xref: /netbsd-src/external/bsd/tcpdump/dist/print-802_11.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*
2  * Copyright (c) 2001
3  *	Fortress Technologies, Inc.  All rights reserved.
4  *      Charlie Lenahan (clenahan@fortresstech.com)
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 
23 #include <sys/cdefs.h>
24 #ifndef lint
25 __RCSID("$NetBSD: print-802_11.c,v 1.8 2017/09/08 14:01:12 christos Exp $");
26 #endif
27 
28 /* \summary: IEEE 802.11 printer */
29 
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33 
34 #include <netdissect-stdinc.h>
35 
36 #include <string.h>
37 
38 #include "netdissect.h"
39 #include "addrtoname.h"
40 
41 #include "extract.h"
42 
43 #include "cpack.h"
44 
45 
46 /* Lengths of 802.11 header components. */
47 #define	IEEE802_11_FC_LEN		2
48 #define	IEEE802_11_DUR_LEN		2
49 #define	IEEE802_11_DA_LEN		6
50 #define	IEEE802_11_SA_LEN		6
51 #define	IEEE802_11_BSSID_LEN		6
52 #define	IEEE802_11_RA_LEN		6
53 #define	IEEE802_11_TA_LEN		6
54 #define	IEEE802_11_ADDR1_LEN		6
55 #define	IEEE802_11_SEQ_LEN		2
56 #define	IEEE802_11_CTL_LEN		2
57 #define	IEEE802_11_CARRIED_FC_LEN	2
58 #define	IEEE802_11_HT_CONTROL_LEN	4
59 #define	IEEE802_11_IV_LEN		3
60 #define	IEEE802_11_KID_LEN		1
61 
62 /* Frame check sequence length. */
63 #define	IEEE802_11_FCS_LEN		4
64 
65 /* Lengths of beacon components. */
66 #define	IEEE802_11_TSTAMP_LEN		8
67 #define	IEEE802_11_BCNINT_LEN		2
68 #define	IEEE802_11_CAPINFO_LEN		2
69 #define	IEEE802_11_LISTENINT_LEN	2
70 
71 #define	IEEE802_11_AID_LEN		2
72 #define	IEEE802_11_STATUS_LEN		2
73 #define	IEEE802_11_REASON_LEN		2
74 
75 /* Length of previous AP in reassocation frame */
76 #define	IEEE802_11_AP_LEN		6
77 
78 #define	T_MGMT 0x0  /* management */
79 #define	T_CTRL 0x1  /* control */
80 #define	T_DATA 0x2 /* data */
81 #define	T_RESV 0x3  /* reserved */
82 
83 #define	ST_ASSOC_REQUEST   	0x0
84 #define	ST_ASSOC_RESPONSE 	0x1
85 #define	ST_REASSOC_REQUEST   	0x2
86 #define	ST_REASSOC_RESPONSE  	0x3
87 #define	ST_PROBE_REQUEST   	0x4
88 #define	ST_PROBE_RESPONSE   	0x5
89 /* RESERVED 			0x6  */
90 /* RESERVED 			0x7  */
91 #define	ST_BEACON   		0x8
92 #define	ST_ATIM			0x9
93 #define	ST_DISASSOC		0xA
94 #define	ST_AUTH			0xB
95 #define	ST_DEAUTH		0xC
96 #define	ST_ACTION		0xD
97 /* RESERVED 			0xE  */
98 /* RESERVED 			0xF  */
99 
100 static const struct tok st_str[] = {
101 	{ ST_ASSOC_REQUEST,    "Assoc Request"    },
102 	{ ST_ASSOC_RESPONSE,   "Assoc Response"   },
103 	{ ST_REASSOC_REQUEST,  "ReAssoc Request"  },
104 	{ ST_REASSOC_RESPONSE, "ReAssoc Response" },
105 	{ ST_PROBE_REQUEST,    "Probe Request"    },
106 	{ ST_PROBE_RESPONSE,   "Probe Response"   },
107 	{ ST_BEACON,           "Beacon"           },
108 	{ ST_ATIM,             "ATIM"             },
109 	{ ST_DISASSOC,         "Disassociation"   },
110 	{ ST_AUTH,             "Authentication"   },
111 	{ ST_DEAUTH,           "DeAuthentication" },
112 	{ ST_ACTION,           "Action"           },
113 	{ 0, NULL }
114 };
115 
116 #define CTRL_CONTROL_WRAPPER	0x7
117 #define	CTRL_BAR	0x8
118 #define	CTRL_BA		0x9
119 #define	CTRL_PS_POLL	0xA
120 #define	CTRL_RTS	0xB
121 #define	CTRL_CTS	0xC
122 #define	CTRL_ACK	0xD
123 #define	CTRL_CF_END	0xE
124 #define	CTRL_END_ACK	0xF
125 
126 static const struct tok ctrl_str[] = {
127 	{ CTRL_CONTROL_WRAPPER, "Control Wrapper" },
128 	{ CTRL_BAR,             "BAR"             },
129 	{ CTRL_BA,              "BA"              },
130 	{ CTRL_PS_POLL,         "Power Save-Poll" },
131 	{ CTRL_RTS,             "Request-To-Send" },
132 	{ CTRL_CTS,             "Clear-To-Send"   },
133 	{ CTRL_ACK,             "Acknowledgment"  },
134 	{ CTRL_CF_END,          "CF-End"          },
135 	{ CTRL_END_ACK,         "CF-End+CF-Ack"   },
136 	{ 0, NULL }
137 };
138 
139 #define	DATA_DATA			0x0
140 #define	DATA_DATA_CF_ACK		0x1
141 #define	DATA_DATA_CF_POLL		0x2
142 #define	DATA_DATA_CF_ACK_POLL		0x3
143 #define	DATA_NODATA			0x4
144 #define	DATA_NODATA_CF_ACK		0x5
145 #define	DATA_NODATA_CF_POLL		0x6
146 #define	DATA_NODATA_CF_ACK_POLL		0x7
147 
148 #define DATA_QOS_DATA			0x8
149 #define DATA_QOS_DATA_CF_ACK		0x9
150 #define DATA_QOS_DATA_CF_POLL		0xA
151 #define DATA_QOS_DATA_CF_ACK_POLL	0xB
152 #define DATA_QOS_NODATA			0xC
153 #define DATA_QOS_CF_POLL_NODATA		0xE
154 #define DATA_QOS_CF_ACK_POLL_NODATA	0xF
155 
156 /*
157  * The subtype field of a data frame is, in effect, composed of 4 flag
158  * bits - CF-Ack, CF-Poll, Null (means the frame doesn't actually have
159  * any data), and QoS.
160  */
161 #define DATA_FRAME_IS_CF_ACK(x)		((x) & 0x01)
162 #define DATA_FRAME_IS_CF_POLL(x)	((x) & 0x02)
163 #define DATA_FRAME_IS_NULL(x)		((x) & 0x04)
164 #define DATA_FRAME_IS_QOS(x)		((x) & 0x08)
165 
166 /*
167  * Bits in the frame control field.
168  */
169 #define	FC_VERSION(fc)		((fc) & 0x3)
170 #define	FC_TYPE(fc)		(((fc) >> 2) & 0x3)
171 #define	FC_SUBTYPE(fc)		(((fc) >> 4) & 0xF)
172 #define	FC_TO_DS(fc)		((fc) & 0x0100)
173 #define	FC_FROM_DS(fc)		((fc) & 0x0200)
174 #define	FC_MORE_FLAG(fc)	((fc) & 0x0400)
175 #define	FC_RETRY(fc)		((fc) & 0x0800)
176 #define	FC_POWER_MGMT(fc)	((fc) & 0x1000)
177 #define	FC_MORE_DATA(fc)	((fc) & 0x2000)
178 #define	FC_PROTECTED(fc)	((fc) & 0x4000)
179 #define	FC_ORDER(fc)		((fc) & 0x8000)
180 
181 struct mgmt_header_t {
182 	uint16_t	fc;
183 	uint16_t 	duration;
184 	uint8_t		da[IEEE802_11_DA_LEN];
185 	uint8_t		sa[IEEE802_11_SA_LEN];
186 	uint8_t		bssid[IEEE802_11_BSSID_LEN];
187 	uint16_t	seq_ctrl;
188 };
189 
190 #define	MGMT_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
191 			 IEEE802_11_DA_LEN+IEEE802_11_SA_LEN+\
192 			 IEEE802_11_BSSID_LEN+IEEE802_11_SEQ_LEN)
193 
194 #define	CAPABILITY_ESS(cap)	((cap) & 0x0001)
195 #define	CAPABILITY_IBSS(cap)	((cap) & 0x0002)
196 #define	CAPABILITY_CFP(cap)	((cap) & 0x0004)
197 #define	CAPABILITY_CFP_REQ(cap)	((cap) & 0x0008)
198 #define	CAPABILITY_PRIVACY(cap)	((cap) & 0x0010)
199 
200 struct ssid_t {
201 	uint8_t		element_id;
202 	uint8_t		length;
203 	u_char		ssid[33];  /* 32 + 1 for null */
204 };
205 
206 struct rates_t {
207 	uint8_t		element_id;
208 	uint8_t		length;
209 	uint8_t		rate[16];
210 };
211 
212 struct challenge_t {
213 	uint8_t		element_id;
214 	uint8_t		length;
215 	uint8_t		text[254]; /* 1-253 + 1 for null */
216 };
217 
218 struct fh_t {
219 	uint8_t		element_id;
220 	uint8_t		length;
221 	uint16_t	dwell_time;
222 	uint8_t		hop_set;
223 	uint8_t 	hop_pattern;
224 	uint8_t		hop_index;
225 };
226 
227 struct ds_t {
228 	uint8_t		element_id;
229 	uint8_t		length;
230 	uint8_t		channel;
231 };
232 
233 struct cf_t {
234 	uint8_t		element_id;
235 	uint8_t		length;
236 	uint8_t		count;
237 	uint8_t		period;
238 	uint16_t	max_duration;
239 	uint16_t	dur_remaing;
240 };
241 
242 struct tim_t {
243 	uint8_t		element_id;
244 	uint8_t		length;
245 	uint8_t		count;
246 	uint8_t		period;
247 	uint8_t		bitmap_control;
248 	uint8_t		bitmap[251];
249 };
250 
251 #define	E_SSID 		0
252 #define	E_RATES 	1
253 #define	E_FH	 	2
254 #define	E_DS 		3
255 #define	E_CF	 	4
256 #define	E_TIM	 	5
257 #define	E_IBSS 		6
258 /* reserved 		7 */
259 /* reserved 		8 */
260 /* reserved 		9 */
261 /* reserved 		10 */
262 /* reserved 		11 */
263 /* reserved 		12 */
264 /* reserved 		13 */
265 /* reserved 		14 */
266 /* reserved 		15 */
267 /* reserved 		16 */
268 
269 #define	E_CHALLENGE 	16
270 /* reserved 		17 */
271 /* reserved 		18 */
272 /* reserved 		19 */
273 /* reserved 		16 */
274 /* reserved 		16 */
275 
276 
277 struct mgmt_body_t {
278 	uint8_t   	timestamp[IEEE802_11_TSTAMP_LEN];
279 	uint16_t  	beacon_interval;
280 	uint16_t 	listen_interval;
281 	uint16_t 	status_code;
282 	uint16_t 	aid;
283 	u_char		ap[IEEE802_11_AP_LEN];
284 	uint16_t	reason_code;
285 	uint16_t	auth_alg;
286 	uint16_t	auth_trans_seq_num;
287 	int		challenge_present;
288 	struct challenge_t  challenge;
289 	uint16_t	capability_info;
290 	int		ssid_present;
291 	struct ssid_t	ssid;
292 	int		rates_present;
293 	struct rates_t 	rates;
294 	int		ds_present;
295 	struct ds_t	ds;
296 	int		cf_present;
297 	struct cf_t	cf;
298 	int		fh_present;
299 	struct fh_t	fh;
300 	int		tim_present;
301 	struct tim_t	tim;
302 };
303 
304 struct ctrl_control_wrapper_hdr_t {
305 	uint16_t	fc;
306 	uint16_t	duration;
307 	uint8_t		addr1[IEEE802_11_ADDR1_LEN];
308 	uint16_t	carried_fc[IEEE802_11_CARRIED_FC_LEN];
309 	uint16_t	ht_control[IEEE802_11_HT_CONTROL_LEN];
310 };
311 
312 #define	CTRL_CONTROL_WRAPPER_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
313 					 IEEE802_11_ADDR1_LEN+\
314 					 IEEE802_11_CARRIED_FC_LEN+\
315 					 IEEE802_11_HT_CONTROL_LEN)
316 
317 struct ctrl_rts_hdr_t {
318 	uint16_t	fc;
319 	uint16_t	duration;
320 	uint8_t		ra[IEEE802_11_RA_LEN];
321 	uint8_t		ta[IEEE802_11_TA_LEN];
322 };
323 
324 #define	CTRL_RTS_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
325 			 IEEE802_11_RA_LEN+IEEE802_11_TA_LEN)
326 
327 struct ctrl_cts_hdr_t {
328 	uint16_t	fc;
329 	uint16_t	duration;
330 	uint8_t		ra[IEEE802_11_RA_LEN];
331 };
332 
333 #define	CTRL_CTS_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
334 
335 struct ctrl_ack_hdr_t {
336 	uint16_t	fc;
337 	uint16_t	duration;
338 	uint8_t		ra[IEEE802_11_RA_LEN];
339 };
340 
341 #define	CTRL_ACK_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
342 
343 struct ctrl_ps_poll_hdr_t {
344 	uint16_t	fc;
345 	uint16_t	aid;
346 	uint8_t		bssid[IEEE802_11_BSSID_LEN];
347 	uint8_t		ta[IEEE802_11_TA_LEN];
348 };
349 
350 #define	CTRL_PS_POLL_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_AID_LEN+\
351 				 IEEE802_11_BSSID_LEN+IEEE802_11_TA_LEN)
352 
353 struct ctrl_end_hdr_t {
354 	uint16_t	fc;
355 	uint16_t	duration;
356 	uint8_t		ra[IEEE802_11_RA_LEN];
357 	uint8_t		bssid[IEEE802_11_BSSID_LEN];
358 };
359 
360 #define	CTRL_END_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
361 			 IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)
362 
363 struct ctrl_end_ack_hdr_t {
364 	uint16_t	fc;
365 	uint16_t	duration;
366 	uint8_t		ra[IEEE802_11_RA_LEN];
367 	uint8_t		bssid[IEEE802_11_BSSID_LEN];
368 };
369 
370 #define	CTRL_END_ACK_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
371 				 IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)
372 
373 struct ctrl_ba_hdr_t {
374 	uint16_t	fc;
375 	uint16_t	duration;
376 	uint8_t		ra[IEEE802_11_RA_LEN];
377 };
378 
379 #define	CTRL_BA_HDRLEN	(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
380 
381 struct ctrl_bar_hdr_t {
382 	uint16_t	fc;
383 	uint16_t	dur;
384 	uint8_t		ra[IEEE802_11_RA_LEN];
385 	uint8_t		ta[IEEE802_11_TA_LEN];
386 	uint16_t	ctl;
387 	uint16_t	seq;
388 };
389 
390 #define	CTRL_BAR_HDRLEN		(IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
391 				 IEEE802_11_RA_LEN+IEEE802_11_TA_LEN+\
392 				 IEEE802_11_CTL_LEN+IEEE802_11_SEQ_LEN)
393 
394 struct meshcntl_t {
395 	uint8_t		flags;
396 	uint8_t		ttl;
397 	uint8_t		seq[4];
398 	uint8_t		addr4[6];
399 	uint8_t		addr5[6];
400 	uint8_t		addr6[6];
401 };
402 
403 #define	IV_IV(iv)	((iv) & 0xFFFFFF)
404 #define	IV_PAD(iv)	(((iv) >> 24) & 0x3F)
405 #define	IV_KEYID(iv)	(((iv) >> 30) & 0x03)
406 
407 #define PRINT_SSID(p) \
408 	if (p.ssid_present) { \
409 		ND_PRINT((ndo, " (")); \
410 		fn_print(ndo, p.ssid.ssid, NULL); \
411 		ND_PRINT((ndo, ")")); \
412 	}
413 
414 #define PRINT_RATE(_sep, _r, _suf) \
415 	ND_PRINT((ndo, "%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf))
416 #define PRINT_RATES(p) \
417 	if (p.rates_present) { \
418 		int z; \
419 		const char *sep = " ["; \
420 		for (z = 0; z < p.rates.length ; z++) { \
421 			PRINT_RATE(sep, p.rates.rate[z], \
422 				(p.rates.rate[z] & 0x80 ? "*" : "")); \
423 			sep = " "; \
424 		} \
425 		if (p.rates.length != 0) \
426 			ND_PRINT((ndo, " Mbit]")); \
427 	}
428 
429 #define PRINT_DS_CHANNEL(p) \
430 	if (p.ds_present) \
431 		ND_PRINT((ndo, " CH: %u", p.ds.channel)); \
432 	ND_PRINT((ndo, "%s", \
433 	    CAPABILITY_PRIVACY(p.capability_info) ? ", PRIVACY" : ""));
434 
435 #define MAX_MCS_INDEX	76
436 
437 /*
438  * Indices are:
439  *
440  *	the MCS index (0-76);
441  *
442  *	0 for 20 MHz, 1 for 40 MHz;
443  *
444  *	0 for a long guard interval, 1 for a short guard interval.
445  */
446 static const float ieee80211_float_htrates[MAX_MCS_INDEX+1][2][2] = {
447 	/* MCS  0  */
448 	{	/* 20 Mhz */ {    6.5,		/* SGI */    7.2, },
449 		/* 40 Mhz */ {   13.5,		/* SGI */   15.0, },
450 	},
451 
452 	/* MCS  1  */
453 	{	/* 20 Mhz */ {   13.0,		/* SGI */   14.4, },
454 		/* 40 Mhz */ {   27.0,		/* SGI */   30.0, },
455 	},
456 
457 	/* MCS  2  */
458 	{	/* 20 Mhz */ {   19.5,		/* SGI */   21.7, },
459 		/* 40 Mhz */ {   40.5,		/* SGI */   45.0, },
460 	},
461 
462 	/* MCS  3  */
463 	{	/* 20 Mhz */ {   26.0,		/* SGI */   28.9, },
464 		/* 40 Mhz */ {   54.0,		/* SGI */   60.0, },
465 	},
466 
467 	/* MCS  4  */
468 	{	/* 20 Mhz */ {   39.0,		/* SGI */   43.3, },
469 		/* 40 Mhz */ {   81.0,		/* SGI */   90.0, },
470 	},
471 
472 	/* MCS  5  */
473 	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
474 		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
475 	},
476 
477 	/* MCS  6  */
478 	{	/* 20 Mhz */ {   58.5,		/* SGI */   65.0, },
479 		/* 40 Mhz */ {  121.5,		/* SGI */  135.0, },
480 	},
481 
482 	/* MCS  7  */
483 	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
484 		/* 40 Mhz */ {   135.0,		/* SGI */  150.0, },
485 	},
486 
487 	/* MCS  8  */
488 	{	/* 20 Mhz */ {   13.0,		/* SGI */   14.4, },
489 		/* 40 Mhz */ {   27.0,		/* SGI */   30.0, },
490 	},
491 
492 	/* MCS  9  */
493 	{	/* 20 Mhz */ {   26.0,		/* SGI */   28.9, },
494 		/* 40 Mhz */ {   54.0,		/* SGI */   60.0, },
495 	},
496 
497 	/* MCS 10  */
498 	{	/* 20 Mhz */ {   39.0,		/* SGI */   43.3, },
499 		/* 40 Mhz */ {   81.0,		/* SGI */   90.0, },
500 	},
501 
502 	/* MCS 11  */
503 	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
504 		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
505 	},
506 
507 	/* MCS 12  */
508 	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
509 		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
510 	},
511 
512 	/* MCS 13  */
513 	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
514 		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
515 	},
516 
517 	/* MCS 14  */
518 	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
519 		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
520 	},
521 
522 	/* MCS 15  */
523 	{	/* 20 Mhz */ {  130.0,		/* SGI */  144.4, },
524 		/* 40 Mhz */ {  270.0,		/* SGI */  300.0, },
525 	},
526 
527 	/* MCS 16  */
528 	{	/* 20 Mhz */ {   19.5,		/* SGI */   21.7, },
529 		/* 40 Mhz */ {   40.5,		/* SGI */   45.0, },
530 	},
531 
532 	/* MCS 17  */
533 	{	/* 20 Mhz */ {   39.0,		/* SGI */   43.3, },
534 		/* 40 Mhz */ {   81.0,		/* SGI */   90.0, },
535 	},
536 
537 	/* MCS 18  */
538 	{	/* 20 Mhz */ {   58.5,		/* SGI */   65.0, },
539 		/* 40 Mhz */ {  121.5,		/* SGI */  135.0, },
540 	},
541 
542 	/* MCS 19  */
543 	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
544 		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
545 	},
546 
547 	/* MCS 20  */
548 	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
549 		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
550 	},
551 
552 	/* MCS 21  */
553 	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
554 		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
555 	},
556 
557 	/* MCS 22  */
558 	{	/* 20 Mhz */ {  175.5,		/* SGI */  195.0, },
559 		/* 40 Mhz */ {  364.5,		/* SGI */  405.0, },
560 	},
561 
562 	/* MCS 23  */
563 	{	/* 20 Mhz */ {  195.0,		/* SGI */  216.7, },
564 		/* 40 Mhz */ {  405.0,		/* SGI */  450.0, },
565 	},
566 
567 	/* MCS 24  */
568 	{	/* 20 Mhz */ {   26.0,		/* SGI */   28.9, },
569 		/* 40 Mhz */ {   54.0,		/* SGI */   60.0, },
570 	},
571 
572 	/* MCS 25  */
573 	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
574 		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
575 	},
576 
577 	/* MCS 26  */
578 	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
579 		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
580 	},
581 
582 	/* MCS 27  */
583 	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
584 		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
585 	},
586 
587 	/* MCS 28  */
588 	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
589 		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
590 	},
591 
592 	/* MCS 29  */
593 	{	/* 20 Mhz */ {  208.0,		/* SGI */  231.1, },
594 		/* 40 Mhz */ {  432.0,		/* SGI */  480.0, },
595 	},
596 
597 	/* MCS 30  */
598 	{	/* 20 Mhz */ {  234.0,		/* SGI */  260.0, },
599 		/* 40 Mhz */ {  486.0,		/* SGI */  540.0, },
600 	},
601 
602 	/* MCS 31  */
603 	{	/* 20 Mhz */ {  260.0,		/* SGI */  288.9, },
604 		/* 40 Mhz */ {  540.0,		/* SGI */  600.0, },
605 	},
606 
607 	/* MCS 32  */
608 	{	/* 20 Mhz */ {    0.0,		/* SGI */    0.0, }, /* not valid */
609 		/* 40 Mhz */ {    6.0,		/* SGI */    6.7, },
610 	},
611 
612 	/* MCS 33  */
613 	{	/* 20 Mhz */ {   39.0,		/* SGI */   43.3, },
614 		/* 40 Mhz */ {   81.0,		/* SGI */   90.0, },
615 	},
616 
617 	/* MCS 34  */
618 	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
619 		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
620 	},
621 
622 	/* MCS 35  */
623 	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
624 		/* 40 Mhz */ {  135.0,		/* SGI */  150.0, },
625 	},
626 
627 	/* MCS 36  */
628 	{	/* 20 Mhz */ {   58.5,		/* SGI */   65.0, },
629 		/* 40 Mhz */ {  121.5,		/* SGI */  135.0, },
630 	},
631 
632 	/* MCS 37  */
633 	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
634 		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
635 	},
636 
637 	/* MCS 38  */
638 	{	/* 20 Mhz */ {   97.5,		/* SGI */  108.3, },
639 		/* 40 Mhz */ {  202.5,		/* SGI */  225.0, },
640 	},
641 
642 	/* MCS 39  */
643 	{	/* 20 Mhz */ {   52.0,		/* SGI */   57.8, },
644 		/* 40 Mhz */ {  108.0,		/* SGI */  120.0, },
645 	},
646 
647 	/* MCS 40  */
648 	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
649 		/* 40 Mhz */ {  135.0,		/* SGI */  150.0, },
650 	},
651 
652 	/* MCS 41  */
653 	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
654 		/* 40 Mhz */ {  135.0,		/* SGI */  150.0, },
655 	},
656 
657 	/* MCS 42  */
658 	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
659 		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
660 	},
661 
662 	/* MCS 43  */
663 	{	/* 20 Mhz */ {   91.0,		/* SGI */  101.1, },
664 		/* 40 Mhz */ {  189.0,		/* SGI */  210.0, },
665 	},
666 
667 	/* MCS 44  */
668 	{	/* 20 Mhz */ {   91.0,		/* SGI */  101.1, },
669 		/* 40 Mhz */ {  189.0,		/* SGI */  210.0, },
670 	},
671 
672 	/* MCS 45  */
673 	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
674 		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
675 	},
676 
677 	/* MCS 46  */
678 	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
679 		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
680 	},
681 
682 	/* MCS 47  */
683 	{	/* 20 Mhz */ {   97.5,		/* SGI */  108.3, },
684 		/* 40 Mhz */ {  202.5,		/* SGI */  225.0, },
685 	},
686 
687 	/* MCS 48  */
688 	{	/* 20 Mhz */ {   97.5,		/* SGI */  108.3, },
689 		/* 40 Mhz */ {  202.5,		/* SGI */  225.0, },
690 	},
691 
692 	/* MCS 49  */
693 	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
694 		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
695 	},
696 
697 	/* MCS 50  */
698 	{	/* 20 Mhz */ {  136.5,		/* SGI */  151.7, },
699 		/* 40 Mhz */ {  283.5,		/* SGI */  315.0, },
700 	},
701 
702 	/* MCS 51  */
703 	{	/* 20 Mhz */ {  136.5,		/* SGI */  151.7, },
704 		/* 40 Mhz */ {  283.5,		/* SGI */  315.0, },
705 	},
706 
707 	/* MCS 52  */
708 	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
709 		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
710 	},
711 
712 	/* MCS 53  */
713 	{	/* 20 Mhz */ {   65.0,		/* SGI */   72.2, },
714 		/* 40 Mhz */ {  135.0,		/* SGI */  150.0, },
715 	},
716 
717 	/* MCS 54  */
718 	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
719 		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
720 	},
721 
722 	/* MCS 55  */
723 	{	/* 20 Mhz */ {   91.0,		/* SGI */  101.1, },
724 		/* 40 Mhz */ {  189.0,		/* SGI */  210.0, },
725 	},
726 
727 	/* MCS 56  */
728 	{	/* 20 Mhz */ {   78.0,		/* SGI */   86.7, },
729 		/* 40 Mhz */ {  162.0,		/* SGI */  180.0, },
730 	},
731 
732 	/* MCS 57  */
733 	{	/* 20 Mhz */ {   91.0,		/* SGI */  101.1, },
734 		/* 40 Mhz */ {  189.0,		/* SGI */  210.0, },
735 	},
736 
737 	/* MCS 58  */
738 	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
739 		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
740 	},
741 
742 	/* MCS 59  */
743 	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
744 		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
745 	},
746 
747 	/* MCS 60  */
748 	{	/* 20 Mhz */ {  104.0,		/* SGI */  115.6, },
749 		/* 40 Mhz */ {  216.0,		/* SGI */  240.0, },
750 	},
751 
752 	/* MCS 61  */
753 	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
754 		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
755 	},
756 
757 	/* MCS 62  */
758 	{	/* 20 Mhz */ {  130.0,		/* SGI */  144.4, },
759 		/* 40 Mhz */ {  270.0,		/* SGI */  300.0, },
760 	},
761 
762 	/* MCS 63  */
763 	{	/* 20 Mhz */ {  130.0,		/* SGI */  144.4, },
764 		/* 40 Mhz */ {  270.0,		/* SGI */  300.0, },
765 	},
766 
767 	/* MCS 64  */
768 	{	/* 20 Mhz */ {  143.0,		/* SGI */  158.9, },
769 		/* 40 Mhz */ {  297.0,		/* SGI */  330.0, },
770 	},
771 
772 	/* MCS 65  */
773 	{	/* 20 Mhz */ {   97.5,		/* SGI */  108.3, },
774 		/* 40 Mhz */ {  202.5,		/* SGI */  225.0, },
775 	},
776 
777 	/* MCS 66  */
778 	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
779 		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
780 	},
781 
782 	/* MCS 67  */
783 	{	/* 20 Mhz */ {  136.5,		/* SGI */  151.7, },
784 		/* 40 Mhz */ {  283.5,		/* SGI */  315.0, },
785 	},
786 
787 	/* MCS 68  */
788 	{	/* 20 Mhz */ {  117.0,		/* SGI */  130.0, },
789 		/* 40 Mhz */ {  243.0,		/* SGI */  270.0, },
790 	},
791 
792 	/* MCS 69  */
793 	{	/* 20 Mhz */ {  136.5,		/* SGI */  151.7, },
794 		/* 40 Mhz */ {  283.5,		/* SGI */  315.0, },
795 	},
796 
797 	/* MCS 70  */
798 	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
799 		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
800 	},
801 
802 	/* MCS 71  */
803 	{	/* 20 Mhz */ {  175.5,		/* SGI */  195.0, },
804 		/* 40 Mhz */ {  364.5,		/* SGI */  405.0, },
805 	},
806 
807 	/* MCS 72  */
808 	{	/* 20 Mhz */ {  156.0,		/* SGI */  173.3, },
809 		/* 40 Mhz */ {  324.0,		/* SGI */  360.0, },
810 	},
811 
812 	/* MCS 73  */
813 	{	/* 20 Mhz */ {  175.5,		/* SGI */  195.0, },
814 		/* 40 Mhz */ {  364.5,		/* SGI */  405.0, },
815 	},
816 
817 	/* MCS 74  */
818 	{	/* 20 Mhz */ {  195.0,		/* SGI */  216.7, },
819 		/* 40 Mhz */ {  405.0,		/* SGI */  450.0, },
820 	},
821 
822 	/* MCS 75  */
823 	{	/* 20 Mhz */ {  195.0,		/* SGI */  216.7, },
824 		/* 40 Mhz */ {  405.0,		/* SGI */  450.0, },
825 	},
826 
827 	/* MCS 76  */
828 	{	/* 20 Mhz */ {  214.5,		/* SGI */  238.3, },
829 		/* 40 Mhz */ {  445.5,		/* SGI */  495.0, },
830 	},
831 };
832 
833 static const char *auth_alg_text[]={"Open System","Shared Key","EAP"};
834 #define NUM_AUTH_ALGS	(sizeof auth_alg_text / sizeof auth_alg_text[0])
835 
836 static const char *status_text[] = {
837 	"Successful",						/*  0 */
838 	"Unspecified failure",					/*  1 */
839 	"Reserved",						/*  2 */
840 	"Reserved",						/*  3 */
841 	"Reserved",						/*  4 */
842 	"Reserved",						/*  5 */
843 	"Reserved",						/*  6 */
844 	"Reserved",						/*  7 */
845 	"Reserved",						/*  8 */
846 	"Reserved",						/*  9 */
847 	"Cannot Support all requested capabilities in the Capability "
848 	  "Information field",	  				/* 10 */
849 	"Reassociation denied due to inability to confirm that association "
850 	  "exists",						/* 11 */
851 	"Association denied due to reason outside the scope of the "
852 	  "standard",						/* 12 */
853 	"Responding station does not support the specified authentication "
854 	  "algorithm ",						/* 13 */
855 	"Received an Authentication frame with authentication transaction "
856 	  "sequence number out of expected sequence",		/* 14 */
857 	"Authentication rejected because of challenge failure",	/* 15 */
858 	"Authentication rejected due to timeout waiting for next frame in "
859 	  "sequence",	  					/* 16 */
860 	"Association denied because AP is unable to handle additional"
861 	  "associated stations",	  			/* 17 */
862 	"Association denied due to requesting station not supporting all of "
863 	  "the data rates in BSSBasicRateSet parameter",	/* 18 */
864 	"Association denied due to requesting station not supporting "
865 	  "short preamble operation",				/* 19 */
866 	"Association denied due to requesting station not supporting "
867 	  "PBCC encoding",					/* 20 */
868 	"Association denied due to requesting station not supporting "
869 	  "channel agility",					/* 21 */
870 	"Association request rejected because Spectrum Management "
871 	  "capability is required",				/* 22 */
872 	"Association request rejected because the information in the "
873 	  "Power Capability element is unacceptable",		/* 23 */
874 	"Association request rejected because the information in the "
875 	  "Supported Channels element is unacceptable",		/* 24 */
876 	"Association denied due to requesting station not supporting "
877 	  "short slot operation",				/* 25 */
878 	"Association denied due to requesting station not supporting "
879 	  "DSSS-OFDM operation",				/* 26 */
880 	"Association denied because the requested STA does not support HT "
881 	  "features",						/* 27 */
882 	"Reserved",						/* 28 */
883 	"Association denied because the requested STA does not support "
884 	  "the PCO transition time required by the AP",		/* 29 */
885 	"Reserved",						/* 30 */
886 	"Reserved",						/* 31 */
887 	"Unspecified, QoS-related failure",			/* 32 */
888 	"Association denied due to QAP having insufficient bandwidth "
889 	  "to handle another QSTA",				/* 33 */
890 	"Association denied due to excessive frame loss rates and/or "
891 	  "poor conditions on current operating channel",	/* 34 */
892 	"Association (with QBSS) denied due to requesting station not "
893 	  "supporting the QoS facility",			/* 35 */
894 	"Association denied due to requesting station not supporting "
895 	  "Block Ack",						/* 36 */
896 	"The request has been declined",			/* 37 */
897 	"The request has not been successful as one or more parameters "
898 	  "have invalid values",				/* 38 */
899 	"The TS has not been created because the request cannot be honored. "
900 	  "Try again with the suggested changes to the TSPEC",	/* 39 */
901 	"Invalid Information Element",				/* 40 */
902 	"Group Cipher is not valid",				/* 41 */
903 	"Pairwise Cipher is not valid",				/* 42 */
904 	"AKMP is not valid",					/* 43 */
905 	"Unsupported RSN IE version",				/* 44 */
906 	"Invalid RSN IE Capabilities",				/* 45 */
907 	"Cipher suite is rejected per security policy",		/* 46 */
908 	"The TS has not been created. However, the HC may be capable of "
909 	  "creating a TS, in response to a request, after the time indicated "
910 	  "in the TS Delay element",				/* 47 */
911 	"Direct Link is not allowed in the BSS by policy",	/* 48 */
912 	"Destination STA is not present within this QBSS.",	/* 49 */
913 	"The Destination STA is not a QSTA.",			/* 50 */
914 
915 };
916 #define NUM_STATUSES	(sizeof status_text / sizeof status_text[0])
917 
918 static const char *reason_text[] = {
919 	"Reserved",						/* 0 */
920 	"Unspecified reason",					/* 1 */
921 	"Previous authentication no longer valid",  		/* 2 */
922 	"Deauthenticated because sending station is leaving (or has left) "
923 	  "IBSS or ESS",					/* 3 */
924 	"Disassociated due to inactivity",			/* 4 */
925 	"Disassociated because AP is unable to handle all currently "
926 	  " associated stations",				/* 5 */
927 	"Class 2 frame received from nonauthenticated station", /* 6 */
928 	"Class 3 frame received from nonassociated station",	/* 7 */
929 	"Disassociated because sending station is leaving "
930 	  "(or has left) BSS",					/* 8 */
931 	"Station requesting (re)association is not authenticated with "
932 	  "responding station",					/* 9 */
933 	"Disassociated because the information in the Power Capability "
934 	  "element is unacceptable",				/* 10 */
935 	"Disassociated because the information in the SupportedChannels "
936 	  "element is unacceptable",				/* 11 */
937 	"Invalid Information Element",				/* 12 */
938 	"Reserved",						/* 13 */
939 	"Michael MIC failure",					/* 14 */
940 	"4-Way Handshake timeout",				/* 15 */
941 	"Group key update timeout",				/* 16 */
942 	"Information element in 4-Way Handshake different from (Re)Association"
943 	  "Request/Probe Response/Beacon",			/* 17 */
944 	"Group Cipher is not valid",				/* 18 */
945 	"AKMP is not valid",					/* 20 */
946 	"Unsupported RSN IE version",				/* 21 */
947 	"Invalid RSN IE Capabilities",				/* 22 */
948 	"IEEE 802.1X Authentication failed",			/* 23 */
949 	"Cipher suite is rejected per security policy",		/* 24 */
950 	"Reserved",						/* 25 */
951 	"Reserved",						/* 26 */
952 	"Reserved",						/* 27 */
953 	"Reserved",						/* 28 */
954 	"Reserved",						/* 29 */
955 	"Reserved",						/* 30 */
956 	"TS deleted because QoS AP lacks sufficient bandwidth for this "
957 	  "QoS STA due to a change in BSS service characteristics or "
958 	  "operational mode (e.g. an HT BSS change from 40 MHz channel "
959 	  "to 20 MHz channel)",					/* 31 */
960 	"Disassociated for unspecified, QoS-related reason",	/* 32 */
961 	"Disassociated because QoS AP lacks sufficient bandwidth for this "
962 	  "QoS STA",						/* 33 */
963 	"Disassociated because of excessive number of frames that need to be "
964           "acknowledged, but are not acknowledged for AP transmissions "
965 	  "and/or poor channel conditions",			/* 34 */
966 	"Disassociated because STA is transmitting outside the limits "
967 	  "of its TXOPs",					/* 35 */
968 	"Requested from peer STA as the STA is leaving the BSS "
969 	  "(or resetting)",					/* 36 */
970 	"Requested from peer STA as it does not want to use the "
971 	  "mechanism",						/* 37 */
972 	"Requested from peer STA as the STA received frames using the "
973 	  "mechanism for which a set up is required",		/* 38 */
974 	"Requested from peer STA due to time out",		/* 39 */
975 	"Reserved",						/* 40 */
976 	"Reserved",						/* 41 */
977 	"Reserved",						/* 42 */
978 	"Reserved",						/* 43 */
979 	"Reserved",						/* 44 */
980 	"Peer STA does not support the requested cipher suite",	/* 45 */
981 	"Association denied due to requesting STA not supporting HT "
982 	  "features",						/* 46 */
983 };
984 #define NUM_REASONS	(sizeof reason_text / sizeof reason_text[0])
985 
986 static int
987 wep_print(netdissect_options *ndo,
988           const u_char *p)
989 {
990 	uint32_t iv;
991 
992 	if (!ND_TTEST2(*p, IEEE802_11_IV_LEN + IEEE802_11_KID_LEN))
993 		return 0;
994 	iv = EXTRACT_LE_32BITS(p);
995 
996 	ND_PRINT((ndo, " IV:%3x Pad %x KeyID %x", IV_IV(iv), IV_PAD(iv),
997 	    IV_KEYID(iv)));
998 
999 	return 1;
1000 }
1001 
1002 static int
1003 parse_elements(netdissect_options *ndo,
1004                struct mgmt_body_t *pbody, const u_char *p, int offset,
1005                u_int length)
1006 {
1007 	u_int elementlen;
1008 	struct ssid_t ssid;
1009 	struct challenge_t challenge;
1010 	struct rates_t rates;
1011 	struct ds_t ds;
1012 	struct cf_t cf;
1013 	struct tim_t tim;
1014 
1015 	/*
1016 	 * We haven't seen any elements yet.
1017 	 */
1018 	pbody->challenge_present = 0;
1019 	pbody->ssid_present = 0;
1020 	pbody->rates_present = 0;
1021 	pbody->ds_present = 0;
1022 	pbody->cf_present = 0;
1023 	pbody->tim_present = 0;
1024 
1025 	while (length != 0) {
1026 		/* Make sure we at least have the element ID and length. */
1027 		if (!ND_TTEST2(*(p + offset), 2))
1028 			return 0;
1029 		if (length < 2)
1030 			return 0;
1031 		elementlen = *(p + offset + 1);
1032 
1033 		/* Make sure we have the entire element. */
1034 		if (!ND_TTEST2(*(p + offset + 2), elementlen))
1035 			return 0;
1036 		if (length < elementlen + 2)
1037 			return 0;
1038 
1039 		switch (*(p + offset)) {
1040 		case E_SSID:
1041 			memcpy(&ssid, p + offset, 2);
1042 			offset += 2;
1043 			length -= 2;
1044 			if (ssid.length != 0) {
1045 				if (ssid.length > sizeof(ssid.ssid) - 1)
1046 					return 0;
1047 				memcpy(&ssid.ssid, p + offset, ssid.length);
1048 				offset += ssid.length;
1049 				length -= ssid.length;
1050 			}
1051 			ssid.ssid[ssid.length] = '\0';
1052 			/*
1053 			 * Present and not truncated.
1054 			 *
1055 			 * If we haven't already seen an SSID IE,
1056 			 * copy this one, otherwise ignore this one,
1057 			 * so we later report the first one we saw.
1058 			 */
1059 			if (!pbody->ssid_present) {
1060 				pbody->ssid = ssid;
1061 				pbody->ssid_present = 1;
1062 			}
1063 			break;
1064 		case E_CHALLENGE:
1065 			memcpy(&challenge, p + offset, 2);
1066 			offset += 2;
1067 			length -= 2;
1068 			if (challenge.length != 0) {
1069 				if (challenge.length >
1070 				    sizeof(challenge.text) - 1)
1071 					return 0;
1072 				memcpy(&challenge.text, p + offset,
1073 				    challenge.length);
1074 				offset += challenge.length;
1075 				length -= challenge.length;
1076 			}
1077 			challenge.text[challenge.length] = '\0';
1078 			/*
1079 			 * Present and not truncated.
1080 			 *
1081 			 * If we haven't already seen a challenge IE,
1082 			 * copy this one, otherwise ignore this one,
1083 			 * so we later report the first one we saw.
1084 			 */
1085 			if (!pbody->challenge_present) {
1086 				pbody->challenge = challenge;
1087 				pbody->challenge_present = 1;
1088 			}
1089 			break;
1090 		case E_RATES:
1091 			memcpy(&rates, p + offset, 2);
1092 			offset += 2;
1093 			length -= 2;
1094 			if (rates.length != 0) {
1095 				if (rates.length > sizeof rates.rate)
1096 					return 0;
1097 				memcpy(&rates.rate, p + offset, rates.length);
1098 				offset += rates.length;
1099 				length -= rates.length;
1100 			}
1101 			/*
1102 			 * Present and not truncated.
1103 			 *
1104 			 * If we haven't already seen a rates IE,
1105 			 * copy this one if it's not zero-length,
1106 			 * otherwise ignore this one, so we later
1107 			 * report the first one we saw.
1108 			 *
1109 			 * We ignore zero-length rates IEs as some
1110 			 * devices seem to put a zero-length rates
1111 			 * IE, followed by an SSID IE, followed by
1112 			 * a non-zero-length rates IE into frames,
1113 			 * even though IEEE Std 802.11-2007 doesn't
1114 			 * seem to indicate that a zero-length rates
1115 			 * IE is valid.
1116 			 */
1117 			if (!pbody->rates_present && rates.length != 0) {
1118 				pbody->rates = rates;
1119 				pbody->rates_present = 1;
1120 			}
1121 			break;
1122 		case E_DS:
1123 			memcpy(&ds, p + offset, 2);
1124 			offset += 2;
1125 			length -= 2;
1126 			if (ds.length != 1) {
1127 				offset += ds.length;
1128 				length -= ds.length;
1129 				break;
1130 			}
1131 			ds.channel = *(p + offset);
1132 			offset += 1;
1133 			length -= 1;
1134 			/*
1135 			 * Present and not truncated.
1136 			 *
1137 			 * If we haven't already seen a DS IE,
1138 			 * copy this one, otherwise ignore this one,
1139 			 * so we later report the first one we saw.
1140 			 */
1141 			if (!pbody->ds_present) {
1142 				pbody->ds = ds;
1143 				pbody->ds_present = 1;
1144 			}
1145 			break;
1146 		case E_CF:
1147 			memcpy(&cf, p + offset, 2);
1148 			offset += 2;
1149 			length -= 2;
1150 			if (cf.length != 6) {
1151 				offset += cf.length;
1152 				length -= cf.length;
1153 				break;
1154 			}
1155 			memcpy(&cf.count, p + offset, 6);
1156 			offset += 6;
1157 			length -= 6;
1158 			/*
1159 			 * Present and not truncated.
1160 			 *
1161 			 * If we haven't already seen a CF IE,
1162 			 * copy this one, otherwise ignore this one,
1163 			 * so we later report the first one we saw.
1164 			 */
1165 			if (!pbody->cf_present) {
1166 				pbody->cf = cf;
1167 				pbody->cf_present = 1;
1168 			}
1169 			break;
1170 		case E_TIM:
1171 			memcpy(&tim, p + offset, 2);
1172 			offset += 2;
1173 			length -= 2;
1174 			if (tim.length <= 3) {
1175 				offset += tim.length;
1176 				length -= tim.length;
1177 				break;
1178 			}
1179 			if (tim.length - 3 > (int)sizeof tim.bitmap)
1180 				return 0;
1181 			memcpy(&tim.count, p + offset, 3);
1182 			offset += 3;
1183 			length -= 3;
1184 
1185 			memcpy(tim.bitmap, p + offset, tim.length - 3);
1186 			offset += tim.length - 3;
1187 			length -= tim.length - 3;
1188 			/*
1189 			 * Present and not truncated.
1190 			 *
1191 			 * If we haven't already seen a TIM IE,
1192 			 * copy this one, otherwise ignore this one,
1193 			 * so we later report the first one we saw.
1194 			 */
1195 			if (!pbody->tim_present) {
1196 				pbody->tim = tim;
1197 				pbody->tim_present = 1;
1198 			}
1199 			break;
1200 		default:
1201 #if 0
1202 			ND_PRINT((ndo, "(1) unhandled element_id (%d)  ",
1203 			    *(p + offset)));
1204 #endif
1205 			offset += 2 + elementlen;
1206 			length -= 2 + elementlen;
1207 			break;
1208 		}
1209 	}
1210 
1211 	/* No problems found. */
1212 	return 1;
1213 }
1214 
1215 /*********************************************************************************
1216  * Print Handle functions for the management frame types
1217  *********************************************************************************/
1218 
1219 static int
1220 handle_beacon(netdissect_options *ndo,
1221               const u_char *p, u_int length)
1222 {
1223 	struct mgmt_body_t pbody;
1224 	int offset = 0;
1225 	int ret;
1226 
1227 	memset(&pbody, 0, sizeof(pbody));
1228 
1229 	if (!ND_TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
1230 	    IEEE802_11_CAPINFO_LEN))
1231 		return 0;
1232 	if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
1233 	    IEEE802_11_CAPINFO_LEN)
1234 		return 0;
1235 	memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
1236 	offset += IEEE802_11_TSTAMP_LEN;
1237 	length -= IEEE802_11_TSTAMP_LEN;
1238 	pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
1239 	offset += IEEE802_11_BCNINT_LEN;
1240 	length -= IEEE802_11_BCNINT_LEN;
1241 	pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
1242 	offset += IEEE802_11_CAPINFO_LEN;
1243 	length -= IEEE802_11_CAPINFO_LEN;
1244 
1245 	ret = parse_elements(ndo, &pbody, p, offset, length);
1246 
1247 	PRINT_SSID(pbody);
1248 	PRINT_RATES(pbody);
1249 	ND_PRINT((ndo, " %s",
1250 	    CAPABILITY_ESS(pbody.capability_info) ? "ESS" : "IBSS"));
1251 	PRINT_DS_CHANNEL(pbody);
1252 
1253 	return ret;
1254 }
1255 
1256 static int
1257 handle_assoc_request(netdissect_options *ndo,
1258                      const u_char *p, u_int length)
1259 {
1260 	struct mgmt_body_t pbody;
1261 	int offset = 0;
1262 	int ret;
1263 
1264 	memset(&pbody, 0, sizeof(pbody));
1265 
1266 	if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN))
1267 		return 0;
1268 	if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN)
1269 		return 0;
1270 	pbody.capability_info = EXTRACT_LE_16BITS(p);
1271 	offset += IEEE802_11_CAPINFO_LEN;
1272 	length -= IEEE802_11_CAPINFO_LEN;
1273 	pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
1274 	offset += IEEE802_11_LISTENINT_LEN;
1275 	length -= IEEE802_11_LISTENINT_LEN;
1276 
1277 	ret = parse_elements(ndo, &pbody, p, offset, length);
1278 
1279 	PRINT_SSID(pbody);
1280 	PRINT_RATES(pbody);
1281 	return ret;
1282 }
1283 
1284 static int
1285 handle_assoc_response(netdissect_options *ndo,
1286                       const u_char *p, u_int length)
1287 {
1288 	struct mgmt_body_t pbody;
1289 	int offset = 0;
1290 	int ret;
1291 
1292 	memset(&pbody, 0, sizeof(pbody));
1293 
1294 	if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
1295 	    IEEE802_11_AID_LEN))
1296 		return 0;
1297 	if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
1298 	    IEEE802_11_AID_LEN)
1299 		return 0;
1300 	pbody.capability_info = EXTRACT_LE_16BITS(p);
1301 	offset += IEEE802_11_CAPINFO_LEN;
1302 	length -= IEEE802_11_CAPINFO_LEN;
1303 	pbody.status_code = EXTRACT_LE_16BITS(p+offset);
1304 	offset += IEEE802_11_STATUS_LEN;
1305 	length -= IEEE802_11_STATUS_LEN;
1306 	pbody.aid = EXTRACT_LE_16BITS(p+offset);
1307 	offset += IEEE802_11_AID_LEN;
1308 	length -= IEEE802_11_AID_LEN;
1309 
1310 	ret = parse_elements(ndo, &pbody, p, offset, length);
1311 
1312 	ND_PRINT((ndo, " AID(%x) :%s: %s", ((uint16_t)(pbody.aid << 2 )) >> 2 ,
1313 	    CAPABILITY_PRIVACY(pbody.capability_info) ? " PRIVACY " : "",
1314 	    (pbody.status_code < NUM_STATUSES
1315 		? status_text[pbody.status_code]
1316 		: "n/a")));
1317 
1318 	return ret;
1319 }
1320 
1321 static int
1322 handle_reassoc_request(netdissect_options *ndo,
1323                        const u_char *p, u_int length)
1324 {
1325 	struct mgmt_body_t pbody;
1326 	int offset = 0;
1327 	int ret;
1328 
1329 	memset(&pbody, 0, sizeof(pbody));
1330 
1331 	if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
1332 	    IEEE802_11_AP_LEN))
1333 		return 0;
1334 	if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
1335 	    IEEE802_11_AP_LEN)
1336 		return 0;
1337 	pbody.capability_info = EXTRACT_LE_16BITS(p);
1338 	offset += IEEE802_11_CAPINFO_LEN;
1339 	length -= IEEE802_11_CAPINFO_LEN;
1340 	pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
1341 	offset += IEEE802_11_LISTENINT_LEN;
1342 	length -= IEEE802_11_LISTENINT_LEN;
1343 	memcpy(&pbody.ap, p+offset, IEEE802_11_AP_LEN);
1344 	offset += IEEE802_11_AP_LEN;
1345 	length -= IEEE802_11_AP_LEN;
1346 
1347 	ret = parse_elements(ndo, &pbody, p, offset, length);
1348 
1349 	PRINT_SSID(pbody);
1350 	ND_PRINT((ndo, " AP : %s", etheraddr_string(ndo,  pbody.ap )));
1351 
1352 	return ret;
1353 }
1354 
1355 static int
1356 handle_reassoc_response(netdissect_options *ndo,
1357                         const u_char *p, u_int length)
1358 {
1359 	/* Same as a Association Reponse */
1360 	return handle_assoc_response(ndo, p, length);
1361 }
1362 
1363 static int
1364 handle_probe_request(netdissect_options *ndo,
1365                      const u_char *p, u_int length)
1366 {
1367 	struct mgmt_body_t  pbody;
1368 	int offset = 0;
1369 	int ret;
1370 
1371 	memset(&pbody, 0, sizeof(pbody));
1372 
1373 	ret = parse_elements(ndo, &pbody, p, offset, length);
1374 
1375 	PRINT_SSID(pbody);
1376 	PRINT_RATES(pbody);
1377 
1378 	return ret;
1379 }
1380 
1381 static int
1382 handle_probe_response(netdissect_options *ndo,
1383                       const u_char *p, u_int length)
1384 {
1385 	struct mgmt_body_t  pbody;
1386 	int offset = 0;
1387 	int ret;
1388 
1389 	memset(&pbody, 0, sizeof(pbody));
1390 
1391 	if (!ND_TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
1392 	    IEEE802_11_CAPINFO_LEN))
1393 		return 0;
1394 	if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
1395 	    IEEE802_11_CAPINFO_LEN)
1396 		return 0;
1397 	memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
1398 	offset += IEEE802_11_TSTAMP_LEN;
1399 	length -= IEEE802_11_TSTAMP_LEN;
1400 	pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
1401 	offset += IEEE802_11_BCNINT_LEN;
1402 	length -= IEEE802_11_BCNINT_LEN;
1403 	pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
1404 	offset += IEEE802_11_CAPINFO_LEN;
1405 	length -= IEEE802_11_CAPINFO_LEN;
1406 
1407 	ret = parse_elements(ndo, &pbody, p, offset, length);
1408 
1409 	PRINT_SSID(pbody);
1410 	PRINT_RATES(pbody);
1411 	PRINT_DS_CHANNEL(pbody);
1412 
1413 	return ret;
1414 }
1415 
1416 static int
1417 handle_atim(void)
1418 {
1419 	/* the frame body for ATIM is null. */
1420 	return 1;
1421 }
1422 
1423 static int
1424 handle_disassoc(netdissect_options *ndo,
1425                 const u_char *p, u_int length)
1426 {
1427 	struct mgmt_body_t  pbody;
1428 
1429 	memset(&pbody, 0, sizeof(pbody));
1430 
1431 	if (!ND_TTEST2(*p, IEEE802_11_REASON_LEN))
1432 		return 0;
1433 	if (length < IEEE802_11_REASON_LEN)
1434 		return 0;
1435 	pbody.reason_code = EXTRACT_LE_16BITS(p);
1436 
1437 	ND_PRINT((ndo, ": %s",
1438 	    (pbody.reason_code < NUM_REASONS)
1439 		? reason_text[pbody.reason_code]
1440 		: "Reserved"));
1441 
1442 	return 1;
1443 }
1444 
1445 static int
1446 handle_auth(netdissect_options *ndo,
1447             const u_char *p, u_int length)
1448 {
1449 	struct mgmt_body_t  pbody;
1450 	int offset = 0;
1451 	int ret;
1452 
1453 	memset(&pbody, 0, sizeof(pbody));
1454 
1455 	if (!ND_TTEST2(*p, 6))
1456 		return 0;
1457 	if (length < 6)
1458 		return 0;
1459 	pbody.auth_alg = EXTRACT_LE_16BITS(p);
1460 	offset += 2;
1461 	length -= 2;
1462 	pbody.auth_trans_seq_num = EXTRACT_LE_16BITS(p + offset);
1463 	offset += 2;
1464 	length -= 2;
1465 	pbody.status_code = EXTRACT_LE_16BITS(p + offset);
1466 	offset += 2;
1467 	length -= 2;
1468 
1469 	ret = parse_elements(ndo, &pbody, p, offset, length);
1470 
1471 	if ((pbody.auth_alg == 1) &&
1472 	    ((pbody.auth_trans_seq_num == 2) ||
1473 	     (pbody.auth_trans_seq_num == 3))) {
1474 		ND_PRINT((ndo, " (%s)-%x [Challenge Text] %s",
1475 		    (pbody.auth_alg < NUM_AUTH_ALGS)
1476 			? auth_alg_text[pbody.auth_alg]
1477 			: "Reserved",
1478 		    pbody.auth_trans_seq_num,
1479 		    ((pbody.auth_trans_seq_num % 2)
1480 		        ? ((pbody.status_code < NUM_STATUSES)
1481 			       ? status_text[pbody.status_code]
1482 			       : "n/a") : "")));
1483 		return ret;
1484 	}
1485 	ND_PRINT((ndo, " (%s)-%x: %s",
1486 	    (pbody.auth_alg < NUM_AUTH_ALGS)
1487 		? auth_alg_text[pbody.auth_alg]
1488 		: "Reserved",
1489 	    pbody.auth_trans_seq_num,
1490 	    (pbody.auth_trans_seq_num % 2)
1491 	        ? ((pbody.status_code < NUM_STATUSES)
1492 		    ? status_text[pbody.status_code]
1493 	            : "n/a")
1494 	        : ""));
1495 
1496 	return ret;
1497 }
1498 
1499 static int
1500 handle_deauth(netdissect_options *ndo,
1501               const uint8_t *src, const u_char *p, u_int length)
1502 {
1503 	struct mgmt_body_t  pbody;
1504 	const char *reason = NULL;
1505 
1506 	memset(&pbody, 0, sizeof(pbody));
1507 
1508 	if (!ND_TTEST2(*p, IEEE802_11_REASON_LEN))
1509 		return 0;
1510 	if (length < IEEE802_11_REASON_LEN)
1511 		return 0;
1512 	pbody.reason_code = EXTRACT_LE_16BITS(p);
1513 
1514 	reason = (pbody.reason_code < NUM_REASONS)
1515 			? reason_text[pbody.reason_code]
1516 			: "Reserved";
1517 
1518 	if (ndo->ndo_eflag) {
1519 		ND_PRINT((ndo, ": %s", reason));
1520 	} else {
1521 		ND_PRINT((ndo, " (%s): %s", etheraddr_string(ndo, src), reason));
1522 	}
1523 	return 1;
1524 }
1525 
1526 #define	PRINT_HT_ACTION(v) (\
1527 	(v) == 0 ? ND_PRINT((ndo, "TxChWidth")) : \
1528 	(v) == 1 ? ND_PRINT((ndo, "MIMOPwrSave")) : \
1529 		   ND_PRINT((ndo, "Act#%d", (v))) \
1530 )
1531 #define	PRINT_BA_ACTION(v) (\
1532 	(v) == 0 ? ND_PRINT((ndo, "ADDBA Request")) : \
1533 	(v) == 1 ? ND_PRINT((ndo, "ADDBA Response")) : \
1534 	(v) == 2 ? ND_PRINT((ndo, "DELBA")) : \
1535 		   ND_PRINT((ndo, "Act#%d", (v))) \
1536 )
1537 #define	PRINT_MESHLINK_ACTION(v) (\
1538 	(v) == 0 ? ND_PRINT((ndo, "Request")) : \
1539 	(v) == 1 ? ND_PRINT((ndo, "Report")) : \
1540 		   ND_PRINT((ndo, "Act#%d", (v))) \
1541 )
1542 #define	PRINT_MESHPEERING_ACTION(v) (\
1543 	(v) == 0 ? ND_PRINT((ndo, "Open")) : \
1544 	(v) == 1 ? ND_PRINT((ndo, "Confirm")) : \
1545 	(v) == 2 ? ND_PRINT((ndo, "Close")) : \
1546 		   ND_PRINT((ndo, "Act#%d", (v))) \
1547 )
1548 #define	PRINT_MESHPATH_ACTION(v) (\
1549 	(v) == 0 ? ND_PRINT((ndo, "Request")) : \
1550 	(v) == 1 ? ND_PRINT((ndo, "Report")) : \
1551 	(v) == 2 ? ND_PRINT((ndo, "Error")) : \
1552 	(v) == 3 ? ND_PRINT((ndo, "RootAnnouncement")) : \
1553 		   ND_PRINT((ndo, "Act#%d", (v))) \
1554 )
1555 
1556 #define PRINT_MESH_ACTION(v) (\
1557 	(v) == 0 ? ND_PRINT((ndo, "MeshLink")) : \
1558 	(v) == 1 ? ND_PRINT((ndo, "HWMP")) : \
1559 	(v) == 2 ? ND_PRINT((ndo, "Gate Announcement")) : \
1560 	(v) == 3 ? ND_PRINT((ndo, "Congestion Control")) : \
1561 	(v) == 4 ? ND_PRINT((ndo, "MCCA Setup Request")) : \
1562 	(v) == 5 ? ND_PRINT((ndo, "MCCA Setup Reply")) : \
1563 	(v) == 6 ? ND_PRINT((ndo, "MCCA Advertisement Request")) : \
1564 	(v) == 7 ? ND_PRINT((ndo, "MCCA Advertisement")) : \
1565 	(v) == 8 ? ND_PRINT((ndo, "MCCA Teardown")) : \
1566 	(v) == 9 ? ND_PRINT((ndo, "TBTT Adjustment Request")) : \
1567 	(v) == 10 ? ND_PRINT((ndo, "TBTT Adjustment Response")) : \
1568 		   ND_PRINT((ndo, "Act#%d", (v))) \
1569 )
1570 #define PRINT_MULTIHOP_ACTION(v) (\
1571 	(v) == 0 ? ND_PRINT((ndo, "Proxy Update")) : \
1572 	(v) == 1 ? ND_PRINT((ndo, "Proxy Update Confirmation")) : \
1573 		   ND_PRINT((ndo, "Act#%d", (v))) \
1574 )
1575 #define PRINT_SELFPROT_ACTION(v) (\
1576 	(v) == 1 ? ND_PRINT((ndo, "Peering Open")) : \
1577 	(v) == 2 ? ND_PRINT((ndo, "Peering Confirm")) : \
1578 	(v) == 3 ? ND_PRINT((ndo, "Peering Close")) : \
1579 	(v) == 4 ? ND_PRINT((ndo, "Group Key Inform")) : \
1580 	(v) == 5 ? ND_PRINT((ndo, "Group Key Acknowledge")) : \
1581 		   ND_PRINT((ndo, "Act#%d", (v))) \
1582 )
1583 
1584 static int
1585 handle_action(netdissect_options *ndo,
1586               const uint8_t *src, const u_char *p, u_int length)
1587 {
1588 	if (!ND_TTEST2(*p, 2))
1589 		return 0;
1590 	if (length < 2)
1591 		return 0;
1592 	if (ndo->ndo_eflag) {
1593 		ND_PRINT((ndo, ": "));
1594 	} else {
1595 		ND_PRINT((ndo, " (%s): ", etheraddr_string(ndo, src)));
1596 	}
1597 	switch (p[0]) {
1598 	case 0: ND_PRINT((ndo, "Spectrum Management Act#%d", p[1])); break;
1599 	case 1: ND_PRINT((ndo, "QoS Act#%d", p[1])); break;
1600 	case 2: ND_PRINT((ndo, "DLS Act#%d", p[1])); break;
1601 	case 3: ND_PRINT((ndo, "BA ")); PRINT_BA_ACTION(p[1]); break;
1602 	case 7: ND_PRINT((ndo, "HT ")); PRINT_HT_ACTION(p[1]); break;
1603 	case 13: ND_PRINT((ndo, "MeshAction ")); PRINT_MESH_ACTION(p[1]); break;
1604 	case 14:
1605 		ND_PRINT((ndo, "MultiohopAction "));
1606 		PRINT_MULTIHOP_ACTION(p[1]); break;
1607 	case 15:
1608 		ND_PRINT((ndo, "SelfprotectAction "));
1609 		PRINT_SELFPROT_ACTION(p[1]); break;
1610 	case 127: ND_PRINT((ndo, "Vendor Act#%d", p[1])); break;
1611 	default:
1612 		ND_PRINT((ndo, "Reserved(%d) Act#%d", p[0], p[1]));
1613 		break;
1614 	}
1615 	return 1;
1616 }
1617 
1618 
1619 /*********************************************************************************
1620  * Print Body funcs
1621  *********************************************************************************/
1622 
1623 
1624 static int
1625 mgmt_body_print(netdissect_options *ndo,
1626                 uint16_t fc, const uint8_t *src, const u_char *p, u_int length)
1627 {
1628 	ND_PRINT((ndo, "%s", tok2str(st_str, "Unhandled Management subtype(%x)", FC_SUBTYPE(fc))));
1629 
1630 	/* There may be a problem w/ AP not having this bit set */
1631 	if (FC_PROTECTED(fc))
1632 		return wep_print(ndo, p);
1633 	switch (FC_SUBTYPE(fc)) {
1634 	case ST_ASSOC_REQUEST:
1635 		return handle_assoc_request(ndo, p, length);
1636 	case ST_ASSOC_RESPONSE:
1637 		return handle_assoc_response(ndo, p, length);
1638 	case ST_REASSOC_REQUEST:
1639 		return handle_reassoc_request(ndo, p, length);
1640 	case ST_REASSOC_RESPONSE:
1641 		return handle_reassoc_response(ndo, p, length);
1642 	case ST_PROBE_REQUEST:
1643 		return handle_probe_request(ndo, p, length);
1644 	case ST_PROBE_RESPONSE:
1645 		return handle_probe_response(ndo, p, length);
1646 	case ST_BEACON:
1647 		return handle_beacon(ndo, p, length);
1648 	case ST_ATIM:
1649 		return handle_atim();
1650 	case ST_DISASSOC:
1651 		return handle_disassoc(ndo, p, length);
1652 	case ST_AUTH:
1653 		return handle_auth(ndo, p, length);
1654 	case ST_DEAUTH:
1655 		return handle_deauth(ndo, src, p, length);
1656 	case ST_ACTION:
1657 		return handle_action(ndo, src, p, length);
1658 	default:
1659 		return 1;
1660 	}
1661 }
1662 
1663 
1664 /*********************************************************************************
1665  * Handles printing all the control frame types
1666  *********************************************************************************/
1667 
1668 static int
1669 ctrl_body_print(netdissect_options *ndo,
1670                 uint16_t fc, const u_char *p)
1671 {
1672 	ND_PRINT((ndo, "%s", tok2str(ctrl_str, "Unknown Ctrl Subtype", FC_SUBTYPE(fc))));
1673 	switch (FC_SUBTYPE(fc)) {
1674 	case CTRL_CONTROL_WRAPPER:
1675 		/* XXX - requires special handling */
1676 		break;
1677 	case CTRL_BAR:
1678 		if (!ND_TTEST2(*p, CTRL_BAR_HDRLEN))
1679 			return 0;
1680 		if (!ndo->ndo_eflag)
1681 			ND_PRINT((ndo, " RA:%s TA:%s CTL(%x) SEQ(%u) ",
1682 			    etheraddr_string(ndo, ((const struct ctrl_bar_hdr_t *)p)->ra),
1683 			    etheraddr_string(ndo, ((const struct ctrl_bar_hdr_t *)p)->ta),
1684 			    EXTRACT_LE_16BITS(&(((const struct ctrl_bar_hdr_t *)p)->ctl)),
1685 			    EXTRACT_LE_16BITS(&(((const struct ctrl_bar_hdr_t *)p)->seq))));
1686 		break;
1687 	case CTRL_BA:
1688 		if (!ND_TTEST2(*p, CTRL_BA_HDRLEN))
1689 			return 0;
1690 		if (!ndo->ndo_eflag)
1691 			ND_PRINT((ndo, " RA:%s ",
1692 			    etheraddr_string(ndo, ((const struct ctrl_ba_hdr_t *)p)->ra)));
1693 		break;
1694 	case CTRL_PS_POLL:
1695 		if (!ND_TTEST2(*p, CTRL_PS_POLL_HDRLEN))
1696 			return 0;
1697 		ND_PRINT((ndo, " AID(%x)",
1698 		    EXTRACT_LE_16BITS(&(((const struct ctrl_ps_poll_hdr_t *)p)->aid))));
1699 		break;
1700 	case CTRL_RTS:
1701 		if (!ND_TTEST2(*p, CTRL_RTS_HDRLEN))
1702 			return 0;
1703 		if (!ndo->ndo_eflag)
1704 			ND_PRINT((ndo, " TA:%s ",
1705 			    etheraddr_string(ndo, ((const struct ctrl_rts_hdr_t *)p)->ta)));
1706 		break;
1707 	case CTRL_CTS:
1708 		if (!ND_TTEST2(*p, CTRL_CTS_HDRLEN))
1709 			return 0;
1710 		if (!ndo->ndo_eflag)
1711 			ND_PRINT((ndo, " RA:%s ",
1712 			    etheraddr_string(ndo, ((const struct ctrl_cts_hdr_t *)p)->ra)));
1713 		break;
1714 	case CTRL_ACK:
1715 		if (!ND_TTEST2(*p, CTRL_ACK_HDRLEN))
1716 			return 0;
1717 		if (!ndo->ndo_eflag)
1718 			ND_PRINT((ndo, " RA:%s ",
1719 			    etheraddr_string(ndo, ((const struct ctrl_ack_hdr_t *)p)->ra)));
1720 		break;
1721 	case CTRL_CF_END:
1722 		if (!ND_TTEST2(*p, CTRL_END_HDRLEN))
1723 			return 0;
1724 		if (!ndo->ndo_eflag)
1725 			ND_PRINT((ndo, " RA:%s ",
1726 			    etheraddr_string(ndo, ((const struct ctrl_end_hdr_t *)p)->ra)));
1727 		break;
1728 	case CTRL_END_ACK:
1729 		if (!ND_TTEST2(*p, CTRL_END_ACK_HDRLEN))
1730 			return 0;
1731 		if (!ndo->ndo_eflag)
1732 			ND_PRINT((ndo, " RA:%s ",
1733 			    etheraddr_string(ndo, ((const struct ctrl_end_ack_hdr_t *)p)->ra)));
1734 		break;
1735 	}
1736 	return 1;
1737 }
1738 
1739 /*
1740  *  Data Frame - Address field contents
1741  *
1742  *  To Ds  | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4
1743  *    0    |  0      |  DA    | SA     | BSSID  | n/a
1744  *    0    |  1      |  DA    | BSSID  | SA     | n/a
1745  *    1    |  0      |  BSSID | SA     | DA     | n/a
1746  *    1    |  1      |  RA    | TA     | DA     | SA
1747  */
1748 
1749 /*
1750  * Function to get source and destination MAC addresses for a data frame.
1751  */
1752 static void
1753 get_data_src_dst_mac(uint16_t fc, const u_char *p, const uint8_t **srcp,
1754                      const uint8_t **dstp)
1755 {
1756 #define ADDR1  (p + 4)
1757 #define ADDR2  (p + 10)
1758 #define ADDR3  (p + 16)
1759 #define ADDR4  (p + 24)
1760 
1761 	if (!FC_TO_DS(fc)) {
1762 		if (!FC_FROM_DS(fc)) {
1763 			/* not To DS and not From DS */
1764 			*srcp = ADDR2;
1765 			*dstp = ADDR1;
1766 		} else {
1767 			/* not To DS and From DS */
1768 			*srcp = ADDR3;
1769 			*dstp = ADDR1;
1770 		}
1771 	} else {
1772 		if (!FC_FROM_DS(fc)) {
1773 			/* From DS and not To DS */
1774 			*srcp = ADDR2;
1775 			*dstp = ADDR3;
1776 		} else {
1777 			/* To DS and From DS */
1778 			*srcp = ADDR4;
1779 			*dstp = ADDR3;
1780 		}
1781 	}
1782 
1783 #undef ADDR1
1784 #undef ADDR2
1785 #undef ADDR3
1786 #undef ADDR4
1787 }
1788 
1789 static void
1790 get_mgmt_src_dst_mac(const u_char *p, const uint8_t **srcp, const uint8_t **dstp)
1791 {
1792 	const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p;
1793 
1794 	if (srcp != NULL)
1795 		*srcp = hp->sa;
1796 	if (dstp != NULL)
1797 		*dstp = hp->da;
1798 }
1799 
1800 /*
1801  * Print Header funcs
1802  */
1803 
1804 static void
1805 data_header_print(netdissect_options *ndo, uint16_t fc, const u_char *p)
1806 {
1807 	u_int subtype = FC_SUBTYPE(fc);
1808 
1809 	if (DATA_FRAME_IS_CF_ACK(subtype) || DATA_FRAME_IS_CF_POLL(subtype) ||
1810 	    DATA_FRAME_IS_QOS(subtype)) {
1811 		ND_PRINT((ndo, "CF "));
1812 		if (DATA_FRAME_IS_CF_ACK(subtype)) {
1813 			if (DATA_FRAME_IS_CF_POLL(subtype))
1814 				ND_PRINT((ndo, "Ack/Poll"));
1815 			else
1816 				ND_PRINT((ndo, "Ack"));
1817 		} else {
1818 			if (DATA_FRAME_IS_CF_POLL(subtype))
1819 				ND_PRINT((ndo, "Poll"));
1820 		}
1821 		if (DATA_FRAME_IS_QOS(subtype))
1822 			ND_PRINT((ndo, "+QoS"));
1823 		ND_PRINT((ndo, " "));
1824 	}
1825 
1826 #define ADDR1  (p + 4)
1827 #define ADDR2  (p + 10)
1828 #define ADDR3  (p + 16)
1829 #define ADDR4  (p + 24)
1830 
1831 	if (!FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
1832 		ND_PRINT((ndo, "DA:%s SA:%s BSSID:%s ",
1833 		    etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
1834 		    etheraddr_string(ndo, ADDR3)));
1835 	} else if (!FC_TO_DS(fc) && FC_FROM_DS(fc)) {
1836 		ND_PRINT((ndo, "DA:%s BSSID:%s SA:%s ",
1837 		    etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
1838 		    etheraddr_string(ndo, ADDR3)));
1839 	} else if (FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
1840 		ND_PRINT((ndo, "BSSID:%s SA:%s DA:%s ",
1841 		    etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
1842 		    etheraddr_string(ndo, ADDR3)));
1843 	} else if (FC_TO_DS(fc) && FC_FROM_DS(fc)) {
1844 		ND_PRINT((ndo, "RA:%s TA:%s DA:%s SA:%s ",
1845 		    etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
1846 		    etheraddr_string(ndo, ADDR3), etheraddr_string(ndo, ADDR4)));
1847 	}
1848 
1849 #undef ADDR1
1850 #undef ADDR2
1851 #undef ADDR3
1852 #undef ADDR4
1853 }
1854 
1855 static void
1856 mgmt_header_print(netdissect_options *ndo, const u_char *p)
1857 {
1858 	const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p;
1859 
1860 	ND_PRINT((ndo, "BSSID:%s DA:%s SA:%s ",
1861 	    etheraddr_string(ndo, (hp)->bssid), etheraddr_string(ndo, (hp)->da),
1862 	    etheraddr_string(ndo, (hp)->sa)));
1863 }
1864 
1865 static void
1866 ctrl_header_print(netdissect_options *ndo, uint16_t fc, const u_char *p)
1867 {
1868 	switch (FC_SUBTYPE(fc)) {
1869 	case CTRL_BAR:
1870 		ND_PRINT((ndo, " RA:%s TA:%s CTL(%x) SEQ(%u) ",
1871 		    etheraddr_string(ndo, ((const struct ctrl_bar_hdr_t *)p)->ra),
1872 		    etheraddr_string(ndo, ((const struct ctrl_bar_hdr_t *)p)->ta),
1873 		    EXTRACT_LE_16BITS(&(((const struct ctrl_bar_hdr_t *)p)->ctl)),
1874 		    EXTRACT_LE_16BITS(&(((const struct ctrl_bar_hdr_t *)p)->seq))));
1875 		break;
1876 	case CTRL_BA:
1877 		ND_PRINT((ndo, "RA:%s ",
1878 		    etheraddr_string(ndo, ((const struct ctrl_ba_hdr_t *)p)->ra)));
1879 		break;
1880 	case CTRL_PS_POLL:
1881 		ND_PRINT((ndo, "BSSID:%s TA:%s ",
1882 		    etheraddr_string(ndo, ((const struct ctrl_ps_poll_hdr_t *)p)->bssid),
1883 		    etheraddr_string(ndo, ((const struct ctrl_ps_poll_hdr_t *)p)->ta)));
1884 		break;
1885 	case CTRL_RTS:
1886 		ND_PRINT((ndo, "RA:%s TA:%s ",
1887 		    etheraddr_string(ndo, ((const struct ctrl_rts_hdr_t *)p)->ra),
1888 		    etheraddr_string(ndo, ((const struct ctrl_rts_hdr_t *)p)->ta)));
1889 		break;
1890 	case CTRL_CTS:
1891 		ND_PRINT((ndo, "RA:%s ",
1892 		    etheraddr_string(ndo, ((const struct ctrl_cts_hdr_t *)p)->ra)));
1893 		break;
1894 	case CTRL_ACK:
1895 		ND_PRINT((ndo, "RA:%s ",
1896 		    etheraddr_string(ndo, ((const struct ctrl_ack_hdr_t *)p)->ra)));
1897 		break;
1898 	case CTRL_CF_END:
1899 		ND_PRINT((ndo, "RA:%s BSSID:%s ",
1900 		    etheraddr_string(ndo, ((const struct ctrl_end_hdr_t *)p)->ra),
1901 		    etheraddr_string(ndo, ((const struct ctrl_end_hdr_t *)p)->bssid)));
1902 		break;
1903 	case CTRL_END_ACK:
1904 		ND_PRINT((ndo, "RA:%s BSSID:%s ",
1905 		    etheraddr_string(ndo, ((const struct ctrl_end_ack_hdr_t *)p)->ra),
1906 		    etheraddr_string(ndo, ((const struct ctrl_end_ack_hdr_t *)p)->bssid)));
1907 		break;
1908 	default:
1909 		/* We shouldn't get here - we should already have quit */
1910 		break;
1911 	}
1912 }
1913 
1914 static int
1915 extract_header_length(netdissect_options *ndo,
1916                       uint16_t fc)
1917 {
1918 	int len;
1919 
1920 	switch (FC_TYPE(fc)) {
1921 	case T_MGMT:
1922 		return MGMT_HDRLEN;
1923 	case T_CTRL:
1924 		switch (FC_SUBTYPE(fc)) {
1925 		case CTRL_CONTROL_WRAPPER:
1926 			return CTRL_CONTROL_WRAPPER_HDRLEN;
1927 		case CTRL_BAR:
1928 			return CTRL_BAR_HDRLEN;
1929 		case CTRL_BA:
1930 			return CTRL_BA_HDRLEN;
1931 		case CTRL_PS_POLL:
1932 			return CTRL_PS_POLL_HDRLEN;
1933 		case CTRL_RTS:
1934 			return CTRL_RTS_HDRLEN;
1935 		case CTRL_CTS:
1936 			return CTRL_CTS_HDRLEN;
1937 		case CTRL_ACK:
1938 			return CTRL_ACK_HDRLEN;
1939 		case CTRL_CF_END:
1940 			return CTRL_END_HDRLEN;
1941 		case CTRL_END_ACK:
1942 			return CTRL_END_ACK_HDRLEN;
1943 		default:
1944 			ND_PRINT((ndo, "unknown 802.11 ctrl frame subtype (%d)", FC_SUBTYPE(fc)));
1945 			return 0;
1946 		}
1947 	case T_DATA:
1948 		len = (FC_TO_DS(fc) && FC_FROM_DS(fc)) ? 30 : 24;
1949 		if (DATA_FRAME_IS_QOS(FC_SUBTYPE(fc)))
1950 			len += 2;
1951 		return len;
1952 	default:
1953 		ND_PRINT((ndo, "unknown 802.11 frame type (%d)", FC_TYPE(fc)));
1954 		return 0;
1955 	}
1956 }
1957 
1958 static int
1959 extract_mesh_header_length(const u_char *p)
1960 {
1961 	return (p[0] &~ 3) ? 0 : 6*(1 + (p[0] & 3));
1962 }
1963 
1964 /*
1965  * Print the 802.11 MAC header.
1966  */
1967 static void
1968 ieee_802_11_hdr_print(netdissect_options *ndo,
1969                       uint16_t fc, const u_char *p, u_int hdrlen,
1970                       u_int meshdrlen)
1971 {
1972 	if (ndo->ndo_vflag) {
1973 		if (FC_MORE_DATA(fc))
1974 			ND_PRINT((ndo, "More Data "));
1975 		if (FC_MORE_FLAG(fc))
1976 			ND_PRINT((ndo, "More Fragments "));
1977 		if (FC_POWER_MGMT(fc))
1978 			ND_PRINT((ndo, "Pwr Mgmt "));
1979 		if (FC_RETRY(fc))
1980 			ND_PRINT((ndo, "Retry "));
1981 		if (FC_ORDER(fc))
1982 			ND_PRINT((ndo, "Strictly Ordered "));
1983 		if (FC_PROTECTED(fc))
1984 			ND_PRINT((ndo, "Protected "));
1985 		if (FC_TYPE(fc) != T_CTRL || FC_SUBTYPE(fc) != CTRL_PS_POLL)
1986 			ND_PRINT((ndo, "%dus ",
1987 			    EXTRACT_LE_16BITS(
1988 			        &((const struct mgmt_header_t *)p)->duration)));
1989 	}
1990 	if (meshdrlen != 0) {
1991 		const struct meshcntl_t *mc =
1992 		    (const struct meshcntl_t *)&p[hdrlen - meshdrlen];
1993 		int ae = mc->flags & 3;
1994 
1995 		ND_PRINT((ndo, "MeshData (AE %d TTL %u seq %u", ae, mc->ttl,
1996 		    EXTRACT_LE_32BITS(mc->seq)));
1997 		if (ae > 0)
1998 			ND_PRINT((ndo, " A4:%s", etheraddr_string(ndo, mc->addr4)));
1999 		if (ae > 1)
2000 			ND_PRINT((ndo, " A5:%s", etheraddr_string(ndo, mc->addr5)));
2001 		if (ae > 2)
2002 			ND_PRINT((ndo, " A6:%s", etheraddr_string(ndo, mc->addr6)));
2003 		ND_PRINT((ndo, ") "));
2004 	}
2005 
2006 	switch (FC_TYPE(fc)) {
2007 	case T_MGMT:
2008 		mgmt_header_print(ndo, p);
2009 		break;
2010 	case T_CTRL:
2011 		ctrl_header_print(ndo, fc, p);
2012 		break;
2013 	case T_DATA:
2014 		data_header_print(ndo, fc, p);
2015 		break;
2016 	default:
2017 		break;
2018 	}
2019 }
2020 
2021 #ifndef roundup2
2022 #define	roundup2(x, y)	(((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */
2023 #endif
2024 
2025 static const char tstr[] = "[|802.11]";
2026 
2027 static u_int
2028 ieee802_11_print(netdissect_options *ndo,
2029                  const u_char *p, u_int length, u_int orig_caplen, int pad,
2030                  u_int fcslen)
2031 {
2032 	uint16_t fc;
2033 	u_int caplen, hdrlen, meshdrlen;
2034 	struct lladdr_info src, dst;
2035 	int llc_hdrlen;
2036 
2037 	caplen = orig_caplen;
2038 	/* Remove FCS, if present */
2039 	if (length < fcslen) {
2040 		ND_PRINT((ndo, "%s", tstr));
2041 		return caplen;
2042 	}
2043 	length -= fcslen;
2044 	if (caplen > length) {
2045 		/* Amount of FCS in actual packet data, if any */
2046 		fcslen = caplen - length;
2047 		caplen -= fcslen;
2048 		ndo->ndo_snapend -= fcslen;
2049 	}
2050 
2051 	if (caplen < IEEE802_11_FC_LEN) {
2052 		ND_PRINT((ndo, "%s", tstr));
2053 		return orig_caplen;
2054 	}
2055 
2056 	fc = EXTRACT_LE_16BITS(p);
2057 	hdrlen = extract_header_length(ndo, fc);
2058 	if (hdrlen == 0) {
2059 		/* Unknown frame type or control frame subtype; quit. */
2060 		return (0);
2061 	}
2062 	if (pad)
2063 		hdrlen = roundup2(hdrlen, 4);
2064 	if (ndo->ndo_Hflag && FC_TYPE(fc) == T_DATA &&
2065 	    DATA_FRAME_IS_QOS(FC_SUBTYPE(fc))) {
2066 		meshdrlen = extract_mesh_header_length(p+hdrlen);
2067 		hdrlen += meshdrlen;
2068 	} else
2069 		meshdrlen = 0;
2070 
2071 	if (caplen < hdrlen) {
2072 		ND_PRINT((ndo, "%s", tstr));
2073 		return hdrlen;
2074 	}
2075 
2076 	if (ndo->ndo_eflag)
2077 		ieee_802_11_hdr_print(ndo, fc, p, hdrlen, meshdrlen);
2078 
2079 	/*
2080 	 * Go past the 802.11 header.
2081 	 */
2082 	length -= hdrlen;
2083 	caplen -= hdrlen;
2084 	p += hdrlen;
2085 
2086 	src.addr_string = etheraddr_string;
2087 	dst.addr_string = etheraddr_string;
2088 	switch (FC_TYPE(fc)) {
2089 	case T_MGMT:
2090 		get_mgmt_src_dst_mac(p - hdrlen, &src.addr, &dst.addr);
2091 		if (!mgmt_body_print(ndo, fc, src.addr, p, length)) {
2092 			ND_PRINT((ndo, "%s", tstr));
2093 			return hdrlen;
2094 		}
2095 		break;
2096 	case T_CTRL:
2097 		if (!ctrl_body_print(ndo, fc, p - hdrlen)) {
2098 			ND_PRINT((ndo, "%s", tstr));
2099 			return hdrlen;
2100 		}
2101 		break;
2102 	case T_DATA:
2103 		if (DATA_FRAME_IS_NULL(FC_SUBTYPE(fc)))
2104 			return hdrlen;	/* no-data frame */
2105 		/* There may be a problem w/ AP not having this bit set */
2106 		if (FC_PROTECTED(fc)) {
2107 			ND_PRINT((ndo, "Data"));
2108 			if (!wep_print(ndo, p)) {
2109 				ND_PRINT((ndo, "%s", tstr));
2110 				return hdrlen;
2111 			}
2112 		} else {
2113 			get_data_src_dst_mac(fc, p - hdrlen, &src.addr, &dst.addr);
2114 			llc_hdrlen = llc_print(ndo, p, length, caplen, &src, &dst);
2115 			if (llc_hdrlen < 0) {
2116 				/*
2117 				 * Some kinds of LLC packet we cannot
2118 				 * handle intelligently
2119 				 */
2120 				if (!ndo->ndo_suppress_default_print)
2121 					ND_DEFAULTPRINT(p, caplen);
2122 				llc_hdrlen = -llc_hdrlen;
2123 			}
2124 			hdrlen += llc_hdrlen;
2125 		}
2126 		break;
2127 	default:
2128 		/* We shouldn't get here - we should already have quit */
2129 		break;
2130 	}
2131 
2132 	return hdrlen;
2133 }
2134 
2135 /*
2136  * This is the top level routine of the printer.  'p' points
2137  * to the 802.11 header of the packet, 'h->ts' is the timestamp,
2138  * 'h->len' is the length of the packet off the wire, and 'h->caplen'
2139  * is the number of bytes actually captured.
2140  */
2141 u_int
2142 ieee802_11_if_print(netdissect_options *ndo,
2143                     const struct pcap_pkthdr *h, const u_char *p)
2144 {
2145 	return ieee802_11_print(ndo, p, h->len, h->caplen, 0, 0);
2146 }
2147 
2148 
2149 /* $FreeBSD: src/sys/net80211/ieee80211_radiotap.h,v 1.5 2005/01/22 20:12:05 sam Exp $ */
2150 /* NetBSD: ieee802_11_radio.h,v 1.2 2006/02/26 03:04:03 dyoung Exp  */
2151 
2152 /*-
2153  * Copyright (c) 2003, 2004 David Young.  All rights reserved.
2154  *
2155  * Redistribution and use in source and binary forms, with or without
2156  * modification, are permitted provided that the following conditions
2157  * are met:
2158  * 1. Redistributions of source code must retain the above copyright
2159  *    notice, this list of conditions and the following disclaimer.
2160  * 2. Redistributions in binary form must reproduce the above copyright
2161  *    notice, this list of conditions and the following disclaimer in the
2162  *    documentation and/or other materials provided with the distribution.
2163  * 3. The name of David Young may not be used to endorse or promote
2164  *    products derived from this software without specific prior
2165  *    written permission.
2166  *
2167  * THIS SOFTWARE IS PROVIDED BY DAVID YOUNG ``AS IS'' AND ANY
2168  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
2169  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
2170  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL DAVID
2171  * YOUNG BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
2172  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
2173  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2174  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
2175  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
2176  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2177  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
2178  * OF SUCH DAMAGE.
2179  */
2180 
2181 /* A generic radio capture format is desirable. It must be
2182  * rigidly defined (e.g., units for fields should be given),
2183  * and easily extensible.
2184  *
2185  * The following is an extensible radio capture format. It is
2186  * based on a bitmap indicating which fields are present.
2187  *
2188  * I am trying to describe precisely what the application programmer
2189  * should expect in the following, and for that reason I tell the
2190  * units and origin of each measurement (where it applies), or else I
2191  * use sufficiently weaselly language ("is a monotonically nondecreasing
2192  * function of...") that I cannot set false expectations for lawyerly
2193  * readers.
2194  */
2195 
2196 /*
2197  * The radio capture header precedes the 802.11 header.
2198  *
2199  * Note well: all radiotap fields are little-endian.
2200  */
2201 struct ieee80211_radiotap_header {
2202 	uint8_t		it_version;	/* Version 0. Only increases
2203 					 * for drastic changes,
2204 					 * introduction of compatible
2205 					 * new fields does not count.
2206 					 */
2207 	uint8_t		it_pad;
2208 	uint16_t	it_len;		/* length of the whole
2209 					 * header in bytes, including
2210 					 * it_version, it_pad,
2211 					 * it_len, and data fields.
2212 					 */
2213 	uint32_t	it_present;	/* A bitmap telling which
2214 					 * fields are present. Set bit 31
2215 					 * (0x80000000) to extend the
2216 					 * bitmap by another 32 bits.
2217 					 * Additional extensions are made
2218 					 * by setting bit 31.
2219 					 */
2220 };
2221 
2222 /* Name                                 Data type       Units
2223  * ----                                 ---------       -----
2224  *
2225  * IEEE80211_RADIOTAP_TSFT              uint64_t       microseconds
2226  *
2227  *      Value in microseconds of the MAC's 64-bit 802.11 Time
2228  *      Synchronization Function timer when the first bit of the
2229  *      MPDU arrived at the MAC. For received frames, only.
2230  *
2231  * IEEE80211_RADIOTAP_CHANNEL           2 x uint16_t   MHz, bitmap
2232  *
2233  *      Tx/Rx frequency in MHz, followed by flags (see below).
2234  *	Note that IEEE80211_RADIOTAP_XCHANNEL must be used to
2235  *	represent an HT channel as there is not enough room in
2236  *	the flags word.
2237  *
2238  * IEEE80211_RADIOTAP_FHSS              uint16_t       see below
2239  *
2240  *      For frequency-hopping radios, the hop set (first byte)
2241  *      and pattern (second byte).
2242  *
2243  * IEEE80211_RADIOTAP_RATE              uint8_t        500kb/s or index
2244  *
2245  *      Tx/Rx data rate.  If bit 0x80 is set then it represents an
2246  *	an MCS index and not an IEEE rate.
2247  *
2248  * IEEE80211_RADIOTAP_DBM_ANTSIGNAL     int8_t          decibels from
2249  *                                                      one milliwatt (dBm)
2250  *
2251  *      RF signal power at the antenna, decibel difference from
2252  *      one milliwatt.
2253  *
2254  * IEEE80211_RADIOTAP_DBM_ANTNOISE      int8_t          decibels from
2255  *                                                      one milliwatt (dBm)
2256  *
2257  *      RF noise power at the antenna, decibel difference from one
2258  *      milliwatt.
2259  *
2260  * IEEE80211_RADIOTAP_DB_ANTSIGNAL      uint8_t        decibel (dB)
2261  *
2262  *      RF signal power at the antenna, decibel difference from an
2263  *      arbitrary, fixed reference.
2264  *
2265  * IEEE80211_RADIOTAP_DB_ANTNOISE       uint8_t        decibel (dB)
2266  *
2267  *      RF noise power at the antenna, decibel difference from an
2268  *      arbitrary, fixed reference point.
2269  *
2270  * IEEE80211_RADIOTAP_LOCK_QUALITY      uint16_t       unitless
2271  *
2272  *      Quality of Barker code lock. Unitless. Monotonically
2273  *      nondecreasing with "better" lock strength. Called "Signal
2274  *      Quality" in datasheets.  (Is there a standard way to measure
2275  *      this?)
2276  *
2277  * IEEE80211_RADIOTAP_TX_ATTENUATION    uint16_t       unitless
2278  *
2279  *      Transmit power expressed as unitless distance from max
2280  *      power set at factory calibration.  0 is max power.
2281  *      Monotonically nondecreasing with lower power levels.
2282  *
2283  * IEEE80211_RADIOTAP_DB_TX_ATTENUATION uint16_t       decibels (dB)
2284  *
2285  *      Transmit power expressed as decibel distance from max power
2286  *      set at factory calibration.  0 is max power.  Monotonically
2287  *      nondecreasing with lower power levels.
2288  *
2289  * IEEE80211_RADIOTAP_DBM_TX_POWER      int8_t          decibels from
2290  *                                                      one milliwatt (dBm)
2291  *
2292  *      Transmit power expressed as dBm (decibels from a 1 milliwatt
2293  *      reference). This is the absolute power level measured at
2294  *      the antenna port.
2295  *
2296  * IEEE80211_RADIOTAP_FLAGS             uint8_t        bitmap
2297  *
2298  *      Properties of transmitted and received frames. See flags
2299  *      defined below.
2300  *
2301  * IEEE80211_RADIOTAP_ANTENNA           uint8_t        antenna index
2302  *
2303  *      Unitless indication of the Rx/Tx antenna for this packet.
2304  *      The first antenna is antenna 0.
2305  *
2306  * IEEE80211_RADIOTAP_RX_FLAGS          uint16_t       bitmap
2307  *
2308  *     Properties of received frames. See flags defined below.
2309  *
2310  * IEEE80211_RADIOTAP_XCHANNEL          uint32_t	bitmap
2311  *					uint16_t	MHz
2312  *					uint8_t		channel number
2313  *					uint8_t		.5 dBm
2314  *
2315  *	Extended channel specification: flags (see below) followed by
2316  *	frequency in MHz, the corresponding IEEE channel number, and
2317  *	finally the maximum regulatory transmit power cap in .5 dBm
2318  *	units.  This property supersedes IEEE80211_RADIOTAP_CHANNEL
2319  *	and only one of the two should be present.
2320  *
2321  * IEEE80211_RADIOTAP_MCS		uint8_t		known
2322  *					uint8_t		flags
2323  *					uint8_t		mcs
2324  *
2325  *	Bitset indicating which fields have known values, followed
2326  *	by bitset of flag values, followed by the MCS rate index as
2327  *	in IEEE 802.11n.
2328  *
2329  *
2330  * IEEE80211_RADIOTAP_AMPDU_STATUS	u32, u16, u8, u8	unitless
2331  *
2332  *	Contains the AMPDU information for the subframe.
2333  *
2334  * IEEE80211_RADIOTAP_VHT	u16, u8, u8, u8[4], u8, u8, u16
2335  *
2336  *	Contains VHT information about this frame.
2337  *
2338  * IEEE80211_RADIOTAP_VENDOR_NAMESPACE
2339  *					uint8_t  OUI[3]
2340  *                                   uint8_t  subspace
2341  *                                   uint16_t length
2342  *
2343  *     The Vendor Namespace Field contains three sub-fields. The first
2344  *     sub-field is 3 bytes long. It contains the vendor's IEEE 802
2345  *     Organizationally Unique Identifier (OUI). The fourth byte is a
2346  *     vendor-specific "namespace selector."
2347  *
2348  */
2349 enum ieee80211_radiotap_type {
2350 	IEEE80211_RADIOTAP_TSFT = 0,
2351 	IEEE80211_RADIOTAP_FLAGS = 1,
2352 	IEEE80211_RADIOTAP_RATE = 2,
2353 	IEEE80211_RADIOTAP_CHANNEL = 3,
2354 	IEEE80211_RADIOTAP_FHSS = 4,
2355 	IEEE80211_RADIOTAP_DBM_ANTSIGNAL = 5,
2356 	IEEE80211_RADIOTAP_DBM_ANTNOISE = 6,
2357 	IEEE80211_RADIOTAP_LOCK_QUALITY = 7,
2358 	IEEE80211_RADIOTAP_TX_ATTENUATION = 8,
2359 	IEEE80211_RADIOTAP_DB_TX_ATTENUATION = 9,
2360 	IEEE80211_RADIOTAP_DBM_TX_POWER = 10,
2361 	IEEE80211_RADIOTAP_ANTENNA = 11,
2362 	IEEE80211_RADIOTAP_DB_ANTSIGNAL = 12,
2363 	IEEE80211_RADIOTAP_DB_ANTNOISE = 13,
2364 	IEEE80211_RADIOTAP_RX_FLAGS = 14,
2365 	/* NB: gap for netbsd definitions */
2366 	IEEE80211_RADIOTAP_XCHANNEL = 18,
2367 	IEEE80211_RADIOTAP_MCS = 19,
2368 	IEEE80211_RADIOTAP_AMPDU_STATUS = 20,
2369 	IEEE80211_RADIOTAP_VHT = 21,
2370 	IEEE80211_RADIOTAP_NAMESPACE = 29,
2371 	IEEE80211_RADIOTAP_VENDOR_NAMESPACE = 30,
2372 	IEEE80211_RADIOTAP_EXT = 31
2373 };
2374 
2375 /* channel attributes */
2376 #define	IEEE80211_CHAN_TURBO	0x00010	/* Turbo channel */
2377 #define	IEEE80211_CHAN_CCK	0x00020	/* CCK channel */
2378 #define	IEEE80211_CHAN_OFDM	0x00040	/* OFDM channel */
2379 #define	IEEE80211_CHAN_2GHZ	0x00080	/* 2 GHz spectrum channel. */
2380 #define	IEEE80211_CHAN_5GHZ	0x00100	/* 5 GHz spectrum channel */
2381 #define	IEEE80211_CHAN_PASSIVE	0x00200	/* Only passive scan allowed */
2382 #define	IEEE80211_CHAN_DYN	0x00400	/* Dynamic CCK-OFDM channel */
2383 #define	IEEE80211_CHAN_GFSK	0x00800	/* GFSK channel (FHSS PHY) */
2384 #define	IEEE80211_CHAN_GSM	0x01000	/* 900 MHz spectrum channel */
2385 #define	IEEE80211_CHAN_STURBO	0x02000	/* 11a static turbo channel only */
2386 #define	IEEE80211_CHAN_HALF	0x04000	/* Half rate channel */
2387 #define	IEEE80211_CHAN_QUARTER	0x08000	/* Quarter rate channel */
2388 #define	IEEE80211_CHAN_HT20	0x10000	/* HT 20 channel */
2389 #define	IEEE80211_CHAN_HT40U	0x20000	/* HT 40 channel w/ ext above */
2390 #define	IEEE80211_CHAN_HT40D	0x40000	/* HT 40 channel w/ ext below */
2391 
2392 /* Useful combinations of channel characteristics, borrowed from Ethereal */
2393 #define IEEE80211_CHAN_A \
2394         (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2395 #define IEEE80211_CHAN_B \
2396         (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
2397 #define IEEE80211_CHAN_G \
2398         (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
2399 #define IEEE80211_CHAN_TA \
2400         (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_TURBO)
2401 #define IEEE80211_CHAN_TG \
2402         (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN  | IEEE80211_CHAN_TURBO)
2403 
2404 
2405 /* For IEEE80211_RADIOTAP_FLAGS */
2406 #define	IEEE80211_RADIOTAP_F_CFP	0x01	/* sent/received
2407 						 * during CFP
2408 						 */
2409 #define	IEEE80211_RADIOTAP_F_SHORTPRE	0x02	/* sent/received
2410 						 * with short
2411 						 * preamble
2412 						 */
2413 #define	IEEE80211_RADIOTAP_F_WEP	0x04	/* sent/received
2414 						 * with WEP encryption
2415 						 */
2416 #define	IEEE80211_RADIOTAP_F_FRAG	0x08	/* sent/received
2417 						 * with fragmentation
2418 						 */
2419 #define	IEEE80211_RADIOTAP_F_FCS	0x10	/* frame includes FCS */
2420 #define	IEEE80211_RADIOTAP_F_DATAPAD	0x20	/* frame has padding between
2421 						 * 802.11 header and payload
2422 						 * (to 32-bit boundary)
2423 						 */
2424 #define	IEEE80211_RADIOTAP_F_BADFCS	0x40	/* does not pass FCS check */
2425 
2426 /* For IEEE80211_RADIOTAP_RX_FLAGS */
2427 #define IEEE80211_RADIOTAP_F_RX_BADFCS	0x0001	/* frame failed crc check */
2428 #define IEEE80211_RADIOTAP_F_RX_PLCP_CRC	0x0002	/* frame failed PLCP CRC check */
2429 
2430 /* For IEEE80211_RADIOTAP_MCS known */
2431 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN		0x01
2432 #define IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN		0x02	/* MCS index field */
2433 #define IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN	0x04
2434 #define IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN		0x08
2435 #define IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN		0x10
2436 #define IEEE80211_RADIOTAP_MCS_STBC_KNOWN		0x20
2437 #define IEEE80211_RADIOTAP_MCS_NESS_KNOWN		0x40
2438 #define IEEE80211_RADIOTAP_MCS_NESS_BIT_1		0x80
2439 
2440 /* For IEEE80211_RADIOTAP_MCS flags */
2441 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK	0x03
2442 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20	0
2443 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_40	1
2444 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20L	2
2445 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20U	3
2446 #define IEEE80211_RADIOTAP_MCS_SHORT_GI		0x04 /* short guard interval */
2447 #define IEEE80211_RADIOTAP_MCS_HT_GREENFIELD	0x08
2448 #define IEEE80211_RADIOTAP_MCS_FEC_LDPC		0x10
2449 #define IEEE80211_RADIOTAP_MCS_STBC_MASK	0x60
2450 #define		IEEE80211_RADIOTAP_MCS_STBC_1	1
2451 #define		IEEE80211_RADIOTAP_MCS_STBC_2	2
2452 #define		IEEE80211_RADIOTAP_MCS_STBC_3	3
2453 #define IEEE80211_RADIOTAP_MCS_STBC_SHIFT	5
2454 #define IEEE80211_RADIOTAP_MCS_NESS_BIT_0	0x80
2455 
2456 /* For IEEE80211_RADIOTAP_AMPDU_STATUS */
2457 #define IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN		0x0001
2458 #define IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN		0x0002
2459 #define IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN		0x0004
2460 #define IEEE80211_RADIOTAP_AMPDU_IS_LAST		0x0008
2461 #define IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR		0x0010
2462 #define IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN	0x0020
2463 
2464 /* For IEEE80211_RADIOTAP_VHT known */
2465 #define IEEE80211_RADIOTAP_VHT_STBC_KNOWN			0x0001
2466 #define IEEE80211_RADIOTAP_VHT_TXOP_PS_NA_KNOWN			0x0002
2467 #define IEEE80211_RADIOTAP_VHT_GUARD_INTERVAL_KNOWN		0x0004
2468 #define IEEE80211_RADIOTAP_VHT_SGI_NSYM_DIS_KNOWN		0x0008
2469 #define IEEE80211_RADIOTAP_VHT_LDPC_EXTRA_OFDM_SYM_KNOWN	0x0010
2470 #define IEEE80211_RADIOTAP_VHT_BEAMFORMED_KNOWN			0x0020
2471 #define IEEE80211_RADIOTAP_VHT_BANDWIDTH_KNOWN			0x0040
2472 #define IEEE80211_RADIOTAP_VHT_GROUP_ID_KNOWN			0x0080
2473 #define IEEE80211_RADIOTAP_VHT_PARTIAL_AID_KNOWN		0x0100
2474 
2475 /* For IEEE80211_RADIOTAP_VHT flags */
2476 #define IEEE80211_RADIOTAP_VHT_STBC			0x01
2477 #define IEEE80211_RADIOTAP_VHT_TXOP_PS_NA		0x02
2478 #define IEEE80211_RADIOTAP_VHT_SHORT_GI			0x04
2479 #define IEEE80211_RADIOTAP_VHT_SGI_NSYM_M10_9		0x08
2480 #define IEEE80211_RADIOTAP_VHT_LDPC_EXTRA_OFDM_SYM	0x10
2481 #define IEEE80211_RADIOTAP_VHT_BEAMFORMED		0x20
2482 
2483 #define IEEE80211_RADIOTAP_VHT_BANDWIDTH_MASK	0x1f
2484 
2485 #define IEEE80211_RADIOTAP_VHT_NSS_MASK		0x0f
2486 #define IEEE80211_RADIOTAP_VHT_MCS_MASK		0xf0
2487 #define IEEE80211_RADIOTAP_VHT_MCS_SHIFT	4
2488 
2489 #define IEEE80211_RADIOTAP_CODING_LDPC_USERn			0x01
2490 
2491 #define	IEEE80211_CHAN_FHSS \
2492 	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
2493 #define	IEEE80211_CHAN_A \
2494 	(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2495 #define	IEEE80211_CHAN_B \
2496 	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
2497 #define	IEEE80211_CHAN_PUREG \
2498 	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
2499 #define	IEEE80211_CHAN_G \
2500 	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
2501 
2502 #define	IS_CHAN_FHSS(flags) \
2503 	((flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS)
2504 #define	IS_CHAN_A(flags) \
2505 	((flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)
2506 #define	IS_CHAN_B(flags) \
2507 	((flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)
2508 #define	IS_CHAN_PUREG(flags) \
2509 	((flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG)
2510 #define	IS_CHAN_G(flags) \
2511 	((flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)
2512 #define	IS_CHAN_ANYG(flags) \
2513 	(IS_CHAN_PUREG(flags) || IS_CHAN_G(flags))
2514 
2515 static void
2516 print_chaninfo(netdissect_options *ndo,
2517                uint16_t freq, int flags, int presentflags)
2518 {
2519 	ND_PRINT((ndo, "%u MHz", freq));
2520 	if (presentflags & (1 << IEEE80211_RADIOTAP_MCS)) {
2521 		/*
2522 		 * We have the MCS field, so this is 11n, regardless
2523 		 * of what the channel flags say.
2524 		 */
2525 		ND_PRINT((ndo, " 11n"));
2526 	} else {
2527 		if (IS_CHAN_FHSS(flags))
2528 			ND_PRINT((ndo, " FHSS"));
2529 		if (IS_CHAN_A(flags)) {
2530 			if (flags & IEEE80211_CHAN_HALF)
2531 				ND_PRINT((ndo, " 11a/10Mhz"));
2532 			else if (flags & IEEE80211_CHAN_QUARTER)
2533 				ND_PRINT((ndo, " 11a/5Mhz"));
2534 			else
2535 				ND_PRINT((ndo, " 11a"));
2536 		}
2537 		if (IS_CHAN_ANYG(flags)) {
2538 			if (flags & IEEE80211_CHAN_HALF)
2539 				ND_PRINT((ndo, " 11g/10Mhz"));
2540 			else if (flags & IEEE80211_CHAN_QUARTER)
2541 				ND_PRINT((ndo, " 11g/5Mhz"));
2542 			else
2543 				ND_PRINT((ndo, " 11g"));
2544 		} else if (IS_CHAN_B(flags))
2545 			ND_PRINT((ndo, " 11b"));
2546 		if (flags & IEEE80211_CHAN_TURBO)
2547 			ND_PRINT((ndo, " Turbo"));
2548 	}
2549 	/*
2550 	 * These apply to 11n.
2551 	 */
2552 	if (flags & IEEE80211_CHAN_HT20)
2553 		ND_PRINT((ndo, " ht/20"));
2554 	else if (flags & IEEE80211_CHAN_HT40D)
2555 		ND_PRINT((ndo, " ht/40-"));
2556 	else if (flags & IEEE80211_CHAN_HT40U)
2557 		ND_PRINT((ndo, " ht/40+"));
2558 	ND_PRINT((ndo, " "));
2559 }
2560 
2561 static int
2562 print_radiotap_field(netdissect_options *ndo,
2563                      struct cpack_state *s, uint32_t bit, uint8_t *flagsp,
2564                      uint32_t presentflags)
2565 {
2566 	u_int i;
2567 	int rc;
2568 
2569 	switch (bit) {
2570 
2571 	case IEEE80211_RADIOTAP_TSFT: {
2572 		uint64_t tsft;
2573 
2574 		rc = cpack_uint64(s, &tsft);
2575 		if (rc != 0)
2576 			goto trunc;
2577 		ND_PRINT((ndo, "%" PRIu64 "us tsft ", tsft));
2578 		break;
2579 		}
2580 
2581 	case IEEE80211_RADIOTAP_FLAGS: {
2582 		uint8_t flagsval;
2583 
2584 		rc = cpack_uint8(s, &flagsval);
2585 		if (rc != 0)
2586 			goto trunc;
2587 		*flagsp = flagsval;
2588 		if (flagsval & IEEE80211_RADIOTAP_F_CFP)
2589 			ND_PRINT((ndo, "cfp "));
2590 		if (flagsval & IEEE80211_RADIOTAP_F_SHORTPRE)
2591 			ND_PRINT((ndo, "short preamble "));
2592 		if (flagsval & IEEE80211_RADIOTAP_F_WEP)
2593 			ND_PRINT((ndo, "wep "));
2594 		if (flagsval & IEEE80211_RADIOTAP_F_FRAG)
2595 			ND_PRINT((ndo, "fragmented "));
2596 		if (flagsval & IEEE80211_RADIOTAP_F_BADFCS)
2597 			ND_PRINT((ndo, "bad-fcs "));
2598 		break;
2599 		}
2600 
2601 	case IEEE80211_RADIOTAP_RATE: {
2602 		uint8_t rate;
2603 
2604 		rc = cpack_uint8(s, &rate);
2605 		if (rc != 0)
2606 			goto trunc;
2607 		/*
2608 		 * XXX On FreeBSD rate & 0x80 means we have an MCS. On
2609 		 * Linux and AirPcap it does not.  (What about
2610 		 * Mac OS X, NetBSD, OpenBSD, and DragonFly BSD?)
2611 		 *
2612 		 * This is an issue either for proprietary extensions
2613 		 * to 11a or 11g, which do exist, or for 11n
2614 		 * implementations that stuff a rate value into
2615 		 * this field, which also appear to exist.
2616 		 *
2617 		 * We currently handle that by assuming that
2618 		 * if the 0x80 bit is set *and* the remaining
2619 		 * bits have a value between 0 and 15 it's
2620 		 * an MCS value, otherwise it's a rate.  If
2621 		 * there are cases where systems that use
2622 		 * "0x80 + MCS index" for MCS indices > 15,
2623 		 * or stuff a rate value here between 64 and
2624 		 * 71.5 Mb/s in here, we'll need a preference
2625 		 * setting.  Such rates do exist, e.g. 11n
2626 		 * MCS 7 at 20 MHz with a long guard interval.
2627 		 */
2628 		if (rate >= 0x80 && rate <= 0x8f) {
2629 			/*
2630 			 * XXX - we don't know the channel width
2631 			 * or guard interval length, so we can't
2632 			 * convert this to a data rate.
2633 			 *
2634 			 * If you want us to show a data rate,
2635 			 * use the MCS field, not the Rate field;
2636 			 * the MCS field includes not only the
2637 			 * MCS index, it also includes bandwidth
2638 			 * and guard interval information.
2639 			 *
2640 			 * XXX - can we get the channel width
2641 			 * from XChannel and the guard interval
2642 			 * information from Flags, at least on
2643 			 * FreeBSD?
2644 			 */
2645 			ND_PRINT((ndo, "MCS %u ", rate & 0x7f));
2646 		} else
2647 			ND_PRINT((ndo, "%2.1f Mb/s ", .5 * rate));
2648 		break;
2649 		}
2650 
2651 	case IEEE80211_RADIOTAP_CHANNEL: {
2652 		uint16_t frequency;
2653 		uint16_t flags;
2654 
2655 		rc = cpack_uint16(s, &frequency);
2656 		if (rc != 0)
2657 			goto trunc;
2658 		rc = cpack_uint16(s, &flags);
2659 		if (rc != 0)
2660 			goto trunc;
2661 		/*
2662 		 * If CHANNEL and XCHANNEL are both present, skip
2663 		 * CHANNEL.
2664 		 */
2665 		if (presentflags & (1 << IEEE80211_RADIOTAP_XCHANNEL))
2666 			break;
2667 		print_chaninfo(ndo, frequency, flags, presentflags);
2668 		break;
2669 		}
2670 
2671 	case IEEE80211_RADIOTAP_FHSS: {
2672 		uint8_t hopset;
2673 		uint8_t hoppat;
2674 
2675 		rc = cpack_uint8(s, &hopset);
2676 		if (rc != 0)
2677 			goto trunc;
2678 		rc = cpack_uint8(s, &hoppat);
2679 		if (rc != 0)
2680 			goto trunc;
2681 		ND_PRINT((ndo, "fhset %d fhpat %d ", hopset, hoppat));
2682 		break;
2683 		}
2684 
2685 	case IEEE80211_RADIOTAP_DBM_ANTSIGNAL: {
2686 		int8_t dbm_antsignal;
2687 
2688 		rc = cpack_int8(s, &dbm_antsignal);
2689 		if (rc != 0)
2690 			goto trunc;
2691 		ND_PRINT((ndo, "%ddBm signal ", dbm_antsignal));
2692 		break;
2693 		}
2694 
2695 	case IEEE80211_RADIOTAP_DBM_ANTNOISE: {
2696 		int8_t dbm_antnoise;
2697 
2698 		rc = cpack_int8(s, &dbm_antnoise);
2699 		if (rc != 0)
2700 			goto trunc;
2701 		ND_PRINT((ndo, "%ddBm noise ", dbm_antnoise));
2702 		break;
2703 		}
2704 
2705 	case IEEE80211_RADIOTAP_LOCK_QUALITY: {
2706 		uint16_t lock_quality;
2707 
2708 		rc = cpack_uint16(s, &lock_quality);
2709 		if (rc != 0)
2710 			goto trunc;
2711 		ND_PRINT((ndo, "%u sq ", lock_quality));
2712 		break;
2713 		}
2714 
2715 	case IEEE80211_RADIOTAP_TX_ATTENUATION: {
2716 		uint16_t tx_attenuation;
2717 
2718 		rc = cpack_uint16(s, &tx_attenuation);
2719 		if (rc != 0)
2720 			goto trunc;
2721 		ND_PRINT((ndo, "%d tx power ", -(int)tx_attenuation));
2722 		break;
2723 		}
2724 
2725 	case IEEE80211_RADIOTAP_DB_TX_ATTENUATION: {
2726 		uint8_t db_tx_attenuation;
2727 
2728 		rc = cpack_uint8(s, &db_tx_attenuation);
2729 		if (rc != 0)
2730 			goto trunc;
2731 		ND_PRINT((ndo, "%ddB tx attenuation ", -(int)db_tx_attenuation));
2732 		break;
2733 		}
2734 
2735 	case IEEE80211_RADIOTAP_DBM_TX_POWER: {
2736 		int8_t dbm_tx_power;
2737 
2738 		rc = cpack_int8(s, &dbm_tx_power);
2739 		if (rc != 0)
2740 			goto trunc;
2741 		ND_PRINT((ndo, "%ddBm tx power ", dbm_tx_power));
2742 		break;
2743 		}
2744 
2745 	case IEEE80211_RADIOTAP_ANTENNA: {
2746 		uint8_t antenna;
2747 
2748 		rc = cpack_uint8(s, &antenna);
2749 		if (rc != 0)
2750 			goto trunc;
2751 		ND_PRINT((ndo, "antenna %u ", antenna));
2752 		break;
2753 		}
2754 
2755 	case IEEE80211_RADIOTAP_DB_ANTSIGNAL: {
2756 		uint8_t db_antsignal;
2757 
2758 		rc = cpack_uint8(s, &db_antsignal);
2759 		if (rc != 0)
2760 			goto trunc;
2761 		ND_PRINT((ndo, "%ddB signal ", db_antsignal));
2762 		break;
2763 		}
2764 
2765 	case IEEE80211_RADIOTAP_DB_ANTNOISE: {
2766 		uint8_t db_antnoise;
2767 
2768 		rc = cpack_uint8(s, &db_antnoise);
2769 		if (rc != 0)
2770 			goto trunc;
2771 		ND_PRINT((ndo, "%ddB noise ", db_antnoise));
2772 		break;
2773 		}
2774 
2775 	case IEEE80211_RADIOTAP_RX_FLAGS: {
2776 		uint16_t rx_flags;
2777 
2778 		rc = cpack_uint16(s, &rx_flags);
2779 		if (rc != 0)
2780 			goto trunc;
2781 		/* Do nothing for now */
2782 		break;
2783 		}
2784 
2785 	case IEEE80211_RADIOTAP_XCHANNEL: {
2786 		uint32_t flags;
2787 		uint16_t frequency;
2788 		uint8_t channel;
2789 		uint8_t maxpower;
2790 
2791 		rc = cpack_uint32(s, &flags);
2792 		if (rc != 0)
2793 			goto trunc;
2794 		rc = cpack_uint16(s, &frequency);
2795 		if (rc != 0)
2796 			goto trunc;
2797 		rc = cpack_uint8(s, &channel);
2798 		if (rc != 0)
2799 			goto trunc;
2800 		rc = cpack_uint8(s, &maxpower);
2801 		if (rc != 0)
2802 			goto trunc;
2803 		print_chaninfo(ndo, frequency, flags, presentflags);
2804 		break;
2805 		}
2806 
2807 	case IEEE80211_RADIOTAP_MCS: {
2808 		uint8_t known;
2809 		uint8_t flags;
2810 		uint8_t mcs_index;
2811 		static const char *ht_bandwidth[4] = {
2812 			"20 MHz",
2813 			"40 MHz",
2814 			"20 MHz (L)",
2815 			"20 MHz (U)"
2816 		};
2817 		float htrate;
2818 
2819 		rc = cpack_uint8(s, &known);
2820 		if (rc != 0)
2821 			goto trunc;
2822 		rc = cpack_uint8(s, &flags);
2823 		if (rc != 0)
2824 			goto trunc;
2825 		rc = cpack_uint8(s, &mcs_index);
2826 		if (rc != 0)
2827 			goto trunc;
2828 		if (known & IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN) {
2829 			/*
2830 			 * We know the MCS index.
2831 			 */
2832 			if (mcs_index <= MAX_MCS_INDEX) {
2833 				/*
2834 				 * And it's in-range.
2835 				 */
2836 				if (known & (IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN|IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN)) {
2837 					/*
2838 					 * And we know both the bandwidth and
2839 					 * the guard interval, so we can look
2840 					 * up the rate.
2841 					 */
2842 					htrate =
2843 						ieee80211_float_htrates \
2844 							[mcs_index] \
2845 							[((flags & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK) == IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 ? 1 : 0)] \
2846 							[((flags & IEEE80211_RADIOTAP_MCS_SHORT_GI) ? 1 : 0)];
2847 				} else {
2848 					/*
2849 					 * We don't know both the bandwidth
2850 					 * and the guard interval, so we can
2851 					 * only report the MCS index.
2852 					 */
2853 					htrate = 0.0;
2854 				}
2855 			} else {
2856 				/*
2857 				 * The MCS value is out of range.
2858 				 */
2859 				htrate = 0.0;
2860 			}
2861 			if (htrate != 0.0) {
2862 				/*
2863 				 * We have the rate.
2864 				 * Print it.
2865 				 */
2866 				ND_PRINT((ndo, "%.1f Mb/s MCS %u ", htrate, mcs_index));
2867 			} else {
2868 				/*
2869 				 * We at least have the MCS index.
2870 				 * Print it.
2871 				 */
2872 				ND_PRINT((ndo, "MCS %u ", mcs_index));
2873 			}
2874 		}
2875 		if (known & IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN) {
2876 			ND_PRINT((ndo, "%s ",
2877 				ht_bandwidth[flags & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK]));
2878 		}
2879 		if (known & IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN) {
2880 			ND_PRINT((ndo, "%s GI ",
2881 				(flags & IEEE80211_RADIOTAP_MCS_SHORT_GI) ?
2882 				"short" : "long"));
2883 		}
2884 		if (known & IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN) {
2885 			ND_PRINT((ndo, "%s ",
2886 				(flags & IEEE80211_RADIOTAP_MCS_HT_GREENFIELD) ?
2887 				"greenfield" : "mixed"));
2888 		}
2889 		if (known & IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN) {
2890 			ND_PRINT((ndo, "%s FEC ",
2891 				(flags & IEEE80211_RADIOTAP_MCS_FEC_LDPC) ?
2892 				"LDPC" : "BCC"));
2893 		}
2894 		if (known & IEEE80211_RADIOTAP_MCS_STBC_KNOWN) {
2895 			ND_PRINT((ndo, "RX-STBC%u ",
2896 				(flags & IEEE80211_RADIOTAP_MCS_STBC_MASK) >> IEEE80211_RADIOTAP_MCS_STBC_SHIFT));
2897 		}
2898 		break;
2899 		}
2900 
2901 	case IEEE80211_RADIOTAP_AMPDU_STATUS: {
2902 		uint32_t reference_num;
2903 		uint16_t flags;
2904 		uint8_t delim_crc;
2905 		uint8_t reserved;
2906 
2907 		rc = cpack_uint32(s, &reference_num);
2908 		if (rc != 0)
2909 			goto trunc;
2910 		rc = cpack_uint16(s, &flags);
2911 		if (rc != 0)
2912 			goto trunc;
2913 		rc = cpack_uint8(s, &delim_crc);
2914 		if (rc != 0)
2915 			goto trunc;
2916 		rc = cpack_uint8(s, &reserved);
2917 		if (rc != 0)
2918 			goto trunc;
2919 		/* Do nothing for now */
2920 		break;
2921 		}
2922 
2923 	case IEEE80211_RADIOTAP_VHT: {
2924 		uint16_t known;
2925 		uint8_t flags;
2926 		uint8_t bandwidth;
2927 		uint8_t mcs_nss[4];
2928 		uint8_t coding;
2929 		uint8_t group_id;
2930 		uint16_t partial_aid;
2931 		static const char *vht_bandwidth[32] = {
2932 			"20 MHz",
2933 			"40 MHz",
2934 			"20 MHz (L)",
2935 			"20 MHz (U)",
2936 			"80 MHz",
2937 			"80 MHz (L)",
2938 			"80 MHz (U)",
2939 			"80 MHz (LL)",
2940 			"80 MHz (LU)",
2941 			"80 MHz (UL)",
2942 			"80 MHz (UU)",
2943 			"160 MHz",
2944 			"160 MHz (L)",
2945 			"160 MHz (U)",
2946 			"160 MHz (LL)",
2947 			"160 MHz (LU)",
2948 			"160 MHz (UL)",
2949 			"160 MHz (UU)",
2950 			"160 MHz (LLL)",
2951 			"160 MHz (LLU)",
2952 			"160 MHz (LUL)",
2953 			"160 MHz (UUU)",
2954 			"160 MHz (ULL)",
2955 			"160 MHz (ULU)",
2956 			"160 MHz (UUL)",
2957 			"160 MHz (UUU)",
2958 			"unknown (26)",
2959 			"unknown (27)",
2960 			"unknown (28)",
2961 			"unknown (29)",
2962 			"unknown (30)",
2963 			"unknown (31)"
2964 		};
2965 
2966 		rc = cpack_uint16(s, &known);
2967 		if (rc != 0)
2968 			goto trunc;
2969 		rc = cpack_uint8(s, &flags);
2970 		if (rc != 0)
2971 			goto trunc;
2972 		rc = cpack_uint8(s, &bandwidth);
2973 		if (rc != 0)
2974 			goto trunc;
2975 		for (i = 0; i < 4; i++) {
2976 			rc = cpack_uint8(s, &mcs_nss[i]);
2977 			if (rc != 0)
2978 				goto trunc;
2979 		}
2980 		rc = cpack_uint8(s, &coding);
2981 		if (rc != 0)
2982 			goto trunc;
2983 		rc = cpack_uint8(s, &group_id);
2984 		if (rc != 0)
2985 			goto trunc;
2986 		rc = cpack_uint16(s, &partial_aid);
2987 		if (rc != 0)
2988 			goto trunc;
2989 		for (i = 0; i < 4; i++) {
2990 			u_int nss, mcs;
2991 			nss = mcs_nss[i] & IEEE80211_RADIOTAP_VHT_NSS_MASK;
2992 			mcs = (mcs_nss[i] & IEEE80211_RADIOTAP_VHT_MCS_MASK) >> IEEE80211_RADIOTAP_VHT_MCS_SHIFT;
2993 
2994 			if (nss == 0)
2995 				continue;
2996 
2997 			ND_PRINT((ndo, "User %u MCS %u ", i, mcs));
2998 			ND_PRINT((ndo, "%s FEC ",
2999 				(coding & (IEEE80211_RADIOTAP_CODING_LDPC_USERn << i)) ?
3000 				"LDPC" : "BCC"));
3001 		}
3002 		if (known & IEEE80211_RADIOTAP_VHT_BANDWIDTH_KNOWN) {
3003 			ND_PRINT((ndo, "%s ",
3004 				vht_bandwidth[bandwidth & IEEE80211_RADIOTAP_VHT_BANDWIDTH_MASK]));
3005 		}
3006 		if (known & IEEE80211_RADIOTAP_VHT_GUARD_INTERVAL_KNOWN) {
3007 			ND_PRINT((ndo, "%s GI ",
3008 				(flags & IEEE80211_RADIOTAP_VHT_SHORT_GI) ?
3009 				"short" : "long"));
3010 		}
3011 		break;
3012 		}
3013 
3014 	default:
3015 		/* this bit indicates a field whose
3016 		 * size we do not know, so we cannot
3017 		 * proceed.  Just print the bit number.
3018 		 */
3019 		ND_PRINT((ndo, "[bit %u] ", bit));
3020 		return -1;
3021 	}
3022 
3023 	return 0;
3024 
3025 trunc:
3026 	ND_PRINT((ndo, "%s", tstr));
3027 	return rc;
3028 }
3029 
3030 
3031 static int
3032 print_in_radiotap_namespace(netdissect_options *ndo,
3033                             struct cpack_state *s, uint8_t *flags,
3034                             uint32_t presentflags, int bit0)
3035 {
3036 #define	BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x)))
3037 #define	BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x)))
3038 #define	BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x)))
3039 #define	BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x)))
3040 #define	BITNO_2(x) (((x) & 2) ? 1 : 0)
3041 	uint32_t present, next_present;
3042 	int bitno;
3043 	enum ieee80211_radiotap_type bit;
3044 	int rc;
3045 
3046 	for (present = presentflags; present; present = next_present) {
3047 		/*
3048 		 * Clear the least significant bit that is set.
3049 		 */
3050 		next_present = present & (present - 1);
3051 
3052 		/*
3053 		 * Get the bit number, within this presence word,
3054 		 * of the remaining least significant bit that
3055 		 * is set.
3056 		 */
3057 		bitno = BITNO_32(present ^ next_present);
3058 
3059 		/*
3060 		 * Stop if this is one of the "same meaning
3061 		 * in all presence flags" bits.
3062 		 */
3063 		if (bitno >= IEEE80211_RADIOTAP_NAMESPACE)
3064 			break;
3065 
3066 		/*
3067 		 * Get the radiotap bit number of that bit.
3068 		 */
3069 		bit = (enum ieee80211_radiotap_type)(bit0 + bitno);
3070 
3071 		rc = print_radiotap_field(ndo, s, bit, flags, presentflags);
3072 		if (rc != 0)
3073 			return rc;
3074 	}
3075 
3076 	return 0;
3077 }
3078 
3079 static u_int
3080 ieee802_11_radio_print(netdissect_options *ndo,
3081                        const u_char *p, u_int length, u_int caplen)
3082 {
3083 #define	BIT(n)	(1U << n)
3084 #define	IS_EXTENDED(__p)	\
3085 	    (EXTRACT_LE_32BITS(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0
3086 
3087 	struct cpack_state cpacker;
3088 	const struct ieee80211_radiotap_header *hdr;
3089 	uint32_t presentflags;
3090 	const uint32_t *presentp, *last_presentp;
3091 	int vendor_namespace;
3092 	uint8_t vendor_oui[3];
3093 	uint8_t vendor_subnamespace;
3094 	uint16_t skip_length;
3095 	int bit0;
3096 	u_int len;
3097 	uint8_t flags;
3098 	int pad;
3099 	u_int fcslen;
3100 
3101 	if (caplen < sizeof(*hdr)) {
3102 		ND_PRINT((ndo, "%s", tstr));
3103 		return caplen;
3104 	}
3105 
3106 	hdr = (const struct ieee80211_radiotap_header *)p;
3107 
3108 	len = EXTRACT_LE_16BITS(&hdr->it_len);
3109 
3110 	/*
3111 	 * If we don't have the entire radiotap header, just give up.
3112 	 */
3113 	if (caplen < len) {
3114 		ND_PRINT((ndo, "%s", tstr));
3115 		return caplen;
3116 	}
3117 	cpack_init(&cpacker, (const uint8_t *)hdr, len); /* align against header start */
3118 	cpack_advance(&cpacker, sizeof(*hdr)); /* includes the 1st bitmap */
3119 	for (last_presentp = &hdr->it_present;
3120 	     (const u_char*)(last_presentp + 1) <= p + len &&
3121 	     IS_EXTENDED(last_presentp);
3122 	     last_presentp++)
3123 	  cpack_advance(&cpacker, sizeof(hdr->it_present)); /* more bitmaps */
3124 
3125 	/* are there more bitmap extensions than bytes in header? */
3126 	if ((const u_char*)(last_presentp + 1) > p + len) {
3127 		ND_PRINT((ndo, "%s", tstr));
3128 		return caplen;
3129 	}
3130 
3131 	/*
3132 	 * Start out at the beginning of the default radiotap namespace.
3133 	 */
3134 	bit0 = 0;
3135 	vendor_namespace = 0;
3136 	memset(vendor_oui, 0, 3);
3137 	vendor_subnamespace = 0;
3138 	skip_length = 0;
3139 	/* Assume no flags */
3140 	flags = 0;
3141 	/* Assume no Atheros padding between 802.11 header and body */
3142 	pad = 0;
3143 	/* Assume no FCS at end of frame */
3144 	fcslen = 0;
3145 	for (presentp = &hdr->it_present; presentp <= last_presentp;
3146 	    presentp++) {
3147 		presentflags = EXTRACT_LE_32BITS(presentp);
3148 
3149 		/*
3150 		 * If this is a vendor namespace, we don't handle it.
3151 		 */
3152 		if (vendor_namespace) {
3153 			/*
3154 			 * Skip past the stuff we don't understand.
3155 			 * If we add support for any vendor namespaces,
3156 			 * it'd be added here; use vendor_oui and
3157 			 * vendor_subnamespace to interpret the fields.
3158 			 */
3159 			if (cpack_advance(&cpacker, skip_length) != 0) {
3160 				/*
3161 				 * Ran out of space in the packet.
3162 				 */
3163 				break;
3164 			}
3165 
3166 			/*
3167 			 * We've skipped it all; nothing more to
3168 			 * skip.
3169 			 */
3170 			skip_length = 0;
3171 		} else {
3172 			if (print_in_radiotap_namespace(ndo, &cpacker,
3173 			    &flags, presentflags, bit0) != 0) {
3174 				/*
3175 				 * Fatal error - can't process anything
3176 				 * more in the radiotap header.
3177 				 */
3178 				break;
3179 			}
3180 		}
3181 
3182 		/*
3183 		 * Handle the namespace switch bits; we've already handled
3184 		 * the extension bit in all but the last word above.
3185 		 */
3186 		switch (presentflags &
3187 		    (BIT(IEEE80211_RADIOTAP_NAMESPACE)|BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE))) {
3188 
3189 		case 0:
3190 			/*
3191 			 * We're not changing namespaces.
3192 			 * advance to the next 32 bits in the current
3193 			 * namespace.
3194 			 */
3195 			bit0 += 32;
3196 			break;
3197 
3198 		case BIT(IEEE80211_RADIOTAP_NAMESPACE):
3199 			/*
3200 			 * We're switching to the radiotap namespace.
3201 			 * Reset the presence-bitmap index to 0, and
3202 			 * reset the namespace to the default radiotap
3203 			 * namespace.
3204 			 */
3205 			bit0 = 0;
3206 			vendor_namespace = 0;
3207 			memset(vendor_oui, 0, 3);
3208 			vendor_subnamespace = 0;
3209 			skip_length = 0;
3210 			break;
3211 
3212 		case BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE):
3213 			/*
3214 			 * We're switching to a vendor namespace.
3215 			 * Reset the presence-bitmap index to 0,
3216 			 * note that we're in a vendor namespace,
3217 			 * and fetch the fields of the Vendor Namespace
3218 			 * item.
3219 			 */
3220 			bit0 = 0;
3221 			vendor_namespace = 1;
3222 			if ((cpack_align_and_reserve(&cpacker, 2)) == NULL) {
3223 				ND_PRINT((ndo, "%s", tstr));
3224 				break;
3225 			}
3226 			if (cpack_uint8(&cpacker, &vendor_oui[0]) != 0) {
3227 				ND_PRINT((ndo, "%s", tstr));
3228 				break;
3229 			}
3230 			if (cpack_uint8(&cpacker, &vendor_oui[1]) != 0) {
3231 				ND_PRINT((ndo, "%s", tstr));
3232 				break;
3233 			}
3234 			if (cpack_uint8(&cpacker, &vendor_oui[2]) != 0) {
3235 				ND_PRINT((ndo, "%s", tstr));
3236 				break;
3237 			}
3238 			if (cpack_uint8(&cpacker, &vendor_subnamespace) != 0) {
3239 				ND_PRINT((ndo, "%s", tstr));
3240 				break;
3241 			}
3242 			if (cpack_uint16(&cpacker, &skip_length) != 0) {
3243 				ND_PRINT((ndo, "%s", tstr));
3244 				break;
3245 			}
3246 			break;
3247 
3248 		default:
3249 			/*
3250 			 * Illegal combination.  The behavior in this
3251 			 * case is undefined by the radiotap spec; we
3252 			 * just ignore both bits.
3253 			 */
3254 			break;
3255 		}
3256 	}
3257 
3258 	if (flags & IEEE80211_RADIOTAP_F_DATAPAD)
3259 		pad = 1;	/* Atheros padding */
3260 	if (flags & IEEE80211_RADIOTAP_F_FCS)
3261 		fcslen = 4;	/* FCS at end of packet */
3262 	return len + ieee802_11_print(ndo, p + len, length - len, caplen - len, pad,
3263 	    fcslen);
3264 #undef BITNO_32
3265 #undef BITNO_16
3266 #undef BITNO_8
3267 #undef BITNO_4
3268 #undef BITNO_2
3269 #undef BIT
3270 }
3271 
3272 static u_int
3273 ieee802_11_avs_radio_print(netdissect_options *ndo,
3274                            const u_char *p, u_int length, u_int caplen)
3275 {
3276 	uint32_t caphdr_len;
3277 
3278 	if (caplen < 8) {
3279 		ND_PRINT((ndo, "%s", tstr));
3280 		return caplen;
3281 	}
3282 
3283 	caphdr_len = EXTRACT_32BITS(p + 4);
3284 	if (caphdr_len < 8) {
3285 		/*
3286 		 * Yow!  The capture header length is claimed not
3287 		 * to be large enough to include even the version
3288 		 * cookie or capture header length!
3289 		 */
3290 		ND_PRINT((ndo, "%s", tstr));
3291 		return caplen;
3292 	}
3293 
3294 	if (caplen < caphdr_len) {
3295 		ND_PRINT((ndo, "%s", tstr));
3296 		return caplen;
3297 	}
3298 
3299 	return caphdr_len + ieee802_11_print(ndo, p + caphdr_len,
3300 	    length - caphdr_len, caplen - caphdr_len, 0, 0);
3301 }
3302 
3303 #define PRISM_HDR_LEN		144
3304 
3305 #define WLANCAP_MAGIC_COOKIE_BASE 0x80211000
3306 #define WLANCAP_MAGIC_COOKIE_V1	0x80211001
3307 #define WLANCAP_MAGIC_COOKIE_V2	0x80211002
3308 
3309 /*
3310  * For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header,
3311  * containing information such as radio information, which we
3312  * currently ignore.
3313  *
3314  * If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1 or
3315  * WLANCAP_MAGIC_COOKIE_V2, it's really DLT_IEEE802_11_RADIO_AVS
3316  * (currently, on Linux, there's no ARPHRD_ type for
3317  * DLT_IEEE802_11_RADIO_AVS, as there is a ARPHRD_IEEE80211_PRISM
3318  * for DLT_PRISM_HEADER, so ARPHRD_IEEE80211_PRISM is used for
3319  * the AVS header, and the first 4 bytes of the header are used to
3320  * indicate whether it's a Prism header or an AVS header).
3321  */
3322 u_int
3323 prism_if_print(netdissect_options *ndo,
3324                const struct pcap_pkthdr *h, const u_char *p)
3325 {
3326 	u_int caplen = h->caplen;
3327 	u_int length = h->len;
3328 	uint32_t msgcode;
3329 
3330 	if (caplen < 4) {
3331 		ND_PRINT((ndo, "%s", tstr));
3332 		return caplen;
3333 	}
3334 
3335 	msgcode = EXTRACT_32BITS(p);
3336 	if (msgcode == WLANCAP_MAGIC_COOKIE_V1 ||
3337 	    msgcode == WLANCAP_MAGIC_COOKIE_V2)
3338 		return ieee802_11_avs_radio_print(ndo, p, length, caplen);
3339 
3340 	if (caplen < PRISM_HDR_LEN) {
3341 		ND_PRINT((ndo, "%s", tstr));
3342 		return caplen;
3343 	}
3344 
3345 	return PRISM_HDR_LEN + ieee802_11_print(ndo, p + PRISM_HDR_LEN,
3346 	    length - PRISM_HDR_LEN, caplen - PRISM_HDR_LEN, 0, 0);
3347 }
3348 
3349 /*
3350  * For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra
3351  * header, containing information such as radio information.
3352  */
3353 u_int
3354 ieee802_11_radio_if_print(netdissect_options *ndo,
3355                           const struct pcap_pkthdr *h, const u_char *p)
3356 {
3357 	return ieee802_11_radio_print(ndo, p, h->len, h->caplen);
3358 }
3359 
3360 /*
3361  * For DLT_IEEE802_11_RADIO_AVS; like DLT_IEEE802_11, but with an
3362  * extra header, containing information such as radio information,
3363  * which we currently ignore.
3364  */
3365 u_int
3366 ieee802_11_radio_avs_if_print(netdissect_options *ndo,
3367                               const struct pcap_pkthdr *h, const u_char *p)
3368 {
3369 	return ieee802_11_avs_radio_print(ndo, p, h->len, h->caplen);
3370 }
3371