayable message 1623 * 1624 * EAP methods can call this function to request open time password (OTP) for 1625 * the current network. The request will be sent to monitor programs through 1626 * the control interface. 1627 */ 1628 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) 1629 { 1630 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len); 1631 } 1632 1633 1634 /** 1635 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) 1636 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1637 * 1638 * EAP methods can call this function to request passphrase for a private key 1639 * for the current network. This is normally called when the passphrase is not 1640 * included in the network configuration. The request will be sent to monitor 1641 * programs through the control interface. 1642 */ 1643 void eap_sm_request_passphrase(struct eap_sm *sm) 1644 { 1645 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0); 1646 } 1647 1648 1649 /** 1650 * eap_sm_notify_ctrl_attached - Notification of attached monitor 1651 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1652 * 1653 * Notify EAP state machines that a monitor was attached to the control 1654 * interface to trigger re-sending of pending requests for user input. 1655 */ 1656 void eap_sm_notify_ctrl_attached(struct eap_sm *sm) 1657 { 1658 struct eap_peer_config *config = eap_get_config(sm); 1659 1660 if (config == NULL) 1661 return; 1662 1663 /* Re-send any pending requests for user data since a new control 1664 * interface was added. This handles cases where the EAP authentication 1665 * starts immediately after system startup when the user interface is 1666 * not yet running. */ 1667 if (config->pending_req_identity) 1668 eap_sm_request_identity(sm); 1669 if (config->pending_req_password) 1670 eap_sm_request_password(sm); 1671 if (config->pending_req_new_password) 1672 eap_sm_request_new_password(sm); 1673 if (config->pending_req_otp) 1674 eap_sm_request_otp(sm, NULL, 0); 1675 if (config->pending_req_pin) 1676 eap_sm_request_pin(sm); 1677 if (config->pending_req_passphrase) 1678 eap_sm_request_passphrase(sm); 1679 } 1680 1681 1682 static int eap_allowed_phase2_type(int vendor, int type) 1683 { 1684 if (vendor != EAP_VENDOR_IETF) 1685 return 0; 1686 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && 1687 type != EAP_TYPE_FAST; 1688 } 1689 1690 1691 /** 1692 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name 1693 * @name: EAP method name, e.g., MD5 1694 * @vendor: Buffer for returning EAP Vendor-Id 1695 * Returns: EAP method type or %EAP_TYPE_NONE if not found 1696 * 1697 * This function maps EAP type names into EAP type numbers that are allowed for 1698 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with 1699 * EAP-PEAP, EAP-TTLS, and EAP-FAST. 1700 */ 1701 u32 eap_get_phase2_type(const char *name, int *vendor) 1702 { 1703 int v; 1704 u8 type = eap_peer_get_type(name, &v); 1705 if (eap_allowed_phase2_type(v, type)) { 1706 *vendor = v; 1707 return type; 1708 } 1709 *vendor = EAP_VENDOR_IETF; 1710 return EAP_TYPE_NONE; 1711 } 1712 1713 1714 /** 1715 * eap_get_phase2_types - Get list of allowed EAP phase 2 types 1716 * @config: Pointer to a network configuration 1717 * @count: Pointer to a variable to be filled with number of returned EAP types 1718 * Returns: Pointer to allocated type list or %NULL on failure 1719 * 1720 * This function generates an array of allowed EAP phase 2 (tunneled) types for 1721 * the given network configuration. 1722 */ 1723 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, 1724 size_t *count) 1725 { 1726 struct eap_method_type *buf; 1727 u32 method; 1728 int vendor; 1729 size_t mcount; 1730 const struct eap_method *methods, *m; 1731 1732 methods = eap_peer_get_methods(&mcount); 1733 if (methods == NULL) 1734 return NULL; 1735 *count = 0; 1736 buf = os_malloc(mcount * sizeof(struct eap_method_type)); 1737 if (buf == NULL) 1738 return NULL; 1739 1740 for (m = methods; m; m = m->next) { 1741 vendor = m->vendor; 1742 method = m->method; 1743 if (eap_allowed_phase2_type(vendor, method)) { 1744 if (vendor == EAP_VENDOR_IETF && 1745 method == EAP_TYPE_TLS && config && 1746 config->private_key2 == NULL) 1747 continue; 1748 buf[*count].vendor = vendor; 1749 buf[*count].method = method; 1750 (*count)++; 1751 } 1752 } 1753 1754 return buf; 1755 } 1756 1757 1758 /** 1759 * eap_set_fast_reauth - Update fast_reauth setting 1760 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1761 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled 1762 */ 1763 void eap_set_fast_reauth(struct eap_sm *sm, int enabled) 1764 { 1765 sm->fast_reauth = enabled; 1766 } 1767 1768 1769 /** 1770 * eap_set_workaround - Update EAP workarounds setting 1771 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1772 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds 1773 */ 1774 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) 1775 { 1776 sm->workaround = workaround; 1777 } 1778 1779 1780 /** 1781 * eap_get_config - Get current network configuration 1782 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1783 * Returns: Pointer to the current network configuration or %NULL if not found 1784 * 1785 * EAP peer methods should avoid using this function if they can use other 1786 * access functions, like eap_get_config_identity() and 1787 * eap_get_config_password(), that do not require direct access to 1788 * struct eap_peer_config. 1789 */ 1790 struct eap_peer_config * eap_get_config(struct eap_sm *sm) 1791 { 1792 return sm->eapol_cb->get_config(sm->eapol_ctx); 1793 } 1794 1795 1796 /** 1797 * eap_get_config_identity - Get identity from the network configuration 1798 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1799 * @len: Buffer for the length of the identity 1800 * Returns: Pointer to the identity or %NULL if not found 1801 */ 1802 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) 1803 { 1804 struct eap_peer_config *config = eap_get_config(sm); 1805 if (config == NULL) 1806 return NULL; 1807 *len = config->identity_len; 1808 return config->identity; 1809 } 1810 1811 1812 /** 1813 * eap_get_config_password - Get password from the network configuration 1814 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1815 * @len: Buffer for the length of the password 1816 * Returns: Pointer to the password or %NULL if not found 1817 */ 1818 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) 1819 { 1820 struct eap_peer_config *config = eap_get_config(sm); 1821 if (config == NULL) 1822 return NULL; 1823 *len = config->password_len; 1824 return config->password; 1825 } 1826 1827 1828 /** 1829 * eap_get_config_password2 - Get password from the network configuration 1830 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1831 * @len: Buffer for the length of the password 1832 * @hash: Buffer for returning whether the password is stored as a 1833 * NtPasswordHash instead of plaintext password; can be %NULL if this 1834 * information is not needed 1835 * Returns: Pointer to the password or %NULL if not found 1836 */ 1837 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) 1838 { 1839 struct eap_peer_config *config = eap_get_config(sm); 1840 if (config == NULL) 1841 return NULL; 1842 *len = config->password_len; 1843 if (hash) 1844 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); 1845 return config->password; 1846 } 1847 1848 1849 /** 1850 * eap_get_config_new_password - Get new password from network configuration 1851 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1852 * @len: Buffer for the length of the new password 1853 * Returns: Pointer to the new password or %NULL if not found 1854 */ 1855 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) 1856 { 1857 struct eap_peer_config *config = eap_get_config(sm); 1858 if (config == NULL) 1859 return NULL; 1860 *len = config->new_password_len; 1861 return config->new_password; 1862 } 1863 1864 1865 /** 1866 * eap_get_config_otp - Get one-time password from the network configuration 1867 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1868 * @len: Buffer for the length of the one-time password 1869 * Returns: Pointer to the one-time password or %NULL if not found 1870 */ 1871 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) 1872 { 1873 struct eap_peer_config *config = eap_get_config(sm); 1874 if (config == NULL) 1875 return NULL; 1876 *len = config->otp_len; 1877 return config->otp; 1878 } 1879 1880 1881 /** 1882 * eap_clear_config_otp - Clear used one-time password 1883 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1884 * 1885 * This function clears a used one-time password (OTP) from the current network 1886 * configuration. This should be called when the OTP has been used and is not 1887 * needed anymore. 1888 */ 1889 void eap_clear_config_otp(struct eap_sm *sm) 1890 { 1891 struct eap_peer_config *config = eap_get_config(sm); 1892 if (config == NULL) 1893 return; 1894 os_memset(config->otp, 0, config->otp_len); 1895 os_free(config->otp); 1896 config->otp = NULL; 1897 config->otp_len = 0; 1898 } 1899 1900 1901 /** 1902 * eap_get_config_phase1 - Get phase1 data from the network configuration 1903 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1904 * Returns: Pointer to the phase1 data or %NULL if not found 1905 */ 1906 const char * eap_get_config_phase1(struct eap_sm *sm) 1907 { 1908 struct eap_peer_config *config = eap_get_config(sm); 1909 if (config == NULL) 1910 return NULL; 1911 return config->phase1; 1912 } 1913 1914 1915 /** 1916 * eap_get_config_phase2 - Get phase2 data from the network configuration 1917 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1918 * Returns: Pointer to the phase1 data or %NULL if not found 1919 */ 1920 const char * eap_get_config_phase2(struct eap_sm *sm) 1921 { 1922 struct eap_peer_config *config = eap_get_config(sm); 1923 if (config == NULL) 1924 return NULL; 1925 return config->phase2; 1926 } 1927 1928 1929 int eap_get_config_fragment_size(struct eap_sm *sm) 1930 { 1931 struct eap_peer_config *config = eap_get_config(sm); 1932 if (config == NULL) 1933 return -1; 1934 return config->fragment_size; 1935 } 1936 1937 1938 /** 1939 * eap_key_available - Get key availability (eapKeyAvailable variable) 1940 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1941 * Returns: 1 if EAP keying material is available, 0 if not 1942 */ 1943 int eap_key_available(struct eap_sm *sm) 1944 { 1945 return sm ? sm->eapKeyAvailable : 0; 1946 } 1947 1948 1949 /** 1950 * eap_notify_success - Notify EAP state machine about external success trigger 1951 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1952 * 1953 * This function is called when external event, e.g., successful completion of 1954 * WPA-PSK key handshake, is indicating that EAP state machine should move to 1955 * success state. This is mainly used with security modes that do not use EAP 1956 * state machine (e.g., WPA-PSK). 1957 */ 1958 void eap_notify_success(struct eap_sm *sm) 1959 { 1960 if (sm) { 1961 sm->decision = DECISION_COND_SUCC; 1962 sm->EAP_state = EAP_SUCCESS; 1963 } 1964 } 1965 1966 1967 /** 1968 * eap_notify_lower_layer_success - Notification of lower layer success 1969 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1970 * 1971 * Notify EAP state machines that a lower layer has detected a successful 1972 * authentication. This is used to recover from dropped EAP-Success messages. 1973 */ 1974 void eap_notify_lower_layer_success(struct eap_sm *sm) 1975 { 1976 if (sm == NULL) 1977 return; 1978 1979 if (eapol_get_bool(sm, EAPOL_eapSuccess) || 1980 sm->decision == DECISION_FAIL || 1981 (sm->methodState != METHOD_MAY_CONT && 1982 sm->methodState != METHOD_DONE)) 1983 return; 1984 1985 if (sm->eapKeyData != NULL) 1986 sm->eapKeyAvailable = TRUE; 1987 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 1988 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 1989 "EAP authentication completed successfully (based on lower " 1990 "layer success)"); 1991 } 1992 1993 1994 /** 1995 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine 1996 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1997 * @len: Pointer to variable that will be set to number of bytes in the key 1998 * Returns: Pointer to the EAP keying data or %NULL on failure 1999 * 2000 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The 2001 * key is available only after a successful authentication. EAP state machine 2002 * continues to manage the key data and the caller must not change or free the 2003 * returned data. 2004 */ 2005 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) 2006 { 2007 if (sm == NULL || sm->eapKeyData == NULL) { 2008 *len = 0; 2009 return NULL; 2010 } 2011 2012 *len = sm->eapKeyDataLen; 2013 return sm->eapKeyData; 2014 } 2015 2016 2017 /** 2018 * eap_get_eapKeyData - Get EAP response data 2019 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2020 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure 2021 * 2022 * Fetch EAP response (eapRespData) from the EAP state machine. This data is 2023 * available when EAP state machine has processed an incoming EAP request. The 2024 * EAP state machine does not maintain a reference to the response after this 2025 * function is called and the caller is responsible for freeing the data. 2026 */ 2027 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) 2028 { 2029 struct wpabuf *resp; 2030 2031 if (sm == NULL || sm->eapRespData == NULL) 2032 return NULL; 2033 2034 resp = sm->eapRespData; 2035 sm->eapRespData = NULL; 2036 2037 return resp; 2038 } 2039 2040 2041 /** 2042 * eap_sm_register_scard_ctx - Notification of smart card context 2043 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2044 * @ctx: Context data for smart card operations 2045 * 2046 * Notify EAP state machines of context data for smart card operations. This 2047 * context data will be used as a parameter for scard_*() functions. 2048 */ 2049 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) 2050 { 2051 if (sm) 2052 sm->scard_ctx = ctx; 2053 } 2054 2055 2056 /** 2057 * eap_set_config_blob - Set or add a named configuration blob 2058 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2059 * @blob: New value for the blob 2060 * 2061 * Adds a new configuration blob or replaces the current value of an existing 2062 * blob. 2063 */ 2064 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) 2065 { 2066 #ifndef CONFIG_NO_CONFIG_BLOBS 2067 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); 2068 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2069 } 2070 2071 2072 /** 2073 * eap_get_config_blob - Get a named configuration blob 2074 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2075 * @name: Name of the blob 2076 * Returns: Pointer to blob data or %NULL if not found 2077 */ 2078 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, 2079 const char *name) 2080 { 2081 #ifndef CONFIG_NO_CONFIG_BLOBS 2082 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); 2083 #else /* CONFIG_NO_CONFIG_BLOBS */ 2084 return NULL; 2085 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2086 } 2087 2088 2089 /** 2090 * eap_set_force_disabled - Set force_disabled flag 2091 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2092 * @disabled: 1 = EAP disabled, 0 = EAP enabled 2093 * 2094 * This function is used to force EAP state machine to be disabled when it is 2095 * not in use (e.g., with WPA-PSK or plaintext connections). 2096 */ 2097 void eap_set_force_disabled(struct eap_sm *sm, int disabled) 2098 { 2099 sm->force_disabled = disabled; 2100 } 2101 2102 2103 /** 2104 * eap_notify_pending - Notify that EAP method is ready to re-process a request 2105 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2106 * 2107 * An EAP method can perform a pending operation (e.g., to get a response from 2108 * an external process). Once the response is available, this function can be 2109 * used to request EAPOL state machine to retry delivering the previously 2110 * received (and still unanswered) EAP request to EAP state machine. 2111 */ 2112 void eap_notify_pending(struct eap_sm *sm) 2113 { 2114 sm->eapol_cb->notify_pending(sm->eapol_ctx); 2115 } 2116 2117 2118 /** 2119 * eap_invalidate_cached_session - Mark cached session data invalid 2120 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2121 */ 2122 void eap_invalidate_cached_session(struct eap_sm *sm) 2123 { 2124 if (sm) 2125 eap_deinit_prev_method(sm, "invalidate"); 2126 } 2127 2128 2129 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) 2130 { 2131 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2132 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2133 return 0; /* Not a WPS Enrollee */ 2134 2135 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) 2136 return 0; /* Not using PBC */ 2137 2138 return 1; 2139 } 2140 2141 2142 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) 2143 { 2144 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2145 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2146 return 0; /* Not a WPS Enrollee */ 2147 2148 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) 2149 return 0; /* Not using PIN */ 2150 2151 return 1; 2152 } 2153