1 /* $NetBSD: mdb.c,v 1.1.1.2 2017/02/09 01:46:45 christos Exp $ */ 2 3 /** @file mdb.c 4 * @brief Lightning memory-mapped database library 5 * 6 * A Btree-based database management library modeled loosely on the 7 * BerkeleyDB API, but much simplified. 8 */ 9 /* 10 * Copyright 2011-2016 Howard Chu, Symas Corp. 11 * All rights reserved. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted only as authorized by the OpenLDAP 15 * Public License. 16 * 17 * A copy of this license is available in the file LICENSE in the 18 * top-level directory of the distribution or, alternatively, at 19 * <http://www.OpenLDAP.org/license.html>. 20 * 21 * This code is derived from btree.c written by Martin Hedenfalk. 22 * 23 * Copyright (c) 2009, 2010 Martin Hedenfalk <martin@bzero.se> 24 * 25 * Permission to use, copy, modify, and distribute this software for any 26 * purpose with or without fee is hereby granted, provided that the above 27 * copyright notice and this permission notice appear in all copies. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 30 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 31 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 32 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 33 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 34 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 35 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 36 */ 37 #ifndef _GNU_SOURCE 38 #define _GNU_SOURCE 1 39 #endif 40 #ifdef _WIN32 41 #include <malloc.h> 42 #include <windows.h> 43 /** getpid() returns int; MinGW defines pid_t but MinGW64 typedefs it 44 * as int64 which is wrong. MSVC doesn't define it at all, so just 45 * don't use it. 46 */ 47 #define MDB_PID_T int 48 #define MDB_THR_T DWORD 49 #include <sys/types.h> 50 #include <sys/stat.h> 51 #ifdef __GNUC__ 52 # include <sys/param.h> 53 #else 54 # define LITTLE_ENDIAN 1234 55 # define BIG_ENDIAN 4321 56 # define BYTE_ORDER LITTLE_ENDIAN 57 # ifndef SSIZE_MAX 58 # define SSIZE_MAX INT_MAX 59 # endif 60 #endif 61 #else 62 #include <sys/types.h> 63 #include <sys/stat.h> 64 #define MDB_PID_T pid_t 65 #define MDB_THR_T pthread_t 66 #include <sys/param.h> 67 #include <sys/uio.h> 68 #include <sys/mman.h> 69 #ifdef HAVE_SYS_FILE_H 70 #include <sys/file.h> 71 #endif 72 #include <fcntl.h> 73 #endif 74 75 #if defined(__mips) && defined(__linux) 76 /* MIPS has cache coherency issues, requires explicit cache control */ 77 #include <asm/cachectl.h> 78 extern int cacheflush(char *addr, int nbytes, int cache); 79 #define CACHEFLUSH(addr, bytes, cache) cacheflush(addr, bytes, cache) 80 #else 81 #define CACHEFLUSH(addr, bytes, cache) 82 #endif 83 84 #if defined(__linux) && !defined(MDB_FDATASYNC_WORKS) 85 /** fdatasync is broken on ext3/ext4fs on older kernels, see 86 * description in #mdb_env_open2 comments. You can safely 87 * define MDB_FDATASYNC_WORKS if this code will only be run 88 * on kernels 3.6 and newer. 89 */ 90 #define BROKEN_FDATASYNC 91 #endif 92 93 #include <errno.h> 94 #include <limits.h> 95 #include <stddef.h> 96 #include <inttypes.h> 97 #include <stdio.h> 98 #include <stdlib.h> 99 #include <string.h> 100 #include <time.h> 101 102 #ifdef _MSC_VER 103 #include <io.h> 104 typedef SSIZE_T ssize_t; 105 #else 106 #include <unistd.h> 107 #endif 108 109 #if defined(__sun) || defined(ANDROID) 110 /* Most platforms have posix_memalign, older may only have memalign */ 111 #define HAVE_MEMALIGN 1 112 #include <malloc.h> 113 #endif 114 115 #if !(defined(BYTE_ORDER) || defined(__BYTE_ORDER)) 116 #include <netinet/in.h> 117 #include <resolv.h> /* defines BYTE_ORDER on HPUX and Solaris */ 118 #endif 119 120 #if defined(__APPLE__) || defined (BSD) 121 # define MDB_USE_POSIX_SEM 1 122 # define MDB_FDATASYNC fsync 123 #elif defined(ANDROID) 124 # define MDB_FDATASYNC fsync 125 #endif 126 127 #ifndef _WIN32 128 #include <pthread.h> 129 #ifdef MDB_USE_POSIX_SEM 130 # define MDB_USE_HASH 1 131 #include <semaphore.h> 132 #else 133 #define MDB_USE_POSIX_MUTEX 1 134 #endif 135 #endif 136 137 #if defined(_WIN32) + defined(MDB_USE_POSIX_SEM) \ 138 + defined(MDB_USE_POSIX_MUTEX) != 1 139 # error "Ambiguous shared-lock implementation" 140 #endif 141 142 #ifdef USE_VALGRIND 143 #include <valgrind/memcheck.h> 144 #define VGMEMP_CREATE(h,r,z) VALGRIND_CREATE_MEMPOOL(h,r,z) 145 #define VGMEMP_ALLOC(h,a,s) VALGRIND_MEMPOOL_ALLOC(h,a,s) 146 #define VGMEMP_FREE(h,a) VALGRIND_MEMPOOL_FREE(h,a) 147 #define VGMEMP_DESTROY(h) VALGRIND_DESTROY_MEMPOOL(h) 148 #define VGMEMP_DEFINED(a,s) VALGRIND_MAKE_MEM_DEFINED(a,s) 149 #else 150 #define VGMEMP_CREATE(h,r,z) 151 #define VGMEMP_ALLOC(h,a,s) 152 #define VGMEMP_FREE(h,a) 153 #define VGMEMP_DESTROY(h) 154 #define VGMEMP_DEFINED(a,s) 155 #endif 156 157 #ifndef BYTE_ORDER 158 # if (defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)) 159 /* Solaris just defines one or the other */ 160 # define LITTLE_ENDIAN 1234 161 # define BIG_ENDIAN 4321 162 # ifdef _LITTLE_ENDIAN 163 # define BYTE_ORDER LITTLE_ENDIAN 164 # else 165 # define BYTE_ORDER BIG_ENDIAN 166 # endif 167 # else 168 # define BYTE_ORDER __BYTE_ORDER 169 # endif 170 #endif 171 172 #ifndef LITTLE_ENDIAN 173 #define LITTLE_ENDIAN __LITTLE_ENDIAN 174 #endif 175 #ifndef BIG_ENDIAN 176 #define BIG_ENDIAN __BIG_ENDIAN 177 #endif 178 179 #if defined(__i386) || defined(__x86_64) || defined(_M_IX86) 180 #define MISALIGNED_OK 1 181 #endif 182 183 #include "lmdb.h" 184 #include "midl.h" 185 186 #if (BYTE_ORDER == LITTLE_ENDIAN) == (BYTE_ORDER == BIG_ENDIAN) 187 # error "Unknown or unsupported endianness (BYTE_ORDER)" 188 #elif (-6 & 5) || CHAR_BIT != 8 || UINT_MAX < 0xffffffff || ULONG_MAX % 0xFFFF 189 # error "Two's complement, reasonably sized integer types, please" 190 #endif 191 192 #ifdef __GNUC__ 193 /** Put infrequently used env functions in separate section */ 194 # ifdef __APPLE__ 195 # define ESECT __attribute__ ((section("__TEXT,text_env"))) 196 # else 197 # define ESECT __attribute__ ((section("text_env"))) 198 # endif 199 #else 200 #define ESECT 201 #endif 202 203 #ifdef _WIN32 204 #define CALL_CONV WINAPI 205 #else 206 #define CALL_CONV 207 #endif 208 209 /** @defgroup internal LMDB Internals 210 * @{ 211 */ 212 /** @defgroup compat Compatibility Macros 213 * A bunch of macros to minimize the amount of platform-specific ifdefs 214 * needed throughout the rest of the code. When the features this library 215 * needs are similar enough to POSIX to be hidden in a one-or-two line 216 * replacement, this macro approach is used. 217 * @{ 218 */ 219 220 /** Features under development */ 221 #ifndef MDB_DEVEL 222 #define MDB_DEVEL 0 223 #endif 224 225 /** Wrapper around __func__, which is a C99 feature */ 226 #if __STDC_VERSION__ >= 199901L 227 # define mdb_func_ __func__ 228 #elif __GNUC__ >= 2 || _MSC_VER >= 1300 229 # define mdb_func_ __FUNCTION__ 230 #else 231 /* If a debug message says <mdb_unknown>(), update the #if statements above */ 232 # define mdb_func_ "<mdb_unknown>" 233 #endif 234 235 /* Internal error codes, not exposed outside liblmdb */ 236 #define MDB_NO_ROOT (MDB_LAST_ERRCODE + 10) 237 #ifdef _WIN32 238 #define MDB_OWNERDEAD ((int) WAIT_ABANDONED) 239 #elif defined(MDB_USE_POSIX_MUTEX) && defined(EOWNERDEAD) 240 #define MDB_OWNERDEAD EOWNERDEAD /**< #LOCK_MUTEX0() result if dead owner */ 241 #endif 242 243 #ifdef __GLIBC__ 244 #define GLIBC_VER ((__GLIBC__ << 16 )| __GLIBC_MINOR__) 245 #endif 246 /** Some platforms define the EOWNERDEAD error code 247 * even though they don't support Robust Mutexes. 248 * Compile with -DMDB_USE_ROBUST=0, or use some other 249 * mechanism like -DMDB_USE_SYSV_SEM instead of 250 * -DMDB_USE_POSIX_MUTEX. (SysV semaphores are 251 * also Robust, but some systems don't support them 252 * either.) 253 */ 254 #ifndef MDB_USE_ROBUST 255 /* Android currently lacks Robust Mutex support. So does glibc < 2.4. */ 256 # if defined(MDB_USE_POSIX_MUTEX) && (defined(ANDROID) || \ 257 (defined(__GLIBC__) && GLIBC_VER < 0x020004)) 258 # define MDB_USE_ROBUST 0 259 # else 260 # define MDB_USE_ROBUST 1 261 /* glibc < 2.12 only provided _np API */ 262 # if defined(__GLIBC__) && GLIBC_VER < 0x02000c 263 # define PTHREAD_MUTEX_ROBUST PTHREAD_MUTEX_ROBUST_NP 264 # define pthread_mutexattr_setrobust(attr, flag) pthread_mutexattr_setrobust_np(attr, flag) 265 # define pthread_mutex_consistent(mutex) pthread_mutex_consistent_np(mutex) 266 # endif 267 # endif 268 #endif /* MDB_USE_ROBUST */ 269 270 #if defined(MDB_OWNERDEAD) && MDB_USE_ROBUST 271 #define MDB_ROBUST_SUPPORTED 1 272 #endif 273 274 #ifdef _WIN32 275 #define MDB_USE_HASH 1 276 #define MDB_PIDLOCK 0 277 #define THREAD_RET DWORD 278 #define pthread_t HANDLE 279 #define pthread_mutex_t HANDLE 280 #define pthread_cond_t HANDLE 281 typedef HANDLE mdb_mutex_t, mdb_mutexref_t; 282 #define pthread_key_t DWORD 283 #define pthread_self() GetCurrentThreadId() 284 #define pthread_key_create(x,y) \ 285 ((*(x) = TlsAlloc()) == TLS_OUT_OF_INDEXES ? ErrCode() : 0) 286 #define pthread_key_delete(x) TlsFree(x) 287 #define pthread_getspecific(x) TlsGetValue(x) 288 #define pthread_setspecific(x,y) (TlsSetValue(x,y) ? 0 : ErrCode()) 289 #define pthread_mutex_unlock(x) ReleaseMutex(*x) 290 #define pthread_mutex_lock(x) WaitForSingleObject(*x, INFINITE) 291 #define pthread_cond_signal(x) SetEvent(*x) 292 #define pthread_cond_wait(cond,mutex) do{SignalObjectAndWait(*mutex, *cond, INFINITE, FALSE); WaitForSingleObject(*mutex, INFINITE);}while(0) 293 #define THREAD_CREATE(thr,start,arg) thr=CreateThread(NULL,0,start,arg,0,NULL) 294 #define THREAD_FINISH(thr) WaitForSingleObject(thr, INFINITE) 295 #define LOCK_MUTEX0(mutex) WaitForSingleObject(mutex, INFINITE) 296 #define UNLOCK_MUTEX(mutex) ReleaseMutex(mutex) 297 #define mdb_mutex_consistent(mutex) 0 298 #define getpid() GetCurrentProcessId() 299 #define MDB_FDATASYNC(fd) (!FlushFileBuffers(fd)) 300 #define MDB_MSYNC(addr,len,flags) (!FlushViewOfFile(addr,len)) 301 #define ErrCode() GetLastError() 302 #define GET_PAGESIZE(x) {SYSTEM_INFO si; GetSystemInfo(&si); (x) = si.dwPageSize;} 303 #define close(fd) (CloseHandle(fd) ? 0 : -1) 304 #define munmap(ptr,len) UnmapViewOfFile(ptr) 305 #ifdef PROCESS_QUERY_LIMITED_INFORMATION 306 #define MDB_PROCESS_QUERY_LIMITED_INFORMATION PROCESS_QUERY_LIMITED_INFORMATION 307 #else 308 #define MDB_PROCESS_QUERY_LIMITED_INFORMATION 0x1000 309 #endif 310 #define Z "I" 311 #else 312 #define THREAD_RET void * 313 #define THREAD_CREATE(thr,start,arg) pthread_create(&thr,NULL,start,arg) 314 #define THREAD_FINISH(thr) pthread_join(thr,NULL) 315 #define Z "z" /**< printf format modifier for size_t */ 316 317 /** For MDB_LOCK_FORMAT: True if readers take a pid lock in the lockfile */ 318 #define MDB_PIDLOCK 1 319 320 #ifdef MDB_USE_POSIX_SEM 321 322 typedef sem_t *mdb_mutex_t, *mdb_mutexref_t; 323 #define LOCK_MUTEX0(mutex) mdb_sem_wait(mutex) 324 #define UNLOCK_MUTEX(mutex) sem_post(mutex) 325 326 static int 327 mdb_sem_wait(sem_t *sem) 328 { 329 int rc; 330 while ((rc = sem_wait(sem)) && (rc = errno) == EINTR) ; 331 return rc; 332 } 333 334 #else /* MDB_USE_POSIX_MUTEX: */ 335 /** Shared mutex/semaphore as it is stored (mdb_mutex_t), and as 336 * local variables keep it (mdb_mutexref_t). 337 * 338 * When #mdb_mutexref_t is a pointer declaration and #mdb_mutex_t is 339 * not, then it is array[size 1] so it can be assigned to a pointer. 340 * @{ 341 */ 342 typedef pthread_mutex_t mdb_mutex_t[1], *mdb_mutexref_t; 343 /* @} */ 344 /** Lock the reader or writer mutex. 345 * Returns 0 or a code to give #mdb_mutex_failed(), as in #LOCK_MUTEX(). 346 */ 347 #define LOCK_MUTEX0(mutex) pthread_mutex_lock(mutex) 348 /** Unlock the reader or writer mutex. 349 */ 350 #define UNLOCK_MUTEX(mutex) pthread_mutex_unlock(mutex) 351 /** Mark mutex-protected data as repaired, after death of previous owner. 352 */ 353 #define mdb_mutex_consistent(mutex) pthread_mutex_consistent(mutex) 354 #endif /* MDB_USE_POSIX_SEM */ 355 356 /** Get the error code for the last failed system function. 357 */ 358 #define ErrCode() errno 359 360 /** An abstraction for a file handle. 361 * On POSIX systems file handles are small integers. On Windows 362 * they're opaque pointers. 363 */ 364 #define HANDLE int 365 366 /** A value for an invalid file handle. 367 * Mainly used to initialize file variables and signify that they are 368 * unused. 369 */ 370 #define INVALID_HANDLE_VALUE (-1) 371 372 /** Get the size of a memory page for the system. 373 * This is the basic size that the platform's memory manager uses, and is 374 * fundamental to the use of memory-mapped files. 375 */ 376 #define GET_PAGESIZE(x) ((x) = sysconf(_SC_PAGE_SIZE)) 377 #endif 378 379 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM) 380 #define MNAME_LEN 32 381 #else 382 #define MNAME_LEN (sizeof(pthread_mutex_t)) 383 #endif 384 385 /** @} */ 386 387 #ifdef MDB_ROBUST_SUPPORTED 388 /** Lock mutex, handle any error, set rc = result. 389 * Return 0 on success, nonzero (not rc) on error. 390 */ 391 #define LOCK_MUTEX(rc, env, mutex) \ 392 (((rc) = LOCK_MUTEX0(mutex)) && \ 393 ((rc) = mdb_mutex_failed(env, mutex, rc))) 394 static int mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc); 395 #else 396 #define LOCK_MUTEX(rc, env, mutex) ((rc) = LOCK_MUTEX0(mutex)) 397 #define mdb_mutex_failed(env, mutex, rc) (rc) 398 #endif 399 400 #ifndef _WIN32 401 /** A flag for opening a file and requesting synchronous data writes. 402 * This is only used when writing a meta page. It's not strictly needed; 403 * we could just do a normal write and then immediately perform a flush. 404 * But if this flag is available it saves us an extra system call. 405 * 406 * @note If O_DSYNC is undefined but exists in /usr/include, 407 * preferably set some compiler flag to get the definition. 408 */ 409 #ifndef MDB_DSYNC 410 # ifdef O_DSYNC 411 # define MDB_DSYNC O_DSYNC 412 # else 413 # define MDB_DSYNC O_SYNC 414 # endif 415 #endif 416 #endif 417 418 /** Function for flushing the data of a file. Define this to fsync 419 * if fdatasync() is not supported. 420 */ 421 #ifndef MDB_FDATASYNC 422 # define MDB_FDATASYNC fdatasync 423 #endif 424 425 #ifndef MDB_MSYNC 426 # define MDB_MSYNC(addr,len,flags) msync(addr,len,flags) 427 #endif 428 429 #ifndef MS_SYNC 430 #define MS_SYNC 1 431 #endif 432 433 #ifndef MS_ASYNC 434 #define MS_ASYNC 0 435 #endif 436 437 /** A page number in the database. 438 * Note that 64 bit page numbers are overkill, since pages themselves 439 * already represent 12-13 bits of addressable memory, and the OS will 440 * always limit applications to a maximum of 63 bits of address space. 441 * 442 * @note In the #MDB_node structure, we only store 48 bits of this value, 443 * which thus limits us to only 60 bits of addressable data. 444 */ 445 typedef MDB_ID pgno_t; 446 447 /** A transaction ID. 448 * See struct MDB_txn.mt_txnid for details. 449 */ 450 typedef MDB_ID txnid_t; 451 452 /** @defgroup debug Debug Macros 453 * @{ 454 */ 455 #ifndef MDB_DEBUG 456 /** Enable debug output. Needs variable argument macros (a C99 feature). 457 * Set this to 1 for copious tracing. Set to 2 to add dumps of all IDLs 458 * read from and written to the database (used for free space management). 459 */ 460 #define MDB_DEBUG 0 461 #endif 462 463 #if MDB_DEBUG 464 static int mdb_debug; 465 static txnid_t mdb_debug_start; 466 467 /** Print a debug message with printf formatting. 468 * Requires double parenthesis around 2 or more args. 469 */ 470 # define DPRINTF(args) ((void) ((mdb_debug) && DPRINTF0 args)) 471 # define DPRINTF0(fmt, ...) \ 472 fprintf(stderr, "%s:%d " fmt "\n", mdb_func_, __LINE__, __VA_ARGS__) 473 #else 474 # define DPRINTF(args) ((void) 0) 475 #endif 476 /** Print a debug string. 477 * The string is printed literally, with no format processing. 478 */ 479 #define DPUTS(arg) DPRINTF(("%s", arg)) 480 /** Debuging output value of a cursor DBI: Negative in a sub-cursor. */ 481 #define DDBI(mc) \ 482 (((mc)->mc_flags & C_SUB) ? -(int)(mc)->mc_dbi : (int)(mc)->mc_dbi) 483 /** @} */ 484 485 /** @brief The maximum size of a database page. 486 * 487 * It is 32k or 64k, since value-PAGEBASE must fit in 488 * #MDB_page.%mp_upper. 489 * 490 * LMDB will use database pages < OS pages if needed. 491 * That causes more I/O in write transactions: The OS must 492 * know (read) the whole page before writing a partial page. 493 * 494 * Note that we don't currently support Huge pages. On Linux, 495 * regular data files cannot use Huge pages, and in general 496 * Huge pages aren't actually pageable. We rely on the OS 497 * demand-pager to read our data and page it out when memory 498 * pressure from other processes is high. So until OSs have 499 * actual paging support for Huge pages, they're not viable. 500 */ 501 #define MAX_PAGESIZE (PAGEBASE ? 0x10000 : 0x8000) 502 503 /** The minimum number of keys required in a database page. 504 * Setting this to a larger value will place a smaller bound on the 505 * maximum size of a data item. Data items larger than this size will 506 * be pushed into overflow pages instead of being stored directly in 507 * the B-tree node. This value used to default to 4. With a page size 508 * of 4096 bytes that meant that any item larger than 1024 bytes would 509 * go into an overflow page. That also meant that on average 2-3KB of 510 * each overflow page was wasted space. The value cannot be lower than 511 * 2 because then there would no longer be a tree structure. With this 512 * value, items larger than 2KB will go into overflow pages, and on 513 * average only 1KB will be wasted. 514 */ 515 #define MDB_MINKEYS 2 516 517 /** A stamp that identifies a file as an LMDB file. 518 * There's nothing special about this value other than that it is easily 519 * recognizable, and it will reflect any byte order mismatches. 520 */ 521 #define MDB_MAGIC 0xBEEFC0DE 522 523 /** The version number for a database's datafile format. */ 524 #define MDB_DATA_VERSION ((MDB_DEVEL) ? 999 : 1) 525 /** The version number for a database's lockfile format. */ 526 #define MDB_LOCK_VERSION 1 527 528 /** @brief The max size of a key we can write, or 0 for computed max. 529 * 530 * This macro should normally be left alone or set to 0. 531 * Note that a database with big keys or dupsort data cannot be 532 * reliably modified by a liblmdb which uses a smaller max. 533 * The default is 511 for backwards compat, or 0 when #MDB_DEVEL. 534 * 535 * Other values are allowed, for backwards compat. However: 536 * A value bigger than the computed max can break if you do not 537 * know what you are doing, and liblmdb <= 0.9.10 can break when 538 * modifying a DB with keys/dupsort data bigger than its max. 539 * 540 * Data items in an #MDB_DUPSORT database are also limited to 541 * this size, since they're actually keys of a sub-DB. Keys and 542 * #MDB_DUPSORT data items must fit on a node in a regular page. 543 */ 544 #ifndef MDB_MAXKEYSIZE 545 #define MDB_MAXKEYSIZE ((MDB_DEVEL) ? 0 : 511) 546 #endif 547 548 /** The maximum size of a key we can write to the environment. */ 549 #if MDB_MAXKEYSIZE 550 #define ENV_MAXKEY(env) (MDB_MAXKEYSIZE) 551 #else 552 #define ENV_MAXKEY(env) ((env)->me_maxkey) 553 #endif 554 555 /** @brief The maximum size of a data item. 556 * 557 * We only store a 32 bit value for node sizes. 558 */ 559 #define MAXDATASIZE 0xffffffffUL 560 561 #if MDB_DEBUG 562 /** Key size which fits in a #DKBUF. 563 * @ingroup debug 564 */ 565 #define DKBUF_MAXKEYSIZE ((MDB_MAXKEYSIZE) > 0 ? (MDB_MAXKEYSIZE) : 511) 566 /** A key buffer. 567 * @ingroup debug 568 * This is used for printing a hex dump of a key's contents. 569 */ 570 #define DKBUF char kbuf[DKBUF_MAXKEYSIZE*2+1] 571 /** Display a key in hex. 572 * @ingroup debug 573 * Invoke a function to display a key in hex. 574 */ 575 #define DKEY(x) mdb_dkey(x, kbuf) 576 #else 577 #define DKBUF 578 #define DKEY(x) 0 579 #endif 580 581 /** An invalid page number. 582 * Mainly used to denote an empty tree. 583 */ 584 #define P_INVALID (~(pgno_t)0) 585 586 /** Test if the flags \b f are set in a flag word \b w. */ 587 #define F_ISSET(w, f) (((w) & (f)) == (f)) 588 589 /** Round \b n up to an even number. */ 590 #define EVEN(n) (((n) + 1U) & -2) /* sign-extending -2 to match n+1U */ 591 592 /** Used for offsets within a single page. 593 * Since memory pages are typically 4 or 8KB in size, 12-13 bits, 594 * this is plenty. 595 */ 596 typedef uint16_t indx_t; 597 598 /** Default size of memory map. 599 * This is certainly too small for any actual applications. Apps should always set 600 * the size explicitly using #mdb_env_set_mapsize(). 601 */ 602 #define DEFAULT_MAPSIZE 1048576 603 604 /** @defgroup readers Reader Lock Table 605 * Readers don't acquire any locks for their data access. Instead, they 606 * simply record their transaction ID in the reader table. The reader 607 * mutex is needed just to find an empty slot in the reader table. The 608 * slot's address is saved in thread-specific data so that subsequent read 609 * transactions started by the same thread need no further locking to proceed. 610 * 611 * If #MDB_NOTLS is set, the slot address is not saved in thread-specific data. 612 * 613 * No reader table is used if the database is on a read-only filesystem, or 614 * if #MDB_NOLOCK is set. 615 * 616 * Since the database uses multi-version concurrency control, readers don't 617 * actually need any locking. This table is used to keep track of which 618 * readers are using data from which old transactions, so that we'll know 619 * when a particular old transaction is no longer in use. Old transactions 620 * that have discarded any data pages can then have those pages reclaimed 621 * for use by a later write transaction. 622 * 623 * The lock table is constructed such that reader slots are aligned with the 624 * processor's cache line size. Any slot is only ever used by one thread. 625 * This alignment guarantees that there will be no contention or cache 626 * thrashing as threads update their own slot info, and also eliminates 627 * any need for locking when accessing a slot. 628 * 629 * A writer thread will scan every slot in the table to determine the oldest 630 * outstanding reader transaction. Any freed pages older than this will be 631 * reclaimed by the writer. The writer doesn't use any locks when scanning 632 * this table. This means that there's no guarantee that the writer will 633 * see the most up-to-date reader info, but that's not required for correct 634 * operation - all we need is to know the upper bound on the oldest reader, 635 * we don't care at all about the newest reader. So the only consequence of 636 * reading stale information here is that old pages might hang around a 637 * while longer before being reclaimed. That's actually good anyway, because 638 * the longer we delay reclaiming old pages, the more likely it is that a 639 * string of contiguous pages can be found after coalescing old pages from 640 * many old transactions together. 641 * @{ 642 */ 643 /** Number of slots in the reader table. 644 * This value was chosen somewhat arbitrarily. 126 readers plus a 645 * couple mutexes fit exactly into 8KB on my development machine. 646 * Applications should set the table size using #mdb_env_set_maxreaders(). 647 */ 648 #define DEFAULT_READERS 126 649 650 /** The size of a CPU cache line in bytes. We want our lock structures 651 * aligned to this size to avoid false cache line sharing in the 652 * lock table. 653 * This value works for most CPUs. For Itanium this should be 128. 654 */ 655 #ifndef CACHELINE 656 #define CACHELINE 64 657 #endif 658 659 /** The information we store in a single slot of the reader table. 660 * In addition to a transaction ID, we also record the process and 661 * thread ID that owns a slot, so that we can detect stale information, 662 * e.g. threads or processes that went away without cleaning up. 663 * @note We currently don't check for stale records. We simply re-init 664 * the table when we know that we're the only process opening the 665 * lock file. 666 */ 667 typedef struct MDB_rxbody { 668 /** Current Transaction ID when this transaction began, or (txnid_t)-1. 669 * Multiple readers that start at the same time will probably have the 670 * same ID here. Again, it's not important to exclude them from 671 * anything; all we need to know is which version of the DB they 672 * started from so we can avoid overwriting any data used in that 673 * particular version. 674 */ 675 volatile txnid_t mrb_txnid; 676 /** The process ID of the process owning this reader txn. */ 677 volatile MDB_PID_T mrb_pid; 678 /** The thread ID of the thread owning this txn. */ 679 volatile MDB_THR_T mrb_tid; 680 } MDB_rxbody; 681 682 /** The actual reader record, with cacheline padding. */ 683 typedef struct MDB_reader { 684 union { 685 MDB_rxbody mrx; 686 /** shorthand for mrb_txnid */ 687 #define mr_txnid mru.mrx.mrb_txnid 688 #define mr_pid mru.mrx.mrb_pid 689 #define mr_tid mru.mrx.mrb_tid 690 /** cache line alignment */ 691 char pad[(sizeof(MDB_rxbody)+CACHELINE-1) & ~(CACHELINE-1)]; 692 } mru; 693 } MDB_reader; 694 695 /** The header for the reader table. 696 * The table resides in a memory-mapped file. (This is a different file 697 * than is used for the main database.) 698 * 699 * For POSIX the actual mutexes reside in the shared memory of this 700 * mapped file. On Windows, mutexes are named objects allocated by the 701 * kernel; we store the mutex names in this mapped file so that other 702 * processes can grab them. This same approach is also used on 703 * MacOSX/Darwin (using named semaphores) since MacOSX doesn't support 704 * process-shared POSIX mutexes. For these cases where a named object 705 * is used, the object name is derived from a 64 bit FNV hash of the 706 * environment pathname. As such, naming collisions are extremely 707 * unlikely. If a collision occurs, the results are unpredictable. 708 */ 709 typedef struct MDB_txbody { 710 /** Stamp identifying this as an LMDB file. It must be set 711 * to #MDB_MAGIC. */ 712 uint32_t mtb_magic; 713 /** Format of this lock file. Must be set to #MDB_LOCK_FORMAT. */ 714 uint32_t mtb_format; 715 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM) 716 char mtb_rmname[MNAME_LEN]; 717 #else 718 /** Mutex protecting access to this table. 719 * This is the reader table lock used with LOCK_MUTEX(). 720 */ 721 mdb_mutex_t mtb_rmutex; 722 #endif 723 /** The ID of the last transaction committed to the database. 724 * This is recorded here only for convenience; the value can always 725 * be determined by reading the main database meta pages. 726 */ 727 volatile txnid_t mtb_txnid; 728 /** The number of slots that have been used in the reader table. 729 * This always records the maximum count, it is not decremented 730 * when readers release their slots. 731 */ 732 volatile unsigned mtb_numreaders; 733 } MDB_txbody; 734 735 /** The actual reader table definition. */ 736 typedef struct MDB_txninfo { 737 union { 738 MDB_txbody mtb; 739 #define mti_magic mt1.mtb.mtb_magic 740 #define mti_format mt1.mtb.mtb_format 741 #define mti_rmutex mt1.mtb.mtb_rmutex 742 #define mti_rmname mt1.mtb.mtb_rmname 743 #define mti_txnid mt1.mtb.mtb_txnid 744 #define mti_numreaders mt1.mtb.mtb_numreaders 745 char pad[(sizeof(MDB_txbody)+CACHELINE-1) & ~(CACHELINE-1)]; 746 } mt1; 747 union { 748 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM) 749 char mt2_wmname[MNAME_LEN]; 750 #define mti_wmname mt2.mt2_wmname 751 #else 752 mdb_mutex_t mt2_wmutex; 753 #define mti_wmutex mt2.mt2_wmutex 754 #endif 755 char pad[(MNAME_LEN+CACHELINE-1) & ~(CACHELINE-1)]; 756 } mt2; 757 MDB_reader mti_readers[1]; 758 } MDB_txninfo; 759 760 /** Lockfile format signature: version, features and field layout */ 761 #define MDB_LOCK_FORMAT \ 762 ((uint32_t) \ 763 ((MDB_LOCK_VERSION) \ 764 /* Flags which describe functionality */ \ 765 + (((MDB_PIDLOCK) != 0) << 16))) 766 /** @} */ 767 768 /** Common header for all page types. 769 * Overflow records occupy a number of contiguous pages with no 770 * headers on any page after the first. 771 */ 772 typedef struct MDB_page { 773 #define mp_pgno mp_p.p_pgno 774 #define mp_next mp_p.p_next 775 union { 776 pgno_t p_pgno; /**< page number */ 777 struct MDB_page *p_next; /**< for in-memory list of freed pages */ 778 } mp_p; 779 uint16_t mp_pad; 780 /** @defgroup mdb_page Page Flags 781 * @ingroup internal 782 * Flags for the page headers. 783 * @{ 784 */ 785 #define P_BRANCH 0x01 /**< branch page */ 786 #define P_LEAF 0x02 /**< leaf page */ 787 #define P_OVERFLOW 0x04 /**< overflow page */ 788 #define P_META 0x08 /**< meta page */ 789 #define P_DIRTY 0x10 /**< dirty page, also set for #P_SUBP pages */ 790 #define P_LEAF2 0x20 /**< for #MDB_DUPFIXED records */ 791 #define P_SUBP 0x40 /**< for #MDB_DUPSORT sub-pages */ 792 #define P_LOOSE 0x4000 /**< page was dirtied then freed, can be reused */ 793 #define P_KEEP 0x8000 /**< leave this page alone during spill */ 794 /** @} */ 795 uint16_t mp_flags; /**< @ref mdb_page */ 796 #define mp_lower mp_pb.pb.pb_lower 797 #define mp_upper mp_pb.pb.pb_upper 798 #define mp_pages mp_pb.pb_pages 799 union { 800 struct { 801 indx_t pb_lower; /**< lower bound of free space */ 802 indx_t pb_upper; /**< upper bound of free space */ 803 } pb; 804 uint32_t pb_pages; /**< number of overflow pages */ 805 } mp_pb; 806 indx_t mp_ptrs[1]; /**< dynamic size */ 807 } MDB_page; 808 809 /** Size of the page header, excluding dynamic data at the end */ 810 #define PAGEHDRSZ ((unsigned) offsetof(MDB_page, mp_ptrs)) 811 812 /** Address of first usable data byte in a page, after the header */ 813 #define METADATA(p) ((void *)((char *)(p) + PAGEHDRSZ)) 814 815 /** ITS#7713, change PAGEBASE to handle 65536 byte pages */ 816 #define PAGEBASE ((MDB_DEVEL) ? PAGEHDRSZ : 0) 817 818 /** Number of nodes on a page */ 819 #define NUMKEYS(p) (((p)->mp_lower - (PAGEHDRSZ-PAGEBASE)) >> 1) 820 821 /** The amount of space remaining in the page */ 822 #define SIZELEFT(p) (indx_t)((p)->mp_upper - (p)->mp_lower) 823 824 /** The percentage of space used in the page, in tenths of a percent. */ 825 #define PAGEFILL(env, p) (1000L * ((env)->me_psize - PAGEHDRSZ - SIZELEFT(p)) / \ 826 ((env)->me_psize - PAGEHDRSZ)) 827 /** The minimum page fill factor, in tenths of a percent. 828 * Pages emptier than this are candidates for merging. 829 */ 830 #define FILL_THRESHOLD 250 831 832 /** Test if a page is a leaf page */ 833 #define IS_LEAF(p) F_ISSET((p)->mp_flags, P_LEAF) 834 /** Test if a page is a LEAF2 page */ 835 #define IS_LEAF2(p) F_ISSET((p)->mp_flags, P_LEAF2) 836 /** Test if a page is a branch page */ 837 #define IS_BRANCH(p) F_ISSET((p)->mp_flags, P_BRANCH) 838 /** Test if a page is an overflow page */ 839 #define IS_OVERFLOW(p) F_ISSET((p)->mp_flags, P_OVERFLOW) 840 /** Test if a page is a sub page */ 841 #define IS_SUBP(p) F_ISSET((p)->mp_flags, P_SUBP) 842 843 /** The number of overflow pages needed to store the given size. */ 844 #define OVPAGES(size, psize) ((PAGEHDRSZ-1 + (size)) / (psize) + 1) 845 846 /** Link in #MDB_txn.%mt_loose_pgs list */ 847 #define NEXT_LOOSE_PAGE(p) (*(MDB_page **)((p) + 2)) 848 849 /** Header for a single key/data pair within a page. 850 * Used in pages of type #P_BRANCH and #P_LEAF without #P_LEAF2. 851 * We guarantee 2-byte alignment for 'MDB_node's. 852 */ 853 typedef struct MDB_node { 854 /** lo and hi are used for data size on leaf nodes and for 855 * child pgno on branch nodes. On 64 bit platforms, flags 856 * is also used for pgno. (Branch nodes have no flags). 857 * They are in host byte order in case that lets some 858 * accesses be optimized into a 32-bit word access. 859 */ 860 #if BYTE_ORDER == LITTLE_ENDIAN 861 unsigned short mn_lo, mn_hi; /**< part of data size or pgno */ 862 #else 863 unsigned short mn_hi, mn_lo; 864 #endif 865 /** @defgroup mdb_node Node Flags 866 * @ingroup internal 867 * Flags for node headers. 868 * @{ 869 */ 870 #define F_BIGDATA 0x01 /**< data put on overflow page */ 871 #define F_SUBDATA 0x02 /**< data is a sub-database */ 872 #define F_DUPDATA 0x04 /**< data has duplicates */ 873 874 /** valid flags for #mdb_node_add() */ 875 #define NODE_ADD_FLAGS (F_DUPDATA|F_SUBDATA|MDB_RESERVE|MDB_APPEND) 876 877 /** @} */ 878 unsigned short mn_flags; /**< @ref mdb_node */ 879 unsigned short mn_ksize; /**< key size */ 880 char mn_data[1]; /**< key and data are appended here */ 881 } MDB_node; 882 883 /** Size of the node header, excluding dynamic data at the end */ 884 #define NODESIZE offsetof(MDB_node, mn_data) 885 886 /** Bit position of top word in page number, for shifting mn_flags */ 887 #define PGNO_TOPWORD ((pgno_t)-1 > 0xffffffffu ? 32 : 0) 888 889 /** Size of a node in a branch page with a given key. 890 * This is just the node header plus the key, there is no data. 891 */ 892 #define INDXSIZE(k) (NODESIZE + ((k) == NULL ? 0 : (k)->mv_size)) 893 894 /** Size of a node in a leaf page with a given key and data. 895 * This is node header plus key plus data size. 896 */ 897 #define LEAFSIZE(k, d) (NODESIZE + (k)->mv_size + (d)->mv_size) 898 899 /** Address of node \b i in page \b p */ 900 #define NODEPTR(p, i) ((MDB_node *)((char *)(p) + (p)->mp_ptrs[i] + PAGEBASE)) 901 902 /** Address of the key for the node */ 903 #define NODEKEY(node) (void *)((node)->mn_data) 904 905 /** Address of the data for a node */ 906 #define NODEDATA(node) (void *)((char *)(node)->mn_data + (node)->mn_ksize) 907 908 /** Get the page number pointed to by a branch node */ 909 #define NODEPGNO(node) \ 910 ((node)->mn_lo | ((pgno_t) (node)->mn_hi << 16) | \ 911 (PGNO_TOPWORD ? ((pgno_t) (node)->mn_flags << PGNO_TOPWORD) : 0)) 912 /** Set the page number in a branch node */ 913 #define SETPGNO(node,pgno) do { \ 914 (node)->mn_lo = (pgno) & 0xffff; (node)->mn_hi = (pgno) >> 16; \ 915 if (PGNO_TOPWORD) (node)->mn_flags = (pgno) >> PGNO_TOPWORD; } while(0) 916 917 /** Get the size of the data in a leaf node */ 918 #define NODEDSZ(node) ((node)->mn_lo | ((unsigned)(node)->mn_hi << 16)) 919 /** Set the size of the data for a leaf node */ 920 #define SETDSZ(node,size) do { \ 921 (node)->mn_lo = (size) & 0xffff; (node)->mn_hi = (size) >> 16;} while(0) 922 /** The size of a key in a node */ 923 #define NODEKSZ(node) ((node)->mn_ksize) 924 925 /** Copy a page number from src to dst */ 926 #ifdef MISALIGNED_OK 927 #define COPY_PGNO(dst,src) dst = src 928 #else 929 #if SIZE_MAX > 4294967295UL 930 #define COPY_PGNO(dst,src) do { \ 931 unsigned short *s, *d; \ 932 s = (unsigned short *)&(src); \ 933 d = (unsigned short *)&(dst); \ 934 *d++ = *s++; \ 935 *d++ = *s++; \ 936 *d++ = *s++; \ 937 *d = *s; \ 938 } while (0) 939 #else 940 #define COPY_PGNO(dst,src) do { \ 941 unsigned short *s, *d; \ 942 s = (unsigned short *)&(src); \ 943 d = (unsigned short *)&(dst); \ 944 *d++ = *s++; \ 945 *d = *s; \ 946 } while (0) 947 #endif 948 #endif 949 /** The address of a key in a LEAF2 page. 950 * LEAF2 pages are used for #MDB_DUPFIXED sorted-duplicate sub-DBs. 951 * There are no node headers, keys are stored contiguously. 952 */ 953 #define LEAF2KEY(p, i, ks) ((char *)(p) + PAGEHDRSZ + ((i)*(ks))) 954 955 /** Set the \b node's key into \b keyptr, if requested. */ 956 #define MDB_GET_KEY(node, keyptr) { if ((keyptr) != NULL) { \ 957 (keyptr)->mv_size = NODEKSZ(node); (keyptr)->mv_data = NODEKEY(node); } } 958 959 /** Set the \b node's key into \b key. */ 960 #define MDB_GET_KEY2(node, key) { key.mv_size = NODEKSZ(node); key.mv_data = NODEKEY(node); } 961 962 /** Information about a single database in the environment. */ 963 typedef struct MDB_db { 964 uint32_t md_pad; /**< also ksize for LEAF2 pages */ 965 uint16_t md_flags; /**< @ref mdb_dbi_open */ 966 uint16_t md_depth; /**< depth of this tree */ 967 pgno_t md_branch_pages; /**< number of internal pages */ 968 pgno_t md_leaf_pages; /**< number of leaf pages */ 969 pgno_t md_overflow_pages; /**< number of overflow pages */ 970 size_t md_entries; /**< number of data items */ 971 pgno_t md_root; /**< the root page of this tree */ 972 } MDB_db; 973 974 /** mdb_dbi_open flags */ 975 #define MDB_VALID 0x8000 /**< DB handle is valid, for me_dbflags */ 976 #define PERSISTENT_FLAGS (0xffff & ~(MDB_VALID)) 977 #define VALID_FLAGS (MDB_REVERSEKEY|MDB_DUPSORT|MDB_INTEGERKEY|MDB_DUPFIXED|\ 978 MDB_INTEGERDUP|MDB_REVERSEDUP|MDB_CREATE) 979 980 /** Handle for the DB used to track free pages. */ 981 #define FREE_DBI 0 982 /** Handle for the default DB. */ 983 #define MAIN_DBI 1 984 /** Number of DBs in metapage (free and main) - also hardcoded elsewhere */ 985 #define CORE_DBS 2 986 987 /** Number of meta pages - also hardcoded elsewhere */ 988 #define NUM_METAS 2 989 990 /** Meta page content. 991 * A meta page is the start point for accessing a database snapshot. 992 * Pages 0-1 are meta pages. Transaction N writes meta page #(N % 2). 993 */ 994 typedef struct MDB_meta { 995 /** Stamp identifying this as an LMDB file. It must be set 996 * to #MDB_MAGIC. */ 997 uint32_t mm_magic; 998 /** Version number of this file. Must be set to #MDB_DATA_VERSION. */ 999 uint32_t mm_version; 1000 void *mm_address; /**< address for fixed mapping */ 1001 size_t mm_mapsize; /**< size of mmap region */ 1002 MDB_db mm_dbs[CORE_DBS]; /**< first is free space, 2nd is main db */ 1003 /** The size of pages used in this DB */ 1004 #define mm_psize mm_dbs[FREE_DBI].md_pad 1005 /** Any persistent environment flags. @ref mdb_env */ 1006 #define mm_flags mm_dbs[FREE_DBI].md_flags 1007 pgno_t mm_last_pg; /**< last used page in file */ 1008 volatile txnid_t mm_txnid; /**< txnid that committed this page */ 1009 } MDB_meta; 1010 1011 /** Buffer for a stack-allocated meta page. 1012 * The members define size and alignment, and silence type 1013 * aliasing warnings. They are not used directly; that could 1014 * mean incorrectly using several union members in parallel. 1015 */ 1016 typedef union MDB_metabuf { 1017 MDB_page mb_page; 1018 struct { 1019 char mm_pad[PAGEHDRSZ]; 1020 MDB_meta mm_meta; 1021 } mb_metabuf; 1022 } MDB_metabuf; 1023 1024 /** Auxiliary DB info. 1025 * The information here is mostly static/read-only. There is 1026 * only a single copy of this record in the environment. 1027 */ 1028 typedef struct MDB_dbx { 1029 MDB_val md_name; /**< name of the database */ 1030 MDB_cmp_func *md_cmp; /**< function for comparing keys */ 1031 MDB_cmp_func *md_dcmp; /**< function for comparing data items */ 1032 MDB_rel_func *md_rel; /**< user relocate function */ 1033 void *md_relctx; /**< user-provided context for md_rel */ 1034 } MDB_dbx; 1035 1036 /** A database transaction. 1037 * Every operation requires a transaction handle. 1038 */ 1039 struct MDB_txn { 1040 MDB_txn *mt_parent; /**< parent of a nested txn */ 1041 /** Nested txn under this txn, set together with flag #MDB_TXN_HAS_CHILD */ 1042 MDB_txn *mt_child; 1043 pgno_t mt_next_pgno; /**< next unallocated page */ 1044 /** The ID of this transaction. IDs are integers incrementing from 1. 1045 * Only committed write transactions increment the ID. If a transaction 1046 * aborts, the ID may be re-used by the next writer. 1047 */ 1048 txnid_t mt_txnid; 1049 MDB_env *mt_env; /**< the DB environment */ 1050 /** The list of pages that became unused during this transaction. 1051 */ 1052 MDB_IDL mt_free_pgs; 1053 /** The list of loose pages that became unused and may be reused 1054 * in this transaction, linked through #NEXT_LOOSE_PAGE(page). 1055 */ 1056 MDB_page *mt_loose_pgs; 1057 /* #Number of loose pages (#mt_loose_pgs) */ 1058 int mt_loose_count; 1059 /** The sorted list of dirty pages we temporarily wrote to disk 1060 * because the dirty list was full. page numbers in here are 1061 * shifted left by 1, deleted slots have the LSB set. 1062 */ 1063 MDB_IDL mt_spill_pgs; 1064 union { 1065 /** For write txns: Modified pages. Sorted when not MDB_WRITEMAP. */ 1066 MDB_ID2L dirty_list; 1067 /** For read txns: This thread/txn's reader table slot, or NULL. */ 1068 MDB_reader *reader; 1069 } mt_u; 1070 /** Array of records for each DB known in the environment. */ 1071 MDB_dbx *mt_dbxs; 1072 /** Array of MDB_db records for each known DB */ 1073 MDB_db *mt_dbs; 1074 /** Array of sequence numbers for each DB handle */ 1075 unsigned int *mt_dbiseqs; 1076 /** @defgroup mt_dbflag Transaction DB Flags 1077 * @ingroup internal 1078 * @{ 1079 */ 1080 #define DB_DIRTY 0x01 /**< DB was modified or is DUPSORT data */ 1081 #define DB_STALE 0x02 /**< Named-DB record is older than txnID */ 1082 #define DB_NEW 0x04 /**< Named-DB handle opened in this txn */ 1083 #define DB_VALID 0x08 /**< DB handle is valid, see also #MDB_VALID */ 1084 #define DB_USRVALID 0x10 /**< As #DB_VALID, but not set for #FREE_DBI */ 1085 /** @} */ 1086 /** In write txns, array of cursors for each DB */ 1087 MDB_cursor **mt_cursors; 1088 /** Array of flags for each DB */ 1089 unsigned char *mt_dbflags; 1090 /** Number of DB records in use, or 0 when the txn is finished. 1091 * This number only ever increments until the txn finishes; we 1092 * don't decrement it when individual DB handles are closed. 1093 */ 1094 MDB_dbi mt_numdbs; 1095 1096 /** @defgroup mdb_txn Transaction Flags 1097 * @ingroup internal 1098 * @{ 1099 */ 1100 /** #mdb_txn_begin() flags */ 1101 #define MDB_TXN_BEGIN_FLAGS MDB_RDONLY 1102 #define MDB_TXN_RDONLY MDB_RDONLY /**< read-only transaction */ 1103 /* internal txn flags */ 1104 #define MDB_TXN_WRITEMAP MDB_WRITEMAP /**< copy of #MDB_env flag in writers */ 1105 #define MDB_TXN_FINISHED 0x01 /**< txn is finished or never began */ 1106 #define MDB_TXN_ERROR 0x02 /**< txn is unusable after an error */ 1107 #define MDB_TXN_DIRTY 0x04 /**< must write, even if dirty list is empty */ 1108 #define MDB_TXN_SPILLS 0x08 /**< txn or a parent has spilled pages */ 1109 #define MDB_TXN_HAS_CHILD 0x10 /**< txn has an #MDB_txn.%mt_child */ 1110 /** most operations on the txn are currently illegal */ 1111 #define MDB_TXN_BLOCKED (MDB_TXN_FINISHED|MDB_TXN_ERROR|MDB_TXN_HAS_CHILD) 1112 /** @} */ 1113 unsigned int mt_flags; /**< @ref mdb_txn */ 1114 /** #dirty_list room: Array size - \#dirty pages visible to this txn. 1115 * Includes ancestor txns' dirty pages not hidden by other txns' 1116 * dirty/spilled pages. Thus commit(nested txn) has room to merge 1117 * dirty_list into mt_parent after freeing hidden mt_parent pages. 1118 */ 1119 unsigned int mt_dirty_room; 1120 }; 1121 1122 /** Enough space for 2^32 nodes with minimum of 2 keys per node. I.e., plenty. 1123 * At 4 keys per node, enough for 2^64 nodes, so there's probably no need to 1124 * raise this on a 64 bit machine. 1125 */ 1126 #define CURSOR_STACK 32 1127 1128 struct MDB_xcursor; 1129 1130 /** Cursors are used for all DB operations. 1131 * A cursor holds a path of (page pointer, key index) from the DB 1132 * root to a position in the DB, plus other state. #MDB_DUPSORT 1133 * cursors include an xcursor to the current data item. Write txns 1134 * track their cursors and keep them up to date when data moves. 1135 * Exception: An xcursor's pointer to a #P_SUBP page can be stale. 1136 * (A node with #F_DUPDATA but no #F_SUBDATA contains a subpage). 1137 */ 1138 struct MDB_cursor { 1139 /** Next cursor on this DB in this txn */ 1140 MDB_cursor *mc_next; 1141 /** Backup of the original cursor if this cursor is a shadow */ 1142 MDB_cursor *mc_backup; 1143 /** Context used for databases with #MDB_DUPSORT, otherwise NULL */ 1144 struct MDB_xcursor *mc_xcursor; 1145 /** The transaction that owns this cursor */ 1146 MDB_txn *mc_txn; 1147 /** The database handle this cursor operates on */ 1148 MDB_dbi mc_dbi; 1149 /** The database record for this cursor */ 1150 MDB_db *mc_db; 1151 /** The database auxiliary record for this cursor */ 1152 MDB_dbx *mc_dbx; 1153 /** The @ref mt_dbflag for this database */ 1154 unsigned char *mc_dbflag; 1155 unsigned short mc_snum; /**< number of pushed pages */ 1156 unsigned short mc_top; /**< index of top page, normally mc_snum-1 */ 1157 /** @defgroup mdb_cursor Cursor Flags 1158 * @ingroup internal 1159 * Cursor state flags. 1160 * @{ 1161 */ 1162 #define C_INITIALIZED 0x01 /**< cursor has been initialized and is valid */ 1163 #define C_EOF 0x02 /**< No more data */ 1164 #define C_SUB 0x04 /**< Cursor is a sub-cursor */ 1165 #define C_DEL 0x08 /**< last op was a cursor_del */ 1166 #define C_UNTRACK 0x40 /**< Un-track cursor when closing */ 1167 /** @} */ 1168 unsigned int mc_flags; /**< @ref mdb_cursor */ 1169 MDB_page *mc_pg[CURSOR_STACK]; /**< stack of pushed pages */ 1170 indx_t mc_ki[CURSOR_STACK]; /**< stack of page indices */ 1171 }; 1172 1173 /** Context for sorted-dup records. 1174 * We could have gone to a fully recursive design, with arbitrarily 1175 * deep nesting of sub-databases. But for now we only handle these 1176 * levels - main DB, optional sub-DB, sorted-duplicate DB. 1177 */ 1178 typedef struct MDB_xcursor { 1179 /** A sub-cursor for traversing the Dup DB */ 1180 MDB_cursor mx_cursor; 1181 /** The database record for this Dup DB */ 1182 MDB_db mx_db; 1183 /** The auxiliary DB record for this Dup DB */ 1184 MDB_dbx mx_dbx; 1185 /** The @ref mt_dbflag for this Dup DB */ 1186 unsigned char mx_dbflag; 1187 } MDB_xcursor; 1188 1189 /** State of FreeDB old pages, stored in the MDB_env */ 1190 typedef struct MDB_pgstate { 1191 pgno_t *mf_pghead; /**< Reclaimed freeDB pages, or NULL before use */ 1192 txnid_t mf_pglast; /**< ID of last used record, or 0 if !mf_pghead */ 1193 } MDB_pgstate; 1194 1195 /** The database environment. */ 1196 struct MDB_env { 1197 HANDLE me_fd; /**< The main data file */ 1198 HANDLE me_lfd; /**< The lock file */ 1199 HANDLE me_mfd; /**< just for writing the meta pages */ 1200 /** Failed to update the meta page. Probably an I/O error. */ 1201 #define MDB_FATAL_ERROR 0x80000000U 1202 /** Some fields are initialized. */ 1203 #define MDB_ENV_ACTIVE 0x20000000U 1204 /** me_txkey is set */ 1205 #define MDB_ENV_TXKEY 0x10000000U 1206 /** fdatasync is unreliable */ 1207 #define MDB_FSYNCONLY 0x08000000U 1208 uint32_t me_flags; /**< @ref mdb_env */ 1209 unsigned int me_psize; /**< DB page size, inited from me_os_psize */ 1210 unsigned int me_os_psize; /**< OS page size, from #GET_PAGESIZE */ 1211 unsigned int me_maxreaders; /**< size of the reader table */ 1212 /** Max #MDB_txninfo.%mti_numreaders of interest to #mdb_env_close() */ 1213 volatile int me_close_readers; 1214 MDB_dbi me_numdbs; /**< number of DBs opened */ 1215 MDB_dbi me_maxdbs; /**< size of the DB table */ 1216 MDB_PID_T me_pid; /**< process ID of this env */ 1217 char *me_path; /**< path to the DB files */ 1218 char *me_map; /**< the memory map of the data file */ 1219 MDB_txninfo *me_txns; /**< the memory map of the lock file or NULL */ 1220 MDB_meta *me_metas[NUM_METAS]; /**< pointers to the two meta pages */ 1221 void *me_pbuf; /**< scratch area for DUPSORT put() */ 1222 MDB_txn *me_txn; /**< current write transaction */ 1223 MDB_txn *me_txn0; /**< prealloc'd write transaction */ 1224 size_t me_mapsize; /**< size of the data memory map */ 1225 off_t me_size; /**< current file size */ 1226 pgno_t me_maxpg; /**< me_mapsize / me_psize */ 1227 MDB_dbx *me_dbxs; /**< array of static DB info */ 1228 uint16_t *me_dbflags; /**< array of flags from MDB_db.md_flags */ 1229 unsigned int *me_dbiseqs; /**< array of dbi sequence numbers */ 1230 pthread_key_t me_txkey; /**< thread-key for readers */ 1231 txnid_t me_pgoldest; /**< ID of oldest reader last time we looked */ 1232 MDB_pgstate me_pgstate; /**< state of old pages from freeDB */ 1233 # define me_pglast me_pgstate.mf_pglast 1234 # define me_pghead me_pgstate.mf_pghead 1235 MDB_page *me_dpages; /**< list of malloc'd blocks for re-use */ 1236 /** IDL of pages that became unused in a write txn */ 1237 MDB_IDL me_free_pgs; 1238 /** ID2L of pages written during a write txn. Length MDB_IDL_UM_SIZE. */ 1239 MDB_ID2L me_dirty_list; 1240 /** Max number of freelist items that can fit in a single overflow page */ 1241 int me_maxfree_1pg; 1242 /** Max size of a node on a page */ 1243 unsigned int me_nodemax; 1244 #if !(MDB_MAXKEYSIZE) 1245 unsigned int me_maxkey; /**< max size of a key */ 1246 #endif 1247 int me_live_reader; /**< have liveness lock in reader table */ 1248 #ifdef _WIN32 1249 int me_pidquery; /**< Used in OpenProcess */ 1250 #endif 1251 #ifdef MDB_USE_POSIX_MUTEX /* Posix mutexes reside in shared mem */ 1252 # define me_rmutex me_txns->mti_rmutex /**< Shared reader lock */ 1253 # define me_wmutex me_txns->mti_wmutex /**< Shared writer lock */ 1254 #else 1255 mdb_mutex_t me_rmutex; 1256 mdb_mutex_t me_wmutex; 1257 #endif 1258 void *me_userctx; /**< User-settable context */ 1259 MDB_assert_func *me_assert_func; /**< Callback for assertion failures */ 1260 }; 1261 1262 /** Nested transaction */ 1263 typedef struct MDB_ntxn { 1264 MDB_txn mnt_txn; /**< the transaction */ 1265 MDB_pgstate mnt_pgstate; /**< parent transaction's saved freestate */ 1266 } MDB_ntxn; 1267 1268 /** max number of pages to commit in one writev() call */ 1269 #define MDB_COMMIT_PAGES 64 1270 #if defined(IOV_MAX) && IOV_MAX < MDB_COMMIT_PAGES 1271 #undef MDB_COMMIT_PAGES 1272 #define MDB_COMMIT_PAGES IOV_MAX 1273 #endif 1274 1275 /** max bytes to write in one call */ 1276 #define MAX_WRITE (0x40000000U >> (sizeof(ssize_t) == 4)) 1277 1278 /** Check \b txn and \b dbi arguments to a function */ 1279 #define TXN_DBI_EXIST(txn, dbi, validity) \ 1280 ((txn) && (dbi)<(txn)->mt_numdbs && ((txn)->mt_dbflags[dbi] & (validity))) 1281 1282 /** Check for misused \b dbi handles */ 1283 #define TXN_DBI_CHANGED(txn, dbi) \ 1284 ((txn)->mt_dbiseqs[dbi] != (txn)->mt_env->me_dbiseqs[dbi]) 1285 1286 static int mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp); 1287 static int mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp); 1288 static int mdb_page_touch(MDB_cursor *mc); 1289 1290 #define MDB_END_NAMES {"committed", "empty-commit", "abort", "reset", \ 1291 "reset-tmp", "fail-begin", "fail-beginchild"} 1292 enum { 1293 /* mdb_txn_end operation number, for logging */ 1294 MDB_END_COMMITTED, MDB_END_EMPTY_COMMIT, MDB_END_ABORT, MDB_END_RESET, 1295 MDB_END_RESET_TMP, MDB_END_FAIL_BEGIN, MDB_END_FAIL_BEGINCHILD 1296 }; 1297 #define MDB_END_OPMASK 0x0F /**< mask for #mdb_txn_end() operation number */ 1298 #define MDB_END_UPDATE 0x10 /**< update env state (DBIs) */ 1299 #define MDB_END_FREE 0x20 /**< free txn unless it is #MDB_env.%me_txn0 */ 1300 #define MDB_END_SLOT MDB_NOTLS /**< release any reader slot if #MDB_NOTLS */ 1301 static void mdb_txn_end(MDB_txn *txn, unsigned mode); 1302 1303 static int mdb_page_get(MDB_txn *txn, pgno_t pgno, MDB_page **mp, int *lvl); 1304 static int mdb_page_search_root(MDB_cursor *mc, 1305 MDB_val *key, int modify); 1306 #define MDB_PS_MODIFY 1 1307 #define MDB_PS_ROOTONLY 2 1308 #define MDB_PS_FIRST 4 1309 #define MDB_PS_LAST 8 1310 static int mdb_page_search(MDB_cursor *mc, 1311 MDB_val *key, int flags); 1312 static int mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst); 1313 1314 #define MDB_SPLIT_REPLACE MDB_APPENDDUP /**< newkey is not new */ 1315 static int mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, 1316 pgno_t newpgno, unsigned int nflags); 1317 1318 static int mdb_env_read_header(MDB_env *env, MDB_meta *meta); 1319 static MDB_meta *mdb_env_pick_meta(const MDB_env *env); 1320 static int mdb_env_write_meta(MDB_txn *txn); 1321 #ifdef MDB_USE_POSIX_MUTEX /* Drop unused excl arg */ 1322 # define mdb_env_close0(env, excl) mdb_env_close1(env) 1323 #endif 1324 static void mdb_env_close0(MDB_env *env, int excl); 1325 1326 static MDB_node *mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp); 1327 static int mdb_node_add(MDB_cursor *mc, indx_t indx, 1328 MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags); 1329 static void mdb_node_del(MDB_cursor *mc, int ksize); 1330 static void mdb_node_shrink(MDB_page *mp, indx_t indx); 1331 static int mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft); 1332 static int mdb_node_read(MDB_txn *txn, MDB_node *leaf, MDB_val *data); 1333 static size_t mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data); 1334 static size_t mdb_branch_size(MDB_env *env, MDB_val *key); 1335 1336 static int mdb_rebalance(MDB_cursor *mc); 1337 static int mdb_update_key(MDB_cursor *mc, MDB_val *key); 1338 1339 static void mdb_cursor_pop(MDB_cursor *mc); 1340 static int mdb_cursor_push(MDB_cursor *mc, MDB_page *mp); 1341 1342 static int mdb_cursor_del0(MDB_cursor *mc); 1343 static int mdb_del0(MDB_txn *txn, MDB_dbi dbi, MDB_val *key, MDB_val *data, unsigned flags); 1344 static int mdb_cursor_sibling(MDB_cursor *mc, int move_right); 1345 static int mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op); 1346 static int mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op); 1347 static int mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op, 1348 int *exactp); 1349 static int mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data); 1350 static int mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data); 1351 1352 static void mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx); 1353 static void mdb_xcursor_init0(MDB_cursor *mc); 1354 static void mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node); 1355 static void mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int force); 1356 1357 static int mdb_drop0(MDB_cursor *mc, int subs); 1358 static void mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi); 1359 static int mdb_reader_check0(MDB_env *env, int rlocked, int *dead); 1360 1361 /** @cond */ 1362 static MDB_cmp_func mdb_cmp_memn, mdb_cmp_memnr, mdb_cmp_int, mdb_cmp_cint, mdb_cmp_long; 1363 /** @endcond */ 1364 1365 /** Compare two items pointing at size_t's of unknown alignment. */ 1366 #ifdef MISALIGNED_OK 1367 # define mdb_cmp_clong mdb_cmp_long 1368 #else 1369 # define mdb_cmp_clong mdb_cmp_cint 1370 #endif 1371 1372 #ifdef _WIN32 1373 static SECURITY_DESCRIPTOR mdb_null_sd; 1374 static SECURITY_ATTRIBUTES mdb_all_sa; 1375 static int mdb_sec_inited; 1376 1377 static int utf8_to_utf16(const char *src, int srcsize, wchar_t **dst, int *dstsize); 1378 #endif 1379 1380 /** Return the library version info. */ 1381 char * ESECT 1382 mdb_version(int *major, int *minor, int *patch) 1383 { 1384 if (major) *major = MDB_VERSION_MAJOR; 1385 if (minor) *minor = MDB_VERSION_MINOR; 1386 if (patch) *patch = MDB_VERSION_PATCH; 1387 return MDB_VERSION_STRING; 1388 } 1389 1390 /** Table of descriptions for LMDB @ref errors */ 1391 static char *const mdb_errstr[] = { 1392 "MDB_KEYEXIST: Key/data pair already exists", 1393 "MDB_NOTFOUND: No matching key/data pair found", 1394 "MDB_PAGE_NOTFOUND: Requested page not found", 1395 "MDB_CORRUPTED: Located page was wrong type", 1396 "MDB_PANIC: Update of meta page failed or environment had fatal error", 1397 "MDB_VERSION_MISMATCH: Database environment version mismatch", 1398 "MDB_INVALID: File is not an LMDB file", 1399 "MDB_MAP_FULL: Environment mapsize limit reached", 1400 "MDB_DBS_FULL: Environment maxdbs limit reached", 1401 "MDB_READERS_FULL: Environment maxreaders limit reached", 1402 "MDB_TLS_FULL: Thread-local storage keys full - too many environments open", 1403 "MDB_TXN_FULL: Transaction has too many dirty pages - transaction too big", 1404 "MDB_CURSOR_FULL: Internal error - cursor stack limit reached", 1405 "MDB_PAGE_FULL: Internal error - page has no more space", 1406 "MDB_MAP_RESIZED: Database contents grew beyond environment mapsize", 1407 "MDB_INCOMPATIBLE: Operation and DB incompatible, or DB flags changed", 1408 "MDB_BAD_RSLOT: Invalid reuse of reader locktable slot", 1409 "MDB_BAD_TXN: Transaction must abort, has a child, or is invalid", 1410 "MDB_BAD_VALSIZE: Unsupported size of key/DB name/data, or wrong DUPFIXED size", 1411 "MDB_BAD_DBI: The specified DBI handle was closed/changed unexpectedly", 1412 }; 1413 1414 char * 1415 mdb_strerror(int err) 1416 { 1417 #ifdef _WIN32 1418 /** HACK: pad 4KB on stack over the buf. Return system msgs in buf. 1419 * This works as long as no function between the call to mdb_strerror 1420 * and the actual use of the message uses more than 4K of stack. 1421 */ 1422 char pad[4096]; 1423 char buf[1024], *ptr = buf; 1424 #endif 1425 int i; 1426 if (!err) 1427 return ("Successful return: 0"); 1428 1429 if (err >= MDB_KEYEXIST && err <= MDB_LAST_ERRCODE) { 1430 i = err - MDB_KEYEXIST; 1431 return mdb_errstr[i]; 1432 } 1433 1434 #ifdef _WIN32 1435 /* These are the C-runtime error codes we use. The comment indicates 1436 * their numeric value, and the Win32 error they would correspond to 1437 * if the error actually came from a Win32 API. A major mess, we should 1438 * have used LMDB-specific error codes for everything. 1439 */ 1440 switch(err) { 1441 case ENOENT: /* 2, FILE_NOT_FOUND */ 1442 case EIO: /* 5, ACCESS_DENIED */ 1443 case ENOMEM: /* 12, INVALID_ACCESS */ 1444 case EACCES: /* 13, INVALID_DATA */ 1445 case EBUSY: /* 16, CURRENT_DIRECTORY */ 1446 case EINVAL: /* 22, BAD_COMMAND */ 1447 case ENOSPC: /* 28, OUT_OF_PAPER */ 1448 return strerror(err); 1449 default: 1450 ; 1451 } 1452 buf[0] = 0; 1453 FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | 1454 FORMAT_MESSAGE_IGNORE_INSERTS, 1455 NULL, err, 0, ptr, sizeof(buf), (va_list *)pad); 1456 return ptr; 1457 #else 1458 return strerror(err); 1459 #endif 1460 } 1461 1462 /** assert(3) variant in cursor context */ 1463 #define mdb_cassert(mc, expr) mdb_assert0((mc)->mc_txn->mt_env, expr, #expr) 1464 /** assert(3) variant in transaction context */ 1465 #define mdb_tassert(txn, expr) mdb_assert0((txn)->mt_env, expr, #expr) 1466 /** assert(3) variant in environment context */ 1467 #define mdb_eassert(env, expr) mdb_assert0(env, expr, #expr) 1468 1469 #ifndef NDEBUG 1470 # define mdb_assert0(env, expr, expr_txt) ((expr) ? (void)0 : \ 1471 mdb_assert_fail(env, expr_txt, mdb_func_, __FILE__, __LINE__)) 1472 1473 static void ESECT 1474 mdb_assert_fail(MDB_env *env, const char *expr_txt, 1475 const char *func, const char *file, int line) 1476 { 1477 char buf[400]; 1478 sprintf(buf, "%.100s:%d: Assertion '%.200s' failed in %.40s()", 1479 file, line, expr_txt, func); 1480 if (env->me_assert_func) 1481 env->me_assert_func(env, buf); 1482 fprintf(stderr, "%s\n", buf); 1483 abort(); 1484 } 1485 #else 1486 # define mdb_assert0(env, expr, expr_txt) ((void) 0) 1487 #endif /* NDEBUG */ 1488 1489 #if MDB_DEBUG 1490 /** Return the page number of \b mp which may be sub-page, for debug output */ 1491 static pgno_t 1492 mdb_dbg_pgno(MDB_page *mp) 1493 { 1494 pgno_t ret; 1495 COPY_PGNO(ret, mp->mp_pgno); 1496 return ret; 1497 } 1498 1499 /** Display a key in hexadecimal and return the address of the result. 1500 * @param[in] key the key to display 1501 * @param[in] buf the buffer to write into. Should always be #DKBUF. 1502 * @return The key in hexadecimal form. 1503 */ 1504 char * 1505 mdb_dkey(MDB_val *key, char *buf) 1506 { 1507 char *ptr = buf; 1508 unsigned char *c = key->mv_data; 1509 unsigned int i; 1510 1511 if (!key) 1512 return ""; 1513 1514 if (key->mv_size > DKBUF_MAXKEYSIZE) 1515 return "MDB_MAXKEYSIZE"; 1516 /* may want to make this a dynamic check: if the key is mostly 1517 * printable characters, print it as-is instead of converting to hex. 1518 */ 1519 #if 1 1520 buf[0] = '\0'; 1521 for (i=0; i<key->mv_size; i++) 1522 ptr += sprintf(ptr, "%02x", *c++); 1523 #else 1524 sprintf(buf, "%.*s", key->mv_size, key->mv_data); 1525 #endif 1526 return buf; 1527 } 1528 1529 static const char * 1530 mdb_leafnode_type(MDB_node *n) 1531 { 1532 static char *const tp[2][2] = {{"", ": DB"}, {": sub-page", ": sub-DB"}}; 1533 return F_ISSET(n->mn_flags, F_BIGDATA) ? ": overflow page" : 1534 tp[F_ISSET(n->mn_flags, F_DUPDATA)][F_ISSET(n->mn_flags, F_SUBDATA)]; 1535 } 1536 1537 /** Display all the keys in the page. */ 1538 void 1539 mdb_page_list(MDB_page *mp) 1540 { 1541 pgno_t pgno = mdb_dbg_pgno(mp); 1542 const char *type, *state = (mp->mp_flags & P_DIRTY) ? ", dirty" : ""; 1543 MDB_node *node; 1544 unsigned int i, nkeys, nsize, total = 0; 1545 MDB_val key; 1546 DKBUF; 1547 1548 switch (mp->mp_flags & (P_BRANCH|P_LEAF|P_LEAF2|P_META|P_OVERFLOW|P_SUBP)) { 1549 case P_BRANCH: type = "Branch page"; break; 1550 case P_LEAF: type = "Leaf page"; break; 1551 case P_LEAF|P_SUBP: type = "Sub-page"; break; 1552 case P_LEAF|P_LEAF2: type = "LEAF2 page"; break; 1553 case P_LEAF|P_LEAF2|P_SUBP: type = "LEAF2 sub-page"; break; 1554 case P_OVERFLOW: 1555 fprintf(stderr, "Overflow page %"Z"u pages %u%s\n", 1556 pgno, mp->mp_pages, state); 1557 return; 1558 case P_META: 1559 fprintf(stderr, "Meta-page %"Z"u txnid %"Z"u\n", 1560 pgno, ((MDB_meta *)METADATA(mp))->mm_txnid); 1561 return; 1562 default: 1563 fprintf(stderr, "Bad page %"Z"u flags 0x%u\n", pgno, mp->mp_flags); 1564 return; 1565 } 1566 1567 nkeys = NUMKEYS(mp); 1568 fprintf(stderr, "%s %"Z"u numkeys %d%s\n", type, pgno, nkeys, state); 1569 1570 for (i=0; i<nkeys; i++) { 1571 if (IS_LEAF2(mp)) { /* LEAF2 pages have no mp_ptrs[] or node headers */ 1572 key.mv_size = nsize = mp->mp_pad; 1573 key.mv_data = LEAF2KEY(mp, i, nsize); 1574 total += nsize; 1575 fprintf(stderr, "key %d: nsize %d, %s\n", i, nsize, DKEY(&key)); 1576 continue; 1577 } 1578 node = NODEPTR(mp, i); 1579 key.mv_size = node->mn_ksize; 1580 key.mv_data = node->mn_data; 1581 nsize = NODESIZE + key.mv_size; 1582 if (IS_BRANCH(mp)) { 1583 fprintf(stderr, "key %d: page %"Z"u, %s\n", i, NODEPGNO(node), 1584 DKEY(&key)); 1585 total += nsize; 1586 } else { 1587 if (F_ISSET(node->mn_flags, F_BIGDATA)) 1588 nsize += sizeof(pgno_t); 1589 else 1590 nsize += NODEDSZ(node); 1591 total += nsize; 1592 nsize += sizeof(indx_t); 1593 fprintf(stderr, "key %d: nsize %d, %s%s\n", 1594 i, nsize, DKEY(&key), mdb_leafnode_type(node)); 1595 } 1596 total = EVEN(total); 1597 } 1598 fprintf(stderr, "Total: header %d + contents %d + unused %d\n", 1599 IS_LEAF2(mp) ? PAGEHDRSZ : PAGEBASE + mp->mp_lower, total, SIZELEFT(mp)); 1600 } 1601 1602 void 1603 mdb_cursor_chk(MDB_cursor *mc) 1604 { 1605 unsigned int i; 1606 MDB_node *node; 1607 MDB_page *mp; 1608 1609 if (!mc->mc_snum || !(mc->mc_flags & C_INITIALIZED)) return; 1610 for (i=0; i<mc->mc_top; i++) { 1611 mp = mc->mc_pg[i]; 1612 node = NODEPTR(mp, mc->mc_ki[i]); 1613 if (NODEPGNO(node) != mc->mc_pg[i+1]->mp_pgno) 1614 printf("oops!\n"); 1615 } 1616 if (mc->mc_ki[i] >= NUMKEYS(mc->mc_pg[i])) 1617 printf("ack!\n"); 1618 if (mc->mc_xcursor && (mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) { 1619 node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 1620 if (((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) && 1621 mc->mc_xcursor->mx_cursor.mc_pg[0] != NODEDATA(node)) { 1622 printf("blah!\n"); 1623 } 1624 } 1625 } 1626 #endif 1627 1628 #if (MDB_DEBUG) > 2 1629 /** Count all the pages in each DB and in the freelist 1630 * and make sure it matches the actual number of pages 1631 * being used. 1632 * All named DBs must be open for a correct count. 1633 */ 1634 static void mdb_audit(MDB_txn *txn) 1635 { 1636 MDB_cursor mc; 1637 MDB_val key, data; 1638 MDB_ID freecount, count; 1639 MDB_dbi i; 1640 int rc; 1641 1642 freecount = 0; 1643 mdb_cursor_init(&mc, txn, FREE_DBI, NULL); 1644 while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0) 1645 freecount += *(MDB_ID *)data.mv_data; 1646 mdb_tassert(txn, rc == MDB_NOTFOUND); 1647 1648 count = 0; 1649 for (i = 0; i<txn->mt_numdbs; i++) { 1650 MDB_xcursor mx; 1651 if (!(txn->mt_dbflags[i] & DB_VALID)) 1652 continue; 1653 mdb_cursor_init(&mc, txn, i, &mx); 1654 if (txn->mt_dbs[i].md_root == P_INVALID) 1655 continue; 1656 count += txn->mt_dbs[i].md_branch_pages + 1657 txn->mt_dbs[i].md_leaf_pages + 1658 txn->mt_dbs[i].md_overflow_pages; 1659 if (txn->mt_dbs[i].md_flags & MDB_DUPSORT) { 1660 rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST); 1661 for (; rc == MDB_SUCCESS; rc = mdb_cursor_sibling(&mc, 1)) { 1662 unsigned j; 1663 MDB_page *mp; 1664 mp = mc.mc_pg[mc.mc_top]; 1665 for (j=0; j<NUMKEYS(mp); j++) { 1666 MDB_node *leaf = NODEPTR(mp, j); 1667 if (leaf->mn_flags & F_SUBDATA) { 1668 MDB_db db; 1669 memcpy(&db, NODEDATA(leaf), sizeof(db)); 1670 count += db.md_branch_pages + db.md_leaf_pages + 1671 db.md_overflow_pages; 1672 } 1673 } 1674 } 1675 mdb_tassert(txn, rc == MDB_NOTFOUND); 1676 } 1677 } 1678 if (freecount + count + NUM_METAS != txn->mt_next_pgno) { 1679 fprintf(stderr, "audit: %lu freecount: %lu count: %lu total: %lu next_pgno: %lu\n", 1680 txn->mt_txnid, freecount, count+NUM_METAS, 1681 freecount+count+NUM_METAS, txn->mt_next_pgno); 1682 } 1683 } 1684 #endif 1685 1686 int 1687 mdb_cmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b) 1688 { 1689 return txn->mt_dbxs[dbi].md_cmp(a, b); 1690 } 1691 1692 int 1693 mdb_dcmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b) 1694 { 1695 MDB_cmp_func *dcmp = txn->mt_dbxs[dbi].md_dcmp; 1696 #if UINT_MAX < SIZE_MAX 1697 if (dcmp == mdb_cmp_int && a->mv_size == sizeof(size_t)) 1698 dcmp = mdb_cmp_clong; 1699 #endif 1700 return dcmp(a, b); 1701 } 1702 1703 /** Allocate memory for a page. 1704 * Re-use old malloc'd pages first for singletons, otherwise just malloc. 1705 */ 1706 static MDB_page * 1707 mdb_page_malloc(MDB_txn *txn, unsigned num) 1708 { 1709 MDB_env *env = txn->mt_env; 1710 MDB_page *ret = env->me_dpages; 1711 size_t psize = env->me_psize, sz = psize, off; 1712 /* For ! #MDB_NOMEMINIT, psize counts how much to init. 1713 * For a single page alloc, we init everything after the page header. 1714 * For multi-page, we init the final page; if the caller needed that 1715 * many pages they will be filling in at least up to the last page. 1716 */ 1717 if (num == 1) { 1718 if (ret) { 1719 VGMEMP_ALLOC(env, ret, sz); 1720 VGMEMP_DEFINED(ret, sizeof(ret->mp_next)); 1721 env->me_dpages = ret->mp_next; 1722 return ret; 1723 } 1724 psize -= off = PAGEHDRSZ; 1725 } else { 1726 sz *= num; 1727 off = sz - psize; 1728 } 1729 if ((ret = malloc(sz)) != NULL) { 1730 VGMEMP_ALLOC(env, ret, sz); 1731 if (!(env->me_flags & MDB_NOMEMINIT)) { 1732 memset((char *)ret + off, 0, psize); 1733 ret->mp_pad = 0; 1734 } 1735 } else { 1736 txn->mt_flags |= MDB_TXN_ERROR; 1737 } 1738 return ret; 1739 } 1740 /** Free a single page. 1741 * Saves single pages to a list, for future reuse. 1742 * (This is not used for multi-page overflow pages.) 1743 */ 1744 static void 1745 mdb_page_free(MDB_env *env, MDB_page *mp) 1746 { 1747 mp->mp_next = env->me_dpages; 1748 VGMEMP_FREE(env, mp); 1749 env->me_dpages = mp; 1750 } 1751 1752 /** Free a dirty page */ 1753 static void 1754 mdb_dpage_free(MDB_env *env, MDB_page *dp) 1755 { 1756 if (!IS_OVERFLOW(dp) || dp->mp_pages == 1) { 1757 mdb_page_free(env, dp); 1758 } else { 1759 /* large pages just get freed directly */ 1760 VGMEMP_FREE(env, dp); 1761 free(dp); 1762 } 1763 } 1764 1765 /** Return all dirty pages to dpage list */ 1766 static void 1767 mdb_dlist_free(MDB_txn *txn) 1768 { 1769 MDB_env *env = txn->mt_env; 1770 MDB_ID2L dl = txn->mt_u.dirty_list; 1771 unsigned i, n = dl[0].mid; 1772 1773 for (i = 1; i <= n; i++) { 1774 mdb_dpage_free(env, dl[i].mptr); 1775 } 1776 dl[0].mid = 0; 1777 } 1778 1779 /** Loosen or free a single page. 1780 * Saves single pages to a list for future reuse 1781 * in this same txn. It has been pulled from the freeDB 1782 * and already resides on the dirty list, but has been 1783 * deleted. Use these pages first before pulling again 1784 * from the freeDB. 1785 * 1786 * If the page wasn't dirtied in this txn, just add it 1787 * to this txn's free list. 1788 */ 1789 static int 1790 mdb_page_loose(MDB_cursor *mc, MDB_page *mp) 1791 { 1792 int loose = 0; 1793 pgno_t pgno = mp->mp_pgno; 1794 MDB_txn *txn = mc->mc_txn; 1795 1796 if ((mp->mp_flags & P_DIRTY) && mc->mc_dbi != FREE_DBI) { 1797 if (txn->mt_parent) { 1798 MDB_ID2 *dl = txn->mt_u.dirty_list; 1799 /* If txn has a parent, make sure the page is in our 1800 * dirty list. 1801 */ 1802 if (dl[0].mid) { 1803 unsigned x = mdb_mid2l_search(dl, pgno); 1804 if (x <= dl[0].mid && dl[x].mid == pgno) { 1805 if (mp != dl[x].mptr) { /* bad cursor? */ 1806 mc->mc_flags &= ~(C_INITIALIZED|C_EOF); 1807 txn->mt_flags |= MDB_TXN_ERROR; 1808 return MDB_CORRUPTED; 1809 } 1810 /* ok, it's ours */ 1811 loose = 1; 1812 } 1813 } 1814 } else { 1815 /* no parent txn, so it's just ours */ 1816 loose = 1; 1817 } 1818 } 1819 if (loose) { 1820 DPRINTF(("loosen db %d page %"Z"u", DDBI(mc), 1821 mp->mp_pgno)); 1822 NEXT_LOOSE_PAGE(mp) = txn->mt_loose_pgs; 1823 txn->mt_loose_pgs = mp; 1824 txn->mt_loose_count++; 1825 mp->mp_flags |= P_LOOSE; 1826 } else { 1827 int rc = mdb_midl_append(&txn->mt_free_pgs, pgno); 1828 if (rc) 1829 return rc; 1830 } 1831 1832 return MDB_SUCCESS; 1833 } 1834 1835 /** Set or clear P_KEEP in dirty, non-overflow, non-sub pages watched by txn. 1836 * @param[in] mc A cursor handle for the current operation. 1837 * @param[in] pflags Flags of the pages to update: 1838 * P_DIRTY to set P_KEEP, P_DIRTY|P_KEEP to clear it. 1839 * @param[in] all No shortcuts. Needed except after a full #mdb_page_flush(). 1840 * @return 0 on success, non-zero on failure. 1841 */ 1842 static int 1843 mdb_pages_xkeep(MDB_cursor *mc, unsigned pflags, int all) 1844 { 1845 enum { Mask = P_SUBP|P_DIRTY|P_LOOSE|P_KEEP }; 1846 MDB_txn *txn = mc->mc_txn; 1847 MDB_cursor *m3; 1848 MDB_xcursor *mx; 1849 MDB_page *dp, *mp; 1850 MDB_node *leaf; 1851 unsigned i, j; 1852 int rc = MDB_SUCCESS, level; 1853 1854 /* Mark pages seen by cursors */ 1855 if (mc->mc_flags & C_UNTRACK) 1856 mc = NULL; /* will find mc in mt_cursors */ 1857 for (i = txn->mt_numdbs;; mc = txn->mt_cursors[--i]) { 1858 for (; mc; mc=mc->mc_next) { 1859 if (!(mc->mc_flags & C_INITIALIZED)) 1860 continue; 1861 for (m3 = mc;; m3 = &mx->mx_cursor) { 1862 mp = NULL; 1863 for (j=0; j<m3->mc_snum; j++) { 1864 mp = m3->mc_pg[j]; 1865 if ((mp->mp_flags & Mask) == pflags) 1866 mp->mp_flags ^= P_KEEP; 1867 } 1868 mx = m3->mc_xcursor; 1869 /* Proceed to mx if it is at a sub-database */ 1870 if (! (mx && (mx->mx_cursor.mc_flags & C_INITIALIZED))) 1871 break; 1872 if (! (mp && (mp->mp_flags & P_LEAF))) 1873 break; 1874 leaf = NODEPTR(mp, m3->mc_ki[j-1]); 1875 if (!(leaf->mn_flags & F_SUBDATA)) 1876 break; 1877 } 1878 } 1879 if (i == 0) 1880 break; 1881 } 1882 1883 if (all) { 1884 /* Mark dirty root pages */ 1885 for (i=0; i<txn->mt_numdbs; i++) { 1886 if (txn->mt_dbflags[i] & DB_DIRTY) { 1887 pgno_t pgno = txn->mt_dbs[i].md_root; 1888 if (pgno == P_INVALID) 1889 continue; 1890 if ((rc = mdb_page_get(txn, pgno, &dp, &level)) != MDB_SUCCESS) 1891 break; 1892 if ((dp->mp_flags & Mask) == pflags && level <= 1) 1893 dp->mp_flags ^= P_KEEP; 1894 } 1895 } 1896 } 1897 1898 return rc; 1899 } 1900 1901 static int mdb_page_flush(MDB_txn *txn, int keep); 1902 1903 /** Spill pages from the dirty list back to disk. 1904 * This is intended to prevent running into #MDB_TXN_FULL situations, 1905 * but note that they may still occur in a few cases: 1906 * 1) our estimate of the txn size could be too small. Currently this 1907 * seems unlikely, except with a large number of #MDB_MULTIPLE items. 1908 * 2) child txns may run out of space if their parents dirtied a 1909 * lot of pages and never spilled them. TODO: we probably should do 1910 * a preemptive spill during #mdb_txn_begin() of a child txn, if 1911 * the parent's dirty_room is below a given threshold. 1912 * 1913 * Otherwise, if not using nested txns, it is expected that apps will 1914 * not run into #MDB_TXN_FULL any more. The pages are flushed to disk 1915 * the same way as for a txn commit, e.g. their P_DIRTY flag is cleared. 1916 * If the txn never references them again, they can be left alone. 1917 * If the txn only reads them, they can be used without any fuss. 1918 * If the txn writes them again, they can be dirtied immediately without 1919 * going thru all of the work of #mdb_page_touch(). Such references are 1920 * handled by #mdb_page_unspill(). 1921 * 1922 * Also note, we never spill DB root pages, nor pages of active cursors, 1923 * because we'll need these back again soon anyway. And in nested txns, 1924 * we can't spill a page in a child txn if it was already spilled in a 1925 * parent txn. That would alter the parent txns' data even though 1926 * the child hasn't committed yet, and we'd have no way to undo it if 1927 * the child aborted. 1928 * 1929 * @param[in] m0 cursor A cursor handle identifying the transaction and 1930 * database for which we are checking space. 1931 * @param[in] key For a put operation, the key being stored. 1932 * @param[in] data For a put operation, the data being stored. 1933 * @return 0 on success, non-zero on failure. 1934 */ 1935 static int 1936 mdb_page_spill(MDB_cursor *m0, MDB_val *key, MDB_val *data) 1937 { 1938 MDB_txn *txn = m0->mc_txn; 1939 MDB_page *dp; 1940 MDB_ID2L dl = txn->mt_u.dirty_list; 1941 unsigned int i, j, need; 1942 int rc; 1943 1944 if (m0->mc_flags & C_SUB) 1945 return MDB_SUCCESS; 1946 1947 /* Estimate how much space this op will take */ 1948 i = m0->mc_db->md_depth; 1949 /* Named DBs also dirty the main DB */ 1950 if (m0->mc_dbi >= CORE_DBS) 1951 i += txn->mt_dbs[MAIN_DBI].md_depth; 1952 /* For puts, roughly factor in the key+data size */ 1953 if (key) 1954 i += (LEAFSIZE(key, data) + txn->mt_env->me_psize) / txn->mt_env->me_psize; 1955 i += i; /* double it for good measure */ 1956 need = i; 1957 1958 if (txn->mt_dirty_room > i) 1959 return MDB_SUCCESS; 1960 1961 if (!txn->mt_spill_pgs) { 1962 txn->mt_spill_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX); 1963 if (!txn->mt_spill_pgs) 1964 return ENOMEM; 1965 } else { 1966 /* purge deleted slots */ 1967 MDB_IDL sl = txn->mt_spill_pgs; 1968 unsigned int num = sl[0]; 1969 j=0; 1970 for (i=1; i<=num; i++) { 1971 if (!(sl[i] & 1)) 1972 sl[++j] = sl[i]; 1973 } 1974 sl[0] = j; 1975 } 1976 1977 /* Preserve pages which may soon be dirtied again */ 1978 if ((rc = mdb_pages_xkeep(m0, P_DIRTY, 1)) != MDB_SUCCESS) 1979 goto done; 1980 1981 /* Less aggressive spill - we originally spilled the entire dirty list, 1982 * with a few exceptions for cursor pages and DB root pages. But this 1983 * turns out to be a lot of wasted effort because in a large txn many 1984 * of those pages will need to be used again. So now we spill only 1/8th 1985 * of the dirty pages. Testing revealed this to be a good tradeoff, 1986 * better than 1/2, 1/4, or 1/10. 1987 */ 1988 if (need < MDB_IDL_UM_MAX / 8) 1989 need = MDB_IDL_UM_MAX / 8; 1990 1991 /* Save the page IDs of all the pages we're flushing */ 1992 /* flush from the tail forward, this saves a lot of shifting later on. */ 1993 for (i=dl[0].mid; i && need; i--) { 1994 MDB_ID pn = dl[i].mid << 1; 1995 dp = dl[i].mptr; 1996 if (dp->mp_flags & (P_LOOSE|P_KEEP)) 1997 continue; 1998 /* Can't spill twice, make sure it's not already in a parent's 1999 * spill list. 2000 */ 2001 if (txn->mt_parent) { 2002 MDB_txn *tx2; 2003 for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) { 2004 if (tx2->mt_spill_pgs) { 2005 j = mdb_midl_search(tx2->mt_spill_pgs, pn); 2006 if (j <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[j] == pn) { 2007 dp->mp_flags |= P_KEEP; 2008 break; 2009 } 2010 } 2011 } 2012 if (tx2) 2013 continue; 2014 } 2015 if ((rc = mdb_midl_append(&txn->mt_spill_pgs, pn))) 2016 goto done; 2017 need--; 2018 } 2019 mdb_midl_sort(txn->mt_spill_pgs); 2020 2021 /* Flush the spilled part of dirty list */ 2022 if ((rc = mdb_page_flush(txn, i)) != MDB_SUCCESS) 2023 goto done; 2024 2025 /* Reset any dirty pages we kept that page_flush didn't see */ 2026 rc = mdb_pages_xkeep(m0, P_DIRTY|P_KEEP, i); 2027 2028 done: 2029 txn->mt_flags |= rc ? MDB_TXN_ERROR : MDB_TXN_SPILLS; 2030 return rc; 2031 } 2032 2033 /** Find oldest txnid still referenced. Expects txn->mt_txnid > 0. */ 2034 static txnid_t 2035 mdb_find_oldest(MDB_txn *txn) 2036 { 2037 int i; 2038 txnid_t mr, oldest = txn->mt_txnid - 1; 2039 if (txn->mt_env->me_txns) { 2040 MDB_reader *r = txn->mt_env->me_txns->mti_readers; 2041 for (i = txn->mt_env->me_txns->mti_numreaders; --i >= 0; ) { 2042 if (r[i].mr_pid) { 2043 mr = r[i].mr_txnid; 2044 if (oldest > mr) 2045 oldest = mr; 2046 } 2047 } 2048 } 2049 return oldest; 2050 } 2051 2052 /** Add a page to the txn's dirty list */ 2053 static void 2054 mdb_page_dirty(MDB_txn *txn, MDB_page *mp) 2055 { 2056 MDB_ID2 mid; 2057 int rc, (*insert)(MDB_ID2L, MDB_ID2 *); 2058 2059 if (txn->mt_flags & MDB_TXN_WRITEMAP) { 2060 insert = mdb_mid2l_append; 2061 } else { 2062 insert = mdb_mid2l_insert; 2063 } 2064 mid.mid = mp->mp_pgno; 2065 mid.mptr = mp; 2066 rc = insert(txn->mt_u.dirty_list, &mid); 2067 mdb_tassert(txn, rc == 0); 2068 txn->mt_dirty_room--; 2069 } 2070 2071 /** Allocate page numbers and memory for writing. Maintain me_pglast, 2072 * me_pghead and mt_next_pgno. 2073 * 2074 * If there are free pages available from older transactions, they 2075 * are re-used first. Otherwise allocate a new page at mt_next_pgno. 2076 * Do not modify the freedB, just merge freeDB records into me_pghead[] 2077 * and move me_pglast to say which records were consumed. Only this 2078 * function can create me_pghead and move me_pglast/mt_next_pgno. 2079 * @param[in] mc cursor A cursor handle identifying the transaction and 2080 * database for which we are allocating. 2081 * @param[in] num the number of pages to allocate. 2082 * @param[out] mp Address of the allocated page(s). Requests for multiple pages 2083 * will always be satisfied by a single contiguous chunk of memory. 2084 * @return 0 on success, non-zero on failure. 2085 */ 2086 static int 2087 mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp) 2088 { 2089 #ifdef MDB_PARANOID /* Seems like we can ignore this now */ 2090 /* Get at most <Max_retries> more freeDB records once me_pghead 2091 * has enough pages. If not enough, use new pages from the map. 2092 * If <Paranoid> and mc is updating the freeDB, only get new 2093 * records if me_pghead is empty. Then the freelist cannot play 2094 * catch-up with itself by growing while trying to save it. 2095 */ 2096 enum { Paranoid = 1, Max_retries = 500 }; 2097 #else 2098 enum { Paranoid = 0, Max_retries = INT_MAX /*infinite*/ }; 2099 #endif 2100 int rc, retry = num * 60; 2101 MDB_txn *txn = mc->mc_txn; 2102 MDB_env *env = txn->mt_env; 2103 pgno_t pgno, *mop = env->me_pghead; 2104 unsigned i, j, mop_len = mop ? mop[0] : 0, n2 = num-1; 2105 MDB_page *np; 2106 txnid_t oldest = 0, last; 2107 MDB_cursor_op op; 2108 MDB_cursor m2; 2109 int found_old = 0; 2110 2111 /* If there are any loose pages, just use them */ 2112 if (num == 1 && txn->mt_loose_pgs) { 2113 np = txn->mt_loose_pgs; 2114 txn->mt_loose_pgs = NEXT_LOOSE_PAGE(np); 2115 txn->mt_loose_count--; 2116 DPRINTF(("db %d use loose page %"Z"u", DDBI(mc), 2117 np->mp_pgno)); 2118 *mp = np; 2119 return MDB_SUCCESS; 2120 } 2121 2122 *mp = NULL; 2123 2124 /* If our dirty list is already full, we can't do anything */ 2125 if (txn->mt_dirty_room == 0) { 2126 rc = MDB_TXN_FULL; 2127 goto fail; 2128 } 2129 2130 for (op = MDB_FIRST;; op = MDB_NEXT) { 2131 MDB_val key, data; 2132 MDB_node *leaf; 2133 pgno_t *idl; 2134 2135 /* Seek a big enough contiguous page range. Prefer 2136 * pages at the tail, just truncating the list. 2137 */ 2138 if (mop_len > n2) { 2139 i = mop_len; 2140 do { 2141 pgno = mop[i]; 2142 if (mop[i-n2] == pgno+n2) 2143 goto search_done; 2144 } while (--i > n2); 2145 if (--retry < 0) 2146 break; 2147 } 2148 2149 if (op == MDB_FIRST) { /* 1st iteration */ 2150 /* Prepare to fetch more and coalesce */ 2151 last = env->me_pglast; 2152 oldest = env->me_pgoldest; 2153 mdb_cursor_init(&m2, txn, FREE_DBI, NULL); 2154 if (last) { 2155 op = MDB_SET_RANGE; 2156 key.mv_data = &last; /* will look up last+1 */ 2157 key.mv_size = sizeof(last); 2158 } 2159 if (Paranoid && mc->mc_dbi == FREE_DBI) 2160 retry = -1; 2161 } 2162 if (Paranoid && retry < 0 && mop_len) 2163 break; 2164 2165 last++; 2166 /* Do not fetch more if the record will be too recent */ 2167 if (oldest <= last) { 2168 if (!found_old) { 2169 oldest = mdb_find_oldest(txn); 2170 env->me_pgoldest = oldest; 2171 found_old = 1; 2172 } 2173 if (oldest <= last) 2174 break; 2175 } 2176 rc = mdb_cursor_get(&m2, &key, NULL, op); 2177 if (rc) { 2178 if (rc == MDB_NOTFOUND) 2179 break; 2180 goto fail; 2181 } 2182 last = *(txnid_t*)key.mv_data; 2183 if (oldest <= last) { 2184 if (!found_old) { 2185 oldest = mdb_find_oldest(txn); 2186 env->me_pgoldest = oldest; 2187 found_old = 1; 2188 } 2189 if (oldest <= last) 2190 break; 2191 } 2192 np = m2.mc_pg[m2.mc_top]; 2193 leaf = NODEPTR(np, m2.mc_ki[m2.mc_top]); 2194 if ((rc = mdb_node_read(txn, leaf, &data)) != MDB_SUCCESS) 2195 return rc; 2196 2197 idl = (MDB_ID *) data.mv_data; 2198 i = idl[0]; 2199 if (!mop) { 2200 if (!(env->me_pghead = mop = mdb_midl_alloc(i))) { 2201 rc = ENOMEM; 2202 goto fail; 2203 } 2204 } else { 2205 if ((rc = mdb_midl_need(&env->me_pghead, i)) != 0) 2206 goto fail; 2207 mop = env->me_pghead; 2208 } 2209 env->me_pglast = last; 2210 #if (MDB_DEBUG) > 1 2211 DPRINTF(("IDL read txn %"Z"u root %"Z"u num %u", 2212 last, txn->mt_dbs[FREE_DBI].md_root, i)); 2213 for (j = i; j; j--) 2214 DPRINTF(("IDL %"Z"u", idl[j])); 2215 #endif 2216 /* Merge in descending sorted order */ 2217 mdb_midl_xmerge(mop, idl); 2218 mop_len = mop[0]; 2219 } 2220 2221 /* Use new pages from the map when nothing suitable in the freeDB */ 2222 i = 0; 2223 pgno = txn->mt_next_pgno; 2224 if (pgno + num >= env->me_maxpg) { 2225 DPUTS("DB size maxed out"); 2226 rc = MDB_MAP_FULL; 2227 goto fail; 2228 } 2229 2230 search_done: 2231 if (env->me_flags & MDB_WRITEMAP) { 2232 np = (MDB_page *)(env->me_map + env->me_psize * pgno); 2233 } else { 2234 if (!(np = mdb_page_malloc(txn, num))) { 2235 rc = ENOMEM; 2236 goto fail; 2237 } 2238 } 2239 if (i) { 2240 mop[0] = mop_len -= num; 2241 /* Move any stragglers down */ 2242 for (j = i-num; j < mop_len; ) 2243 mop[++j] = mop[++i]; 2244 } else { 2245 txn->mt_next_pgno = pgno + num; 2246 } 2247 np->mp_pgno = pgno; 2248 mdb_page_dirty(txn, np); 2249 *mp = np; 2250 2251 return MDB_SUCCESS; 2252 2253 fail: 2254 txn->mt_flags |= MDB_TXN_ERROR; 2255 return rc; 2256 } 2257 2258 /** Copy the used portions of a non-overflow page. 2259 * @param[in] dst page to copy into 2260 * @param[in] src page to copy from 2261 * @param[in] psize size of a page 2262 */ 2263 static void 2264 mdb_page_copy(MDB_page *dst, MDB_page *src, unsigned int psize) 2265 { 2266 enum { Align = sizeof(pgno_t) }; 2267 indx_t upper = src->mp_upper, lower = src->mp_lower, unused = upper-lower; 2268 2269 /* If page isn't full, just copy the used portion. Adjust 2270 * alignment so memcpy may copy words instead of bytes. 2271 */ 2272 if ((unused &= -Align) && !IS_LEAF2(src)) { 2273 upper = (upper + PAGEBASE) & -Align; 2274 memcpy(dst, src, (lower + PAGEBASE + (Align-1)) & -Align); 2275 memcpy((pgno_t *)((char *)dst+upper), (pgno_t *)((char *)src+upper), 2276 psize - upper); 2277 } else { 2278 memcpy(dst, src, psize - unused); 2279 } 2280 } 2281 2282 /** Pull a page off the txn's spill list, if present. 2283 * If a page being referenced was spilled to disk in this txn, bring 2284 * it back and make it dirty/writable again. 2285 * @param[in] txn the transaction handle. 2286 * @param[in] mp the page being referenced. It must not be dirty. 2287 * @param[out] ret the writable page, if any. ret is unchanged if 2288 * mp wasn't spilled. 2289 */ 2290 static int 2291 mdb_page_unspill(MDB_txn *txn, MDB_page *mp, MDB_page **ret) 2292 { 2293 MDB_env *env = txn->mt_env; 2294 const MDB_txn *tx2; 2295 unsigned x; 2296 pgno_t pgno = mp->mp_pgno, pn = pgno << 1; 2297 2298 for (tx2 = txn; tx2; tx2=tx2->mt_parent) { 2299 if (!tx2->mt_spill_pgs) 2300 continue; 2301 x = mdb_midl_search(tx2->mt_spill_pgs, pn); 2302 if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) { 2303 MDB_page *np; 2304 int num; 2305 if (txn->mt_dirty_room == 0) 2306 return MDB_TXN_FULL; 2307 if (IS_OVERFLOW(mp)) 2308 num = mp->mp_pages; 2309 else 2310 num = 1; 2311 if (env->me_flags & MDB_WRITEMAP) { 2312 np = mp; 2313 } else { 2314 np = mdb_page_malloc(txn, num); 2315 if (!np) 2316 return ENOMEM; 2317 if (num > 1) 2318 memcpy(np, mp, num * env->me_psize); 2319 else 2320 mdb_page_copy(np, mp, env->me_psize); 2321 } 2322 if (tx2 == txn) { 2323 /* If in current txn, this page is no longer spilled. 2324 * If it happens to be the last page, truncate the spill list. 2325 * Otherwise mark it as deleted by setting the LSB. 2326 */ 2327 if (x == txn->mt_spill_pgs[0]) 2328 txn->mt_spill_pgs[0]--; 2329 else 2330 txn->mt_spill_pgs[x] |= 1; 2331 } /* otherwise, if belonging to a parent txn, the 2332 * page remains spilled until child commits 2333 */ 2334 2335 mdb_page_dirty(txn, np); 2336 np->mp_flags |= P_DIRTY; 2337 *ret = np; 2338 break; 2339 } 2340 } 2341 return MDB_SUCCESS; 2342 } 2343 2344 /** Touch a page: make it dirty and re-insert into tree with updated pgno. 2345 * @param[in] mc cursor pointing to the page to be touched 2346 * @return 0 on success, non-zero on failure. 2347 */ 2348 static int 2349 mdb_page_touch(MDB_cursor *mc) 2350 { 2351 MDB_page *mp = mc->mc_pg[mc->mc_top], *np; 2352 MDB_txn *txn = mc->mc_txn; 2353 MDB_cursor *m2, *m3; 2354 pgno_t pgno; 2355 int rc; 2356 2357 if (!F_ISSET(mp->mp_flags, P_DIRTY)) { 2358 if (txn->mt_flags & MDB_TXN_SPILLS) { 2359 np = NULL; 2360 rc = mdb_page_unspill(txn, mp, &np); 2361 if (rc) 2362 goto fail; 2363 if (np) 2364 goto done; 2365 } 2366 if ((rc = mdb_midl_need(&txn->mt_free_pgs, 1)) || 2367 (rc = mdb_page_alloc(mc, 1, &np))) 2368 goto fail; 2369 pgno = np->mp_pgno; 2370 DPRINTF(("touched db %d page %"Z"u -> %"Z"u", DDBI(mc), 2371 mp->mp_pgno, pgno)); 2372 mdb_cassert(mc, mp->mp_pgno != pgno); 2373 mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno); 2374 /* Update the parent page, if any, to point to the new page */ 2375 if (mc->mc_top) { 2376 MDB_page *parent = mc->mc_pg[mc->mc_top-1]; 2377 MDB_node *node = NODEPTR(parent, mc->mc_ki[mc->mc_top-1]); 2378 SETPGNO(node, pgno); 2379 } else { 2380 mc->mc_db->md_root = pgno; 2381 } 2382 } else if (txn->mt_parent && !IS_SUBP(mp)) { 2383 MDB_ID2 mid, *dl = txn->mt_u.dirty_list; 2384 pgno = mp->mp_pgno; 2385 /* If txn has a parent, make sure the page is in our 2386 * dirty list. 2387 */ 2388 if (dl[0].mid) { 2389 unsigned x = mdb_mid2l_search(dl, pgno); 2390 if (x <= dl[0].mid && dl[x].mid == pgno) { 2391 if (mp != dl[x].mptr) { /* bad cursor? */ 2392 mc->mc_flags &= ~(C_INITIALIZED|C_EOF); 2393 txn->mt_flags |= MDB_TXN_ERROR; 2394 return MDB_CORRUPTED; 2395 } 2396 return 0; 2397 } 2398 } 2399 mdb_cassert(mc, dl[0].mid < MDB_IDL_UM_MAX); 2400 /* No - copy it */ 2401 np = mdb_page_malloc(txn, 1); 2402 if (!np) 2403 return ENOMEM; 2404 mid.mid = pgno; 2405 mid.mptr = np; 2406 rc = mdb_mid2l_insert(dl, &mid); 2407 mdb_cassert(mc, rc == 0); 2408 } else { 2409 return 0; 2410 } 2411 2412 mdb_page_copy(np, mp, txn->mt_env->me_psize); 2413 np->mp_pgno = pgno; 2414 np->mp_flags |= P_DIRTY; 2415 2416 done: 2417 /* Adjust cursors pointing to mp */ 2418 mc->mc_pg[mc->mc_top] = np; 2419 m2 = txn->mt_cursors[mc->mc_dbi]; 2420 if (mc->mc_flags & C_SUB) { 2421 for (; m2; m2=m2->mc_next) { 2422 m3 = &m2->mc_xcursor->mx_cursor; 2423 if (m3->mc_snum < mc->mc_snum) continue; 2424 if (m3->mc_pg[mc->mc_top] == mp) 2425 m3->mc_pg[mc->mc_top] = np; 2426 } 2427 } else { 2428 for (; m2; m2=m2->mc_next) { 2429 if (m2->mc_snum < mc->mc_snum) continue; 2430 if (m2 == mc) continue; 2431 if (m2->mc_pg[mc->mc_top] == mp) { 2432 m2->mc_pg[mc->mc_top] = np; 2433 if ((mc->mc_db->md_flags & MDB_DUPSORT) && 2434 IS_LEAF(np) && 2435 (m2->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) 2436 { 2437 MDB_node *leaf = NODEPTR(np, m2->mc_ki[mc->mc_top]); 2438 if ((leaf->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) 2439 m2->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf); 2440 } 2441 } 2442 } 2443 } 2444 return 0; 2445 2446 fail: 2447 txn->mt_flags |= MDB_TXN_ERROR; 2448 return rc; 2449 } 2450 2451 int 2452 mdb_env_sync(MDB_env *env, int force) 2453 { 2454 int rc = 0; 2455 if (env->me_flags & MDB_RDONLY) 2456 return EACCES; 2457 if (force || !F_ISSET(env->me_flags, MDB_NOSYNC)) { 2458 if (env->me_flags & MDB_WRITEMAP) { 2459 int flags = ((env->me_flags & MDB_MAPASYNC) && !force) 2460 ? MS_ASYNC : MS_SYNC; 2461 if (MDB_MSYNC(env->me_map, env->me_mapsize, flags)) 2462 rc = ErrCode(); 2463 #ifdef _WIN32 2464 else if (flags == MS_SYNC && MDB_FDATASYNC(env->me_fd)) 2465 rc = ErrCode(); 2466 #endif 2467 } else { 2468 #ifdef BROKEN_FDATASYNC 2469 if (env->me_flags & MDB_FSYNCONLY) { 2470 if (fsync(env->me_fd)) 2471 rc = ErrCode(); 2472 } else 2473 #endif 2474 if (MDB_FDATASYNC(env->me_fd)) 2475 rc = ErrCode(); 2476 } 2477 } 2478 return rc; 2479 } 2480 2481 /** Back up parent txn's cursors, then grab the originals for tracking */ 2482 static int 2483 mdb_cursor_shadow(MDB_txn *src, MDB_txn *dst) 2484 { 2485 MDB_cursor *mc, *bk; 2486 MDB_xcursor *mx; 2487 size_t size; 2488 int i; 2489 2490 for (i = src->mt_numdbs; --i >= 0; ) { 2491 if ((mc = src->mt_cursors[i]) != NULL) { 2492 size = sizeof(MDB_cursor); 2493 if (mc->mc_xcursor) 2494 size += sizeof(MDB_xcursor); 2495 for (; mc; mc = bk->mc_next) { 2496 bk = malloc(size); 2497 if (!bk) 2498 return ENOMEM; 2499 *bk = *mc; 2500 mc->mc_backup = bk; 2501 mc->mc_db = &dst->mt_dbs[i]; 2502 /* Kill pointers into src to reduce abuse: The 2503 * user may not use mc until dst ends. But we need a valid 2504 * txn pointer here for cursor fixups to keep working. 2505 */ 2506 mc->mc_txn = dst; 2507 mc->mc_dbflag = &dst->mt_dbflags[i]; 2508 if ((mx = mc->mc_xcursor) != NULL) { 2509 *(MDB_xcursor *)(bk+1) = *mx; 2510 mx->mx_cursor.mc_txn = dst; 2511 } 2512 mc->mc_next = dst->mt_cursors[i]; 2513 dst->mt_cursors[i] = mc; 2514 } 2515 } 2516 } 2517 return MDB_SUCCESS; 2518 } 2519 2520 /** Close this write txn's cursors, give parent txn's cursors back to parent. 2521 * @param[in] txn the transaction handle. 2522 * @param[in] merge true to keep changes to parent cursors, false to revert. 2523 * @return 0 on success, non-zero on failure. 2524 */ 2525 static void 2526 mdb_cursors_close(MDB_txn *txn, unsigned merge) 2527 { 2528 MDB_cursor **cursors = txn->mt_cursors, *mc, *next, *bk; 2529 MDB_xcursor *mx; 2530 int i; 2531 2532 for (i = txn->mt_numdbs; --i >= 0; ) { 2533 for (mc = cursors[i]; mc; mc = next) { 2534 next = mc->mc_next; 2535 if ((bk = mc->mc_backup) != NULL) { 2536 if (merge) { 2537 /* Commit changes to parent txn */ 2538 mc->mc_next = bk->mc_next; 2539 mc->mc_backup = bk->mc_backup; 2540 mc->mc_txn = bk->mc_txn; 2541 mc->mc_db = bk->mc_db; 2542 mc->mc_dbflag = bk->mc_dbflag; 2543 if ((mx = mc->mc_xcursor) != NULL) 2544 mx->mx_cursor.mc_txn = bk->mc_txn; 2545 } else { 2546 /* Abort nested txn */ 2547 *mc = *bk; 2548 if ((mx = mc->mc_xcursor) != NULL) 2549 *mx = *(MDB_xcursor *)(bk+1); 2550 } 2551 mc = bk; 2552 } 2553 /* Only malloced cursors are permanently tracked. */ 2554 free(mc); 2555 } 2556 cursors[i] = NULL; 2557 } 2558 } 2559 2560 #if !(MDB_PIDLOCK) /* Currently the same as defined(_WIN32) */ 2561 enum Pidlock_op { 2562 Pidset, Pidcheck 2563 }; 2564 #else 2565 enum Pidlock_op { 2566 Pidset = F_SETLK, Pidcheck = F_GETLK 2567 }; 2568 #endif 2569 2570 /** Set or check a pid lock. Set returns 0 on success. 2571 * Check returns 0 if the process is certainly dead, nonzero if it may 2572 * be alive (the lock exists or an error happened so we do not know). 2573 * 2574 * On Windows Pidset is a no-op, we merely check for the existence 2575 * of the process with the given pid. On POSIX we use a single byte 2576 * lock on the lockfile, set at an offset equal to the pid. 2577 */ 2578 static int 2579 mdb_reader_pid(MDB_env *env, enum Pidlock_op op, MDB_PID_T pid) 2580 { 2581 #if !(MDB_PIDLOCK) /* Currently the same as defined(_WIN32) */ 2582 int ret = 0; 2583 HANDLE h; 2584 if (op == Pidcheck) { 2585 h = OpenProcess(env->me_pidquery, FALSE, pid); 2586 /* No documented "no such process" code, but other program use this: */ 2587 if (!h) 2588 return ErrCode() != ERROR_INVALID_PARAMETER; 2589 /* A process exists until all handles to it close. Has it exited? */ 2590 ret = WaitForSingleObject(h, 0) != 0; 2591 CloseHandle(h); 2592 } 2593 return ret; 2594 #else 2595 for (;;) { 2596 int rc; 2597 struct flock lock_info; 2598 memset(&lock_info, 0, sizeof(lock_info)); 2599 lock_info.l_type = F_WRLCK; 2600 lock_info.l_whence = SEEK_SET; 2601 lock_info.l_start = pid; 2602 lock_info.l_len = 1; 2603 if ((rc = fcntl(env->me_lfd, op, &lock_info)) == 0) { 2604 if (op == F_GETLK && lock_info.l_type != F_UNLCK) 2605 rc = -1; 2606 } else if ((rc = ErrCode()) == EINTR) { 2607 continue; 2608 } 2609 return rc; 2610 } 2611 #endif 2612 } 2613 2614 /** Common code for #mdb_txn_begin() and #mdb_txn_renew(). 2615 * @param[in] txn the transaction handle to initialize 2616 * @return 0 on success, non-zero on failure. 2617 */ 2618 static int 2619 mdb_txn_renew0(MDB_txn *txn) 2620 { 2621 MDB_env *env = txn->mt_env; 2622 MDB_txninfo *ti = env->me_txns; 2623 MDB_meta *meta; 2624 unsigned int i, nr, flags = txn->mt_flags; 2625 uint16_t x; 2626 int rc, new_notls = 0; 2627 2628 if ((flags &= MDB_TXN_RDONLY) != 0) { 2629 if (!ti) { 2630 meta = mdb_env_pick_meta(env); 2631 txn->mt_txnid = meta->mm_txnid; 2632 txn->mt_u.reader = NULL; 2633 } else { 2634 MDB_reader *r = (env->me_flags & MDB_NOTLS) ? txn->mt_u.reader : 2635 pthread_getspecific(env->me_txkey); 2636 if (r) { 2637 if (r->mr_pid != env->me_pid || r->mr_txnid != (txnid_t)-1) 2638 return MDB_BAD_RSLOT; 2639 } else { 2640 MDB_PID_T pid = env->me_pid; 2641 MDB_THR_T tid = pthread_self(); 2642 mdb_mutexref_t rmutex = env->me_rmutex; 2643 2644 if (!env->me_live_reader) { 2645 rc = mdb_reader_pid(env, Pidset, pid); 2646 if (rc) 2647 return rc; 2648 env->me_live_reader = 1; 2649 } 2650 2651 if (LOCK_MUTEX(rc, env, rmutex)) 2652 return rc; 2653 nr = ti->mti_numreaders; 2654 for (i=0; i<nr; i++) 2655 if (ti->mti_readers[i].mr_pid == 0) 2656 break; 2657 if (i == env->me_maxreaders) { 2658 UNLOCK_MUTEX(rmutex); 2659 return MDB_READERS_FULL; 2660 } 2661 r = &ti->mti_readers[i]; 2662 /* Claim the reader slot, carefully since other code 2663 * uses the reader table un-mutexed: First reset the 2664 * slot, next publish it in mti_numreaders. After 2665 * that, it is safe for mdb_env_close() to touch it. 2666 * When it will be closed, we can finally claim it. 2667 */ 2668 r->mr_pid = 0; 2669 r->mr_txnid = (txnid_t)-1; 2670 r->mr_tid = tid; 2671 if (i == nr) 2672 ti->mti_numreaders = ++nr; 2673 env->me_close_readers = nr; 2674 r->mr_pid = pid; 2675 UNLOCK_MUTEX(rmutex); 2676 2677 new_notls = (env->me_flags & MDB_NOTLS); 2678 if (!new_notls && (rc=pthread_setspecific(env->me_txkey, r))) { 2679 r->mr_pid = 0; 2680 return rc; 2681 } 2682 } 2683 do /* LY: Retry on a race, ITS#7970. */ 2684 r->mr_txnid = ti->mti_txnid; 2685 while(r->mr_txnid != ti->mti_txnid); 2686 txn->mt_txnid = r->mr_txnid; 2687 txn->mt_u.reader = r; 2688 meta = env->me_metas[txn->mt_txnid & 1]; 2689 } 2690 2691 } else { 2692 /* Not yet touching txn == env->me_txn0, it may be active */ 2693 if (ti) { 2694 if (LOCK_MUTEX(rc, env, env->me_wmutex)) 2695 return rc; 2696 txn->mt_txnid = ti->mti_txnid; 2697 meta = env->me_metas[txn->mt_txnid & 1]; 2698 } else { 2699 meta = mdb_env_pick_meta(env); 2700 txn->mt_txnid = meta->mm_txnid; 2701 } 2702 txn->mt_txnid++; 2703 #if MDB_DEBUG 2704 if (txn->mt_txnid == mdb_debug_start) 2705 mdb_debug = 1; 2706 #endif 2707 txn->mt_child = NULL; 2708 txn->mt_loose_pgs = NULL; 2709 txn->mt_loose_count = 0; 2710 txn->mt_dirty_room = MDB_IDL_UM_MAX; 2711 txn->mt_u.dirty_list = env->me_dirty_list; 2712 txn->mt_u.dirty_list[0].mid = 0; 2713 txn->mt_free_pgs = env->me_free_pgs; 2714 txn->mt_free_pgs[0] = 0; 2715 txn->mt_spill_pgs = NULL; 2716 env->me_txn = txn; 2717 memcpy(txn->mt_dbiseqs, env->me_dbiseqs, env->me_maxdbs * sizeof(unsigned int)); 2718 } 2719 2720 /* Copy the DB info and flags */ 2721 memcpy(txn->mt_dbs, meta->mm_dbs, CORE_DBS * sizeof(MDB_db)); 2722 2723 /* Moved to here to avoid a data race in read TXNs */ 2724 txn->mt_next_pgno = meta->mm_last_pg+1; 2725 2726 txn->mt_flags = flags; 2727 2728 /* Setup db info */ 2729 txn->mt_numdbs = env->me_numdbs; 2730 for (i=CORE_DBS; i<txn->mt_numdbs; i++) { 2731 x = env->me_dbflags[i]; 2732 txn->mt_dbs[i].md_flags = x & PERSISTENT_FLAGS; 2733 txn->mt_dbflags[i] = (x & MDB_VALID) ? DB_VALID|DB_USRVALID|DB_STALE : 0; 2734 } 2735 txn->mt_dbflags[MAIN_DBI] = DB_VALID|DB_USRVALID; 2736 txn->mt_dbflags[FREE_DBI] = DB_VALID; 2737 2738 if (env->me_flags & MDB_FATAL_ERROR) { 2739 DPUTS("environment had fatal error, must shutdown!"); 2740 rc = MDB_PANIC; 2741 } else if (env->me_maxpg < txn->mt_next_pgno) { 2742 rc = MDB_MAP_RESIZED; 2743 } else { 2744 return MDB_SUCCESS; 2745 } 2746 mdb_txn_end(txn, new_notls /*0 or MDB_END_SLOT*/ | MDB_END_FAIL_BEGIN); 2747 return rc; 2748 } 2749 2750 int 2751 mdb_txn_renew(MDB_txn *txn) 2752 { 2753 int rc; 2754 2755 if (!txn || !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY|MDB_TXN_FINISHED)) 2756 return EINVAL; 2757 2758 rc = mdb_txn_renew0(txn); 2759 if (rc == MDB_SUCCESS) { 2760 DPRINTF(("renew txn %"Z"u%c %p on mdbenv %p, root page %"Z"u", 2761 txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w', 2762 (void *)txn, (void *)txn->mt_env, txn->mt_dbs[MAIN_DBI].md_root)); 2763 } 2764 return rc; 2765 } 2766 2767 int 2768 mdb_txn_begin(MDB_env *env, MDB_txn *parent, unsigned int flags, MDB_txn **ret) 2769 { 2770 MDB_txn *txn; 2771 MDB_ntxn *ntxn; 2772 int rc, size, tsize; 2773 2774 flags &= MDB_TXN_BEGIN_FLAGS; 2775 flags |= env->me_flags & MDB_WRITEMAP; 2776 2777 if (env->me_flags & MDB_RDONLY & ~flags) /* write txn in RDONLY env */ 2778 return EACCES; 2779 2780 if (parent) { 2781 /* Nested transactions: Max 1 child, write txns only, no writemap */ 2782 flags |= parent->mt_flags; 2783 if (flags & (MDB_RDONLY|MDB_WRITEMAP|MDB_TXN_BLOCKED)) { 2784 return (parent->mt_flags & MDB_TXN_RDONLY) ? EINVAL : MDB_BAD_TXN; 2785 } 2786 /* Child txns save MDB_pgstate and use own copy of cursors */ 2787 size = env->me_maxdbs * (sizeof(MDB_db)+sizeof(MDB_cursor *)+1); 2788 size += tsize = sizeof(MDB_ntxn); 2789 } else if (flags & MDB_RDONLY) { 2790 size = env->me_maxdbs * (sizeof(MDB_db)+1); 2791 size += tsize = sizeof(MDB_txn); 2792 } else { 2793 /* Reuse preallocated write txn. However, do not touch it until 2794 * mdb_txn_renew0() succeeds, since it currently may be active. 2795 */ 2796 txn = env->me_txn0; 2797 goto renew; 2798 } 2799 if ((txn = calloc(1, size)) == NULL) { 2800 DPRINTF(("calloc: %s", strerror(errno))); 2801 return ENOMEM; 2802 } 2803 txn->mt_dbxs = env->me_dbxs; /* static */ 2804 txn->mt_dbs = (MDB_db *) ((char *)txn + tsize); 2805 txn->mt_dbflags = (unsigned char *)txn + size - env->me_maxdbs; 2806 txn->mt_flags = flags; 2807 txn->mt_env = env; 2808 2809 if (parent) { 2810 unsigned int i; 2811 txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs); 2812 txn->mt_dbiseqs = parent->mt_dbiseqs; 2813 txn->mt_u.dirty_list = malloc(sizeof(MDB_ID2)*MDB_IDL_UM_SIZE); 2814 if (!txn->mt_u.dirty_list || 2815 !(txn->mt_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX))) 2816 { 2817 free(txn->mt_u.dirty_list); 2818 free(txn); 2819 return ENOMEM; 2820 } 2821 txn->mt_txnid = parent->mt_txnid; 2822 txn->mt_dirty_room = parent->mt_dirty_room; 2823 txn->mt_u.dirty_list[0].mid = 0; 2824 txn->mt_spill_pgs = NULL; 2825 txn->mt_next_pgno = parent->mt_next_pgno; 2826 parent->mt_flags |= MDB_TXN_HAS_CHILD; 2827 parent->mt_child = txn; 2828 txn->mt_parent = parent; 2829 txn->mt_numdbs = parent->mt_numdbs; 2830 memcpy(txn->mt_dbs, parent->mt_dbs, txn->mt_numdbs * sizeof(MDB_db)); 2831 /* Copy parent's mt_dbflags, but clear DB_NEW */ 2832 for (i=0; i<txn->mt_numdbs; i++) 2833 txn->mt_dbflags[i] = parent->mt_dbflags[i] & ~DB_NEW; 2834 rc = 0; 2835 ntxn = (MDB_ntxn *)txn; 2836 ntxn->mnt_pgstate = env->me_pgstate; /* save parent me_pghead & co */ 2837 if (env->me_pghead) { 2838 size = MDB_IDL_SIZEOF(env->me_pghead); 2839 env->me_pghead = mdb_midl_alloc(env->me_pghead[0]); 2840 if (env->me_pghead) 2841 memcpy(env->me_pghead, ntxn->mnt_pgstate.mf_pghead, size); 2842 else 2843 rc = ENOMEM; 2844 } 2845 if (!rc) 2846 rc = mdb_cursor_shadow(parent, txn); 2847 if (rc) 2848 mdb_txn_end(txn, MDB_END_FAIL_BEGINCHILD); 2849 } else { /* MDB_RDONLY */ 2850 txn->mt_dbiseqs = env->me_dbiseqs; 2851 renew: 2852 rc = mdb_txn_renew0(txn); 2853 } 2854 if (rc) { 2855 if (txn != env->me_txn0) 2856 free(txn); 2857 } else { 2858 txn->mt_flags |= flags; /* could not change txn=me_txn0 earlier */ 2859 *ret = txn; 2860 DPRINTF(("begin txn %"Z"u%c %p on mdbenv %p, root page %"Z"u", 2861 txn->mt_txnid, (flags & MDB_RDONLY) ? 'r' : 'w', 2862 (void *) txn, (void *) env, txn->mt_dbs[MAIN_DBI].md_root)); 2863 } 2864 2865 return rc; 2866 } 2867 2868 MDB_env * 2869 mdb_txn_env(MDB_txn *txn) 2870 { 2871 if(!txn) return NULL; 2872 return txn->mt_env; 2873 } 2874 2875 size_t 2876 mdb_txn_id(MDB_txn *txn) 2877 { 2878 if(!txn) return 0; 2879 return txn->mt_txnid; 2880 } 2881 2882 /** Export or close DBI handles opened in this txn. */ 2883 static void 2884 mdb_dbis_update(MDB_txn *txn, int keep) 2885 { 2886 int i; 2887 MDB_dbi n = txn->mt_numdbs; 2888 MDB_env *env = txn->mt_env; 2889 unsigned char *tdbflags = txn->mt_dbflags; 2890 2891 for (i = n; --i >= CORE_DBS;) { 2892 if (tdbflags[i] & DB_NEW) { 2893 if (keep) { 2894 env->me_dbflags[i] = txn->mt_dbs[i].md_flags | MDB_VALID; 2895 } else { 2896 char *ptr = env->me_dbxs[i].md_name.mv_data; 2897 if (ptr) { 2898 env->me_dbxs[i].md_name.mv_data = NULL; 2899 env->me_dbxs[i].md_name.mv_size = 0; 2900 env->me_dbflags[i] = 0; 2901 env->me_dbiseqs[i]++; 2902 free(ptr); 2903 } 2904 } 2905 } 2906 } 2907 if (keep && env->me_numdbs < n) 2908 env->me_numdbs = n; 2909 } 2910 2911 /** End a transaction, except successful commit of a nested transaction. 2912 * May be called twice for readonly txns: First reset it, then abort. 2913 * @param[in] txn the transaction handle to end 2914 * @param[in] mode why and how to end the transaction 2915 */ 2916 static void 2917 mdb_txn_end(MDB_txn *txn, unsigned mode) 2918 { 2919 MDB_env *env = txn->mt_env; 2920 #if MDB_DEBUG 2921 static const char *const names[] = MDB_END_NAMES; 2922 #endif 2923 2924 /* Export or close DBI handles opened in this txn */ 2925 mdb_dbis_update(txn, mode & MDB_END_UPDATE); 2926 2927 DPRINTF(("%s txn %"Z"u%c %p on mdbenv %p, root page %"Z"u", 2928 names[mode & MDB_END_OPMASK], 2929 txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w', 2930 (void *) txn, (void *)env, txn->mt_dbs[MAIN_DBI].md_root)); 2931 2932 if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) { 2933 if (txn->mt_u.reader) { 2934 txn->mt_u.reader->mr_txnid = (txnid_t)-1; 2935 if (!(env->me_flags & MDB_NOTLS)) { 2936 txn->mt_u.reader = NULL; /* txn does not own reader */ 2937 } else if (mode & MDB_END_SLOT) { 2938 txn->mt_u.reader->mr_pid = 0; 2939 txn->mt_u.reader = NULL; 2940 } /* else txn owns the slot until it does MDB_END_SLOT */ 2941 } 2942 txn->mt_numdbs = 0; /* prevent further DBI activity */ 2943 txn->mt_flags |= MDB_TXN_FINISHED; 2944 2945 } else if (!F_ISSET(txn->mt_flags, MDB_TXN_FINISHED)) { 2946 pgno_t *pghead = env->me_pghead; 2947 2948 if (!(mode & MDB_END_UPDATE)) /* !(already closed cursors) */ 2949 mdb_cursors_close(txn, 0); 2950 if (!(env->me_flags & MDB_WRITEMAP)) { 2951 mdb_dlist_free(txn); 2952 } 2953 2954 txn->mt_numdbs = 0; 2955 txn->mt_flags = MDB_TXN_FINISHED; 2956 2957 if (!txn->mt_parent) { 2958 mdb_midl_shrink(&txn->mt_free_pgs); 2959 env->me_free_pgs = txn->mt_free_pgs; 2960 /* me_pgstate: */ 2961 env->me_pghead = NULL; 2962 env->me_pglast = 0; 2963 2964 env->me_txn = NULL; 2965 mode = 0; /* txn == env->me_txn0, do not free() it */ 2966 2967 /* The writer mutex was locked in mdb_txn_begin. */ 2968 if (env->me_txns) 2969 UNLOCK_MUTEX(env->me_wmutex); 2970 } else { 2971 txn->mt_parent->mt_child = NULL; 2972 txn->mt_parent->mt_flags &= ~MDB_TXN_HAS_CHILD; 2973 env->me_pgstate = ((MDB_ntxn *)txn)->mnt_pgstate; 2974 mdb_midl_free(txn->mt_free_pgs); 2975 mdb_midl_free(txn->mt_spill_pgs); 2976 free(txn->mt_u.dirty_list); 2977 } 2978 2979 mdb_midl_free(pghead); 2980 } 2981 2982 if (mode & MDB_END_FREE) 2983 free(txn); 2984 } 2985 2986 void 2987 mdb_txn_reset(MDB_txn *txn) 2988 { 2989 if (txn == NULL) 2990 return; 2991 2992 /* This call is only valid for read-only txns */ 2993 if (!(txn->mt_flags & MDB_TXN_RDONLY)) 2994 return; 2995 2996 mdb_txn_end(txn, MDB_END_RESET); 2997 } 2998 2999 void 3000 mdb_txn_abort(MDB_txn *txn) 3001 { 3002 if (txn == NULL) 3003 return; 3004 3005 if (txn->mt_child) 3006 mdb_txn_abort(txn->mt_child); 3007 3008 mdb_txn_end(txn, MDB_END_ABORT|MDB_END_SLOT|MDB_END_FREE); 3009 } 3010 3011 /** Save the freelist as of this transaction to the freeDB. 3012 * This changes the freelist. Keep trying until it stabilizes. 3013 */ 3014 static int 3015 mdb_freelist_save(MDB_txn *txn) 3016 { 3017 /* env->me_pghead[] can grow and shrink during this call. 3018 * env->me_pglast and txn->mt_free_pgs[] can only grow. 3019 * Page numbers cannot disappear from txn->mt_free_pgs[]. 3020 */ 3021 MDB_cursor mc; 3022 MDB_env *env = txn->mt_env; 3023 int rc, maxfree_1pg = env->me_maxfree_1pg, more = 1; 3024 txnid_t pglast = 0, head_id = 0; 3025 pgno_t freecnt = 0, *free_pgs, *mop; 3026 ssize_t head_room = 0, total_room = 0, mop_len, clean_limit; 3027 3028 mdb_cursor_init(&mc, txn, FREE_DBI, NULL); 3029 3030 if (env->me_pghead) { 3031 /* Make sure first page of freeDB is touched and on freelist */ 3032 rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST|MDB_PS_MODIFY); 3033 if (rc && rc != MDB_NOTFOUND) 3034 return rc; 3035 } 3036 3037 if (!env->me_pghead && txn->mt_loose_pgs) { 3038 /* Put loose page numbers in mt_free_pgs, since 3039 * we may be unable to return them to me_pghead. 3040 */ 3041 MDB_page *mp = txn->mt_loose_pgs; 3042 if ((rc = mdb_midl_need(&txn->mt_free_pgs, txn->mt_loose_count)) != 0) 3043 return rc; 3044 for (; mp; mp = NEXT_LOOSE_PAGE(mp)) 3045 mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno); 3046 txn->mt_loose_pgs = NULL; 3047 txn->mt_loose_count = 0; 3048 } 3049 3050 /* MDB_RESERVE cancels meminit in ovpage malloc (when no WRITEMAP) */ 3051 clean_limit = (env->me_flags & (MDB_NOMEMINIT|MDB_WRITEMAP)) 3052 ? SSIZE_MAX : maxfree_1pg; 3053 3054 for (;;) { 3055 /* Come back here after each Put() in case freelist changed */ 3056 MDB_val key, data; 3057 pgno_t *pgs; 3058 ssize_t j; 3059 3060 /* If using records from freeDB which we have not yet 3061 * deleted, delete them and any we reserved for me_pghead. 3062 */ 3063 while (pglast < env->me_pglast) { 3064 rc = mdb_cursor_first(&mc, &key, NULL); 3065 if (rc) 3066 return rc; 3067 pglast = head_id = *(txnid_t *)key.mv_data; 3068 total_room = head_room = 0; 3069 mdb_tassert(txn, pglast <= env->me_pglast); 3070 rc = mdb_cursor_del(&mc, 0); 3071 if (rc) 3072 return rc; 3073 } 3074 3075 /* Save the IDL of pages freed by this txn, to a single record */ 3076 if (freecnt < txn->mt_free_pgs[0]) { 3077 if (!freecnt) { 3078 /* Make sure last page of freeDB is touched and on freelist */ 3079 rc = mdb_page_search(&mc, NULL, MDB_PS_LAST|MDB_PS_MODIFY); 3080 if (rc && rc != MDB_NOTFOUND) 3081 return rc; 3082 } 3083 free_pgs = txn->mt_free_pgs; 3084 /* Write to last page of freeDB */ 3085 key.mv_size = sizeof(txn->mt_txnid); 3086 key.mv_data = &txn->mt_txnid; 3087 do { 3088 freecnt = free_pgs[0]; 3089 data.mv_size = MDB_IDL_SIZEOF(free_pgs); 3090 rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE); 3091 if (rc) 3092 return rc; 3093 /* Retry if mt_free_pgs[] grew during the Put() */ 3094 free_pgs = txn->mt_free_pgs; 3095 } while (freecnt < free_pgs[0]); 3096 mdb_midl_sort(free_pgs); 3097 memcpy(data.mv_data, free_pgs, data.mv_size); 3098 #if (MDB_DEBUG) > 1 3099 { 3100 unsigned int i = free_pgs[0]; 3101 DPRINTF(("IDL write txn %"Z"u root %"Z"u num %u", 3102 txn->mt_txnid, txn->mt_dbs[FREE_DBI].md_root, i)); 3103 for (; i; i--) 3104 DPRINTF(("IDL %"Z"u", free_pgs[i])); 3105 } 3106 #endif 3107 continue; 3108 } 3109 3110 mop = env->me_pghead; 3111 mop_len = (mop ? mop[0] : 0) + txn->mt_loose_count; 3112 3113 /* Reserve records for me_pghead[]. Split it if multi-page, 3114 * to avoid searching freeDB for a page range. Use keys in 3115 * range [1,me_pglast]: Smaller than txnid of oldest reader. 3116 */ 3117 if (total_room >= mop_len) { 3118 if (total_room == mop_len || --more < 0) 3119 break; 3120 } else if (head_room >= maxfree_1pg && head_id > 1) { 3121 /* Keep current record (overflow page), add a new one */ 3122 head_id--; 3123 head_room = 0; 3124 } 3125 /* (Re)write {key = head_id, IDL length = head_room} */ 3126 total_room -= head_room; 3127 head_room = mop_len - total_room; 3128 if (head_room > maxfree_1pg && head_id > 1) { 3129 /* Overflow multi-page for part of me_pghead */ 3130 head_room /= head_id; /* amortize page sizes */ 3131 head_room += maxfree_1pg - head_room % (maxfree_1pg + 1); 3132 } else if (head_room < 0) { 3133 /* Rare case, not bothering to delete this record */ 3134 head_room = 0; 3135 } 3136 key.mv_size = sizeof(head_id); 3137 key.mv_data = &head_id; 3138 data.mv_size = (head_room + 1) * sizeof(pgno_t); 3139 rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE); 3140 if (rc) 3141 return rc; 3142 /* IDL is initially empty, zero out at least the length */ 3143 pgs = (pgno_t *)data.mv_data; 3144 j = head_room > clean_limit ? head_room : 0; 3145 do { 3146 pgs[j] = 0; 3147 } while (--j >= 0); 3148 total_room += head_room; 3149 } 3150 3151 /* Return loose page numbers to me_pghead, though usually none are 3152 * left at this point. The pages themselves remain in dirty_list. 3153 */ 3154 if (txn->mt_loose_pgs) { 3155 MDB_page *mp = txn->mt_loose_pgs; 3156 unsigned count = txn->mt_loose_count; 3157 MDB_IDL loose; 3158 /* Room for loose pages + temp IDL with same */ 3159 if ((rc = mdb_midl_need(&env->me_pghead, 2*count+1)) != 0) 3160 return rc; 3161 mop = env->me_pghead; 3162 loose = mop + MDB_IDL_ALLOCLEN(mop) - count; 3163 for (count = 0; mp; mp = NEXT_LOOSE_PAGE(mp)) 3164 loose[ ++count ] = mp->mp_pgno; 3165 loose[0] = count; 3166 mdb_midl_sort(loose); 3167 mdb_midl_xmerge(mop, loose); 3168 txn->mt_loose_pgs = NULL; 3169 txn->mt_loose_count = 0; 3170 mop_len = mop[0]; 3171 } 3172 3173 /* Fill in the reserved me_pghead records */ 3174 rc = MDB_SUCCESS; 3175 if (mop_len) { 3176 MDB_val key, data; 3177 3178 mop += mop_len; 3179 rc = mdb_cursor_first(&mc, &key, &data); 3180 for (; !rc; rc = mdb_cursor_next(&mc, &key, &data, MDB_NEXT)) { 3181 txnid_t id = *(txnid_t *)key.mv_data; 3182 ssize_t len = (ssize_t)(data.mv_size / sizeof(MDB_ID)) - 1; 3183 MDB_ID save; 3184 3185 mdb_tassert(txn, len >= 0 && id <= env->me_pglast); 3186 key.mv_data = &id; 3187 if (len > mop_len) { 3188 len = mop_len; 3189 data.mv_size = (len + 1) * sizeof(MDB_ID); 3190 } 3191 data.mv_data = mop -= len; 3192 save = mop[0]; 3193 mop[0] = len; 3194 rc = mdb_cursor_put(&mc, &key, &data, MDB_CURRENT); 3195 mop[0] = save; 3196 if (rc || !(mop_len -= len)) 3197 break; 3198 } 3199 } 3200 return rc; 3201 } 3202 3203 /** Flush (some) dirty pages to the map, after clearing their dirty flag. 3204 * @param[in] txn the transaction that's being committed 3205 * @param[in] keep number of initial pages in dirty_list to keep dirty. 3206 * @return 0 on success, non-zero on failure. 3207 */ 3208 static int 3209 mdb_page_flush(MDB_txn *txn, int keep) 3210 { 3211 MDB_env *env = txn->mt_env; 3212 MDB_ID2L dl = txn->mt_u.dirty_list; 3213 unsigned psize = env->me_psize, j; 3214 int i, pagecount = dl[0].mid, rc; 3215 size_t size = 0, pos = 0; 3216 pgno_t pgno = 0; 3217 MDB_page *dp = NULL; 3218 #ifdef _WIN32 3219 OVERLAPPED ov; 3220 #else 3221 struct iovec iov[MDB_COMMIT_PAGES]; 3222 ssize_t wpos = 0, wsize = 0, wres; 3223 size_t next_pos = 1; /* impossible pos, so pos != next_pos */ 3224 int n = 0; 3225 #endif 3226 3227 j = i = keep; 3228 3229 if (env->me_flags & MDB_WRITEMAP) { 3230 /* Clear dirty flags */ 3231 while (++i <= pagecount) { 3232 dp = dl[i].mptr; 3233 /* Don't flush this page yet */ 3234 if (dp->mp_flags & (P_LOOSE|P_KEEP)) { 3235 dp->mp_flags &= ~P_KEEP; 3236 dl[++j] = dl[i]; 3237 continue; 3238 } 3239 dp->mp_flags &= ~P_DIRTY; 3240 } 3241 goto done; 3242 } 3243 3244 /* Write the pages */ 3245 for (;;) { 3246 if (++i <= pagecount) { 3247 dp = dl[i].mptr; 3248 /* Don't flush this page yet */ 3249 if (dp->mp_flags & (P_LOOSE|P_KEEP)) { 3250 dp->mp_flags &= ~P_KEEP; 3251 dl[i].mid = 0; 3252 continue; 3253 } 3254 pgno = dl[i].mid; 3255 /* clear dirty flag */ 3256 dp->mp_flags &= ~P_DIRTY; 3257 pos = pgno * psize; 3258 size = psize; 3259 if (IS_OVERFLOW(dp)) size *= dp->mp_pages; 3260 } 3261 #ifdef _WIN32 3262 else break; 3263 3264 /* Windows actually supports scatter/gather I/O, but only on 3265 * unbuffered file handles. Since we're relying on the OS page 3266 * cache for all our data, that's self-defeating. So we just 3267 * write pages one at a time. We use the ov structure to set 3268 * the write offset, to at least save the overhead of a Seek 3269 * system call. 3270 */ 3271 DPRINTF(("committing page %"Z"u", pgno)); 3272 memset(&ov, 0, sizeof(ov)); 3273 ov.Offset = pos & 0xffffffff; 3274 ov.OffsetHigh = pos >> 16 >> 16; 3275 if (!WriteFile(env->me_fd, dp, size, NULL, &ov)) { 3276 rc = ErrCode(); 3277 DPRINTF(("WriteFile: %d", rc)); 3278 return rc; 3279 } 3280 #else 3281 /* Write up to MDB_COMMIT_PAGES dirty pages at a time. */ 3282 if (pos!=next_pos || n==MDB_COMMIT_PAGES || wsize+size>MAX_WRITE) { 3283 if (n) { 3284 retry_write: 3285 /* Write previous page(s) */ 3286 #ifdef MDB_USE_PWRITEV 3287 wres = pwritev(env->me_fd, iov, n, wpos); 3288 #else 3289 if (n == 1) { 3290 wres = pwrite(env->me_fd, iov[0].iov_base, wsize, wpos); 3291 } else { 3292 retry_seek: 3293 if (lseek(env->me_fd, wpos, SEEK_SET) == -1) { 3294 rc = ErrCode(); 3295 if (rc == EINTR) 3296 goto retry_seek; 3297 DPRINTF(("lseek: %s", strerror(rc))); 3298 return rc; 3299 } 3300 wres = writev(env->me_fd, iov, n); 3301 } 3302 #endif 3303 if (wres != wsize) { 3304 if (wres < 0) { 3305 rc = ErrCode(); 3306 if (rc == EINTR) 3307 goto retry_write; 3308 DPRINTF(("Write error: %s", strerror(rc))); 3309 } else { 3310 rc = EIO; /* TODO: Use which error code? */ 3311 DPUTS("short write, filesystem full?"); 3312 } 3313 return rc; 3314 } 3315 n = 0; 3316 } 3317 if (i > pagecount) 3318 break; 3319 wpos = pos; 3320 wsize = 0; 3321 } 3322 DPRINTF(("committing page %"Z"u", pgno)); 3323 next_pos = pos + size; 3324 iov[n].iov_len = size; 3325 iov[n].iov_base = (char *)dp; 3326 wsize += size; 3327 n++; 3328 #endif /* _WIN32 */ 3329 } 3330 3331 /* MIPS has cache coherency issues, this is a no-op everywhere else 3332 * Note: for any size >= on-chip cache size, entire on-chip cache is 3333 * flushed. 3334 */ 3335 CACHEFLUSH(env->me_map, txn->mt_next_pgno * env->me_psize, DCACHE); 3336 3337 for (i = keep; ++i <= pagecount; ) { 3338 dp = dl[i].mptr; 3339 /* This is a page we skipped above */ 3340 if (!dl[i].mid) { 3341 dl[++j] = dl[i]; 3342 dl[j].mid = dp->mp_pgno; 3343 continue; 3344 } 3345 mdb_dpage_free(env, dp); 3346 } 3347 3348 done: 3349 i--; 3350 txn->mt_dirty_room += i - j; 3351 dl[0].mid = j; 3352 return MDB_SUCCESS; 3353 } 3354 3355 int 3356 mdb_txn_commit(MDB_txn *txn) 3357 { 3358 int rc; 3359 unsigned int i, end_mode; 3360 MDB_env *env; 3361 3362 if (txn == NULL) 3363 return EINVAL; 3364 3365 /* mdb_txn_end() mode for a commit which writes nothing */ 3366 end_mode = MDB_END_EMPTY_COMMIT|MDB_END_UPDATE|MDB_END_SLOT|MDB_END_FREE; 3367 3368 if (txn->mt_child) { 3369 rc = mdb_txn_commit(txn->mt_child); 3370 if (rc) 3371 goto fail; 3372 } 3373 3374 env = txn->mt_env; 3375 3376 if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) { 3377 goto done; 3378 } 3379 3380 if (txn->mt_flags & (MDB_TXN_FINISHED|MDB_TXN_ERROR)) { 3381 DPUTS("txn has failed/finished, can't commit"); 3382 if (txn->mt_parent) 3383 txn->mt_parent->mt_flags |= MDB_TXN_ERROR; 3384 rc = MDB_BAD_TXN; 3385 goto fail; 3386 } 3387 3388 if (txn->mt_parent) { 3389 MDB_txn *parent = txn->mt_parent; 3390 MDB_page **lp; 3391 MDB_ID2L dst, src; 3392 MDB_IDL pspill; 3393 unsigned x, y, len, ps_len; 3394 3395 /* Append our free list to parent's */ 3396 rc = mdb_midl_append_list(&parent->mt_free_pgs, txn->mt_free_pgs); 3397 if (rc) 3398 goto fail; 3399 mdb_midl_free(txn->mt_free_pgs); 3400 /* Failures after this must either undo the changes 3401 * to the parent or set MDB_TXN_ERROR in the parent. 3402 */ 3403 3404 parent->mt_next_pgno = txn->mt_next_pgno; 3405 parent->mt_flags = txn->mt_flags; 3406 3407 /* Merge our cursors into parent's and close them */ 3408 mdb_cursors_close(txn, 1); 3409 3410 /* Update parent's DB table. */ 3411 memcpy(parent->mt_dbs, txn->mt_dbs, txn->mt_numdbs * sizeof(MDB_db)); 3412 parent->mt_numdbs = txn->mt_numdbs; 3413 parent->mt_dbflags[FREE_DBI] = txn->mt_dbflags[FREE_DBI]; 3414 parent->mt_dbflags[MAIN_DBI] = txn->mt_dbflags[MAIN_DBI]; 3415 for (i=CORE_DBS; i<txn->mt_numdbs; i++) { 3416 /* preserve parent's DB_NEW status */ 3417 x = parent->mt_dbflags[i] & DB_NEW; 3418 parent->mt_dbflags[i] = txn->mt_dbflags[i] | x; 3419 } 3420 3421 dst = parent->mt_u.dirty_list; 3422 src = txn->mt_u.dirty_list; 3423 /* Remove anything in our dirty list from parent's spill list */ 3424 if ((pspill = parent->mt_spill_pgs) && (ps_len = pspill[0])) { 3425 x = y = ps_len; 3426 pspill[0] = (pgno_t)-1; 3427 /* Mark our dirty pages as deleted in parent spill list */ 3428 for (i=0, len=src[0].mid; ++i <= len; ) { 3429 MDB_ID pn = src[i].mid << 1; 3430 while (pn > pspill[x]) 3431 x--; 3432 if (pn == pspill[x]) { 3433 pspill[x] = 1; 3434 y = --x; 3435 } 3436 } 3437 /* Squash deleted pagenums if we deleted any */ 3438 for (x=y; ++x <= ps_len; ) 3439 if (!(pspill[x] & 1)) 3440 pspill[++y] = pspill[x]; 3441 pspill[0] = y; 3442 } 3443 3444 /* Remove anything in our spill list from parent's dirty list */ 3445 if (txn->mt_spill_pgs && txn->mt_spill_pgs[0]) { 3446 for (i=1; i<=txn->mt_spill_pgs[0]; i++) { 3447 MDB_ID pn = txn->mt_spill_pgs[i]; 3448 if (pn & 1) 3449 continue; /* deleted spillpg */ 3450 pn >>= 1; 3451 y = mdb_mid2l_search(dst, pn); 3452 if (y <= dst[0].mid && dst[y].mid == pn) { 3453 free(dst[y].mptr); 3454 while (y < dst[0].mid) { 3455 dst[y] = dst[y+1]; 3456 y++; 3457 } 3458 dst[0].mid--; 3459 } 3460 } 3461 } 3462 3463 /* Find len = length of merging our dirty list with parent's */ 3464 x = dst[0].mid; 3465 dst[0].mid = 0; /* simplify loops */ 3466 if (parent->mt_parent) { 3467 len = x + src[0].mid; 3468 y = mdb_mid2l_search(src, dst[x].mid + 1) - 1; 3469 for (i = x; y && i; y--) { 3470 pgno_t yp = src[y].mid; 3471 while (yp < dst[i].mid) 3472 i--; 3473 if (yp == dst[i].mid) { 3474 i--; 3475 len--; 3476 } 3477 } 3478 } else { /* Simplify the above for single-ancestor case */ 3479 len = MDB_IDL_UM_MAX - txn->mt_dirty_room; 3480 } 3481 /* Merge our dirty list with parent's */ 3482 y = src[0].mid; 3483 for (i = len; y; dst[i--] = src[y--]) { 3484 pgno_t yp = src[y].mid; 3485 while (yp < dst[x].mid) 3486 dst[i--] = dst[x--]; 3487 if (yp == dst[x].mid) 3488 free(dst[x--].mptr); 3489 } 3490 mdb_tassert(txn, i == x); 3491 dst[0].mid = len; 3492 free(txn->mt_u.dirty_list); 3493 parent->mt_dirty_room = txn->mt_dirty_room; 3494 if (txn->mt_spill_pgs) { 3495 if (parent->mt_spill_pgs) { 3496 /* TODO: Prevent failure here, so parent does not fail */ 3497 rc = mdb_midl_append_list(&parent->mt_spill_pgs, txn->mt_spill_pgs); 3498 if (rc) 3499 parent->mt_flags |= MDB_TXN_ERROR; 3500 mdb_midl_free(txn->mt_spill_pgs); 3501 mdb_midl_sort(parent->mt_spill_pgs); 3502 } else { 3503 parent->mt_spill_pgs = txn->mt_spill_pgs; 3504 } 3505 } 3506 3507 /* Append our loose page list to parent's */ 3508 for (lp = &parent->mt_loose_pgs; *lp; lp = &NEXT_LOOSE_PAGE(*lp)) 3509 ; 3510 *lp = txn->mt_loose_pgs; 3511 parent->mt_loose_count += txn->mt_loose_count; 3512 3513 parent->mt_child = NULL; 3514 mdb_midl_free(((MDB_ntxn *)txn)->mnt_pgstate.mf_pghead); 3515 free(txn); 3516 return rc; 3517 } 3518 3519 if (txn != env->me_txn) { 3520 DPUTS("attempt to commit unknown transaction"); 3521 rc = EINVAL; 3522 goto fail; 3523 } 3524 3525 mdb_cursors_close(txn, 0); 3526 3527 if (!txn->mt_u.dirty_list[0].mid && 3528 !(txn->mt_flags & (MDB_TXN_DIRTY|MDB_TXN_SPILLS))) 3529 goto done; 3530 3531 DPRINTF(("committing txn %"Z"u %p on mdbenv %p, root page %"Z"u", 3532 txn->mt_txnid, (void*)txn, (void*)env, txn->mt_dbs[MAIN_DBI].md_root)); 3533 3534 /* Update DB root pointers */ 3535 if (txn->mt_numdbs > CORE_DBS) { 3536 MDB_cursor mc; 3537 MDB_dbi i; 3538 MDB_val data; 3539 data.mv_size = sizeof(MDB_db); 3540 3541 mdb_cursor_init(&mc, txn, MAIN_DBI, NULL); 3542 for (i = CORE_DBS; i < txn->mt_numdbs; i++) { 3543 if (txn->mt_dbflags[i] & DB_DIRTY) { 3544 if (TXN_DBI_CHANGED(txn, i)) { 3545 rc = MDB_BAD_DBI; 3546 goto fail; 3547 } 3548 data.mv_data = &txn->mt_dbs[i]; 3549 rc = mdb_cursor_put(&mc, &txn->mt_dbxs[i].md_name, &data, 3550 F_SUBDATA); 3551 if (rc) 3552 goto fail; 3553 } 3554 } 3555 } 3556 3557 rc = mdb_freelist_save(txn); 3558 if (rc) 3559 goto fail; 3560 3561 mdb_midl_free(env->me_pghead); 3562 env->me_pghead = NULL; 3563 mdb_midl_shrink(&txn->mt_free_pgs); 3564 3565 #if (MDB_DEBUG) > 2 3566 mdb_audit(txn); 3567 #endif 3568 3569 if ((rc = mdb_page_flush(txn, 0)) || 3570 (rc = mdb_env_sync(env, 0)) || 3571 (rc = mdb_env_write_meta(txn))) 3572 goto fail; 3573 end_mode = MDB_END_COMMITTED|MDB_END_UPDATE; 3574 3575 done: 3576 mdb_txn_end(txn, end_mode); 3577 return MDB_SUCCESS; 3578 3579 fail: 3580 mdb_txn_abort(txn); 3581 return rc; 3582 } 3583 3584 /** Read the environment parameters of a DB environment before 3585 * mapping it into memory. 3586 * @param[in] env the environment handle 3587 * @param[out] meta address of where to store the meta information 3588 * @return 0 on success, non-zero on failure. 3589 */ 3590 static int ESECT 3591 mdb_env_read_header(MDB_env *env, MDB_meta *meta) 3592 { 3593 MDB_metabuf pbuf; 3594 MDB_page *p; 3595 MDB_meta *m; 3596 int i, rc, off; 3597 enum { Size = sizeof(pbuf) }; 3598 3599 /* We don't know the page size yet, so use a minimum value. 3600 * Read both meta pages so we can use the latest one. 3601 */ 3602 3603 for (i=off=0; i<NUM_METAS; i++, off += meta->mm_psize) { 3604 #ifdef _WIN32 3605 DWORD len; 3606 OVERLAPPED ov; 3607 memset(&ov, 0, sizeof(ov)); 3608 ov.Offset = off; 3609 rc = ReadFile(env->me_fd, &pbuf, Size, &len, &ov) ? (int)len : -1; 3610 if (rc == -1 && ErrCode() == ERROR_HANDLE_EOF) 3611 rc = 0; 3612 #else 3613 rc = pread(env->me_fd, &pbuf, Size, off); 3614 #endif 3615 if (rc != Size) { 3616 if (rc == 0 && off == 0) 3617 return ENOENT; 3618 rc = rc < 0 ? (int) ErrCode() : MDB_INVALID; 3619 DPRINTF(("read: %s", mdb_strerror(rc))); 3620 return rc; 3621 } 3622 3623 p = (MDB_page *)&pbuf; 3624 3625 if (!F_ISSET(p->mp_flags, P_META)) { 3626 DPRINTF(("page %"Z"u not a meta page", p->mp_pgno)); 3627 return MDB_INVALID; 3628 } 3629 3630 m = METADATA(p); 3631 if (m->mm_magic != MDB_MAGIC) { 3632 DPUTS("meta has invalid magic"); 3633 return MDB_INVALID; 3634 } 3635 3636 if (m->mm_version != MDB_DATA_VERSION) { 3637 DPRINTF(("database is version %u, expected version %u", 3638 m->mm_version, MDB_DATA_VERSION)); 3639 return MDB_VERSION_MISMATCH; 3640 } 3641 3642 if (off == 0 || m->mm_txnid > meta->mm_txnid) 3643 *meta = *m; 3644 } 3645 return 0; 3646 } 3647 3648 /** Fill in most of the zeroed #MDB_meta for an empty database environment */ 3649 static void ESECT 3650 mdb_env_init_meta0(MDB_env *env, MDB_meta *meta) 3651 { 3652 meta->mm_magic = MDB_MAGIC; 3653 meta->mm_version = MDB_DATA_VERSION; 3654 meta->mm_mapsize = env->me_mapsize; 3655 meta->mm_psize = env->me_psize; 3656 meta->mm_last_pg = NUM_METAS-1; 3657 meta->mm_flags = env->me_flags & 0xffff; 3658 meta->mm_flags |= MDB_INTEGERKEY; /* this is mm_dbs[FREE_DBI].md_flags */ 3659 meta->mm_dbs[FREE_DBI].md_root = P_INVALID; 3660 meta->mm_dbs[MAIN_DBI].md_root = P_INVALID; 3661 } 3662 3663 /** Write the environment parameters of a freshly created DB environment. 3664 * @param[in] env the environment handle 3665 * @param[in] meta the #MDB_meta to write 3666 * @return 0 on success, non-zero on failure. 3667 */ 3668 static int ESECT 3669 mdb_env_init_meta(MDB_env *env, MDB_meta *meta) 3670 { 3671 MDB_page *p, *q; 3672 int rc; 3673 unsigned int psize; 3674 #ifdef _WIN32 3675 DWORD len; 3676 OVERLAPPED ov; 3677 memset(&ov, 0, sizeof(ov)); 3678 #define DO_PWRITE(rc, fd, ptr, size, len, pos) do { \ 3679 ov.Offset = pos; \ 3680 rc = WriteFile(fd, ptr, size, &len, &ov); } while(0) 3681 #else 3682 int len; 3683 #define DO_PWRITE(rc, fd, ptr, size, len, pos) do { \ 3684 len = pwrite(fd, ptr, size, pos); \ 3685 if (len == -1 && ErrCode() == EINTR) continue; \ 3686 rc = (len >= 0); break; } while(1) 3687 #endif 3688 3689 DPUTS("writing new meta page"); 3690 3691 psize = env->me_psize; 3692 3693 p = calloc(NUM_METAS, psize); 3694 if (!p) 3695 return ENOMEM; 3696 3697 p->mp_pgno = 0; 3698 p->mp_flags = P_META; 3699 *(MDB_meta *)METADATA(p) = *meta; 3700 3701 q = (MDB_page *)((char *)p + psize); 3702 q->mp_pgno = 1; 3703 q->mp_flags = P_META; 3704 *(MDB_meta *)METADATA(q) = *meta; 3705 3706 DO_PWRITE(rc, env->me_fd, p, psize * NUM_METAS, len, 0); 3707 if (!rc) 3708 rc = ErrCode(); 3709 else if ((unsigned) len == psize * NUM_METAS) 3710 rc = MDB_SUCCESS; 3711 else 3712 rc = ENOSPC; 3713 free(p); 3714 return rc; 3715 } 3716 3717 /** Update the environment info to commit a transaction. 3718 * @param[in] txn the transaction that's being committed 3719 * @return 0 on success, non-zero on failure. 3720 */ 3721 static int 3722 mdb_env_write_meta(MDB_txn *txn) 3723 { 3724 MDB_env *env; 3725 MDB_meta meta, metab, *mp; 3726 unsigned flags; 3727 size_t mapsize; 3728 off_t off; 3729 int rc, len, toggle; 3730 char *ptr; 3731 HANDLE mfd; 3732 #ifdef _WIN32 3733 OVERLAPPED ov; 3734 #else 3735 int r2; 3736 #endif 3737 3738 toggle = txn->mt_txnid & 1; 3739 DPRINTF(("writing meta page %d for root page %"Z"u", 3740 toggle, txn->mt_dbs[MAIN_DBI].md_root)); 3741 3742 env = txn->mt_env; 3743 flags = env->me_flags; 3744 mp = env->me_metas[toggle]; 3745 mapsize = env->me_metas[toggle ^ 1]->mm_mapsize; 3746 /* Persist any increases of mapsize config */ 3747 if (mapsize < env->me_mapsize) 3748 mapsize = env->me_mapsize; 3749 3750 if (flags & MDB_WRITEMAP) { 3751 mp->mm_mapsize = mapsize; 3752 mp->mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI]; 3753 mp->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI]; 3754 mp->mm_last_pg = txn->mt_next_pgno - 1; 3755 #if (__GNUC__ * 100 + __GNUC_MINOR__ >= 404) && /* TODO: portability */ \ 3756 !(defined(__i386__) || defined(__x86_64__)) 3757 /* LY: issue a memory barrier, if not x86. ITS#7969 */ 3758 __sync_synchronize(); 3759 #endif 3760 mp->mm_txnid = txn->mt_txnid; 3761 if (!(flags & (MDB_NOMETASYNC|MDB_NOSYNC))) { 3762 unsigned meta_size = env->me_psize; 3763 rc = (env->me_flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC; 3764 ptr = (char *)mp - PAGEHDRSZ; 3765 #ifndef _WIN32 /* POSIX msync() requires ptr = start of OS page */ 3766 r2 = (ptr - env->me_map) & (env->me_os_psize - 1); 3767 ptr -= r2; 3768 meta_size += r2; 3769 #endif 3770 if (MDB_MSYNC(ptr, meta_size, rc)) { 3771 rc = ErrCode(); 3772 goto fail; 3773 } 3774 } 3775 goto done; 3776 } 3777 metab.mm_txnid = mp->mm_txnid; 3778 metab.mm_last_pg = mp->mm_last_pg; 3779 3780 meta.mm_mapsize = mapsize; 3781 meta.mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI]; 3782 meta.mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI]; 3783 meta.mm_last_pg = txn->mt_next_pgno - 1; 3784 meta.mm_txnid = txn->mt_txnid; 3785 3786 off = offsetof(MDB_meta, mm_mapsize); 3787 ptr = (char *)&meta + off; 3788 len = sizeof(MDB_meta) - off; 3789 off += (char *)mp - env->me_map; 3790 3791 /* Write to the SYNC fd */ 3792 mfd = (flags & (MDB_NOSYNC|MDB_NOMETASYNC)) ? env->me_fd : env->me_mfd; 3793 #ifdef _WIN32 3794 { 3795 memset(&ov, 0, sizeof(ov)); 3796 ov.Offset = off; 3797 if (!WriteFile(mfd, ptr, len, (DWORD *)&rc, &ov)) 3798 rc = -1; 3799 } 3800 #else 3801 retry_write: 3802 rc = pwrite(mfd, ptr, len, off); 3803 #endif 3804 if (rc != len) { 3805 rc = rc < 0 ? ErrCode() : EIO; 3806 #ifndef _WIN32 3807 if (rc == EINTR) 3808 goto retry_write; 3809 #endif 3810 DPUTS("write failed, disk error?"); 3811 /* On a failure, the pagecache still contains the new data. 3812 * Write some old data back, to prevent it from being used. 3813 * Use the non-SYNC fd; we know it will fail anyway. 3814 */ 3815 meta.mm_last_pg = metab.mm_last_pg; 3816 meta.mm_txnid = metab.mm_txnid; 3817 #ifdef _WIN32 3818 memset(&ov, 0, sizeof(ov)); 3819 ov.Offset = off; 3820 WriteFile(env->me_fd, ptr, len, NULL, &ov); 3821 #else 3822 r2 = pwrite(env->me_fd, ptr, len, off); 3823 (void)r2; /* Silence warnings. We don't care about pwrite's return value */ 3824 #endif 3825 fail: 3826 env->me_flags |= MDB_FATAL_ERROR; 3827 return rc; 3828 } 3829 /* MIPS has cache coherency issues, this is a no-op everywhere else */ 3830 CACHEFLUSH(env->me_map + off, len, DCACHE); 3831 done: 3832 /* Memory ordering issues are irrelevant; since the entire writer 3833 * is wrapped by wmutex, all of these changes will become visible 3834 * after the wmutex is unlocked. Since the DB is multi-version, 3835 * readers will get consistent data regardless of how fresh or 3836 * how stale their view of these values is. 3837 */ 3838 if (env->me_txns) 3839 env->me_txns->mti_txnid = txn->mt_txnid; 3840 3841 return MDB_SUCCESS; 3842 } 3843 3844 /** Check both meta pages to see which one is newer. 3845 * @param[in] env the environment handle 3846 * @return newest #MDB_meta. 3847 */ 3848 static MDB_meta * 3849 mdb_env_pick_meta(const MDB_env *env) 3850 { 3851 MDB_meta *const *metas = env->me_metas; 3852 return metas[ metas[0]->mm_txnid < metas[1]->mm_txnid ]; 3853 } 3854 3855 int ESECT 3856 mdb_env_create(MDB_env **env) 3857 { 3858 MDB_env *e; 3859 3860 e = calloc(1, sizeof(MDB_env)); 3861 if (!e) 3862 return ENOMEM; 3863 3864 e->me_maxreaders = DEFAULT_READERS; 3865 e->me_maxdbs = e->me_numdbs = CORE_DBS; 3866 e->me_fd = INVALID_HANDLE_VALUE; 3867 e->me_lfd = INVALID_HANDLE_VALUE; 3868 e->me_mfd = INVALID_HANDLE_VALUE; 3869 #ifdef MDB_USE_POSIX_SEM 3870 e->me_rmutex = SEM_FAILED; 3871 e->me_wmutex = SEM_FAILED; 3872 #endif 3873 e->me_pid = getpid(); 3874 GET_PAGESIZE(e->me_os_psize); 3875 VGMEMP_CREATE(e,0,0); 3876 *env = e; 3877 return MDB_SUCCESS; 3878 } 3879 3880 static int ESECT 3881 mdb_env_map(MDB_env *env, void *addr) 3882 { 3883 MDB_page *p; 3884 unsigned int flags = env->me_flags; 3885 #ifdef _WIN32 3886 int rc; 3887 HANDLE mh; 3888 LONG sizelo, sizehi; 3889 size_t msize; 3890 3891 if (flags & MDB_RDONLY) { 3892 /* Don't set explicit map size, use whatever exists */ 3893 msize = 0; 3894 sizelo = 0; 3895 sizehi = 0; 3896 } else { 3897 msize = env->me_mapsize; 3898 sizelo = msize & 0xffffffff; 3899 sizehi = msize >> 16 >> 16; /* only needed on Win64 */ 3900 3901 /* Windows won't create mappings for zero length files. 3902 * and won't map more than the file size. 3903 * Just set the maxsize right now. 3904 */ 3905 if (SetFilePointer(env->me_fd, sizelo, &sizehi, 0) != (DWORD)sizelo 3906 || !SetEndOfFile(env->me_fd) 3907 || SetFilePointer(env->me_fd, 0, NULL, 0) != 0) 3908 return ErrCode(); 3909 } 3910 3911 mh = CreateFileMapping(env->me_fd, NULL, flags & MDB_WRITEMAP ? 3912 PAGE_READWRITE : PAGE_READONLY, 3913 sizehi, sizelo, NULL); 3914 if (!mh) 3915 return ErrCode(); 3916 env->me_map = MapViewOfFileEx(mh, flags & MDB_WRITEMAP ? 3917 FILE_MAP_WRITE : FILE_MAP_READ, 3918 0, 0, msize, addr); 3919 rc = env->me_map ? 0 : ErrCode(); 3920 CloseHandle(mh); 3921 if (rc) 3922 return rc; 3923 #else 3924 int prot = PROT_READ; 3925 if (flags & MDB_WRITEMAP) { 3926 prot |= PROT_WRITE; 3927 if (ftruncate(env->me_fd, env->me_mapsize) < 0) 3928 return ErrCode(); 3929 } 3930 env->me_map = mmap(addr, env->me_mapsize, prot, MAP_SHARED, 3931 env->me_fd, 0); 3932 if (env->me_map == MAP_FAILED) { 3933 env->me_map = NULL; 3934 return ErrCode(); 3935 } 3936 3937 if (flags & MDB_NORDAHEAD) { 3938 /* Turn off readahead. It's harmful when the DB is larger than RAM. */ 3939 #ifdef MADV_RANDOM 3940 madvise(env->me_map, env->me_mapsize, MADV_RANDOM); 3941 #else 3942 #ifdef POSIX_MADV_RANDOM 3943 posix_madvise(env->me_map, env->me_mapsize, POSIX_MADV_RANDOM); 3944 #endif /* POSIX_MADV_RANDOM */ 3945 #endif /* MADV_RANDOM */ 3946 } 3947 #endif /* _WIN32 */ 3948 3949 /* Can happen because the address argument to mmap() is just a 3950 * hint. mmap() can pick another, e.g. if the range is in use. 3951 * The MAP_FIXED flag would prevent that, but then mmap could 3952 * instead unmap existing pages to make room for the new map. 3953 */ 3954 if (addr && env->me_map != addr) 3955 return EBUSY; /* TODO: Make a new MDB_* error code? */ 3956 3957 p = (MDB_page *)env->me_map; 3958 env->me_metas[0] = METADATA(p); 3959 env->me_metas[1] = (MDB_meta *)((char *)env->me_metas[0] + env->me_psize); 3960 3961 return MDB_SUCCESS; 3962 } 3963 3964 int ESECT 3965 mdb_env_set_mapsize(MDB_env *env, size_t size) 3966 { 3967 /* If env is already open, caller is responsible for making 3968 * sure there are no active txns. 3969 */ 3970 if (env->me_map) { 3971 int rc; 3972 MDB_meta *meta; 3973 void *old; 3974 if (env->me_txn) 3975 return EINVAL; 3976 meta = mdb_env_pick_meta(env); 3977 if (!size) 3978 size = meta->mm_mapsize; 3979 { 3980 /* Silently round up to minimum if the size is too small */ 3981 size_t minsize = (meta->mm_last_pg + 1) * env->me_psize; 3982 if (size < minsize) 3983 size = minsize; 3984 } 3985 munmap(env->me_map, env->me_mapsize); 3986 env->me_mapsize = size; 3987 old = (env->me_flags & MDB_FIXEDMAP) ? env->me_map : NULL; 3988 rc = mdb_env_map(env, old); 3989 if (rc) 3990 return rc; 3991 } 3992 env->me_mapsize = size; 3993 if (env->me_psize) 3994 env->me_maxpg = env->me_mapsize / env->me_psize; 3995 return MDB_SUCCESS; 3996 } 3997 3998 int ESECT 3999 mdb_env_set_maxdbs(MDB_env *env, MDB_dbi dbs) 4000 { 4001 if (env->me_map) 4002 return EINVAL; 4003 env->me_maxdbs = dbs + CORE_DBS; 4004 return MDB_SUCCESS; 4005 } 4006 4007 int ESECT 4008 mdb_env_set_maxreaders(MDB_env *env, unsigned int readers) 4009 { 4010 if (env->me_map || readers < 1) 4011 return EINVAL; 4012 env->me_maxreaders = readers; 4013 return MDB_SUCCESS; 4014 } 4015 4016 int ESECT 4017 mdb_env_get_maxreaders(MDB_env *env, unsigned int *readers) 4018 { 4019 if (!env || !readers) 4020 return EINVAL; 4021 *readers = env->me_maxreaders; 4022 return MDB_SUCCESS; 4023 } 4024 4025 static int ESECT 4026 mdb_fsize(HANDLE fd, size_t *size) 4027 { 4028 #ifdef _WIN32 4029 LARGE_INTEGER fsize; 4030 4031 if (!GetFileSizeEx(fd, &fsize)) 4032 return ErrCode(); 4033 4034 *size = fsize.QuadPart; 4035 #else 4036 struct stat st; 4037 4038 if (fstat(fd, &st)) 4039 return ErrCode(); 4040 4041 *size = st.st_size; 4042 #endif 4043 return MDB_SUCCESS; 4044 } 4045 4046 #ifdef BROKEN_FDATASYNC 4047 #include <sys/utsname.h> 4048 #include <sys/vfs.h> 4049 #endif 4050 4051 /** Further setup required for opening an LMDB environment 4052 */ 4053 static int ESECT 4054 mdb_env_open2(MDB_env *env) 4055 { 4056 unsigned int flags = env->me_flags; 4057 int i, newenv = 0, rc; 4058 MDB_meta meta; 4059 4060 #ifdef _WIN32 4061 /* See if we should use QueryLimited */ 4062 rc = GetVersion(); 4063 if ((rc & 0xff) > 5) 4064 env->me_pidquery = MDB_PROCESS_QUERY_LIMITED_INFORMATION; 4065 else 4066 env->me_pidquery = PROCESS_QUERY_INFORMATION; 4067 #endif /* _WIN32 */ 4068 4069 #ifdef BROKEN_FDATASYNC 4070 /* ext3/ext4 fdatasync is broken on some older Linux kernels. 4071 * https://lkml.org/lkml/2012/9/3/83 4072 * Kernels after 3.6-rc6 are known good. 4073 * https://lkml.org/lkml/2012/9/10/556 4074 * See if the DB is on ext3/ext4, then check for new enough kernel 4075 * Kernels 2.6.32.60, 2.6.34.15, 3.2.30, and 3.5.4 are also known 4076 * to be patched. 4077 */ 4078 { 4079 struct statfs st; 4080 fstatfs(env->me_fd, &st); 4081 while (st.f_type == 0xEF53) { 4082 struct utsname uts; 4083 int i; 4084 uname(&uts); 4085 if (uts.release[0] < '3') { 4086 if (!strncmp(uts.release, "2.6.32.", 7)) { 4087 i = atoi(uts.release+7); 4088 if (i >= 60) 4089 break; /* 2.6.32.60 and newer is OK */ 4090 } else if (!strncmp(uts.release, "2.6.34.", 7)) { 4091 i = atoi(uts.release+7); 4092 if (i >= 15) 4093 break; /* 2.6.34.15 and newer is OK */ 4094 } 4095 } else if (uts.release[0] == '3') { 4096 i = atoi(uts.release+2); 4097 if (i > 5) 4098 break; /* 3.6 and newer is OK */ 4099 if (i == 5) { 4100 i = atoi(uts.release+4); 4101 if (i >= 4) 4102 break; /* 3.5.4 and newer is OK */ 4103 } else if (i == 2) { 4104 i = atoi(uts.release+4); 4105 if (i >= 30) 4106 break; /* 3.2.30 and newer is OK */ 4107 } 4108 } else { /* 4.x and newer is OK */ 4109 break; 4110 } 4111 env->me_flags |= MDB_FSYNCONLY; 4112 break; 4113 } 4114 } 4115 #endif 4116 4117 if ((i = mdb_env_read_header(env, &meta)) != 0) { 4118 if (i != ENOENT) 4119 return i; 4120 DPUTS("new mdbenv"); 4121 newenv = 1; 4122 env->me_psize = env->me_os_psize; 4123 if (env->me_psize > MAX_PAGESIZE) 4124 env->me_psize = MAX_PAGESIZE; 4125 memset(&meta, 0, sizeof(meta)); 4126 mdb_env_init_meta0(env, &meta); 4127 meta.mm_mapsize = DEFAULT_MAPSIZE; 4128 } else { 4129 env->me_psize = meta.mm_psize; 4130 } 4131 4132 /* Was a mapsize configured? */ 4133 if (!env->me_mapsize) { 4134 env->me_mapsize = meta.mm_mapsize; 4135 } 4136 { 4137 /* Make sure mapsize >= committed data size. Even when using 4138 * mm_mapsize, which could be broken in old files (ITS#7789). 4139 */ 4140 size_t minsize = (meta.mm_last_pg + 1) * meta.mm_psize; 4141 if (env->me_mapsize < minsize) 4142 env->me_mapsize = minsize; 4143 } 4144 meta.mm_mapsize = env->me_mapsize; 4145 4146 if (newenv && !(flags & MDB_FIXEDMAP)) { 4147 /* mdb_env_map() may grow the datafile. Write the metapages 4148 * first, so the file will be valid if initialization fails. 4149 * Except with FIXEDMAP, since we do not yet know mm_address. 4150 * We could fill in mm_address later, but then a different 4151 * program might end up doing that - one with a memory layout 4152 * and map address which does not suit the main program. 4153 */ 4154 rc = mdb_env_init_meta(env, &meta); 4155 if (rc) 4156 return rc; 4157 newenv = 0; 4158 } 4159 4160 rc = mdb_env_map(env, (flags & MDB_FIXEDMAP) ? meta.mm_address : NULL); 4161 if (rc) 4162 return rc; 4163 4164 if (newenv) { 4165 if (flags & MDB_FIXEDMAP) 4166 meta.mm_address = env->me_map; 4167 i = mdb_env_init_meta(env, &meta); 4168 if (i != MDB_SUCCESS) { 4169 return i; 4170 } 4171 } 4172 4173 env->me_maxfree_1pg = (env->me_psize - PAGEHDRSZ) / sizeof(pgno_t) - 1; 4174 env->me_nodemax = (((env->me_psize - PAGEHDRSZ) / MDB_MINKEYS) & -2) 4175 - sizeof(indx_t); 4176 #if !(MDB_MAXKEYSIZE) 4177 env->me_maxkey = env->me_nodemax - (NODESIZE + sizeof(MDB_db)); 4178 #endif 4179 env->me_maxpg = env->me_mapsize / env->me_psize; 4180 4181 #if MDB_DEBUG 4182 { 4183 MDB_meta *meta = mdb_env_pick_meta(env); 4184 MDB_db *db = &meta->mm_dbs[MAIN_DBI]; 4185 4186 DPRINTF(("opened database version %u, pagesize %u", 4187 meta->mm_version, env->me_psize)); 4188 DPRINTF(("using meta page %d", (int) (meta->mm_txnid & 1))); 4189 DPRINTF(("depth: %u", db->md_depth)); 4190 DPRINTF(("entries: %"Z"u", db->md_entries)); 4191 DPRINTF(("branch pages: %"Z"u", db->md_branch_pages)); 4192 DPRINTF(("leaf pages: %"Z"u", db->md_leaf_pages)); 4193 DPRINTF(("overflow pages: %"Z"u", db->md_overflow_pages)); 4194 DPRINTF(("root: %"Z"u", db->md_root)); 4195 } 4196 #endif 4197 4198 return MDB_SUCCESS; 4199 } 4200 4201 4202 /** Release a reader thread's slot in the reader lock table. 4203 * This function is called automatically when a thread exits. 4204 * @param[in] ptr This points to the slot in the reader lock table. 4205 */ 4206 static void 4207 mdb_env_reader_dest(void *ptr) 4208 { 4209 MDB_reader *reader = ptr; 4210 4211 reader->mr_pid = 0; 4212 } 4213 4214 #ifdef _WIN32 4215 /** Junk for arranging thread-specific callbacks on Windows. This is 4216 * necessarily platform and compiler-specific. Windows supports up 4217 * to 1088 keys. Let's assume nobody opens more than 64 environments 4218 * in a single process, for now. They can override this if needed. 4219 */ 4220 #ifndef MAX_TLS_KEYS 4221 #define MAX_TLS_KEYS 64 4222 #endif 4223 static pthread_key_t mdb_tls_keys[MAX_TLS_KEYS]; 4224 static int mdb_tls_nkeys; 4225 4226 static void NTAPI mdb_tls_callback(PVOID module, DWORD reason, PVOID ptr) 4227 { 4228 int i; 4229 switch(reason) { 4230 case DLL_PROCESS_ATTACH: break; 4231 case DLL_THREAD_ATTACH: break; 4232 case DLL_THREAD_DETACH: 4233 for (i=0; i<mdb_tls_nkeys; i++) { 4234 MDB_reader *r = pthread_getspecific(mdb_tls_keys[i]); 4235 if (r) { 4236 mdb_env_reader_dest(r); 4237 } 4238 } 4239 break; 4240 case DLL_PROCESS_DETACH: break; 4241 } 4242 } 4243 #ifdef __GNUC__ 4244 #ifdef _WIN64 4245 const PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback; 4246 #else 4247 PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback; 4248 #endif 4249 #else 4250 #ifdef _WIN64 4251 /* Force some symbol references. 4252 * _tls_used forces the linker to create the TLS directory if not already done 4253 * mdb_tls_cbp prevents whole-program-optimizer from dropping the symbol. 4254 */ 4255 #pragma comment(linker, "/INCLUDE:_tls_used") 4256 #pragma comment(linker, "/INCLUDE:mdb_tls_cbp") 4257 #pragma const_seg(".CRT$XLB") 4258 extern const PIMAGE_TLS_CALLBACK mdb_tls_cbp; 4259 const PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback; 4260 #pragma const_seg() 4261 #else /* _WIN32 */ 4262 #pragma comment(linker, "/INCLUDE:__tls_used") 4263 #pragma comment(linker, "/INCLUDE:_mdb_tls_cbp") 4264 #pragma data_seg(".CRT$XLB") 4265 PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback; 4266 #pragma data_seg() 4267 #endif /* WIN 32/64 */ 4268 #endif /* !__GNUC__ */ 4269 #endif 4270 4271 /** Downgrade the exclusive lock on the region back to shared */ 4272 static int ESECT 4273 mdb_env_share_locks(MDB_env *env, int *excl) 4274 { 4275 int rc = 0; 4276 MDB_meta *meta = mdb_env_pick_meta(env); 4277 4278 env->me_txns->mti_txnid = meta->mm_txnid; 4279 4280 #ifdef _WIN32 4281 { 4282 OVERLAPPED ov; 4283 /* First acquire a shared lock. The Unlock will 4284 * then release the existing exclusive lock. 4285 */ 4286 memset(&ov, 0, sizeof(ov)); 4287 if (!LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) { 4288 rc = ErrCode(); 4289 } else { 4290 UnlockFile(env->me_lfd, 0, 0, 1, 0); 4291 *excl = 0; 4292 } 4293 } 4294 #else 4295 { 4296 struct flock lock_info; 4297 /* The shared lock replaces the existing lock */ 4298 memset((void *)&lock_info, 0, sizeof(lock_info)); 4299 lock_info.l_type = F_RDLCK; 4300 lock_info.l_whence = SEEK_SET; 4301 lock_info.l_start = 0; 4302 lock_info.l_len = 1; 4303 while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) && 4304 (rc = ErrCode()) == EINTR) ; 4305 *excl = rc ? -1 : 0; /* error may mean we lost the lock */ 4306 } 4307 #endif 4308 4309 return rc; 4310 } 4311 4312 /** Try to get exclusive lock, otherwise shared. 4313 * Maintain *excl = -1: no/unknown lock, 0: shared, 1: exclusive. 4314 */ 4315 static int ESECT 4316 mdb_env_excl_lock(MDB_env *env, int *excl) 4317 { 4318 int rc = 0; 4319 #ifdef _WIN32 4320 if (LockFile(env->me_lfd, 0, 0, 1, 0)) { 4321 *excl = 1; 4322 } else { 4323 OVERLAPPED ov; 4324 memset(&ov, 0, sizeof(ov)); 4325 if (LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) { 4326 *excl = 0; 4327 } else { 4328 rc = ErrCode(); 4329 } 4330 } 4331 #else 4332 struct flock lock_info; 4333 memset((void *)&lock_info, 0, sizeof(lock_info)); 4334 lock_info.l_type = F_WRLCK; 4335 lock_info.l_whence = SEEK_SET; 4336 lock_info.l_start = 0; 4337 lock_info.l_len = 1; 4338 while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) && 4339 (rc = ErrCode()) == EINTR) ; 4340 if (!rc) { 4341 *excl = 1; 4342 } else 4343 # ifndef MDB_USE_POSIX_MUTEX 4344 if (*excl < 0) /* always true when MDB_USE_POSIX_MUTEX */ 4345 # endif 4346 { 4347 lock_info.l_type = F_RDLCK; 4348 while ((rc = fcntl(env->me_lfd, F_SETLKW, &lock_info)) && 4349 (rc = ErrCode()) == EINTR) ; 4350 if (rc == 0) 4351 *excl = 0; 4352 } 4353 #endif 4354 return rc; 4355 } 4356 4357 #ifdef MDB_USE_HASH 4358 /* 4359 * hash_64 - 64 bit Fowler/Noll/Vo-0 FNV-1a hash code 4360 * 4361 * @(#) Revision: 5.1 4362 * @(#) Id: hash_64a.c,v 5.1 2009/06/30 09:01:38 chongo Exp 4363 * @(#) Source: /usr/local/src/cmd/fnv/RCS/hash_64a.c,v 4364 * 4365 * http://www.isthe.com/chongo/tech/comp/fnv/index.html 4366 * 4367 *** 4368 * 4369 * Please do not copyright this code. This code is in the public domain. 4370 * 4371 * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 4372 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO 4373 * EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR 4374 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF 4375 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR 4376 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR 4377 * PERFORMANCE OF THIS SOFTWARE. 4378 * 4379 * By: 4380 * chongo <Landon Curt Noll> /\oo/\ 4381 * http://www.isthe.com/chongo/ 4382 * 4383 * Share and Enjoy! :-) 4384 */ 4385 4386 typedef unsigned long long mdb_hash_t; 4387 #define MDB_HASH_INIT ((mdb_hash_t)0xcbf29ce484222325ULL) 4388 4389 /** perform a 64 bit Fowler/Noll/Vo FNV-1a hash on a buffer 4390 * @param[in] val value to hash 4391 * @param[in] hval initial value for hash 4392 * @return 64 bit hash 4393 * 4394 * NOTE: To use the recommended 64 bit FNV-1a hash, use MDB_HASH_INIT as the 4395 * hval arg on the first call. 4396 */ 4397 static mdb_hash_t 4398 mdb_hash_val(MDB_val *val, mdb_hash_t hval) 4399 { 4400 unsigned char *s = (unsigned char *)val->mv_data; /* unsigned string */ 4401 unsigned char *end = s + val->mv_size; 4402 /* 4403 * FNV-1a hash each octet of the string 4404 */ 4405 while (s < end) { 4406 /* xor the bottom with the current octet */ 4407 hval ^= (mdb_hash_t)*s++; 4408 4409 /* multiply by the 64 bit FNV magic prime mod 2^64 */ 4410 hval += (hval << 1) + (hval << 4) + (hval << 5) + 4411 (hval << 7) + (hval << 8) + (hval << 40); 4412 } 4413 /* return our new hash value */ 4414 return hval; 4415 } 4416 4417 /** Hash the string and output the encoded hash. 4418 * This uses modified RFC1924 Ascii85 encoding to accommodate systems with 4419 * very short name limits. We don't care about the encoding being reversible, 4420 * we just want to preserve as many bits of the input as possible in a 4421 * small printable string. 4422 * @param[in] str string to hash 4423 * @param[out] encbuf an array of 11 chars to hold the hash 4424 */ 4425 static const char mdb_a85[]= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~"; 4426 4427 static void ESECT 4428 mdb_pack85(unsigned long l, char *out) 4429 { 4430 int i; 4431 4432 for (i=0; i<5; i++) { 4433 *out++ = mdb_a85[l % 85]; 4434 l /= 85; 4435 } 4436 } 4437 4438 static void ESECT 4439 mdb_hash_enc(MDB_val *val, char *encbuf) 4440 { 4441 mdb_hash_t h = mdb_hash_val(val, MDB_HASH_INIT); 4442 4443 mdb_pack85(h, encbuf); 4444 mdb_pack85(h>>32, encbuf+5); 4445 encbuf[10] = '\0'; 4446 } 4447 #endif 4448 4449 /** Open and/or initialize the lock region for the environment. 4450 * @param[in] env The LMDB environment. 4451 * @param[in] lpath The pathname of the file used for the lock region. 4452 * @param[in] mode The Unix permissions for the file, if we create it. 4453 * @param[in,out] excl In -1, out lock type: -1 none, 0 shared, 1 exclusive 4454 * @return 0 on success, non-zero on failure. 4455 */ 4456 static int ESECT 4457 mdb_env_setup_locks(MDB_env *env, char *lpath, int mode, int *excl) 4458 { 4459 #ifdef _WIN32 4460 # define MDB_ERRCODE_ROFS ERROR_WRITE_PROTECT 4461 #else 4462 # define MDB_ERRCODE_ROFS EROFS 4463 #ifdef O_CLOEXEC /* Linux: Open file and set FD_CLOEXEC atomically */ 4464 # define MDB_CLOEXEC O_CLOEXEC 4465 #else 4466 int fdflags; 4467 # define MDB_CLOEXEC 0 4468 #endif 4469 #endif 4470 int rc; 4471 off_t size, rsize; 4472 4473 #ifdef _WIN32 4474 wchar_t *wlpath; 4475 rc = utf8_to_utf16(lpath, -1, &wlpath, NULL); 4476 if (rc) 4477 return rc; 4478 env->me_lfd = CreateFileW(wlpath, GENERIC_READ|GENERIC_WRITE, 4479 FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 4480 FILE_ATTRIBUTE_NORMAL, NULL); 4481 free(wlpath); 4482 #else 4483 env->me_lfd = open(lpath, O_RDWR|O_CREAT|MDB_CLOEXEC, mode); 4484 #endif 4485 if (env->me_lfd == INVALID_HANDLE_VALUE) { 4486 rc = ErrCode(); 4487 if (rc == MDB_ERRCODE_ROFS && (env->me_flags & MDB_RDONLY)) { 4488 return MDB_SUCCESS; 4489 } 4490 goto fail_errno; 4491 } 4492 #if ! ((MDB_CLOEXEC) || defined(_WIN32)) 4493 /* Lose record locks when exec*() */ 4494 if ((fdflags = fcntl(env->me_lfd, F_GETFD) | FD_CLOEXEC) >= 0) 4495 fcntl(env->me_lfd, F_SETFD, fdflags); 4496 #endif 4497 4498 if (!(env->me_flags & MDB_NOTLS)) { 4499 rc = pthread_key_create(&env->me_txkey, mdb_env_reader_dest); 4500 if (rc) 4501 goto fail; 4502 env->me_flags |= MDB_ENV_TXKEY; 4503 #ifdef _WIN32 4504 /* Windows TLS callbacks need help finding their TLS info. */ 4505 if (mdb_tls_nkeys >= MAX_TLS_KEYS) { 4506 rc = MDB_TLS_FULL; 4507 goto fail; 4508 } 4509 mdb_tls_keys[mdb_tls_nkeys++] = env->me_txkey; 4510 #endif 4511 } 4512 4513 /* Try to get exclusive lock. If we succeed, then 4514 * nobody is using the lock region and we should initialize it. 4515 */ 4516 if ((rc = mdb_env_excl_lock(env, excl))) goto fail; 4517 4518 #ifdef _WIN32 4519 size = GetFileSize(env->me_lfd, NULL); 4520 #else 4521 size = lseek(env->me_lfd, 0, SEEK_END); 4522 if (size == -1) goto fail_errno; 4523 #endif 4524 rsize = (env->me_maxreaders-1) * sizeof(MDB_reader) + sizeof(MDB_txninfo); 4525 if (size < rsize && *excl > 0) { 4526 #ifdef _WIN32 4527 if (SetFilePointer(env->me_lfd, rsize, NULL, FILE_BEGIN) != (DWORD)rsize 4528 || !SetEndOfFile(env->me_lfd)) 4529 goto fail_errno; 4530 #else 4531 if (ftruncate(env->me_lfd, rsize) != 0) goto fail_errno; 4532 #endif 4533 } else { 4534 rsize = size; 4535 size = rsize - sizeof(MDB_txninfo); 4536 env->me_maxreaders = size/sizeof(MDB_reader) + 1; 4537 } 4538 { 4539 #ifdef _WIN32 4540 HANDLE mh; 4541 mh = CreateFileMapping(env->me_lfd, NULL, PAGE_READWRITE, 4542 0, 0, NULL); 4543 if (!mh) goto fail_errno; 4544 env->me_txns = MapViewOfFileEx(mh, FILE_MAP_WRITE, 0, 0, rsize, NULL); 4545 CloseHandle(mh); 4546 if (!env->me_txns) goto fail_errno; 4547 #else 4548 void *m = mmap(NULL, rsize, PROT_READ|PROT_WRITE, MAP_SHARED, 4549 env->me_lfd, 0); 4550 if (m == MAP_FAILED) goto fail_errno; 4551 env->me_txns = m; 4552 #endif 4553 } 4554 if (*excl > 0) { 4555 #ifdef _WIN32 4556 BY_HANDLE_FILE_INFORMATION stbuf; 4557 struct { 4558 DWORD volume; 4559 DWORD nhigh; 4560 DWORD nlow; 4561 } idbuf; 4562 MDB_val val; 4563 char encbuf[11]; 4564 4565 if (!mdb_sec_inited) { 4566 InitializeSecurityDescriptor(&mdb_null_sd, 4567 SECURITY_DESCRIPTOR_REVISION); 4568 SetSecurityDescriptorDacl(&mdb_null_sd, TRUE, 0, FALSE); 4569 mdb_all_sa.nLength = sizeof(SECURITY_ATTRIBUTES); 4570 mdb_all_sa.bInheritHandle = FALSE; 4571 mdb_all_sa.lpSecurityDescriptor = &mdb_null_sd; 4572 mdb_sec_inited = 1; 4573 } 4574 if (!GetFileInformationByHandle(env->me_lfd, &stbuf)) goto fail_errno; 4575 idbuf.volume = stbuf.dwVolumeSerialNumber; 4576 idbuf.nhigh = stbuf.nFileIndexHigh; 4577 idbuf.nlow = stbuf.nFileIndexLow; 4578 val.mv_data = &idbuf; 4579 val.mv_size = sizeof(idbuf); 4580 mdb_hash_enc(&val, encbuf); 4581 sprintf(env->me_txns->mti_rmname, "Global\\MDBr%s", encbuf); 4582 sprintf(env->me_txns->mti_wmname, "Global\\MDBw%s", encbuf); 4583 env->me_rmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_rmname); 4584 if (!env->me_rmutex) goto fail_errno; 4585 env->me_wmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_wmname); 4586 if (!env->me_wmutex) goto fail_errno; 4587 #elif defined(MDB_USE_POSIX_SEM) 4588 struct stat stbuf; 4589 struct { 4590 dev_t dev; 4591 ino_t ino; 4592 } idbuf; 4593 MDB_val val; 4594 char encbuf[11]; 4595 4596 #if defined(__NetBSD__) 4597 #define MDB_SHORT_SEMNAMES 1 /* limited to 14 chars */ 4598 #endif 4599 if (fstat(env->me_lfd, &stbuf)) goto fail_errno; 4600 idbuf.dev = stbuf.st_dev; 4601 idbuf.ino = stbuf.st_ino; 4602 val.mv_data = &idbuf; 4603 val.mv_size = sizeof(idbuf); 4604 mdb_hash_enc(&val, encbuf); 4605 #ifdef MDB_SHORT_SEMNAMES 4606 encbuf[9] = '\0'; /* drop name from 15 chars to 14 chars */ 4607 #endif 4608 sprintf(env->me_txns->mti_rmname, "/MDBr%s", encbuf); 4609 sprintf(env->me_txns->mti_wmname, "/MDBw%s", encbuf); 4610 /* Clean up after a previous run, if needed: Try to 4611 * remove both semaphores before doing anything else. 4612 */ 4613 sem_unlink(env->me_txns->mti_rmname); 4614 sem_unlink(env->me_txns->mti_wmname); 4615 env->me_rmutex = sem_open(env->me_txns->mti_rmname, 4616 O_CREAT|O_EXCL, mode, 1); 4617 if (env->me_rmutex == SEM_FAILED) goto fail_errno; 4618 env->me_wmutex = sem_open(env->me_txns->mti_wmname, 4619 O_CREAT|O_EXCL, mode, 1); 4620 if (env->me_wmutex == SEM_FAILED) goto fail_errno; 4621 #else /* MDB_USE_POSIX_MUTEX: */ 4622 pthread_mutexattr_t mattr; 4623 4624 if ((rc = pthread_mutexattr_init(&mattr)) 4625 || (rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED)) 4626 #ifdef MDB_ROBUST_SUPPORTED 4627 || (rc = pthread_mutexattr_setrobust(&mattr, PTHREAD_MUTEX_ROBUST)) 4628 #endif 4629 || (rc = pthread_mutex_init(env->me_txns->mti_rmutex, &mattr)) 4630 || (rc = pthread_mutex_init(env->me_txns->mti_wmutex, &mattr))) 4631 goto fail; 4632 pthread_mutexattr_destroy(&mattr); 4633 #endif /* _WIN32 || MDB_USE_POSIX_SEM */ 4634 4635 env->me_txns->mti_magic = MDB_MAGIC; 4636 env->me_txns->mti_format = MDB_LOCK_FORMAT; 4637 env->me_txns->mti_txnid = 0; 4638 env->me_txns->mti_numreaders = 0; 4639 4640 } else { 4641 if (env->me_txns->mti_magic != MDB_MAGIC) { 4642 DPUTS("lock region has invalid magic"); 4643 rc = MDB_INVALID; 4644 goto fail; 4645 } 4646 if (env->me_txns->mti_format != MDB_LOCK_FORMAT) { 4647 DPRINTF(("lock region has format+version 0x%x, expected 0x%x", 4648 env->me_txns->mti_format, MDB_LOCK_FORMAT)); 4649 rc = MDB_VERSION_MISMATCH; 4650 goto fail; 4651 } 4652 rc = ErrCode(); 4653 if (rc && rc != EACCES && rc != EAGAIN) { 4654 goto fail; 4655 } 4656 #ifdef _WIN32 4657 env->me_rmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_rmname); 4658 if (!env->me_rmutex) goto fail_errno; 4659 env->me_wmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_wmname); 4660 if (!env->me_wmutex) goto fail_errno; 4661 #elif defined(MDB_USE_POSIX_SEM) 4662 env->me_rmutex = sem_open(env->me_txns->mti_rmname, 0); 4663 if (env->me_rmutex == SEM_FAILED) goto fail_errno; 4664 env->me_wmutex = sem_open(env->me_txns->mti_wmname, 0); 4665 if (env->me_wmutex == SEM_FAILED) goto fail_errno; 4666 #endif 4667 } 4668 return MDB_SUCCESS; 4669 4670 fail_errno: 4671 rc = ErrCode(); 4672 fail: 4673 return rc; 4674 } 4675 4676 /** The name of the lock file in the DB environment */ 4677 #define LOCKNAME "/lock.mdb" 4678 /** The name of the data file in the DB environment */ 4679 #define DATANAME "/data.mdb" 4680 /** The suffix of the lock file when no subdir is used */ 4681 #define LOCKSUFF "-lock" 4682 /** Only a subset of the @ref mdb_env flags can be changed 4683 * at runtime. Changing other flags requires closing the 4684 * environment and re-opening it with the new flags. 4685 */ 4686 #define CHANGEABLE (MDB_NOSYNC|MDB_NOMETASYNC|MDB_MAPASYNC|MDB_NOMEMINIT) 4687 #define CHANGELESS (MDB_FIXEDMAP|MDB_NOSUBDIR|MDB_RDONLY| \ 4688 MDB_WRITEMAP|MDB_NOTLS|MDB_NOLOCK|MDB_NORDAHEAD) 4689 4690 #if VALID_FLAGS & PERSISTENT_FLAGS & (CHANGEABLE|CHANGELESS) 4691 # error "Persistent DB flags & env flags overlap, but both go in mm_flags" 4692 #endif 4693 4694 int ESECT 4695 mdb_env_open(MDB_env *env, const char *path, unsigned int flags, mdb_mode_t mode) 4696 { 4697 int oflags, rc, len, excl = -1; 4698 char *lpath, *dpath; 4699 #ifdef _WIN32 4700 wchar_t *wpath; 4701 #endif 4702 4703 if (env->me_fd!=INVALID_HANDLE_VALUE || (flags & ~(CHANGEABLE|CHANGELESS))) 4704 return EINVAL; 4705 4706 len = strlen(path); 4707 if (flags & MDB_NOSUBDIR) { 4708 rc = len + sizeof(LOCKSUFF) + len + 1; 4709 } else { 4710 rc = len + sizeof(LOCKNAME) + len + sizeof(DATANAME); 4711 } 4712 lpath = malloc(rc); 4713 if (!lpath) 4714 return ENOMEM; 4715 if (flags & MDB_NOSUBDIR) { 4716 dpath = lpath + len + sizeof(LOCKSUFF); 4717 sprintf(lpath, "%s" LOCKSUFF, path); 4718 strcpy(dpath, path); 4719 } else { 4720 dpath = lpath + len + sizeof(LOCKNAME); 4721 sprintf(lpath, "%s" LOCKNAME, path); 4722 sprintf(dpath, "%s" DATANAME, path); 4723 } 4724 4725 rc = MDB_SUCCESS; 4726 flags |= env->me_flags; 4727 if (flags & MDB_RDONLY) { 4728 /* silently ignore WRITEMAP when we're only getting read access */ 4729 flags &= ~MDB_WRITEMAP; 4730 } else { 4731 if (!((env->me_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)) && 4732 (env->me_dirty_list = calloc(MDB_IDL_UM_SIZE, sizeof(MDB_ID2))))) 4733 rc = ENOMEM; 4734 } 4735 env->me_flags = flags |= MDB_ENV_ACTIVE; 4736 if (rc) 4737 goto leave; 4738 4739 env->me_path = strdup(path); 4740 env->me_dbxs = calloc(env->me_maxdbs, sizeof(MDB_dbx)); 4741 env->me_dbflags = calloc(env->me_maxdbs, sizeof(uint16_t)); 4742 env->me_dbiseqs = calloc(env->me_maxdbs, sizeof(unsigned int)); 4743 if (!(env->me_dbxs && env->me_path && env->me_dbflags && env->me_dbiseqs)) { 4744 rc = ENOMEM; 4745 goto leave; 4746 } 4747 env->me_dbxs[FREE_DBI].md_cmp = mdb_cmp_long; /* aligned MDB_INTEGERKEY */ 4748 4749 /* For RDONLY, get lockfile after we know datafile exists */ 4750 if (!(flags & (MDB_RDONLY|MDB_NOLOCK))) { 4751 rc = mdb_env_setup_locks(env, lpath, mode, &excl); 4752 if (rc) 4753 goto leave; 4754 } 4755 4756 #ifdef _WIN32 4757 if (F_ISSET(flags, MDB_RDONLY)) { 4758 oflags = GENERIC_READ; 4759 len = OPEN_EXISTING; 4760 } else { 4761 oflags = GENERIC_READ|GENERIC_WRITE; 4762 len = OPEN_ALWAYS; 4763 } 4764 mode = FILE_ATTRIBUTE_NORMAL; 4765 rc = utf8_to_utf16(dpath, -1, &wpath, NULL); 4766 if (rc) 4767 goto leave; 4768 env->me_fd = CreateFileW(wpath, oflags, FILE_SHARE_READ|FILE_SHARE_WRITE, 4769 NULL, len, mode, NULL); 4770 free(wpath); 4771 #else 4772 if (F_ISSET(flags, MDB_RDONLY)) 4773 oflags = O_RDONLY; 4774 else 4775 oflags = O_RDWR | O_CREAT; 4776 4777 env->me_fd = open(dpath, oflags, mode); 4778 #endif 4779 if (env->me_fd == INVALID_HANDLE_VALUE) { 4780 rc = ErrCode(); 4781 goto leave; 4782 } 4783 4784 if ((flags & (MDB_RDONLY|MDB_NOLOCK)) == MDB_RDONLY) { 4785 rc = mdb_env_setup_locks(env, lpath, mode, &excl); 4786 if (rc) 4787 goto leave; 4788 } 4789 4790 if ((rc = mdb_env_open2(env)) == MDB_SUCCESS) { 4791 if (flags & (MDB_RDONLY|MDB_WRITEMAP)) { 4792 env->me_mfd = env->me_fd; 4793 } else { 4794 /* Synchronous fd for meta writes. Needed even with 4795 * MDB_NOSYNC/MDB_NOMETASYNC, in case these get reset. 4796 */ 4797 #ifdef _WIN32 4798 len = OPEN_EXISTING; 4799 rc = utf8_to_utf16(dpath, -1, &wpath, NULL); 4800 if (rc) 4801 goto leave; 4802 env->me_mfd = CreateFileW(wpath, oflags, 4803 FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, len, 4804 mode | FILE_FLAG_WRITE_THROUGH, NULL); 4805 free(wpath); 4806 #else 4807 oflags &= ~O_CREAT; 4808 env->me_mfd = open(dpath, oflags | MDB_DSYNC, mode); 4809 #endif 4810 if (env->me_mfd == INVALID_HANDLE_VALUE) { 4811 rc = ErrCode(); 4812 goto leave; 4813 } 4814 } 4815 DPRINTF(("opened dbenv %p", (void *) env)); 4816 if (excl > 0) { 4817 rc = mdb_env_share_locks(env, &excl); 4818 if (rc) 4819 goto leave; 4820 } 4821 if (!(flags & MDB_RDONLY)) { 4822 MDB_txn *txn; 4823 int tsize = sizeof(MDB_txn), size = tsize + env->me_maxdbs * 4824 (sizeof(MDB_db)+sizeof(MDB_cursor *)+sizeof(unsigned int)+1); 4825 if ((env->me_pbuf = calloc(1, env->me_psize)) && 4826 (txn = calloc(1, size))) 4827 { 4828 txn->mt_dbs = (MDB_db *)((char *)txn + tsize); 4829 txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs); 4830 txn->mt_dbiseqs = (unsigned int *)(txn->mt_cursors + env->me_maxdbs); 4831 txn->mt_dbflags = (unsigned char *)(txn->mt_dbiseqs + env->me_maxdbs); 4832 txn->mt_env = env; 4833 txn->mt_dbxs = env->me_dbxs; 4834 txn->mt_flags = MDB_TXN_FINISHED; 4835 env->me_txn0 = txn; 4836 } else { 4837 rc = ENOMEM; 4838 } 4839 } 4840 } 4841 4842 leave: 4843 if (rc) { 4844 mdb_env_close0(env, excl); 4845 } 4846 free(lpath); 4847 return rc; 4848 } 4849 4850 /** Destroy resources from mdb_env_open(), clear our readers & DBIs */ 4851 static void ESECT 4852 mdb_env_close0(MDB_env *env, int excl) 4853 { 4854 int i; 4855 4856 if (!(env->me_flags & MDB_ENV_ACTIVE)) 4857 return; 4858 4859 /* Doing this here since me_dbxs may not exist during mdb_env_close */ 4860 if (env->me_dbxs) { 4861 for (i = env->me_maxdbs; --i >= CORE_DBS; ) 4862 free(env->me_dbxs[i].md_name.mv_data); 4863 free(env->me_dbxs); 4864 } 4865 4866 free(env->me_pbuf); 4867 free(env->me_dbiseqs); 4868 free(env->me_dbflags); 4869 free(env->me_path); 4870 free(env->me_dirty_list); 4871 free(env->me_txn0); 4872 mdb_midl_free(env->me_free_pgs); 4873 4874 if (env->me_flags & MDB_ENV_TXKEY) { 4875 pthread_key_delete(env->me_txkey); 4876 #ifdef _WIN32 4877 /* Delete our key from the global list */ 4878 for (i=0; i<mdb_tls_nkeys; i++) 4879 if (mdb_tls_keys[i] == env->me_txkey) { 4880 mdb_tls_keys[i] = mdb_tls_keys[mdb_tls_nkeys-1]; 4881 mdb_tls_nkeys--; 4882 break; 4883 } 4884 #endif 4885 } 4886 4887 if (env->me_map) { 4888 munmap(env->me_map, env->me_mapsize); 4889 } 4890 if (env->me_mfd != env->me_fd && env->me_mfd != INVALID_HANDLE_VALUE) 4891 (void) close(env->me_mfd); 4892 if (env->me_fd != INVALID_HANDLE_VALUE) 4893 (void) close(env->me_fd); 4894 if (env->me_txns) { 4895 MDB_PID_T pid = env->me_pid; 4896 /* Clearing readers is done in this function because 4897 * me_txkey with its destructor must be disabled first. 4898 * 4899 * We skip the the reader mutex, so we touch only 4900 * data owned by this process (me_close_readers and 4901 * our readers), and clear each reader atomically. 4902 */ 4903 for (i = env->me_close_readers; --i >= 0; ) 4904 if (env->me_txns->mti_readers[i].mr_pid == pid) 4905 env->me_txns->mti_readers[i].mr_pid = 0; 4906 #ifdef _WIN32 4907 if (env->me_rmutex) { 4908 CloseHandle(env->me_rmutex); 4909 if (env->me_wmutex) CloseHandle(env->me_wmutex); 4910 } 4911 /* Windows automatically destroys the mutexes when 4912 * the last handle closes. 4913 */ 4914 #elif defined(MDB_USE_POSIX_SEM) 4915 if (env->me_rmutex != SEM_FAILED) { 4916 sem_close(env->me_rmutex); 4917 if (env->me_wmutex != SEM_FAILED) 4918 sem_close(env->me_wmutex); 4919 /* If we have the filelock: If we are the 4920 * only remaining user, clean up semaphores. 4921 */ 4922 if (excl == 0) 4923 mdb_env_excl_lock(env, &excl); 4924 if (excl > 0) { 4925 sem_unlink(env->me_txns->mti_rmname); 4926 sem_unlink(env->me_txns->mti_wmname); 4927 } 4928 } 4929 #endif 4930 munmap((void *)env->me_txns, (env->me_maxreaders-1)*sizeof(MDB_reader)+sizeof(MDB_txninfo)); 4931 } 4932 if (env->me_lfd != INVALID_HANDLE_VALUE) { 4933 #ifdef _WIN32 4934 if (excl >= 0) { 4935 /* Unlock the lockfile. Windows would have unlocked it 4936 * after closing anyway, but not necessarily at once. 4937 */ 4938 UnlockFile(env->me_lfd, 0, 0, 1, 0); 4939 } 4940 #endif 4941 (void) close(env->me_lfd); 4942 } 4943 4944 env->me_flags &= ~(MDB_ENV_ACTIVE|MDB_ENV_TXKEY); 4945 } 4946 4947 void ESECT 4948 mdb_env_close(MDB_env *env) 4949 { 4950 MDB_page *dp; 4951 4952 if (env == NULL) 4953 return; 4954 4955 VGMEMP_DESTROY(env); 4956 while ((dp = env->me_dpages) != NULL) { 4957 VGMEMP_DEFINED(&dp->mp_next, sizeof(dp->mp_next)); 4958 env->me_dpages = dp->mp_next; 4959 free(dp); 4960 } 4961 4962 mdb_env_close0(env, 0); 4963 free(env); 4964 } 4965 4966 /** Compare two items pointing at aligned size_t's */ 4967 static int 4968 mdb_cmp_long(const MDB_val *a, const MDB_val *b) 4969 { 4970 return (*(size_t *)a->mv_data < *(size_t *)b->mv_data) ? -1 : 4971 *(size_t *)a->mv_data > *(size_t *)b->mv_data; 4972 } 4973 4974 /** Compare two items pointing at aligned unsigned int's. 4975 * 4976 * This is also set as #MDB_INTEGERDUP|#MDB_DUPFIXED's #MDB_dbx.%md_dcmp, 4977 * but #mdb_cmp_clong() is called instead if the data type is size_t. 4978 */ 4979 static int 4980 mdb_cmp_int(const MDB_val *a, const MDB_val *b) 4981 { 4982 return (*(unsigned int *)a->mv_data < *(unsigned int *)b->mv_data) ? -1 : 4983 *(unsigned int *)a->mv_data > *(unsigned int *)b->mv_data; 4984 } 4985 4986 /** Compare two items pointing at unsigned ints of unknown alignment. 4987 * Nodes and keys are guaranteed to be 2-byte aligned. 4988 */ 4989 static int 4990 mdb_cmp_cint(const MDB_val *a, const MDB_val *b) 4991 { 4992 #if BYTE_ORDER == LITTLE_ENDIAN 4993 unsigned short *u, *c; 4994 int x; 4995 4996 u = (unsigned short *) ((char *) a->mv_data + a->mv_size); 4997 c = (unsigned short *) ((char *) b->mv_data + a->mv_size); 4998 do { 4999 x = *--u - *--c; 5000 } while(!x && u > (unsigned short *)a->mv_data); 5001 return x; 5002 #else 5003 unsigned short *u, *c, *end; 5004 int x; 5005 5006 end = (unsigned short *) ((char *) a->mv_data + a->mv_size); 5007 u = (unsigned short *)a->mv_data; 5008 c = (unsigned short *)b->mv_data; 5009 do { 5010 x = *u++ - *c++; 5011 } while(!x && u < end); 5012 return x; 5013 #endif 5014 } 5015 5016 /** Compare two items lexically */ 5017 static int 5018 mdb_cmp_memn(const MDB_val *a, const MDB_val *b) 5019 { 5020 int diff; 5021 ssize_t len_diff; 5022 unsigned int len; 5023 5024 len = a->mv_size; 5025 len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size; 5026 if (len_diff > 0) { 5027 len = b->mv_size; 5028 len_diff = 1; 5029 } 5030 5031 diff = memcmp(a->mv_data, b->mv_data, len); 5032 return diff ? diff : len_diff<0 ? -1 : len_diff; 5033 } 5034 5035 /** Compare two items in reverse byte order */ 5036 static int 5037 mdb_cmp_memnr(const MDB_val *a, const MDB_val *b) 5038 { 5039 const unsigned char *p1, *p2, *p1_lim; 5040 ssize_t len_diff; 5041 int diff; 5042 5043 p1_lim = (const unsigned char *)a->mv_data; 5044 p1 = (const unsigned char *)a->mv_data + a->mv_size; 5045 p2 = (const unsigned char *)b->mv_data + b->mv_size; 5046 5047 len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size; 5048 if (len_diff > 0) { 5049 p1_lim += len_diff; 5050 len_diff = 1; 5051 } 5052 5053 while (p1 > p1_lim) { 5054 diff = *--p1 - *--p2; 5055 if (diff) 5056 return diff; 5057 } 5058 return len_diff<0 ? -1 : len_diff; 5059 } 5060 5061 /** Search for key within a page, using binary search. 5062 * Returns the smallest entry larger or equal to the key. 5063 * If exactp is non-null, stores whether the found entry was an exact match 5064 * in *exactp (1 or 0). 5065 * Updates the cursor index with the index of the found entry. 5066 * If no entry larger or equal to the key is found, returns NULL. 5067 */ 5068 static MDB_node * 5069 mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp) 5070 { 5071 unsigned int i = 0, nkeys; 5072 int low, high; 5073 int rc = 0; 5074 MDB_page *mp = mc->mc_pg[mc->mc_top]; 5075 MDB_node *node = NULL; 5076 MDB_val nodekey; 5077 MDB_cmp_func *cmp; 5078 DKBUF; 5079 5080 nkeys = NUMKEYS(mp); 5081 5082 DPRINTF(("searching %u keys in %s %spage %"Z"u", 5083 nkeys, IS_LEAF(mp) ? "leaf" : "branch", IS_SUBP(mp) ? "sub-" : "", 5084 mdb_dbg_pgno(mp))); 5085 5086 low = IS_LEAF(mp) ? 0 : 1; 5087 high = nkeys - 1; 5088 cmp = mc->mc_dbx->md_cmp; 5089 5090 /* Branch pages have no data, so if using integer keys, 5091 * alignment is guaranteed. Use faster mdb_cmp_int. 5092 */ 5093 if (cmp == mdb_cmp_cint && IS_BRANCH(mp)) { 5094 if (NODEPTR(mp, 1)->mn_ksize == sizeof(size_t)) 5095 cmp = mdb_cmp_long; 5096 else 5097 cmp = mdb_cmp_int; 5098 } 5099 5100 if (IS_LEAF2(mp)) { 5101 nodekey.mv_size = mc->mc_db->md_pad; 5102 node = NODEPTR(mp, 0); /* fake */ 5103 while (low <= high) { 5104 i = (low + high) >> 1; 5105 nodekey.mv_data = LEAF2KEY(mp, i, nodekey.mv_size); 5106 rc = cmp(key, &nodekey); 5107 DPRINTF(("found leaf index %u [%s], rc = %i", 5108 i, DKEY(&nodekey), rc)); 5109 if (rc == 0) 5110 break; 5111 if (rc > 0) 5112 low = i + 1; 5113 else 5114 high = i - 1; 5115 } 5116 } else { 5117 while (low <= high) { 5118 i = (low + high) >> 1; 5119 5120 node = NODEPTR(mp, i); 5121 nodekey.mv_size = NODEKSZ(node); 5122 nodekey.mv_data = NODEKEY(node); 5123 5124 rc = cmp(key, &nodekey); 5125 #if MDB_DEBUG 5126 if (IS_LEAF(mp)) 5127 DPRINTF(("found leaf index %u [%s], rc = %i", 5128 i, DKEY(&nodekey), rc)); 5129 else 5130 DPRINTF(("found branch index %u [%s -> %"Z"u], rc = %i", 5131 i, DKEY(&nodekey), NODEPGNO(node), rc)); 5132 #endif 5133 if (rc == 0) 5134 break; 5135 if (rc > 0) 5136 low = i + 1; 5137 else 5138 high = i - 1; 5139 } 5140 } 5141 5142 if (rc > 0) { /* Found entry is less than the key. */ 5143 i++; /* Skip to get the smallest entry larger than key. */ 5144 if (!IS_LEAF2(mp)) 5145 node = NODEPTR(mp, i); 5146 } 5147 if (exactp) 5148 *exactp = (rc == 0 && nkeys > 0); 5149 /* store the key index */ 5150 mc->mc_ki[mc->mc_top] = i; 5151 if (i >= nkeys) 5152 /* There is no entry larger or equal to the key. */ 5153 return NULL; 5154 5155 /* nodeptr is fake for LEAF2 */ 5156 return node; 5157 } 5158 5159 #if 0 5160 static void 5161 mdb_cursor_adjust(MDB_cursor *mc, func) 5162 { 5163 MDB_cursor *m2; 5164 5165 for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) { 5166 if (m2->mc_pg[m2->mc_top] == mc->mc_pg[mc->mc_top]) { 5167 func(mc, m2); 5168 } 5169 } 5170 } 5171 #endif 5172 5173 /** Pop a page off the top of the cursor's stack. */ 5174 static void 5175 mdb_cursor_pop(MDB_cursor *mc) 5176 { 5177 if (mc->mc_snum) { 5178 DPRINTF(("popping page %"Z"u off db %d cursor %p", 5179 mc->mc_pg[mc->mc_top]->mp_pgno, DDBI(mc), (void *) mc)); 5180 5181 mc->mc_snum--; 5182 if (mc->mc_snum) { 5183 mc->mc_top--; 5184 } else { 5185 mc->mc_flags &= ~C_INITIALIZED; 5186 } 5187 } 5188 } 5189 5190 /** Push a page onto the top of the cursor's stack. */ 5191 static int 5192 mdb_cursor_push(MDB_cursor *mc, MDB_page *mp) 5193 { 5194 DPRINTF(("pushing page %"Z"u on db %d cursor %p", mp->mp_pgno, 5195 DDBI(mc), (void *) mc)); 5196 5197 if (mc->mc_snum >= CURSOR_STACK) { 5198 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 5199 return MDB_CURSOR_FULL; 5200 } 5201 5202 mc->mc_top = mc->mc_snum++; 5203 mc->mc_pg[mc->mc_top] = mp; 5204 mc->mc_ki[mc->mc_top] = 0; 5205 5206 return MDB_SUCCESS; 5207 } 5208 5209 /** Find the address of the page corresponding to a given page number. 5210 * @param[in] txn the transaction for this access. 5211 * @param[in] pgno the page number for the page to retrieve. 5212 * @param[out] ret address of a pointer where the page's address will be stored. 5213 * @param[out] lvl dirty_list inheritance level of found page. 1=current txn, 0=mapped page. 5214 * @return 0 on success, non-zero on failure. 5215 */ 5216 static int 5217 mdb_page_get(MDB_txn *txn, pgno_t pgno, MDB_page **ret, int *lvl) 5218 { 5219 MDB_env *env = txn->mt_env; 5220 MDB_page *p = NULL; 5221 int level; 5222 5223 if (! (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_WRITEMAP))) { 5224 MDB_txn *tx2 = txn; 5225 level = 1; 5226 do { 5227 MDB_ID2L dl = tx2->mt_u.dirty_list; 5228 unsigned x; 5229 /* Spilled pages were dirtied in this txn and flushed 5230 * because the dirty list got full. Bring this page 5231 * back in from the map (but don't unspill it here, 5232 * leave that unless page_touch happens again). 5233 */ 5234 if (tx2->mt_spill_pgs) { 5235 MDB_ID pn = pgno << 1; 5236 x = mdb_midl_search(tx2->mt_spill_pgs, pn); 5237 if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) { 5238 p = (MDB_page *)(env->me_map + env->me_psize * pgno); 5239 goto done; 5240 } 5241 } 5242 if (dl[0].mid) { 5243 unsigned x = mdb_mid2l_search(dl, pgno); 5244 if (x <= dl[0].mid && dl[x].mid == pgno) { 5245 p = dl[x].mptr; 5246 goto done; 5247 } 5248 } 5249 level++; 5250 } while ((tx2 = tx2->mt_parent) != NULL); 5251 } 5252 5253 if (pgno < txn->mt_next_pgno) { 5254 level = 0; 5255 p = (MDB_page *)(env->me_map + env->me_psize * pgno); 5256 } else { 5257 DPRINTF(("page %"Z"u not found", pgno)); 5258 txn->mt_flags |= MDB_TXN_ERROR; 5259 return MDB_PAGE_NOTFOUND; 5260 } 5261 5262 done: 5263 *ret = p; 5264 if (lvl) 5265 *lvl = level; 5266 return MDB_SUCCESS; 5267 } 5268 5269 /** Finish #mdb_page_search() / #mdb_page_search_lowest(). 5270 * The cursor is at the root page, set up the rest of it. 5271 */ 5272 static int 5273 mdb_page_search_root(MDB_cursor *mc, MDB_val *key, int flags) 5274 { 5275 MDB_page *mp = mc->mc_pg[mc->mc_top]; 5276 int rc; 5277 DKBUF; 5278 5279 while (IS_BRANCH(mp)) { 5280 MDB_node *node; 5281 indx_t i; 5282 5283 DPRINTF(("branch page %"Z"u has %u keys", mp->mp_pgno, NUMKEYS(mp))); 5284 /* Don't assert on branch pages in the FreeDB. We can get here 5285 * while in the process of rebalancing a FreeDB branch page; we must 5286 * let that proceed. ITS#8336 5287 */ 5288 mdb_cassert(mc, !mc->mc_dbi || NUMKEYS(mp) > 1); 5289 DPRINTF(("found index 0 to page %"Z"u", NODEPGNO(NODEPTR(mp, 0)))); 5290 5291 if (flags & (MDB_PS_FIRST|MDB_PS_LAST)) { 5292 i = 0; 5293 if (flags & MDB_PS_LAST) 5294 i = NUMKEYS(mp) - 1; 5295 } else { 5296 int exact; 5297 node = mdb_node_search(mc, key, &exact); 5298 if (node == NULL) 5299 i = NUMKEYS(mp) - 1; 5300 else { 5301 i = mc->mc_ki[mc->mc_top]; 5302 if (!exact) { 5303 mdb_cassert(mc, i > 0); 5304 i--; 5305 } 5306 } 5307 DPRINTF(("following index %u for key [%s]", i, DKEY(key))); 5308 } 5309 5310 mdb_cassert(mc, i < NUMKEYS(mp)); 5311 node = NODEPTR(mp, i); 5312 5313 if ((rc = mdb_page_get(mc->mc_txn, NODEPGNO(node), &mp, NULL)) != 0) 5314 return rc; 5315 5316 mc->mc_ki[mc->mc_top] = i; 5317 if ((rc = mdb_cursor_push(mc, mp))) 5318 return rc; 5319 5320 if (flags & MDB_PS_MODIFY) { 5321 if ((rc = mdb_page_touch(mc)) != 0) 5322 return rc; 5323 mp = mc->mc_pg[mc->mc_top]; 5324 } 5325 } 5326 5327 if (!IS_LEAF(mp)) { 5328 DPRINTF(("internal error, index points to a %02X page!?", 5329 mp->mp_flags)); 5330 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 5331 return MDB_CORRUPTED; 5332 } 5333 5334 DPRINTF(("found leaf page %"Z"u for key [%s]", mp->mp_pgno, 5335 key ? DKEY(key) : "null")); 5336 mc->mc_flags |= C_INITIALIZED; 5337 mc->mc_flags &= ~C_EOF; 5338 5339 return MDB_SUCCESS; 5340 } 5341 5342 /** Search for the lowest key under the current branch page. 5343 * This just bypasses a NUMKEYS check in the current page 5344 * before calling mdb_page_search_root(), because the callers 5345 * are all in situations where the current page is known to 5346 * be underfilled. 5347 */ 5348 static int 5349 mdb_page_search_lowest(MDB_cursor *mc) 5350 { 5351 MDB_page *mp = mc->mc_pg[mc->mc_top]; 5352 MDB_node *node = NODEPTR(mp, 0); 5353 int rc; 5354 5355 if ((rc = mdb_page_get(mc->mc_txn, NODEPGNO(node), &mp, NULL)) != 0) 5356 return rc; 5357 5358 mc->mc_ki[mc->mc_top] = 0; 5359 if ((rc = mdb_cursor_push(mc, mp))) 5360 return rc; 5361 return mdb_page_search_root(mc, NULL, MDB_PS_FIRST); 5362 } 5363 5364 /** Search for the page a given key should be in. 5365 * Push it and its parent pages on the cursor stack. 5366 * @param[in,out] mc the cursor for this operation. 5367 * @param[in] key the key to search for, or NULL for first/last page. 5368 * @param[in] flags If MDB_PS_MODIFY is set, visited pages in the DB 5369 * are touched (updated with new page numbers). 5370 * If MDB_PS_FIRST or MDB_PS_LAST is set, find first or last leaf. 5371 * This is used by #mdb_cursor_first() and #mdb_cursor_last(). 5372 * If MDB_PS_ROOTONLY set, just fetch root node, no further lookups. 5373 * @return 0 on success, non-zero on failure. 5374 */ 5375 static int 5376 mdb_page_search(MDB_cursor *mc, MDB_val *key, int flags) 5377 { 5378 int rc; 5379 pgno_t root; 5380 5381 /* Make sure the txn is still viable, then find the root from 5382 * the txn's db table and set it as the root of the cursor's stack. 5383 */ 5384 if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) { 5385 DPUTS("transaction may not be used now"); 5386 return MDB_BAD_TXN; 5387 } else { 5388 /* Make sure we're using an up-to-date root */ 5389 if (*mc->mc_dbflag & DB_STALE) { 5390 MDB_cursor mc2; 5391 if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi)) 5392 return MDB_BAD_DBI; 5393 mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, NULL); 5394 rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, 0); 5395 if (rc) 5396 return rc; 5397 { 5398 MDB_val data; 5399 int exact = 0; 5400 uint16_t flags; 5401 MDB_node *leaf = mdb_node_search(&mc2, 5402 &mc->mc_dbx->md_name, &exact); 5403 if (!exact) 5404 return MDB_NOTFOUND; 5405 if ((leaf->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA) 5406 return MDB_INCOMPATIBLE; /* not a named DB */ 5407 rc = mdb_node_read(mc->mc_txn, leaf, &data); 5408 if (rc) 5409 return rc; 5410 memcpy(&flags, ((char *) data.mv_data + offsetof(MDB_db, md_flags)), 5411 sizeof(uint16_t)); 5412 /* The txn may not know this DBI, or another process may 5413 * have dropped and recreated the DB with other flags. 5414 */ 5415 if ((mc->mc_db->md_flags & PERSISTENT_FLAGS) != flags) 5416 return MDB_INCOMPATIBLE; 5417 memcpy(mc->mc_db, data.mv_data, sizeof(MDB_db)); 5418 } 5419 *mc->mc_dbflag &= ~DB_STALE; 5420 } 5421 root = mc->mc_db->md_root; 5422 5423 if (root == P_INVALID) { /* Tree is empty. */ 5424 DPUTS("tree is empty"); 5425 return MDB_NOTFOUND; 5426 } 5427 } 5428 5429 mdb_cassert(mc, root > 1); 5430 if (!mc->mc_pg[0] || mc->mc_pg[0]->mp_pgno != root) 5431 if ((rc = mdb_page_get(mc->mc_txn, root, &mc->mc_pg[0], NULL)) != 0) 5432 return rc; 5433 5434 mc->mc_snum = 1; 5435 mc->mc_top = 0; 5436 5437 DPRINTF(("db %d root page %"Z"u has flags 0x%X", 5438 DDBI(mc), root, mc->mc_pg[0]->mp_flags)); 5439 5440 if (flags & MDB_PS_MODIFY) { 5441 if ((rc = mdb_page_touch(mc))) 5442 return rc; 5443 } 5444 5445 if (flags & MDB_PS_ROOTONLY) 5446 return MDB_SUCCESS; 5447 5448 return mdb_page_search_root(mc, key, flags); 5449 } 5450 5451 static int 5452 mdb_ovpage_free(MDB_cursor *mc, MDB_page *mp) 5453 { 5454 MDB_txn *txn = mc->mc_txn; 5455 pgno_t pg = mp->mp_pgno; 5456 unsigned x = 0, ovpages = mp->mp_pages; 5457 MDB_env *env = txn->mt_env; 5458 MDB_IDL sl = txn->mt_spill_pgs; 5459 MDB_ID pn = pg << 1; 5460 int rc; 5461 5462 DPRINTF(("free ov page %"Z"u (%d)", pg, ovpages)); 5463 /* If the page is dirty or on the spill list we just acquired it, 5464 * so we should give it back to our current free list, if any. 5465 * Otherwise put it onto the list of pages we freed in this txn. 5466 * 5467 * Won't create me_pghead: me_pglast must be inited along with it. 5468 * Unsupported in nested txns: They would need to hide the page 5469 * range in ancestor txns' dirty and spilled lists. 5470 */ 5471 if (env->me_pghead && 5472 !txn->mt_parent && 5473 ((mp->mp_flags & P_DIRTY) || 5474 (sl && (x = mdb_midl_search(sl, pn)) <= sl[0] && sl[x] == pn))) 5475 { 5476 unsigned i, j; 5477 pgno_t *mop; 5478 MDB_ID2 *dl, ix, iy; 5479 rc = mdb_midl_need(&env->me_pghead, ovpages); 5480 if (rc) 5481 return rc; 5482 if (!(mp->mp_flags & P_DIRTY)) { 5483 /* This page is no longer spilled */ 5484 if (x == sl[0]) 5485 sl[0]--; 5486 else 5487 sl[x] |= 1; 5488 goto release; 5489 } 5490 /* Remove from dirty list */ 5491 dl = txn->mt_u.dirty_list; 5492 x = dl[0].mid--; 5493 for (ix = dl[x]; ix.mptr != mp; ix = iy) { 5494 if (x > 1) { 5495 x--; 5496 iy = dl[x]; 5497 dl[x] = ix; 5498 } else { 5499 mdb_cassert(mc, x > 1); 5500 j = ++(dl[0].mid); 5501 dl[j] = ix; /* Unsorted. OK when MDB_TXN_ERROR. */ 5502 txn->mt_flags |= MDB_TXN_ERROR; 5503 return MDB_CORRUPTED; 5504 } 5505 } 5506 txn->mt_dirty_room++; 5507 if (!(env->me_flags & MDB_WRITEMAP)) 5508 mdb_dpage_free(env, mp); 5509 release: 5510 /* Insert in me_pghead */ 5511 mop = env->me_pghead; 5512 j = mop[0] + ovpages; 5513 for (i = mop[0]; i && mop[i] < pg; i--) 5514 mop[j--] = mop[i]; 5515 while (j>i) 5516 mop[j--] = pg++; 5517 mop[0] += ovpages; 5518 } else { 5519 rc = mdb_midl_append_range(&txn->mt_free_pgs, pg, ovpages); 5520 if (rc) 5521 return rc; 5522 } 5523 mc->mc_db->md_overflow_pages -= ovpages; 5524 return 0; 5525 } 5526 5527 /** Return the data associated with a given node. 5528 * @param[in] txn The transaction for this operation. 5529 * @param[in] leaf The node being read. 5530 * @param[out] data Updated to point to the node's data. 5531 * @return 0 on success, non-zero on failure. 5532 */ 5533 static int 5534 mdb_node_read(MDB_txn *txn, MDB_node *leaf, MDB_val *data) 5535 { 5536 MDB_page *omp; /* overflow page */ 5537 pgno_t pgno; 5538 int rc; 5539 5540 if (!F_ISSET(leaf->mn_flags, F_BIGDATA)) { 5541 data->mv_size = NODEDSZ(leaf); 5542 data->mv_data = NODEDATA(leaf); 5543 return MDB_SUCCESS; 5544 } 5545 5546 /* Read overflow data. 5547 */ 5548 data->mv_size = NODEDSZ(leaf); 5549 memcpy(&pgno, NODEDATA(leaf), sizeof(pgno)); 5550 if ((rc = mdb_page_get(txn, pgno, &omp, NULL)) != 0) { 5551 DPRINTF(("read overflow page %"Z"u failed", pgno)); 5552 return rc; 5553 } 5554 data->mv_data = METADATA(omp); 5555 5556 return MDB_SUCCESS; 5557 } 5558 5559 int 5560 mdb_get(MDB_txn *txn, MDB_dbi dbi, 5561 MDB_val *key, MDB_val *data) 5562 { 5563 MDB_cursor mc; 5564 MDB_xcursor mx; 5565 int exact = 0; 5566 DKBUF; 5567 5568 DPRINTF(("===> get db %u key [%s]", dbi, DKEY(key))); 5569 5570 if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 5571 return EINVAL; 5572 5573 if (txn->mt_flags & MDB_TXN_BLOCKED) 5574 return MDB_BAD_TXN; 5575 5576 mdb_cursor_init(&mc, txn, dbi, &mx); 5577 return mdb_cursor_set(&mc, key, data, MDB_SET, &exact); 5578 } 5579 5580 /** Find a sibling for a page. 5581 * Replaces the page at the top of the cursor's stack with the 5582 * specified sibling, if one exists. 5583 * @param[in] mc The cursor for this operation. 5584 * @param[in] move_right Non-zero if the right sibling is requested, 5585 * otherwise the left sibling. 5586 * @return 0 on success, non-zero on failure. 5587 */ 5588 static int 5589 mdb_cursor_sibling(MDB_cursor *mc, int move_right) 5590 { 5591 int rc; 5592 MDB_node *indx; 5593 MDB_page *mp; 5594 5595 if (mc->mc_snum < 2) { 5596 return MDB_NOTFOUND; /* root has no siblings */ 5597 } 5598 5599 mdb_cursor_pop(mc); 5600 DPRINTF(("parent page is page %"Z"u, index %u", 5601 mc->mc_pg[mc->mc_top]->mp_pgno, mc->mc_ki[mc->mc_top])); 5602 5603 if (move_right ? (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mc->mc_pg[mc->mc_top])) 5604 : (mc->mc_ki[mc->mc_top] == 0)) { 5605 DPRINTF(("no more keys left, moving to %s sibling", 5606 move_right ? "right" : "left")); 5607 if ((rc = mdb_cursor_sibling(mc, move_right)) != MDB_SUCCESS) { 5608 /* undo cursor_pop before returning */ 5609 mc->mc_top++; 5610 mc->mc_snum++; 5611 return rc; 5612 } 5613 } else { 5614 if (move_right) 5615 mc->mc_ki[mc->mc_top]++; 5616 else 5617 mc->mc_ki[mc->mc_top]--; 5618 DPRINTF(("just moving to %s index key %u", 5619 move_right ? "right" : "left", mc->mc_ki[mc->mc_top])); 5620 } 5621 mdb_cassert(mc, IS_BRANCH(mc->mc_pg[mc->mc_top])); 5622 5623 indx = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 5624 if ((rc = mdb_page_get(mc->mc_txn, NODEPGNO(indx), &mp, NULL)) != 0) { 5625 /* mc will be inconsistent if caller does mc_snum++ as above */ 5626 mc->mc_flags &= ~(C_INITIALIZED|C_EOF); 5627 return rc; 5628 } 5629 5630 mdb_cursor_push(mc, mp); 5631 if (!move_right) 5632 mc->mc_ki[mc->mc_top] = NUMKEYS(mp)-1; 5633 5634 return MDB_SUCCESS; 5635 } 5636 5637 /** Move the cursor to the next data item. */ 5638 static int 5639 mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op) 5640 { 5641 MDB_page *mp; 5642 MDB_node *leaf; 5643 int rc; 5644 5645 if (mc->mc_flags & C_EOF) { 5646 return MDB_NOTFOUND; 5647 } 5648 5649 mdb_cassert(mc, mc->mc_flags & C_INITIALIZED); 5650 5651 mp = mc->mc_pg[mc->mc_top]; 5652 5653 if (mc->mc_db->md_flags & MDB_DUPSORT) { 5654 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 5655 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5656 if (op == MDB_NEXT || op == MDB_NEXT_DUP) { 5657 rc = mdb_cursor_next(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_NEXT); 5658 if (op != MDB_NEXT || rc != MDB_NOTFOUND) { 5659 if (rc == MDB_SUCCESS) 5660 MDB_GET_KEY(leaf, key); 5661 return rc; 5662 } 5663 } 5664 } else { 5665 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 5666 if (op == MDB_NEXT_DUP) 5667 return MDB_NOTFOUND; 5668 } 5669 } 5670 5671 DPRINTF(("cursor_next: top page is %"Z"u in cursor %p", 5672 mdb_dbg_pgno(mp), (void *) mc)); 5673 if (mc->mc_flags & C_DEL) { 5674 mc->mc_flags ^= C_DEL; 5675 goto skip; 5676 } 5677 5678 if (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mp)) { 5679 DPUTS("=====> move to next sibling page"); 5680 if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) { 5681 mc->mc_flags |= C_EOF; 5682 return rc; 5683 } 5684 mp = mc->mc_pg[mc->mc_top]; 5685 DPRINTF(("next page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top])); 5686 } else 5687 mc->mc_ki[mc->mc_top]++; 5688 5689 skip: 5690 DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u", 5691 mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top])); 5692 5693 if (IS_LEAF2(mp)) { 5694 key->mv_size = mc->mc_db->md_pad; 5695 key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size); 5696 return MDB_SUCCESS; 5697 } 5698 5699 mdb_cassert(mc, IS_LEAF(mp)); 5700 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 5701 5702 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5703 mdb_xcursor_init1(mc, leaf); 5704 } 5705 if (data) { 5706 if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS) 5707 return rc; 5708 5709 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5710 rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL); 5711 if (rc != MDB_SUCCESS) 5712 return rc; 5713 } 5714 } 5715 5716 MDB_GET_KEY(leaf, key); 5717 return MDB_SUCCESS; 5718 } 5719 5720 /** Move the cursor to the previous data item. */ 5721 static int 5722 mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op) 5723 { 5724 MDB_page *mp; 5725 MDB_node *leaf; 5726 int rc; 5727 5728 mdb_cassert(mc, mc->mc_flags & C_INITIALIZED); 5729 5730 mp = mc->mc_pg[mc->mc_top]; 5731 5732 if (mc->mc_db->md_flags & MDB_DUPSORT) { 5733 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 5734 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5735 if (op == MDB_PREV || op == MDB_PREV_DUP) { 5736 rc = mdb_cursor_prev(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_PREV); 5737 if (op != MDB_PREV || rc != MDB_NOTFOUND) { 5738 if (rc == MDB_SUCCESS) { 5739 MDB_GET_KEY(leaf, key); 5740 mc->mc_flags &= ~C_EOF; 5741 } 5742 return rc; 5743 } 5744 } 5745 } else { 5746 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 5747 if (op == MDB_PREV_DUP) 5748 return MDB_NOTFOUND; 5749 } 5750 } 5751 5752 DPRINTF(("cursor_prev: top page is %"Z"u in cursor %p", 5753 mdb_dbg_pgno(mp), (void *) mc)); 5754 5755 mc->mc_flags &= ~(C_EOF|C_DEL); 5756 5757 if (mc->mc_ki[mc->mc_top] == 0) { 5758 DPUTS("=====> move to prev sibling page"); 5759 if ((rc = mdb_cursor_sibling(mc, 0)) != MDB_SUCCESS) { 5760 return rc; 5761 } 5762 mp = mc->mc_pg[mc->mc_top]; 5763 mc->mc_ki[mc->mc_top] = NUMKEYS(mp) - 1; 5764 DPRINTF(("prev page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top])); 5765 } else 5766 mc->mc_ki[mc->mc_top]--; 5767 5768 DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u", 5769 mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top])); 5770 5771 if (IS_LEAF2(mp)) { 5772 key->mv_size = mc->mc_db->md_pad; 5773 key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size); 5774 return MDB_SUCCESS; 5775 } 5776 5777 mdb_cassert(mc, IS_LEAF(mp)); 5778 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 5779 5780 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5781 mdb_xcursor_init1(mc, leaf); 5782 } 5783 if (data) { 5784 if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS) 5785 return rc; 5786 5787 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5788 rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL); 5789 if (rc != MDB_SUCCESS) 5790 return rc; 5791 } 5792 } 5793 5794 MDB_GET_KEY(leaf, key); 5795 return MDB_SUCCESS; 5796 } 5797 5798 /** Set the cursor on a specific data item. */ 5799 static int 5800 mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, 5801 MDB_cursor_op op, int *exactp) 5802 { 5803 int rc; 5804 MDB_page *mp; 5805 MDB_node *leaf = NULL; 5806 DKBUF; 5807 5808 if (key->mv_size == 0) 5809 return MDB_BAD_VALSIZE; 5810 5811 if (mc->mc_xcursor) 5812 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 5813 5814 /* See if we're already on the right page */ 5815 if (mc->mc_flags & C_INITIALIZED) { 5816 MDB_val nodekey; 5817 5818 mp = mc->mc_pg[mc->mc_top]; 5819 if (!NUMKEYS(mp)) { 5820 mc->mc_ki[mc->mc_top] = 0; 5821 return MDB_NOTFOUND; 5822 } 5823 if (mp->mp_flags & P_LEAF2) { 5824 nodekey.mv_size = mc->mc_db->md_pad; 5825 nodekey.mv_data = LEAF2KEY(mp, 0, nodekey.mv_size); 5826 } else { 5827 leaf = NODEPTR(mp, 0); 5828 MDB_GET_KEY2(leaf, nodekey); 5829 } 5830 rc = mc->mc_dbx->md_cmp(key, &nodekey); 5831 if (rc == 0) { 5832 /* Probably happens rarely, but first node on the page 5833 * was the one we wanted. 5834 */ 5835 mc->mc_ki[mc->mc_top] = 0; 5836 if (exactp) 5837 *exactp = 1; 5838 goto set1; 5839 } 5840 if (rc > 0) { 5841 unsigned int i; 5842 unsigned int nkeys = NUMKEYS(mp); 5843 if (nkeys > 1) { 5844 if (mp->mp_flags & P_LEAF2) { 5845 nodekey.mv_data = LEAF2KEY(mp, 5846 nkeys-1, nodekey.mv_size); 5847 } else { 5848 leaf = NODEPTR(mp, nkeys-1); 5849 MDB_GET_KEY2(leaf, nodekey); 5850 } 5851 rc = mc->mc_dbx->md_cmp(key, &nodekey); 5852 if (rc == 0) { 5853 /* last node was the one we wanted */ 5854 mc->mc_ki[mc->mc_top] = nkeys-1; 5855 if (exactp) 5856 *exactp = 1; 5857 goto set1; 5858 } 5859 if (rc < 0) { 5860 if (mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) { 5861 /* This is definitely the right page, skip search_page */ 5862 if (mp->mp_flags & P_LEAF2) { 5863 nodekey.mv_data = LEAF2KEY(mp, 5864 mc->mc_ki[mc->mc_top], nodekey.mv_size); 5865 } else { 5866 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 5867 MDB_GET_KEY2(leaf, nodekey); 5868 } 5869 rc = mc->mc_dbx->md_cmp(key, &nodekey); 5870 if (rc == 0) { 5871 /* current node was the one we wanted */ 5872 if (exactp) 5873 *exactp = 1; 5874 goto set1; 5875 } 5876 } 5877 rc = 0; 5878 goto set2; 5879 } 5880 } 5881 /* If any parents have right-sibs, search. 5882 * Otherwise, there's nothing further. 5883 */ 5884 for (i=0; i<mc->mc_top; i++) 5885 if (mc->mc_ki[i] < 5886 NUMKEYS(mc->mc_pg[i])-1) 5887 break; 5888 if (i == mc->mc_top) { 5889 /* There are no other pages */ 5890 mc->mc_ki[mc->mc_top] = nkeys; 5891 return MDB_NOTFOUND; 5892 } 5893 } 5894 if (!mc->mc_top) { 5895 /* There are no other pages */ 5896 mc->mc_ki[mc->mc_top] = 0; 5897 if (op == MDB_SET_RANGE && !exactp) { 5898 rc = 0; 5899 goto set1; 5900 } else 5901 return MDB_NOTFOUND; 5902 } 5903 } else { 5904 mc->mc_pg[0] = 0; 5905 } 5906 5907 rc = mdb_page_search(mc, key, 0); 5908 if (rc != MDB_SUCCESS) 5909 return rc; 5910 5911 mp = mc->mc_pg[mc->mc_top]; 5912 mdb_cassert(mc, IS_LEAF(mp)); 5913 5914 set2: 5915 leaf = mdb_node_search(mc, key, exactp); 5916 if (exactp != NULL && !*exactp) { 5917 /* MDB_SET specified and not an exact match. */ 5918 return MDB_NOTFOUND; 5919 } 5920 5921 if (leaf == NULL) { 5922 DPUTS("===> inexact leaf not found, goto sibling"); 5923 if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) { 5924 mc->mc_flags |= C_EOF; 5925 return rc; /* no entries matched */ 5926 } 5927 mp = mc->mc_pg[mc->mc_top]; 5928 mdb_cassert(mc, IS_LEAF(mp)); 5929 leaf = NODEPTR(mp, 0); 5930 } 5931 5932 set1: 5933 mc->mc_flags |= C_INITIALIZED; 5934 mc->mc_flags &= ~C_EOF; 5935 5936 if (IS_LEAF2(mp)) { 5937 if (op == MDB_SET_RANGE || op == MDB_SET_KEY) { 5938 key->mv_size = mc->mc_db->md_pad; 5939 key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size); 5940 } 5941 return MDB_SUCCESS; 5942 } 5943 5944 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5945 mdb_xcursor_init1(mc, leaf); 5946 } 5947 if (data) { 5948 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5949 if (op == MDB_SET || op == MDB_SET_KEY || op == MDB_SET_RANGE) { 5950 rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL); 5951 } else { 5952 int ex2, *ex2p; 5953 if (op == MDB_GET_BOTH) { 5954 ex2p = &ex2; 5955 ex2 = 0; 5956 } else { 5957 ex2p = NULL; 5958 } 5959 rc = mdb_cursor_set(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_SET_RANGE, ex2p); 5960 if (rc != MDB_SUCCESS) 5961 return rc; 5962 } 5963 } else if (op == MDB_GET_BOTH || op == MDB_GET_BOTH_RANGE) { 5964 MDB_val olddata; 5965 MDB_cmp_func *dcmp; 5966 if ((rc = mdb_node_read(mc->mc_txn, leaf, &olddata)) != MDB_SUCCESS) 5967 return rc; 5968 dcmp = mc->mc_dbx->md_dcmp; 5969 #if UINT_MAX < SIZE_MAX 5970 if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t)) 5971 dcmp = mdb_cmp_clong; 5972 #endif 5973 rc = dcmp(data, &olddata); 5974 if (rc) { 5975 if (op == MDB_GET_BOTH || rc > 0) 5976 return MDB_NOTFOUND; 5977 rc = 0; 5978 *data = olddata; 5979 } 5980 5981 } else { 5982 if (mc->mc_xcursor) 5983 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 5984 if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS) 5985 return rc; 5986 } 5987 } 5988 5989 /* The key already matches in all other cases */ 5990 if (op == MDB_SET_RANGE || op == MDB_SET_KEY) 5991 MDB_GET_KEY(leaf, key); 5992 DPRINTF(("==> cursor placed on key [%s]", DKEY(key))); 5993 5994 return rc; 5995 } 5996 5997 /** Move the cursor to the first item in the database. */ 5998 static int 5999 mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data) 6000 { 6001 int rc; 6002 MDB_node *leaf; 6003 6004 if (mc->mc_xcursor) 6005 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 6006 6007 if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) { 6008 rc = mdb_page_search(mc, NULL, MDB_PS_FIRST); 6009 if (rc != MDB_SUCCESS) 6010 return rc; 6011 } 6012 mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top])); 6013 6014 leaf = NODEPTR(mc->mc_pg[mc->mc_top], 0); 6015 mc->mc_flags |= C_INITIALIZED; 6016 mc->mc_flags &= ~C_EOF; 6017 6018 mc->mc_ki[mc->mc_top] = 0; 6019 6020 if (IS_LEAF2(mc->mc_pg[mc->mc_top])) { 6021 key->mv_size = mc->mc_db->md_pad; 6022 key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], 0, key->mv_size); 6023 return MDB_SUCCESS; 6024 } 6025 6026 if (data) { 6027 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6028 mdb_xcursor_init1(mc, leaf); 6029 rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL); 6030 if (rc) 6031 return rc; 6032 } else { 6033 if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS) 6034 return rc; 6035 } 6036 } 6037 MDB_GET_KEY(leaf, key); 6038 return MDB_SUCCESS; 6039 } 6040 6041 /** Move the cursor to the last item in the database. */ 6042 static int 6043 mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data) 6044 { 6045 int rc; 6046 MDB_node *leaf; 6047 6048 if (mc->mc_xcursor) 6049 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 6050 6051 if (!(mc->mc_flags & C_EOF)) { 6052 6053 if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) { 6054 rc = mdb_page_search(mc, NULL, MDB_PS_LAST); 6055 if (rc != MDB_SUCCESS) 6056 return rc; 6057 } 6058 mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top])); 6059 6060 } 6061 mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]) - 1; 6062 mc->mc_flags |= C_INITIALIZED|C_EOF; 6063 leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 6064 6065 if (IS_LEAF2(mc->mc_pg[mc->mc_top])) { 6066 key->mv_size = mc->mc_db->md_pad; 6067 key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], key->mv_size); 6068 return MDB_SUCCESS; 6069 } 6070 6071 if (data) { 6072 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6073 mdb_xcursor_init1(mc, leaf); 6074 rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL); 6075 if (rc) 6076 return rc; 6077 } else { 6078 if ((rc = mdb_node_read(mc->mc_txn, leaf, data)) != MDB_SUCCESS) 6079 return rc; 6080 } 6081 } 6082 6083 MDB_GET_KEY(leaf, key); 6084 return MDB_SUCCESS; 6085 } 6086 6087 int 6088 mdb_cursor_get(MDB_cursor *mc, MDB_val *key, MDB_val *data, 6089 MDB_cursor_op op) 6090 { 6091 int rc; 6092 int exact = 0; 6093 int (*mfunc)(MDB_cursor *mc, MDB_val *key, MDB_val *data); 6094 6095 if (mc == NULL) 6096 return EINVAL; 6097 6098 if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) 6099 return MDB_BAD_TXN; 6100 6101 switch (op) { 6102 case MDB_GET_CURRENT: 6103 if (!(mc->mc_flags & C_INITIALIZED)) { 6104 rc = EINVAL; 6105 } else { 6106 MDB_page *mp = mc->mc_pg[mc->mc_top]; 6107 int nkeys = NUMKEYS(mp); 6108 if (!nkeys || mc->mc_ki[mc->mc_top] >= nkeys) { 6109 mc->mc_ki[mc->mc_top] = nkeys; 6110 rc = MDB_NOTFOUND; 6111 break; 6112 } 6113 rc = MDB_SUCCESS; 6114 if (IS_LEAF2(mp)) { 6115 key->mv_size = mc->mc_db->md_pad; 6116 key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size); 6117 } else { 6118 MDB_node *leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 6119 MDB_GET_KEY(leaf, key); 6120 if (data) { 6121 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6122 rc = mdb_cursor_get(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_GET_CURRENT); 6123 } else { 6124 rc = mdb_node_read(mc->mc_txn, leaf, data); 6125 } 6126 } 6127 } 6128 } 6129 break; 6130 case MDB_GET_BOTH: 6131 case MDB_GET_BOTH_RANGE: 6132 if (data == NULL) { 6133 rc = EINVAL; 6134 break; 6135 } 6136 if (mc->mc_xcursor == NULL) { 6137 rc = MDB_INCOMPATIBLE; 6138 break; 6139 } 6140 /* FALLTHRU */ 6141 case MDB_SET: 6142 case MDB_SET_KEY: 6143 case MDB_SET_RANGE: 6144 if (key == NULL) { 6145 rc = EINVAL; 6146 } else { 6147 rc = mdb_cursor_set(mc, key, data, op, 6148 op == MDB_SET_RANGE ? NULL : &exact); 6149 } 6150 break; 6151 case MDB_GET_MULTIPLE: 6152 if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) { 6153 rc = EINVAL; 6154 break; 6155 } 6156 if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) { 6157 rc = MDB_INCOMPATIBLE; 6158 break; 6159 } 6160 rc = MDB_SUCCESS; 6161 if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) || 6162 (mc->mc_xcursor->mx_cursor.mc_flags & C_EOF)) 6163 break; 6164 goto fetchm; 6165 case MDB_NEXT_MULTIPLE: 6166 if (data == NULL) { 6167 rc = EINVAL; 6168 break; 6169 } 6170 if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) { 6171 rc = MDB_INCOMPATIBLE; 6172 break; 6173 } 6174 if (!(mc->mc_flags & C_INITIALIZED)) 6175 rc = mdb_cursor_first(mc, key, data); 6176 else 6177 rc = mdb_cursor_next(mc, key, data, MDB_NEXT_DUP); 6178 if (rc == MDB_SUCCESS) { 6179 if (mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) { 6180 MDB_cursor *mx; 6181 fetchm: 6182 mx = &mc->mc_xcursor->mx_cursor; 6183 data->mv_size = NUMKEYS(mx->mc_pg[mx->mc_top]) * 6184 mx->mc_db->md_pad; 6185 data->mv_data = METADATA(mx->mc_pg[mx->mc_top]); 6186 mx->mc_ki[mx->mc_top] = NUMKEYS(mx->mc_pg[mx->mc_top])-1; 6187 } else { 6188 rc = MDB_NOTFOUND; 6189 } 6190 } 6191 break; 6192 case MDB_NEXT: 6193 case MDB_NEXT_DUP: 6194 case MDB_NEXT_NODUP: 6195 if (!(mc->mc_flags & C_INITIALIZED)) 6196 rc = mdb_cursor_first(mc, key, data); 6197 else 6198 rc = mdb_cursor_next(mc, key, data, op); 6199 break; 6200 case MDB_PREV: 6201 case MDB_PREV_DUP: 6202 case MDB_PREV_NODUP: 6203 if (!(mc->mc_flags & C_INITIALIZED)) { 6204 rc = mdb_cursor_last(mc, key, data); 6205 if (rc) 6206 break; 6207 mc->mc_flags |= C_INITIALIZED; 6208 mc->mc_ki[mc->mc_top]++; 6209 } 6210 rc = mdb_cursor_prev(mc, key, data, op); 6211 break; 6212 case MDB_FIRST: 6213 rc = mdb_cursor_first(mc, key, data); 6214 break; 6215 case MDB_FIRST_DUP: 6216 mfunc = mdb_cursor_first; 6217 mmove: 6218 if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) { 6219 rc = EINVAL; 6220 break; 6221 } 6222 if (mc->mc_xcursor == NULL) { 6223 rc = MDB_INCOMPATIBLE; 6224 break; 6225 } 6226 { 6227 MDB_node *leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 6228 if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6229 MDB_GET_KEY(leaf, key); 6230 rc = mdb_node_read(mc->mc_txn, leaf, data); 6231 break; 6232 } 6233 } 6234 if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) { 6235 rc = EINVAL; 6236 break; 6237 } 6238 rc = mfunc(&mc->mc_xcursor->mx_cursor, data, NULL); 6239 break; 6240 case MDB_LAST: 6241 rc = mdb_cursor_last(mc, key, data); 6242 break; 6243 case MDB_LAST_DUP: 6244 mfunc = mdb_cursor_last; 6245 goto mmove; 6246 default: 6247 DPRINTF(("unhandled/unimplemented cursor operation %u", op)); 6248 rc = EINVAL; 6249 break; 6250 } 6251 6252 if (mc->mc_flags & C_DEL) 6253 mc->mc_flags ^= C_DEL; 6254 6255 return rc; 6256 } 6257 6258 /** Touch all the pages in the cursor stack. Set mc_top. 6259 * Makes sure all the pages are writable, before attempting a write operation. 6260 * @param[in] mc The cursor to operate on. 6261 */ 6262 static int 6263 mdb_cursor_touch(MDB_cursor *mc) 6264 { 6265 int rc = MDB_SUCCESS; 6266 6267 if (mc->mc_dbi >= CORE_DBS && !(*mc->mc_dbflag & DB_DIRTY)) { 6268 MDB_cursor mc2; 6269 MDB_xcursor mcx; 6270 if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi)) 6271 return MDB_BAD_DBI; 6272 mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, &mcx); 6273 rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, MDB_PS_MODIFY); 6274 if (rc) 6275 return rc; 6276 *mc->mc_dbflag |= DB_DIRTY; 6277 } 6278 mc->mc_top = 0; 6279 if (mc->mc_snum) { 6280 do { 6281 rc = mdb_page_touch(mc); 6282 } while (!rc && ++(mc->mc_top) < mc->mc_snum); 6283 mc->mc_top = mc->mc_snum-1; 6284 } 6285 return rc; 6286 } 6287 6288 /** Do not spill pages to disk if txn is getting full, may fail instead */ 6289 #define MDB_NOSPILL 0x8000 6290 6291 int 6292 mdb_cursor_put(MDB_cursor *mc, MDB_val *key, MDB_val *data, 6293 unsigned int flags) 6294 { 6295 MDB_env *env; 6296 MDB_node *leaf = NULL; 6297 MDB_page *fp, *mp, *sub_root = NULL; 6298 uint16_t fp_flags; 6299 MDB_val xdata, *rdata, dkey, olddata; 6300 MDB_db dummy; 6301 int do_sub = 0, insert_key, insert_data; 6302 unsigned int mcount = 0, dcount = 0, nospill; 6303 size_t nsize; 6304 int rc, rc2; 6305 unsigned int nflags; 6306 DKBUF; 6307 6308 if (mc == NULL || key == NULL) 6309 return EINVAL; 6310 6311 env = mc->mc_txn->mt_env; 6312 6313 /* Check this first so counter will always be zero on any 6314 * early failures. 6315 */ 6316 if (flags & MDB_MULTIPLE) { 6317 dcount = data[1].mv_size; 6318 data[1].mv_size = 0; 6319 if (!F_ISSET(mc->mc_db->md_flags, MDB_DUPFIXED)) 6320 return MDB_INCOMPATIBLE; 6321 } 6322 6323 nospill = flags & MDB_NOSPILL; 6324 flags &= ~MDB_NOSPILL; 6325 6326 if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)) 6327 return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN; 6328 6329 if (key->mv_size-1 >= ENV_MAXKEY(env)) 6330 return MDB_BAD_VALSIZE; 6331 6332 #if SIZE_MAX > MAXDATASIZE 6333 if (data->mv_size > ((mc->mc_db->md_flags & MDB_DUPSORT) ? ENV_MAXKEY(env) : MAXDATASIZE)) 6334 return MDB_BAD_VALSIZE; 6335 #else 6336 if ((mc->mc_db->md_flags & MDB_DUPSORT) && data->mv_size > ENV_MAXKEY(env)) 6337 return MDB_BAD_VALSIZE; 6338 #endif 6339 6340 DPRINTF(("==> put db %d key [%s], size %"Z"u, data size %"Z"u", 6341 DDBI(mc), DKEY(key), key ? key->mv_size : 0, data->mv_size)); 6342 6343 dkey.mv_size = 0; 6344 6345 if (flags == MDB_CURRENT) { 6346 if (!(mc->mc_flags & C_INITIALIZED)) 6347 return EINVAL; 6348 rc = MDB_SUCCESS; 6349 } else if (mc->mc_db->md_root == P_INVALID) { 6350 /* new database, cursor has nothing to point to */ 6351 mc->mc_snum = 0; 6352 mc->mc_top = 0; 6353 mc->mc_flags &= ~C_INITIALIZED; 6354 rc = MDB_NO_ROOT; 6355 } else { 6356 int exact = 0; 6357 MDB_val d2; 6358 if (flags & MDB_APPEND) { 6359 MDB_val k2; 6360 rc = mdb_cursor_last(mc, &k2, &d2); 6361 if (rc == 0) { 6362 rc = mc->mc_dbx->md_cmp(key, &k2); 6363 if (rc > 0) { 6364 rc = MDB_NOTFOUND; 6365 mc->mc_ki[mc->mc_top]++; 6366 } else { 6367 /* new key is <= last key */ 6368 rc = MDB_KEYEXIST; 6369 } 6370 } 6371 } else { 6372 rc = mdb_cursor_set(mc, key, &d2, MDB_SET, &exact); 6373 } 6374 if ((flags & MDB_NOOVERWRITE) && rc == 0) { 6375 DPRINTF(("duplicate key [%s]", DKEY(key))); 6376 *data = d2; 6377 return MDB_KEYEXIST; 6378 } 6379 if (rc && rc != MDB_NOTFOUND) 6380 return rc; 6381 } 6382 6383 if (mc->mc_flags & C_DEL) 6384 mc->mc_flags ^= C_DEL; 6385 6386 /* Cursor is positioned, check for room in the dirty list */ 6387 if (!nospill) { 6388 if (flags & MDB_MULTIPLE) { 6389 rdata = &xdata; 6390 xdata.mv_size = data->mv_size * dcount; 6391 } else { 6392 rdata = data; 6393 } 6394 if ((rc2 = mdb_page_spill(mc, key, rdata))) 6395 return rc2; 6396 } 6397 6398 if (rc == MDB_NO_ROOT) { 6399 MDB_page *np; 6400 /* new database, write a root leaf page */ 6401 DPUTS("allocating new root leaf page"); 6402 if ((rc2 = mdb_page_new(mc, P_LEAF, 1, &np))) { 6403 return rc2; 6404 } 6405 mdb_cursor_push(mc, np); 6406 mc->mc_db->md_root = np->mp_pgno; 6407 mc->mc_db->md_depth++; 6408 *mc->mc_dbflag |= DB_DIRTY; 6409 if ((mc->mc_db->md_flags & (MDB_DUPSORT|MDB_DUPFIXED)) 6410 == MDB_DUPFIXED) 6411 np->mp_flags |= P_LEAF2; 6412 mc->mc_flags |= C_INITIALIZED; 6413 } else { 6414 /* make sure all cursor pages are writable */ 6415 rc2 = mdb_cursor_touch(mc); 6416 if (rc2) 6417 return rc2; 6418 } 6419 6420 insert_key = insert_data = rc; 6421 if (insert_key) { 6422 /* The key does not exist */ 6423 DPRINTF(("inserting key at index %i", mc->mc_ki[mc->mc_top])); 6424 if ((mc->mc_db->md_flags & MDB_DUPSORT) && 6425 LEAFSIZE(key, data) > env->me_nodemax) 6426 { 6427 /* Too big for a node, insert in sub-DB. Set up an empty 6428 * "old sub-page" for prep_subDB to expand to a full page. 6429 */ 6430 fp_flags = P_LEAF|P_DIRTY; 6431 fp = env->me_pbuf; 6432 fp->mp_pad = data->mv_size; /* used if MDB_DUPFIXED */ 6433 fp->mp_lower = fp->mp_upper = (PAGEHDRSZ-PAGEBASE); 6434 olddata.mv_size = PAGEHDRSZ; 6435 goto prep_subDB; 6436 } 6437 } else { 6438 /* there's only a key anyway, so this is a no-op */ 6439 if (IS_LEAF2(mc->mc_pg[mc->mc_top])) { 6440 char *ptr; 6441 unsigned int ksize = mc->mc_db->md_pad; 6442 if (key->mv_size != ksize) 6443 return MDB_BAD_VALSIZE; 6444 ptr = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], ksize); 6445 memcpy(ptr, key->mv_data, ksize); 6446 fix_parent: 6447 /* if overwriting slot 0 of leaf, need to 6448 * update branch key if there is a parent page 6449 */ 6450 if (mc->mc_top && !mc->mc_ki[mc->mc_top]) { 6451 unsigned short dtop = 1; 6452 mc->mc_top--; 6453 /* slot 0 is always an empty key, find real slot */ 6454 while (mc->mc_top && !mc->mc_ki[mc->mc_top]) { 6455 mc->mc_top--; 6456 dtop++; 6457 } 6458 if (mc->mc_ki[mc->mc_top]) 6459 rc2 = mdb_update_key(mc, key); 6460 else 6461 rc2 = MDB_SUCCESS; 6462 mc->mc_top += dtop; 6463 if (rc2) 6464 return rc2; 6465 } 6466 return MDB_SUCCESS; 6467 } 6468 6469 more: 6470 leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 6471 olddata.mv_size = NODEDSZ(leaf); 6472 olddata.mv_data = NODEDATA(leaf); 6473 6474 /* DB has dups? */ 6475 if (F_ISSET(mc->mc_db->md_flags, MDB_DUPSORT)) { 6476 /* Prepare (sub-)page/sub-DB to accept the new item, 6477 * if needed. fp: old sub-page or a header faking 6478 * it. mp: new (sub-)page. offset: growth in page 6479 * size. xdata: node data with new page or DB. 6480 */ 6481 unsigned i, offset = 0; 6482 mp = fp = xdata.mv_data = env->me_pbuf; 6483 mp->mp_pgno = mc->mc_pg[mc->mc_top]->mp_pgno; 6484 6485 /* Was a single item before, must convert now */ 6486 if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6487 MDB_cmp_func *dcmp; 6488 /* Just overwrite the current item */ 6489 if (flags == MDB_CURRENT) 6490 goto current; 6491 dcmp = mc->mc_dbx->md_dcmp; 6492 #if UINT_MAX < SIZE_MAX 6493 if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t)) 6494 dcmp = mdb_cmp_clong; 6495 #endif 6496 /* does data match? */ 6497 if (!dcmp(data, &olddata)) { 6498 if (flags & (MDB_NODUPDATA|MDB_APPENDDUP)) 6499 return MDB_KEYEXIST; 6500 /* overwrite it */ 6501 goto current; 6502 } 6503 6504 /* Back up original data item */ 6505 dkey.mv_size = olddata.mv_size; 6506 dkey.mv_data = memcpy(fp+1, olddata.mv_data, olddata.mv_size); 6507 6508 /* Make sub-page header for the dup items, with dummy body */ 6509 fp->mp_flags = P_LEAF|P_DIRTY|P_SUBP; 6510 fp->mp_lower = (PAGEHDRSZ-PAGEBASE); 6511 xdata.mv_size = PAGEHDRSZ + dkey.mv_size + data->mv_size; 6512 if (mc->mc_db->md_flags & MDB_DUPFIXED) { 6513 fp->mp_flags |= P_LEAF2; 6514 fp->mp_pad = data->mv_size; 6515 xdata.mv_size += 2 * data->mv_size; /* leave space for 2 more */ 6516 } else { 6517 xdata.mv_size += 2 * (sizeof(indx_t) + NODESIZE) + 6518 (dkey.mv_size & 1) + (data->mv_size & 1); 6519 } 6520 fp->mp_upper = xdata.mv_size - PAGEBASE; 6521 olddata.mv_size = xdata.mv_size; /* pretend olddata is fp */ 6522 } else if (leaf->mn_flags & F_SUBDATA) { 6523 /* Data is on sub-DB, just store it */ 6524 flags |= F_DUPDATA|F_SUBDATA; 6525 goto put_sub; 6526 } else { 6527 /* Data is on sub-page */ 6528 fp = olddata.mv_data; 6529 switch (flags) { 6530 default: 6531 if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) { 6532 offset = EVEN(NODESIZE + sizeof(indx_t) + 6533 data->mv_size); 6534 break; 6535 } 6536 offset = fp->mp_pad; 6537 if (SIZELEFT(fp) < offset) { 6538 offset *= 4; /* space for 4 more */ 6539 break; 6540 } 6541 /* FALLTHRU: Big enough MDB_DUPFIXED sub-page */ 6542 case MDB_CURRENT: 6543 fp->mp_flags |= P_DIRTY; 6544 COPY_PGNO(fp->mp_pgno, mp->mp_pgno); 6545 mc->mc_xcursor->mx_cursor.mc_pg[0] = fp; 6546 flags |= F_DUPDATA; 6547 goto put_sub; 6548 } 6549 xdata.mv_size = olddata.mv_size + offset; 6550 } 6551 6552 fp_flags = fp->mp_flags; 6553 if (NODESIZE + NODEKSZ(leaf) + xdata.mv_size > env->me_nodemax) { 6554 /* Too big for a sub-page, convert to sub-DB */ 6555 fp_flags &= ~P_SUBP; 6556 prep_subDB: 6557 if (mc->mc_db->md_flags & MDB_DUPFIXED) { 6558 fp_flags |= P_LEAF2; 6559 dummy.md_pad = fp->mp_pad; 6560 dummy.md_flags = MDB_DUPFIXED; 6561 if (mc->mc_db->md_flags & MDB_INTEGERDUP) 6562 dummy.md_flags |= MDB_INTEGERKEY; 6563 } else { 6564 dummy.md_pad = 0; 6565 dummy.md_flags = 0; 6566 } 6567 dummy.md_depth = 1; 6568 dummy.md_branch_pages = 0; 6569 dummy.md_leaf_pages = 1; 6570 dummy.md_overflow_pages = 0; 6571 dummy.md_entries = NUMKEYS(fp); 6572 xdata.mv_size = sizeof(MDB_db); 6573 xdata.mv_data = &dummy; 6574 if ((rc = mdb_page_alloc(mc, 1, &mp))) 6575 return rc; 6576 offset = env->me_psize - olddata.mv_size; 6577 flags |= F_DUPDATA|F_SUBDATA; 6578 dummy.md_root = mp->mp_pgno; 6579 sub_root = mp; 6580 } 6581 if (mp != fp) { 6582 mp->mp_flags = fp_flags | P_DIRTY; 6583 mp->mp_pad = fp->mp_pad; 6584 mp->mp_lower = fp->mp_lower; 6585 mp->mp_upper = fp->mp_upper + offset; 6586 if (fp_flags & P_LEAF2) { 6587 memcpy(METADATA(mp), METADATA(fp), NUMKEYS(fp) * fp->mp_pad); 6588 } else { 6589 memcpy((char *)mp + mp->mp_upper + PAGEBASE, (char *)fp + fp->mp_upper + PAGEBASE, 6590 olddata.mv_size - fp->mp_upper - PAGEBASE); 6591 for (i=0; i<NUMKEYS(fp); i++) 6592 mp->mp_ptrs[i] = fp->mp_ptrs[i] + offset; 6593 } 6594 } 6595 6596 rdata = &xdata; 6597 flags |= F_DUPDATA; 6598 do_sub = 1; 6599 if (!insert_key) 6600 mdb_node_del(mc, 0); 6601 goto new_sub; 6602 } 6603 current: 6604 /* LMDB passes F_SUBDATA in 'flags' to write a DB record */ 6605 if ((leaf->mn_flags ^ flags) & F_SUBDATA) 6606 return MDB_INCOMPATIBLE; 6607 /* overflow page overwrites need special handling */ 6608 if (F_ISSET(leaf->mn_flags, F_BIGDATA)) { 6609 MDB_page *omp; 6610 pgno_t pg; 6611 int level, ovpages, dpages = OVPAGES(data->mv_size, env->me_psize); 6612 6613 memcpy(&pg, olddata.mv_data, sizeof(pg)); 6614 if ((rc2 = mdb_page_get(mc->mc_txn, pg, &omp, &level)) != 0) 6615 return rc2; 6616 ovpages = omp->mp_pages; 6617 6618 /* Is the ov page large enough? */ 6619 if (ovpages >= dpages) { 6620 if (!(omp->mp_flags & P_DIRTY) && 6621 (level || (env->me_flags & MDB_WRITEMAP))) 6622 { 6623 rc = mdb_page_unspill(mc->mc_txn, omp, &omp); 6624 if (rc) 6625 return rc; 6626 level = 0; /* dirty in this txn or clean */ 6627 } 6628 /* Is it dirty? */ 6629 if (omp->mp_flags & P_DIRTY) { 6630 /* yes, overwrite it. Note in this case we don't 6631 * bother to try shrinking the page if the new data 6632 * is smaller than the overflow threshold. 6633 */ 6634 if (level > 1) { 6635 /* It is writable only in a parent txn */ 6636 size_t sz = (size_t) env->me_psize * ovpages, off; 6637 MDB_page *np = mdb_page_malloc(mc->mc_txn, ovpages); 6638 MDB_ID2 id2; 6639 if (!np) 6640 return ENOMEM; 6641 id2.mid = pg; 6642 id2.mptr = np; 6643 /* Note - this page is already counted in parent's dirty_room */ 6644 rc2 = mdb_mid2l_insert(mc->mc_txn->mt_u.dirty_list, &id2); 6645 mdb_cassert(mc, rc2 == 0); 6646 if (!(flags & MDB_RESERVE)) { 6647 /* Copy end of page, adjusting alignment so 6648 * compiler may copy words instead of bytes. 6649 */ 6650 off = (PAGEHDRSZ + data->mv_size) & -sizeof(size_t); 6651 memcpy((size_t *)((char *)np + off), 6652 (size_t *)((char *)omp + off), sz - off); 6653 sz = PAGEHDRSZ; 6654 } 6655 memcpy(np, omp, sz); /* Copy beginning of page */ 6656 omp = np; 6657 } 6658 SETDSZ(leaf, data->mv_size); 6659 if (F_ISSET(flags, MDB_RESERVE)) 6660 data->mv_data = METADATA(omp); 6661 else 6662 memcpy(METADATA(omp), data->mv_data, data->mv_size); 6663 return MDB_SUCCESS; 6664 } 6665 } 6666 if ((rc2 = mdb_ovpage_free(mc, omp)) != MDB_SUCCESS) 6667 return rc2; 6668 } else if (data->mv_size == olddata.mv_size) { 6669 /* same size, just replace it. Note that we could 6670 * also reuse this node if the new data is smaller, 6671 * but instead we opt to shrink the node in that case. 6672 */ 6673 if (F_ISSET(flags, MDB_RESERVE)) 6674 data->mv_data = olddata.mv_data; 6675 else if (!(mc->mc_flags & C_SUB)) 6676 memcpy(olddata.mv_data, data->mv_data, data->mv_size); 6677 else { 6678 memcpy(NODEKEY(leaf), key->mv_data, key->mv_size); 6679 goto fix_parent; 6680 } 6681 return MDB_SUCCESS; 6682 } 6683 mdb_node_del(mc, 0); 6684 } 6685 6686 rdata = data; 6687 6688 new_sub: 6689 nflags = flags & NODE_ADD_FLAGS; 6690 nsize = IS_LEAF2(mc->mc_pg[mc->mc_top]) ? key->mv_size : mdb_leaf_size(env, key, rdata); 6691 if (SIZELEFT(mc->mc_pg[mc->mc_top]) < nsize) { 6692 if (( flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA ) 6693 nflags &= ~MDB_APPEND; /* sub-page may need room to grow */ 6694 if (!insert_key) 6695 nflags |= MDB_SPLIT_REPLACE; 6696 rc = mdb_page_split(mc, key, rdata, P_INVALID, nflags); 6697 } else { 6698 /* There is room already in this leaf page. */ 6699 rc = mdb_node_add(mc, mc->mc_ki[mc->mc_top], key, rdata, 0, nflags); 6700 if (rc == 0) { 6701 /* Adjust other cursors pointing to mp */ 6702 MDB_cursor *m2, *m3; 6703 MDB_dbi dbi = mc->mc_dbi; 6704 unsigned i = mc->mc_top; 6705 MDB_page *mp = mc->mc_pg[i]; 6706 6707 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 6708 if (mc->mc_flags & C_SUB) 6709 m3 = &m2->mc_xcursor->mx_cursor; 6710 else 6711 m3 = m2; 6712 if (m3 == mc || m3->mc_snum < mc->mc_snum || m3->mc_pg[i] != mp) continue; 6713 if (m3->mc_ki[i] >= mc->mc_ki[i] && insert_key) { 6714 m3->mc_ki[i]++; 6715 } 6716 if (m3->mc_xcursor && (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) { 6717 MDB_node *n2 = NODEPTR(mp, m3->mc_ki[i]); 6718 if ((n2->mn_flags & (F_SUBDATA|F_DUPDATA)) == F_DUPDATA) 6719 m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(n2); 6720 } 6721 } 6722 } 6723 } 6724 6725 if (rc == MDB_SUCCESS) { 6726 /* Now store the actual data in the child DB. Note that we're 6727 * storing the user data in the keys field, so there are strict 6728 * size limits on dupdata. The actual data fields of the child 6729 * DB are all zero size. 6730 */ 6731 if (do_sub) { 6732 int xflags, new_dupdata; 6733 size_t ecount; 6734 put_sub: 6735 xdata.mv_size = 0; 6736 xdata.mv_data = ""; 6737 leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 6738 if (flags & MDB_CURRENT) { 6739 xflags = MDB_CURRENT|MDB_NOSPILL; 6740 } else { 6741 mdb_xcursor_init1(mc, leaf); 6742 xflags = (flags & MDB_NODUPDATA) ? 6743 MDB_NOOVERWRITE|MDB_NOSPILL : MDB_NOSPILL; 6744 } 6745 if (sub_root) 6746 mc->mc_xcursor->mx_cursor.mc_pg[0] = sub_root; 6747 new_dupdata = (int)dkey.mv_size; 6748 /* converted, write the original data first */ 6749 if (dkey.mv_size) { 6750 rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, &dkey, &xdata, xflags); 6751 if (rc) 6752 goto bad_sub; 6753 /* we've done our job */ 6754 dkey.mv_size = 0; 6755 } 6756 if (!(leaf->mn_flags & F_SUBDATA) || sub_root) { 6757 /* Adjust other cursors pointing to mp */ 6758 MDB_cursor *m2; 6759 MDB_xcursor *mx = mc->mc_xcursor; 6760 unsigned i = mc->mc_top; 6761 MDB_page *mp = mc->mc_pg[i]; 6762 int nkeys = NUMKEYS(mp); 6763 6764 for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) { 6765 if (m2 == mc || m2->mc_snum < mc->mc_snum) continue; 6766 if (!(m2->mc_flags & C_INITIALIZED)) continue; 6767 if (m2->mc_pg[i] == mp) { 6768 if (m2->mc_ki[i] == mc->mc_ki[i]) { 6769 mdb_xcursor_init2(m2, mx, new_dupdata); 6770 } else if (!insert_key && m2->mc_ki[i] < nkeys) { 6771 MDB_node *n2 = NODEPTR(mp, m2->mc_ki[i]); 6772 if ((n2->mn_flags & (F_SUBDATA|F_DUPDATA)) == F_DUPDATA) 6773 m2->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(n2); 6774 } 6775 } 6776 } 6777 } 6778 ecount = mc->mc_xcursor->mx_db.md_entries; 6779 if (flags & MDB_APPENDDUP) 6780 xflags |= MDB_APPEND; 6781 rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, data, &xdata, xflags); 6782 if (flags & F_SUBDATA) { 6783 void *db = NODEDATA(leaf); 6784 memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db)); 6785 } 6786 insert_data = mc->mc_xcursor->mx_db.md_entries - ecount; 6787 } 6788 /* Increment count unless we just replaced an existing item. */ 6789 if (insert_data) 6790 mc->mc_db->md_entries++; 6791 if (insert_key) { 6792 /* Invalidate txn if we created an empty sub-DB */ 6793 if (rc) 6794 goto bad_sub; 6795 /* If we succeeded and the key didn't exist before, 6796 * make sure the cursor is marked valid. 6797 */ 6798 mc->mc_flags |= C_INITIALIZED; 6799 } 6800 if (flags & MDB_MULTIPLE) { 6801 if (!rc) { 6802 mcount++; 6803 /* let caller know how many succeeded, if any */ 6804 data[1].mv_size = mcount; 6805 if (mcount < dcount) { 6806 data[0].mv_data = (char *)data[0].mv_data + data[0].mv_size; 6807 insert_key = insert_data = 0; 6808 goto more; 6809 } 6810 } 6811 } 6812 return rc; 6813 bad_sub: 6814 if (rc == MDB_KEYEXIST) /* should not happen, we deleted that item */ 6815 rc = MDB_CORRUPTED; 6816 } 6817 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 6818 return rc; 6819 } 6820 6821 int 6822 mdb_cursor_del(MDB_cursor *mc, unsigned int flags) 6823 { 6824 MDB_node *leaf; 6825 MDB_page *mp; 6826 int rc; 6827 6828 if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)) 6829 return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN; 6830 6831 if (!(mc->mc_flags & C_INITIALIZED)) 6832 return EINVAL; 6833 6834 if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top])) 6835 return MDB_NOTFOUND; 6836 6837 if (!(flags & MDB_NOSPILL) && (rc = mdb_page_spill(mc, NULL, NULL))) 6838 return rc; 6839 6840 rc = mdb_cursor_touch(mc); 6841 if (rc) 6842 return rc; 6843 6844 mp = mc->mc_pg[mc->mc_top]; 6845 if (IS_LEAF2(mp)) 6846 goto del_key; 6847 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 6848 6849 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6850 if (flags & MDB_NODUPDATA) { 6851 /* mdb_cursor_del0() will subtract the final entry */ 6852 mc->mc_db->md_entries -= mc->mc_xcursor->mx_db.md_entries - 1; 6853 mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED; 6854 } else { 6855 if (!F_ISSET(leaf->mn_flags, F_SUBDATA)) { 6856 mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf); 6857 } 6858 rc = mdb_cursor_del(&mc->mc_xcursor->mx_cursor, MDB_NOSPILL); 6859 if (rc) 6860 return rc; 6861 /* If sub-DB still has entries, we're done */ 6862 if (mc->mc_xcursor->mx_db.md_entries) { 6863 if (leaf->mn_flags & F_SUBDATA) { 6864 /* update subDB info */ 6865 void *db = NODEDATA(leaf); 6866 memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db)); 6867 } else { 6868 MDB_cursor *m2; 6869 /* shrink fake page */ 6870 mdb_node_shrink(mp, mc->mc_ki[mc->mc_top]); 6871 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 6872 mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf); 6873 /* fix other sub-DB cursors pointed at fake pages on this page */ 6874 for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) { 6875 if (m2 == mc || m2->mc_snum < mc->mc_snum) continue; 6876 if (!(m2->mc_flags & C_INITIALIZED)) continue; 6877 if (m2->mc_pg[mc->mc_top] == mp) { 6878 if (m2->mc_ki[mc->mc_top] == mc->mc_ki[mc->mc_top]) { 6879 m2->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf); 6880 } else { 6881 MDB_node *n2 = NODEPTR(mp, m2->mc_ki[mc->mc_top]); 6882 if (!(n2->mn_flags & F_SUBDATA)) 6883 m2->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(n2); 6884 } 6885 } 6886 } 6887 } 6888 mc->mc_db->md_entries--; 6889 return rc; 6890 } else { 6891 mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED; 6892 } 6893 /* otherwise fall thru and delete the sub-DB */ 6894 } 6895 6896 if (leaf->mn_flags & F_SUBDATA) { 6897 /* add all the child DB's pages to the free list */ 6898 rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0); 6899 if (rc) 6900 goto fail; 6901 } 6902 } 6903 /* LMDB passes F_SUBDATA in 'flags' to delete a DB record */ 6904 else if ((leaf->mn_flags ^ flags) & F_SUBDATA) { 6905 rc = MDB_INCOMPATIBLE; 6906 goto fail; 6907 } 6908 6909 /* add overflow pages to free list */ 6910 if (F_ISSET(leaf->mn_flags, F_BIGDATA)) { 6911 MDB_page *omp; 6912 pgno_t pg; 6913 6914 memcpy(&pg, NODEDATA(leaf), sizeof(pg)); 6915 if ((rc = mdb_page_get(mc->mc_txn, pg, &omp, NULL)) || 6916 (rc = mdb_ovpage_free(mc, omp))) 6917 goto fail; 6918 } 6919 6920 del_key: 6921 return mdb_cursor_del0(mc); 6922 6923 fail: 6924 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 6925 return rc; 6926 } 6927 6928 /** Allocate and initialize new pages for a database. 6929 * @param[in] mc a cursor on the database being added to. 6930 * @param[in] flags flags defining what type of page is being allocated. 6931 * @param[in] num the number of pages to allocate. This is usually 1, 6932 * unless allocating overflow pages for a large record. 6933 * @param[out] mp Address of a page, or NULL on failure. 6934 * @return 0 on success, non-zero on failure. 6935 */ 6936 static int 6937 mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp) 6938 { 6939 MDB_page *np; 6940 int rc; 6941 6942 if ((rc = mdb_page_alloc(mc, num, &np))) 6943 return rc; 6944 DPRINTF(("allocated new mpage %"Z"u, page size %u", 6945 np->mp_pgno, mc->mc_txn->mt_env->me_psize)); 6946 np->mp_flags = flags | P_DIRTY; 6947 np->mp_lower = (PAGEHDRSZ-PAGEBASE); 6948 np->mp_upper = mc->mc_txn->mt_env->me_psize - PAGEBASE; 6949 6950 if (IS_BRANCH(np)) 6951 mc->mc_db->md_branch_pages++; 6952 else if (IS_LEAF(np)) 6953 mc->mc_db->md_leaf_pages++; 6954 else if (IS_OVERFLOW(np)) { 6955 mc->mc_db->md_overflow_pages += num; 6956 np->mp_pages = num; 6957 } 6958 *mp = np; 6959 6960 return 0; 6961 } 6962 6963 /** Calculate the size of a leaf node. 6964 * The size depends on the environment's page size; if a data item 6965 * is too large it will be put onto an overflow page and the node 6966 * size will only include the key and not the data. Sizes are always 6967 * rounded up to an even number of bytes, to guarantee 2-byte alignment 6968 * of the #MDB_node headers. 6969 * @param[in] env The environment handle. 6970 * @param[in] key The key for the node. 6971 * @param[in] data The data for the node. 6972 * @return The number of bytes needed to store the node. 6973 */ 6974 static size_t 6975 mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data) 6976 { 6977 size_t sz; 6978 6979 sz = LEAFSIZE(key, data); 6980 if (sz > env->me_nodemax) { 6981 /* put on overflow page */ 6982 sz -= data->mv_size - sizeof(pgno_t); 6983 } 6984 6985 return EVEN(sz + sizeof(indx_t)); 6986 } 6987 6988 /** Calculate the size of a branch node. 6989 * The size should depend on the environment's page size but since 6990 * we currently don't support spilling large keys onto overflow 6991 * pages, it's simply the size of the #MDB_node header plus the 6992 * size of the key. Sizes are always rounded up to an even number 6993 * of bytes, to guarantee 2-byte alignment of the #MDB_node headers. 6994 * @param[in] env The environment handle. 6995 * @param[in] key The key for the node. 6996 * @return The number of bytes needed to store the node. 6997 */ 6998 static size_t 6999 mdb_branch_size(MDB_env *env, MDB_val *key) 7000 { 7001 size_t sz; 7002 7003 sz = INDXSIZE(key); 7004 if (sz > env->me_nodemax) { 7005 /* put on overflow page */ 7006 /* not implemented */ 7007 /* sz -= key->size - sizeof(pgno_t); */ 7008 } 7009 7010 return sz + sizeof(indx_t); 7011 } 7012 7013 /** Add a node to the page pointed to by the cursor. 7014 * @param[in] mc The cursor for this operation. 7015 * @param[in] indx The index on the page where the new node should be added. 7016 * @param[in] key The key for the new node. 7017 * @param[in] data The data for the new node, if any. 7018 * @param[in] pgno The page number, if adding a branch node. 7019 * @param[in] flags Flags for the node. 7020 * @return 0 on success, non-zero on failure. Possible errors are: 7021 * <ul> 7022 * <li>ENOMEM - failed to allocate overflow pages for the node. 7023 * <li>MDB_PAGE_FULL - there is insufficient room in the page. This error 7024 * should never happen since all callers already calculate the 7025 * page's free space before calling this function. 7026 * </ul> 7027 */ 7028 static int 7029 mdb_node_add(MDB_cursor *mc, indx_t indx, 7030 MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags) 7031 { 7032 unsigned int i; 7033 size_t node_size = NODESIZE; 7034 ssize_t room; 7035 indx_t ofs; 7036 MDB_node *node; 7037 MDB_page *mp = mc->mc_pg[mc->mc_top]; 7038 MDB_page *ofp = NULL; /* overflow page */ 7039 void *ndata; 7040 DKBUF; 7041 7042 mdb_cassert(mc, mp->mp_upper >= mp->mp_lower); 7043 7044 DPRINTF(("add to %s %spage %"Z"u index %i, data size %"Z"u key size %"Z"u [%s]", 7045 IS_LEAF(mp) ? "leaf" : "branch", 7046 IS_SUBP(mp) ? "sub-" : "", 7047 mdb_dbg_pgno(mp), indx, data ? data->mv_size : 0, 7048 key ? key->mv_size : 0, key ? DKEY(key) : "null")); 7049 7050 if (IS_LEAF2(mp)) { 7051 /* Move higher keys up one slot. */ 7052 int ksize = mc->mc_db->md_pad, dif; 7053 char *ptr = LEAF2KEY(mp, indx, ksize); 7054 dif = NUMKEYS(mp) - indx; 7055 if (dif > 0) 7056 memmove(ptr+ksize, ptr, dif*ksize); 7057 /* insert new key */ 7058 memcpy(ptr, key->mv_data, ksize); 7059 7060 /* Just using these for counting */ 7061 mp->mp_lower += sizeof(indx_t); 7062 mp->mp_upper -= ksize - sizeof(indx_t); 7063 return MDB_SUCCESS; 7064 } 7065 7066 room = (ssize_t)SIZELEFT(mp) - (ssize_t)sizeof(indx_t); 7067 if (key != NULL) 7068 node_size += key->mv_size; 7069 if (IS_LEAF(mp)) { 7070 mdb_cassert(mc, key && data); 7071 if (F_ISSET(flags, F_BIGDATA)) { 7072 /* Data already on overflow page. */ 7073 node_size += sizeof(pgno_t); 7074 } else if (node_size + data->mv_size > mc->mc_txn->mt_env->me_nodemax) { 7075 int ovpages = OVPAGES(data->mv_size, mc->mc_txn->mt_env->me_psize); 7076 int rc; 7077 /* Put data on overflow page. */ 7078 DPRINTF(("data size is %"Z"u, node would be %"Z"u, put data on overflow page", 7079 data->mv_size, node_size+data->mv_size)); 7080 node_size = EVEN(node_size + sizeof(pgno_t)); 7081 if ((ssize_t)node_size > room) 7082 goto full; 7083 if ((rc = mdb_page_new(mc, P_OVERFLOW, ovpages, &ofp))) 7084 return rc; 7085 DPRINTF(("allocated overflow page %"Z"u", ofp->mp_pgno)); 7086 flags |= F_BIGDATA; 7087 goto update; 7088 } else { 7089 node_size += data->mv_size; 7090 } 7091 } 7092 node_size = EVEN(node_size); 7093 if ((ssize_t)node_size > room) 7094 goto full; 7095 7096 update: 7097 /* Move higher pointers up one slot. */ 7098 for (i = NUMKEYS(mp); i > indx; i--) 7099 mp->mp_ptrs[i] = mp->mp_ptrs[i - 1]; 7100 7101 /* Adjust free space offsets. */ 7102 ofs = mp->mp_upper - node_size; 7103 mdb_cassert(mc, ofs >= mp->mp_lower + sizeof(indx_t)); 7104 mp->mp_ptrs[indx] = ofs; 7105 mp->mp_upper = ofs; 7106 mp->mp_lower += sizeof(indx_t); 7107 7108 /* Write the node data. */ 7109 node = NODEPTR(mp, indx); 7110 node->mn_ksize = (key == NULL) ? 0 : key->mv_size; 7111 node->mn_flags = flags; 7112 if (IS_LEAF(mp)) 7113 SETDSZ(node,data->mv_size); 7114 else 7115 SETPGNO(node,pgno); 7116 7117 if (key) 7118 memcpy(NODEKEY(node), key->mv_data, key->mv_size); 7119 7120 if (IS_LEAF(mp)) { 7121 ndata = NODEDATA(node); 7122 if (ofp == NULL) { 7123 if (F_ISSET(flags, F_BIGDATA)) 7124 memcpy(ndata, data->mv_data, sizeof(pgno_t)); 7125 else if (F_ISSET(flags, MDB_RESERVE)) 7126 data->mv_data = ndata; 7127 else 7128 memcpy(ndata, data->mv_data, data->mv_size); 7129 } else { 7130 memcpy(ndata, &ofp->mp_pgno, sizeof(pgno_t)); 7131 ndata = METADATA(ofp); 7132 if (F_ISSET(flags, MDB_RESERVE)) 7133 data->mv_data = ndata; 7134 else 7135 memcpy(ndata, data->mv_data, data->mv_size); 7136 } 7137 } 7138 7139 return MDB_SUCCESS; 7140 7141 full: 7142 DPRINTF(("not enough room in page %"Z"u, got %u ptrs", 7143 mdb_dbg_pgno(mp), NUMKEYS(mp))); 7144 DPRINTF(("upper-lower = %u - %u = %"Z"d", mp->mp_upper,mp->mp_lower,room)); 7145 DPRINTF(("node size = %"Z"u", node_size)); 7146 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 7147 return MDB_PAGE_FULL; 7148 } 7149 7150 /** Delete the specified node from a page. 7151 * @param[in] mc Cursor pointing to the node to delete. 7152 * @param[in] ksize The size of a node. Only used if the page is 7153 * part of a #MDB_DUPFIXED database. 7154 */ 7155 static void 7156 mdb_node_del(MDB_cursor *mc, int ksize) 7157 { 7158 MDB_page *mp = mc->mc_pg[mc->mc_top]; 7159 indx_t indx = mc->mc_ki[mc->mc_top]; 7160 unsigned int sz; 7161 indx_t i, j, numkeys, ptr; 7162 MDB_node *node; 7163 char *base; 7164 7165 DPRINTF(("delete node %u on %s page %"Z"u", indx, 7166 IS_LEAF(mp) ? "leaf" : "branch", mdb_dbg_pgno(mp))); 7167 numkeys = NUMKEYS(mp); 7168 mdb_cassert(mc, indx < numkeys); 7169 7170 if (IS_LEAF2(mp)) { 7171 int x = numkeys - 1 - indx; 7172 base = LEAF2KEY(mp, indx, ksize); 7173 if (x) 7174 memmove(base, base + ksize, x * ksize); 7175 mp->mp_lower -= sizeof(indx_t); 7176 mp->mp_upper += ksize - sizeof(indx_t); 7177 return; 7178 } 7179 7180 node = NODEPTR(mp, indx); 7181 sz = NODESIZE + node->mn_ksize; 7182 if (IS_LEAF(mp)) { 7183 if (F_ISSET(node->mn_flags, F_BIGDATA)) 7184 sz += sizeof(pgno_t); 7185 else 7186 sz += NODEDSZ(node); 7187 } 7188 sz = EVEN(sz); 7189 7190 ptr = mp->mp_ptrs[indx]; 7191 for (i = j = 0; i < numkeys; i++) { 7192 if (i != indx) { 7193 mp->mp_ptrs[j] = mp->mp_ptrs[i]; 7194 if (mp->mp_ptrs[i] < ptr) 7195 mp->mp_ptrs[j] += sz; 7196 j++; 7197 } 7198 } 7199 7200 base = (char *)mp + mp->mp_upper + PAGEBASE; 7201 memmove(base + sz, base, ptr - mp->mp_upper); 7202 7203 mp->mp_lower -= sizeof(indx_t); 7204 mp->mp_upper += sz; 7205 } 7206 7207 /** Compact the main page after deleting a node on a subpage. 7208 * @param[in] mp The main page to operate on. 7209 * @param[in] indx The index of the subpage on the main page. 7210 */ 7211 static void 7212 mdb_node_shrink(MDB_page *mp, indx_t indx) 7213 { 7214 MDB_node *node; 7215 MDB_page *sp, *xp; 7216 char *base; 7217 indx_t delta, nsize, len, ptr; 7218 int i; 7219 7220 node = NODEPTR(mp, indx); 7221 sp = (MDB_page *)NODEDATA(node); 7222 delta = SIZELEFT(sp); 7223 nsize = NODEDSZ(node) - delta; 7224 7225 /* Prepare to shift upward, set len = length(subpage part to shift) */ 7226 if (IS_LEAF2(sp)) { 7227 len = nsize; 7228 if (nsize & 1) 7229 return; /* do not make the node uneven-sized */ 7230 } else { 7231 xp = (MDB_page *)((char *)sp + delta); /* destination subpage */ 7232 for (i = NUMKEYS(sp); --i >= 0; ) 7233 xp->mp_ptrs[i] = sp->mp_ptrs[i] - delta; 7234 len = PAGEHDRSZ; 7235 } 7236 sp->mp_upper = sp->mp_lower; 7237 COPY_PGNO(sp->mp_pgno, mp->mp_pgno); 7238 SETDSZ(node, nsize); 7239 7240 /* Shift <lower nodes...initial part of subpage> upward */ 7241 base = (char *)mp + mp->mp_upper + PAGEBASE; 7242 memmove(base + delta, base, (char *)sp + len - base); 7243 7244 ptr = mp->mp_ptrs[indx]; 7245 for (i = NUMKEYS(mp); --i >= 0; ) { 7246 if (mp->mp_ptrs[i] <= ptr) 7247 mp->mp_ptrs[i] += delta; 7248 } 7249 mp->mp_upper += delta; 7250 } 7251 7252 /** Initial setup of a sorted-dups cursor. 7253 * Sorted duplicates are implemented as a sub-database for the given key. 7254 * The duplicate data items are actually keys of the sub-database. 7255 * Operations on the duplicate data items are performed using a sub-cursor 7256 * initialized when the sub-database is first accessed. This function does 7257 * the preliminary setup of the sub-cursor, filling in the fields that 7258 * depend only on the parent DB. 7259 * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized. 7260 */ 7261 static void 7262 mdb_xcursor_init0(MDB_cursor *mc) 7263 { 7264 MDB_xcursor *mx = mc->mc_xcursor; 7265 7266 mx->mx_cursor.mc_xcursor = NULL; 7267 mx->mx_cursor.mc_txn = mc->mc_txn; 7268 mx->mx_cursor.mc_db = &mx->mx_db; 7269 mx->mx_cursor.mc_dbx = &mx->mx_dbx; 7270 mx->mx_cursor.mc_dbi = mc->mc_dbi; 7271 mx->mx_cursor.mc_dbflag = &mx->mx_dbflag; 7272 mx->mx_cursor.mc_snum = 0; 7273 mx->mx_cursor.mc_top = 0; 7274 mx->mx_cursor.mc_flags = C_SUB; 7275 mx->mx_dbx.md_name.mv_size = 0; 7276 mx->mx_dbx.md_name.mv_data = NULL; 7277 mx->mx_dbx.md_cmp = mc->mc_dbx->md_dcmp; 7278 mx->mx_dbx.md_dcmp = NULL; 7279 mx->mx_dbx.md_rel = mc->mc_dbx->md_rel; 7280 } 7281 7282 /** Final setup of a sorted-dups cursor. 7283 * Sets up the fields that depend on the data from the main cursor. 7284 * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized. 7285 * @param[in] node The data containing the #MDB_db record for the 7286 * sorted-dup database. 7287 */ 7288 static void 7289 mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node) 7290 { 7291 MDB_xcursor *mx = mc->mc_xcursor; 7292 7293 if (node->mn_flags & F_SUBDATA) { 7294 memcpy(&mx->mx_db, NODEDATA(node), sizeof(MDB_db)); 7295 mx->mx_cursor.mc_pg[0] = 0; 7296 mx->mx_cursor.mc_snum = 0; 7297 mx->mx_cursor.mc_top = 0; 7298 mx->mx_cursor.mc_flags = C_SUB; 7299 } else { 7300 MDB_page *fp = NODEDATA(node); 7301 mx->mx_db.md_pad = 0; 7302 mx->mx_db.md_flags = 0; 7303 mx->mx_db.md_depth = 1; 7304 mx->mx_db.md_branch_pages = 0; 7305 mx->mx_db.md_leaf_pages = 1; 7306 mx->mx_db.md_overflow_pages = 0; 7307 mx->mx_db.md_entries = NUMKEYS(fp); 7308 COPY_PGNO(mx->mx_db.md_root, fp->mp_pgno); 7309 mx->mx_cursor.mc_snum = 1; 7310 mx->mx_cursor.mc_top = 0; 7311 mx->mx_cursor.mc_flags = C_INITIALIZED|C_SUB; 7312 mx->mx_cursor.mc_pg[0] = fp; 7313 mx->mx_cursor.mc_ki[0] = 0; 7314 if (mc->mc_db->md_flags & MDB_DUPFIXED) { 7315 mx->mx_db.md_flags = MDB_DUPFIXED; 7316 mx->mx_db.md_pad = fp->mp_pad; 7317 if (mc->mc_db->md_flags & MDB_INTEGERDUP) 7318 mx->mx_db.md_flags |= MDB_INTEGERKEY; 7319 } 7320 } 7321 DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi, 7322 mx->mx_db.md_root)); 7323 mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DIRTY; /* DB_DIRTY guides mdb_cursor_touch */ 7324 #if UINT_MAX < SIZE_MAX 7325 if (mx->mx_dbx.md_cmp == mdb_cmp_int && mx->mx_db.md_pad == sizeof(size_t)) 7326 mx->mx_dbx.md_cmp = mdb_cmp_clong; 7327 #endif 7328 } 7329 7330 7331 /** Fixup a sorted-dups cursor due to underlying update. 7332 * Sets up some fields that depend on the data from the main cursor. 7333 * Almost the same as init1, but skips initialization steps if the 7334 * xcursor had already been used. 7335 * @param[in] mc The main cursor whose sorted-dups cursor is to be fixed up. 7336 * @param[in] src_mx The xcursor of an up-to-date cursor. 7337 * @param[in] new_dupdata True if converting from a non-#F_DUPDATA item. 7338 */ 7339 static void 7340 mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int new_dupdata) 7341 { 7342 MDB_xcursor *mx = mc->mc_xcursor; 7343 7344 if (new_dupdata) { 7345 mx->mx_cursor.mc_snum = 1; 7346 mx->mx_cursor.mc_top = 0; 7347 mx->mx_cursor.mc_flags |= C_INITIALIZED; 7348 mx->mx_cursor.mc_ki[0] = 0; 7349 mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DIRTY; /* DB_DIRTY guides mdb_cursor_touch */ 7350 #if UINT_MAX < SIZE_MAX 7351 mx->mx_dbx.md_cmp = src_mx->mx_dbx.md_cmp; 7352 #endif 7353 } else if (!(mx->mx_cursor.mc_flags & C_INITIALIZED)) { 7354 return; 7355 } 7356 mx->mx_db = src_mx->mx_db; 7357 mx->mx_cursor.mc_pg[0] = src_mx->mx_cursor.mc_pg[0]; 7358 DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi, 7359 mx->mx_db.md_root)); 7360 } 7361 7362 /** Initialize a cursor for a given transaction and database. */ 7363 static void 7364 mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx) 7365 { 7366 mc->mc_next = NULL; 7367 mc->mc_backup = NULL; 7368 mc->mc_dbi = dbi; 7369 mc->mc_txn = txn; 7370 mc->mc_db = &txn->mt_dbs[dbi]; 7371 mc->mc_dbx = &txn->mt_dbxs[dbi]; 7372 mc->mc_dbflag = &txn->mt_dbflags[dbi]; 7373 mc->mc_snum = 0; 7374 mc->mc_top = 0; 7375 mc->mc_pg[0] = 0; 7376 mc->mc_ki[0] = 0; 7377 mc->mc_flags = 0; 7378 if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) { 7379 mdb_tassert(txn, mx != NULL); 7380 mc->mc_xcursor = mx; 7381 mdb_xcursor_init0(mc); 7382 } else { 7383 mc->mc_xcursor = NULL; 7384 } 7385 if (*mc->mc_dbflag & DB_STALE) { 7386 mdb_page_search(mc, NULL, MDB_PS_ROOTONLY); 7387 } 7388 } 7389 7390 int 7391 mdb_cursor_open(MDB_txn *txn, MDB_dbi dbi, MDB_cursor **ret) 7392 { 7393 MDB_cursor *mc; 7394 size_t size = sizeof(MDB_cursor); 7395 7396 if (!ret || !TXN_DBI_EXIST(txn, dbi, DB_VALID)) 7397 return EINVAL; 7398 7399 if (txn->mt_flags & MDB_TXN_BLOCKED) 7400 return MDB_BAD_TXN; 7401 7402 if (dbi == FREE_DBI && !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) 7403 return EINVAL; 7404 7405 if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) 7406 size += sizeof(MDB_xcursor); 7407 7408 if ((mc = malloc(size)) != NULL) { 7409 mdb_cursor_init(mc, txn, dbi, (MDB_xcursor *)(mc + 1)); 7410 if (txn->mt_cursors) { 7411 mc->mc_next = txn->mt_cursors[dbi]; 7412 txn->mt_cursors[dbi] = mc; 7413 mc->mc_flags |= C_UNTRACK; 7414 } 7415 } else { 7416 return ENOMEM; 7417 } 7418 7419 *ret = mc; 7420 7421 return MDB_SUCCESS; 7422 } 7423 7424 int 7425 mdb_cursor_renew(MDB_txn *txn, MDB_cursor *mc) 7426 { 7427 if (!mc || !TXN_DBI_EXIST(txn, mc->mc_dbi, DB_VALID)) 7428 return EINVAL; 7429 7430 if ((mc->mc_flags & C_UNTRACK) || txn->mt_cursors) 7431 return EINVAL; 7432 7433 if (txn->mt_flags & MDB_TXN_BLOCKED) 7434 return MDB_BAD_TXN; 7435 7436 mdb_cursor_init(mc, txn, mc->mc_dbi, mc->mc_xcursor); 7437 return MDB_SUCCESS; 7438 } 7439 7440 /* Return the count of duplicate data items for the current key */ 7441 int 7442 mdb_cursor_count(MDB_cursor *mc, size_t *countp) 7443 { 7444 MDB_node *leaf; 7445 7446 if (mc == NULL || countp == NULL) 7447 return EINVAL; 7448 7449 if (mc->mc_xcursor == NULL) 7450 return MDB_INCOMPATIBLE; 7451 7452 if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) 7453 return MDB_BAD_TXN; 7454 7455 if (!(mc->mc_flags & C_INITIALIZED)) 7456 return EINVAL; 7457 7458 if (!mc->mc_snum || (mc->mc_flags & C_EOF)) 7459 return MDB_NOTFOUND; 7460 7461 leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 7462 if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) { 7463 *countp = 1; 7464 } else { 7465 if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) 7466 return EINVAL; 7467 7468 *countp = mc->mc_xcursor->mx_db.md_entries; 7469 } 7470 return MDB_SUCCESS; 7471 } 7472 7473 void 7474 mdb_cursor_close(MDB_cursor *mc) 7475 { 7476 if (mc && !mc->mc_backup) { 7477 /* remove from txn, if tracked */ 7478 if ((mc->mc_flags & C_UNTRACK) && mc->mc_txn->mt_cursors) { 7479 MDB_cursor **prev = &mc->mc_txn->mt_cursors[mc->mc_dbi]; 7480 while (*prev && *prev != mc) prev = &(*prev)->mc_next; 7481 if (*prev == mc) 7482 *prev = mc->mc_next; 7483 } 7484 free(mc); 7485 } 7486 } 7487 7488 MDB_txn * 7489 mdb_cursor_txn(MDB_cursor *mc) 7490 { 7491 if (!mc) return NULL; 7492 return mc->mc_txn; 7493 } 7494 7495 MDB_dbi 7496 mdb_cursor_dbi(MDB_cursor *mc) 7497 { 7498 return mc->mc_dbi; 7499 } 7500 7501 /** Replace the key for a branch node with a new key. 7502 * @param[in] mc Cursor pointing to the node to operate on. 7503 * @param[in] key The new key to use. 7504 * @return 0 on success, non-zero on failure. 7505 */ 7506 static int 7507 mdb_update_key(MDB_cursor *mc, MDB_val *key) 7508 { 7509 MDB_page *mp; 7510 MDB_node *node; 7511 char *base; 7512 size_t len; 7513 int delta, ksize, oksize; 7514 indx_t ptr, i, numkeys, indx; 7515 DKBUF; 7516 7517 indx = mc->mc_ki[mc->mc_top]; 7518 mp = mc->mc_pg[mc->mc_top]; 7519 node = NODEPTR(mp, indx); 7520 ptr = mp->mp_ptrs[indx]; 7521 #if MDB_DEBUG 7522 { 7523 MDB_val k2; 7524 char kbuf2[DKBUF_MAXKEYSIZE*2+1]; 7525 k2.mv_data = NODEKEY(node); 7526 k2.mv_size = node->mn_ksize; 7527 DPRINTF(("update key %u (ofs %u) [%s] to [%s] on page %"Z"u", 7528 indx, ptr, 7529 mdb_dkey(&k2, kbuf2), 7530 DKEY(key), 7531 mp->mp_pgno)); 7532 } 7533 #endif 7534 7535 /* Sizes must be 2-byte aligned. */ 7536 ksize = EVEN(key->mv_size); 7537 oksize = EVEN(node->mn_ksize); 7538 delta = ksize - oksize; 7539 7540 /* Shift node contents if EVEN(key length) changed. */ 7541 if (delta) { 7542 if (delta > 0 && SIZELEFT(mp) < delta) { 7543 pgno_t pgno; 7544 /* not enough space left, do a delete and split */ 7545 DPRINTF(("Not enough room, delta = %d, splitting...", delta)); 7546 pgno = NODEPGNO(node); 7547 mdb_node_del(mc, 0); 7548 return mdb_page_split(mc, key, NULL, pgno, MDB_SPLIT_REPLACE); 7549 } 7550 7551 numkeys = NUMKEYS(mp); 7552 for (i = 0; i < numkeys; i++) { 7553 if (mp->mp_ptrs[i] <= ptr) 7554 mp->mp_ptrs[i] -= delta; 7555 } 7556 7557 base = (char *)mp + mp->mp_upper + PAGEBASE; 7558 len = ptr - mp->mp_upper + NODESIZE; 7559 memmove(base - delta, base, len); 7560 mp->mp_upper -= delta; 7561 7562 node = NODEPTR(mp, indx); 7563 } 7564 7565 /* But even if no shift was needed, update ksize */ 7566 if (node->mn_ksize != key->mv_size) 7567 node->mn_ksize = key->mv_size; 7568 7569 if (key->mv_size) 7570 memcpy(NODEKEY(node), key->mv_data, key->mv_size); 7571 7572 return MDB_SUCCESS; 7573 } 7574 7575 static void 7576 mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst); 7577 7578 /** Perform \b act while tracking temporary cursor \b mn */ 7579 #define WITH_CURSOR_TRACKING(mn, act) do { \ 7580 MDB_cursor dummy, *tracked, **tp = &(mn).mc_txn->mt_cursors[mn.mc_dbi]; \ 7581 if ((mn).mc_flags & C_SUB) { \ 7582 dummy.mc_flags = C_INITIALIZED; \ 7583 dummy.mc_xcursor = (MDB_xcursor *)&(mn); \ 7584 tracked = &dummy; \ 7585 } else { \ 7586 tracked = &(mn); \ 7587 } \ 7588 tracked->mc_next = *tp; \ 7589 *tp = tracked; \ 7590 { act; } \ 7591 *tp = tracked->mc_next; \ 7592 } while (0) 7593 7594 /** Move a node from csrc to cdst. 7595 */ 7596 static int 7597 mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft) 7598 { 7599 MDB_node *srcnode; 7600 MDB_val key, data; 7601 pgno_t srcpg; 7602 MDB_cursor mn; 7603 int rc; 7604 unsigned short flags; 7605 7606 DKBUF; 7607 7608 /* Mark src and dst as dirty. */ 7609 if ((rc = mdb_page_touch(csrc)) || 7610 (rc = mdb_page_touch(cdst))) 7611 return rc; 7612 7613 if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) { 7614 key.mv_size = csrc->mc_db->md_pad; 7615 key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top], key.mv_size); 7616 data.mv_size = 0; 7617 data.mv_data = NULL; 7618 srcpg = 0; 7619 flags = 0; 7620 } else { 7621 srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top]); 7622 mdb_cassert(csrc, !((size_t)srcnode & 1)); 7623 srcpg = NODEPGNO(srcnode); 7624 flags = srcnode->mn_flags; 7625 if (csrc->mc_ki[csrc->mc_top] == 0 && IS_BRANCH(csrc->mc_pg[csrc->mc_top])) { 7626 unsigned int snum = csrc->mc_snum; 7627 MDB_node *s2; 7628 /* must find the lowest key below src */ 7629 rc = mdb_page_search_lowest(csrc); 7630 if (rc) 7631 return rc; 7632 if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) { 7633 key.mv_size = csrc->mc_db->md_pad; 7634 key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size); 7635 } else { 7636 s2 = NODEPTR(csrc->mc_pg[csrc->mc_top], 0); 7637 key.mv_size = NODEKSZ(s2); 7638 key.mv_data = NODEKEY(s2); 7639 } 7640 csrc->mc_snum = snum--; 7641 csrc->mc_top = snum; 7642 } else { 7643 key.mv_size = NODEKSZ(srcnode); 7644 key.mv_data = NODEKEY(srcnode); 7645 } 7646 data.mv_size = NODEDSZ(srcnode); 7647 data.mv_data = NODEDATA(srcnode); 7648 } 7649 mn.mc_xcursor = NULL; 7650 if (IS_BRANCH(cdst->mc_pg[cdst->mc_top]) && cdst->mc_ki[cdst->mc_top] == 0) { 7651 unsigned int snum = cdst->mc_snum; 7652 MDB_node *s2; 7653 MDB_val bkey; 7654 /* must find the lowest key below dst */ 7655 mdb_cursor_copy(cdst, &mn); 7656 rc = mdb_page_search_lowest(&mn); 7657 if (rc) 7658 return rc; 7659 if (IS_LEAF2(mn.mc_pg[mn.mc_top])) { 7660 bkey.mv_size = mn.mc_db->md_pad; 7661 bkey.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, bkey.mv_size); 7662 } else { 7663 s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0); 7664 bkey.mv_size = NODEKSZ(s2); 7665 bkey.mv_data = NODEKEY(s2); 7666 } 7667 mn.mc_snum = snum--; 7668 mn.mc_top = snum; 7669 mn.mc_ki[snum] = 0; 7670 rc = mdb_update_key(&mn, &bkey); 7671 if (rc) 7672 return rc; 7673 } 7674 7675 DPRINTF(("moving %s node %u [%s] on page %"Z"u to node %u on page %"Z"u", 7676 IS_LEAF(csrc->mc_pg[csrc->mc_top]) ? "leaf" : "branch", 7677 csrc->mc_ki[csrc->mc_top], 7678 DKEY(&key), 7679 csrc->mc_pg[csrc->mc_top]->mp_pgno, 7680 cdst->mc_ki[cdst->mc_top], cdst->mc_pg[cdst->mc_top]->mp_pgno)); 7681 7682 /* Add the node to the destination page. 7683 */ 7684 rc = mdb_node_add(cdst, cdst->mc_ki[cdst->mc_top], &key, &data, srcpg, flags); 7685 if (rc != MDB_SUCCESS) 7686 return rc; 7687 7688 /* Delete the node from the source page. 7689 */ 7690 mdb_node_del(csrc, key.mv_size); 7691 7692 { 7693 /* Adjust other cursors pointing to mp */ 7694 MDB_cursor *m2, *m3; 7695 MDB_dbi dbi = csrc->mc_dbi; 7696 MDB_page *mpd, *mps; 7697 7698 mps = csrc->mc_pg[csrc->mc_top]; 7699 /* If we're adding on the left, bump others up */ 7700 if (fromleft) { 7701 mpd = cdst->mc_pg[csrc->mc_top]; 7702 for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 7703 if (csrc->mc_flags & C_SUB) 7704 m3 = &m2->mc_xcursor->mx_cursor; 7705 else 7706 m3 = m2; 7707 if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top) 7708 continue; 7709 if (m3 != cdst && 7710 m3->mc_pg[csrc->mc_top] == mpd && 7711 m3->mc_ki[csrc->mc_top] >= cdst->mc_ki[csrc->mc_top]) { 7712 m3->mc_ki[csrc->mc_top]++; 7713 } 7714 if (m3 !=csrc && 7715 m3->mc_pg[csrc->mc_top] == mps && 7716 m3->mc_ki[csrc->mc_top] == csrc->mc_ki[csrc->mc_top]) { 7717 m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top]; 7718 m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top]; 7719 m3->mc_ki[csrc->mc_top-1]++; 7720 } 7721 if (m3->mc_xcursor && (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) && 7722 IS_LEAF(mps)) { 7723 MDB_node *node = NODEPTR(m3->mc_pg[csrc->mc_top], m3->mc_ki[csrc->mc_top]); 7724 if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) 7725 m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node); 7726 } 7727 } 7728 } else 7729 /* Adding on the right, bump others down */ 7730 { 7731 for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 7732 if (csrc->mc_flags & C_SUB) 7733 m3 = &m2->mc_xcursor->mx_cursor; 7734 else 7735 m3 = m2; 7736 if (m3 == csrc) continue; 7737 if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top) 7738 continue; 7739 if (m3->mc_pg[csrc->mc_top] == mps) { 7740 if (!m3->mc_ki[csrc->mc_top]) { 7741 m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top]; 7742 m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top]; 7743 m3->mc_ki[csrc->mc_top-1]--; 7744 } else { 7745 m3->mc_ki[csrc->mc_top]--; 7746 } 7747 if (m3->mc_xcursor && (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) && 7748 IS_LEAF(mps)) { 7749 MDB_node *node = NODEPTR(m3->mc_pg[csrc->mc_top], m3->mc_ki[csrc->mc_top]); 7750 if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) 7751 m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node); 7752 } 7753 } 7754 } 7755 } 7756 } 7757 7758 /* Update the parent separators. 7759 */ 7760 if (csrc->mc_ki[csrc->mc_top] == 0) { 7761 if (csrc->mc_ki[csrc->mc_top-1] != 0) { 7762 if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) { 7763 key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size); 7764 } else { 7765 srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], 0); 7766 key.mv_size = NODEKSZ(srcnode); 7767 key.mv_data = NODEKEY(srcnode); 7768 } 7769 DPRINTF(("update separator for source page %"Z"u to [%s]", 7770 csrc->mc_pg[csrc->mc_top]->mp_pgno, DKEY(&key))); 7771 mdb_cursor_copy(csrc, &mn); 7772 mn.mc_snum--; 7773 mn.mc_top--; 7774 /* We want mdb_rebalance to find mn when doing fixups */ 7775 WITH_CURSOR_TRACKING(mn, 7776 rc = mdb_update_key(&mn, &key)); 7777 if (rc) 7778 return rc; 7779 } 7780 if (IS_BRANCH(csrc->mc_pg[csrc->mc_top])) { 7781 MDB_val nullkey; 7782 indx_t ix = csrc->mc_ki[csrc->mc_top]; 7783 nullkey.mv_size = 0; 7784 csrc->mc_ki[csrc->mc_top] = 0; 7785 rc = mdb_update_key(csrc, &nullkey); 7786 csrc->mc_ki[csrc->mc_top] = ix; 7787 mdb_cassert(csrc, rc == MDB_SUCCESS); 7788 } 7789 } 7790 7791 if (cdst->mc_ki[cdst->mc_top] == 0) { 7792 if (cdst->mc_ki[cdst->mc_top-1] != 0) { 7793 if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) { 7794 key.mv_data = LEAF2KEY(cdst->mc_pg[cdst->mc_top], 0, key.mv_size); 7795 } else { 7796 srcnode = NODEPTR(cdst->mc_pg[cdst->mc_top], 0); 7797 key.mv_size = NODEKSZ(srcnode); 7798 key.mv_data = NODEKEY(srcnode); 7799 } 7800 DPRINTF(("update separator for destination page %"Z"u to [%s]", 7801 cdst->mc_pg[cdst->mc_top]->mp_pgno, DKEY(&key))); 7802 mdb_cursor_copy(cdst, &mn); 7803 mn.mc_snum--; 7804 mn.mc_top--; 7805 /* We want mdb_rebalance to find mn when doing fixups */ 7806 WITH_CURSOR_TRACKING(mn, 7807 rc = mdb_update_key(&mn, &key)); 7808 if (rc) 7809 return rc; 7810 } 7811 if (IS_BRANCH(cdst->mc_pg[cdst->mc_top])) { 7812 MDB_val nullkey; 7813 indx_t ix = cdst->mc_ki[cdst->mc_top]; 7814 nullkey.mv_size = 0; 7815 cdst->mc_ki[cdst->mc_top] = 0; 7816 rc = mdb_update_key(cdst, &nullkey); 7817 cdst->mc_ki[cdst->mc_top] = ix; 7818 mdb_cassert(cdst, rc == MDB_SUCCESS); 7819 } 7820 } 7821 7822 return MDB_SUCCESS; 7823 } 7824 7825 /** Merge one page into another. 7826 * The nodes from the page pointed to by \b csrc will 7827 * be copied to the page pointed to by \b cdst and then 7828 * the \b csrc page will be freed. 7829 * @param[in] csrc Cursor pointing to the source page. 7830 * @param[in] cdst Cursor pointing to the destination page. 7831 * @return 0 on success, non-zero on failure. 7832 */ 7833 static int 7834 mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst) 7835 { 7836 MDB_page *psrc, *pdst; 7837 MDB_node *srcnode; 7838 MDB_val key, data; 7839 unsigned nkeys; 7840 int rc; 7841 indx_t i, j; 7842 7843 psrc = csrc->mc_pg[csrc->mc_top]; 7844 pdst = cdst->mc_pg[cdst->mc_top]; 7845 7846 DPRINTF(("merging page %"Z"u into %"Z"u", psrc->mp_pgno, pdst->mp_pgno)); 7847 7848 mdb_cassert(csrc, csrc->mc_snum > 1); /* can't merge root page */ 7849 mdb_cassert(csrc, cdst->mc_snum > 1); 7850 7851 /* Mark dst as dirty. */ 7852 if ((rc = mdb_page_touch(cdst))) 7853 return rc; 7854 7855 /* get dst page again now that we've touched it. */ 7856 pdst = cdst->mc_pg[cdst->mc_top]; 7857 7858 /* Move all nodes from src to dst. 7859 */ 7860 j = nkeys = NUMKEYS(pdst); 7861 if (IS_LEAF2(psrc)) { 7862 key.mv_size = csrc->mc_db->md_pad; 7863 key.mv_data = METADATA(psrc); 7864 for (i = 0; i < NUMKEYS(psrc); i++, j++) { 7865 rc = mdb_node_add(cdst, j, &key, NULL, 0, 0); 7866 if (rc != MDB_SUCCESS) 7867 return rc; 7868 key.mv_data = (char *)key.mv_data + key.mv_size; 7869 } 7870 } else { 7871 for (i = 0; i < NUMKEYS(psrc); i++, j++) { 7872 srcnode = NODEPTR(psrc, i); 7873 if (i == 0 && IS_BRANCH(psrc)) { 7874 MDB_cursor mn; 7875 MDB_node *s2; 7876 mdb_cursor_copy(csrc, &mn); 7877 mn.mc_xcursor = NULL; 7878 /* must find the lowest key below src */ 7879 rc = mdb_page_search_lowest(&mn); 7880 if (rc) 7881 return rc; 7882 if (IS_LEAF2(mn.mc_pg[mn.mc_top])) { 7883 key.mv_size = mn.mc_db->md_pad; 7884 key.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, key.mv_size); 7885 } else { 7886 s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0); 7887 key.mv_size = NODEKSZ(s2); 7888 key.mv_data = NODEKEY(s2); 7889 } 7890 } else { 7891 key.mv_size = srcnode->mn_ksize; 7892 key.mv_data = NODEKEY(srcnode); 7893 } 7894 7895 data.mv_size = NODEDSZ(srcnode); 7896 data.mv_data = NODEDATA(srcnode); 7897 rc = mdb_node_add(cdst, j, &key, &data, NODEPGNO(srcnode), srcnode->mn_flags); 7898 if (rc != MDB_SUCCESS) 7899 return rc; 7900 } 7901 } 7902 7903 DPRINTF(("dst page %"Z"u now has %u keys (%.1f%% filled)", 7904 pdst->mp_pgno, NUMKEYS(pdst), 7905 (float)PAGEFILL(cdst->mc_txn->mt_env, pdst) / 10)); 7906 7907 /* Unlink the src page from parent and add to free list. 7908 */ 7909 csrc->mc_top--; 7910 mdb_node_del(csrc, 0); 7911 if (csrc->mc_ki[csrc->mc_top] == 0) { 7912 key.mv_size = 0; 7913 rc = mdb_update_key(csrc, &key); 7914 if (rc) { 7915 csrc->mc_top++; 7916 return rc; 7917 } 7918 } 7919 csrc->mc_top++; 7920 7921 psrc = csrc->mc_pg[csrc->mc_top]; 7922 /* If not operating on FreeDB, allow this page to be reused 7923 * in this txn. Otherwise just add to free list. 7924 */ 7925 rc = mdb_page_loose(csrc, psrc); 7926 if (rc) 7927 return rc; 7928 if (IS_LEAF(psrc)) 7929 csrc->mc_db->md_leaf_pages--; 7930 else 7931 csrc->mc_db->md_branch_pages--; 7932 { 7933 /* Adjust other cursors pointing to mp */ 7934 MDB_cursor *m2, *m3; 7935 MDB_dbi dbi = csrc->mc_dbi; 7936 unsigned int top = csrc->mc_top; 7937 7938 for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 7939 if (csrc->mc_flags & C_SUB) 7940 m3 = &m2->mc_xcursor->mx_cursor; 7941 else 7942 m3 = m2; 7943 if (m3 == csrc) continue; 7944 if (m3->mc_snum < csrc->mc_snum) continue; 7945 if (m3->mc_pg[top] == psrc) { 7946 m3->mc_pg[top] = pdst; 7947 m3->mc_ki[top] += nkeys; 7948 m3->mc_ki[top-1] = cdst->mc_ki[top-1]; 7949 } else if (m3->mc_pg[top-1] == csrc->mc_pg[top-1] && 7950 m3->mc_ki[top-1] > csrc->mc_ki[top-1]) { 7951 m3->mc_ki[top-1]--; 7952 } 7953 if (m3->mc_xcursor && (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) && 7954 IS_LEAF(psrc)) { 7955 MDB_node *node = NODEPTR(m3->mc_pg[top], m3->mc_ki[top]); 7956 if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) 7957 m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node); 7958 } 7959 } 7960 } 7961 { 7962 unsigned int snum = cdst->mc_snum; 7963 uint16_t depth = cdst->mc_db->md_depth; 7964 mdb_cursor_pop(cdst); 7965 rc = mdb_rebalance(cdst); 7966 /* Did the tree height change? */ 7967 if (depth != cdst->mc_db->md_depth) 7968 snum += cdst->mc_db->md_depth - depth; 7969 cdst->mc_snum = snum; 7970 cdst->mc_top = snum-1; 7971 } 7972 return rc; 7973 } 7974 7975 /** Copy the contents of a cursor. 7976 * @param[in] csrc The cursor to copy from. 7977 * @param[out] cdst The cursor to copy to. 7978 */ 7979 static void 7980 mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst) 7981 { 7982 unsigned int i; 7983 7984 cdst->mc_txn = csrc->mc_txn; 7985 cdst->mc_dbi = csrc->mc_dbi; 7986 cdst->mc_db = csrc->mc_db; 7987 cdst->mc_dbx = csrc->mc_dbx; 7988 cdst->mc_snum = csrc->mc_snum; 7989 cdst->mc_top = csrc->mc_top; 7990 cdst->mc_flags = csrc->mc_flags; 7991 7992 for (i=0; i<csrc->mc_snum; i++) { 7993 cdst->mc_pg[i] = csrc->mc_pg[i]; 7994 cdst->mc_ki[i] = csrc->mc_ki[i]; 7995 } 7996 } 7997 7998 /** Rebalance the tree after a delete operation. 7999 * @param[in] mc Cursor pointing to the page where rebalancing 8000 * should begin. 8001 * @return 0 on success, non-zero on failure. 8002 */ 8003 static int 8004 mdb_rebalance(MDB_cursor *mc) 8005 { 8006 MDB_node *node; 8007 int rc, fromleft; 8008 unsigned int ptop, minkeys, thresh; 8009 MDB_cursor mn; 8010 indx_t oldki; 8011 8012 if (IS_BRANCH(mc->mc_pg[mc->mc_top])) { 8013 minkeys = 2; 8014 thresh = 1; 8015 } else { 8016 minkeys = 1; 8017 thresh = FILL_THRESHOLD; 8018 } 8019 DPRINTF(("rebalancing %s page %"Z"u (has %u keys, %.1f%% full)", 8020 IS_LEAF(mc->mc_pg[mc->mc_top]) ? "leaf" : "branch", 8021 mdb_dbg_pgno(mc->mc_pg[mc->mc_top]), NUMKEYS(mc->mc_pg[mc->mc_top]), 8022 (float)PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) / 10)); 8023 8024 if (PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) >= thresh && 8025 NUMKEYS(mc->mc_pg[mc->mc_top]) >= minkeys) { 8026 DPRINTF(("no need to rebalance page %"Z"u, above fill threshold", 8027 mdb_dbg_pgno(mc->mc_pg[mc->mc_top]))); 8028 return MDB_SUCCESS; 8029 } 8030 8031 if (mc->mc_snum < 2) { 8032 MDB_page *mp = mc->mc_pg[0]; 8033 if (IS_SUBP(mp)) { 8034 DPUTS("Can't rebalance a subpage, ignoring"); 8035 return MDB_SUCCESS; 8036 } 8037 if (NUMKEYS(mp) == 0) { 8038 DPUTS("tree is completely empty"); 8039 mc->mc_db->md_root = P_INVALID; 8040 mc->mc_db->md_depth = 0; 8041 mc->mc_db->md_leaf_pages = 0; 8042 rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno); 8043 if (rc) 8044 return rc; 8045 /* Adjust cursors pointing to mp */ 8046 mc->mc_snum = 0; 8047 mc->mc_top = 0; 8048 mc->mc_flags &= ~C_INITIALIZED; 8049 { 8050 MDB_cursor *m2, *m3; 8051 MDB_dbi dbi = mc->mc_dbi; 8052 8053 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8054 if (mc->mc_flags & C_SUB) 8055 m3 = &m2->mc_xcursor->mx_cursor; 8056 else 8057 m3 = m2; 8058 if (!(m3->mc_flags & C_INITIALIZED) || (m3->mc_snum < mc->mc_snum)) 8059 continue; 8060 if (m3->mc_pg[0] == mp) { 8061 m3->mc_snum = 0; 8062 m3->mc_top = 0; 8063 m3->mc_flags &= ~C_INITIALIZED; 8064 } 8065 } 8066 } 8067 } else if (IS_BRANCH(mp) && NUMKEYS(mp) == 1) { 8068 int i; 8069 DPUTS("collapsing root page!"); 8070 rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno); 8071 if (rc) 8072 return rc; 8073 mc->mc_db->md_root = NODEPGNO(NODEPTR(mp, 0)); 8074 rc = mdb_page_get(mc->mc_txn,mc->mc_db->md_root,&mc->mc_pg[0],NULL); 8075 if (rc) 8076 return rc; 8077 mc->mc_db->md_depth--; 8078 mc->mc_db->md_branch_pages--; 8079 mc->mc_ki[0] = mc->mc_ki[1]; 8080 for (i = 1; i<mc->mc_db->md_depth; i++) { 8081 mc->mc_pg[i] = mc->mc_pg[i+1]; 8082 mc->mc_ki[i] = mc->mc_ki[i+1]; 8083 } 8084 { 8085 /* Adjust other cursors pointing to mp */ 8086 MDB_cursor *m2, *m3; 8087 MDB_dbi dbi = mc->mc_dbi; 8088 8089 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8090 if (mc->mc_flags & C_SUB) 8091 m3 = &m2->mc_xcursor->mx_cursor; 8092 else 8093 m3 = m2; 8094 if (m3 == mc) continue; 8095 if (!(m3->mc_flags & C_INITIALIZED)) 8096 continue; 8097 if (m3->mc_pg[0] == mp) { 8098 for (i=0; i<mc->mc_db->md_depth; i++) { 8099 m3->mc_pg[i] = m3->mc_pg[i+1]; 8100 m3->mc_ki[i] = m3->mc_ki[i+1]; 8101 } 8102 m3->mc_snum--; 8103 m3->mc_top--; 8104 } 8105 } 8106 } 8107 } else 8108 DPUTS("root page doesn't need rebalancing"); 8109 return MDB_SUCCESS; 8110 } 8111 8112 /* The parent (branch page) must have at least 2 pointers, 8113 * otherwise the tree is invalid. 8114 */ 8115 ptop = mc->mc_top-1; 8116 mdb_cassert(mc, NUMKEYS(mc->mc_pg[ptop]) > 1); 8117 8118 /* Leaf page fill factor is below the threshold. 8119 * Try to move keys from left or right neighbor, or 8120 * merge with a neighbor page. 8121 */ 8122 8123 /* Find neighbors. 8124 */ 8125 mdb_cursor_copy(mc, &mn); 8126 mn.mc_xcursor = NULL; 8127 8128 oldki = mc->mc_ki[mc->mc_top]; 8129 if (mc->mc_ki[ptop] == 0) { 8130 /* We're the leftmost leaf in our parent. 8131 */ 8132 DPUTS("reading right neighbor"); 8133 mn.mc_ki[ptop]++; 8134 node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]); 8135 rc = mdb_page_get(mc->mc_txn,NODEPGNO(node),&mn.mc_pg[mn.mc_top],NULL); 8136 if (rc) 8137 return rc; 8138 mn.mc_ki[mn.mc_top] = 0; 8139 mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]); 8140 fromleft = 0; 8141 } else { 8142 /* There is at least one neighbor to the left. 8143 */ 8144 DPUTS("reading left neighbor"); 8145 mn.mc_ki[ptop]--; 8146 node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]); 8147 rc = mdb_page_get(mc->mc_txn,NODEPGNO(node),&mn.mc_pg[mn.mc_top],NULL); 8148 if (rc) 8149 return rc; 8150 mn.mc_ki[mn.mc_top] = NUMKEYS(mn.mc_pg[mn.mc_top]) - 1; 8151 mc->mc_ki[mc->mc_top] = 0; 8152 fromleft = 1; 8153 } 8154 8155 DPRINTF(("found neighbor page %"Z"u (%u keys, %.1f%% full)", 8156 mn.mc_pg[mn.mc_top]->mp_pgno, NUMKEYS(mn.mc_pg[mn.mc_top]), 8157 (float)PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) / 10)); 8158 8159 /* If the neighbor page is above threshold and has enough keys, 8160 * move one key from it. Otherwise we should try to merge them. 8161 * (A branch page must never have less than 2 keys.) 8162 */ 8163 if (PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) >= thresh && NUMKEYS(mn.mc_pg[mn.mc_top]) > minkeys) { 8164 rc = mdb_node_move(&mn, mc, fromleft); 8165 if (fromleft) { 8166 /* if we inserted on left, bump position up */ 8167 oldki++; 8168 } 8169 } else { 8170 if (!fromleft) { 8171 rc = mdb_page_merge(&mn, mc); 8172 } else { 8173 oldki += NUMKEYS(mn.mc_pg[mn.mc_top]); 8174 mn.mc_ki[mn.mc_top] += mc->mc_ki[mn.mc_top] + 1; 8175 /* We want mdb_rebalance to find mn when doing fixups */ 8176 WITH_CURSOR_TRACKING(mn, 8177 rc = mdb_page_merge(mc, &mn)); 8178 mdb_cursor_copy(&mn, mc); 8179 } 8180 mc->mc_flags &= ~C_EOF; 8181 } 8182 mc->mc_ki[mc->mc_top] = oldki; 8183 return rc; 8184 } 8185 8186 /** Complete a delete operation started by #mdb_cursor_del(). */ 8187 static int 8188 mdb_cursor_del0(MDB_cursor *mc) 8189 { 8190 int rc; 8191 MDB_page *mp; 8192 indx_t ki; 8193 unsigned int nkeys; 8194 MDB_cursor *m2, *m3; 8195 MDB_dbi dbi = mc->mc_dbi; 8196 8197 ki = mc->mc_ki[mc->mc_top]; 8198 mp = mc->mc_pg[mc->mc_top]; 8199 mdb_node_del(mc, mc->mc_db->md_pad); 8200 mc->mc_db->md_entries--; 8201 { 8202 /* Adjust other cursors pointing to mp */ 8203 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8204 m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2; 8205 if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED)) 8206 continue; 8207 if (m3 == mc || m3->mc_snum < mc->mc_snum) 8208 continue; 8209 if (m3->mc_pg[mc->mc_top] == mp) { 8210 if (m3->mc_ki[mc->mc_top] == ki) { 8211 m3->mc_flags |= C_DEL; 8212 if (mc->mc_db->md_flags & MDB_DUPSORT) 8213 m3->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED; 8214 } else if (m3->mc_ki[mc->mc_top] > ki) { 8215 m3->mc_ki[mc->mc_top]--; 8216 } 8217 if (m3->mc_xcursor && (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) { 8218 MDB_node *node = NODEPTR(m3->mc_pg[mc->mc_top], m3->mc_ki[mc->mc_top]); 8219 if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) 8220 m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node); 8221 } 8222 } 8223 } 8224 } 8225 rc = mdb_rebalance(mc); 8226 8227 if (rc == MDB_SUCCESS) { 8228 /* DB is totally empty now, just bail out. 8229 * Other cursors adjustments were already done 8230 * by mdb_rebalance and aren't needed here. 8231 */ 8232 if (!mc->mc_snum) 8233 return rc; 8234 8235 mp = mc->mc_pg[mc->mc_top]; 8236 nkeys = NUMKEYS(mp); 8237 8238 /* Adjust other cursors pointing to mp */ 8239 for (m2 = mc->mc_txn->mt_cursors[dbi]; !rc && m2; m2=m2->mc_next) { 8240 m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2; 8241 if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED)) 8242 continue; 8243 if (m3->mc_snum < mc->mc_snum) 8244 continue; 8245 if (m3->mc_pg[mc->mc_top] == mp) { 8246 /* if m3 points past last node in page, find next sibling */ 8247 if (m3->mc_ki[mc->mc_top] >= nkeys) { 8248 rc = mdb_cursor_sibling(m3, 1); 8249 if (rc == MDB_NOTFOUND) { 8250 m3->mc_flags |= C_EOF; 8251 rc = MDB_SUCCESS; 8252 } 8253 } 8254 } 8255 } 8256 mc->mc_flags |= C_DEL; 8257 } 8258 8259 if (rc) 8260 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 8261 return rc; 8262 } 8263 8264 int 8265 mdb_del(MDB_txn *txn, MDB_dbi dbi, 8266 MDB_val *key, MDB_val *data) 8267 { 8268 if (!key || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 8269 return EINVAL; 8270 8271 if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)) 8272 return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN; 8273 8274 if (!F_ISSET(txn->mt_dbs[dbi].md_flags, MDB_DUPSORT)) { 8275 /* must ignore any data */ 8276 data = NULL; 8277 } 8278 8279 return mdb_del0(txn, dbi, key, data, 0); 8280 } 8281 8282 static int 8283 mdb_del0(MDB_txn *txn, MDB_dbi dbi, 8284 MDB_val *key, MDB_val *data, unsigned flags) 8285 { 8286 MDB_cursor mc; 8287 MDB_xcursor mx; 8288 MDB_cursor_op op; 8289 MDB_val rdata, *xdata; 8290 int rc, exact = 0; 8291 DKBUF; 8292 8293 DPRINTF(("====> delete db %u key [%s]", dbi, DKEY(key))); 8294 8295 mdb_cursor_init(&mc, txn, dbi, &mx); 8296 8297 if (data) { 8298 op = MDB_GET_BOTH; 8299 rdata = *data; 8300 xdata = &rdata; 8301 } else { 8302 op = MDB_SET; 8303 xdata = NULL; 8304 flags |= MDB_NODUPDATA; 8305 } 8306 rc = mdb_cursor_set(&mc, key, xdata, op, &exact); 8307 if (rc == 0) { 8308 /* let mdb_page_split know about this cursor if needed: 8309 * delete will trigger a rebalance; if it needs to move 8310 * a node from one page to another, it will have to 8311 * update the parent's separator key(s). If the new sepkey 8312 * is larger than the current one, the parent page may 8313 * run out of space, triggering a split. We need this 8314 * cursor to be consistent until the end of the rebalance. 8315 */ 8316 mc.mc_flags |= C_UNTRACK; 8317 mc.mc_next = txn->mt_cursors[dbi]; 8318 txn->mt_cursors[dbi] = &mc; 8319 rc = mdb_cursor_del(&mc, flags); 8320 txn->mt_cursors[dbi] = mc.mc_next; 8321 } 8322 return rc; 8323 } 8324 8325 /** Split a page and insert a new node. 8326 * @param[in,out] mc Cursor pointing to the page and desired insertion index. 8327 * The cursor will be updated to point to the actual page and index where 8328 * the node got inserted after the split. 8329 * @param[in] newkey The key for the newly inserted node. 8330 * @param[in] newdata The data for the newly inserted node. 8331 * @param[in] newpgno The page number, if the new node is a branch node. 8332 * @param[in] nflags The #NODE_ADD_FLAGS for the new node. 8333 * @return 0 on success, non-zero on failure. 8334 */ 8335 static int 8336 mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, pgno_t newpgno, 8337 unsigned int nflags) 8338 { 8339 unsigned int flags; 8340 int rc = MDB_SUCCESS, new_root = 0, did_split = 0; 8341 indx_t newindx; 8342 pgno_t pgno = 0; 8343 int i, j, split_indx, nkeys, pmax; 8344 MDB_env *env = mc->mc_txn->mt_env; 8345 MDB_node *node; 8346 MDB_val sepkey, rkey, xdata, *rdata = &xdata; 8347 MDB_page *copy = NULL; 8348 MDB_page *mp, *rp, *pp; 8349 int ptop; 8350 MDB_cursor mn; 8351 DKBUF; 8352 8353 mp = mc->mc_pg[mc->mc_top]; 8354 newindx = mc->mc_ki[mc->mc_top]; 8355 nkeys = NUMKEYS(mp); 8356 8357 DPRINTF(("-----> splitting %s page %"Z"u and adding [%s] at index %i/%i", 8358 IS_LEAF(mp) ? "leaf" : "branch", mp->mp_pgno, 8359 DKEY(newkey), mc->mc_ki[mc->mc_top], nkeys)); 8360 8361 /* Create a right sibling. */ 8362 if ((rc = mdb_page_new(mc, mp->mp_flags, 1, &rp))) 8363 return rc; 8364 rp->mp_pad = mp->mp_pad; 8365 DPRINTF(("new right sibling: page %"Z"u", rp->mp_pgno)); 8366 8367 /* Usually when splitting the root page, the cursor 8368 * height is 1. But when called from mdb_update_key, 8369 * the cursor height may be greater because it walks 8370 * up the stack while finding the branch slot to update. 8371 */ 8372 if (mc->mc_top < 1) { 8373 if ((rc = mdb_page_new(mc, P_BRANCH, 1, &pp))) 8374 goto done; 8375 /* shift current top to make room for new parent */ 8376 for (i=mc->mc_snum; i>0; i--) { 8377 mc->mc_pg[i] = mc->mc_pg[i-1]; 8378 mc->mc_ki[i] = mc->mc_ki[i-1]; 8379 } 8380 mc->mc_pg[0] = pp; 8381 mc->mc_ki[0] = 0; 8382 mc->mc_db->md_root = pp->mp_pgno; 8383 DPRINTF(("root split! new root = %"Z"u", pp->mp_pgno)); 8384 new_root = mc->mc_db->md_depth++; 8385 8386 /* Add left (implicit) pointer. */ 8387 if ((rc = mdb_node_add(mc, 0, NULL, NULL, mp->mp_pgno, 0)) != MDB_SUCCESS) { 8388 /* undo the pre-push */ 8389 mc->mc_pg[0] = mc->mc_pg[1]; 8390 mc->mc_ki[0] = mc->mc_ki[1]; 8391 mc->mc_db->md_root = mp->mp_pgno; 8392 mc->mc_db->md_depth--; 8393 goto done; 8394 } 8395 mc->mc_snum++; 8396 mc->mc_top++; 8397 ptop = 0; 8398 } else { 8399 ptop = mc->mc_top-1; 8400 DPRINTF(("parent branch page is %"Z"u", mc->mc_pg[ptop]->mp_pgno)); 8401 } 8402 8403 mdb_cursor_copy(mc, &mn); 8404 mn.mc_xcursor = NULL; 8405 mn.mc_pg[mn.mc_top] = rp; 8406 mn.mc_ki[ptop] = mc->mc_ki[ptop]+1; 8407 8408 if (nflags & MDB_APPEND) { 8409 mn.mc_ki[mn.mc_top] = 0; 8410 sepkey = *newkey; 8411 split_indx = newindx; 8412 nkeys = 0; 8413 } else { 8414 8415 split_indx = (nkeys+1) / 2; 8416 8417 if (IS_LEAF2(rp)) { 8418 char *split, *ins; 8419 int x; 8420 unsigned int lsize, rsize, ksize; 8421 /* Move half of the keys to the right sibling */ 8422 x = mc->mc_ki[mc->mc_top] - split_indx; 8423 ksize = mc->mc_db->md_pad; 8424 split = LEAF2KEY(mp, split_indx, ksize); 8425 rsize = (nkeys - split_indx) * ksize; 8426 lsize = (nkeys - split_indx) * sizeof(indx_t); 8427 mp->mp_lower -= lsize; 8428 rp->mp_lower += lsize; 8429 mp->mp_upper += rsize - lsize; 8430 rp->mp_upper -= rsize - lsize; 8431 sepkey.mv_size = ksize; 8432 if (newindx == split_indx) { 8433 sepkey.mv_data = newkey->mv_data; 8434 } else { 8435 sepkey.mv_data = split; 8436 } 8437 if (x<0) { 8438 ins = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], ksize); 8439 memcpy(rp->mp_ptrs, split, rsize); 8440 sepkey.mv_data = rp->mp_ptrs; 8441 memmove(ins+ksize, ins, (split_indx - mc->mc_ki[mc->mc_top]) * ksize); 8442 memcpy(ins, newkey->mv_data, ksize); 8443 mp->mp_lower += sizeof(indx_t); 8444 mp->mp_upper -= ksize - sizeof(indx_t); 8445 } else { 8446 if (x) 8447 memcpy(rp->mp_ptrs, split, x * ksize); 8448 ins = LEAF2KEY(rp, x, ksize); 8449 memcpy(ins, newkey->mv_data, ksize); 8450 memcpy(ins+ksize, split + x * ksize, rsize - x * ksize); 8451 rp->mp_lower += sizeof(indx_t); 8452 rp->mp_upper -= ksize - sizeof(indx_t); 8453 mc->mc_ki[mc->mc_top] = x; 8454 } 8455 } else { 8456 int psize, nsize, k; 8457 /* Maximum free space in an empty page */ 8458 pmax = env->me_psize - PAGEHDRSZ; 8459 if (IS_LEAF(mp)) 8460 nsize = mdb_leaf_size(env, newkey, newdata); 8461 else 8462 nsize = mdb_branch_size(env, newkey); 8463 nsize = EVEN(nsize); 8464 8465 /* grab a page to hold a temporary copy */ 8466 copy = mdb_page_malloc(mc->mc_txn, 1); 8467 if (copy == NULL) { 8468 rc = ENOMEM; 8469 goto done; 8470 } 8471 copy->mp_pgno = mp->mp_pgno; 8472 copy->mp_flags = mp->mp_flags; 8473 copy->mp_lower = (PAGEHDRSZ-PAGEBASE); 8474 copy->mp_upper = env->me_psize - PAGEBASE; 8475 8476 /* prepare to insert */ 8477 for (i=0, j=0; i<nkeys; i++) { 8478 if (i == newindx) { 8479 copy->mp_ptrs[j++] = 0; 8480 } 8481 copy->mp_ptrs[j++] = mp->mp_ptrs[i]; 8482 } 8483 8484 /* When items are relatively large the split point needs 8485 * to be checked, because being off-by-one will make the 8486 * difference between success or failure in mdb_node_add. 8487 * 8488 * It's also relevant if a page happens to be laid out 8489 * such that one half of its nodes are all "small" and 8490 * the other half of its nodes are "large." If the new 8491 * item is also "large" and falls on the half with 8492 * "large" nodes, it also may not fit. 8493 * 8494 * As a final tweak, if the new item goes on the last 8495 * spot on the page (and thus, onto the new page), bias 8496 * the split so the new page is emptier than the old page. 8497 * This yields better packing during sequential inserts. 8498 */ 8499 if (nkeys < 20 || nsize > pmax/16 || newindx >= nkeys) { 8500 /* Find split point */ 8501 psize = 0; 8502 if (newindx <= split_indx || newindx >= nkeys) { 8503 i = 0; j = 1; 8504 k = newindx >= nkeys ? nkeys : split_indx+1+IS_LEAF(mp); 8505 } else { 8506 i = nkeys; j = -1; 8507 k = split_indx-1; 8508 } 8509 for (; i!=k; i+=j) { 8510 if (i == newindx) { 8511 psize += nsize; 8512 node = NULL; 8513 } else { 8514 node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE); 8515 psize += NODESIZE + NODEKSZ(node) + sizeof(indx_t); 8516 if (IS_LEAF(mp)) { 8517 if (F_ISSET(node->mn_flags, F_BIGDATA)) 8518 psize += sizeof(pgno_t); 8519 else 8520 psize += NODEDSZ(node); 8521 } 8522 psize = EVEN(psize); 8523 } 8524 if (psize > pmax || i == k-j) { 8525 split_indx = i + (j<0); 8526 break; 8527 } 8528 } 8529 } 8530 if (split_indx == newindx) { 8531 sepkey.mv_size = newkey->mv_size; 8532 sepkey.mv_data = newkey->mv_data; 8533 } else { 8534 node = (MDB_node *)((char *)mp + copy->mp_ptrs[split_indx] + PAGEBASE); 8535 sepkey.mv_size = node->mn_ksize; 8536 sepkey.mv_data = NODEKEY(node); 8537 } 8538 } 8539 } 8540 8541 DPRINTF(("separator is %d [%s]", split_indx, DKEY(&sepkey))); 8542 8543 /* Copy separator key to the parent. 8544 */ 8545 if (SIZELEFT(mn.mc_pg[ptop]) < mdb_branch_size(env, &sepkey)) { 8546 int snum = mc->mc_snum; 8547 mn.mc_snum--; 8548 mn.mc_top--; 8549 did_split = 1; 8550 /* We want other splits to find mn when doing fixups */ 8551 WITH_CURSOR_TRACKING(mn, 8552 rc = mdb_page_split(&mn, &sepkey, NULL, rp->mp_pgno, 0)); 8553 if (rc) 8554 goto done; 8555 8556 /* root split? */ 8557 if (mc->mc_snum > snum) { 8558 ptop++; 8559 } 8560 /* Right page might now have changed parent. 8561 * Check if left page also changed parent. 8562 */ 8563 if (mn.mc_pg[ptop] != mc->mc_pg[ptop] && 8564 mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) { 8565 for (i=0; i<ptop; i++) { 8566 mc->mc_pg[i] = mn.mc_pg[i]; 8567 mc->mc_ki[i] = mn.mc_ki[i]; 8568 } 8569 mc->mc_pg[ptop] = mn.mc_pg[ptop]; 8570 if (mn.mc_ki[ptop]) { 8571 mc->mc_ki[ptop] = mn.mc_ki[ptop] - 1; 8572 } else { 8573 /* find right page's left sibling */ 8574 mc->mc_ki[ptop] = mn.mc_ki[ptop]; 8575 mdb_cursor_sibling(mc, 0); 8576 } 8577 } 8578 } else { 8579 mn.mc_top--; 8580 rc = mdb_node_add(&mn, mn.mc_ki[ptop], &sepkey, NULL, rp->mp_pgno, 0); 8581 mn.mc_top++; 8582 } 8583 if (rc != MDB_SUCCESS) { 8584 goto done; 8585 } 8586 if (nflags & MDB_APPEND) { 8587 mc->mc_pg[mc->mc_top] = rp; 8588 mc->mc_ki[mc->mc_top] = 0; 8589 rc = mdb_node_add(mc, 0, newkey, newdata, newpgno, nflags); 8590 if (rc) 8591 goto done; 8592 for (i=0; i<mc->mc_top; i++) 8593 mc->mc_ki[i] = mn.mc_ki[i]; 8594 } else if (!IS_LEAF2(mp)) { 8595 /* Move nodes */ 8596 mc->mc_pg[mc->mc_top] = rp; 8597 i = split_indx; 8598 j = 0; 8599 do { 8600 if (i == newindx) { 8601 rkey.mv_data = newkey->mv_data; 8602 rkey.mv_size = newkey->mv_size; 8603 if (IS_LEAF(mp)) { 8604 rdata = newdata; 8605 } else 8606 pgno = newpgno; 8607 flags = nflags; 8608 /* Update index for the new key. */ 8609 mc->mc_ki[mc->mc_top] = j; 8610 } else { 8611 node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE); 8612 rkey.mv_data = NODEKEY(node); 8613 rkey.mv_size = node->mn_ksize; 8614 if (IS_LEAF(mp)) { 8615 xdata.mv_data = NODEDATA(node); 8616 xdata.mv_size = NODEDSZ(node); 8617 rdata = &xdata; 8618 } else 8619 pgno = NODEPGNO(node); 8620 flags = node->mn_flags; 8621 } 8622 8623 if (!IS_LEAF(mp) && j == 0) { 8624 /* First branch index doesn't need key data. */ 8625 rkey.mv_size = 0; 8626 } 8627 8628 rc = mdb_node_add(mc, j, &rkey, rdata, pgno, flags); 8629 if (rc) 8630 goto done; 8631 if (i == nkeys) { 8632 i = 0; 8633 j = 0; 8634 mc->mc_pg[mc->mc_top] = copy; 8635 } else { 8636 i++; 8637 j++; 8638 } 8639 } while (i != split_indx); 8640 8641 nkeys = NUMKEYS(copy); 8642 for (i=0; i<nkeys; i++) 8643 mp->mp_ptrs[i] = copy->mp_ptrs[i]; 8644 mp->mp_lower = copy->mp_lower; 8645 mp->mp_upper = copy->mp_upper; 8646 memcpy(NODEPTR(mp, nkeys-1), NODEPTR(copy, nkeys-1), 8647 env->me_psize - copy->mp_upper - PAGEBASE); 8648 8649 /* reset back to original page */ 8650 if (newindx < split_indx) { 8651 mc->mc_pg[mc->mc_top] = mp; 8652 } else { 8653 mc->mc_pg[mc->mc_top] = rp; 8654 mc->mc_ki[ptop]++; 8655 /* Make sure mc_ki is still valid. 8656 */ 8657 if (mn.mc_pg[ptop] != mc->mc_pg[ptop] && 8658 mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) { 8659 for (i=0; i<=ptop; i++) { 8660 mc->mc_pg[i] = mn.mc_pg[i]; 8661 mc->mc_ki[i] = mn.mc_ki[i]; 8662 } 8663 } 8664 } 8665 if (nflags & MDB_RESERVE) { 8666 node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 8667 if (!(node->mn_flags & F_BIGDATA)) 8668 newdata->mv_data = NODEDATA(node); 8669 } 8670 } else { 8671 if (newindx >= split_indx) { 8672 mc->mc_pg[mc->mc_top] = rp; 8673 mc->mc_ki[ptop]++; 8674 /* Make sure mc_ki is still valid. 8675 */ 8676 if (mn.mc_pg[ptop] != mc->mc_pg[ptop] && 8677 mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) { 8678 for (i=0; i<=ptop; i++) { 8679 mc->mc_pg[i] = mn.mc_pg[i]; 8680 mc->mc_ki[i] = mn.mc_ki[i]; 8681 } 8682 } 8683 } 8684 } 8685 8686 { 8687 /* Adjust other cursors pointing to mp */ 8688 MDB_cursor *m2, *m3; 8689 MDB_dbi dbi = mc->mc_dbi; 8690 nkeys = NUMKEYS(mp); 8691 8692 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8693 if (mc->mc_flags & C_SUB) 8694 m3 = &m2->mc_xcursor->mx_cursor; 8695 else 8696 m3 = m2; 8697 if (m3 == mc) 8698 continue; 8699 if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED)) 8700 continue; 8701 if (new_root) { 8702 int k; 8703 /* sub cursors may be on different DB */ 8704 if (m3->mc_pg[0] != mp) 8705 continue; 8706 /* root split */ 8707 for (k=new_root; k>=0; k--) { 8708 m3->mc_ki[k+1] = m3->mc_ki[k]; 8709 m3->mc_pg[k+1] = m3->mc_pg[k]; 8710 } 8711 if (m3->mc_ki[0] >= nkeys) { 8712 m3->mc_ki[0] = 1; 8713 } else { 8714 m3->mc_ki[0] = 0; 8715 } 8716 m3->mc_pg[0] = mc->mc_pg[0]; 8717 m3->mc_snum++; 8718 m3->mc_top++; 8719 } 8720 if (m3->mc_top >= mc->mc_top && m3->mc_pg[mc->mc_top] == mp) { 8721 if (m3->mc_ki[mc->mc_top] >= newindx && !(nflags & MDB_SPLIT_REPLACE)) 8722 m3->mc_ki[mc->mc_top]++; 8723 if (m3->mc_ki[mc->mc_top] >= nkeys) { 8724 m3->mc_pg[mc->mc_top] = rp; 8725 m3->mc_ki[mc->mc_top] -= nkeys; 8726 for (i=0; i<mc->mc_top; i++) { 8727 m3->mc_ki[i] = mn.mc_ki[i]; 8728 m3->mc_pg[i] = mn.mc_pg[i]; 8729 } 8730 } 8731 } else if (!did_split && m3->mc_top >= ptop && m3->mc_pg[ptop] == mc->mc_pg[ptop] && 8732 m3->mc_ki[ptop] >= mc->mc_ki[ptop]) { 8733 m3->mc_ki[ptop]++; 8734 } 8735 if (m3->mc_xcursor && (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) && 8736 IS_LEAF(mp)) { 8737 MDB_node *node = NODEPTR(m3->mc_pg[mc->mc_top], m3->mc_ki[mc->mc_top]); 8738 if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) 8739 m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node); 8740 } 8741 } 8742 } 8743 DPRINTF(("mp left: %d, rp left: %d", SIZELEFT(mp), SIZELEFT(rp))); 8744 8745 done: 8746 if (copy) /* tmp page */ 8747 mdb_page_free(env, copy); 8748 if (rc) 8749 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 8750 return rc; 8751 } 8752 8753 int 8754 mdb_put(MDB_txn *txn, MDB_dbi dbi, 8755 MDB_val *key, MDB_val *data, unsigned int flags) 8756 { 8757 MDB_cursor mc; 8758 MDB_xcursor mx; 8759 int rc; 8760 8761 if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 8762 return EINVAL; 8763 8764 if (flags & ~(MDB_NOOVERWRITE|MDB_NODUPDATA|MDB_RESERVE|MDB_APPEND|MDB_APPENDDUP)) 8765 return EINVAL; 8766 8767 if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)) 8768 return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN; 8769 8770 mdb_cursor_init(&mc, txn, dbi, &mx); 8771 mc.mc_next = txn->mt_cursors[dbi]; 8772 txn->mt_cursors[dbi] = &mc; 8773 rc = mdb_cursor_put(&mc, key, data, flags); 8774 txn->mt_cursors[dbi] = mc.mc_next; 8775 return rc; 8776 } 8777 8778 #ifndef MDB_WBUF 8779 #define MDB_WBUF (1024*1024) 8780 #endif 8781 8782 /** State needed for a compacting copy. */ 8783 typedef struct mdb_copy { 8784 pthread_mutex_t mc_mutex; 8785 pthread_cond_t mc_cond; 8786 char *mc_wbuf[2]; 8787 char *mc_over[2]; 8788 MDB_env *mc_env; 8789 MDB_txn *mc_txn; 8790 int mc_wlen[2]; 8791 int mc_olen[2]; 8792 pgno_t mc_next_pgno; 8793 HANDLE mc_fd; 8794 int mc_status; 8795 volatile int mc_new; 8796 int mc_toggle; 8797 8798 } mdb_copy; 8799 8800 /** Dedicated writer thread for compacting copy. */ 8801 static THREAD_RET ESECT CALL_CONV 8802 mdb_env_copythr(void *arg) 8803 { 8804 mdb_copy *my = arg; 8805 char *ptr; 8806 int toggle = 0, wsize, rc; 8807 #ifdef _WIN32 8808 DWORD len; 8809 #define DO_WRITE(rc, fd, ptr, w2, len) rc = WriteFile(fd, ptr, w2, &len, NULL) 8810 #else 8811 int len; 8812 #define DO_WRITE(rc, fd, ptr, w2, len) len = write(fd, ptr, w2); rc = (len >= 0) 8813 #endif 8814 8815 pthread_mutex_lock(&my->mc_mutex); 8816 my->mc_new = 0; 8817 pthread_cond_signal(&my->mc_cond); 8818 for(;;) { 8819 while (!my->mc_new) 8820 pthread_cond_wait(&my->mc_cond, &my->mc_mutex); 8821 if (my->mc_new < 0) { 8822 my->mc_new = 0; 8823 break; 8824 } 8825 my->mc_new = 0; 8826 wsize = my->mc_wlen[toggle]; 8827 ptr = my->mc_wbuf[toggle]; 8828 again: 8829 while (wsize > 0) { 8830 DO_WRITE(rc, my->mc_fd, ptr, wsize, len); 8831 if (!rc) { 8832 rc = ErrCode(); 8833 break; 8834 } else if (len > 0) { 8835 rc = MDB_SUCCESS; 8836 ptr += len; 8837 wsize -= len; 8838 continue; 8839 } else { 8840 rc = EIO; 8841 break; 8842 } 8843 } 8844 if (rc) { 8845 my->mc_status = rc; 8846 break; 8847 } 8848 /* If there's an overflow page tail, write it too */ 8849 if (my->mc_olen[toggle]) { 8850 wsize = my->mc_olen[toggle]; 8851 ptr = my->mc_over[toggle]; 8852 my->mc_olen[toggle] = 0; 8853 goto again; 8854 } 8855 my->mc_wlen[toggle] = 0; 8856 toggle ^= 1; 8857 pthread_cond_signal(&my->mc_cond); 8858 } 8859 pthread_cond_signal(&my->mc_cond); 8860 pthread_mutex_unlock(&my->mc_mutex); 8861 return (THREAD_RET)0; 8862 #undef DO_WRITE 8863 } 8864 8865 /** Tell the writer thread there's a buffer ready to write */ 8866 static int ESECT 8867 mdb_env_cthr_toggle(mdb_copy *my, int st) 8868 { 8869 int toggle = my->mc_toggle ^ 1; 8870 pthread_mutex_lock(&my->mc_mutex); 8871 if (my->mc_status) { 8872 pthread_mutex_unlock(&my->mc_mutex); 8873 return my->mc_status; 8874 } 8875 while (my->mc_new == 1) 8876 pthread_cond_wait(&my->mc_cond, &my->mc_mutex); 8877 my->mc_new = st; 8878 my->mc_toggle = toggle; 8879 pthread_cond_signal(&my->mc_cond); 8880 pthread_mutex_unlock(&my->mc_mutex); 8881 return 0; 8882 } 8883 8884 /** Depth-first tree traversal for compacting copy. */ 8885 static int ESECT 8886 mdb_env_cwalk(mdb_copy *my, pgno_t *pg, int flags) 8887 { 8888 MDB_cursor mc; 8889 MDB_txn *txn = my->mc_txn; 8890 MDB_node *ni; 8891 MDB_page *mo, *mp, *leaf; 8892 char *buf, *ptr; 8893 int rc, toggle; 8894 unsigned int i; 8895 8896 /* Empty DB, nothing to do */ 8897 if (*pg == P_INVALID) 8898 return MDB_SUCCESS; 8899 8900 mc.mc_snum = 1; 8901 mc.mc_top = 0; 8902 mc.mc_txn = txn; 8903 8904 rc = mdb_page_get(my->mc_txn, *pg, &mc.mc_pg[0], NULL); 8905 if (rc) 8906 return rc; 8907 rc = mdb_page_search_root(&mc, NULL, MDB_PS_FIRST); 8908 if (rc) 8909 return rc; 8910 8911 /* Make cursor pages writable */ 8912 buf = ptr = malloc(my->mc_env->me_psize * mc.mc_snum); 8913 if (buf == NULL) 8914 return ENOMEM; 8915 8916 for (i=0; i<mc.mc_top; i++) { 8917 mdb_page_copy((MDB_page *)ptr, mc.mc_pg[i], my->mc_env->me_psize); 8918 mc.mc_pg[i] = (MDB_page *)ptr; 8919 ptr += my->mc_env->me_psize; 8920 } 8921 8922 /* This is writable space for a leaf page. Usually not needed. */ 8923 leaf = (MDB_page *)ptr; 8924 8925 toggle = my->mc_toggle; 8926 while (mc.mc_snum > 0) { 8927 unsigned n; 8928 mp = mc.mc_pg[mc.mc_top]; 8929 n = NUMKEYS(mp); 8930 8931 if (IS_LEAF(mp)) { 8932 if (!IS_LEAF2(mp) && !(flags & F_DUPDATA)) { 8933 for (i=0; i<n; i++) { 8934 ni = NODEPTR(mp, i); 8935 if (ni->mn_flags & F_BIGDATA) { 8936 MDB_page *omp; 8937 pgno_t pg; 8938 8939 /* Need writable leaf */ 8940 if (mp != leaf) { 8941 mc.mc_pg[mc.mc_top] = leaf; 8942 mdb_page_copy(leaf, mp, my->mc_env->me_psize); 8943 mp = leaf; 8944 ni = NODEPTR(mp, i); 8945 } 8946 8947 memcpy(&pg, NODEDATA(ni), sizeof(pg)); 8948 rc = mdb_page_get(txn, pg, &omp, NULL); 8949 if (rc) 8950 goto done; 8951 if (my->mc_wlen[toggle] >= MDB_WBUF) { 8952 rc = mdb_env_cthr_toggle(my, 1); 8953 if (rc) 8954 goto done; 8955 toggle = my->mc_toggle; 8956 } 8957 mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]); 8958 memcpy(mo, omp, my->mc_env->me_psize); 8959 mo->mp_pgno = my->mc_next_pgno; 8960 my->mc_next_pgno += omp->mp_pages; 8961 my->mc_wlen[toggle] += my->mc_env->me_psize; 8962 if (omp->mp_pages > 1) { 8963 my->mc_olen[toggle] = my->mc_env->me_psize * (omp->mp_pages - 1); 8964 my->mc_over[toggle] = (char *)omp + my->mc_env->me_psize; 8965 rc = mdb_env_cthr_toggle(my, 1); 8966 if (rc) 8967 goto done; 8968 toggle = my->mc_toggle; 8969 } 8970 memcpy(NODEDATA(ni), &mo->mp_pgno, sizeof(pgno_t)); 8971 } else if (ni->mn_flags & F_SUBDATA) { 8972 MDB_db db; 8973 8974 /* Need writable leaf */ 8975 if (mp != leaf) { 8976 mc.mc_pg[mc.mc_top] = leaf; 8977 mdb_page_copy(leaf, mp, my->mc_env->me_psize); 8978 mp = leaf; 8979 ni = NODEPTR(mp, i); 8980 } 8981 8982 memcpy(&db, NODEDATA(ni), sizeof(db)); 8983 my->mc_toggle = toggle; 8984 rc = mdb_env_cwalk(my, &db.md_root, ni->mn_flags & F_DUPDATA); 8985 if (rc) 8986 goto done; 8987 toggle = my->mc_toggle; 8988 memcpy(NODEDATA(ni), &db, sizeof(db)); 8989 } 8990 } 8991 } 8992 } else { 8993 mc.mc_ki[mc.mc_top]++; 8994 if (mc.mc_ki[mc.mc_top] < n) { 8995 pgno_t pg; 8996 again: 8997 ni = NODEPTR(mp, mc.mc_ki[mc.mc_top]); 8998 pg = NODEPGNO(ni); 8999 rc = mdb_page_get(txn, pg, &mp, NULL); 9000 if (rc) 9001 goto done; 9002 mc.mc_top++; 9003 mc.mc_snum++; 9004 mc.mc_ki[mc.mc_top] = 0; 9005 if (IS_BRANCH(mp)) { 9006 /* Whenever we advance to a sibling branch page, 9007 * we must proceed all the way down to its first leaf. 9008 */ 9009 mdb_page_copy(mc.mc_pg[mc.mc_top], mp, my->mc_env->me_psize); 9010 goto again; 9011 } else 9012 mc.mc_pg[mc.mc_top] = mp; 9013 continue; 9014 } 9015 } 9016 if (my->mc_wlen[toggle] >= MDB_WBUF) { 9017 rc = mdb_env_cthr_toggle(my, 1); 9018 if (rc) 9019 goto done; 9020 toggle = my->mc_toggle; 9021 } 9022 mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]); 9023 mdb_page_copy(mo, mp, my->mc_env->me_psize); 9024 mo->mp_pgno = my->mc_next_pgno++; 9025 my->mc_wlen[toggle] += my->mc_env->me_psize; 9026 if (mc.mc_top) { 9027 /* Update parent if there is one */ 9028 ni = NODEPTR(mc.mc_pg[mc.mc_top-1], mc.mc_ki[mc.mc_top-1]); 9029 SETPGNO(ni, mo->mp_pgno); 9030 mdb_cursor_pop(&mc); 9031 } else { 9032 /* Otherwise we're done */ 9033 *pg = mo->mp_pgno; 9034 break; 9035 } 9036 } 9037 done: 9038 free(buf); 9039 return rc; 9040 } 9041 9042 /** Copy environment with compaction. */ 9043 static int ESECT 9044 mdb_env_copyfd1(MDB_env *env, HANDLE fd) 9045 { 9046 MDB_meta *mm; 9047 MDB_page *mp; 9048 mdb_copy my; 9049 MDB_txn *txn = NULL; 9050 pthread_t thr; 9051 int rc; 9052 9053 #ifdef _WIN32 9054 my.mc_mutex = CreateMutex(NULL, FALSE, NULL); 9055 my.mc_cond = CreateEvent(NULL, FALSE, FALSE, NULL); 9056 my.mc_wbuf[0] = _aligned_malloc(MDB_WBUF*2, env->me_os_psize); 9057 if (my.mc_wbuf[0] == NULL) 9058 return errno; 9059 #else 9060 pthread_mutex_init(&my.mc_mutex, NULL); 9061 pthread_cond_init(&my.mc_cond, NULL); 9062 #ifdef HAVE_MEMALIGN 9063 my.mc_wbuf[0] = memalign(env->me_os_psize, MDB_WBUF*2); 9064 if (my.mc_wbuf[0] == NULL) 9065 return errno; 9066 #else 9067 rc = posix_memalign((void **)&my.mc_wbuf[0], env->me_os_psize, MDB_WBUF*2); 9068 if (rc) 9069 return rc; 9070 #endif 9071 #endif 9072 memset(my.mc_wbuf[0], 0, MDB_WBUF*2); 9073 my.mc_wbuf[1] = my.mc_wbuf[0] + MDB_WBUF; 9074 my.mc_wlen[0] = 0; 9075 my.mc_wlen[1] = 0; 9076 my.mc_olen[0] = 0; 9077 my.mc_olen[1] = 0; 9078 my.mc_next_pgno = NUM_METAS; 9079 my.mc_status = 0; 9080 my.mc_new = 1; 9081 my.mc_toggle = 0; 9082 my.mc_env = env; 9083 my.mc_fd = fd; 9084 THREAD_CREATE(thr, mdb_env_copythr, &my); 9085 9086 rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn); 9087 if (rc) 9088 return rc; 9089 9090 mp = (MDB_page *)my.mc_wbuf[0]; 9091 memset(mp, 0, NUM_METAS * env->me_psize); 9092 mp->mp_pgno = 0; 9093 mp->mp_flags = P_META; 9094 mm = (MDB_meta *)METADATA(mp); 9095 mdb_env_init_meta0(env, mm); 9096 mm->mm_address = env->me_metas[0]->mm_address; 9097 9098 mp = (MDB_page *)(my.mc_wbuf[0] + env->me_psize); 9099 mp->mp_pgno = 1; 9100 mp->mp_flags = P_META; 9101 *(MDB_meta *)METADATA(mp) = *mm; 9102 mm = (MDB_meta *)METADATA(mp); 9103 9104 /* Count the number of free pages, subtract from lastpg to find 9105 * number of active pages 9106 */ 9107 { 9108 MDB_ID freecount = 0; 9109 MDB_cursor mc; 9110 MDB_val key, data; 9111 mdb_cursor_init(&mc, txn, FREE_DBI, NULL); 9112 while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0) 9113 freecount += *(MDB_ID *)data.mv_data; 9114 freecount += txn->mt_dbs[FREE_DBI].md_branch_pages + 9115 txn->mt_dbs[FREE_DBI].md_leaf_pages + 9116 txn->mt_dbs[FREE_DBI].md_overflow_pages; 9117 9118 /* Set metapage 1 */ 9119 mm->mm_last_pg = txn->mt_next_pgno - freecount - 1; 9120 mm->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI]; 9121 if (mm->mm_last_pg > NUM_METAS-1) { 9122 mm->mm_dbs[MAIN_DBI].md_root = mm->mm_last_pg; 9123 mm->mm_txnid = 1; 9124 } else { 9125 mm->mm_dbs[MAIN_DBI].md_root = P_INVALID; 9126 } 9127 } 9128 my.mc_wlen[0] = env->me_psize * NUM_METAS; 9129 my.mc_txn = txn; 9130 pthread_mutex_lock(&my.mc_mutex); 9131 while(my.mc_new) 9132 pthread_cond_wait(&my.mc_cond, &my.mc_mutex); 9133 pthread_mutex_unlock(&my.mc_mutex); 9134 rc = mdb_env_cwalk(&my, &txn->mt_dbs[MAIN_DBI].md_root, 0); 9135 if (rc == MDB_SUCCESS && my.mc_wlen[my.mc_toggle]) 9136 rc = mdb_env_cthr_toggle(&my, 1); 9137 mdb_env_cthr_toggle(&my, -1); 9138 pthread_mutex_lock(&my.mc_mutex); 9139 while(my.mc_new) 9140 pthread_cond_wait(&my.mc_cond, &my.mc_mutex); 9141 pthread_mutex_unlock(&my.mc_mutex); 9142 THREAD_FINISH(thr); 9143 9144 mdb_txn_abort(txn); 9145 #ifdef _WIN32 9146 CloseHandle(my.mc_cond); 9147 CloseHandle(my.mc_mutex); 9148 _aligned_free(my.mc_wbuf[0]); 9149 #else 9150 pthread_cond_destroy(&my.mc_cond); 9151 pthread_mutex_destroy(&my.mc_mutex); 9152 free(my.mc_wbuf[0]); 9153 #endif 9154 return rc; 9155 } 9156 9157 /** Copy environment as-is. */ 9158 static int ESECT 9159 mdb_env_copyfd0(MDB_env *env, HANDLE fd) 9160 { 9161 MDB_txn *txn = NULL; 9162 mdb_mutexref_t wmutex = NULL; 9163 int rc; 9164 size_t wsize, w3; 9165 char *ptr; 9166 #ifdef _WIN32 9167 DWORD len, w2; 9168 #define DO_WRITE(rc, fd, ptr, w2, len) rc = WriteFile(fd, ptr, w2, &len, NULL) 9169 #else 9170 ssize_t len; 9171 size_t w2; 9172 #define DO_WRITE(rc, fd, ptr, w2, len) len = write(fd, ptr, w2); rc = (len >= 0) 9173 #endif 9174 9175 /* Do the lock/unlock of the reader mutex before starting the 9176 * write txn. Otherwise other read txns could block writers. 9177 */ 9178 rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn); 9179 if (rc) 9180 return rc; 9181 9182 if (env->me_txns) { 9183 /* We must start the actual read txn after blocking writers */ 9184 mdb_txn_end(txn, MDB_END_RESET_TMP); 9185 9186 /* Temporarily block writers until we snapshot the meta pages */ 9187 wmutex = env->me_wmutex; 9188 if (LOCK_MUTEX(rc, env, wmutex)) 9189 goto leave; 9190 9191 rc = mdb_txn_renew0(txn); 9192 if (rc) { 9193 UNLOCK_MUTEX(wmutex); 9194 goto leave; 9195 } 9196 } 9197 9198 wsize = env->me_psize * NUM_METAS; 9199 ptr = env->me_map; 9200 w2 = wsize; 9201 while (w2 > 0) { 9202 DO_WRITE(rc, fd, ptr, w2, len); 9203 if (!rc) { 9204 rc = ErrCode(); 9205 break; 9206 } else if (len > 0) { 9207 rc = MDB_SUCCESS; 9208 ptr += len; 9209 w2 -= len; 9210 continue; 9211 } else { 9212 /* Non-blocking or async handles are not supported */ 9213 rc = EIO; 9214 break; 9215 } 9216 } 9217 if (wmutex) 9218 UNLOCK_MUTEX(wmutex); 9219 9220 if (rc) 9221 goto leave; 9222 9223 w3 = txn->mt_next_pgno * env->me_psize; 9224 { 9225 size_t fsize = 0; 9226 if ((rc = mdb_fsize(env->me_fd, &fsize))) 9227 goto leave; 9228 if (w3 > fsize) 9229 w3 = fsize; 9230 } 9231 wsize = w3 - wsize; 9232 while (wsize > 0) { 9233 if (wsize > MAX_WRITE) 9234 w2 = MAX_WRITE; 9235 else 9236 w2 = wsize; 9237 DO_WRITE(rc, fd, ptr, w2, len); 9238 if (!rc) { 9239 rc = ErrCode(); 9240 break; 9241 } else if (len > 0) { 9242 rc = MDB_SUCCESS; 9243 ptr += len; 9244 wsize -= len; 9245 continue; 9246 } else { 9247 rc = EIO; 9248 break; 9249 } 9250 } 9251 9252 leave: 9253 mdb_txn_abort(txn); 9254 return rc; 9255 } 9256 9257 int ESECT 9258 mdb_env_copyfd2(MDB_env *env, HANDLE fd, unsigned int flags) 9259 { 9260 if (flags & MDB_CP_COMPACT) 9261 return mdb_env_copyfd1(env, fd); 9262 else 9263 return mdb_env_copyfd0(env, fd); 9264 } 9265 9266 int ESECT 9267 mdb_env_copyfd(MDB_env *env, HANDLE fd) 9268 { 9269 return mdb_env_copyfd2(env, fd, 0); 9270 } 9271 9272 int ESECT 9273 mdb_env_copy2(MDB_env *env, const char *path, unsigned int flags) 9274 { 9275 int rc, len; 9276 char *lpath; 9277 HANDLE newfd = INVALID_HANDLE_VALUE; 9278 #ifdef _WIN32 9279 wchar_t *wpath; 9280 #endif 9281 9282 if (env->me_flags & MDB_NOSUBDIR) { 9283 lpath = (char *)path; 9284 } else { 9285 len = strlen(path); 9286 len += sizeof(DATANAME); 9287 lpath = malloc(len); 9288 if (!lpath) 9289 return ENOMEM; 9290 sprintf(lpath, "%s" DATANAME, path); 9291 } 9292 9293 /* The destination path must exist, but the destination file must not. 9294 * We don't want the OS to cache the writes, since the source data is 9295 * already in the OS cache. 9296 */ 9297 #ifdef _WIN32 9298 rc = utf8_to_utf16(lpath, -1, &wpath, NULL); 9299 if (rc) 9300 goto leave; 9301 newfd = CreateFileW(wpath, GENERIC_WRITE, 0, NULL, CREATE_NEW, 9302 FILE_FLAG_NO_BUFFERING|FILE_FLAG_WRITE_THROUGH, NULL); 9303 free(wpath); 9304 #else 9305 newfd = open(lpath, O_WRONLY|O_CREAT|O_EXCL, 0666); 9306 #endif 9307 if (newfd == INVALID_HANDLE_VALUE) { 9308 rc = ErrCode(); 9309 goto leave; 9310 } 9311 9312 if (env->me_psize >= env->me_os_psize) { 9313 #ifdef O_DIRECT 9314 /* Set O_DIRECT if the file system supports it */ 9315 if ((rc = fcntl(newfd, F_GETFL)) != -1) 9316 (void) fcntl(newfd, F_SETFL, rc | O_DIRECT); 9317 #endif 9318 #ifdef F_NOCACHE /* __APPLE__ */ 9319 rc = fcntl(newfd, F_NOCACHE, 1); 9320 if (rc) { 9321 rc = ErrCode(); 9322 goto leave; 9323 } 9324 #endif 9325 } 9326 9327 rc = mdb_env_copyfd2(env, newfd, flags); 9328 9329 leave: 9330 if (!(env->me_flags & MDB_NOSUBDIR)) 9331 free(lpath); 9332 if (newfd != INVALID_HANDLE_VALUE) 9333 if (close(newfd) < 0 && rc == MDB_SUCCESS) 9334 rc = ErrCode(); 9335 9336 return rc; 9337 } 9338 9339 int ESECT 9340 mdb_env_copy(MDB_env *env, const char *path) 9341 { 9342 return mdb_env_copy2(env, path, 0); 9343 } 9344 9345 int ESECT 9346 mdb_env_set_flags(MDB_env *env, unsigned int flag, int onoff) 9347 { 9348 if (flag & ~CHANGEABLE) 9349 return EINVAL; 9350 if (onoff) 9351 env->me_flags |= flag; 9352 else 9353 env->me_flags &= ~flag; 9354 return MDB_SUCCESS; 9355 } 9356 9357 int ESECT 9358 mdb_env_get_flags(MDB_env *env, unsigned int *arg) 9359 { 9360 if (!env || !arg) 9361 return EINVAL; 9362 9363 *arg = env->me_flags & (CHANGEABLE|CHANGELESS); 9364 return MDB_SUCCESS; 9365 } 9366 9367 int ESECT 9368 mdb_env_set_userctx(MDB_env *env, void *ctx) 9369 { 9370 if (!env) 9371 return EINVAL; 9372 env->me_userctx = ctx; 9373 return MDB_SUCCESS; 9374 } 9375 9376 void * ESECT 9377 mdb_env_get_userctx(MDB_env *env) 9378 { 9379 return env ? env->me_userctx : NULL; 9380 } 9381 9382 int ESECT 9383 mdb_env_set_assert(MDB_env *env, MDB_assert_func *func) 9384 { 9385 if (!env) 9386 return EINVAL; 9387 #ifndef NDEBUG 9388 env->me_assert_func = func; 9389 #endif 9390 return MDB_SUCCESS; 9391 } 9392 9393 int ESECT 9394 mdb_env_get_path(MDB_env *env, const char **arg) 9395 { 9396 if (!env || !arg) 9397 return EINVAL; 9398 9399 *arg = env->me_path; 9400 return MDB_SUCCESS; 9401 } 9402 9403 int ESECT 9404 mdb_env_get_fd(MDB_env *env, mdb_filehandle_t *arg) 9405 { 9406 if (!env || !arg) 9407 return EINVAL; 9408 9409 *arg = env->me_fd; 9410 return MDB_SUCCESS; 9411 } 9412 9413 /** Common code for #mdb_stat() and #mdb_env_stat(). 9414 * @param[in] env the environment to operate in. 9415 * @param[in] db the #MDB_db record containing the stats to return. 9416 * @param[out] arg the address of an #MDB_stat structure to receive the stats. 9417 * @return 0, this function always succeeds. 9418 */ 9419 static int ESECT 9420 mdb_stat0(MDB_env *env, MDB_db *db, MDB_stat *arg) 9421 { 9422 arg->ms_psize = env->me_psize; 9423 arg->ms_depth = db->md_depth; 9424 arg->ms_branch_pages = db->md_branch_pages; 9425 arg->ms_leaf_pages = db->md_leaf_pages; 9426 arg->ms_overflow_pages = db->md_overflow_pages; 9427 arg->ms_entries = db->md_entries; 9428 9429 return MDB_SUCCESS; 9430 } 9431 9432 int ESECT 9433 mdb_env_stat(MDB_env *env, MDB_stat *arg) 9434 { 9435 MDB_meta *meta; 9436 9437 if (env == NULL || arg == NULL) 9438 return EINVAL; 9439 9440 meta = mdb_env_pick_meta(env); 9441 9442 return mdb_stat0(env, &meta->mm_dbs[MAIN_DBI], arg); 9443 } 9444 9445 int ESECT 9446 mdb_env_info(MDB_env *env, MDB_envinfo *arg) 9447 { 9448 MDB_meta *meta; 9449 9450 if (env == NULL || arg == NULL) 9451 return EINVAL; 9452 9453 meta = mdb_env_pick_meta(env); 9454 arg->me_mapaddr = meta->mm_address; 9455 arg->me_last_pgno = meta->mm_last_pg; 9456 arg->me_last_txnid = meta->mm_txnid; 9457 9458 arg->me_mapsize = env->me_mapsize; 9459 arg->me_maxreaders = env->me_maxreaders; 9460 arg->me_numreaders = env->me_txns ? env->me_txns->mti_numreaders : 0; 9461 return MDB_SUCCESS; 9462 } 9463 9464 /** Set the default comparison functions for a database. 9465 * Called immediately after a database is opened to set the defaults. 9466 * The user can then override them with #mdb_set_compare() or 9467 * #mdb_set_dupsort(). 9468 * @param[in] txn A transaction handle returned by #mdb_txn_begin() 9469 * @param[in] dbi A database handle returned by #mdb_dbi_open() 9470 */ 9471 static void 9472 mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi) 9473 { 9474 uint16_t f = txn->mt_dbs[dbi].md_flags; 9475 9476 txn->mt_dbxs[dbi].md_cmp = 9477 (f & MDB_REVERSEKEY) ? mdb_cmp_memnr : 9478 (f & MDB_INTEGERKEY) ? mdb_cmp_cint : mdb_cmp_memn; 9479 9480 txn->mt_dbxs[dbi].md_dcmp = 9481 !(f & MDB_DUPSORT) ? 0 : 9482 ((f & MDB_INTEGERDUP) 9483 ? ((f & MDB_DUPFIXED) ? mdb_cmp_int : mdb_cmp_cint) 9484 : ((f & MDB_REVERSEDUP) ? mdb_cmp_memnr : mdb_cmp_memn)); 9485 } 9486 9487 int mdb_dbi_open(MDB_txn *txn, const char *name, unsigned int flags, MDB_dbi *dbi) 9488 { 9489 MDB_val key, data; 9490 MDB_dbi i; 9491 MDB_cursor mc; 9492 MDB_db dummy; 9493 int rc, dbflag, exact; 9494 unsigned int unused = 0, seq; 9495 char *namedup; 9496 size_t len; 9497 9498 if (flags & ~VALID_FLAGS) 9499 return EINVAL; 9500 if (txn->mt_flags & MDB_TXN_BLOCKED) 9501 return MDB_BAD_TXN; 9502 9503 /* main DB? */ 9504 if (!name) { 9505 *dbi = MAIN_DBI; 9506 if (flags & PERSISTENT_FLAGS) { 9507 uint16_t f2 = flags & PERSISTENT_FLAGS; 9508 /* make sure flag changes get committed */ 9509 if ((txn->mt_dbs[MAIN_DBI].md_flags | f2) != txn->mt_dbs[MAIN_DBI].md_flags) { 9510 txn->mt_dbs[MAIN_DBI].md_flags |= f2; 9511 txn->mt_flags |= MDB_TXN_DIRTY; 9512 } 9513 } 9514 mdb_default_cmp(txn, MAIN_DBI); 9515 return MDB_SUCCESS; 9516 } 9517 9518 if (txn->mt_dbxs[MAIN_DBI].md_cmp == NULL) { 9519 mdb_default_cmp(txn, MAIN_DBI); 9520 } 9521 9522 /* Is the DB already open? */ 9523 len = strlen(name); 9524 for (i=CORE_DBS; i<txn->mt_numdbs; i++) { 9525 if (!txn->mt_dbxs[i].md_name.mv_size) { 9526 /* Remember this free slot */ 9527 if (!unused) unused = i; 9528 continue; 9529 } 9530 if (len == txn->mt_dbxs[i].md_name.mv_size && 9531 !strncmp(name, txn->mt_dbxs[i].md_name.mv_data, len)) { 9532 *dbi = i; 9533 return MDB_SUCCESS; 9534 } 9535 } 9536 9537 /* If no free slot and max hit, fail */ 9538 if (!unused && txn->mt_numdbs >= txn->mt_env->me_maxdbs) 9539 return MDB_DBS_FULL; 9540 9541 /* Cannot mix named databases with some mainDB flags */ 9542 if (txn->mt_dbs[MAIN_DBI].md_flags & (MDB_DUPSORT|MDB_INTEGERKEY)) 9543 return (flags & MDB_CREATE) ? MDB_INCOMPATIBLE : MDB_NOTFOUND; 9544 9545 /* Find the DB info */ 9546 dbflag = DB_NEW|DB_VALID|DB_USRVALID; 9547 exact = 0; 9548 key.mv_size = len; 9549 key.mv_data = (void *)name; 9550 mdb_cursor_init(&mc, txn, MAIN_DBI, NULL); 9551 rc = mdb_cursor_set(&mc, &key, &data, MDB_SET, &exact); 9552 if (rc == MDB_SUCCESS) { 9553 /* make sure this is actually a DB */ 9554 MDB_node *node = NODEPTR(mc.mc_pg[mc.mc_top], mc.mc_ki[mc.mc_top]); 9555 if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA) 9556 return MDB_INCOMPATIBLE; 9557 } else if (! (rc == MDB_NOTFOUND && (flags & MDB_CREATE))) { 9558 return rc; 9559 } 9560 9561 /* Done here so we cannot fail after creating a new DB */ 9562 if ((namedup = strdup(name)) == NULL) 9563 return ENOMEM; 9564 9565 if (rc) { 9566 /* MDB_NOTFOUND and MDB_CREATE: Create new DB */ 9567 data.mv_size = sizeof(MDB_db); 9568 data.mv_data = &dummy; 9569 memset(&dummy, 0, sizeof(dummy)); 9570 dummy.md_root = P_INVALID; 9571 dummy.md_flags = flags & PERSISTENT_FLAGS; 9572 rc = mdb_cursor_put(&mc, &key, &data, F_SUBDATA); 9573 dbflag |= DB_DIRTY; 9574 } 9575 9576 if (rc) { 9577 free(namedup); 9578 } else { 9579 /* Got info, register DBI in this txn */ 9580 unsigned int slot = unused ? unused : txn->mt_numdbs; 9581 txn->mt_dbxs[slot].md_name.mv_data = namedup; 9582 txn->mt_dbxs[slot].md_name.mv_size = len; 9583 txn->mt_dbxs[slot].md_rel = NULL; 9584 txn->mt_dbflags[slot] = dbflag; 9585 /* txn-> and env-> are the same in read txns, use 9586 * tmp variable to avoid undefined assignment 9587 */ 9588 seq = ++txn->mt_env->me_dbiseqs[slot]; 9589 txn->mt_dbiseqs[slot] = seq; 9590 9591 memcpy(&txn->mt_dbs[slot], data.mv_data, sizeof(MDB_db)); 9592 *dbi = slot; 9593 mdb_default_cmp(txn, slot); 9594 if (!unused) { 9595 txn->mt_numdbs++; 9596 } 9597 } 9598 9599 return rc; 9600 } 9601 9602 int ESECT 9603 mdb_stat(MDB_txn *txn, MDB_dbi dbi, MDB_stat *arg) 9604 { 9605 if (!arg || !TXN_DBI_EXIST(txn, dbi, DB_VALID)) 9606 return EINVAL; 9607 9608 if (txn->mt_flags & MDB_TXN_BLOCKED) 9609 return MDB_BAD_TXN; 9610 9611 if (txn->mt_dbflags[dbi] & DB_STALE) { 9612 MDB_cursor mc; 9613 MDB_xcursor mx; 9614 /* Stale, must read the DB's root. cursor_init does it for us. */ 9615 mdb_cursor_init(&mc, txn, dbi, &mx); 9616 } 9617 return mdb_stat0(txn->mt_env, &txn->mt_dbs[dbi], arg); 9618 } 9619 9620 void mdb_dbi_close(MDB_env *env, MDB_dbi dbi) 9621 { 9622 char *ptr; 9623 if (dbi < CORE_DBS || dbi >= env->me_maxdbs) 9624 return; 9625 ptr = env->me_dbxs[dbi].md_name.mv_data; 9626 /* If there was no name, this was already closed */ 9627 if (ptr) { 9628 env->me_dbxs[dbi].md_name.mv_data = NULL; 9629 env->me_dbxs[dbi].md_name.mv_size = 0; 9630 env->me_dbflags[dbi] = 0; 9631 env->me_dbiseqs[dbi]++; 9632 free(ptr); 9633 } 9634 } 9635 9636 int mdb_dbi_flags(MDB_txn *txn, MDB_dbi dbi, unsigned int *flags) 9637 { 9638 /* We could return the flags for the FREE_DBI too but what's the point? */ 9639 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 9640 return EINVAL; 9641 *flags = txn->mt_dbs[dbi].md_flags & PERSISTENT_FLAGS; 9642 return MDB_SUCCESS; 9643 } 9644 9645 /** Add all the DB's pages to the free list. 9646 * @param[in] mc Cursor on the DB to free. 9647 * @param[in] subs non-Zero to check for sub-DBs in this DB. 9648 * @return 0 on success, non-zero on failure. 9649 */ 9650 static int 9651 mdb_drop0(MDB_cursor *mc, int subs) 9652 { 9653 int rc; 9654 9655 rc = mdb_page_search(mc, NULL, MDB_PS_FIRST); 9656 if (rc == MDB_SUCCESS) { 9657 MDB_txn *txn = mc->mc_txn; 9658 MDB_node *ni; 9659 MDB_cursor mx; 9660 unsigned int i; 9661 9662 /* DUPSORT sub-DBs have no ovpages/DBs. Omit scanning leaves. 9663 * This also avoids any P_LEAF2 pages, which have no nodes. 9664 */ 9665 if (mc->mc_flags & C_SUB) 9666 mdb_cursor_pop(mc); 9667 9668 mdb_cursor_copy(mc, &mx); 9669 while (mc->mc_snum > 0) { 9670 MDB_page *mp = mc->mc_pg[mc->mc_top]; 9671 unsigned n = NUMKEYS(mp); 9672 if (IS_LEAF(mp)) { 9673 for (i=0; i<n; i++) { 9674 ni = NODEPTR(mp, i); 9675 if (ni->mn_flags & F_BIGDATA) { 9676 MDB_page *omp; 9677 pgno_t pg; 9678 memcpy(&pg, NODEDATA(ni), sizeof(pg)); 9679 rc = mdb_page_get(txn, pg, &omp, NULL); 9680 if (rc != 0) 9681 goto done; 9682 mdb_cassert(mc, IS_OVERFLOW(omp)); 9683 rc = mdb_midl_append_range(&txn->mt_free_pgs, 9684 pg, omp->mp_pages); 9685 if (rc) 9686 goto done; 9687 } else if (subs && (ni->mn_flags & F_SUBDATA)) { 9688 mdb_xcursor_init1(mc, ni); 9689 rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0); 9690 if (rc) 9691 goto done; 9692 } 9693 } 9694 } else { 9695 if ((rc = mdb_midl_need(&txn->mt_free_pgs, n)) != 0) 9696 goto done; 9697 for (i=0; i<n; i++) { 9698 pgno_t pg; 9699 ni = NODEPTR(mp, i); 9700 pg = NODEPGNO(ni); 9701 /* free it */ 9702 mdb_midl_xappend(txn->mt_free_pgs, pg); 9703 } 9704 } 9705 if (!mc->mc_top) 9706 break; 9707 mc->mc_ki[mc->mc_top] = i; 9708 rc = mdb_cursor_sibling(mc, 1); 9709 if (rc) { 9710 if (rc != MDB_NOTFOUND) 9711 goto done; 9712 /* no more siblings, go back to beginning 9713 * of previous level. 9714 */ 9715 mdb_cursor_pop(mc); 9716 mc->mc_ki[0] = 0; 9717 for (i=1; i<mc->mc_snum; i++) { 9718 mc->mc_ki[i] = 0; 9719 mc->mc_pg[i] = mx.mc_pg[i]; 9720 } 9721 } 9722 } 9723 /* free it */ 9724 rc = mdb_midl_append(&txn->mt_free_pgs, mc->mc_db->md_root); 9725 done: 9726 if (rc) 9727 txn->mt_flags |= MDB_TXN_ERROR; 9728 } else if (rc == MDB_NOTFOUND) { 9729 rc = MDB_SUCCESS; 9730 } 9731 mc->mc_flags &= ~C_INITIALIZED; 9732 return rc; 9733 } 9734 9735 int mdb_drop(MDB_txn *txn, MDB_dbi dbi, int del) 9736 { 9737 MDB_cursor *mc, *m2; 9738 int rc; 9739 9740 if ((unsigned)del > 1 || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 9741 return EINVAL; 9742 9743 if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) 9744 return EACCES; 9745 9746 if (TXN_DBI_CHANGED(txn, dbi)) 9747 return MDB_BAD_DBI; 9748 9749 rc = mdb_cursor_open(txn, dbi, &mc); 9750 if (rc) 9751 return rc; 9752 9753 rc = mdb_drop0(mc, mc->mc_db->md_flags & MDB_DUPSORT); 9754 /* Invalidate the dropped DB's cursors */ 9755 for (m2 = txn->mt_cursors[dbi]; m2; m2 = m2->mc_next) 9756 m2->mc_flags &= ~(C_INITIALIZED|C_EOF); 9757 if (rc) 9758 goto leave; 9759 9760 /* Can't delete the main DB */ 9761 if (del && dbi >= CORE_DBS) { 9762 rc = mdb_del0(txn, MAIN_DBI, &mc->mc_dbx->md_name, NULL, F_SUBDATA); 9763 if (!rc) { 9764 txn->mt_dbflags[dbi] = DB_STALE; 9765 mdb_dbi_close(txn->mt_env, dbi); 9766 } else { 9767 txn->mt_flags |= MDB_TXN_ERROR; 9768 } 9769 } else { 9770 /* reset the DB record, mark it dirty */ 9771 txn->mt_dbflags[dbi] |= DB_DIRTY; 9772 txn->mt_dbs[dbi].md_depth = 0; 9773 txn->mt_dbs[dbi].md_branch_pages = 0; 9774 txn->mt_dbs[dbi].md_leaf_pages = 0; 9775 txn->mt_dbs[dbi].md_overflow_pages = 0; 9776 txn->mt_dbs[dbi].md_entries = 0; 9777 txn->mt_dbs[dbi].md_root = P_INVALID; 9778 9779 txn->mt_flags |= MDB_TXN_DIRTY; 9780 } 9781 leave: 9782 mdb_cursor_close(mc); 9783 return rc; 9784 } 9785 9786 int mdb_set_compare(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp) 9787 { 9788 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 9789 return EINVAL; 9790 9791 txn->mt_dbxs[dbi].md_cmp = cmp; 9792 return MDB_SUCCESS; 9793 } 9794 9795 int mdb_set_dupsort(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp) 9796 { 9797 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 9798 return EINVAL; 9799 9800 txn->mt_dbxs[dbi].md_dcmp = cmp; 9801 return MDB_SUCCESS; 9802 } 9803 9804 int mdb_set_relfunc(MDB_txn *txn, MDB_dbi dbi, MDB_rel_func *rel) 9805 { 9806 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 9807 return EINVAL; 9808 9809 txn->mt_dbxs[dbi].md_rel = rel; 9810 return MDB_SUCCESS; 9811 } 9812 9813 int mdb_set_relctx(MDB_txn *txn, MDB_dbi dbi, void *ctx) 9814 { 9815 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 9816 return EINVAL; 9817 9818 txn->mt_dbxs[dbi].md_relctx = ctx; 9819 return MDB_SUCCESS; 9820 } 9821 9822 int ESECT 9823 mdb_env_get_maxkeysize(MDB_env *env) 9824 { 9825 return ENV_MAXKEY(env); 9826 } 9827 9828 int ESECT 9829 mdb_reader_list(MDB_env *env, MDB_msg_func *func, void *ctx) 9830 { 9831 unsigned int i, rdrs; 9832 MDB_reader *mr; 9833 char buf[64]; 9834 int rc = 0, first = 1; 9835 9836 if (!env || !func) 9837 return -1; 9838 if (!env->me_txns) { 9839 return func("(no reader locks)\n", ctx); 9840 } 9841 rdrs = env->me_txns->mti_numreaders; 9842 mr = env->me_txns->mti_readers; 9843 for (i=0; i<rdrs; i++) { 9844 if (mr[i].mr_pid) { 9845 txnid_t txnid = mr[i].mr_txnid; 9846 sprintf(buf, txnid == (txnid_t)-1 ? 9847 "%10d %"Z"x -\n" : "%10d %"Z"x %"Z"u\n", 9848 (int)mr[i].mr_pid, (size_t)mr[i].mr_tid, txnid); 9849 if (first) { 9850 first = 0; 9851 rc = func(" pid thread txnid\n", ctx); 9852 if (rc < 0) 9853 break; 9854 } 9855 rc = func(buf, ctx); 9856 if (rc < 0) 9857 break; 9858 } 9859 } 9860 if (first) { 9861 rc = func("(no active readers)\n", ctx); 9862 } 9863 return rc; 9864 } 9865 9866 /** Insert pid into list if not already present. 9867 * return -1 if already present. 9868 */ 9869 static int ESECT 9870 mdb_pid_insert(MDB_PID_T *ids, MDB_PID_T pid) 9871 { 9872 /* binary search of pid in list */ 9873 unsigned base = 0; 9874 unsigned cursor = 1; 9875 int val = 0; 9876 unsigned n = ids[0]; 9877 9878 while( 0 < n ) { 9879 unsigned pivot = n >> 1; 9880 cursor = base + pivot + 1; 9881 val = pid - ids[cursor]; 9882 9883 if( val < 0 ) { 9884 n = pivot; 9885 9886 } else if ( val > 0 ) { 9887 base = cursor; 9888 n -= pivot + 1; 9889 9890 } else { 9891 /* found, so it's a duplicate */ 9892 return -1; 9893 } 9894 } 9895 9896 if( val > 0 ) { 9897 ++cursor; 9898 } 9899 ids[0]++; 9900 for (n = ids[0]; n > cursor; n--) 9901 ids[n] = ids[n-1]; 9902 ids[n] = pid; 9903 return 0; 9904 } 9905 9906 int ESECT 9907 mdb_reader_check(MDB_env *env, int *dead) 9908 { 9909 if (!env) 9910 return EINVAL; 9911 if (dead) 9912 *dead = 0; 9913 return env->me_txns ? mdb_reader_check0(env, 0, dead) : MDB_SUCCESS; 9914 } 9915 9916 /** As #mdb_reader_check(). rlocked = <caller locked the reader mutex>. */ 9917 static int ESECT 9918 mdb_reader_check0(MDB_env *env, int rlocked, int *dead) 9919 { 9920 mdb_mutexref_t rmutex = rlocked ? NULL : env->me_rmutex; 9921 unsigned int i, j, rdrs; 9922 MDB_reader *mr; 9923 MDB_PID_T *pids, pid; 9924 int rc = MDB_SUCCESS, count = 0; 9925 9926 rdrs = env->me_txns->mti_numreaders; 9927 pids = malloc((rdrs+1) * sizeof(MDB_PID_T)); 9928 if (!pids) 9929 return ENOMEM; 9930 pids[0] = 0; 9931 mr = env->me_txns->mti_readers; 9932 for (i=0; i<rdrs; i++) { 9933 pid = mr[i].mr_pid; 9934 if (pid && pid != env->me_pid) { 9935 if (mdb_pid_insert(pids, pid) == 0) { 9936 if (!mdb_reader_pid(env, Pidcheck, pid)) { 9937 /* Stale reader found */ 9938 j = i; 9939 if (rmutex) { 9940 if ((rc = LOCK_MUTEX0(rmutex)) != 0) { 9941 if ((rc = mdb_mutex_failed(env, rmutex, rc))) 9942 break; 9943 rdrs = 0; /* the above checked all readers */ 9944 } else { 9945 /* Recheck, a new process may have reused pid */ 9946 if (mdb_reader_pid(env, Pidcheck, pid)) 9947 j = rdrs; 9948 } 9949 } 9950 for (; j<rdrs; j++) 9951 if (mr[j].mr_pid == pid) { 9952 DPRINTF(("clear stale reader pid %u txn %"Z"d", 9953 (unsigned) pid, mr[j].mr_txnid)); 9954 mr[j].mr_pid = 0; 9955 count++; 9956 } 9957 if (rmutex) 9958 UNLOCK_MUTEX(rmutex); 9959 } 9960 } 9961 } 9962 } 9963 free(pids); 9964 if (dead) 9965 *dead = count; 9966 return rc; 9967 } 9968 9969 #ifdef MDB_ROBUST_SUPPORTED 9970 /** Handle #LOCK_MUTEX0() failure. 9971 * Try to repair the lock file if the mutex owner died. 9972 * @param[in] env the environment handle 9973 * @param[in] mutex LOCK_MUTEX0() mutex 9974 * @param[in] rc LOCK_MUTEX0() error (nonzero) 9975 * @return 0 on success with the mutex locked, or an error code on failure. 9976 */ 9977 static int ESECT 9978 mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc) 9979 { 9980 int rlocked, rc2; 9981 MDB_meta *meta; 9982 9983 if (rc == MDB_OWNERDEAD) { 9984 /* We own the mutex. Clean up after dead previous owner. */ 9985 rc = MDB_SUCCESS; 9986 rlocked = (mutex == env->me_rmutex); 9987 if (!rlocked) { 9988 /* Keep mti_txnid updated, otherwise next writer can 9989 * overwrite data which latest meta page refers to. 9990 */ 9991 meta = mdb_env_pick_meta(env); 9992 env->me_txns->mti_txnid = meta->mm_txnid; 9993 /* env is hosed if the dead thread was ours */ 9994 if (env->me_txn) { 9995 env->me_flags |= MDB_FATAL_ERROR; 9996 env->me_txn = NULL; 9997 rc = MDB_PANIC; 9998 } 9999 } 10000 DPRINTF(("%cmutex owner died, %s", (rlocked ? 'r' : 'w'), 10001 (rc ? "this process' env is hosed" : "recovering"))); 10002 rc2 = mdb_reader_check0(env, rlocked, NULL); 10003 if (rc2 == 0) 10004 rc2 = mdb_mutex_consistent(mutex); 10005 if (rc || (rc = rc2)) { 10006 DPRINTF(("LOCK_MUTEX recovery failed, %s", mdb_strerror(rc))); 10007 UNLOCK_MUTEX(mutex); 10008 } 10009 } else { 10010 #ifdef _WIN32 10011 rc = ErrCode(); 10012 #endif 10013 DPRINTF(("LOCK_MUTEX failed, %s", mdb_strerror(rc))); 10014 } 10015 10016 return rc; 10017 } 10018 #endif /* MDB_ROBUST_SUPPORTED */ 10019 /** @} */ 10020 10021 #if defined(_WIN32) 10022 static int utf8_to_utf16(const char *src, int srcsize, wchar_t **dst, int *dstsize) 10023 { 10024 int need; 10025 wchar_t *result; 10026 need = MultiByteToWideChar(CP_UTF8, 0, src, srcsize, NULL, 0); 10027 if (need == 0xFFFD) 10028 return EILSEQ; 10029 if (need == 0) 10030 return EINVAL; 10031 result = malloc(sizeof(wchar_t) * need); 10032 if (!result) 10033 return ENOMEM; 10034 MultiByteToWideChar(CP_UTF8, 0, src, srcsize, result, need); 10035 if (dstsize) 10036 *dstsize = need; 10037 *dst = result; 10038 return 0; 10039 } 10040 #endif /* defined(_WIN32) */ 10041