1 /* $NetBSD: m_netbsd.c,v 1.18 2013/10/20 03:02:27 christos Exp $ */ 2 3 /* 4 * top - a top users display for Unix 5 * 6 * SYNOPSIS: For a NetBSD-1.5 (or later) system 7 * 8 * DESCRIPTION: 9 * Originally written for BSD4.4 system by Christos Zoulas. 10 * Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider. 11 * NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn. 12 * NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green. 13 * NetBSD-1.4/UVM port by matthew green. 14 * NetBSD-1.5 port by Simon Burge. 15 * NetBSD-1.6/UBC port by Tomas Svensson. 16 * - 17 * This is the machine-dependent module for NetBSD-1.5 and later 18 * works for: 19 * NetBSD-1.6ZC 20 * and should work for: 21 * NetBSD-2.0 (when released) 22 * - 23 * top does not need to be installed setuid or setgid with this module. 24 * 25 * LIBS: -lkvm 26 * 27 * CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR 28 * 29 * AUTHORS: Christos Zoulas <christos@ee.cornell.edu> 30 * Steven Wallace <swallace@freebsd.org> 31 * Wolfram Schneider <wosch@cs.tu-berlin.de> 32 * Arne Helme <arne@acm.org> 33 * Luke Mewburn <lukem@NetBSD.org> 34 * matthew green <mrg@eterna.com.au> 35 * Simon Burge <simonb@NetBSD.org> 36 * Tomas Svensson <ts@unix1.net> 37 * Andrew Doran <ad@NetBSD.org> 38 * 39 * 40 * $Id: m_netbsd.c,v 1.18 2013/10/20 03:02:27 christos Exp $ 41 */ 42 #include <sys/cdefs.h> 43 44 #ifndef lint 45 __RCSID("$NetBSD: m_netbsd.c,v 1.18 2013/10/20 03:02:27 christos Exp $"); 46 #endif 47 48 #include <sys/param.h> 49 #include <sys/resource.h> 50 #include <sys/sysctl.h> 51 #include <sys/sched.h> 52 #include <sys/swap.h> 53 54 #include <uvm/uvm_extern.h> 55 56 #include <err.h> 57 #include <errno.h> 58 #include <kvm.h> 59 #include <math.h> 60 #include <nlist.h> 61 #include <stdio.h> 62 #include <stdlib.h> 63 #include <string.h> 64 #include <unistd.h> 65 66 #include "os.h" 67 #include "top.h" 68 #include "machine.h" 69 #include "utils.h" 70 #include "display.h" 71 #include "loadavg.h" 72 #include "username.h" 73 74 static void percentages64(int, int *, u_int64_t *, u_int64_t *, 75 u_int64_t *); 76 77 /* get_process_info passes back a handle. This is what it looks like: */ 78 79 struct handle { 80 struct process_select *sel; 81 struct kinfo_proc2 **next_proc; /* points to next valid proc pointer */ 82 int remaining; /* number of pointers remaining */ 83 }; 84 85 /* define what weighted CPU is. */ 86 #define weighted_cpu(pfx, pct, pp) ((pp)->pfx ## swtime == 0 ? 0.0 : \ 87 ((pct) / (1.0 - exp((pp)->pfx ## swtime * logcpu)))) 88 89 /* what we consider to be process size: */ 90 /* NetBSD introduced p_vm_msize with RLIMIT_AS */ 91 #ifdef RLIMIT_AS 92 #define PROCSIZE(pp) \ 93 ((pp)->p_vm_msize) 94 #else 95 #define PROCSIZE(pp) \ 96 ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize) 97 #endif 98 99 100 /* 101 * These definitions control the format of the per-process area 102 */ 103 104 static char Proc_header[] = 105 " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; 106 /* 0123456 -- field to fill in starts at header+6 */ 107 #define PROC_UNAME_START 6 108 #define Proc_format \ 109 "%5d %-8.8s %3d %4d%7s %5s %-8.8s%7s %5.*f%% %5.*f%% %s" 110 111 static char Thread_header[] = 112 " PID LID X PRI STATE TIME WCPU CPU NAME COMMAND"; 113 /* 0123456 -- field to fill in starts at header+6 */ 114 #define THREAD_UNAME_START 12 115 #define Thread_format \ 116 "%5d %5d %-8.8s %3d %-8.8s%7s %5.2f%% %5.2f%% %-9.9s %s" 117 118 /* 119 * Process state names for the "STATE" column of the display. 120 */ 121 122 const char *state_abbrev[] = { 123 "", "IDLE", "RUN", "SLEEP", "STOP", "ZOMB", "DEAD", "CPU" 124 }; 125 126 static kvm_t *kd; 127 128 static char *(*userprint)(int); 129 130 /* these are retrieved from the kernel in _init */ 131 132 static double logcpu; 133 static int hz; 134 static int ccpu; 135 136 /* these are for calculating CPU state percentages */ 137 138 static int ncpu = 0; 139 static u_int64_t *cp_time; 140 static u_int64_t *cp_old; 141 static u_int64_t *cp_diff; 142 143 /* these are for detailing the process states */ 144 145 int process_states[8]; 146 const char *procstatenames[] = { 147 "", " idle, ", " runnable, ", " sleeping, ", " stopped, ", 148 " zombie, ", " dead, ", " on CPU, ", 149 NULL 150 }; 151 152 /* these are for detailing the CPU states */ 153 154 int *cpu_states; 155 const char *cpustatenames[] = { 156 "user", "nice", "system", "interrupt", "idle", NULL 157 }; 158 159 /* these are for detailing the memory statistics */ 160 161 long memory_stats[7]; 162 const char *memorynames[] = { 163 "K Act, ", "K Inact, ", "K Wired, ", "K Exec, ", "K File, ", 164 "K Free, ", 165 NULL 166 }; 167 168 long swap_stats[4]; 169 const char *swapnames[] = { 170 "K Total, ", "K Used, ", "K Free, ", 171 NULL 172 }; 173 174 175 /* these are names given to allowed sorting orders -- first is default */ 176 const char *ordernames[] = { 177 "cpu", 178 "pri", 179 "res", 180 "size", 181 "state", 182 "time", 183 "pid", 184 "command", 185 "username", 186 NULL 187 }; 188 189 /* forward definitions for comparison functions */ 190 static int compare_cpu(struct proc **, struct proc **); 191 static int compare_prio(struct proc **, struct proc **); 192 static int compare_res(struct proc **, struct proc **); 193 static int compare_size(struct proc **, struct proc **); 194 static int compare_state(struct proc **, struct proc **); 195 static int compare_time(struct proc **, struct proc **); 196 static int compare_pid(struct proc **, struct proc **); 197 static int compare_command(struct proc **, struct proc **); 198 static int compare_username(struct proc **, struct proc **); 199 200 int (*proc_compares[])(struct proc **, struct proc **) = { 201 compare_cpu, 202 compare_prio, 203 compare_res, 204 compare_size, 205 compare_state, 206 compare_time, 207 compare_pid, 208 compare_command, 209 compare_username, 210 NULL 211 }; 212 213 static char *format_next_lwp(caddr_t, char *(*)(int)); 214 static char *format_next_proc(caddr_t, char *(*)(int)); 215 216 static caddr_t get_proc_info(struct system_info *, struct process_select *, 217 int (*)(struct proc **, struct proc **)); 218 static caddr_t get_lwp_info(struct system_info *, struct process_select *, 219 int (*)(struct proc **, struct proc **)); 220 221 /* these are for keeping track of the proc array */ 222 223 static int nproc; 224 static int onproc = -1; 225 static int nlwp; 226 static int onlwp = -1; 227 static int pref_len; 228 static int lref_len; 229 static struct kinfo_proc2 *pbase; 230 static struct kinfo_lwp *lbase; 231 static struct kinfo_proc2 **pref; 232 static struct kinfo_lwp **lref; 233 static int maxswap; 234 static void *swapp; 235 static int procgen; 236 static int thread_nproc; 237 static int thread_onproc = -1; 238 static struct kinfo_proc2 *thread_pbase; 239 240 /* these are for getting the memory statistics */ 241 242 static int pageshift; /* log base 2 of the pagesize */ 243 244 int threadmode; 245 246 /* define pagetok in terms of pageshift */ 247 248 #define pagetok(size) ((size) << pageshift) 249 250 /* 251 * Print swapped processes as <pname> and 252 * system processes as [pname] 253 */ 254 static const char * 255 get_pretty(const struct kinfo_proc2 *pp) 256 { 257 if ((pp->p_flag & P_SYSTEM) != 0) 258 return "[]"; 259 if ((pp->p_flag & P_INMEM) == 0) 260 return "<>"; 261 return ""; 262 } 263 264 static const char * 265 get_command(const struct process_select *sel, struct kinfo_proc2 *pp) 266 { 267 static char cmdbuf[128]; 268 const char *pretty; 269 char **argv; 270 if (pp == NULL) 271 return "<gone>"; 272 pretty = get_pretty(pp); 273 274 if (sel->fullcmd == 0 || kd == NULL || (argv = kvm_getargv2(kd, pp, 275 sizeof(cmdbuf))) == NULL) { 276 if (pretty[0] != '\0' && pp->p_comm[0] != pretty[0]) 277 snprintf(cmdbuf, sizeof(cmdbuf), "%c%s%c", pretty[0], 278 printable(pp->p_comm), pretty[1]); 279 else 280 strlcpy(cmdbuf, printable(pp->p_comm), sizeof(cmdbuf)); 281 } else { 282 char *d = cmdbuf; 283 if (pretty[0] != '\0' && argv[0][0] != pretty[0]) 284 *d++ = pretty[0]; 285 while (*argv) { 286 const char *s = printable(*argv++); 287 while (d < cmdbuf + sizeof(cmdbuf) - 2 && 288 (*d++ = *s++) != '\0') 289 continue; 290 if (d > cmdbuf && d < cmdbuf + sizeof(cmdbuf) - 2 && 291 d[-1] == '\0') 292 d[-1] = ' '; 293 } 294 if (pretty[0] != '\0' && pretty[0] == cmdbuf[0]) 295 *d++ = pretty[1]; 296 *d++ = '\0'; 297 } 298 return cmdbuf; 299 } 300 301 int 302 machine_init(statics) 303 struct statics *statics; 304 { 305 int pagesize; 306 int mib[2]; 307 size_t size; 308 struct clockinfo clockinfo; 309 struct timeval boottime; 310 311 if ((kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, "kvm_open")) == NULL) 312 return -1; 313 314 mib[0] = CTL_HW; 315 mib[1] = HW_NCPU; 316 size = sizeof(ncpu); 317 if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1) { 318 fprintf(stderr, "top: sysctl hw.ncpu failed: %s\n", 319 strerror(errno)); 320 return(-1); 321 } 322 statics->ncpu = ncpu; 323 cp_time = malloc(sizeof(cp_time[0]) * CPUSTATES * ncpu); 324 mib[0] = CTL_KERN; 325 mib[1] = KERN_CP_TIME; 326 size = sizeof(cp_time[0]) * CPUSTATES * ncpu; 327 if (sysctl(mib, 2, cp_time, &size, NULL, 0) < 0) { 328 fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n", 329 strerror(errno)); 330 return(-1); 331 } 332 333 /* Handle old call that returned only aggregate */ 334 if (size == sizeof(cp_time[0]) * CPUSTATES) 335 ncpu = 1; 336 337 cpu_states = malloc(sizeof(cpu_states[0]) * CPUSTATES * ncpu); 338 cp_old = malloc(sizeof(cp_old[0]) * CPUSTATES * ncpu); 339 cp_diff = malloc(sizeof(cp_diff[0]) * CPUSTATES * ncpu); 340 if (cpu_states == NULL || cp_time == NULL || cp_old == NULL || 341 cp_diff == NULL) { 342 fprintf(stderr, "top: machine_init: %s\n", 343 strerror(errno)); 344 return(-1); 345 } 346 347 mib[0] = CTL_KERN; 348 mib[1] = KERN_CCPU; 349 size = sizeof(ccpu); 350 if (sysctl(mib, 2, &ccpu, &size, NULL, 0) == -1) { 351 fprintf(stderr, "top: sysctl kern.ccpu failed: %s\n", 352 strerror(errno)); 353 return(-1); 354 } 355 356 mib[0] = CTL_KERN; 357 mib[1] = KERN_CLOCKRATE; 358 size = sizeof(clockinfo); 359 if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) == -1) { 360 fprintf(stderr, "top: sysctl kern.clockrate failed: %s\n", 361 strerror(errno)); 362 return(-1); 363 } 364 hz = clockinfo.stathz; 365 366 /* this is used in calculating WCPU -- calculate it ahead of time */ 367 logcpu = log(loaddouble(ccpu)); 368 369 pbase = NULL; 370 lbase = NULL; 371 pref = NULL; 372 nproc = 0; 373 onproc = -1; 374 nlwp = 0; 375 onlwp = -1; 376 /* get the page size with "getpagesize" and calculate pageshift from it */ 377 pagesize = getpagesize(); 378 pageshift = 0; 379 while (pagesize > 1) { 380 pageshift++; 381 pagesize >>= 1; 382 } 383 384 /* we only need the amount of log(2)1024 for our conversion */ 385 pageshift -= LOG1024; 386 387 /* fill in the statics information */ 388 #ifdef notyet 389 statics->ncpu = ncpu; 390 #endif 391 statics->procstate_names = procstatenames; 392 statics->cpustate_names = cpustatenames; 393 statics->memory_names = memorynames; 394 statics->swap_names = swapnames; 395 statics->order_names = ordernames; 396 statics->flags.threads = 1; 397 statics->flags.fullcmds = 1; 398 399 mib[0] = CTL_KERN; 400 mib[1] = KERN_BOOTTIME; 401 size = sizeof(boottime); 402 if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 && 403 boottime.tv_sec != 0) 404 statics->boottime = boottime.tv_sec; 405 else 406 statics->boottime = 0; 407 /* all done! */ 408 return(0); 409 } 410 411 char * 412 format_process_header(struct process_select *sel, caddr_t handle, int count) 413 414 { 415 char *header; 416 char *ptr; 417 const char *uname_field = sel->usernames ? "USERNAME" : " UID "; 418 419 if (sel->threads) { 420 header = Thread_header; 421 ptr = header + THREAD_UNAME_START; 422 } else { 423 header = Proc_header; 424 ptr = header + PROC_UNAME_START; 425 } 426 427 while (*uname_field != '\0') { 428 *ptr++ = *uname_field++; 429 } 430 431 return(header); 432 } 433 434 char * 435 format_header(char *uname_field) 436 { 437 char *header = Proc_header; 438 char *ptr = header + PROC_UNAME_START; 439 440 while (*uname_field != '\0') { 441 *ptr++ = *uname_field++; 442 } 443 444 return(header); 445 } 446 447 void 448 get_system_info(struct system_info *si) 449 { 450 size_t ssize; 451 int mib[2]; 452 struct uvmexp_sysctl uvmexp; 453 struct swapent *sep; 454 u_int64_t totalsize, totalinuse; 455 int size, inuse, ncounted, i; 456 int rnswap, nswap; 457 458 mib[0] = CTL_KERN; 459 mib[1] = KERN_CP_TIME; 460 ssize = sizeof(cp_time[0]) * CPUSTATES * ncpu; 461 if (sysctl(mib, 2, cp_time, &ssize, NULL, 0) < 0) { 462 fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n", 463 strerror(errno)); 464 quit(23); 465 } 466 467 if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) { 468 int j; 469 470 warn("can't getloadavg"); 471 for (j = 0; j < NUM_AVERAGES; j++) 472 si->load_avg[j] = 0.0; 473 } 474 475 /* convert cp_time counts to percentages */ 476 for (i = 0; i < ncpu; i++) { 477 int j = i * CPUSTATES; 478 percentages64(CPUSTATES, cpu_states + j, cp_time + j, cp_old + j, 479 cp_diff + j); 480 } 481 482 mib[0] = CTL_VM; 483 mib[1] = VM_UVMEXP2; 484 ssize = sizeof(uvmexp); 485 if (sysctl(mib, 2, &uvmexp, &ssize, NULL, 0) < 0) { 486 fprintf(stderr, "top: sysctl vm.uvmexp2 failed: %s\n", 487 strerror(errno)); 488 quit(23); 489 } 490 491 /* convert memory stats to Kbytes */ 492 memory_stats[0] = pagetok(uvmexp.active); 493 memory_stats[1] = pagetok(uvmexp.inactive); 494 memory_stats[2] = pagetok(uvmexp.wired); 495 memory_stats[3] = pagetok(uvmexp.execpages); 496 memory_stats[4] = pagetok(uvmexp.filepages); 497 memory_stats[5] = pagetok(uvmexp.free); 498 499 swap_stats[0] = swap_stats[1] = swap_stats[2] = 0; 500 501 do { 502 nswap = swapctl(SWAP_NSWAP, 0, 0); 503 if (nswap < 1) 504 break; 505 if (nswap > maxswap) { 506 if (swapp) 507 free(swapp); 508 swapp = sep = malloc(nswap * sizeof(*sep)); 509 if (sep == NULL) 510 break; 511 maxswap = nswap; 512 } else 513 sep = swapp; 514 rnswap = swapctl(SWAP_STATS, (void *)sep, nswap); 515 if (nswap != rnswap) 516 break; 517 518 totalsize = totalinuse = ncounted = 0; 519 for (; rnswap-- > 0; sep++) { 520 ncounted++; 521 size = sep->se_nblks; 522 inuse = sep->se_inuse; 523 totalsize += size; 524 totalinuse += inuse; 525 } 526 swap_stats[0] = dbtob(totalsize) / 1024; 527 swap_stats[1] = dbtob(totalinuse) / 1024; 528 swap_stats[2] = dbtob(totalsize) / 1024 - swap_stats[1]; 529 } while (0); 530 531 memory_stats[6] = -1; 532 swap_stats[3] = -1; 533 534 /* set arrays and strings */ 535 si->cpustates = cpu_states; 536 si->memory = memory_stats; 537 si->swap = swap_stats; 538 si->last_pid = -1; 539 540 } 541 542 static struct kinfo_proc2 * 543 proc_from_thread(struct kinfo_lwp *pl) 544 { 545 struct kinfo_proc2 *pp = thread_pbase; 546 int i; 547 548 for (i = 0; i < thread_nproc; i++, pp++) 549 if ((pid_t)pp->p_pid == (pid_t)pl->l_pid) 550 return pp; 551 return NULL; 552 } 553 554 static int 555 uid_from_thread(struct kinfo_lwp *pl) 556 { 557 struct kinfo_proc2 *pp; 558 559 if ((pp = proc_from_thread(pl)) == NULL) 560 return -1; 561 return pp->p_ruid; 562 } 563 564 caddr_t 565 get_process_info(struct system_info *si, struct process_select *sel, int c) 566 { 567 userprint = sel->usernames ? username : itoa7; 568 569 if ((threadmode = sel->threads) != 0) 570 return get_lwp_info(si, sel, proc_compares[c]); 571 else 572 return get_proc_info(si, sel, proc_compares[c]); 573 } 574 575 static caddr_t 576 get_proc_info(struct system_info *si, struct process_select *sel, 577 int (*compare)(struct proc **, struct proc **)) 578 { 579 int i; 580 int total_procs; 581 int active_procs; 582 struct kinfo_proc2 **prefp, **n; 583 struct kinfo_proc2 *pp; 584 int op, arg; 585 586 /* these are copied out of sel for speed */ 587 int show_idle; 588 int show_system; 589 int show_uid; 590 591 static struct handle handle; 592 593 procgen++; 594 595 if (sel->pid == (pid_t)-1) { 596 op = KERN_PROC_ALL; 597 arg = 0; 598 } else { 599 op = KERN_PROC_PID; 600 arg = sel->pid; 601 } 602 603 pbase = kvm_getproc2(kd, op, arg, sizeof(struct kinfo_proc2), &nproc); 604 if (pbase == NULL) { 605 if (sel->pid != (pid_t)-1) { 606 nproc = 0; 607 } else { 608 (void) fprintf(stderr, "top: Out of memory.\n"); 609 quit(23); 610 } 611 } 612 if (nproc > onproc) { 613 n = (struct kinfo_proc2 **) realloc(pref, 614 sizeof(struct kinfo_proc2 *) * nproc); 615 if (n == NULL) { 616 (void) fprintf(stderr, "top: Out of memory.\n"); 617 quit(23); 618 } 619 pref = n; 620 onproc = nproc; 621 } 622 /* get a pointer to the states summary array */ 623 si->procstates = process_states; 624 625 /* set up flags which define what we are going to select */ 626 show_idle = sel->idle; 627 show_system = sel->system; 628 show_uid = sel->uid != -1; 629 630 /* count up process states and get pointers to interesting procs */ 631 total_procs = 0; 632 active_procs = 0; 633 memset((char *)process_states, 0, sizeof(process_states)); 634 prefp = pref; 635 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 636 637 /* 638 * Place pointers to each valid proc structure in pref[]. 639 * Process slots that are actually in use have a non-zero 640 * status field. Processes with P_SYSTEM set are system 641 * processes---these get ignored unless show_sysprocs is set. 642 */ 643 if (pp->p_stat != 0 && (show_system || ((pp->p_flag & P_SYSTEM) == 0))) { 644 total_procs++; 645 process_states[(unsigned char) pp->p_stat]++; 646 if (pp->p_stat != LSZOMB && 647 (show_idle || (pp->p_pctcpu != 0) || 648 (pp->p_stat == LSRUN || pp->p_stat == LSONPROC)) && 649 (!show_uid || pp->p_ruid == (uid_t)sel->uid)) { 650 *prefp++ = pp; 651 active_procs++; 652 } 653 } 654 } 655 656 /* if requested, sort the "interesting" processes */ 657 if (compare != NULL) { 658 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc2 *), 659 (int (*)(const void *, const void *))compare); 660 } 661 662 /* remember active and total counts */ 663 si->p_total = total_procs; 664 si->p_active = pref_len = active_procs; 665 666 /* pass back a handle */ 667 handle.next_proc = pref; 668 handle.remaining = active_procs; 669 handle.sel = sel; 670 return((caddr_t)&handle); 671 } 672 673 static caddr_t 674 get_lwp_info(struct system_info *si, struct process_select *sel, 675 int (*compare)(struct proc **, struct proc **)) 676 { 677 int i; 678 int total_lwps; 679 int active_lwps; 680 struct kinfo_lwp **lrefp, **n; 681 struct kinfo_lwp *lp; 682 struct kinfo_proc2 *pp; 683 684 /* these are copied out of sel for speed */ 685 int show_idle; 686 int show_system; 687 int show_uid; 688 689 static struct handle handle; 690 691 pp = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), 692 &thread_nproc); 693 if (pp == NULL) { 694 (void) fprintf(stderr, "top: Out of memory.\n"); 695 quit(23); 696 } 697 if (thread_pbase == NULL || thread_nproc != thread_onproc) { 698 free(thread_pbase); 699 thread_onproc = thread_nproc; 700 thread_pbase = calloc(sizeof(struct kinfo_proc2), thread_nproc); 701 if (thread_pbase == NULL) { 702 (void) fprintf(stderr, "top: Out of memory.\n"); 703 quit(23); 704 } 705 } 706 memcpy(thread_pbase, pp, sizeof(struct kinfo_proc2) * thread_nproc); 707 708 lbase = kvm_getlwps(kd, -1, 0, sizeof(struct kinfo_lwp), &nlwp); 709 if (lbase == NULL) { 710 #ifdef notyet 711 if (sel->pid != (pid_t)-1) { 712 nproc = 0; 713 nlwp = 0; 714 } 715 else 716 #endif 717 { 718 (void) fprintf(stderr, "top: Out of memory.\n"); 719 quit(23); 720 } 721 } 722 if (nlwp > onlwp) { 723 n = (struct kinfo_lwp **) realloc(lref, 724 sizeof(struct kinfo_lwp *) * nlwp); 725 if (n == NULL) { 726 (void) fprintf(stderr, "top: Out of memory.\n"); 727 quit(23); 728 } 729 lref = n; 730 onlwp = nlwp; 731 } 732 /* get a pointer to the states summary array */ 733 si->procstates = process_states; 734 735 /* set up flags which define what we are going to select */ 736 show_idle = sel->idle; 737 show_system = sel->system; 738 show_uid = sel->uid != -1; 739 740 /* count up thread states and get pointers to interesting threads */ 741 total_lwps = 0; 742 active_lwps = 0; 743 memset((char *)process_states, 0, sizeof(process_states)); 744 lrefp = lref; 745 for (lp = lbase, i = 0; i < nlwp; lp++, i++) { 746 if (sel->pid != (pid_t)-1 && sel->pid != (pid_t)lp->l_pid) 747 continue; 748 749 /* 750 * Place pointers to each valid lwp structure in lref[]. 751 * thread slots that are actually in use have a non-zero 752 * status field. threads with L_SYSTEM set are system 753 * threads---these get ignored unless show_sysprocs is set. 754 */ 755 if (lp->l_stat != 0 && (show_system || ((lp->l_flag & LW_SYSTEM) == 0))) { 756 total_lwps++; 757 process_states[(unsigned char) lp->l_stat]++; 758 if (lp->l_stat != LSZOMB && 759 (show_idle || (lp->l_pctcpu != 0) || 760 (lp->l_stat == LSRUN || lp->l_stat == LSONPROC)) && 761 (!show_uid || uid_from_thread(lp) == sel->uid)) { 762 *lrefp++ = lp; 763 active_lwps++; 764 } 765 } 766 } 767 768 /* if requested, sort the "interesting" threads */ 769 if (compare != NULL) { 770 qsort((char *)lref, active_lwps, sizeof(struct kinfo_lwp *), 771 (int (*)(const void *, const void *))compare); 772 } 773 774 /* remember active and total counts */ 775 si->p_total = total_lwps; 776 si->p_active = lref_len = active_lwps; 777 778 /* pass back a handle */ 779 handle.next_proc = (struct kinfo_proc2 **)lref; 780 handle.remaining = active_lwps; 781 handle.sel = sel; 782 783 return((caddr_t)&handle); 784 } 785 786 char * 787 format_next_process(caddr_t handle, char *(*get_userid)(int)) 788 { 789 790 if (threadmode) 791 return format_next_lwp(handle, get_userid); 792 else 793 return format_next_proc(handle, get_userid); 794 } 795 796 797 char * 798 format_next_proc(caddr_t handle, char *(*get_userid)(int)) 799 { 800 struct kinfo_proc2 *pp; 801 long cputime; 802 double pct, wcpu, cpu; 803 struct handle *hp; 804 const char *statep; 805 #ifdef KI_NOCPU 806 char state[10]; 807 #endif 808 char wmesg[KI_WMESGLEN + 1]; 809 static char fmt[MAX_COLS]; /* static area where result is built */ 810 811 /* find and remember the next proc structure */ 812 hp = (struct handle *)handle; 813 pp = *(hp->next_proc++); 814 hp->remaining--; 815 816 /* get the process's user struct and set cputime */ 817 818 #if 0 819 /* This does not produce the correct results */ 820 cputime = pp->p_uticks + pp->p_sticks + pp->p_iticks; 821 #else 822 cputime = pp->p_rtime_sec; /* This does not count interrupts */ 823 #endif 824 825 /* calculate the base for CPU percentages */ 826 pct = pctdouble(pp->p_pctcpu); 827 828 if (pp->p_stat == LSSLEEP) { 829 strlcpy(wmesg, pp->p_wmesg, sizeof(wmesg)); 830 statep = wmesg; 831 } else 832 statep = state_abbrev[(unsigned)pp->p_stat]; 833 834 #ifdef KI_NOCPU 835 /* Post-1.5 change: add CPU number if appropriate */ 836 if (pp->p_cpuid != KI_NOCPU && ncpu > 1) { 837 switch (pp->p_stat) { 838 case LSONPROC: 839 case LSRUN: 840 case LSSLEEP: 841 case LSIDL: 842 (void)snprintf(state, sizeof(state), "%.6s/%u", 843 statep, (unsigned int)pp->p_cpuid); 844 statep = state; 845 break; 846 } 847 } 848 #endif 849 wcpu = 100.0 * weighted_cpu(p_, pct, pp); 850 cpu = 100.0 * pct; 851 852 /* format this entry */ 853 sprintf(fmt, 854 Proc_format, 855 pp->p_pid, 856 (*userprint)(pp->p_ruid), 857 pp->p_priority, 858 pp->p_nice - NZERO, 859 format_k(pagetok(PROCSIZE(pp))), 860 format_k(pagetok(pp->p_vm_rssize)), 861 statep, 862 format_time(cputime), 863 (wcpu >= 100.0) ? 0 : 2, wcpu, 864 (cpu >= 100.0) ? 0 : 2, cpu, 865 get_command(hp->sel, pp)); 866 867 /* return the result */ 868 return(fmt); 869 } 870 871 static char * 872 format_next_lwp(caddr_t handle, char *(*get_userid)(int)) 873 { 874 struct kinfo_proc2 *pp; 875 struct kinfo_lwp *pl; 876 long cputime; 877 double pct; 878 struct handle *hp; 879 const char *statep; 880 #ifdef KI_NOCPU 881 char state[10]; 882 #endif 883 char wmesg[KI_WMESGLEN + 1]; 884 static char fmt[MAX_COLS]; /* static area where result is built */ 885 int uid; 886 887 /* find and remember the next proc structure */ 888 hp = (struct handle *)handle; 889 pl = (struct kinfo_lwp *)*(hp->next_proc++); 890 hp->remaining--; 891 pp = proc_from_thread(pl); 892 893 /* get the process's user struct and set cputime */ 894 uid = pp ? pp->p_ruid : 0; 895 896 cputime = pl->l_rtime_sec; 897 898 /* calculate the base for CPU percentages */ 899 pct = pctdouble(pl->l_pctcpu); 900 901 if (pl->l_stat == LSSLEEP) { 902 strlcpy(wmesg, pl->l_wmesg, sizeof(wmesg)); 903 statep = wmesg; 904 } else 905 statep = state_abbrev[(unsigned)pl->l_stat]; 906 907 #ifdef KI_NOCPU 908 /* Post-1.5 change: add CPU number if appropriate */ 909 if (pl->l_cpuid != KI_NOCPU && ncpu > 1) { 910 switch (pl->l_stat) { 911 case LSONPROC: 912 case LSRUN: 913 case LSSLEEP: 914 case LSIDL: 915 (void)snprintf(state, sizeof(state), "%.6s/%u", 916 statep, (unsigned int)pl->l_cpuid); 917 statep = state; 918 break; 919 } 920 } 921 #endif 922 923 if (pl->l_name[0] == '\0') { 924 pl->l_name[0] = '-'; 925 pl->l_name[1] = '\0'; 926 } 927 928 /* format this entry */ 929 sprintf(fmt, 930 Thread_format, 931 pl->l_pid, 932 pl->l_lid, 933 (*userprint)(uid), 934 pl->l_priority, 935 statep, 936 format_time(cputime), 937 100.0 * weighted_cpu(l_, pct, pl), 938 100.0 * pct, 939 printable(pl->l_name), 940 get_command(hp->sel, pp)); 941 942 /* return the result */ 943 return(fmt); 944 } 945 946 /* comparison routines for qsort */ 947 948 /* 949 * There are currently four possible comparison routines. main selects 950 * one of these by indexing in to the array proc_compares. 951 * 952 * Possible keys are defined as macros below. Currently these keys are 953 * defined: percent CPU, CPU ticks, process state, resident set size, 954 * total virtual memory usage. The process states are ordered as follows 955 * (from least to most important): WAIT, zombie, sleep, stop, start, run. 956 * The array declaration below maps a process state index into a number 957 * that reflects this ordering. 958 */ 959 960 /* 961 * First, the possible comparison keys. These are defined in such a way 962 * that they can be merely listed in the source code to define the actual 963 * desired ordering. 964 */ 965 966 #define ORDERKEY_PCTCPU(pfx) \ 967 if (lresult = (pctcpu)(p2)->pfx ## pctcpu - (pctcpu)(p1)->pfx ## pctcpu,\ 968 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) 969 970 #define ORDERKEY_CPTICKS(pfx) \ 971 if (lresult = (pctcpu)(p2)->pfx ## rtime_sec \ 972 - (pctcpu)(p1)->pfx ## rtime_sec,\ 973 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) 974 975 #define ORDERKEY_STATE(pfx) \ 976 if ((result = sorted_state[(int)(p2)->pfx ## stat] - \ 977 sorted_state[(int)(p1)->pfx ## stat] ) == 0) 978 979 #define ORDERKEY_PRIO(pfx) \ 980 if ((result = (p2)->pfx ## priority - (p1)->pfx ## priority) == 0) 981 982 #define ORDERKEY_RSSIZE \ 983 if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0) 984 985 #define ORDERKEY_MEM \ 986 if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0) 987 #define ORDERKEY_SIZE(v1, v2) \ 988 if ((result = (v2 - v1)) == 0) 989 990 /* 991 * Now the array that maps process state to a weight. 992 * The order of the elements should match those in state_abbrev[] 993 */ 994 995 static int sorted_state[] = { 996 0, /* (not used) ? */ 997 1, /* "start" SIDL */ 998 4, /* "run" SRUN */ 999 3, /* "sleep" SSLEEP */ 1000 3, /* "stop" SSTOP */ 1001 2, /* "dead" SDEAD */ 1002 1, /* "zomb" SZOMB */ 1003 5, /* "onproc" SONPROC */ 1004 }; 1005 1006 /* compare_cpu - the comparison function for sorting by CPU percentage */ 1007 1008 static int 1009 compare_cpu(pp1, pp2) 1010 struct proc **pp1, **pp2; 1011 { 1012 int result; 1013 pctcpu lresult; 1014 1015 if (threadmode) { 1016 struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; 1017 struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; 1018 1019 ORDERKEY_PCTCPU(l_) 1020 ORDERKEY_CPTICKS(l_) 1021 ORDERKEY_STATE(l_) 1022 ORDERKEY_PRIO(l_) 1023 return result; 1024 } else { 1025 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1026 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1027 1028 ORDERKEY_PCTCPU(p_) 1029 ORDERKEY_CPTICKS(p_) 1030 ORDERKEY_STATE(p_) 1031 ORDERKEY_PRIO(p_) 1032 ORDERKEY_RSSIZE 1033 ORDERKEY_MEM 1034 return result; 1035 } 1036 1037 return (result); 1038 } 1039 1040 /* compare_prio - the comparison function for sorting by process priority */ 1041 1042 static int 1043 compare_prio(pp1, pp2) 1044 struct proc **pp1, **pp2; 1045 { 1046 int result; 1047 pctcpu lresult; 1048 1049 if (threadmode) { 1050 struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; 1051 struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; 1052 1053 ORDERKEY_PRIO(l_) 1054 ORDERKEY_PCTCPU(l_) 1055 ORDERKEY_CPTICKS(l_) 1056 ORDERKEY_STATE(l_) 1057 return result; 1058 } else { 1059 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1060 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1061 1062 ORDERKEY_PRIO(p_) 1063 ORDERKEY_PCTCPU(p_) 1064 ORDERKEY_CPTICKS(p_) 1065 ORDERKEY_STATE(p_) 1066 ORDERKEY_RSSIZE 1067 ORDERKEY_MEM 1068 return result; 1069 } 1070 1071 return (result); 1072 } 1073 1074 /* compare_res - the comparison function for sorting by resident set size */ 1075 1076 static int 1077 compare_res(pp1, pp2) 1078 struct proc **pp1, **pp2; 1079 { 1080 int result; 1081 pctcpu lresult; 1082 1083 if (threadmode) { 1084 struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; 1085 struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; 1086 1087 ORDERKEY_PCTCPU(l_) 1088 ORDERKEY_CPTICKS(l_) 1089 ORDERKEY_STATE(l_) 1090 ORDERKEY_PRIO(l_) 1091 return result; 1092 } else { 1093 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1094 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1095 1096 ORDERKEY_RSSIZE 1097 ORDERKEY_MEM 1098 ORDERKEY_PCTCPU(p_) 1099 ORDERKEY_CPTICKS(p_) 1100 ORDERKEY_STATE(p_) 1101 ORDERKEY_PRIO(p_) 1102 return result; 1103 } 1104 1105 return (result); 1106 } 1107 1108 static int 1109 compare_pid(pp1, pp2) 1110 struct proc **pp1, **pp2; 1111 { 1112 if (threadmode) { 1113 struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1; 1114 struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2; 1115 struct kinfo_proc2 *p1 = proc_from_thread(l1); 1116 struct kinfo_proc2 *p2 = proc_from_thread(l2); 1117 return p2->p_pid - p1->p_pid; 1118 } else { 1119 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1120 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1121 return p2->p_pid - p1->p_pid; 1122 } 1123 } 1124 1125 static int 1126 compare_command(pp1, pp2) 1127 struct proc **pp1, **pp2; 1128 { 1129 if (threadmode) { 1130 struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1; 1131 struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2; 1132 struct kinfo_proc2 *p1 = proc_from_thread(l1); 1133 struct kinfo_proc2 *p2 = proc_from_thread(l2); 1134 return strcmp(p2->p_comm, p1->p_comm); 1135 } else { 1136 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1137 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1138 return strcmp(p2->p_comm, p1->p_comm); 1139 } 1140 } 1141 1142 static int 1143 compare_username(pp1, pp2) 1144 struct proc **pp1, **pp2; 1145 { 1146 if (threadmode) { 1147 struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1; 1148 struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2; 1149 struct kinfo_proc2 *p1 = proc_from_thread(l1); 1150 struct kinfo_proc2 *p2 = proc_from_thread(l2); 1151 return strcmp(p2->p_login, p1->p_login); 1152 } else { 1153 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1154 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1155 return strcmp(p2->p_login, p1->p_login); 1156 } 1157 } 1158 /* compare_size - the comparison function for sorting by total memory usage */ 1159 1160 static int 1161 compare_size(pp1, pp2) 1162 struct proc **pp1, **pp2; 1163 { 1164 int result; 1165 pctcpu lresult; 1166 1167 if (threadmode) { 1168 struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; 1169 struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; 1170 1171 ORDERKEY_PCTCPU(l_) 1172 ORDERKEY_CPTICKS(l_) 1173 ORDERKEY_STATE(l_) 1174 ORDERKEY_PRIO(l_) 1175 return result; 1176 } else { 1177 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1178 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1179 1180 ORDERKEY_MEM 1181 ORDERKEY_RSSIZE 1182 ORDERKEY_PCTCPU(p_) 1183 ORDERKEY_CPTICKS(p_) 1184 ORDERKEY_STATE(p_) 1185 ORDERKEY_PRIO(p_) 1186 return result; 1187 } 1188 1189 return (result); 1190 } 1191 1192 /* compare_state - the comparison function for sorting by process state */ 1193 1194 static int 1195 compare_state(pp1, pp2) 1196 struct proc **pp1, **pp2; 1197 { 1198 int result; 1199 pctcpu lresult; 1200 1201 if (threadmode) { 1202 struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; 1203 struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; 1204 1205 ORDERKEY_STATE(l_) 1206 ORDERKEY_PCTCPU(l_) 1207 ORDERKEY_CPTICKS(l_) 1208 ORDERKEY_PRIO(l_) 1209 return result; 1210 } else { 1211 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1212 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1213 1214 ORDERKEY_STATE(p_) 1215 ORDERKEY_PCTCPU(p_) 1216 ORDERKEY_CPTICKS(p_) 1217 ORDERKEY_PRIO(p_) 1218 ORDERKEY_RSSIZE 1219 ORDERKEY_MEM 1220 return result; 1221 } 1222 1223 return (result); 1224 } 1225 1226 /* compare_time - the comparison function for sorting by total CPU time */ 1227 1228 static int 1229 compare_time(pp1, pp2) 1230 struct proc **pp1, **pp2; 1231 { 1232 int result; 1233 pctcpu lresult; 1234 1235 if (threadmode) { 1236 struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; 1237 struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; 1238 1239 ORDERKEY_CPTICKS(l_) 1240 ORDERKEY_PCTCPU(l_) 1241 ORDERKEY_STATE(l_) 1242 ORDERKEY_PRIO(l_) 1243 return result; 1244 } else { 1245 struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; 1246 struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; 1247 1248 ORDERKEY_CPTICKS(p_) 1249 ORDERKEY_PCTCPU(p_) 1250 ORDERKEY_STATE(p_) 1251 ORDERKEY_PRIO(p_) 1252 ORDERKEY_MEM 1253 ORDERKEY_RSSIZE 1254 return result; 1255 } 1256 1257 return (result); 1258 } 1259 1260 1261 /* 1262 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 1263 * the process does not exist. 1264 * It is EXTREMLY IMPORTANT that this function work correctly. 1265 * If top runs setuid root (as in SVR4), then this function 1266 * is the only thing that stands in the way of a serious 1267 * security problem. It validates requests for the "kill" 1268 * and "renice" commands. 1269 */ 1270 1271 int 1272 proc_owner(pid) 1273 int pid; 1274 { 1275 int cnt; 1276 struct kinfo_proc2 **prefp; 1277 struct kinfo_proc2 *pp; 1278 1279 if (threadmode) 1280 return(-1); 1281 1282 prefp = pref; 1283 cnt = pref_len; 1284 while (--cnt >= 0) { 1285 pp = *prefp++; 1286 if (pp->p_pid == (pid_t)pid) 1287 return(pp->p_ruid); 1288 } 1289 return(-1); 1290 } 1291 1292 /* 1293 * percentages(cnt, out, new, old, diffs) - calculate percentage change 1294 * between array "old" and "new", putting the percentages i "out". 1295 * "cnt" is size of each array and "diffs" is used for scratch space. 1296 * The array "old" is updated on each call. 1297 * The routine assumes modulo arithmetic. This function is especially 1298 * useful on BSD mchines for calculating CPU state percentages. 1299 */ 1300 1301 static void 1302 percentages64(cnt, out, new, old, diffs) 1303 int cnt; 1304 int *out; 1305 u_int64_t *new; 1306 u_int64_t *old; 1307 u_int64_t *diffs; 1308 { 1309 int i; 1310 u_int64_t change; 1311 u_int64_t total_change; 1312 u_int64_t *dp; 1313 u_int64_t half_total; 1314 1315 /* initialization */ 1316 total_change = 0; 1317 dp = diffs; 1318 1319 /* calculate changes for each state and the overall change */ 1320 for (i = 0; i < cnt; i++) { 1321 /* 1322 * Don't worry about wrapping - even at hz=1GHz, a 1323 * u_int64_t will last at least 544 years. 1324 */ 1325 change = *new - *old; 1326 total_change += (*dp++ = change); 1327 *old++ = *new++; 1328 } 1329 1330 /* avoid divide by zero potential */ 1331 if (total_change == 0) 1332 total_change = 1; 1333 1334 /* calculate percentages based on overall change, rounding up */ 1335 half_total = total_change / 2; 1336 for (i = 0; i < cnt; i++) 1337 *out++ = (int)((*diffs++ * 1000 + half_total) / total_change); 1338 } 1339