xref: /netbsd-src/external/bsd/top/dist/machine/m_netbsd.c (revision a4ddc2c8fb9af816efe3b1c375a5530aef0e89e9)
1 /*	$NetBSD: m_netbsd.c,v 1.17 2013/01/03 10:12:36 para Exp $	*/
2 
3 /*
4  * top - a top users display for Unix
5  *
6  * SYNOPSIS:  For a NetBSD-1.5 (or later) system
7  *
8  * DESCRIPTION:
9  * Originally written for BSD4.4 system by Christos Zoulas.
10  * Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider.
11  * NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn.
12  * NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green.
13  * NetBSD-1.4/UVM port by matthew green.
14  * NetBSD-1.5 port by Simon Burge.
15  * NetBSD-1.6/UBC port by Tomas Svensson.
16  * -
17  * This is the machine-dependent module for NetBSD-1.5 and later
18  * works for:
19  *	NetBSD-1.6ZC
20  * and should work for:
21  *	NetBSD-2.0	(when released)
22  * -
23  * top does not need to be installed setuid or setgid with this module.
24  *
25  * LIBS: -lkvm
26  *
27  * CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR
28  *
29  * AUTHORS:	Christos Zoulas <christos@ee.cornell.edu>
30  *		Steven Wallace <swallace@freebsd.org>
31  *		Wolfram Schneider <wosch@cs.tu-berlin.de>
32  *		Arne Helme <arne@acm.org>
33  *		Luke Mewburn <lukem@NetBSD.org>
34  *		matthew green <mrg@eterna.com.au>
35  *		Simon Burge <simonb@NetBSD.org>
36  *		Tomas Svensson <ts@unix1.net>
37  *		Andrew Doran <ad@NetBSD.org>
38  *
39  *
40  * $Id: m_netbsd.c,v 1.17 2013/01/03 10:12:36 para Exp $
41  */
42 #include <sys/cdefs.h>
43 
44 #ifndef lint
45 __RCSID("$NetBSD: m_netbsd.c,v 1.17 2013/01/03 10:12:36 para Exp $");
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/resource.h>
50 #include <sys/sysctl.h>
51 #include <sys/sched.h>
52 #include <sys/swap.h>
53 
54 #include <uvm/uvm_extern.h>
55 
56 #include <err.h>
57 #include <errno.h>
58 #include <kvm.h>
59 #include <math.h>
60 #include <nlist.h>
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <string.h>
64 #include <unistd.h>
65 
66 #include "os.h"
67 #include "top.h"
68 #include "machine.h"
69 #include "utils.h"
70 #include "display.h"
71 #include "loadavg.h"
72 #include "username.h"
73 
74 static void percentages64(int, int *, u_int64_t *, u_int64_t *,
75     u_int64_t *);
76 
77 /* get_process_info passes back a handle.  This is what it looks like: */
78 
79 struct handle {
80 	struct process_select *sel;
81 	struct kinfo_proc2 **next_proc;	/* points to next valid proc pointer */
82 	int remaining;		/* number of pointers remaining */
83 };
84 
85 /* define what weighted CPU is. */
86 #define weighted_cpu(pfx, pct, pp) ((pp)->pfx ## swtime == 0 ? 0.0 : \
87 			 ((pct) / (1.0 - exp((pp)->pfx ## swtime * logcpu))))
88 
89 /* what we consider to be process size: */
90 /* NetBSD introduced p_vm_msize with RLIMIT_AS */
91 #ifdef RLIMIT_AS
92 #define PROCSIZE(pp) \
93     ((pp)->p_vm_msize)
94 #else
95 #define PROCSIZE(pp) \
96     ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
97 #endif
98 
99 
100 /*
101  * These definitions control the format of the per-process area
102  */
103 
104 static char Proc_header[] =
105   "  PID X        PRI NICE   SIZE   RES STATE      TIME   WCPU    CPU COMMAND";
106 /* 0123456   -- field to fill in starts at header+6 */
107 #define PROC_UNAME_START 6
108 #define Proc_format \
109 	"%5d %-8.8s %3d %4d%7s %5s %-8.8s%7s %5.*f%% %5.*f%% %s"
110 
111 static char Thread_header[] =
112   "  PID   LID X        PRI STATE      TIME   WCPU    CPU NAME      COMMAND";
113 /* 0123456   -- field to fill in starts at header+6 */
114 #define THREAD_UNAME_START 12
115 #define Thread_format \
116         "%5d %5d %-8.8s %3d %-8.8s%7s %5.2f%% %5.2f%% %-9.9s %s"
117 
118 /*
119  * Process state names for the "STATE" column of the display.
120  */
121 
122 const char *state_abbrev[] = {
123 	"", "IDLE", "RUN", "SLEEP", "STOP", "ZOMB", "DEAD", "CPU"
124 };
125 
126 static kvm_t *kd;
127 
128 static char *(*userprint)(int);
129 
130 /* these are retrieved from the kernel in _init */
131 
132 static double logcpu;
133 static int hz;
134 static int ccpu;
135 
136 /* these are for calculating CPU state percentages */
137 
138 static int ncpu = 0;
139 static u_int64_t *cp_time;
140 static u_int64_t *cp_old;
141 static u_int64_t *cp_diff;
142 
143 /* these are for detailing the process states */
144 
145 int process_states[8];
146 const char *procstatenames[] = {
147 	"", " idle, ", " runnable, ", " sleeping, ", " stopped, ",
148 	" zombie, ", " dead, ", " on CPU, ",
149 	NULL
150 };
151 
152 /* these are for detailing the CPU states */
153 
154 int *cpu_states;
155 const char *cpustatenames[] = {
156 	"user", "nice", "system", "interrupt", "idle", NULL
157 };
158 
159 /* these are for detailing the memory statistics */
160 
161 long memory_stats[7];
162 const char *memorynames[] = {
163 	"K Act, ", "K Inact, ", "K Wired, ", "K Exec, ", "K File, ",
164 	"K Free, ",
165 	NULL
166 };
167 
168 long swap_stats[4];
169 const char *swapnames[] = {
170 	"K Total, ", "K Used, ", "K Free, ",
171 	NULL
172 };
173 
174 
175 /* these are names given to allowed sorting orders -- first is default */
176 const char *ordernames[] = {
177 	"cpu",
178 	"pri",
179 	"res",
180 	"size",
181 	"state",
182 	"time",
183 	"pid",
184 	"command",
185 	"username",
186 	NULL
187 };
188 
189 /* forward definitions for comparison functions */
190 static int compare_cpu(struct proc **, struct proc **);
191 static int compare_prio(struct proc **, struct proc **);
192 static int compare_res(struct proc **, struct proc **);
193 static int compare_size(struct proc **, struct proc **);
194 static int compare_state(struct proc **, struct proc **);
195 static int compare_time(struct proc **, struct proc **);
196 static int compare_pid(struct proc **, struct proc **);
197 static int compare_command(struct proc **, struct proc **);
198 static int compare_username(struct proc **, struct proc **);
199 
200 int (*proc_compares[])(struct proc **, struct proc **) = {
201 	compare_cpu,
202 	compare_prio,
203 	compare_res,
204 	compare_size,
205 	compare_state,
206 	compare_time,
207 	compare_pid,
208 	compare_command,
209 	compare_username,
210 	NULL
211 };
212 
213 static char *format_next_lwp(caddr_t, char *(*)(int));
214 static char *format_next_proc(caddr_t, char *(*)(int));
215 
216 static caddr_t get_proc_info(struct system_info *, struct process_select *,
217 			     int (*)(struct proc **, struct proc **));
218 static caddr_t get_lwp_info(struct system_info *, struct process_select *,
219 			    int (*)(struct proc **, struct proc **));
220 
221 /* these are for keeping track of the proc array */
222 
223 static int nproc;
224 static int onproc = -1;
225 static int nlwp;
226 static int onlwp = -1;
227 static int pref_len;
228 static int lref_len;
229 static struct kinfo_proc2 *pbase;
230 static struct kinfo_lwp *lbase;
231 static struct kinfo_proc2 **pref;
232 static struct kinfo_lwp **lref;
233 static int maxswap;
234 static void *swapp;
235 static int procgen;
236 static int thread_nproc;
237 static int thread_onproc = -1;
238 static struct kinfo_proc2 *thread_pbase;
239 
240 /* these are for getting the memory statistics */
241 
242 static int pageshift;		/* log base 2 of the pagesize */
243 
244 int threadmode;
245 
246 /* define pagetok in terms of pageshift */
247 
248 #define pagetok(size) ((size) << pageshift)
249 
250 /*
251  * Print swapped processes as <pname> and
252  * system processes as [pname]
253  */
254 static const char *
255 get_pretty(const struct kinfo_proc2 *pp)
256 {
257 	if ((pp->p_flag & P_SYSTEM) != 0)
258 		return "[]";
259 	if ((pp->p_flag & P_INMEM) == 0)
260 		return "<>";
261 	return "";
262 }
263 
264 static const char *
265 get_command(const struct process_select *sel, struct kinfo_proc2 *pp)
266 {
267 	static char cmdbuf[128];
268 	const char *pretty;
269 	char **argv;
270 	if (pp == NULL)
271 		return "<gone>";
272 	pretty = get_pretty(pp);
273 
274 	if (sel->fullcmd == 0 || kd == NULL || (argv = kvm_getargv2(kd, pp,
275 	    sizeof(cmdbuf))) == NULL) {
276 		if (pretty[0] != '\0' && pp->p_comm[0] != pretty[0])
277 			snprintf(cmdbuf, sizeof(cmdbuf), "%c%s%c", pretty[0],
278 			    printable(pp->p_comm), pretty[1]);
279 		else
280 			strlcpy(cmdbuf, printable(pp->p_comm), sizeof(cmdbuf));
281 	} else {
282 		char *d = cmdbuf;
283 		if (pretty[0] != '\0' && argv[0][0] != pretty[0])
284 			*d++ = pretty[0];
285 		while (*argv) {
286 			const char *s = printable(*argv++);
287 			while (d < cmdbuf + sizeof(cmdbuf) - 2 &&
288 			    (*d++ = *s++) != '\0')
289 				continue;
290 			if (d > cmdbuf && d < cmdbuf + sizeof(cmdbuf) - 2 &&
291 			    d[-1] == '\0')
292 				d[-1] = ' ';
293 		}
294 		if (pretty[0] != '\0' && pretty[0] == cmdbuf[0])
295 			*d++ = pretty[1];
296 		*d++ = '\0';
297 	}
298 	return cmdbuf;
299 }
300 
301 int
302 machine_init(statics)
303 	struct statics *statics;
304 {
305 	int pagesize;
306 	int mib[2];
307 	size_t size;
308 	struct clockinfo clockinfo;
309 	struct timeval boottime;
310 
311 	if ((kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, "kvm_open")) == NULL)
312 		return -1;
313 
314 	mib[0] = CTL_HW;
315 	mib[1] = HW_NCPU;
316 	size = sizeof(ncpu);
317 	if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1) {
318 		fprintf(stderr, "top: sysctl hw.ncpu failed: %s\n",
319 		    strerror(errno));
320 		return(-1);
321 	}
322 	statics->ncpu = ncpu;
323 	cp_time = malloc(sizeof(cp_time[0]) * CPUSTATES * ncpu);
324 	mib[0] = CTL_KERN;
325 	mib[1] = KERN_CP_TIME;
326 	size = sizeof(cp_time[0]) * CPUSTATES * ncpu;
327 	if (sysctl(mib, 2, cp_time, &size, NULL, 0) < 0) {
328 		fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n",
329 		    strerror(errno));
330 		return(-1);
331 	}
332 
333 	/* Handle old call that returned only aggregate */
334 	if (size == sizeof(cp_time[0]) * CPUSTATES)
335 		ncpu = 1;
336 
337 	cpu_states = malloc(sizeof(cpu_states[0]) * CPUSTATES * ncpu);
338 	cp_old = malloc(sizeof(cp_old[0]) * CPUSTATES * ncpu);
339 	cp_diff = malloc(sizeof(cp_diff[0]) * CPUSTATES * ncpu);
340 	if (cpu_states == NULL || cp_time == NULL || cp_old == NULL ||
341 	    cp_diff == NULL) {
342 		fprintf(stderr, "top: machine_init: %s\n",
343 		    strerror(errno));
344 		return(-1);
345 	}
346 
347 	mib[0] = CTL_KERN;
348 	mib[1] = KERN_CCPU;
349 	size = sizeof(ccpu);
350 	if (sysctl(mib, 2, &ccpu, &size, NULL, 0) == -1) {
351 		fprintf(stderr, "top: sysctl kern.ccpu failed: %s\n",
352 		    strerror(errno));
353 		return(-1);
354 	}
355 
356 	mib[0] = CTL_KERN;
357 	mib[1] = KERN_CLOCKRATE;
358 	size = sizeof(clockinfo);
359 	if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) == -1) {
360 		fprintf(stderr, "top: sysctl kern.clockrate failed: %s\n",
361 		    strerror(errno));
362 		return(-1);
363 	}
364 	hz = clockinfo.stathz;
365 
366 	/* this is used in calculating WCPU -- calculate it ahead of time */
367 	logcpu = log(loaddouble(ccpu));
368 
369 	pbase = NULL;
370 	lbase = NULL;
371 	pref = NULL;
372 	nproc = 0;
373 	onproc = -1;
374 	nlwp = 0;
375 	onlwp = -1;
376 	/* get the page size with "getpagesize" and calculate pageshift from it */
377 	pagesize = getpagesize();
378 	pageshift = 0;
379 	while (pagesize > 1) {
380 		pageshift++;
381 		pagesize >>= 1;
382 	}
383 
384 	/* we only need the amount of log(2)1024 for our conversion */
385 	pageshift -= LOG1024;
386 
387 	/* fill in the statics information */
388 #ifdef notyet
389 	statics->ncpu = ncpu;
390 #endif
391 	statics->procstate_names = procstatenames;
392 	statics->cpustate_names = cpustatenames;
393 	statics->memory_names = memorynames;
394 	statics->swap_names = swapnames;
395 	statics->order_names = ordernames;
396 	statics->flags.threads = 1;
397 	statics->flags.fullcmds = 1;
398 
399 	mib[0] = CTL_KERN;
400 	mib[1] = KERN_BOOTTIME;
401 	size = sizeof(boottime);
402 	if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 &&
403     	    boottime.tv_sec != 0)
404 		statics->boottime = boottime.tv_sec;
405 	else
406 		statics->boottime = 0;
407 	/* all done! */
408 	return(0);
409 }
410 
411 char *
412 format_process_header(struct process_select *sel, caddr_t handle, int count)
413 
414 {
415 	char *header;
416 	char *ptr;
417 	const char *uname_field = sel->usernames ? "USERNAME" : "    UID ";
418 
419 	if (sel->threads) {
420 		header = Thread_header;
421 		ptr = header + THREAD_UNAME_START;
422 	} else {
423 		header = Proc_header;
424 		ptr = header + PROC_UNAME_START;
425 	}
426 
427 	while (*uname_field != '\0') {
428 		*ptr++ = *uname_field++;
429 	}
430 
431 	return(header);
432 }
433 
434 char *
435 format_header(char *uname_field)
436 {
437 	char *header = Proc_header;
438 	char *ptr = header + PROC_UNAME_START;
439 
440 	while (*uname_field != '\0') {
441 		*ptr++ = *uname_field++;
442 	}
443 
444 	return(header);
445 }
446 
447 void
448 get_system_info(struct system_info *si)
449 {
450 	size_t ssize;
451 	int mib[2];
452 	struct uvmexp_sysctl uvmexp;
453 	struct swapent *sep;
454 	u_int64_t totalsize, totalinuse;
455 	int size, inuse, ncounted, i;
456 	int rnswap, nswap;
457 
458 	mib[0] = CTL_KERN;
459 	mib[1] = KERN_CP_TIME;
460 	ssize = sizeof(cp_time[0]) * CPUSTATES * ncpu;
461 	if (sysctl(mib, 2, cp_time, &ssize, NULL, 0) < 0) {
462 		fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n",
463 		    strerror(errno));
464 		quit(23);
465 	}
466 
467 	if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) {
468 		int j;
469 
470 		warn("can't getloadavg");
471 		for (j = 0; j < NUM_AVERAGES; j++)
472 			si->load_avg[j] = 0.0;
473 	}
474 
475 	/* convert cp_time counts to percentages */
476 	for (i = 0; i < ncpu; i++) {
477 	    int j = i * CPUSTATES;
478 	    percentages64(CPUSTATES, cpu_states + j, cp_time + j, cp_old + j,
479 		cp_diff + j);
480 	}
481 
482 	mib[0] = CTL_VM;
483 	mib[1] = VM_UVMEXP2;
484 	ssize = sizeof(uvmexp);
485 	if (sysctl(mib, 2, &uvmexp, &ssize, NULL, 0) < 0) {
486 		fprintf(stderr, "top: sysctl vm.uvmexp2 failed: %s\n",
487 		    strerror(errno));
488 		quit(23);
489 	}
490 
491 	/* convert memory stats to Kbytes */
492 	memory_stats[0] = pagetok(uvmexp.active);
493 	memory_stats[1] = pagetok(uvmexp.inactive);
494 	memory_stats[2] = pagetok(uvmexp.wired);
495 	memory_stats[3] = pagetok(uvmexp.execpages);
496 	memory_stats[4] = pagetok(uvmexp.filepages);
497 	memory_stats[5] = pagetok(uvmexp.free);
498 
499 	swap_stats[0] = swap_stats[1] = swap_stats[2] = 0;
500 
501 	do {
502 		nswap = swapctl(SWAP_NSWAP, 0, 0);
503 		if (nswap < 1)
504 			break;
505 		if (nswap > maxswap) {
506 			if (swapp)
507 				free(swapp);
508 			swapp = sep = malloc(nswap * sizeof(*sep));
509 			if (sep == NULL)
510 				break;
511 			maxswap = nswap;
512 		} else
513 			sep = swapp;
514 		rnswap = swapctl(SWAP_STATS, (void *)sep, nswap);
515 		if (nswap != rnswap)
516 			break;
517 
518 		totalsize = totalinuse = ncounted = 0;
519 		for (; rnswap-- > 0; sep++) {
520 			ncounted++;
521 			size = sep->se_nblks;
522 			inuse = sep->se_inuse;
523 			totalsize += size;
524 			totalinuse += inuse;
525 		}
526 		swap_stats[0] = dbtob(totalsize) / 1024;
527 		swap_stats[1] = dbtob(totalinuse) / 1024;
528 		swap_stats[2] = dbtob(totalsize) / 1024 - swap_stats[1];
529 	} while (0);
530 
531 	memory_stats[6] = -1;
532 	swap_stats[3] = -1;
533 
534 	/* set arrays and strings */
535 	si->cpustates = cpu_states;
536 	si->memory = memory_stats;
537 	si->swap = swap_stats;
538 	si->last_pid = -1;
539 
540 }
541 
542 static struct kinfo_proc2 *
543 proc_from_thread(struct kinfo_lwp *pl)
544 {
545 	struct kinfo_proc2 *pp = thread_pbase;
546 	int i;
547 
548 	for (i = 0; i < thread_nproc; i++, pp++)
549 		if ((pid_t)pp->p_pid == (pid_t)pl->l_pid)
550 			return pp;
551 	return NULL;
552 }
553 
554 static int
555 uid_from_thread(struct kinfo_lwp *pl)
556 {
557 	struct kinfo_proc2 *pp;
558 
559 	if ((pp = proc_from_thread(pl)) == NULL)
560 		return -1;
561 	return pp->p_ruid;
562 }
563 
564 caddr_t
565 get_process_info(struct system_info *si, struct process_select *sel, int c)
566 {
567 	userprint = sel->usernames ? username : itoa7;
568 
569 	if ((threadmode = sel->threads) != 0)
570 		return get_lwp_info(si, sel, proc_compares[c]);
571 	else
572 		return get_proc_info(si, sel, proc_compares[c]);
573 }
574 
575 static caddr_t
576 get_proc_info(struct system_info *si, struct process_select *sel,
577 	      int (*compare)(struct proc **, struct proc **))
578 {
579 	int i;
580 	int total_procs;
581 	int active_procs;
582 	struct kinfo_proc2 **prefp, **n;
583 	struct kinfo_proc2 *pp;
584 	int op, arg;
585 
586 	/* these are copied out of sel for speed */
587 	int show_idle;
588 	int show_system;
589 	int show_uid;
590 	int show_command;
591 
592 	static struct handle handle;
593 
594 	procgen++;
595 
596 	if (sel->pid == (pid_t)-1) {
597 		op = KERN_PROC_ALL;
598 		arg = 0;
599 	} else {
600 		op = KERN_PROC_PID;
601 		arg = sel->pid;
602 	}
603 
604 	pbase = kvm_getproc2(kd, op, arg, sizeof(struct kinfo_proc2), &nproc);
605 	if (pbase == NULL) {
606 		if (sel->pid != (pid_t)-1) {
607 			nproc = 0;
608 		} else {
609 			(void) fprintf(stderr, "top: Out of memory.\n");
610 			quit(23);
611 		}
612 	}
613 	if (nproc > onproc) {
614 		n = (struct kinfo_proc2 **) realloc(pref,
615 		    sizeof(struct kinfo_proc2 *) * nproc);
616 		if (n == NULL) {
617 			(void) fprintf(stderr, "top: Out of memory.\n");
618 			quit(23);
619 		}
620 		pref = n;
621 		onproc = nproc;
622 	}
623 	/* get a pointer to the states summary array */
624 	si->procstates = process_states;
625 
626 	/* set up flags which define what we are going to select */
627 	show_idle = sel->idle;
628 	show_system = sel->system;
629 	show_uid = sel->uid != -1;
630 	show_command = sel->command != NULL;
631 
632 	/* count up process states and get pointers to interesting procs */
633 	total_procs = 0;
634 	active_procs = 0;
635 	memset((char *)process_states, 0, sizeof(process_states));
636 	prefp = pref;
637 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
638 
639 		/*
640 		 * Place pointers to each valid proc structure in pref[].
641 		 * Process slots that are actually in use have a non-zero
642 		 * status field.  Processes with P_SYSTEM set are system
643 		 * processes---these get ignored unless show_sysprocs is set.
644 		 */
645 		if (pp->p_stat != 0 && (show_system || ((pp->p_flag & P_SYSTEM) == 0))) {
646 			total_procs++;
647 			process_states[(unsigned char) pp->p_stat]++;
648 			if (pp->p_stat != LSZOMB &&
649 			    (show_idle || (pp->p_pctcpu != 0) ||
650 			    (pp->p_stat == LSRUN || pp->p_stat == LSONPROC)) &&
651 			    (!show_uid || pp->p_ruid == (uid_t)sel->uid)) {
652 				*prefp++ = pp;
653 				active_procs++;
654 			}
655 		}
656 	}
657 
658 	/* if requested, sort the "interesting" processes */
659 	if (compare != NULL) {
660 		qsort((char *)pref, active_procs, sizeof(struct kinfo_proc2 *),
661 		    (int (*)(const void *, const void *))compare);
662 	}
663 
664 	/* remember active and total counts */
665 	si->p_total = total_procs;
666 	si->p_active = pref_len = active_procs;
667 
668 	/* pass back a handle */
669 	handle.next_proc = pref;
670 	handle.remaining = active_procs;
671 	handle.sel = sel;
672 	return((caddr_t)&handle);
673 }
674 
675 static caddr_t
676 get_lwp_info(struct system_info *si, struct process_select *sel,
677 	     int (*compare)(struct proc **, struct proc **))
678 {
679 	int i;
680 	int total_lwps;
681 	int active_lwps;
682 	struct kinfo_lwp **lrefp, **n;
683 	struct kinfo_lwp *lp;
684 	struct kinfo_proc2 *pp;
685 
686 	/* these are copied out of sel for speed */
687 	int show_idle;
688 	int show_system;
689 	int show_uid;
690 	int show_command;
691 
692 	static struct handle handle;
693 
694 	pp = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2),
695 	    &thread_nproc);
696 	if (pp == NULL) {
697 		(void) fprintf(stderr, "top: Out of memory.\n");
698 		quit(23);
699 	}
700 	if (thread_pbase == NULL || thread_nproc != thread_onproc) {
701 		free(thread_pbase);
702 		thread_onproc = thread_nproc;
703 		thread_pbase = calloc(sizeof(struct kinfo_proc2), thread_nproc);
704 		if (thread_pbase == NULL) {
705 			(void) fprintf(stderr, "top: Out of memory.\n");
706 			quit(23);
707 		}
708 	}
709 	memcpy(thread_pbase, pp, sizeof(struct kinfo_proc2) * thread_nproc);
710 
711 	lbase = kvm_getlwps(kd, -1, 0, sizeof(struct kinfo_lwp), &nlwp);
712 	if (lbase == NULL) {
713 #ifdef notyet
714 		if (sel->pid != (pid_t)-1) {
715 			nproc = 0;
716 			nlwp = 0;
717 		}
718 		else
719 #endif
720 		{
721 			(void) fprintf(stderr, "top: Out of memory.\n");
722 			quit(23);
723 		}
724 	}
725 	if (nlwp > onlwp) {
726 		n = (struct kinfo_lwp **) realloc(lref,
727 		    sizeof(struct kinfo_lwp *) * nlwp);
728 		if (n == NULL) {
729 			(void) fprintf(stderr, "top: Out of memory.\n");
730 			quit(23);
731 		}
732 		lref = n;
733 		onlwp = nlwp;
734 	}
735 	/* get a pointer to the states summary array */
736 	si->procstates = process_states;
737 
738 	/* set up flags which define what we are going to select */
739 	show_idle = sel->idle;
740 	show_system = sel->system;
741 	show_uid = sel->uid != -1;
742 	show_command = sel->command != NULL;
743 
744 	/* count up thread states and get pointers to interesting threads */
745 	total_lwps = 0;
746 	active_lwps = 0;
747 	memset((char *)process_states, 0, sizeof(process_states));
748 	lrefp = lref;
749 	for (lp = lbase, i = 0; i < nlwp; lp++, i++) {
750 		if (sel->pid != (pid_t)-1 && sel->pid != (pid_t)lp->l_pid)
751 			continue;
752 
753 		/*
754 		 * Place pointers to each valid lwp structure in lref[].
755 		 * thread slots that are actually in use have a non-zero
756 		 * status field.  threads with L_SYSTEM set are system
757 		 * threads---these get ignored unless show_sysprocs is set.
758 		 */
759 		if (lp->l_stat != 0 && (show_system || ((lp->l_flag & LW_SYSTEM) == 0))) {
760 			total_lwps++;
761 			process_states[(unsigned char) lp->l_stat]++;
762 			if (lp->l_stat != LSZOMB &&
763 			    (show_idle || (lp->l_pctcpu != 0) ||
764 			    (lp->l_stat == LSRUN || lp->l_stat == LSONPROC)) &&
765 			    (!show_uid || uid_from_thread(lp) == sel->uid)) {
766 				*lrefp++ = lp;
767 				active_lwps++;
768 			}
769 		}
770 	}
771 
772 	/* if requested, sort the "interesting" threads */
773 	if (compare != NULL) {
774 		qsort((char *)lref, active_lwps, sizeof(struct kinfo_lwp *),
775 		    (int (*)(const void *, const void *))compare);
776 	}
777 
778 	/* remember active and total counts */
779 	si->p_total = total_lwps;
780 	si->p_active = lref_len = active_lwps;
781 
782 	/* pass back a handle */
783 	handle.next_proc = (struct kinfo_proc2 **)lref;
784 	handle.remaining = active_lwps;
785 	handle.sel = sel;
786 
787 	return((caddr_t)&handle);
788 }
789 
790 char *
791 format_next_process(caddr_t handle, char *(*get_userid)(int))
792 {
793 
794 	if (threadmode)
795 		return format_next_lwp(handle, get_userid);
796 	else
797 		return format_next_proc(handle, get_userid);
798 }
799 
800 
801 char *
802 format_next_proc(caddr_t handle, char *(*get_userid)(int))
803 {
804 	struct kinfo_proc2 *pp;
805 	long cputime;
806 	double pct, wcpu, cpu;
807 	struct handle *hp;
808 	const char *statep;
809 #ifdef KI_NOCPU
810 	char state[10];
811 #endif
812 	char wmesg[KI_WMESGLEN + 1];
813 	static char fmt[MAX_COLS];		/* static area where result is built */
814 
815 	/* find and remember the next proc structure */
816 	hp = (struct handle *)handle;
817 	pp = *(hp->next_proc++);
818 	hp->remaining--;
819 
820 	/* get the process's user struct and set cputime */
821 
822 #if 0
823 	/* This does not produce the correct results */
824 	cputime = pp->p_uticks + pp->p_sticks + pp->p_iticks;
825 #else
826 	cputime = pp->p_rtime_sec;	/* This does not count interrupts */
827 #endif
828 
829 	/* calculate the base for CPU percentages */
830 	pct = pctdouble(pp->p_pctcpu);
831 
832 	if (pp->p_stat == LSSLEEP) {
833 		strlcpy(wmesg, pp->p_wmesg, sizeof(wmesg));
834 		statep = wmesg;
835 	} else
836 		statep = state_abbrev[(unsigned)pp->p_stat];
837 
838 #ifdef KI_NOCPU
839 	/* Post-1.5 change: add CPU number if appropriate */
840 	if (pp->p_cpuid != KI_NOCPU && ncpu > 1) {
841 		switch (pp->p_stat) {
842 		case LSONPROC:
843 		case LSRUN:
844 		case LSSLEEP:
845 		case LSIDL:
846 			(void)snprintf(state, sizeof(state), "%.6s/%u",
847 			     statep, (unsigned int)pp->p_cpuid);
848 			statep = state;
849 			break;
850 		}
851 	}
852 #endif
853 	wcpu = 100.0 * weighted_cpu(p_, pct, pp);
854 	cpu = 100.0 * pct;
855 
856 	/* format this entry */
857 	sprintf(fmt,
858 	    Proc_format,
859 	    pp->p_pid,
860 	    (*userprint)(pp->p_ruid),
861 	    pp->p_priority,
862 	    pp->p_nice - NZERO,
863 	    format_k(pagetok(PROCSIZE(pp))),
864 	    format_k(pagetok(pp->p_vm_rssize)),
865 	    statep,
866 	    format_time(cputime),
867 	    (wcpu >= 100.0) ? 0 : 2, wcpu,
868 	    (cpu >= 100.0) ? 0 : 2, cpu,
869 	    get_command(hp->sel, pp));
870 
871 	/* return the result */
872 	return(fmt);
873 }
874 
875 static char *
876 format_next_lwp(caddr_t handle, char *(*get_userid)(int))
877 {
878 	struct kinfo_proc2 *pp;
879 	struct kinfo_lwp *pl;
880 	long cputime;
881 	double pct;
882 	struct handle *hp;
883 	const char *statep;
884 #ifdef KI_NOCPU
885 	char state[10];
886 #endif
887 	char wmesg[KI_WMESGLEN + 1];
888 	static char fmt[MAX_COLS];		/* static area where result is built */
889 	int uid;
890 
891 	/* find and remember the next proc structure */
892 	hp = (struct handle *)handle;
893 	pl = (struct kinfo_lwp *)*(hp->next_proc++);
894 	hp->remaining--;
895 	pp = proc_from_thread(pl);
896 
897 	/* get the process's user struct and set cputime */
898 	uid = pp ? pp->p_ruid : 0;
899 
900 	cputime = pl->l_rtime_sec;
901 
902 	/* calculate the base for CPU percentages */
903 	pct = pctdouble(pl->l_pctcpu);
904 
905 	if (pl->l_stat == LSSLEEP) {
906 		strlcpy(wmesg, pl->l_wmesg, sizeof(wmesg));
907 		statep = wmesg;
908 	} else
909 		statep = state_abbrev[(unsigned)pl->l_stat];
910 
911 #ifdef KI_NOCPU
912 	/* Post-1.5 change: add CPU number if appropriate */
913 	if (pl->l_cpuid != KI_NOCPU && ncpu > 1) {
914 		switch (pl->l_stat) {
915 		case LSONPROC:
916 		case LSRUN:
917 		case LSSLEEP:
918 		case LSIDL:
919 			(void)snprintf(state, sizeof(state), "%.6s/%u",
920 			     statep, (unsigned int)pl->l_cpuid);
921 			statep = state;
922 			break;
923 		}
924 	}
925 #endif
926 
927 	if (pl->l_name[0] == '\0') {
928 		pl->l_name[0] = '-';
929 		pl->l_name[1] = '\0';
930 	}
931 
932 	/* format this entry */
933 	sprintf(fmt,
934 	    Thread_format,
935 	    pl->l_pid,
936 	    pl->l_lid,
937 	    (*userprint)(uid),
938 	    pl->l_priority,
939 	    statep,
940 	    format_time(cputime),
941 	    100.0 * weighted_cpu(l_, pct, pl),
942 	    100.0 * pct,
943 	    printable(pl->l_name),
944 	    get_command(hp->sel, pp));
945 
946 	/* return the result */
947 	return(fmt);
948 }
949 
950 /* comparison routines for qsort */
951 
952 /*
953  * There are currently four possible comparison routines.  main selects
954  * one of these by indexing in to the array proc_compares.
955  *
956  * Possible keys are defined as macros below.  Currently these keys are
957  * defined:  percent CPU, CPU ticks, process state, resident set size,
958  * total virtual memory usage.  The process states are ordered as follows
959  * (from least to most important):  WAIT, zombie, sleep, stop, start, run.
960  * The array declaration below maps a process state index into a number
961  * that reflects this ordering.
962  */
963 
964 /*
965  * First, the possible comparison keys.  These are defined in such a way
966  * that they can be merely listed in the source code to define the actual
967  * desired ordering.
968  */
969 
970 #define ORDERKEY_PCTCPU(pfx) \
971 	if (lresult = (pctcpu)(p2)->pfx ## pctcpu - (pctcpu)(p1)->pfx ## pctcpu,\
972 	    (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
973 
974 #define ORDERKEY_CPTICKS(pfx) \
975 	if (lresult = (pctcpu)(p2)->pfx ## rtime_sec \
976 		    - (pctcpu)(p1)->pfx ## rtime_sec,\
977 	    (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
978 
979 #define ORDERKEY_STATE(pfx) \
980 	if ((result = sorted_state[(int)(p2)->pfx ## stat] - \
981 		      sorted_state[(int)(p1)->pfx ## stat] ) == 0)
982 
983 #define ORDERKEY_PRIO(pfx) \
984 	if ((result = (p2)->pfx ## priority - (p1)->pfx ## priority) == 0)
985 
986 #define ORDERKEY_RSSIZE \
987 	if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
988 
989 #define ORDERKEY_MEM	\
990 	if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0)
991 #define ORDERKEY_SIZE(v1, v2)	\
992 	if ((result = (v2 - v1)) == 0)
993 
994 /*
995  * Now the array that maps process state to a weight.
996  * The order of the elements should match those in state_abbrev[]
997  */
998 
999 static int sorted_state[] = {
1000 	0,	/*  (not used)	  ?	*/
1001 	1,	/* "start"	SIDL	*/
1002 	4,	/* "run"	SRUN	*/
1003 	3,	/* "sleep"	SSLEEP	*/
1004 	3,	/* "stop"	SSTOP	*/
1005 	2,	/* "dead"	SDEAD	*/
1006 	1,	/* "zomb"	SZOMB	*/
1007 	5,	/* "onproc"	SONPROC	*/
1008 };
1009 
1010 /* compare_cpu - the comparison function for sorting by CPU percentage */
1011 
1012 static int
1013 compare_cpu(pp1, pp2)
1014 	struct proc **pp1, **pp2;
1015 {
1016 	int result;
1017 	pctcpu lresult;
1018 
1019 	if (threadmode) {
1020 		struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
1021 		struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
1022 
1023 		ORDERKEY_PCTCPU(l_)
1024 		ORDERKEY_CPTICKS(l_)
1025 		ORDERKEY_STATE(l_)
1026 		ORDERKEY_PRIO(l_)
1027 		return result;
1028 	} else {
1029 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1030 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1031 
1032 		ORDERKEY_PCTCPU(p_)
1033 		ORDERKEY_CPTICKS(p_)
1034 		ORDERKEY_STATE(p_)
1035 		ORDERKEY_PRIO(p_)
1036 		ORDERKEY_RSSIZE
1037 		ORDERKEY_MEM
1038 		return result;
1039 	}
1040 
1041 	return (result);
1042 }
1043 
1044 /* compare_prio - the comparison function for sorting by process priority */
1045 
1046 static int
1047 compare_prio(pp1, pp2)
1048 	struct proc **pp1, **pp2;
1049 {
1050 	int result;
1051 	pctcpu lresult;
1052 
1053 	if (threadmode) {
1054 		struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
1055 		struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
1056 
1057 		ORDERKEY_PRIO(l_)
1058 		ORDERKEY_PCTCPU(l_)
1059 		ORDERKEY_CPTICKS(l_)
1060 		ORDERKEY_STATE(l_)
1061 		return result;
1062 	} else {
1063 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1064 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1065 
1066 		ORDERKEY_PRIO(p_)
1067 		ORDERKEY_PCTCPU(p_)
1068 		ORDERKEY_CPTICKS(p_)
1069 		ORDERKEY_STATE(p_)
1070 		ORDERKEY_RSSIZE
1071 		ORDERKEY_MEM
1072 		return result;
1073 	}
1074 
1075 	return (result);
1076 }
1077 
1078 /* compare_res - the comparison function for sorting by resident set size */
1079 
1080 static int
1081 compare_res(pp1, pp2)
1082 	struct proc **pp1, **pp2;
1083 {
1084 	int result;
1085 	pctcpu lresult;
1086 
1087 	if (threadmode) {
1088 		struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
1089 		struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
1090 
1091 		ORDERKEY_PCTCPU(l_)
1092 		ORDERKEY_CPTICKS(l_)
1093 		ORDERKEY_STATE(l_)
1094 		ORDERKEY_PRIO(l_)
1095 		return result;
1096 	} else {
1097 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1098 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1099 
1100 		ORDERKEY_RSSIZE
1101 		ORDERKEY_MEM
1102 		ORDERKEY_PCTCPU(p_)
1103 		ORDERKEY_CPTICKS(p_)
1104 		ORDERKEY_STATE(p_)
1105 		ORDERKEY_PRIO(p_)
1106 		return result;
1107 	}
1108 
1109 	return (result);
1110 }
1111 
1112 static int
1113 compare_pid(pp1, pp2)
1114 	struct proc **pp1, **pp2;
1115 {
1116 	if (threadmode) {
1117 		struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
1118 		struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
1119 		struct kinfo_proc2 *p1 = proc_from_thread(l1);
1120 		struct kinfo_proc2 *p2 = proc_from_thread(l2);
1121 		return p2->p_pid - p1->p_pid;
1122 	} else {
1123 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1124 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1125 		return p2->p_pid - p1->p_pid;
1126 	}
1127 }
1128 
1129 static int
1130 compare_command(pp1, pp2)
1131 	struct proc **pp1, **pp2;
1132 {
1133 	if (threadmode) {
1134 		struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
1135 		struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
1136 		struct kinfo_proc2 *p1 = proc_from_thread(l1);
1137 		struct kinfo_proc2 *p2 = proc_from_thread(l2);
1138 		return strcmp(p2->p_comm, p1->p_comm);
1139 	} else {
1140 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1141 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1142 		return strcmp(p2->p_comm, p1->p_comm);
1143 	}
1144 }
1145 
1146 static int
1147 compare_username(pp1, pp2)
1148 	struct proc **pp1, **pp2;
1149 {
1150 	if (threadmode) {
1151 		struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
1152 		struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
1153 		struct kinfo_proc2 *p1 = proc_from_thread(l1);
1154 		struct kinfo_proc2 *p2 = proc_from_thread(l2);
1155 		return strcmp(p2->p_login, p1->p_login);
1156 	} else {
1157 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1158 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1159 		return strcmp(p2->p_login, p1->p_login);
1160 	}
1161 }
1162 /* compare_size - the comparison function for sorting by total memory usage */
1163 
1164 static int
1165 compare_size(pp1, pp2)
1166 	struct proc **pp1, **pp2;
1167 {
1168 	int result;
1169 	pctcpu lresult;
1170 
1171 	if (threadmode) {
1172 		struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
1173 		struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
1174 
1175 		ORDERKEY_PCTCPU(l_)
1176 		ORDERKEY_CPTICKS(l_)
1177 		ORDERKEY_STATE(l_)
1178 		ORDERKEY_PRIO(l_)
1179 		return result;
1180 	} else {
1181 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1182 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1183 
1184 		ORDERKEY_MEM
1185 		ORDERKEY_RSSIZE
1186 		ORDERKEY_PCTCPU(p_)
1187 		ORDERKEY_CPTICKS(p_)
1188 		ORDERKEY_STATE(p_)
1189 		ORDERKEY_PRIO(p_)
1190 		return result;
1191 	}
1192 
1193 	return (result);
1194 }
1195 
1196 /* compare_state - the comparison function for sorting by process state */
1197 
1198 static int
1199 compare_state(pp1, pp2)
1200 	struct proc **pp1, **pp2;
1201 {
1202 	int result;
1203 	pctcpu lresult;
1204 
1205 	if (threadmode) {
1206 		struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
1207 		struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
1208 
1209 		ORDERKEY_STATE(l_)
1210 		ORDERKEY_PCTCPU(l_)
1211 		ORDERKEY_CPTICKS(l_)
1212 		ORDERKEY_PRIO(l_)
1213 		return result;
1214 	} else {
1215 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1216 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1217 
1218 		ORDERKEY_STATE(p_)
1219 		ORDERKEY_PCTCPU(p_)
1220 		ORDERKEY_CPTICKS(p_)
1221 		ORDERKEY_PRIO(p_)
1222 		ORDERKEY_RSSIZE
1223 		ORDERKEY_MEM
1224 		return result;
1225 	}
1226 
1227 	return (result);
1228 }
1229 
1230 /* compare_time - the comparison function for sorting by total CPU time */
1231 
1232 static int
1233 compare_time(pp1, pp2)
1234 	struct proc **pp1, **pp2;
1235 {
1236 	int result;
1237 	pctcpu lresult;
1238 
1239 	if (threadmode) {
1240 		struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
1241 		struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
1242 
1243 		ORDERKEY_CPTICKS(l_)
1244 		ORDERKEY_PCTCPU(l_)
1245 		ORDERKEY_STATE(l_)
1246 		ORDERKEY_PRIO(l_)
1247 		return result;
1248 	} else {
1249 		struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
1250 		struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
1251 
1252 		ORDERKEY_CPTICKS(p_)
1253 		ORDERKEY_PCTCPU(p_)
1254 		ORDERKEY_STATE(p_)
1255 		ORDERKEY_PRIO(p_)
1256 		ORDERKEY_MEM
1257 		ORDERKEY_RSSIZE
1258 		return result;
1259 	}
1260 
1261 	return (result);
1262 }
1263 
1264 
1265 /*
1266  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1267  *		the process does not exist.
1268  *		It is EXTREMLY IMPORTANT that this function work correctly.
1269  *		If top runs setuid root (as in SVR4), then this function
1270  *		is the only thing that stands in the way of a serious
1271  *		security problem.  It validates requests for the "kill"
1272  *		and "renice" commands.
1273  */
1274 
1275 int
1276 proc_owner(pid)
1277 	int pid;
1278 {
1279 	int cnt;
1280 	struct kinfo_proc2 **prefp;
1281 	struct kinfo_proc2 *pp;
1282 
1283 	if (threadmode)
1284 		return(-1);
1285 
1286 	prefp = pref;
1287 	cnt = pref_len;
1288 	while (--cnt >= 0) {
1289 		pp = *prefp++;
1290 		if (pp->p_pid == (pid_t)pid)
1291 			return(pp->p_ruid);
1292 	}
1293 	return(-1);
1294 }
1295 
1296 /*
1297  *  percentages(cnt, out, new, old, diffs) - calculate percentage change
1298  *	between array "old" and "new", putting the percentages i "out".
1299  *	"cnt" is size of each array and "diffs" is used for scratch space.
1300  *	The array "old" is updated on each call.
1301  *	The routine assumes modulo arithmetic.  This function is especially
1302  *	useful on BSD mchines for calculating CPU state percentages.
1303  */
1304 
1305 static void
1306 percentages64(cnt, out, new, old, diffs)
1307 	int cnt;
1308 	int *out;
1309 	u_int64_t *new;
1310 	u_int64_t *old;
1311 	u_int64_t *diffs;
1312 {
1313 	int i;
1314 	u_int64_t change;
1315 	u_int64_t total_change;
1316 	u_int64_t *dp;
1317 	u_int64_t half_total;
1318 
1319 	/* initialization */
1320 	total_change = 0;
1321 	dp = diffs;
1322 
1323 	/* calculate changes for each state and the overall change */
1324 	for (i = 0; i < cnt; i++) {
1325 		/*
1326 		 * Don't worry about wrapping - even at hz=1GHz, a
1327 		 * u_int64_t will last at least 544 years.
1328 		 */
1329 		change = *new - *old;
1330 		total_change += (*dp++ = change);
1331 		*old++ = *new++;
1332 	}
1333 
1334 	/* avoid divide by zero potential */
1335 	if (total_change == 0)
1336 		total_change = 1;
1337 
1338 	/* calculate percentages based on overall change, rounding up */
1339 	half_total = total_change / 2;
1340 	for (i = 0; i < cnt; i++)
1341 		*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
1342 }
1343