xref: /netbsd-src/external/bsd/openldap/dist/libraries/liblmdb/mdb.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /*	$NetBSD: mdb.c,v 1.1.1.4 2019/08/08 13:31:13 christos Exp $	*/
2 
3 /** @file mdb.c
4  *	@brief Lightning memory-mapped database library
5  *
6  *	A Btree-based database management library modeled loosely on the
7  *	BerkeleyDB API, but much simplified.
8  */
9 /*
10  * Copyright 2011-2019 Howard Chu, Symas Corp.
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted only as authorized by the OpenLDAP
15  * Public License.
16  *
17  * A copy of this license is available in the file LICENSE in the
18  * top-level directory of the distribution or, alternatively, at
19  * <http://www.OpenLDAP.org/license.html>.
20  *
21  * This code is derived from btree.c written by Martin Hedenfalk.
22  *
23  * Copyright (c) 2009, 2010 Martin Hedenfalk <martin@bzero.se>
24  *
25  * Permission to use, copy, modify, and distribute this software for any
26  * purpose with or without fee is hereby granted, provided that the above
27  * copyright notice and this permission notice appear in all copies.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
30  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
31  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
32  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
33  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
34  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
35  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
36  */
37 #ifndef _GNU_SOURCE
38 #define _GNU_SOURCE 1
39 #endif
40 #if defined(__WIN64__)
41 #define _FILE_OFFSET_BITS	64
42 #endif
43 #ifdef _WIN32
44 #include <malloc.h>
45 #include <windows.h>
46 #include <wchar.h>				/* get wcscpy() */
47 
48 /** getpid() returns int; MinGW defines pid_t but MinGW64 typedefs it
49  *  as int64 which is wrong. MSVC doesn't define it at all, so just
50  *  don't use it.
51  */
52 #define MDB_PID_T	int
53 #define MDB_THR_T	DWORD
54 #include <sys/types.h>
55 #include <sys/stat.h>
56 #ifdef __GNUC__
57 # include <sys/param.h>
58 #else
59 # define LITTLE_ENDIAN	1234
60 # define BIG_ENDIAN	4321
61 # define BYTE_ORDER	LITTLE_ENDIAN
62 # ifndef SSIZE_MAX
63 #  define SSIZE_MAX	INT_MAX
64 # endif
65 #endif
66 #else
67 #include <sys/types.h>
68 #include <sys/stat.h>
69 #define MDB_PID_T	pid_t
70 #define MDB_THR_T	pthread_t
71 #include <sys/param.h>
72 #include <sys/uio.h>
73 #include <sys/mman.h>
74 #ifdef HAVE_SYS_FILE_H
75 #include <sys/file.h>
76 #endif
77 #include <fcntl.h>
78 #endif
79 
80 #if defined(__mips) && defined(__linux)
81 /* MIPS has cache coherency issues, requires explicit cache control */
82 #include <asm/cachectl.h>
83 extern int cacheflush(char *addr, int nbytes, int cache);
84 #define CACHEFLUSH(addr, bytes, cache)	cacheflush(addr, bytes, cache)
85 #else
86 #define CACHEFLUSH(addr, bytes, cache)
87 #endif
88 
89 #if defined(__linux) && !defined(MDB_FDATASYNC_WORKS)
90 /** fdatasync is broken on ext3/ext4fs on older kernels, see
91  *	description in #mdb_env_open2 comments. You can safely
92  *	define MDB_FDATASYNC_WORKS if this code will only be run
93  *	on kernels 3.6 and newer.
94  */
95 #define	BROKEN_FDATASYNC
96 #endif
97 
98 #include <errno.h>
99 #include <limits.h>
100 #include <stddef.h>
101 #include <inttypes.h>
102 #include <stdio.h>
103 #include <stdlib.h>
104 #include <string.h>
105 #include <time.h>
106 
107 #ifdef _MSC_VER
108 #include <io.h>
109 typedef SSIZE_T	ssize_t;
110 #else
111 #include <unistd.h>
112 #endif
113 
114 #if defined(__sun) || defined(ANDROID)
115 /* Most platforms have posix_memalign, older may only have memalign */
116 #define HAVE_MEMALIGN	1
117 #include <malloc.h>
118 /* On Solaris, we need the POSIX sigwait function */
119 #if defined (__sun)
120 # define _POSIX_PTHREAD_SEMANTICS	1
121 #endif
122 #endif
123 
124 #if !(defined(BYTE_ORDER) || defined(__BYTE_ORDER))
125 #include <netinet/in.h>
126 #include <resolv.h>	/* defines BYTE_ORDER on HPUX and Solaris */
127 #endif
128 
129 #if defined(__APPLE__) || defined (BSD) || defined(__FreeBSD_kernel__)
130 # define MDB_USE_POSIX_SEM	1
131 # define MDB_FDATASYNC		fsync
132 #elif defined(ANDROID)
133 # define MDB_FDATASYNC		fsync
134 #endif
135 
136 #ifndef _WIN32
137 #include <pthread.h>
138 #include <signal.h>
139 #ifdef MDB_USE_POSIX_SEM
140 # define MDB_USE_HASH		1
141 #include <semaphore.h>
142 #else
143 #define MDB_USE_POSIX_MUTEX	1
144 #endif
145 #endif
146 
147 #if defined(_WIN32) + defined(MDB_USE_POSIX_SEM) \
148 	+ defined(MDB_USE_POSIX_MUTEX) != 1
149 # error "Ambiguous shared-lock implementation"
150 #endif
151 
152 #ifdef USE_VALGRIND
153 #include <valgrind/memcheck.h>
154 #define VGMEMP_CREATE(h,r,z)    VALGRIND_CREATE_MEMPOOL(h,r,z)
155 #define VGMEMP_ALLOC(h,a,s) VALGRIND_MEMPOOL_ALLOC(h,a,s)
156 #define VGMEMP_FREE(h,a) VALGRIND_MEMPOOL_FREE(h,a)
157 #define VGMEMP_DESTROY(h)	VALGRIND_DESTROY_MEMPOOL(h)
158 #define VGMEMP_DEFINED(a,s)	VALGRIND_MAKE_MEM_DEFINED(a,s)
159 #else
160 #define VGMEMP_CREATE(h,r,z)
161 #define VGMEMP_ALLOC(h,a,s)
162 #define VGMEMP_FREE(h,a)
163 #define VGMEMP_DESTROY(h)
164 #define VGMEMP_DEFINED(a,s)
165 #endif
166 
167 #ifndef BYTE_ORDER
168 # if (defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN))
169 /* Solaris just defines one or the other */
170 #  define LITTLE_ENDIAN	1234
171 #  define BIG_ENDIAN	4321
172 #  ifdef _LITTLE_ENDIAN
173 #   define BYTE_ORDER  LITTLE_ENDIAN
174 #  else
175 #   define BYTE_ORDER  BIG_ENDIAN
176 #  endif
177 # else
178 #  define BYTE_ORDER   __BYTE_ORDER
179 # endif
180 #endif
181 
182 #ifndef LITTLE_ENDIAN
183 #define LITTLE_ENDIAN	__LITTLE_ENDIAN
184 #endif
185 #ifndef BIG_ENDIAN
186 #define BIG_ENDIAN	__BIG_ENDIAN
187 #endif
188 
189 #if defined(__i386) || defined(__x86_64) || defined(_M_IX86)
190 #define MISALIGNED_OK	1
191 #endif
192 
193 #include "lmdb.h"
194 #include "midl.h"
195 
196 #if (BYTE_ORDER == LITTLE_ENDIAN) == (BYTE_ORDER == BIG_ENDIAN)
197 # error "Unknown or unsupported endianness (BYTE_ORDER)"
198 #elif (-6 & 5) || CHAR_BIT != 8 || UINT_MAX < 0xffffffff || ULONG_MAX % 0xFFFF
199 # error "Two's complement, reasonably sized integer types, please"
200 #endif
201 
202 #ifdef __GNUC__
203 /** Put infrequently used env functions in separate section */
204 # ifdef __APPLE__
205 #  define	ESECT	__attribute__ ((section("__TEXT,text_env")))
206 # else
207 #  define	ESECT	__attribute__ ((section("text_env")))
208 # endif
209 #else
210 #define ESECT
211 #endif
212 
213 #ifdef _WIN32
214 #define CALL_CONV WINAPI
215 #else
216 #define CALL_CONV
217 #endif
218 
219 /** @defgroup internal	LMDB Internals
220  *	@{
221  */
222 /** @defgroup compat	Compatibility Macros
223  *	A bunch of macros to minimize the amount of platform-specific ifdefs
224  *	needed throughout the rest of the code. When the features this library
225  *	needs are similar enough to POSIX to be hidden in a one-or-two line
226  *	replacement, this macro approach is used.
227  *	@{
228  */
229 
230 	/** Features under development */
231 #ifndef MDB_DEVEL
232 #define MDB_DEVEL 0
233 #endif
234 
235 	/** Wrapper around __func__, which is a C99 feature */
236 #if __STDC_VERSION__ >= 199901L
237 # define mdb_func_	__func__
238 #elif __GNUC__ >= 2 || _MSC_VER >= 1300
239 # define mdb_func_	__FUNCTION__
240 #else
241 /* If a debug message says <mdb_unknown>(), update the #if statements above */
242 # define mdb_func_	"<mdb_unknown>"
243 #endif
244 
245 /* Internal error codes, not exposed outside liblmdb */
246 #define	MDB_NO_ROOT		(MDB_LAST_ERRCODE + 10)
247 #ifdef _WIN32
248 #define MDB_OWNERDEAD	((int) WAIT_ABANDONED)
249 #elif defined(MDB_USE_POSIX_MUTEX) && defined(EOWNERDEAD)
250 #define MDB_OWNERDEAD	EOWNERDEAD	/**< #LOCK_MUTEX0() result if dead owner */
251 #endif
252 
253 #ifdef __GLIBC__
254 #define	GLIBC_VER	((__GLIBC__ << 16 )| __GLIBC_MINOR__)
255 #endif
256 /** Some platforms define the EOWNERDEAD error code
257  * even though they don't support Robust Mutexes.
258  * Compile with -DMDB_USE_ROBUST=0, or use some other
259  * mechanism like -DMDB_USE_POSIX_SEM instead of
260  * -DMDB_USE_POSIX_MUTEX.
261  * (Posix semaphores are not robust.)
262  */
263 #ifndef MDB_USE_ROBUST
264 /* Android currently lacks Robust Mutex support. So does glibc < 2.4. */
265 # if defined(MDB_USE_POSIX_MUTEX) && (defined(ANDROID) || \
266 	(defined(__GLIBC__) && GLIBC_VER < 0x020004))
267 #  define MDB_USE_ROBUST	0
268 # else
269 #  define MDB_USE_ROBUST	1
270 # endif
271 #endif /* !MDB_USE_ROBUST */
272 
273 #if defined(MDB_USE_POSIX_MUTEX) && (MDB_USE_ROBUST)
274 /* glibc < 2.12 only provided _np API */
275 #  if (defined(__GLIBC__) && GLIBC_VER < 0x02000c) || \
276 	(defined(PTHREAD_MUTEX_ROBUST_NP) && !defined(PTHREAD_MUTEX_ROBUST))
277 #   define PTHREAD_MUTEX_ROBUST	PTHREAD_MUTEX_ROBUST_NP
278 #   define pthread_mutexattr_setrobust(attr, flag)	pthread_mutexattr_setrobust_np(attr, flag)
279 #   define pthread_mutex_consistent(mutex)	pthread_mutex_consistent_np(mutex)
280 #  endif
281 #endif /* MDB_USE_POSIX_MUTEX && MDB_USE_ROBUST */
282 
283 #if defined(MDB_OWNERDEAD) && (MDB_USE_ROBUST)
284 #define MDB_ROBUST_SUPPORTED	1
285 #endif
286 
287 #ifdef _WIN32
288 #define MDB_USE_HASH	1
289 #define MDB_PIDLOCK	0
290 #define THREAD_RET	DWORD
291 #define pthread_t	HANDLE
292 #define pthread_mutex_t	HANDLE
293 #define pthread_cond_t	HANDLE
294 typedef HANDLE mdb_mutex_t, mdb_mutexref_t;
295 #define pthread_key_t	DWORD
296 #define pthread_self()	GetCurrentThreadId()
297 #define pthread_key_create(x,y)	\
298 	((*(x) = TlsAlloc()) == TLS_OUT_OF_INDEXES ? ErrCode() : 0)
299 #define pthread_key_delete(x)	TlsFree(x)
300 #define pthread_getspecific(x)	TlsGetValue(x)
301 #define pthread_setspecific(x,y)	(TlsSetValue(x,y) ? 0 : ErrCode())
302 #define pthread_mutex_unlock(x)	ReleaseMutex(*x)
303 #define pthread_mutex_lock(x)	WaitForSingleObject(*x, INFINITE)
304 #define pthread_cond_signal(x)	SetEvent(*x)
305 #define pthread_cond_wait(cond,mutex)	do{SignalObjectAndWait(*mutex, *cond, INFINITE, FALSE); WaitForSingleObject(*mutex, INFINITE);}while(0)
306 #define THREAD_CREATE(thr,start,arg) \
307 	(((thr) = CreateThread(NULL, 0, start, arg, 0, NULL)) ? 0 : ErrCode())
308 #define THREAD_FINISH(thr) \
309 	(WaitForSingleObject(thr, INFINITE) ? ErrCode() : 0)
310 #define LOCK_MUTEX0(mutex)		WaitForSingleObject(mutex, INFINITE)
311 #define UNLOCK_MUTEX(mutex)		ReleaseMutex(mutex)
312 #define mdb_mutex_consistent(mutex)	0
313 #define getpid()	GetCurrentProcessId()
314 #define	MDB_FDATASYNC(fd)	(!FlushFileBuffers(fd))
315 #define	MDB_MSYNC(addr,len,flags)	(!FlushViewOfFile(addr,len))
316 #define	ErrCode()	GetLastError()
317 #define GET_PAGESIZE(x) {SYSTEM_INFO si; GetSystemInfo(&si); (x) = si.dwPageSize;}
318 #define	close(fd)	(CloseHandle(fd) ? 0 : -1)
319 #define	munmap(ptr,len)	UnmapViewOfFile(ptr)
320 #ifdef PROCESS_QUERY_LIMITED_INFORMATION
321 #define MDB_PROCESS_QUERY_LIMITED_INFORMATION PROCESS_QUERY_LIMITED_INFORMATION
322 #else
323 #define MDB_PROCESS_QUERY_LIMITED_INFORMATION 0x1000
324 #endif
325 #define	Z	"I"
326 #else
327 #define THREAD_RET	void *
328 #define THREAD_CREATE(thr,start,arg)	pthread_create(&thr,NULL,start,arg)
329 #define THREAD_FINISH(thr)	pthread_join(thr,NULL)
330 #define	Z	"z"			/**< printf format modifier for size_t */
331 
332 	/** For MDB_LOCK_FORMAT: True if readers take a pid lock in the lockfile */
333 #define MDB_PIDLOCK			1
334 
335 #ifdef MDB_USE_POSIX_SEM
336 
337 typedef sem_t *mdb_mutex_t, *mdb_mutexref_t;
338 #define LOCK_MUTEX0(mutex)		mdb_sem_wait(mutex)
339 #define UNLOCK_MUTEX(mutex)		sem_post(mutex)
340 
341 static int
342 mdb_sem_wait(sem_t *sem)
343 {
344    int rc;
345    while ((rc = sem_wait(sem)) && (rc = errno) == EINTR) ;
346    return rc;
347 }
348 
349 #else	/* MDB_USE_POSIX_MUTEX: */
350 	/** Shared mutex/semaphore as the original is stored.
351 	 *
352 	 *	Not for copies.  Instead it can be assigned to an #mdb_mutexref_t.
353 	 *	When mdb_mutexref_t is a pointer and mdb_mutex_t is not, then it
354 	 *	is array[size 1] so it can be assigned to the pointer.
355 	 */
356 typedef pthread_mutex_t mdb_mutex_t[1];
357 	/** Reference to an #mdb_mutex_t */
358 typedef pthread_mutex_t *mdb_mutexref_t;
359 	/** Lock the reader or writer mutex.
360 	 *	Returns 0 or a code to give #mdb_mutex_failed(), as in #LOCK_MUTEX().
361 	 */
362 #define LOCK_MUTEX0(mutex)	pthread_mutex_lock(mutex)
363 	/** Unlock the reader or writer mutex.
364 	 */
365 #define UNLOCK_MUTEX(mutex)	pthread_mutex_unlock(mutex)
366 	/** Mark mutex-protected data as repaired, after death of previous owner.
367 	 */
368 #define mdb_mutex_consistent(mutex)	pthread_mutex_consistent(mutex)
369 #endif	/* MDB_USE_POSIX_SEM */
370 
371 	/** Get the error code for the last failed system function.
372 	 */
373 #define	ErrCode()	errno
374 
375 	/** An abstraction for a file handle.
376 	 *	On POSIX systems file handles are small integers. On Windows
377 	 *	they're opaque pointers.
378 	 */
379 #define	HANDLE	int
380 
381 	/**	A value for an invalid file handle.
382 	 *	Mainly used to initialize file variables and signify that they are
383 	 *	unused.
384 	 */
385 #define INVALID_HANDLE_VALUE	(-1)
386 
387 	/** Get the size of a memory page for the system.
388 	 *	This is the basic size that the platform's memory manager uses, and is
389 	 *	fundamental to the use of memory-mapped files.
390 	 */
391 #define	GET_PAGESIZE(x)	((x) = sysconf(_SC_PAGE_SIZE))
392 #endif
393 
394 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
395 #define MNAME_LEN	32
396 #else
397 #define MNAME_LEN	(sizeof(pthread_mutex_t))
398 #endif
399 
400 /** @} */
401 
402 #ifdef MDB_ROBUST_SUPPORTED
403 	/** Lock mutex, handle any error, set rc = result.
404 	 *	Return 0 on success, nonzero (not rc) on error.
405 	 */
406 #define LOCK_MUTEX(rc, env, mutex) \
407 	(((rc) = LOCK_MUTEX0(mutex)) && \
408 	 ((rc) = mdb_mutex_failed(env, mutex, rc)))
409 static int mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc);
410 #else
411 #define LOCK_MUTEX(rc, env, mutex) ((rc) = LOCK_MUTEX0(mutex))
412 #define mdb_mutex_failed(env, mutex, rc) (rc)
413 #endif
414 
415 #ifndef _WIN32
416 /**	A flag for opening a file and requesting synchronous data writes.
417  *	This is only used when writing a meta page. It's not strictly needed;
418  *	we could just do a normal write and then immediately perform a flush.
419  *	But if this flag is available it saves us an extra system call.
420  *
421  *	@note If O_DSYNC is undefined but exists in /usr/include,
422  * preferably set some compiler flag to get the definition.
423  */
424 #ifndef MDB_DSYNC
425 # ifdef O_DSYNC
426 # define MDB_DSYNC	O_DSYNC
427 # else
428 # define MDB_DSYNC	O_SYNC
429 # endif
430 #endif
431 #endif
432 
433 /** Function for flushing the data of a file. Define this to fsync
434  *	if fdatasync() is not supported.
435  */
436 #ifndef MDB_FDATASYNC
437 # define MDB_FDATASYNC	fdatasync
438 #endif
439 
440 #ifndef MDB_MSYNC
441 # define MDB_MSYNC(addr,len,flags)	msync(addr,len,flags)
442 #endif
443 
444 #ifndef MS_SYNC
445 #define	MS_SYNC	1
446 #endif
447 
448 #ifndef MS_ASYNC
449 #define	MS_ASYNC	0
450 #endif
451 
452 	/** A page number in the database.
453 	 *	Note that 64 bit page numbers are overkill, since pages themselves
454 	 *	already represent 12-13 bits of addressable memory, and the OS will
455 	 *	always limit applications to a maximum of 63 bits of address space.
456 	 *
457 	 *	@note In the #MDB_node structure, we only store 48 bits of this value,
458 	 *	which thus limits us to only 60 bits of addressable data.
459 	 */
460 typedef MDB_ID	pgno_t;
461 
462 	/** A transaction ID.
463 	 *	See struct MDB_txn.mt_txnid for details.
464 	 */
465 typedef MDB_ID	txnid_t;
466 
467 /** @defgroup debug	Debug Macros
468  *	@{
469  */
470 #ifndef MDB_DEBUG
471 	/**	Enable debug output.  Needs variable argument macros (a C99 feature).
472 	 *	Set this to 1 for copious tracing. Set to 2 to add dumps of all IDLs
473 	 *	read from and written to the database (used for free space management).
474 	 */
475 #define MDB_DEBUG 0
476 #endif
477 
478 #if MDB_DEBUG
479 static int mdb_debug;
480 static txnid_t mdb_debug_start;
481 
482 	/**	Print a debug message with printf formatting.
483 	 *	Requires double parenthesis around 2 or more args.
484 	 */
485 # define DPRINTF(args) ((void) ((mdb_debug) && DPRINTF0 args))
486 # define DPRINTF0(fmt, ...) \
487 	fprintf(stderr, "%s:%d " fmt "\n", mdb_func_, __LINE__, __VA_ARGS__)
488 #else
489 # define DPRINTF(args)	((void) 0)
490 #endif
491 	/**	Print a debug string.
492 	 *	The string is printed literally, with no format processing.
493 	 */
494 #define DPUTS(arg)	DPRINTF(("%s", arg))
495 	/** Debuging output value of a cursor DBI: Negative in a sub-cursor. */
496 #define DDBI(mc) \
497 	(((mc)->mc_flags & C_SUB) ? -(int)(mc)->mc_dbi : (int)(mc)->mc_dbi)
498 /** @} */
499 
500 	/**	@brief The maximum size of a database page.
501 	 *
502 	 *	It is 32k or 64k, since value-PAGEBASE must fit in
503 	 *	#MDB_page.%mp_upper.
504 	 *
505 	 *	LMDB will use database pages < OS pages if needed.
506 	 *	That causes more I/O in write transactions: The OS must
507 	 *	know (read) the whole page before writing a partial page.
508 	 *
509 	 *	Note that we don't currently support Huge pages. On Linux,
510 	 *	regular data files cannot use Huge pages, and in general
511 	 *	Huge pages aren't actually pageable. We rely on the OS
512 	 *	demand-pager to read our data and page it out when memory
513 	 *	pressure from other processes is high. So until OSs have
514 	 *	actual paging support for Huge pages, they're not viable.
515 	 */
516 #define MAX_PAGESIZE	 (PAGEBASE ? 0x10000 : 0x8000)
517 
518 	/** The minimum number of keys required in a database page.
519 	 *	Setting this to a larger value will place a smaller bound on the
520 	 *	maximum size of a data item. Data items larger than this size will
521 	 *	be pushed into overflow pages instead of being stored directly in
522 	 *	the B-tree node. This value used to default to 4. With a page size
523 	 *	of 4096 bytes that meant that any item larger than 1024 bytes would
524 	 *	go into an overflow page. That also meant that on average 2-3KB of
525 	 *	each overflow page was wasted space. The value cannot be lower than
526 	 *	2 because then there would no longer be a tree structure. With this
527 	 *	value, items larger than 2KB will go into overflow pages, and on
528 	 *	average only 1KB will be wasted.
529 	 */
530 #define MDB_MINKEYS	 2
531 
532 	/**	A stamp that identifies a file as an LMDB file.
533 	 *	There's nothing special about this value other than that it is easily
534 	 *	recognizable, and it will reflect any byte order mismatches.
535 	 */
536 #define MDB_MAGIC	 0xBEEFC0DE
537 
538 	/**	The version number for a database's datafile format. */
539 #define MDB_DATA_VERSION	 ((MDB_DEVEL) ? 999 : 1)
540 	/**	The version number for a database's lockfile format. */
541 #define MDB_LOCK_VERSION	 1
542 
543 	/**	@brief The max size of a key we can write, or 0 for computed max.
544 	 *
545 	 *	This macro should normally be left alone or set to 0.
546 	 *	Note that a database with big keys or dupsort data cannot be
547 	 *	reliably modified by a liblmdb which uses a smaller max.
548 	 *	The default is 511 for backwards compat, or 0 when #MDB_DEVEL.
549 	 *
550 	 *	Other values are allowed, for backwards compat.  However:
551 	 *	A value bigger than the computed max can break if you do not
552 	 *	know what you are doing, and liblmdb <= 0.9.10 can break when
553 	 *	modifying a DB with keys/dupsort data bigger than its max.
554 	 *
555 	 *	Data items in an #MDB_DUPSORT database are also limited to
556 	 *	this size, since they're actually keys of a sub-DB.  Keys and
557 	 *	#MDB_DUPSORT data items must fit on a node in a regular page.
558 	 */
559 #ifndef MDB_MAXKEYSIZE
560 #define MDB_MAXKEYSIZE	 ((MDB_DEVEL) ? 0 : 511)
561 #endif
562 
563 	/**	The maximum size of a key we can write to the environment. */
564 #if MDB_MAXKEYSIZE
565 #define ENV_MAXKEY(env)	(MDB_MAXKEYSIZE)
566 #else
567 #define ENV_MAXKEY(env)	((env)->me_maxkey)
568 #endif
569 
570 	/**	@brief The maximum size of a data item.
571 	 *
572 	 *	We only store a 32 bit value for node sizes.
573 	 */
574 #define MAXDATASIZE	0xffffffffUL
575 
576 #if MDB_DEBUG
577 	/**	Key size which fits in a #DKBUF.
578 	 *	@ingroup debug
579 	 */
580 #define DKBUF_MAXKEYSIZE ((MDB_MAXKEYSIZE) > 0 ? (MDB_MAXKEYSIZE) : 511)
581 	/**	A key buffer.
582 	 *	@ingroup debug
583 	 *	This is used for printing a hex dump of a key's contents.
584 	 */
585 #define DKBUF	char kbuf[DKBUF_MAXKEYSIZE*2+1]
586 	/**	Display a key in hex.
587 	 *	@ingroup debug
588 	 *	Invoke a function to display a key in hex.
589 	 */
590 #define	DKEY(x)	mdb_dkey(x, kbuf)
591 #else
592 #define	DKBUF
593 #define DKEY(x)	0
594 #endif
595 
596 	/** An invalid page number.
597 	 *	Mainly used to denote an empty tree.
598 	 */
599 #define P_INVALID	 (~(pgno_t)0)
600 
601 	/** Test if the flags \b f are set in a flag word \b w. */
602 #define F_ISSET(w, f)	 (((w) & (f)) == (f))
603 
604 	/** Round \b n up to an even number. */
605 #define EVEN(n)		(((n) + 1U) & -2) /* sign-extending -2 to match n+1U */
606 
607 	/**	Used for offsets within a single page.
608 	 *	Since memory pages are typically 4 or 8KB in size, 12-13 bits,
609 	 *	this is plenty.
610 	 */
611 typedef uint16_t	 indx_t;
612 
613 	/**	Default size of memory map.
614 	 *	This is certainly too small for any actual applications. Apps should always set
615 	 *	the size explicitly using #mdb_env_set_mapsize().
616 	 */
617 #define DEFAULT_MAPSIZE	1048576
618 
619 /**	@defgroup readers	Reader Lock Table
620  *	Readers don't acquire any locks for their data access. Instead, they
621  *	simply record their transaction ID in the reader table. The reader
622  *	mutex is needed just to find an empty slot in the reader table. The
623  *	slot's address is saved in thread-specific data so that subsequent read
624  *	transactions started by the same thread need no further locking to proceed.
625  *
626  *	If #MDB_NOTLS is set, the slot address is not saved in thread-specific data.
627  *
628  *	No reader table is used if the database is on a read-only filesystem, or
629  *	if #MDB_NOLOCK is set.
630  *
631  *	Since the database uses multi-version concurrency control, readers don't
632  *	actually need any locking. This table is used to keep track of which
633  *	readers are using data from which old transactions, so that we'll know
634  *	when a particular old transaction is no longer in use. Old transactions
635  *	that have discarded any data pages can then have those pages reclaimed
636  *	for use by a later write transaction.
637  *
638  *	The lock table is constructed such that reader slots are aligned with the
639  *	processor's cache line size. Any slot is only ever used by one thread.
640  *	This alignment guarantees that there will be no contention or cache
641  *	thrashing as threads update their own slot info, and also eliminates
642  *	any need for locking when accessing a slot.
643  *
644  *	A writer thread will scan every slot in the table to determine the oldest
645  *	outstanding reader transaction. Any freed pages older than this will be
646  *	reclaimed by the writer. The writer doesn't use any locks when scanning
647  *	this table. This means that there's no guarantee that the writer will
648  *	see the most up-to-date reader info, but that's not required for correct
649  *	operation - all we need is to know the upper bound on the oldest reader,
650  *	we don't care at all about the newest reader. So the only consequence of
651  *	reading stale information here is that old pages might hang around a
652  *	while longer before being reclaimed. That's actually good anyway, because
653  *	the longer we delay reclaiming old pages, the more likely it is that a
654  *	string of contiguous pages can be found after coalescing old pages from
655  *	many old transactions together.
656  *	@{
657  */
658 	/**	Number of slots in the reader table.
659 	 *	This value was chosen somewhat arbitrarily. 126 readers plus a
660 	 *	couple mutexes fit exactly into 8KB on my development machine.
661 	 *	Applications should set the table size using #mdb_env_set_maxreaders().
662 	 */
663 #define DEFAULT_READERS	126
664 
665 	/**	The size of a CPU cache line in bytes. We want our lock structures
666 	 *	aligned to this size to avoid false cache line sharing in the
667 	 *	lock table.
668 	 *	This value works for most CPUs. For Itanium this should be 128.
669 	 */
670 #ifndef CACHELINE
671 #define CACHELINE	64
672 #endif
673 
674 	/**	The information we store in a single slot of the reader table.
675 	 *	In addition to a transaction ID, we also record the process and
676 	 *	thread ID that owns a slot, so that we can detect stale information,
677 	 *	e.g. threads or processes that went away without cleaning up.
678 	 *	@note We currently don't check for stale records. We simply re-init
679 	 *	the table when we know that we're the only process opening the
680 	 *	lock file.
681 	 */
682 typedef struct MDB_rxbody {
683 	/**	Current Transaction ID when this transaction began, or (txnid_t)-1.
684 	 *	Multiple readers that start at the same time will probably have the
685 	 *	same ID here. Again, it's not important to exclude them from
686 	 *	anything; all we need to know is which version of the DB they
687 	 *	started from so we can avoid overwriting any data used in that
688 	 *	particular version.
689 	 */
690 	volatile txnid_t		mrb_txnid;
691 	/** The process ID of the process owning this reader txn. */
692 	volatile MDB_PID_T	mrb_pid;
693 	/** The thread ID of the thread owning this txn. */
694 	volatile MDB_THR_T	mrb_tid;
695 } MDB_rxbody;
696 
697 	/** The actual reader record, with cacheline padding. */
698 typedef struct MDB_reader {
699 	union {
700 		MDB_rxbody mrx;
701 		/** shorthand for mrb_txnid */
702 #define	mr_txnid	mru.mrx.mrb_txnid
703 #define	mr_pid	mru.mrx.mrb_pid
704 #define	mr_tid	mru.mrx.mrb_tid
705 		/** cache line alignment */
706 		char pad[(sizeof(MDB_rxbody)+CACHELINE-1) & ~(CACHELINE-1)];
707 	} mru;
708 } MDB_reader;
709 
710 	/** The header for the reader table.
711 	 *	The table resides in a memory-mapped file. (This is a different file
712 	 *	than is used for the main database.)
713 	 *
714 	 *	For POSIX the actual mutexes reside in the shared memory of this
715 	 *	mapped file. On Windows, mutexes are named objects allocated by the
716 	 *	kernel; we store the mutex names in this mapped file so that other
717 	 *	processes can grab them. This same approach is also used on
718 	 *	MacOSX/Darwin (using named semaphores) since MacOSX doesn't support
719 	 *	process-shared POSIX mutexes. For these cases where a named object
720 	 *	is used, the object name is derived from a 64 bit FNV hash of the
721 	 *	environment pathname. As such, naming collisions are extremely
722 	 *	unlikely. If a collision occurs, the results are unpredictable.
723 	 */
724 typedef struct MDB_txbody {
725 		/** Stamp identifying this as an LMDB file. It must be set
726 		 *	to #MDB_MAGIC. */
727 	uint32_t	mtb_magic;
728 		/** Format of this lock file. Must be set to #MDB_LOCK_FORMAT. */
729 	uint32_t	mtb_format;
730 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
731 	char	mtb_rmname[MNAME_LEN];
732 #else
733 		/** Mutex protecting access to this table.
734 		 *	This is the reader table lock used with LOCK_MUTEX().
735 		 */
736 	mdb_mutex_t	mtb_rmutex;
737 #endif
738 		/**	The ID of the last transaction committed to the database.
739 		 *	This is recorded here only for convenience; the value can always
740 		 *	be determined by reading the main database meta pages.
741 		 */
742 	volatile txnid_t		mtb_txnid;
743 		/** The number of slots that have been used in the reader table.
744 		 *	This always records the maximum count, it is not decremented
745 		 *	when readers release their slots.
746 		 */
747 	volatile unsigned	mtb_numreaders;
748 } MDB_txbody;
749 
750 	/** The actual reader table definition. */
751 typedef struct MDB_txninfo {
752 	union {
753 		MDB_txbody mtb;
754 #define mti_magic	mt1.mtb.mtb_magic
755 #define mti_format	mt1.mtb.mtb_format
756 #define mti_rmutex	mt1.mtb.mtb_rmutex
757 #define mti_rmname	mt1.mtb.mtb_rmname
758 #define mti_txnid	mt1.mtb.mtb_txnid
759 #define mti_numreaders	mt1.mtb.mtb_numreaders
760 		char pad[(sizeof(MDB_txbody)+CACHELINE-1) & ~(CACHELINE-1)];
761 	} mt1;
762 	union {
763 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
764 		char mt2_wmname[MNAME_LEN];
765 #define	mti_wmname	mt2.mt2_wmname
766 #else
767 		mdb_mutex_t	mt2_wmutex;
768 #define mti_wmutex	mt2.mt2_wmutex
769 #endif
770 		char pad[(MNAME_LEN+CACHELINE-1) & ~(CACHELINE-1)];
771 	} mt2;
772 	MDB_reader	mti_readers[1];
773 } MDB_txninfo;
774 
775 	/** Lockfile format signature: version, features and field layout */
776 #define MDB_LOCK_FORMAT \
777 	((uint32_t) \
778 	 ((MDB_LOCK_VERSION) \
779 	  /* Flags which describe functionality */ \
780 	  + (((MDB_PIDLOCK) != 0) << 16)))
781 /** @} */
782 
783 /** Common header for all page types. The page type depends on #mp_flags.
784  *
785  * #P_BRANCH and #P_LEAF pages have unsorted '#MDB_node's at the end, with
786  * sorted #mp_ptrs[] entries referring to them. Exception: #P_LEAF2 pages
787  * omit mp_ptrs and pack sorted #MDB_DUPFIXED values after the page header.
788  *
789  * #P_OVERFLOW records occupy one or more contiguous pages where only the
790  * first has a page header. They hold the real data of #F_BIGDATA nodes.
791  *
792  * #P_SUBP sub-pages are small leaf "pages" with duplicate data.
793  * A node with flag #F_DUPDATA but not #F_SUBDATA contains a sub-page.
794  * (Duplicate data can also go in sub-databases, which use normal pages.)
795  *
796  * #P_META pages contain #MDB_meta, the start point of an LMDB snapshot.
797  *
798  * Each non-metapage up to #MDB_meta.%mm_last_pg is reachable exactly once
799  * in the snapshot: Either used by a database or listed in a freeDB record.
800  */
801 typedef struct MDB_page {
802 #define	mp_pgno	mp_p.p_pgno
803 #define	mp_next	mp_p.p_next
804 	union {
805 		pgno_t		p_pgno;	/**< page number */
806 		struct MDB_page *p_next; /**< for in-memory list of freed pages */
807 	} mp_p;
808 	uint16_t	mp_pad;			/**< key size if this is a LEAF2 page */
809 /**	@defgroup mdb_page	Page Flags
810  *	@ingroup internal
811  *	Flags for the page headers.
812  *	@{
813  */
814 #define	P_BRANCH	 0x01		/**< branch page */
815 #define	P_LEAF		 0x02		/**< leaf page */
816 #define	P_OVERFLOW	 0x04		/**< overflow page */
817 #define	P_META		 0x08		/**< meta page */
818 #define	P_DIRTY		 0x10		/**< dirty page, also set for #P_SUBP pages */
819 #define	P_LEAF2		 0x20		/**< for #MDB_DUPFIXED records */
820 #define	P_SUBP		 0x40		/**< for #MDB_DUPSORT sub-pages */
821 #define	P_LOOSE		 0x4000		/**< page was dirtied then freed, can be reused */
822 #define	P_KEEP		 0x8000		/**< leave this page alone during spill */
823 /** @} */
824 	uint16_t	mp_flags;		/**< @ref mdb_page */
825 #define mp_lower	mp_pb.pb.pb_lower
826 #define mp_upper	mp_pb.pb.pb_upper
827 #define mp_pages	mp_pb.pb_pages
828 	union {
829 		struct {
830 			indx_t		pb_lower;		/**< lower bound of free space */
831 			indx_t		pb_upper;		/**< upper bound of free space */
832 		} pb;
833 		uint32_t	pb_pages;	/**< number of overflow pages */
834 	} mp_pb;
835 	indx_t		mp_ptrs[1];		/**< dynamic size */
836 } MDB_page;
837 
838 	/** Size of the page header, excluding dynamic data at the end */
839 #define PAGEHDRSZ	 ((unsigned) offsetof(MDB_page, mp_ptrs))
840 
841 	/** Address of first usable data byte in a page, after the header */
842 #define METADATA(p)	 ((void *)((char *)(p) + PAGEHDRSZ))
843 
844 	/** ITS#7713, change PAGEBASE to handle 65536 byte pages */
845 #define	PAGEBASE	((MDB_DEVEL) ? PAGEHDRSZ : 0)
846 
847 	/** Number of nodes on a page */
848 #define NUMKEYS(p)	 (((p)->mp_lower - (PAGEHDRSZ-PAGEBASE)) >> 1)
849 
850 	/** The amount of space remaining in the page */
851 #define SIZELEFT(p)	 (indx_t)((p)->mp_upper - (p)->mp_lower)
852 
853 	/** The percentage of space used in the page, in tenths of a percent. */
854 #define PAGEFILL(env, p) (1000L * ((env)->me_psize - PAGEHDRSZ - SIZELEFT(p)) / \
855 				((env)->me_psize - PAGEHDRSZ))
856 	/** The minimum page fill factor, in tenths of a percent.
857 	 *	Pages emptier than this are candidates for merging.
858 	 */
859 #define FILL_THRESHOLD	 250
860 
861 	/** Test if a page is a leaf page */
862 #define IS_LEAF(p)	 F_ISSET((p)->mp_flags, P_LEAF)
863 	/** Test if a page is a LEAF2 page */
864 #define IS_LEAF2(p)	 F_ISSET((p)->mp_flags, P_LEAF2)
865 	/** Test if a page is a branch page */
866 #define IS_BRANCH(p)	 F_ISSET((p)->mp_flags, P_BRANCH)
867 	/** Test if a page is an overflow page */
868 #define IS_OVERFLOW(p)	 F_ISSET((p)->mp_flags, P_OVERFLOW)
869 	/** Test if a page is a sub page */
870 #define IS_SUBP(p)	 F_ISSET((p)->mp_flags, P_SUBP)
871 
872 	/** The number of overflow pages needed to store the given size. */
873 #define OVPAGES(size, psize)	((PAGEHDRSZ-1 + (size)) / (psize) + 1)
874 
875 	/** Link in #MDB_txn.%mt_loose_pgs list.
876 	 *  Kept outside the page header, which is needed when reusing the page.
877 	 */
878 #define NEXT_LOOSE_PAGE(p)		(*(MDB_page **)((p) + 2))
879 
880 	/** Header for a single key/data pair within a page.
881 	 * Used in pages of type #P_BRANCH and #P_LEAF without #P_LEAF2.
882 	 * We guarantee 2-byte alignment for 'MDB_node's.
883 	 *
884 	 * #mn_lo and #mn_hi are used for data size on leaf nodes, and for child
885 	 * pgno on branch nodes.  On 64 bit platforms, #mn_flags is also used
886 	 * for pgno.  (Branch nodes have no flags).  Lo and hi are in host byte
887 	 * order in case some accesses can be optimized to 32-bit word access.
888 	 *
889 	 * Leaf node flags describe node contents.  #F_BIGDATA says the node's
890 	 * data part is the page number of an overflow page with actual data.
891 	 * #F_DUPDATA and #F_SUBDATA can be combined giving duplicate data in
892 	 * a sub-page/sub-database, and named databases (just #F_SUBDATA).
893 	 */
894 typedef struct MDB_node {
895 	/** part of data size or pgno
896 	 *	@{ */
897 #if BYTE_ORDER == LITTLE_ENDIAN
898 	unsigned short	mn_lo, mn_hi;
899 #else
900 	unsigned short	mn_hi, mn_lo;
901 #endif
902 	/** @} */
903 /** @defgroup mdb_node Node Flags
904  *	@ingroup internal
905  *	Flags for node headers.
906  *	@{
907  */
908 #define F_BIGDATA	 0x01			/**< data put on overflow page */
909 #define F_SUBDATA	 0x02			/**< data is a sub-database */
910 #define F_DUPDATA	 0x04			/**< data has duplicates */
911 
912 /** valid flags for #mdb_node_add() */
913 #define	NODE_ADD_FLAGS	(F_DUPDATA|F_SUBDATA|MDB_RESERVE|MDB_APPEND)
914 
915 /** @} */
916 	unsigned short	mn_flags;		/**< @ref mdb_node */
917 	unsigned short	mn_ksize;		/**< key size */
918 	char		mn_data[1];			/**< key and data are appended here */
919 } MDB_node;
920 
921 	/** Size of the node header, excluding dynamic data at the end */
922 #define NODESIZE	 offsetof(MDB_node, mn_data)
923 
924 	/** Bit position of top word in page number, for shifting mn_flags */
925 #define PGNO_TOPWORD ((pgno_t)-1 > 0xffffffffu ? 32 : 0)
926 
927 	/** Size of a node in a branch page with a given key.
928 	 *	This is just the node header plus the key, there is no data.
929 	 */
930 #define INDXSIZE(k)	 (NODESIZE + ((k) == NULL ? 0 : (k)->mv_size))
931 
932 	/** Size of a node in a leaf page with a given key and data.
933 	 *	This is node header plus key plus data size.
934 	 */
935 #define LEAFSIZE(k, d)	 (NODESIZE + (k)->mv_size + (d)->mv_size)
936 
937 	/** Address of node \b i in page \b p */
938 #define NODEPTR(p, i)	 ((MDB_node *)((char *)(p) + (p)->mp_ptrs[i] + PAGEBASE))
939 
940 	/** Address of the key for the node */
941 #define NODEKEY(node)	 (void *)((node)->mn_data)
942 
943 	/** Address of the data for a node */
944 #define NODEDATA(node)	 (void *)((char *)(node)->mn_data + (node)->mn_ksize)
945 
946 	/** Get the page number pointed to by a branch node */
947 #define NODEPGNO(node) \
948 	((node)->mn_lo | ((pgno_t) (node)->mn_hi << 16) | \
949 	 (PGNO_TOPWORD ? ((pgno_t) (node)->mn_flags << PGNO_TOPWORD) : 0))
950 	/** Set the page number in a branch node */
951 #define SETPGNO(node,pgno)	do { \
952 	(node)->mn_lo = (pgno) & 0xffff; (node)->mn_hi = (pgno) >> 16; \
953 	if (PGNO_TOPWORD) (node)->mn_flags = (pgno) >> PGNO_TOPWORD; } while(0)
954 
955 	/** Get the size of the data in a leaf node */
956 #define NODEDSZ(node)	 ((node)->mn_lo | ((unsigned)(node)->mn_hi << 16))
957 	/** Set the size of the data for a leaf node */
958 #define SETDSZ(node,size)	do { \
959 	(node)->mn_lo = (size) & 0xffff; (node)->mn_hi = (size) >> 16;} while(0)
960 	/** The size of a key in a node */
961 #define NODEKSZ(node)	 ((node)->mn_ksize)
962 
963 	/** Copy a page number from src to dst */
964 #ifdef MISALIGNED_OK
965 #define COPY_PGNO(dst,src)	dst = src
966 #else
967 #if SIZE_MAX > 4294967295UL
968 #define COPY_PGNO(dst,src)	do { \
969 	unsigned short *s, *d;	\
970 	s = (unsigned short *)&(src);	\
971 	d = (unsigned short *)&(dst);	\
972 	*d++ = *s++;	\
973 	*d++ = *s++;	\
974 	*d++ = *s++;	\
975 	*d = *s;	\
976 } while (0)
977 #else
978 #define COPY_PGNO(dst,src)	do { \
979 	unsigned short *s, *d;	\
980 	s = (unsigned short *)&(src);	\
981 	d = (unsigned short *)&(dst);	\
982 	*d++ = *s++;	\
983 	*d = *s;	\
984 } while (0)
985 #endif
986 #endif
987 	/** The address of a key in a LEAF2 page.
988 	 *	LEAF2 pages are used for #MDB_DUPFIXED sorted-duplicate sub-DBs.
989 	 *	There are no node headers, keys are stored contiguously.
990 	 */
991 #define LEAF2KEY(p, i, ks)	((char *)(p) + PAGEHDRSZ + ((i)*(ks)))
992 
993 	/** Set the \b node's key into \b keyptr, if requested. */
994 #define MDB_GET_KEY(node, keyptr)	{ if ((keyptr) != NULL) { \
995 	(keyptr)->mv_size = NODEKSZ(node); (keyptr)->mv_data = NODEKEY(node); } }
996 
997 	/** Set the \b node's key into \b key. */
998 #define MDB_GET_KEY2(node, key)	{ key.mv_size = NODEKSZ(node); key.mv_data = NODEKEY(node); }
999 
1000 	/** Information about a single database in the environment. */
1001 typedef struct MDB_db {
1002 	uint32_t	md_pad;		/**< also ksize for LEAF2 pages */
1003 	uint16_t	md_flags;	/**< @ref mdb_dbi_open */
1004 	uint16_t	md_depth;	/**< depth of this tree */
1005 	pgno_t		md_branch_pages;	/**< number of internal pages */
1006 	pgno_t		md_leaf_pages;		/**< number of leaf pages */
1007 	pgno_t		md_overflow_pages;	/**< number of overflow pages */
1008 	size_t		md_entries;		/**< number of data items */
1009 	pgno_t		md_root;		/**< the root page of this tree */
1010 } MDB_db;
1011 
1012 #define MDB_VALID	0x8000		/**< DB handle is valid, for me_dbflags */
1013 #define PERSISTENT_FLAGS	(0xffff & ~(MDB_VALID))
1014 	/** #mdb_dbi_open() flags */
1015 #define VALID_FLAGS	(MDB_REVERSEKEY|MDB_DUPSORT|MDB_INTEGERKEY|MDB_DUPFIXED|\
1016 	MDB_INTEGERDUP|MDB_REVERSEDUP|MDB_CREATE)
1017 
1018 	/** Handle for the DB used to track free pages. */
1019 #define	FREE_DBI	0
1020 	/** Handle for the default DB. */
1021 #define	MAIN_DBI	1
1022 	/** Number of DBs in metapage (free and main) - also hardcoded elsewhere */
1023 #define CORE_DBS	2
1024 
1025 	/** Number of meta pages - also hardcoded elsewhere */
1026 #define NUM_METAS	2
1027 
1028 	/** Meta page content.
1029 	 *	A meta page is the start point for accessing a database snapshot.
1030 	 *	Pages 0-1 are meta pages. Transaction N writes meta page #(N % 2).
1031 	 */
1032 typedef struct MDB_meta {
1033 		/** Stamp identifying this as an LMDB file. It must be set
1034 		 *	to #MDB_MAGIC. */
1035 	uint32_t	mm_magic;
1036 		/** Version number of this file. Must be set to #MDB_DATA_VERSION. */
1037 	uint32_t	mm_version;
1038 	void		*mm_address;		/**< address for fixed mapping */
1039 	size_t		mm_mapsize;			/**< size of mmap region */
1040 	MDB_db		mm_dbs[CORE_DBS];	/**< first is free space, 2nd is main db */
1041 	/** The size of pages used in this DB */
1042 #define	mm_psize	mm_dbs[FREE_DBI].md_pad
1043 	/** Any persistent environment flags. @ref mdb_env */
1044 #define	mm_flags	mm_dbs[FREE_DBI].md_flags
1045 	/** Last used page in the datafile.
1046 	 *	Actually the file may be shorter if the freeDB lists the final pages.
1047 	 */
1048 	pgno_t		mm_last_pg;
1049 	volatile txnid_t	mm_txnid;	/**< txnid that committed this page */
1050 } MDB_meta;
1051 
1052 	/** Buffer for a stack-allocated meta page.
1053 	 *	The members define size and alignment, and silence type
1054 	 *	aliasing warnings.  They are not used directly; that could
1055 	 *	mean incorrectly using several union members in parallel.
1056 	 */
1057 typedef union MDB_metabuf {
1058 	MDB_page	mb_page;
1059 	struct {
1060 		char		mm_pad[PAGEHDRSZ];
1061 		MDB_meta	mm_meta;
1062 	} mb_metabuf;
1063 } MDB_metabuf;
1064 
1065 	/** Auxiliary DB info.
1066 	 *	The information here is mostly static/read-only. There is
1067 	 *	only a single copy of this record in the environment.
1068 	 */
1069 typedef struct MDB_dbx {
1070 	MDB_val		md_name;		/**< name of the database */
1071 	MDB_cmp_func	*md_cmp;	/**< function for comparing keys */
1072 	MDB_cmp_func	*md_dcmp;	/**< function for comparing data items */
1073 	MDB_rel_func	*md_rel;	/**< user relocate function */
1074 	void		*md_relctx;		/**< user-provided context for md_rel */
1075 } MDB_dbx;
1076 
1077 	/** A database transaction.
1078 	 *	Every operation requires a transaction handle.
1079 	 */
1080 struct MDB_txn {
1081 	MDB_txn		*mt_parent;		/**< parent of a nested txn */
1082 	/** Nested txn under this txn, set together with flag #MDB_TXN_HAS_CHILD */
1083 	MDB_txn		*mt_child;
1084 	pgno_t		mt_next_pgno;	/**< next unallocated page */
1085 	/** The ID of this transaction. IDs are integers incrementing from 1.
1086 	 *	Only committed write transactions increment the ID. If a transaction
1087 	 *	aborts, the ID may be re-used by the next writer.
1088 	 */
1089 	txnid_t		mt_txnid;
1090 	MDB_env		*mt_env;		/**< the DB environment */
1091 	/** The list of pages that became unused during this transaction.
1092 	 */
1093 	MDB_IDL		mt_free_pgs;
1094 	/** The list of loose pages that became unused and may be reused
1095 	 *	in this transaction, linked through #NEXT_LOOSE_PAGE(page).
1096 	 */
1097 	MDB_page	*mt_loose_pgs;
1098 	/** Number of loose pages (#mt_loose_pgs) */
1099 	int			mt_loose_count;
1100 	/** The sorted list of dirty pages we temporarily wrote to disk
1101 	 *	because the dirty list was full. page numbers in here are
1102 	 *	shifted left by 1, deleted slots have the LSB set.
1103 	 */
1104 	MDB_IDL		mt_spill_pgs;
1105 	union {
1106 		/** For write txns: Modified pages. Sorted when not MDB_WRITEMAP. */
1107 		MDB_ID2L	dirty_list;
1108 		/** For read txns: This thread/txn's reader table slot, or NULL. */
1109 		MDB_reader	*reader;
1110 	} mt_u;
1111 	/** Array of records for each DB known in the environment. */
1112 	MDB_dbx		*mt_dbxs;
1113 	/** Array of MDB_db records for each known DB */
1114 	MDB_db		*mt_dbs;
1115 	/** Array of sequence numbers for each DB handle */
1116 	unsigned int	*mt_dbiseqs;
1117 /** @defgroup mt_dbflag	Transaction DB Flags
1118  *	@ingroup internal
1119  * @{
1120  */
1121 #define DB_DIRTY	0x01		/**< DB was written in this txn */
1122 #define DB_STALE	0x02		/**< Named-DB record is older than txnID */
1123 #define DB_NEW		0x04		/**< Named-DB handle opened in this txn */
1124 #define DB_VALID	0x08		/**< DB handle is valid, see also #MDB_VALID */
1125 #define DB_USRVALID	0x10		/**< As #DB_VALID, but not set for #FREE_DBI */
1126 #define DB_DUPDATA	0x20		/**< DB is #MDB_DUPSORT data */
1127 /** @} */
1128 	/** In write txns, array of cursors for each DB */
1129 	MDB_cursor	**mt_cursors;
1130 	/** Array of flags for each DB */
1131 	unsigned char	*mt_dbflags;
1132 	/**	Number of DB records in use, or 0 when the txn is finished.
1133 	 *	This number only ever increments until the txn finishes; we
1134 	 *	don't decrement it when individual DB handles are closed.
1135 	 */
1136 	MDB_dbi		mt_numdbs;
1137 
1138 /** @defgroup mdb_txn	Transaction Flags
1139  *	@ingroup internal
1140  *	@{
1141  */
1142 	/** #mdb_txn_begin() flags */
1143 #define MDB_TXN_BEGIN_FLAGS	MDB_RDONLY
1144 #define MDB_TXN_RDONLY		MDB_RDONLY	/**< read-only transaction */
1145 	/* internal txn flags */
1146 #define MDB_TXN_WRITEMAP	MDB_WRITEMAP	/**< copy of #MDB_env flag in writers */
1147 #define MDB_TXN_FINISHED	0x01		/**< txn is finished or never began */
1148 #define MDB_TXN_ERROR		0x02		/**< txn is unusable after an error */
1149 #define MDB_TXN_DIRTY		0x04		/**< must write, even if dirty list is empty */
1150 #define MDB_TXN_SPILLS		0x08		/**< txn or a parent has spilled pages */
1151 #define MDB_TXN_HAS_CHILD	0x10		/**< txn has an #MDB_txn.%mt_child */
1152 	/** most operations on the txn are currently illegal */
1153 #define MDB_TXN_BLOCKED		(MDB_TXN_FINISHED|MDB_TXN_ERROR|MDB_TXN_HAS_CHILD)
1154 /** @} */
1155 	unsigned int	mt_flags;		/**< @ref mdb_txn */
1156 	/** #dirty_list room: Array size - \#dirty pages visible to this txn.
1157 	 *	Includes ancestor txns' dirty pages not hidden by other txns'
1158 	 *	dirty/spilled pages. Thus commit(nested txn) has room to merge
1159 	 *	dirty_list into mt_parent after freeing hidden mt_parent pages.
1160 	 */
1161 	unsigned int	mt_dirty_room;
1162 };
1163 
1164 /** Enough space for 2^32 nodes with minimum of 2 keys per node. I.e., plenty.
1165  * At 4 keys per node, enough for 2^64 nodes, so there's probably no need to
1166  * raise this on a 64 bit machine.
1167  */
1168 #define CURSOR_STACK		 32
1169 
1170 struct MDB_xcursor;
1171 
1172 	/** Cursors are used for all DB operations.
1173 	 *	A cursor holds a path of (page pointer, key index) from the DB
1174 	 *	root to a position in the DB, plus other state. #MDB_DUPSORT
1175 	 *	cursors include an xcursor to the current data item. Write txns
1176 	 *	track their cursors and keep them up to date when data moves.
1177 	 *	Exception: An xcursor's pointer to a #P_SUBP page can be stale.
1178 	 *	(A node with #F_DUPDATA but no #F_SUBDATA contains a subpage).
1179 	 */
1180 struct MDB_cursor {
1181 	/** Next cursor on this DB in this txn */
1182 	MDB_cursor	*mc_next;
1183 	/** Backup of the original cursor if this cursor is a shadow */
1184 	MDB_cursor	*mc_backup;
1185 	/** Context used for databases with #MDB_DUPSORT, otherwise NULL */
1186 	struct MDB_xcursor	*mc_xcursor;
1187 	/** The transaction that owns this cursor */
1188 	MDB_txn		*mc_txn;
1189 	/** The database handle this cursor operates on */
1190 	MDB_dbi		mc_dbi;
1191 	/** The database record for this cursor */
1192 	MDB_db		*mc_db;
1193 	/** The database auxiliary record for this cursor */
1194 	MDB_dbx		*mc_dbx;
1195 	/** The @ref mt_dbflag for this database */
1196 	unsigned char	*mc_dbflag;
1197 	unsigned short 	mc_snum;	/**< number of pushed pages */
1198 	unsigned short	mc_top;		/**< index of top page, normally mc_snum-1 */
1199 /** @defgroup mdb_cursor	Cursor Flags
1200  *	@ingroup internal
1201  *	Cursor state flags.
1202  *	@{
1203  */
1204 #define C_INITIALIZED	0x01	/**< cursor has been initialized and is valid */
1205 #define C_EOF	0x02			/**< No more data */
1206 #define C_SUB	0x04			/**< Cursor is a sub-cursor */
1207 #define C_DEL	0x08			/**< last op was a cursor_del */
1208 #define C_UNTRACK	0x40		/**< Un-track cursor when closing */
1209 /** @} */
1210 	unsigned int	mc_flags;	/**< @ref mdb_cursor */
1211 	MDB_page	*mc_pg[CURSOR_STACK];	/**< stack of pushed pages */
1212 	indx_t		mc_ki[CURSOR_STACK];	/**< stack of page indices */
1213 };
1214 
1215 	/** Context for sorted-dup records.
1216 	 *	We could have gone to a fully recursive design, with arbitrarily
1217 	 *	deep nesting of sub-databases. But for now we only handle these
1218 	 *	levels - main DB, optional sub-DB, sorted-duplicate DB.
1219 	 */
1220 typedef struct MDB_xcursor {
1221 	/** A sub-cursor for traversing the Dup DB */
1222 	MDB_cursor mx_cursor;
1223 	/** The database record for this Dup DB */
1224 	MDB_db	mx_db;
1225 	/**	The auxiliary DB record for this Dup DB */
1226 	MDB_dbx	mx_dbx;
1227 	/** The @ref mt_dbflag for this Dup DB */
1228 	unsigned char mx_dbflag;
1229 } MDB_xcursor;
1230 
1231 	/** Check if there is an inited xcursor */
1232 #define XCURSOR_INITED(mc) \
1233 	((mc)->mc_xcursor && ((mc)->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))
1234 
1235 	/** Update the xcursor's sub-page pointer, if any, in \b mc.  Needed
1236 	 *	when the node which contains the sub-page may have moved.  Called
1237 	 *	with leaf page \b mp = mc->mc_pg[\b top].
1238 	 */
1239 #define XCURSOR_REFRESH(mc, top, mp) do { \
1240 	MDB_page *xr_pg = (mp); \
1241 	MDB_node *xr_node; \
1242 	if (!XCURSOR_INITED(mc) || (mc)->mc_ki[top] >= NUMKEYS(xr_pg)) break; \
1243 	xr_node = NODEPTR(xr_pg, (mc)->mc_ki[top]); \
1244 	if ((xr_node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) \
1245 		(mc)->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(xr_node); \
1246 } while (0)
1247 
1248 	/** State of FreeDB old pages, stored in the MDB_env */
1249 typedef struct MDB_pgstate {
1250 	pgno_t		*mf_pghead;	/**< Reclaimed freeDB pages, or NULL before use */
1251 	txnid_t		mf_pglast;	/**< ID of last used record, or 0 if !mf_pghead */
1252 } MDB_pgstate;
1253 
1254 	/** The database environment. */
1255 struct MDB_env {
1256 	HANDLE		me_fd;		/**< The main data file */
1257 	HANDLE		me_lfd;		/**< The lock file */
1258 	HANDLE		me_mfd;		/**< For writing and syncing the meta pages */
1259 	/** Failed to update the meta page. Probably an I/O error. */
1260 #define	MDB_FATAL_ERROR	0x80000000U
1261 	/** Some fields are initialized. */
1262 #define	MDB_ENV_ACTIVE	0x20000000U
1263 	/** me_txkey is set */
1264 #define	MDB_ENV_TXKEY	0x10000000U
1265 	/** fdatasync is unreliable */
1266 #define	MDB_FSYNCONLY	0x08000000U
1267 	uint32_t 	me_flags;		/**< @ref mdb_env */
1268 	unsigned int	me_psize;	/**< DB page size, inited from me_os_psize */
1269 	unsigned int	me_os_psize;	/**< OS page size, from #GET_PAGESIZE */
1270 	unsigned int	me_maxreaders;	/**< size of the reader table */
1271 	/** Max #MDB_txninfo.%mti_numreaders of interest to #mdb_env_close() */
1272 	volatile int	me_close_readers;
1273 	MDB_dbi		me_numdbs;		/**< number of DBs opened */
1274 	MDB_dbi		me_maxdbs;		/**< size of the DB table */
1275 	MDB_PID_T	me_pid;		/**< process ID of this env */
1276 	char		*me_path;		/**< path to the DB files */
1277 	char		*me_map;		/**< the memory map of the data file */
1278 	MDB_txninfo	*me_txns;		/**< the memory map of the lock file or NULL */
1279 	MDB_meta	*me_metas[NUM_METAS];	/**< pointers to the two meta pages */
1280 	void		*me_pbuf;		/**< scratch area for DUPSORT put() */
1281 	MDB_txn		*me_txn;		/**< current write transaction */
1282 	MDB_txn		*me_txn0;		/**< prealloc'd write transaction */
1283 	size_t		me_mapsize;		/**< size of the data memory map */
1284 	off_t		me_size;		/**< current file size */
1285 	pgno_t		me_maxpg;		/**< me_mapsize / me_psize */
1286 	MDB_dbx		*me_dbxs;		/**< array of static DB info */
1287 	uint16_t	*me_dbflags;	/**< array of flags from MDB_db.md_flags */
1288 	unsigned int	*me_dbiseqs;	/**< array of dbi sequence numbers */
1289 	pthread_key_t	me_txkey;	/**< thread-key for readers */
1290 	txnid_t		me_pgoldest;	/**< ID of oldest reader last time we looked */
1291 	MDB_pgstate	me_pgstate;		/**< state of old pages from freeDB */
1292 #	define		me_pglast	me_pgstate.mf_pglast
1293 #	define		me_pghead	me_pgstate.mf_pghead
1294 	MDB_page	*me_dpages;		/**< list of malloc'd blocks for re-use */
1295 	/** IDL of pages that became unused in a write txn */
1296 	MDB_IDL		me_free_pgs;
1297 	/** ID2L of pages written during a write txn. Length MDB_IDL_UM_SIZE. */
1298 	MDB_ID2L	me_dirty_list;
1299 	/** Max number of freelist items that can fit in a single overflow page */
1300 	int			me_maxfree_1pg;
1301 	/** Max size of a node on a page */
1302 	unsigned int	me_nodemax;
1303 #if !(MDB_MAXKEYSIZE)
1304 	unsigned int	me_maxkey;	/**< max size of a key */
1305 #endif
1306 	int		me_live_reader;		/**< have liveness lock in reader table */
1307 #ifdef _WIN32
1308 	int		me_pidquery;		/**< Used in OpenProcess */
1309 #endif
1310 #ifdef MDB_USE_POSIX_MUTEX	/* Posix mutexes reside in shared mem */
1311 #	define		me_rmutex	me_txns->mti_rmutex /**< Shared reader lock */
1312 #	define		me_wmutex	me_txns->mti_wmutex /**< Shared writer lock */
1313 #else
1314 	mdb_mutex_t	me_rmutex;
1315 	mdb_mutex_t	me_wmutex;
1316 #endif
1317 	void		*me_userctx;	 /**< User-settable context */
1318 	MDB_assert_func *me_assert_func; /**< Callback for assertion failures */
1319 };
1320 
1321 	/** Nested transaction */
1322 typedef struct MDB_ntxn {
1323 	MDB_txn		mnt_txn;		/**< the transaction */
1324 	MDB_pgstate	mnt_pgstate;	/**< parent transaction's saved freestate */
1325 } MDB_ntxn;
1326 
1327 	/** max number of pages to commit in one writev() call */
1328 #define MDB_COMMIT_PAGES	 64
1329 #if defined(IOV_MAX) && IOV_MAX < MDB_COMMIT_PAGES
1330 #undef MDB_COMMIT_PAGES
1331 #define MDB_COMMIT_PAGES	IOV_MAX
1332 #endif
1333 
1334 	/** max bytes to write in one call */
1335 #define MAX_WRITE		(0x40000000U >> (sizeof(ssize_t) == 4))
1336 
1337 	/** Check \b txn and \b dbi arguments to a function */
1338 #define TXN_DBI_EXIST(txn, dbi, validity) \
1339 	((txn) && (dbi)<(txn)->mt_numdbs && ((txn)->mt_dbflags[dbi] & (validity)))
1340 
1341 	/** Check for misused \b dbi handles */
1342 #define TXN_DBI_CHANGED(txn, dbi) \
1343 	((txn)->mt_dbiseqs[dbi] != (txn)->mt_env->me_dbiseqs[dbi])
1344 
1345 static int  mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp);
1346 static int  mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp);
1347 static int  mdb_page_touch(MDB_cursor *mc);
1348 
1349 #define MDB_END_NAMES {"committed", "empty-commit", "abort", "reset", \
1350 	"reset-tmp", "fail-begin", "fail-beginchild"}
1351 enum {
1352 	/* mdb_txn_end operation number, for logging */
1353 	MDB_END_COMMITTED, MDB_END_EMPTY_COMMIT, MDB_END_ABORT, MDB_END_RESET,
1354 	MDB_END_RESET_TMP, MDB_END_FAIL_BEGIN, MDB_END_FAIL_BEGINCHILD
1355 };
1356 #define MDB_END_OPMASK	0x0F	/**< mask for #mdb_txn_end() operation number */
1357 #define MDB_END_UPDATE	0x10	/**< update env state (DBIs) */
1358 #define MDB_END_FREE	0x20	/**< free txn unless it is #MDB_env.%me_txn0 */
1359 #define MDB_END_SLOT MDB_NOTLS	/**< release any reader slot if #MDB_NOTLS */
1360 static void mdb_txn_end(MDB_txn *txn, unsigned mode);
1361 
1362 static int  mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **mp, int *lvl);
1363 static int  mdb_page_search_root(MDB_cursor *mc,
1364 			    MDB_val *key, int modify);
1365 #define MDB_PS_MODIFY	1
1366 #define MDB_PS_ROOTONLY	2
1367 #define MDB_PS_FIRST	4
1368 #define MDB_PS_LAST		8
1369 static int  mdb_page_search(MDB_cursor *mc,
1370 			    MDB_val *key, int flags);
1371 static int	mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst);
1372 
1373 #define MDB_SPLIT_REPLACE	MDB_APPENDDUP	/**< newkey is not new */
1374 static int	mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata,
1375 				pgno_t newpgno, unsigned int nflags);
1376 
1377 static int  mdb_env_read_header(MDB_env *env, MDB_meta *meta);
1378 static MDB_meta *mdb_env_pick_meta(const MDB_env *env);
1379 static int  mdb_env_write_meta(MDB_txn *txn);
1380 #ifdef MDB_USE_POSIX_MUTEX /* Drop unused excl arg */
1381 # define mdb_env_close0(env, excl) mdb_env_close1(env)
1382 #endif
1383 static void mdb_env_close0(MDB_env *env, int excl);
1384 
1385 static MDB_node *mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp);
1386 static int  mdb_node_add(MDB_cursor *mc, indx_t indx,
1387 			    MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags);
1388 static void mdb_node_del(MDB_cursor *mc, int ksize);
1389 static void mdb_node_shrink(MDB_page *mp, indx_t indx);
1390 static int	mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft);
1391 static int  mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data);
1392 static size_t	mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data);
1393 static size_t	mdb_branch_size(MDB_env *env, MDB_val *key);
1394 
1395 static int	mdb_rebalance(MDB_cursor *mc);
1396 static int	mdb_update_key(MDB_cursor *mc, MDB_val *key);
1397 
1398 static void	mdb_cursor_pop(MDB_cursor *mc);
1399 static int	mdb_cursor_push(MDB_cursor *mc, MDB_page *mp);
1400 
1401 static int	mdb_cursor_del0(MDB_cursor *mc);
1402 static int	mdb_del0(MDB_txn *txn, MDB_dbi dbi, MDB_val *key, MDB_val *data, unsigned flags);
1403 static int	mdb_cursor_sibling(MDB_cursor *mc, int move_right);
1404 static int	mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
1405 static int	mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
1406 static int	mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op,
1407 				int *exactp);
1408 static int	mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data);
1409 static int	mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data);
1410 
1411 static void	mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx);
1412 static void	mdb_xcursor_init0(MDB_cursor *mc);
1413 static void	mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node);
1414 static void	mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int force);
1415 
1416 static int	mdb_drop0(MDB_cursor *mc, int subs);
1417 static void mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi);
1418 static int mdb_reader_check0(MDB_env *env, int rlocked, int *dead);
1419 
1420 /** @cond */
1421 static MDB_cmp_func	mdb_cmp_memn, mdb_cmp_memnr, mdb_cmp_int, mdb_cmp_cint, mdb_cmp_long;
1422 /** @endcond */
1423 
1424 /** Compare two items pointing at size_t's of unknown alignment. */
1425 #ifdef MISALIGNED_OK
1426 # define mdb_cmp_clong mdb_cmp_long
1427 #else
1428 # define mdb_cmp_clong mdb_cmp_cint
1429 #endif
1430 
1431 #ifdef _WIN32
1432 static SECURITY_DESCRIPTOR mdb_null_sd;
1433 static SECURITY_ATTRIBUTES mdb_all_sa;
1434 static int mdb_sec_inited;
1435 
1436 struct MDB_name;
1437 static int utf8_to_utf16(const char *src, struct MDB_name *dst, int xtra);
1438 #endif
1439 
1440 /** Return the library version info. */
1441 char * ESECT
1442 mdb_version(int *major, int *minor, int *patch)
1443 {
1444 	if (major) *major = MDB_VERSION_MAJOR;
1445 	if (minor) *minor = MDB_VERSION_MINOR;
1446 	if (patch) *patch = MDB_VERSION_PATCH;
1447 	return MDB_VERSION_STRING;
1448 }
1449 
1450 /** Table of descriptions for LMDB @ref errors */
1451 static char *const mdb_errstr[] = {
1452 	"MDB_KEYEXIST: Key/data pair already exists",
1453 	"MDB_NOTFOUND: No matching key/data pair found",
1454 	"MDB_PAGE_NOTFOUND: Requested page not found",
1455 	"MDB_CORRUPTED: Located page was wrong type",
1456 	"MDB_PANIC: Update of meta page failed or environment had fatal error",
1457 	"MDB_VERSION_MISMATCH: Database environment version mismatch",
1458 	"MDB_INVALID: File is not an LMDB file",
1459 	"MDB_MAP_FULL: Environment mapsize limit reached",
1460 	"MDB_DBS_FULL: Environment maxdbs limit reached",
1461 	"MDB_READERS_FULL: Environment maxreaders limit reached",
1462 	"MDB_TLS_FULL: Thread-local storage keys full - too many environments open",
1463 	"MDB_TXN_FULL: Transaction has too many dirty pages - transaction too big",
1464 	"MDB_CURSOR_FULL: Internal error - cursor stack limit reached",
1465 	"MDB_PAGE_FULL: Internal error - page has no more space",
1466 	"MDB_MAP_RESIZED: Database contents grew beyond environment mapsize",
1467 	"MDB_INCOMPATIBLE: Operation and DB incompatible, or DB flags changed",
1468 	"MDB_BAD_RSLOT: Invalid reuse of reader locktable slot",
1469 	"MDB_BAD_TXN: Transaction must abort, has a child, or is invalid",
1470 	"MDB_BAD_VALSIZE: Unsupported size of key/DB name/data, or wrong DUPFIXED size",
1471 	"MDB_BAD_DBI: The specified DBI handle was closed/changed unexpectedly",
1472 };
1473 
1474 char *
1475 mdb_strerror(int err)
1476 {
1477 #ifdef _WIN32
1478 	/** HACK: pad 4KB on stack over the buf. Return system msgs in buf.
1479 	 *	This works as long as no function between the call to mdb_strerror
1480 	 *	and the actual use of the message uses more than 4K of stack.
1481 	 */
1482 #define MSGSIZE	1024
1483 #define PADSIZE	4096
1484 	char buf[MSGSIZE+PADSIZE], *ptr = buf;
1485 #endif
1486 	int i;
1487 	if (!err)
1488 		return ("Successful return: 0");
1489 
1490 	if (err >= MDB_KEYEXIST && err <= MDB_LAST_ERRCODE) {
1491 		i = err - MDB_KEYEXIST;
1492 		return mdb_errstr[i];
1493 	}
1494 
1495 #ifdef _WIN32
1496 	/* These are the C-runtime error codes we use. The comment indicates
1497 	 * their numeric value, and the Win32 error they would correspond to
1498 	 * if the error actually came from a Win32 API. A major mess, we should
1499 	 * have used LMDB-specific error codes for everything.
1500 	 */
1501 	switch(err) {
1502 	case ENOENT:	/* 2, FILE_NOT_FOUND */
1503 	case EIO:		/* 5, ACCESS_DENIED */
1504 	case ENOMEM:	/* 12, INVALID_ACCESS */
1505 	case EACCES:	/* 13, INVALID_DATA */
1506 	case EBUSY:		/* 16, CURRENT_DIRECTORY */
1507 	case EINVAL:	/* 22, BAD_COMMAND */
1508 	case ENOSPC:	/* 28, OUT_OF_PAPER */
1509 		return strerror(err);
1510 	default:
1511 		;
1512 	}
1513 	buf[0] = 0;
1514 	FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM |
1515 		FORMAT_MESSAGE_IGNORE_INSERTS,
1516 		NULL, err, 0, ptr, MSGSIZE, (va_list *)buf+MSGSIZE);
1517 	return ptr;
1518 #else
1519 	return strerror(err);
1520 #endif
1521 }
1522 
1523 /** assert(3) variant in cursor context */
1524 #define mdb_cassert(mc, expr)	mdb_assert0((mc)->mc_txn->mt_env, expr, #expr)
1525 /** assert(3) variant in transaction context */
1526 #define mdb_tassert(txn, expr)	mdb_assert0((txn)->mt_env, expr, #expr)
1527 /** assert(3) variant in environment context */
1528 #define mdb_eassert(env, expr)	mdb_assert0(env, expr, #expr)
1529 
1530 #ifndef NDEBUG
1531 # define mdb_assert0(env, expr, expr_txt) ((expr) ? (void)0 : \
1532 		mdb_assert_fail(env, expr_txt, mdb_func_, __FILE__, __LINE__))
1533 
1534 static void ESECT
1535 mdb_assert_fail(MDB_env *env, const char *expr_txt,
1536 	const char *func, const char *file, int line)
1537 {
1538 	char buf[400];
1539 	sprintf(buf, "%.100s:%d: Assertion '%.200s' failed in %.40s()",
1540 		file, line, expr_txt, func);
1541 	if (env->me_assert_func)
1542 		env->me_assert_func(env, buf);
1543 	fprintf(stderr, "%s\n", buf);
1544 	abort();
1545 }
1546 #else
1547 # define mdb_assert0(env, expr, expr_txt) ((void) 0)
1548 #endif /* NDEBUG */
1549 
1550 #if MDB_DEBUG
1551 /** Return the page number of \b mp which may be sub-page, for debug output */
1552 static pgno_t
1553 mdb_dbg_pgno(MDB_page *mp)
1554 {
1555 	pgno_t ret;
1556 	COPY_PGNO(ret, mp->mp_pgno);
1557 	return ret;
1558 }
1559 
1560 /** Display a key in hexadecimal and return the address of the result.
1561  * @param[in] key the key to display
1562  * @param[in] buf the buffer to write into. Should always be #DKBUF.
1563  * @return The key in hexadecimal form.
1564  */
1565 char *
1566 mdb_dkey(MDB_val *key, char *buf)
1567 {
1568 	char *ptr = buf;
1569 	unsigned char *c = key->mv_data;
1570 	unsigned int i;
1571 
1572 	if (!key)
1573 		return "";
1574 
1575 	if (key->mv_size > DKBUF_MAXKEYSIZE)
1576 		return "MDB_MAXKEYSIZE";
1577 	/* may want to make this a dynamic check: if the key is mostly
1578 	 * printable characters, print it as-is instead of converting to hex.
1579 	 */
1580 #if 1
1581 	buf[0] = '\0';
1582 	for (i=0; i<key->mv_size; i++)
1583 		ptr += sprintf(ptr, "%02x", *c++);
1584 #else
1585 	sprintf(buf, "%.*s", key->mv_size, key->mv_data);
1586 #endif
1587 	return buf;
1588 }
1589 
1590 static const char *
1591 mdb_leafnode_type(MDB_node *n)
1592 {
1593 	static char *const tp[2][2] = {{"", ": DB"}, {": sub-page", ": sub-DB"}};
1594 	return F_ISSET(n->mn_flags, F_BIGDATA) ? ": overflow page" :
1595 		tp[F_ISSET(n->mn_flags, F_DUPDATA)][F_ISSET(n->mn_flags, F_SUBDATA)];
1596 }
1597 
1598 /** Display all the keys in the page. */
1599 void
1600 mdb_page_list(MDB_page *mp)
1601 {
1602 	pgno_t pgno = mdb_dbg_pgno(mp);
1603 	const char *type, *state = (mp->mp_flags & P_DIRTY) ? ", dirty" : "";
1604 	MDB_node *node;
1605 	unsigned int i, nkeys, nsize, total = 0;
1606 	MDB_val key;
1607 	DKBUF;
1608 
1609 	switch (mp->mp_flags & (P_BRANCH|P_LEAF|P_LEAF2|P_META|P_OVERFLOW|P_SUBP)) {
1610 	case P_BRANCH:              type = "Branch page";		break;
1611 	case P_LEAF:                type = "Leaf page";			break;
1612 	case P_LEAF|P_SUBP:         type = "Sub-page";			break;
1613 	case P_LEAF|P_LEAF2:        type = "LEAF2 page";		break;
1614 	case P_LEAF|P_LEAF2|P_SUBP: type = "LEAF2 sub-page";	break;
1615 	case P_OVERFLOW:
1616 		fprintf(stderr, "Overflow page %"Z"u pages %u%s\n",
1617 			pgno, mp->mp_pages, state);
1618 		return;
1619 	case P_META:
1620 		fprintf(stderr, "Meta-page %"Z"u txnid %"Z"u\n",
1621 			pgno, ((MDB_meta *)METADATA(mp))->mm_txnid);
1622 		return;
1623 	default:
1624 		fprintf(stderr, "Bad page %"Z"u flags 0x%X\n", pgno, mp->mp_flags);
1625 		return;
1626 	}
1627 
1628 	nkeys = NUMKEYS(mp);
1629 	fprintf(stderr, "%s %"Z"u numkeys %d%s\n", type, pgno, nkeys, state);
1630 
1631 	for (i=0; i<nkeys; i++) {
1632 		if (IS_LEAF2(mp)) {	/* LEAF2 pages have no mp_ptrs[] or node headers */
1633 			key.mv_size = nsize = mp->mp_pad;
1634 			key.mv_data = LEAF2KEY(mp, i, nsize);
1635 			total += nsize;
1636 			fprintf(stderr, "key %d: nsize %d, %s\n", i, nsize, DKEY(&key));
1637 			continue;
1638 		}
1639 		node = NODEPTR(mp, i);
1640 		key.mv_size = node->mn_ksize;
1641 		key.mv_data = node->mn_data;
1642 		nsize = NODESIZE + key.mv_size;
1643 		if (IS_BRANCH(mp)) {
1644 			fprintf(stderr, "key %d: page %"Z"u, %s\n", i, NODEPGNO(node),
1645 				DKEY(&key));
1646 			total += nsize;
1647 		} else {
1648 			if (F_ISSET(node->mn_flags, F_BIGDATA))
1649 				nsize += sizeof(pgno_t);
1650 			else
1651 				nsize += NODEDSZ(node);
1652 			total += nsize;
1653 			nsize += sizeof(indx_t);
1654 			fprintf(stderr, "key %d: nsize %d, %s%s\n",
1655 				i, nsize, DKEY(&key), mdb_leafnode_type(node));
1656 		}
1657 		total = EVEN(total);
1658 	}
1659 	fprintf(stderr, "Total: header %d + contents %d + unused %d\n",
1660 		IS_LEAF2(mp) ? PAGEHDRSZ : PAGEBASE + mp->mp_lower, total, SIZELEFT(mp));
1661 }
1662 
1663 void
1664 mdb_cursor_chk(MDB_cursor *mc)
1665 {
1666 	unsigned int i;
1667 	MDB_node *node;
1668 	MDB_page *mp;
1669 
1670 	if (!mc->mc_snum || !(mc->mc_flags & C_INITIALIZED)) return;
1671 	for (i=0; i<mc->mc_top; i++) {
1672 		mp = mc->mc_pg[i];
1673 		node = NODEPTR(mp, mc->mc_ki[i]);
1674 		if (NODEPGNO(node) != mc->mc_pg[i+1]->mp_pgno)
1675 			printf("oops!\n");
1676 	}
1677 	if (mc->mc_ki[i] >= NUMKEYS(mc->mc_pg[i]))
1678 		printf("ack!\n");
1679 	if (XCURSOR_INITED(mc)) {
1680 		node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
1681 		if (((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) &&
1682 			mc->mc_xcursor->mx_cursor.mc_pg[0] != NODEDATA(node)) {
1683 			printf("blah!\n");
1684 		}
1685 	}
1686 }
1687 #endif
1688 
1689 #if (MDB_DEBUG) > 2
1690 /** Count all the pages in each DB and in the freelist
1691  *  and make sure it matches the actual number of pages
1692  *  being used.
1693  *  All named DBs must be open for a correct count.
1694  */
1695 static void mdb_audit(MDB_txn *txn)
1696 {
1697 	MDB_cursor mc;
1698 	MDB_val key, data;
1699 	MDB_ID freecount, count;
1700 	MDB_dbi i;
1701 	int rc;
1702 
1703 	freecount = 0;
1704 	mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
1705 	while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
1706 		freecount += *(MDB_ID *)data.mv_data;
1707 	mdb_tassert(txn, rc == MDB_NOTFOUND);
1708 
1709 	count = 0;
1710 	for (i = 0; i<txn->mt_numdbs; i++) {
1711 		MDB_xcursor mx;
1712 		if (!(txn->mt_dbflags[i] & DB_VALID))
1713 			continue;
1714 		mdb_cursor_init(&mc, txn, i, &mx);
1715 		if (txn->mt_dbs[i].md_root == P_INVALID)
1716 			continue;
1717 		count += txn->mt_dbs[i].md_branch_pages +
1718 			txn->mt_dbs[i].md_leaf_pages +
1719 			txn->mt_dbs[i].md_overflow_pages;
1720 		if (txn->mt_dbs[i].md_flags & MDB_DUPSORT) {
1721 			rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST);
1722 			for (; rc == MDB_SUCCESS; rc = mdb_cursor_sibling(&mc, 1)) {
1723 				unsigned j;
1724 				MDB_page *mp;
1725 				mp = mc.mc_pg[mc.mc_top];
1726 				for (j=0; j<NUMKEYS(mp); j++) {
1727 					MDB_node *leaf = NODEPTR(mp, j);
1728 					if (leaf->mn_flags & F_SUBDATA) {
1729 						MDB_db db;
1730 						memcpy(&db, NODEDATA(leaf), sizeof(db));
1731 						count += db.md_branch_pages + db.md_leaf_pages +
1732 							db.md_overflow_pages;
1733 					}
1734 				}
1735 			}
1736 			mdb_tassert(txn, rc == MDB_NOTFOUND);
1737 		}
1738 	}
1739 	if (freecount + count + NUM_METAS != txn->mt_next_pgno) {
1740 		fprintf(stderr, "audit: %"Z"u freecount: %"Z"u count: %"Z"u total: %"Z"u next_pgno: %"Z"u\n",
1741 			txn->mt_txnid, freecount, count+NUM_METAS,
1742 			freecount+count+NUM_METAS, txn->mt_next_pgno);
1743 	}
1744 }
1745 #endif
1746 
1747 int
1748 mdb_cmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
1749 {
1750 	return txn->mt_dbxs[dbi].md_cmp(a, b);
1751 }
1752 
1753 int
1754 mdb_dcmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
1755 {
1756 	MDB_cmp_func *dcmp = txn->mt_dbxs[dbi].md_dcmp;
1757 #if UINT_MAX < SIZE_MAX
1758 	if (dcmp == mdb_cmp_int && a->mv_size == sizeof(size_t))
1759 		dcmp = mdb_cmp_clong;
1760 #endif
1761 	return dcmp(a, b);
1762 }
1763 
1764 /** Allocate memory for a page.
1765  * Re-use old malloc'd pages first for singletons, otherwise just malloc.
1766  * Set #MDB_TXN_ERROR on failure.
1767  */
1768 static MDB_page *
1769 mdb_page_malloc(MDB_txn *txn, unsigned num)
1770 {
1771 	MDB_env *env = txn->mt_env;
1772 	MDB_page *ret = env->me_dpages;
1773 	size_t psize = env->me_psize, sz = psize, off;
1774 	/* For ! #MDB_NOMEMINIT, psize counts how much to init.
1775 	 * For a single page alloc, we init everything after the page header.
1776 	 * For multi-page, we init the final page; if the caller needed that
1777 	 * many pages they will be filling in at least up to the last page.
1778 	 */
1779 	if (num == 1) {
1780 		if (ret) {
1781 			VGMEMP_ALLOC(env, ret, sz);
1782 			VGMEMP_DEFINED(ret, sizeof(ret->mp_next));
1783 			env->me_dpages = ret->mp_next;
1784 			return ret;
1785 		}
1786 		psize -= off = PAGEHDRSZ;
1787 	} else {
1788 		sz *= num;
1789 		off = sz - psize;
1790 	}
1791 	if ((ret = malloc(sz)) != NULL) {
1792 		VGMEMP_ALLOC(env, ret, sz);
1793 		if (!(env->me_flags & MDB_NOMEMINIT)) {
1794 			memset((char *)ret + off, 0, psize);
1795 			ret->mp_pad = 0;
1796 		}
1797 	} else {
1798 		txn->mt_flags |= MDB_TXN_ERROR;
1799 	}
1800 	return ret;
1801 }
1802 /** Free a single page.
1803  * Saves single pages to a list, for future reuse.
1804  * (This is not used for multi-page overflow pages.)
1805  */
1806 static void
1807 mdb_page_free(MDB_env *env, MDB_page *mp)
1808 {
1809 	mp->mp_next = env->me_dpages;
1810 	VGMEMP_FREE(env, mp);
1811 	env->me_dpages = mp;
1812 }
1813 
1814 /** Free a dirty page */
1815 static void
1816 mdb_dpage_free(MDB_env *env, MDB_page *dp)
1817 {
1818 	if (!IS_OVERFLOW(dp) || dp->mp_pages == 1) {
1819 		mdb_page_free(env, dp);
1820 	} else {
1821 		/* large pages just get freed directly */
1822 		VGMEMP_FREE(env, dp);
1823 		free(dp);
1824 	}
1825 }
1826 
1827 /**	Return all dirty pages to dpage list */
1828 static void
1829 mdb_dlist_free(MDB_txn *txn)
1830 {
1831 	MDB_env *env = txn->mt_env;
1832 	MDB_ID2L dl = txn->mt_u.dirty_list;
1833 	unsigned i, n = dl[0].mid;
1834 
1835 	for (i = 1; i <= n; i++) {
1836 		mdb_dpage_free(env, dl[i].mptr);
1837 	}
1838 	dl[0].mid = 0;
1839 }
1840 
1841 /** Loosen or free a single page.
1842  * Saves single pages to a list for future reuse
1843  * in this same txn. It has been pulled from the freeDB
1844  * and already resides on the dirty list, but has been
1845  * deleted. Use these pages first before pulling again
1846  * from the freeDB.
1847  *
1848  * If the page wasn't dirtied in this txn, just add it
1849  * to this txn's free list.
1850  */
1851 static int
1852 mdb_page_loose(MDB_cursor *mc, MDB_page *mp)
1853 {
1854 	int loose = 0;
1855 	pgno_t pgno = mp->mp_pgno;
1856 	MDB_txn *txn = mc->mc_txn;
1857 
1858 	if ((mp->mp_flags & P_DIRTY) && mc->mc_dbi != FREE_DBI) {
1859 		if (txn->mt_parent) {
1860 			MDB_ID2 *dl = txn->mt_u.dirty_list;
1861 			/* If txn has a parent, make sure the page is in our
1862 			 * dirty list.
1863 			 */
1864 			if (dl[0].mid) {
1865 				unsigned x = mdb_mid2l_search(dl, pgno);
1866 				if (x <= dl[0].mid && dl[x].mid == pgno) {
1867 					if (mp != dl[x].mptr) { /* bad cursor? */
1868 						mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
1869 						txn->mt_flags |= MDB_TXN_ERROR;
1870 						return MDB_CORRUPTED;
1871 					}
1872 					/* ok, it's ours */
1873 					loose = 1;
1874 				}
1875 			}
1876 		} else {
1877 			/* no parent txn, so it's just ours */
1878 			loose = 1;
1879 		}
1880 	}
1881 	if (loose) {
1882 		DPRINTF(("loosen db %d page %"Z"u", DDBI(mc),
1883 			mp->mp_pgno));
1884 		NEXT_LOOSE_PAGE(mp) = txn->mt_loose_pgs;
1885 		txn->mt_loose_pgs = mp;
1886 		txn->mt_loose_count++;
1887 		mp->mp_flags |= P_LOOSE;
1888 	} else {
1889 		int rc = mdb_midl_append(&txn->mt_free_pgs, pgno);
1890 		if (rc)
1891 			return rc;
1892 	}
1893 
1894 	return MDB_SUCCESS;
1895 }
1896 
1897 /** Set or clear P_KEEP in dirty, non-overflow, non-sub pages watched by txn.
1898  * @param[in] mc A cursor handle for the current operation.
1899  * @param[in] pflags Flags of the pages to update:
1900  * P_DIRTY to set P_KEEP, P_DIRTY|P_KEEP to clear it.
1901  * @param[in] all No shortcuts. Needed except after a full #mdb_page_flush().
1902  * @return 0 on success, non-zero on failure.
1903  */
1904 static int
1905 mdb_pages_xkeep(MDB_cursor *mc, unsigned pflags, int all)
1906 {
1907 	enum { Mask = P_SUBP|P_DIRTY|P_LOOSE|P_KEEP };
1908 	MDB_txn *txn = mc->mc_txn;
1909 	MDB_cursor *m3, *m0 = mc;
1910 	MDB_xcursor *mx;
1911 	MDB_page *dp, *mp;
1912 	MDB_node *leaf;
1913 	unsigned i, j;
1914 	int rc = MDB_SUCCESS, level;
1915 
1916 	/* Mark pages seen by cursors */
1917 	if (mc->mc_flags & C_UNTRACK)
1918 		mc = NULL;				/* will find mc in mt_cursors */
1919 	for (i = txn->mt_numdbs;; mc = txn->mt_cursors[--i]) {
1920 		for (; mc; mc=mc->mc_next) {
1921 			if (!(mc->mc_flags & C_INITIALIZED))
1922 				continue;
1923 			for (m3 = mc;; m3 = &mx->mx_cursor) {
1924 				mp = NULL;
1925 				for (j=0; j<m3->mc_snum; j++) {
1926 					mp = m3->mc_pg[j];
1927 					if ((mp->mp_flags & Mask) == pflags)
1928 						mp->mp_flags ^= P_KEEP;
1929 				}
1930 				mx = m3->mc_xcursor;
1931 				/* Proceed to mx if it is at a sub-database */
1932 				if (! (mx && (mx->mx_cursor.mc_flags & C_INITIALIZED)))
1933 					break;
1934 				if (! (mp && (mp->mp_flags & P_LEAF)))
1935 					break;
1936 				leaf = NODEPTR(mp, m3->mc_ki[j-1]);
1937 				if (!(leaf->mn_flags & F_SUBDATA))
1938 					break;
1939 			}
1940 		}
1941 		if (i == 0)
1942 			break;
1943 	}
1944 
1945 	if (all) {
1946 		/* Mark dirty root pages */
1947 		for (i=0; i<txn->mt_numdbs; i++) {
1948 			if (txn->mt_dbflags[i] & DB_DIRTY) {
1949 				pgno_t pgno = txn->mt_dbs[i].md_root;
1950 				if (pgno == P_INVALID)
1951 					continue;
1952 				if ((rc = mdb_page_get(m0, pgno, &dp, &level)) != MDB_SUCCESS)
1953 					break;
1954 				if ((dp->mp_flags & Mask) == pflags && level <= 1)
1955 					dp->mp_flags ^= P_KEEP;
1956 			}
1957 		}
1958 	}
1959 
1960 	return rc;
1961 }
1962 
1963 static int mdb_page_flush(MDB_txn *txn, int keep);
1964 
1965 /**	Spill pages from the dirty list back to disk.
1966  * This is intended to prevent running into #MDB_TXN_FULL situations,
1967  * but note that they may still occur in a few cases:
1968  *	1) our estimate of the txn size could be too small. Currently this
1969  *	 seems unlikely, except with a large number of #MDB_MULTIPLE items.
1970  *	2) child txns may run out of space if their parents dirtied a
1971  *	 lot of pages and never spilled them. TODO: we probably should do
1972  *	 a preemptive spill during #mdb_txn_begin() of a child txn, if
1973  *	 the parent's dirty_room is below a given threshold.
1974  *
1975  * Otherwise, if not using nested txns, it is expected that apps will
1976  * not run into #MDB_TXN_FULL any more. The pages are flushed to disk
1977  * the same way as for a txn commit, e.g. their P_DIRTY flag is cleared.
1978  * If the txn never references them again, they can be left alone.
1979  * If the txn only reads them, they can be used without any fuss.
1980  * If the txn writes them again, they can be dirtied immediately without
1981  * going thru all of the work of #mdb_page_touch(). Such references are
1982  * handled by #mdb_page_unspill().
1983  *
1984  * Also note, we never spill DB root pages, nor pages of active cursors,
1985  * because we'll need these back again soon anyway. And in nested txns,
1986  * we can't spill a page in a child txn if it was already spilled in a
1987  * parent txn. That would alter the parent txns' data even though
1988  * the child hasn't committed yet, and we'd have no way to undo it if
1989  * the child aborted.
1990  *
1991  * @param[in] m0 cursor A cursor handle identifying the transaction and
1992  *	database for which we are checking space.
1993  * @param[in] key For a put operation, the key being stored.
1994  * @param[in] data For a put operation, the data being stored.
1995  * @return 0 on success, non-zero on failure.
1996  */
1997 static int
1998 mdb_page_spill(MDB_cursor *m0, MDB_val *key, MDB_val *data)
1999 {
2000 	MDB_txn *txn = m0->mc_txn;
2001 	MDB_page *dp;
2002 	MDB_ID2L dl = txn->mt_u.dirty_list;
2003 	unsigned int i, j, need;
2004 	int rc;
2005 
2006 	if (m0->mc_flags & C_SUB)
2007 		return MDB_SUCCESS;
2008 
2009 	/* Estimate how much space this op will take */
2010 	i = m0->mc_db->md_depth;
2011 	/* Named DBs also dirty the main DB */
2012 	if (m0->mc_dbi >= CORE_DBS)
2013 		i += txn->mt_dbs[MAIN_DBI].md_depth;
2014 	/* For puts, roughly factor in the key+data size */
2015 	if (key)
2016 		i += (LEAFSIZE(key, data) + txn->mt_env->me_psize) / txn->mt_env->me_psize;
2017 	i += i;	/* double it for good measure */
2018 	need = i;
2019 
2020 	if (txn->mt_dirty_room > i)
2021 		return MDB_SUCCESS;
2022 
2023 	if (!txn->mt_spill_pgs) {
2024 		txn->mt_spill_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX);
2025 		if (!txn->mt_spill_pgs)
2026 			return ENOMEM;
2027 	} else {
2028 		/* purge deleted slots */
2029 		MDB_IDL sl = txn->mt_spill_pgs;
2030 		unsigned int num = sl[0];
2031 		j=0;
2032 		for (i=1; i<=num; i++) {
2033 			if (!(sl[i] & 1))
2034 				sl[++j] = sl[i];
2035 		}
2036 		sl[0] = j;
2037 	}
2038 
2039 	/* Preserve pages which may soon be dirtied again */
2040 	if ((rc = mdb_pages_xkeep(m0, P_DIRTY, 1)) != MDB_SUCCESS)
2041 		goto done;
2042 
2043 	/* Less aggressive spill - we originally spilled the entire dirty list,
2044 	 * with a few exceptions for cursor pages and DB root pages. But this
2045 	 * turns out to be a lot of wasted effort because in a large txn many
2046 	 * of those pages will need to be used again. So now we spill only 1/8th
2047 	 * of the dirty pages. Testing revealed this to be a good tradeoff,
2048 	 * better than 1/2, 1/4, or 1/10.
2049 	 */
2050 	if (need < MDB_IDL_UM_MAX / 8)
2051 		need = MDB_IDL_UM_MAX / 8;
2052 
2053 	/* Save the page IDs of all the pages we're flushing */
2054 	/* flush from the tail forward, this saves a lot of shifting later on. */
2055 	for (i=dl[0].mid; i && need; i--) {
2056 		MDB_ID pn = dl[i].mid << 1;
2057 		dp = dl[i].mptr;
2058 		if (dp->mp_flags & (P_LOOSE|P_KEEP))
2059 			continue;
2060 		/* Can't spill twice, make sure it's not already in a parent's
2061 		 * spill list.
2062 		 */
2063 		if (txn->mt_parent) {
2064 			MDB_txn *tx2;
2065 			for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) {
2066 				if (tx2->mt_spill_pgs) {
2067 					j = mdb_midl_search(tx2->mt_spill_pgs, pn);
2068 					if (j <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[j] == pn) {
2069 						dp->mp_flags |= P_KEEP;
2070 						break;
2071 					}
2072 				}
2073 			}
2074 			if (tx2)
2075 				continue;
2076 		}
2077 		if ((rc = mdb_midl_append(&txn->mt_spill_pgs, pn)))
2078 			goto done;
2079 		need--;
2080 	}
2081 	mdb_midl_sort(txn->mt_spill_pgs);
2082 
2083 	/* Flush the spilled part of dirty list */
2084 	if ((rc = mdb_page_flush(txn, i)) != MDB_SUCCESS)
2085 		goto done;
2086 
2087 	/* Reset any dirty pages we kept that page_flush didn't see */
2088 	rc = mdb_pages_xkeep(m0, P_DIRTY|P_KEEP, i);
2089 
2090 done:
2091 	txn->mt_flags |= rc ? MDB_TXN_ERROR : MDB_TXN_SPILLS;
2092 	return rc;
2093 }
2094 
2095 /** Find oldest txnid still referenced. Expects txn->mt_txnid > 0. */
2096 static txnid_t
2097 mdb_find_oldest(MDB_txn *txn)
2098 {
2099 	int i;
2100 	txnid_t mr, oldest = txn->mt_txnid - 1;
2101 	if (txn->mt_env->me_txns) {
2102 		MDB_reader *r = txn->mt_env->me_txns->mti_readers;
2103 		for (i = txn->mt_env->me_txns->mti_numreaders; --i >= 0; ) {
2104 			if (r[i].mr_pid) {
2105 				mr = r[i].mr_txnid;
2106 				if (oldest > mr)
2107 					oldest = mr;
2108 			}
2109 		}
2110 	}
2111 	return oldest;
2112 }
2113 
2114 /** Add a page to the txn's dirty list */
2115 static void
2116 mdb_page_dirty(MDB_txn *txn, MDB_page *mp)
2117 {
2118 	MDB_ID2 mid;
2119 	int rc, (*insert)(MDB_ID2L, MDB_ID2 *);
2120 
2121 	if (txn->mt_flags & MDB_TXN_WRITEMAP) {
2122 		insert = mdb_mid2l_append;
2123 	} else {
2124 		insert = mdb_mid2l_insert;
2125 	}
2126 	mid.mid = mp->mp_pgno;
2127 	mid.mptr = mp;
2128 	rc = insert(txn->mt_u.dirty_list, &mid);
2129 	mdb_tassert(txn, rc == 0);
2130 	txn->mt_dirty_room--;
2131 }
2132 
2133 /** Allocate page numbers and memory for writing.  Maintain me_pglast,
2134  * me_pghead and mt_next_pgno.  Set #MDB_TXN_ERROR on failure.
2135  *
2136  * If there are free pages available from older transactions, they
2137  * are re-used first. Otherwise allocate a new page at mt_next_pgno.
2138  * Do not modify the freedB, just merge freeDB records into me_pghead[]
2139  * and move me_pglast to say which records were consumed.  Only this
2140  * function can create me_pghead and move me_pglast/mt_next_pgno.
2141  * @param[in] mc cursor A cursor handle identifying the transaction and
2142  *	database for which we are allocating.
2143  * @param[in] num the number of pages to allocate.
2144  * @param[out] mp Address of the allocated page(s). Requests for multiple pages
2145  *  will always be satisfied by a single contiguous chunk of memory.
2146  * @return 0 on success, non-zero on failure.
2147  */
2148 static int
2149 mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp)
2150 {
2151 #ifdef MDB_PARANOID	/* Seems like we can ignore this now */
2152 	/* Get at most <Max_retries> more freeDB records once me_pghead
2153 	 * has enough pages.  If not enough, use new pages from the map.
2154 	 * If <Paranoid> and mc is updating the freeDB, only get new
2155 	 * records if me_pghead is empty. Then the freelist cannot play
2156 	 * catch-up with itself by growing while trying to save it.
2157 	 */
2158 	enum { Paranoid = 1, Max_retries = 500 };
2159 #else
2160 	enum { Paranoid = 0, Max_retries = INT_MAX /*infinite*/ };
2161 #endif
2162 	int rc, retry = num * 60;
2163 	MDB_txn *txn = mc->mc_txn;
2164 	MDB_env *env = txn->mt_env;
2165 	pgno_t pgno, *mop = env->me_pghead;
2166 	unsigned i, j, mop_len = mop ? mop[0] : 0, n2 = num-1;
2167 	MDB_page *np;
2168 	txnid_t oldest = 0, last;
2169 	MDB_cursor_op op;
2170 	MDB_cursor m2;
2171 	int found_old = 0;
2172 
2173 	/* If there are any loose pages, just use them */
2174 	if (num == 1 && txn->mt_loose_pgs) {
2175 		np = txn->mt_loose_pgs;
2176 		txn->mt_loose_pgs = NEXT_LOOSE_PAGE(np);
2177 		txn->mt_loose_count--;
2178 		DPRINTF(("db %d use loose page %"Z"u", DDBI(mc),
2179 				np->mp_pgno));
2180 		*mp = np;
2181 		return MDB_SUCCESS;
2182 	}
2183 
2184 	*mp = NULL;
2185 
2186 	/* If our dirty list is already full, we can't do anything */
2187 	if (txn->mt_dirty_room == 0) {
2188 		rc = MDB_TXN_FULL;
2189 		goto fail;
2190 	}
2191 
2192 	for (op = MDB_FIRST;; op = MDB_NEXT) {
2193 		MDB_val key, data;
2194 		MDB_node *leaf;
2195 		pgno_t *idl;
2196 
2197 		/* Seek a big enough contiguous page range. Prefer
2198 		 * pages at the tail, just truncating the list.
2199 		 */
2200 		if (mop_len > n2) {
2201 			i = mop_len;
2202 			do {
2203 				pgno = mop[i];
2204 				if (mop[i-n2] == pgno+n2)
2205 					goto search_done;
2206 			} while (--i > n2);
2207 			if (--retry < 0)
2208 				break;
2209 		}
2210 
2211 		if (op == MDB_FIRST) {	/* 1st iteration */
2212 			/* Prepare to fetch more and coalesce */
2213 			last = env->me_pglast;
2214 			oldest = env->me_pgoldest;
2215 			mdb_cursor_init(&m2, txn, FREE_DBI, NULL);
2216 			if (last) {
2217 				op = MDB_SET_RANGE;
2218 				key.mv_data = &last; /* will look up last+1 */
2219 				key.mv_size = sizeof(last);
2220 			}
2221 			if (Paranoid && mc->mc_dbi == FREE_DBI)
2222 				retry = -1;
2223 		}
2224 		if (Paranoid && retry < 0 && mop_len)
2225 			break;
2226 
2227 		last++;
2228 		/* Do not fetch more if the record will be too recent */
2229 		if (oldest <= last) {
2230 			if (!found_old) {
2231 				oldest = mdb_find_oldest(txn);
2232 				env->me_pgoldest = oldest;
2233 				found_old = 1;
2234 			}
2235 			if (oldest <= last)
2236 				break;
2237 		}
2238 		rc = mdb_cursor_get(&m2, &key, NULL, op);
2239 		if (rc) {
2240 			if (rc == MDB_NOTFOUND)
2241 				break;
2242 			goto fail;
2243 		}
2244 		last = *(txnid_t*)key.mv_data;
2245 		if (oldest <= last) {
2246 			if (!found_old) {
2247 				oldest = mdb_find_oldest(txn);
2248 				env->me_pgoldest = oldest;
2249 				found_old = 1;
2250 			}
2251 			if (oldest <= last)
2252 				break;
2253 		}
2254 		np = m2.mc_pg[m2.mc_top];
2255 		leaf = NODEPTR(np, m2.mc_ki[m2.mc_top]);
2256 		if ((rc = mdb_node_read(&m2, leaf, &data)) != MDB_SUCCESS)
2257 			goto fail;
2258 
2259 		idl = (MDB_ID *) data.mv_data;
2260 		i = idl[0];
2261 		if (!mop) {
2262 			if (!(env->me_pghead = mop = mdb_midl_alloc(i))) {
2263 				rc = ENOMEM;
2264 				goto fail;
2265 			}
2266 		} else {
2267 			if ((rc = mdb_midl_need(&env->me_pghead, i)) != 0)
2268 				goto fail;
2269 			mop = env->me_pghead;
2270 		}
2271 		env->me_pglast = last;
2272 #if (MDB_DEBUG) > 1
2273 		DPRINTF(("IDL read txn %"Z"u root %"Z"u num %u",
2274 			last, txn->mt_dbs[FREE_DBI].md_root, i));
2275 		for (j = i; j; j--)
2276 			DPRINTF(("IDL %"Z"u", idl[j]));
2277 #endif
2278 		/* Merge in descending sorted order */
2279 		mdb_midl_xmerge(mop, idl);
2280 		mop_len = mop[0];
2281 	}
2282 
2283 	/* Use new pages from the map when nothing suitable in the freeDB */
2284 	i = 0;
2285 	pgno = txn->mt_next_pgno;
2286 	if (pgno + num >= env->me_maxpg) {
2287 			DPUTS("DB size maxed out");
2288 			rc = MDB_MAP_FULL;
2289 			goto fail;
2290 	}
2291 
2292 search_done:
2293 	if (env->me_flags & MDB_WRITEMAP) {
2294 		np = (MDB_page *)(env->me_map + env->me_psize * pgno);
2295 	} else {
2296 		if (!(np = mdb_page_malloc(txn, num))) {
2297 			rc = ENOMEM;
2298 			goto fail;
2299 		}
2300 	}
2301 	if (i) {
2302 		mop[0] = mop_len -= num;
2303 		/* Move any stragglers down */
2304 		for (j = i-num; j < mop_len; )
2305 			mop[++j] = mop[++i];
2306 	} else {
2307 		txn->mt_next_pgno = pgno + num;
2308 	}
2309 	np->mp_pgno = pgno;
2310 	mdb_page_dirty(txn, np);
2311 	*mp = np;
2312 
2313 	return MDB_SUCCESS;
2314 
2315 fail:
2316 	txn->mt_flags |= MDB_TXN_ERROR;
2317 	return rc;
2318 }
2319 
2320 /** Copy the used portions of a non-overflow page.
2321  * @param[in] dst page to copy into
2322  * @param[in] src page to copy from
2323  * @param[in] psize size of a page
2324  */
2325 static void
2326 mdb_page_copy(MDB_page *dst, MDB_page *src, unsigned int psize)
2327 {
2328 	enum { Align = sizeof(pgno_t) };
2329 	indx_t upper = src->mp_upper, lower = src->mp_lower, unused = upper-lower;
2330 
2331 	/* If page isn't full, just copy the used portion. Adjust
2332 	 * alignment so memcpy may copy words instead of bytes.
2333 	 */
2334 	if ((unused &= -Align) && !IS_LEAF2(src)) {
2335 		upper = (upper + PAGEBASE) & -Align;
2336 		memcpy(dst, src, (lower + PAGEBASE + (Align-1)) & -Align);
2337 		memcpy((pgno_t *)((char *)dst+upper), (pgno_t *)((char *)src+upper),
2338 			psize - upper);
2339 	} else {
2340 		memcpy(dst, src, psize - unused);
2341 	}
2342 }
2343 
2344 /** Pull a page off the txn's spill list, if present.
2345  * If a page being referenced was spilled to disk in this txn, bring
2346  * it back and make it dirty/writable again.
2347  * @param[in] txn the transaction handle.
2348  * @param[in] mp the page being referenced. It must not be dirty.
2349  * @param[out] ret the writable page, if any. ret is unchanged if
2350  * mp wasn't spilled.
2351  */
2352 static int
2353 mdb_page_unspill(MDB_txn *txn, MDB_page *mp, MDB_page **ret)
2354 {
2355 	MDB_env *env = txn->mt_env;
2356 	const MDB_txn *tx2;
2357 	unsigned x;
2358 	pgno_t pgno = mp->mp_pgno, pn = pgno << 1;
2359 
2360 	for (tx2 = txn; tx2; tx2=tx2->mt_parent) {
2361 		if (!tx2->mt_spill_pgs)
2362 			continue;
2363 		x = mdb_midl_search(tx2->mt_spill_pgs, pn);
2364 		if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) {
2365 			MDB_page *np;
2366 			int num;
2367 			if (txn->mt_dirty_room == 0)
2368 				return MDB_TXN_FULL;
2369 			if (IS_OVERFLOW(mp))
2370 				num = mp->mp_pages;
2371 			else
2372 				num = 1;
2373 			if (env->me_flags & MDB_WRITEMAP) {
2374 				np = mp;
2375 			} else {
2376 				np = mdb_page_malloc(txn, num);
2377 				if (!np)
2378 					return ENOMEM;
2379 				if (num > 1)
2380 					memcpy(np, mp, num * env->me_psize);
2381 				else
2382 					mdb_page_copy(np, mp, env->me_psize);
2383 			}
2384 			if (tx2 == txn) {
2385 				/* If in current txn, this page is no longer spilled.
2386 				 * If it happens to be the last page, truncate the spill list.
2387 				 * Otherwise mark it as deleted by setting the LSB.
2388 				 */
2389 				if (x == txn->mt_spill_pgs[0])
2390 					txn->mt_spill_pgs[0]--;
2391 				else
2392 					txn->mt_spill_pgs[x] |= 1;
2393 			}	/* otherwise, if belonging to a parent txn, the
2394 				 * page remains spilled until child commits
2395 				 */
2396 
2397 			mdb_page_dirty(txn, np);
2398 			np->mp_flags |= P_DIRTY;
2399 			*ret = np;
2400 			break;
2401 		}
2402 	}
2403 	return MDB_SUCCESS;
2404 }
2405 
2406 /** Touch a page: make it dirty and re-insert into tree with updated pgno.
2407  * Set #MDB_TXN_ERROR on failure.
2408  * @param[in] mc cursor pointing to the page to be touched
2409  * @return 0 on success, non-zero on failure.
2410  */
2411 static int
2412 mdb_page_touch(MDB_cursor *mc)
2413 {
2414 	MDB_page *mp = mc->mc_pg[mc->mc_top], *np;
2415 	MDB_txn *txn = mc->mc_txn;
2416 	MDB_cursor *m2, *m3;
2417 	pgno_t	pgno;
2418 	int rc;
2419 
2420 	if (!F_ISSET(mp->mp_flags, P_DIRTY)) {
2421 		if (txn->mt_flags & MDB_TXN_SPILLS) {
2422 			np = NULL;
2423 			rc = mdb_page_unspill(txn, mp, &np);
2424 			if (rc)
2425 				goto fail;
2426 			if (np)
2427 				goto done;
2428 		}
2429 		if ((rc = mdb_midl_need(&txn->mt_free_pgs, 1)) ||
2430 			(rc = mdb_page_alloc(mc, 1, &np)))
2431 			goto fail;
2432 		pgno = np->mp_pgno;
2433 		DPRINTF(("touched db %d page %"Z"u -> %"Z"u", DDBI(mc),
2434 			mp->mp_pgno, pgno));
2435 		mdb_cassert(mc, mp->mp_pgno != pgno);
2436 		mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
2437 		/* Update the parent page, if any, to point to the new page */
2438 		if (mc->mc_top) {
2439 			MDB_page *parent = mc->mc_pg[mc->mc_top-1];
2440 			MDB_node *node = NODEPTR(parent, mc->mc_ki[mc->mc_top-1]);
2441 			SETPGNO(node, pgno);
2442 		} else {
2443 			mc->mc_db->md_root = pgno;
2444 		}
2445 	} else if (txn->mt_parent && !IS_SUBP(mp)) {
2446 		MDB_ID2 mid, *dl = txn->mt_u.dirty_list;
2447 		pgno = mp->mp_pgno;
2448 		/* If txn has a parent, make sure the page is in our
2449 		 * dirty list.
2450 		 */
2451 		if (dl[0].mid) {
2452 			unsigned x = mdb_mid2l_search(dl, pgno);
2453 			if (x <= dl[0].mid && dl[x].mid == pgno) {
2454 				if (mp != dl[x].mptr) { /* bad cursor? */
2455 					mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
2456 					txn->mt_flags |= MDB_TXN_ERROR;
2457 					return MDB_CORRUPTED;
2458 				}
2459 				return 0;
2460 			}
2461 		}
2462 		mdb_cassert(mc, dl[0].mid < MDB_IDL_UM_MAX);
2463 		/* No - copy it */
2464 		np = mdb_page_malloc(txn, 1);
2465 		if (!np)
2466 			return ENOMEM;
2467 		mid.mid = pgno;
2468 		mid.mptr = np;
2469 		rc = mdb_mid2l_insert(dl, &mid);
2470 		mdb_cassert(mc, rc == 0);
2471 	} else {
2472 		return 0;
2473 	}
2474 
2475 	mdb_page_copy(np, mp, txn->mt_env->me_psize);
2476 	np->mp_pgno = pgno;
2477 	np->mp_flags |= P_DIRTY;
2478 
2479 done:
2480 	/* Adjust cursors pointing to mp */
2481 	mc->mc_pg[mc->mc_top] = np;
2482 	m2 = txn->mt_cursors[mc->mc_dbi];
2483 	if (mc->mc_flags & C_SUB) {
2484 		for (; m2; m2=m2->mc_next) {
2485 			m3 = &m2->mc_xcursor->mx_cursor;
2486 			if (m3->mc_snum < mc->mc_snum) continue;
2487 			if (m3->mc_pg[mc->mc_top] == mp)
2488 				m3->mc_pg[mc->mc_top] = np;
2489 		}
2490 	} else {
2491 		for (; m2; m2=m2->mc_next) {
2492 			if (m2->mc_snum < mc->mc_snum) continue;
2493 			if (m2 == mc) continue;
2494 			if (m2->mc_pg[mc->mc_top] == mp) {
2495 				m2->mc_pg[mc->mc_top] = np;
2496 				if (IS_LEAF(np))
2497 					XCURSOR_REFRESH(m2, mc->mc_top, np);
2498 			}
2499 		}
2500 	}
2501 	return 0;
2502 
2503 fail:
2504 	txn->mt_flags |= MDB_TXN_ERROR;
2505 	return rc;
2506 }
2507 
2508 int
2509 mdb_env_sync(MDB_env *env, int force)
2510 {
2511 	int rc = 0;
2512 	if (env->me_flags & MDB_RDONLY)
2513 		return EACCES;
2514 	if (force || !F_ISSET(env->me_flags, MDB_NOSYNC)) {
2515 		if (env->me_flags & MDB_WRITEMAP) {
2516 			int flags = ((env->me_flags & MDB_MAPASYNC) && !force)
2517 				? MS_ASYNC : MS_SYNC;
2518 			if (MDB_MSYNC(env->me_map, env->me_mapsize, flags))
2519 				rc = ErrCode();
2520 #ifdef _WIN32
2521 			else if (flags == MS_SYNC && MDB_FDATASYNC(env->me_fd))
2522 				rc = ErrCode();
2523 #endif
2524 		} else {
2525 #ifdef BROKEN_FDATASYNC
2526 			if (env->me_flags & MDB_FSYNCONLY) {
2527 				if (fsync(env->me_fd))
2528 					rc = ErrCode();
2529 			} else
2530 #endif
2531 			if (MDB_FDATASYNC(env->me_fd))
2532 				rc = ErrCode();
2533 		}
2534 	}
2535 	return rc;
2536 }
2537 
2538 /** Back up parent txn's cursors, then grab the originals for tracking */
2539 static int
2540 mdb_cursor_shadow(MDB_txn *src, MDB_txn *dst)
2541 {
2542 	MDB_cursor *mc, *bk;
2543 	MDB_xcursor *mx;
2544 	size_t size;
2545 	int i;
2546 
2547 	for (i = src->mt_numdbs; --i >= 0; ) {
2548 		if ((mc = src->mt_cursors[i]) != NULL) {
2549 			size = sizeof(MDB_cursor);
2550 			if (mc->mc_xcursor)
2551 				size += sizeof(MDB_xcursor);
2552 			for (; mc; mc = bk->mc_next) {
2553 				bk = malloc(size);
2554 				if (!bk)
2555 					return ENOMEM;
2556 				*bk = *mc;
2557 				mc->mc_backup = bk;
2558 				mc->mc_db = &dst->mt_dbs[i];
2559 				/* Kill pointers into src to reduce abuse: The
2560 				 * user may not use mc until dst ends. But we need a valid
2561 				 * txn pointer here for cursor fixups to keep working.
2562 				 */
2563 				mc->mc_txn    = dst;
2564 				mc->mc_dbflag = &dst->mt_dbflags[i];
2565 				if ((mx = mc->mc_xcursor) != NULL) {
2566 					*(MDB_xcursor *)(bk+1) = *mx;
2567 					mx->mx_cursor.mc_txn = dst;
2568 				}
2569 				mc->mc_next = dst->mt_cursors[i];
2570 				dst->mt_cursors[i] = mc;
2571 			}
2572 		}
2573 	}
2574 	return MDB_SUCCESS;
2575 }
2576 
2577 /** Close this write txn's cursors, give parent txn's cursors back to parent.
2578  * @param[in] txn the transaction handle.
2579  * @param[in] merge true to keep changes to parent cursors, false to revert.
2580  * @return 0 on success, non-zero on failure.
2581  */
2582 static void
2583 mdb_cursors_close(MDB_txn *txn, unsigned merge)
2584 {
2585 	MDB_cursor **cursors = txn->mt_cursors, *mc, *next, *bk;
2586 	MDB_xcursor *mx;
2587 	int i;
2588 
2589 	for (i = txn->mt_numdbs; --i >= 0; ) {
2590 		for (mc = cursors[i]; mc; mc = next) {
2591 			next = mc->mc_next;
2592 			if ((bk = mc->mc_backup) != NULL) {
2593 				if (merge) {
2594 					/* Commit changes to parent txn */
2595 					mc->mc_next = bk->mc_next;
2596 					mc->mc_backup = bk->mc_backup;
2597 					mc->mc_txn = bk->mc_txn;
2598 					mc->mc_db = bk->mc_db;
2599 					mc->mc_dbflag = bk->mc_dbflag;
2600 					if ((mx = mc->mc_xcursor) != NULL)
2601 						mx->mx_cursor.mc_txn = bk->mc_txn;
2602 				} else {
2603 					/* Abort nested txn */
2604 					*mc = *bk;
2605 					if ((mx = mc->mc_xcursor) != NULL)
2606 						*mx = *(MDB_xcursor *)(bk+1);
2607 				}
2608 				mc = bk;
2609 			}
2610 			/* Only malloced cursors are permanently tracked. */
2611 			free(mc);
2612 		}
2613 		cursors[i] = NULL;
2614 	}
2615 }
2616 
2617 #if !(MDB_PIDLOCK)		/* Currently the same as defined(_WIN32) */
2618 enum Pidlock_op {
2619 	Pidset, Pidcheck
2620 };
2621 #else
2622 enum Pidlock_op {
2623 	Pidset = F_SETLK, Pidcheck = F_GETLK
2624 };
2625 #endif
2626 
2627 /** Set or check a pid lock. Set returns 0 on success.
2628  * Check returns 0 if the process is certainly dead, nonzero if it may
2629  * be alive (the lock exists or an error happened so we do not know).
2630  *
2631  * On Windows Pidset is a no-op, we merely check for the existence
2632  * of the process with the given pid. On POSIX we use a single byte
2633  * lock on the lockfile, set at an offset equal to the pid.
2634  */
2635 static int
2636 mdb_reader_pid(MDB_env *env, enum Pidlock_op op, MDB_PID_T pid)
2637 {
2638 #if !(MDB_PIDLOCK)		/* Currently the same as defined(_WIN32) */
2639 	int ret = 0;
2640 	HANDLE h;
2641 	if (op == Pidcheck) {
2642 		h = OpenProcess(env->me_pidquery, FALSE, pid);
2643 		/* No documented "no such process" code, but other program use this: */
2644 		if (!h)
2645 			return ErrCode() != ERROR_INVALID_PARAMETER;
2646 		/* A process exists until all handles to it close. Has it exited? */
2647 		ret = WaitForSingleObject(h, 0) != 0;
2648 		CloseHandle(h);
2649 	}
2650 	return ret;
2651 #else
2652 	for (;;) {
2653 		int rc;
2654 		struct flock lock_info;
2655 		memset(&lock_info, 0, sizeof(lock_info));
2656 		lock_info.l_type = F_WRLCK;
2657 		lock_info.l_whence = SEEK_SET;
2658 		lock_info.l_start = pid;
2659 		lock_info.l_len = 1;
2660 		if ((rc = fcntl(env->me_lfd, op, &lock_info)) == 0) {
2661 			if (op == F_GETLK && lock_info.l_type != F_UNLCK)
2662 				rc = -1;
2663 		} else if ((rc = ErrCode()) == EINTR) {
2664 			continue;
2665 		}
2666 		return rc;
2667 	}
2668 #endif
2669 }
2670 
2671 /** Common code for #mdb_txn_begin() and #mdb_txn_renew().
2672  * @param[in] txn the transaction handle to initialize
2673  * @return 0 on success, non-zero on failure.
2674  */
2675 static int
2676 mdb_txn_renew0(MDB_txn *txn)
2677 {
2678 	MDB_env *env = txn->mt_env;
2679 	MDB_txninfo *ti = env->me_txns;
2680 	MDB_meta *meta;
2681 	unsigned int i, nr, flags = txn->mt_flags;
2682 	uint16_t x;
2683 	int rc, new_notls = 0;
2684 
2685 	if ((flags &= MDB_TXN_RDONLY) != 0) {
2686 		if (!ti) {
2687 			meta = mdb_env_pick_meta(env);
2688 			txn->mt_txnid = meta->mm_txnid;
2689 			txn->mt_u.reader = NULL;
2690 		} else {
2691 			MDB_reader *r = (env->me_flags & MDB_NOTLS) ? txn->mt_u.reader :
2692 				pthread_getspecific(env->me_txkey);
2693 			if (r) {
2694 				if (r->mr_pid != env->me_pid || r->mr_txnid != (txnid_t)-1)
2695 					return MDB_BAD_RSLOT;
2696 			} else {
2697 				MDB_PID_T pid = env->me_pid;
2698 				MDB_THR_T tid = pthread_self();
2699 				mdb_mutexref_t rmutex = env->me_rmutex;
2700 
2701 				if (!env->me_live_reader) {
2702 					rc = mdb_reader_pid(env, Pidset, pid);
2703 					if (rc)
2704 						return rc;
2705 					env->me_live_reader = 1;
2706 				}
2707 
2708 				if (LOCK_MUTEX(rc, env, rmutex))
2709 					return rc;
2710 				nr = ti->mti_numreaders;
2711 				for (i=0; i<nr; i++)
2712 					if (ti->mti_readers[i].mr_pid == 0)
2713 						break;
2714 				if (i == env->me_maxreaders) {
2715 					UNLOCK_MUTEX(rmutex);
2716 					return MDB_READERS_FULL;
2717 				}
2718 				r = &ti->mti_readers[i];
2719 				/* Claim the reader slot, carefully since other code
2720 				 * uses the reader table un-mutexed: First reset the
2721 				 * slot, next publish it in mti_numreaders.  After
2722 				 * that, it is safe for mdb_env_close() to touch it.
2723 				 * When it will be closed, we can finally claim it.
2724 				 */
2725 				r->mr_pid = 0;
2726 				r->mr_txnid = (txnid_t)-1;
2727 				r->mr_tid = tid;
2728 				if (i == nr)
2729 					ti->mti_numreaders = ++nr;
2730 				env->me_close_readers = nr;
2731 				r->mr_pid = pid;
2732 				UNLOCK_MUTEX(rmutex);
2733 
2734 				new_notls = (env->me_flags & MDB_NOTLS);
2735 				if (!new_notls && (rc=pthread_setspecific(env->me_txkey, r))) {
2736 					r->mr_pid = 0;
2737 					return rc;
2738 				}
2739 			}
2740 			do /* LY: Retry on a race, ITS#7970. */
2741 				r->mr_txnid = ti->mti_txnid;
2742 			while(r->mr_txnid != ti->mti_txnid);
2743 			txn->mt_txnid = r->mr_txnid;
2744 			txn->mt_u.reader = r;
2745 			meta = env->me_metas[txn->mt_txnid & 1];
2746 		}
2747 
2748 	} else {
2749 		/* Not yet touching txn == env->me_txn0, it may be active */
2750 		if (ti) {
2751 			if (LOCK_MUTEX(rc, env, env->me_wmutex))
2752 				return rc;
2753 			txn->mt_txnid = ti->mti_txnid;
2754 			meta = env->me_metas[txn->mt_txnid & 1];
2755 		} else {
2756 			meta = mdb_env_pick_meta(env);
2757 			txn->mt_txnid = meta->mm_txnid;
2758 		}
2759 		txn->mt_txnid++;
2760 #if MDB_DEBUG
2761 		if (txn->mt_txnid == mdb_debug_start)
2762 			mdb_debug = 1;
2763 #endif
2764 		txn->mt_child = NULL;
2765 		txn->mt_loose_pgs = NULL;
2766 		txn->mt_loose_count = 0;
2767 		txn->mt_dirty_room = MDB_IDL_UM_MAX;
2768 		txn->mt_u.dirty_list = env->me_dirty_list;
2769 		txn->mt_u.dirty_list[0].mid = 0;
2770 		txn->mt_free_pgs = env->me_free_pgs;
2771 		txn->mt_free_pgs[0] = 0;
2772 		txn->mt_spill_pgs = NULL;
2773 		env->me_txn = txn;
2774 		memcpy(txn->mt_dbiseqs, env->me_dbiseqs, env->me_maxdbs * sizeof(unsigned int));
2775 	}
2776 
2777 	/* Copy the DB info and flags */
2778 	memcpy(txn->mt_dbs, meta->mm_dbs, CORE_DBS * sizeof(MDB_db));
2779 
2780 	/* Moved to here to avoid a data race in read TXNs */
2781 	txn->mt_next_pgno = meta->mm_last_pg+1;
2782 
2783 	txn->mt_flags = flags;
2784 
2785 	/* Setup db info */
2786 	txn->mt_numdbs = env->me_numdbs;
2787 	for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
2788 		x = env->me_dbflags[i];
2789 		txn->mt_dbs[i].md_flags = x & PERSISTENT_FLAGS;
2790 		txn->mt_dbflags[i] = (x & MDB_VALID) ? DB_VALID|DB_USRVALID|DB_STALE : 0;
2791 	}
2792 	txn->mt_dbflags[MAIN_DBI] = DB_VALID|DB_USRVALID;
2793 	txn->mt_dbflags[FREE_DBI] = DB_VALID;
2794 
2795 	if (env->me_flags & MDB_FATAL_ERROR) {
2796 		DPUTS("environment had fatal error, must shutdown!");
2797 		rc = MDB_PANIC;
2798 	} else if (env->me_maxpg < txn->mt_next_pgno) {
2799 		rc = MDB_MAP_RESIZED;
2800 	} else {
2801 		return MDB_SUCCESS;
2802 	}
2803 	mdb_txn_end(txn, new_notls /*0 or MDB_END_SLOT*/ | MDB_END_FAIL_BEGIN);
2804 	return rc;
2805 }
2806 
2807 int
2808 mdb_txn_renew(MDB_txn *txn)
2809 {
2810 	int rc;
2811 
2812 	if (!txn || !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY|MDB_TXN_FINISHED))
2813 		return EINVAL;
2814 
2815 	rc = mdb_txn_renew0(txn);
2816 	if (rc == MDB_SUCCESS) {
2817 		DPRINTF(("renew txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
2818 			txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
2819 			(void *)txn, (void *)txn->mt_env, txn->mt_dbs[MAIN_DBI].md_root));
2820 	}
2821 	return rc;
2822 }
2823 
2824 int
2825 mdb_txn_begin(MDB_env *env, MDB_txn *parent, unsigned int flags, MDB_txn **ret)
2826 {
2827 	MDB_txn *txn;
2828 	MDB_ntxn *ntxn;
2829 	int rc, size, tsize;
2830 
2831 	flags &= MDB_TXN_BEGIN_FLAGS;
2832 	flags |= env->me_flags & MDB_WRITEMAP;
2833 
2834 	if (env->me_flags & MDB_RDONLY & ~flags) /* write txn in RDONLY env */
2835 		return EACCES;
2836 
2837 	if (parent) {
2838 		/* Nested transactions: Max 1 child, write txns only, no writemap */
2839 		flags |= parent->mt_flags;
2840 		if (flags & (MDB_RDONLY|MDB_WRITEMAP|MDB_TXN_BLOCKED)) {
2841 			return (parent->mt_flags & MDB_TXN_RDONLY) ? EINVAL : MDB_BAD_TXN;
2842 		}
2843 		/* Child txns save MDB_pgstate and use own copy of cursors */
2844 		size = env->me_maxdbs * (sizeof(MDB_db)+sizeof(MDB_cursor *)+1);
2845 		size += tsize = sizeof(MDB_ntxn);
2846 	} else if (flags & MDB_RDONLY) {
2847 		size = env->me_maxdbs * (sizeof(MDB_db)+1);
2848 		size += tsize = sizeof(MDB_txn);
2849 	} else {
2850 		/* Reuse preallocated write txn. However, do not touch it until
2851 		 * mdb_txn_renew0() succeeds, since it currently may be active.
2852 		 */
2853 		txn = env->me_txn0;
2854 		goto renew;
2855 	}
2856 	if ((txn = calloc(1, size)) == NULL) {
2857 		DPRINTF(("calloc: %s", strerror(errno)));
2858 		return ENOMEM;
2859 	}
2860 	txn->mt_dbxs = env->me_dbxs;	/* static */
2861 	txn->mt_dbs = (MDB_db *) ((char *)txn + tsize);
2862 	txn->mt_dbflags = (unsigned char *)txn + size - env->me_maxdbs;
2863 	txn->mt_flags = flags;
2864 	txn->mt_env = env;
2865 
2866 	if (parent) {
2867 		unsigned int i;
2868 		txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
2869 		txn->mt_dbiseqs = parent->mt_dbiseqs;
2870 		txn->mt_u.dirty_list = malloc(sizeof(MDB_ID2)*MDB_IDL_UM_SIZE);
2871 		if (!txn->mt_u.dirty_list ||
2872 			!(txn->mt_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)))
2873 		{
2874 			free(txn->mt_u.dirty_list);
2875 			free(txn);
2876 			return ENOMEM;
2877 		}
2878 		txn->mt_txnid = parent->mt_txnid;
2879 		txn->mt_dirty_room = parent->mt_dirty_room;
2880 		txn->mt_u.dirty_list[0].mid = 0;
2881 		txn->mt_spill_pgs = NULL;
2882 		txn->mt_next_pgno = parent->mt_next_pgno;
2883 		parent->mt_flags |= MDB_TXN_HAS_CHILD;
2884 		parent->mt_child = txn;
2885 		txn->mt_parent = parent;
2886 		txn->mt_numdbs = parent->mt_numdbs;
2887 		memcpy(txn->mt_dbs, parent->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
2888 		/* Copy parent's mt_dbflags, but clear DB_NEW */
2889 		for (i=0; i<txn->mt_numdbs; i++)
2890 			txn->mt_dbflags[i] = parent->mt_dbflags[i] & ~DB_NEW;
2891 		rc = 0;
2892 		ntxn = (MDB_ntxn *)txn;
2893 		ntxn->mnt_pgstate = env->me_pgstate; /* save parent me_pghead & co */
2894 		if (env->me_pghead) {
2895 			size = MDB_IDL_SIZEOF(env->me_pghead);
2896 			env->me_pghead = mdb_midl_alloc(env->me_pghead[0]);
2897 			if (env->me_pghead)
2898 				memcpy(env->me_pghead, ntxn->mnt_pgstate.mf_pghead, size);
2899 			else
2900 				rc = ENOMEM;
2901 		}
2902 		if (!rc)
2903 			rc = mdb_cursor_shadow(parent, txn);
2904 		if (rc)
2905 			mdb_txn_end(txn, MDB_END_FAIL_BEGINCHILD);
2906 	} else { /* MDB_RDONLY */
2907 		txn->mt_dbiseqs = env->me_dbiseqs;
2908 renew:
2909 		rc = mdb_txn_renew0(txn);
2910 	}
2911 	if (rc) {
2912 		if (txn != env->me_txn0)
2913 			free(txn);
2914 	} else {
2915 		txn->mt_flags |= flags;	/* could not change txn=me_txn0 earlier */
2916 		*ret = txn;
2917 		DPRINTF(("begin txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
2918 			txn->mt_txnid, (flags & MDB_RDONLY) ? 'r' : 'w',
2919 			(void *) txn, (void *) env, txn->mt_dbs[MAIN_DBI].md_root));
2920 	}
2921 
2922 	return rc;
2923 }
2924 
2925 MDB_env *
2926 mdb_txn_env(MDB_txn *txn)
2927 {
2928 	if(!txn) return NULL;
2929 	return txn->mt_env;
2930 }
2931 
2932 size_t
2933 mdb_txn_id(MDB_txn *txn)
2934 {
2935     if(!txn) return 0;
2936     return txn->mt_txnid;
2937 }
2938 
2939 /** Export or close DBI handles opened in this txn. */
2940 static void
2941 mdb_dbis_update(MDB_txn *txn, int keep)
2942 {
2943 	int i;
2944 	MDB_dbi n = txn->mt_numdbs;
2945 	MDB_env *env = txn->mt_env;
2946 	unsigned char *tdbflags = txn->mt_dbflags;
2947 
2948 	for (i = n; --i >= CORE_DBS;) {
2949 		if (tdbflags[i] & DB_NEW) {
2950 			if (keep) {
2951 				env->me_dbflags[i] = txn->mt_dbs[i].md_flags | MDB_VALID;
2952 			} else {
2953 				char *ptr = env->me_dbxs[i].md_name.mv_data;
2954 				if (ptr) {
2955 					env->me_dbxs[i].md_name.mv_data = NULL;
2956 					env->me_dbxs[i].md_name.mv_size = 0;
2957 					env->me_dbflags[i] = 0;
2958 					env->me_dbiseqs[i]++;
2959 					free(ptr);
2960 				}
2961 			}
2962 		}
2963 	}
2964 	if (keep && env->me_numdbs < n)
2965 		env->me_numdbs = n;
2966 }
2967 
2968 /** End a transaction, except successful commit of a nested transaction.
2969  * May be called twice for readonly txns: First reset it, then abort.
2970  * @param[in] txn the transaction handle to end
2971  * @param[in] mode why and how to end the transaction
2972  */
2973 static void
2974 mdb_txn_end(MDB_txn *txn, unsigned mode)
2975 {
2976 	MDB_env	*env = txn->mt_env;
2977 #if MDB_DEBUG
2978 	static const char *const names[] = MDB_END_NAMES;
2979 #endif
2980 
2981 	/* Export or close DBI handles opened in this txn */
2982 	mdb_dbis_update(txn, mode & MDB_END_UPDATE);
2983 
2984 	DPRINTF(("%s txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
2985 		names[mode & MDB_END_OPMASK],
2986 		txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
2987 		(void *) txn, (void *)env, txn->mt_dbs[MAIN_DBI].md_root));
2988 
2989 	if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
2990 		if (txn->mt_u.reader) {
2991 			txn->mt_u.reader->mr_txnid = (txnid_t)-1;
2992 			if (!(env->me_flags & MDB_NOTLS)) {
2993 				txn->mt_u.reader = NULL; /* txn does not own reader */
2994 			} else if (mode & MDB_END_SLOT) {
2995 				txn->mt_u.reader->mr_pid = 0;
2996 				txn->mt_u.reader = NULL;
2997 			} /* else txn owns the slot until it does MDB_END_SLOT */
2998 		}
2999 		txn->mt_numdbs = 0;		/* prevent further DBI activity */
3000 		txn->mt_flags |= MDB_TXN_FINISHED;
3001 
3002 	} else if (!F_ISSET(txn->mt_flags, MDB_TXN_FINISHED)) {
3003 		pgno_t *pghead = env->me_pghead;
3004 
3005 		if (!(mode & MDB_END_UPDATE)) /* !(already closed cursors) */
3006 			mdb_cursors_close(txn, 0);
3007 		if (!(env->me_flags & MDB_WRITEMAP)) {
3008 			mdb_dlist_free(txn);
3009 		}
3010 
3011 		txn->mt_numdbs = 0;
3012 		txn->mt_flags = MDB_TXN_FINISHED;
3013 
3014 		if (!txn->mt_parent) {
3015 			mdb_midl_shrink(&txn->mt_free_pgs);
3016 			env->me_free_pgs = txn->mt_free_pgs;
3017 			/* me_pgstate: */
3018 			env->me_pghead = NULL;
3019 			env->me_pglast = 0;
3020 
3021 			env->me_txn = NULL;
3022 			mode = 0;	/* txn == env->me_txn0, do not free() it */
3023 
3024 			/* The writer mutex was locked in mdb_txn_begin. */
3025 			if (env->me_txns)
3026 				UNLOCK_MUTEX(env->me_wmutex);
3027 		} else {
3028 			txn->mt_parent->mt_child = NULL;
3029 			txn->mt_parent->mt_flags &= ~MDB_TXN_HAS_CHILD;
3030 			env->me_pgstate = ((MDB_ntxn *)txn)->mnt_pgstate;
3031 			mdb_midl_free(txn->mt_free_pgs);
3032 			mdb_midl_free(txn->mt_spill_pgs);
3033 			free(txn->mt_u.dirty_list);
3034 		}
3035 
3036 		mdb_midl_free(pghead);
3037 	}
3038 
3039 	if (mode & MDB_END_FREE)
3040 		free(txn);
3041 }
3042 
3043 void
3044 mdb_txn_reset(MDB_txn *txn)
3045 {
3046 	if (txn == NULL)
3047 		return;
3048 
3049 	/* This call is only valid for read-only txns */
3050 	if (!(txn->mt_flags & MDB_TXN_RDONLY))
3051 		return;
3052 
3053 	mdb_txn_end(txn, MDB_END_RESET);
3054 }
3055 
3056 void
3057 mdb_txn_abort(MDB_txn *txn)
3058 {
3059 	if (txn == NULL)
3060 		return;
3061 
3062 	if (txn->mt_child)
3063 		mdb_txn_abort(txn->mt_child);
3064 
3065 	mdb_txn_end(txn, MDB_END_ABORT|MDB_END_SLOT|MDB_END_FREE);
3066 }
3067 
3068 /** Save the freelist as of this transaction to the freeDB.
3069  * This changes the freelist. Keep trying until it stabilizes.
3070  */
3071 static int
3072 mdb_freelist_save(MDB_txn *txn)
3073 {
3074 	/* env->me_pghead[] can grow and shrink during this call.
3075 	 * env->me_pglast and txn->mt_free_pgs[] can only grow.
3076 	 * Page numbers cannot disappear from txn->mt_free_pgs[].
3077 	 */
3078 	MDB_cursor mc;
3079 	MDB_env	*env = txn->mt_env;
3080 	int rc, maxfree_1pg = env->me_maxfree_1pg, more = 1;
3081 	txnid_t	pglast = 0, head_id = 0;
3082 	pgno_t	freecnt = 0, *free_pgs, *mop;
3083 	ssize_t	head_room = 0, total_room = 0, mop_len, clean_limit;
3084 
3085 	mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
3086 
3087 	if (env->me_pghead) {
3088 		/* Make sure first page of freeDB is touched and on freelist */
3089 		rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST|MDB_PS_MODIFY);
3090 		if (rc && rc != MDB_NOTFOUND)
3091 			return rc;
3092 	}
3093 
3094 	if (!env->me_pghead && txn->mt_loose_pgs) {
3095 		/* Put loose page numbers in mt_free_pgs, since
3096 		 * we may be unable to return them to me_pghead.
3097 		 */
3098 		MDB_page *mp = txn->mt_loose_pgs;
3099 		MDB_ID2 *dl = txn->mt_u.dirty_list;
3100 		unsigned x;
3101 		if ((rc = mdb_midl_need(&txn->mt_free_pgs, txn->mt_loose_count)) != 0)
3102 			return rc;
3103 		for (; mp; mp = NEXT_LOOSE_PAGE(mp)) {
3104 			mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
3105 			/* must also remove from dirty list */
3106 			if (txn->mt_flags & MDB_TXN_WRITEMAP) {
3107 				for (x=1; x<=dl[0].mid; x++)
3108 					if (dl[x].mid == mp->mp_pgno)
3109 						break;
3110 				mdb_tassert(txn, x <= dl[0].mid);
3111 			} else {
3112 				x = mdb_mid2l_search(dl, mp->mp_pgno);
3113 				mdb_tassert(txn, dl[x].mid == mp->mp_pgno);
3114 				mdb_dpage_free(env, mp);
3115 			}
3116 			dl[x].mptr = NULL;
3117 		}
3118 		{
3119 			/* squash freed slots out of the dirty list */
3120 			unsigned y;
3121 			for (y=1; dl[y].mptr && y <= dl[0].mid; y++);
3122 			if (y <= dl[0].mid) {
3123 				for(x=y, y++;;) {
3124 					while (!dl[y].mptr && y <= dl[0].mid) y++;
3125 					if (y > dl[0].mid) break;
3126 					dl[x++] = dl[y++];
3127 				}
3128 				dl[0].mid = x-1;
3129 			} else {
3130 				/* all slots freed */
3131 				dl[0].mid = 0;
3132 			}
3133 		}
3134 		txn->mt_loose_pgs = NULL;
3135 		txn->mt_loose_count = 0;
3136 	}
3137 
3138 	/* MDB_RESERVE cancels meminit in ovpage malloc (when no WRITEMAP) */
3139 	clean_limit = (env->me_flags & (MDB_NOMEMINIT|MDB_WRITEMAP))
3140 		? SSIZE_MAX : maxfree_1pg;
3141 
3142 	for (;;) {
3143 		/* Come back here after each Put() in case freelist changed */
3144 		MDB_val key, data;
3145 		pgno_t *pgs;
3146 		ssize_t j;
3147 
3148 		/* If using records from freeDB which we have not yet
3149 		 * deleted, delete them and any we reserved for me_pghead.
3150 		 */
3151 		while (pglast < env->me_pglast) {
3152 			rc = mdb_cursor_first(&mc, &key, NULL);
3153 			if (rc)
3154 				return rc;
3155 			pglast = head_id = *(txnid_t *)key.mv_data;
3156 			total_room = head_room = 0;
3157 			mdb_tassert(txn, pglast <= env->me_pglast);
3158 			rc = mdb_cursor_del(&mc, 0);
3159 			if (rc)
3160 				return rc;
3161 		}
3162 
3163 		/* Save the IDL of pages freed by this txn, to a single record */
3164 		if (freecnt < txn->mt_free_pgs[0]) {
3165 			if (!freecnt) {
3166 				/* Make sure last page of freeDB is touched and on freelist */
3167 				rc = mdb_page_search(&mc, NULL, MDB_PS_LAST|MDB_PS_MODIFY);
3168 				if (rc && rc != MDB_NOTFOUND)
3169 					return rc;
3170 			}
3171 			free_pgs = txn->mt_free_pgs;
3172 			/* Write to last page of freeDB */
3173 			key.mv_size = sizeof(txn->mt_txnid);
3174 			key.mv_data = &txn->mt_txnid;
3175 			do {
3176 				freecnt = free_pgs[0];
3177 				data.mv_size = MDB_IDL_SIZEOF(free_pgs);
3178 				rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
3179 				if (rc)
3180 					return rc;
3181 				/* Retry if mt_free_pgs[] grew during the Put() */
3182 				free_pgs = txn->mt_free_pgs;
3183 			} while (freecnt < free_pgs[0]);
3184 			mdb_midl_sort(free_pgs);
3185 			memcpy(data.mv_data, free_pgs, data.mv_size);
3186 #if (MDB_DEBUG) > 1
3187 			{
3188 				unsigned int i = free_pgs[0];
3189 				DPRINTF(("IDL write txn %"Z"u root %"Z"u num %u",
3190 					txn->mt_txnid, txn->mt_dbs[FREE_DBI].md_root, i));
3191 				for (; i; i--)
3192 					DPRINTF(("IDL %"Z"u", free_pgs[i]));
3193 			}
3194 #endif
3195 			continue;
3196 		}
3197 
3198 		mop = env->me_pghead;
3199 		mop_len = (mop ? mop[0] : 0) + txn->mt_loose_count;
3200 
3201 		/* Reserve records for me_pghead[]. Split it if multi-page,
3202 		 * to avoid searching freeDB for a page range. Use keys in
3203 		 * range [1,me_pglast]: Smaller than txnid of oldest reader.
3204 		 */
3205 		if (total_room >= mop_len) {
3206 			if (total_room == mop_len || --more < 0)
3207 				break;
3208 		} else if (head_room >= maxfree_1pg && head_id > 1) {
3209 			/* Keep current record (overflow page), add a new one */
3210 			head_id--;
3211 			head_room = 0;
3212 		}
3213 		/* (Re)write {key = head_id, IDL length = head_room} */
3214 		total_room -= head_room;
3215 		head_room = mop_len - total_room;
3216 		if (head_room > maxfree_1pg && head_id > 1) {
3217 			/* Overflow multi-page for part of me_pghead */
3218 			head_room /= head_id; /* amortize page sizes */
3219 			head_room += maxfree_1pg - head_room % (maxfree_1pg + 1);
3220 		} else if (head_room < 0) {
3221 			/* Rare case, not bothering to delete this record */
3222 			head_room = 0;
3223 		}
3224 		key.mv_size = sizeof(head_id);
3225 		key.mv_data = &head_id;
3226 		data.mv_size = (head_room + 1) * sizeof(pgno_t);
3227 		rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
3228 		if (rc)
3229 			return rc;
3230 		/* IDL is initially empty, zero out at least the length */
3231 		pgs = (pgno_t *)data.mv_data;
3232 		j = head_room > clean_limit ? head_room : 0;
3233 		do {
3234 			pgs[j] = 0;
3235 		} while (--j >= 0);
3236 		total_room += head_room;
3237 	}
3238 
3239 	/* Return loose page numbers to me_pghead, though usually none are
3240 	 * left at this point.  The pages themselves remain in dirty_list.
3241 	 */
3242 	if (txn->mt_loose_pgs) {
3243 		MDB_page *mp = txn->mt_loose_pgs;
3244 		unsigned count = txn->mt_loose_count;
3245 		MDB_IDL loose;
3246 		/* Room for loose pages + temp IDL with same */
3247 		if ((rc = mdb_midl_need(&env->me_pghead, 2*count+1)) != 0)
3248 			return rc;
3249 		mop = env->me_pghead;
3250 		loose = mop + MDB_IDL_ALLOCLEN(mop) - count;
3251 		for (count = 0; mp; mp = NEXT_LOOSE_PAGE(mp))
3252 			loose[ ++count ] = mp->mp_pgno;
3253 		loose[0] = count;
3254 		mdb_midl_sort(loose);
3255 		mdb_midl_xmerge(mop, loose);
3256 		txn->mt_loose_pgs = NULL;
3257 		txn->mt_loose_count = 0;
3258 		mop_len = mop[0];
3259 	}
3260 
3261 	/* Fill in the reserved me_pghead records */
3262 	rc = MDB_SUCCESS;
3263 	if (mop_len) {
3264 		MDB_val key, data;
3265 
3266 		mop += mop_len;
3267 		rc = mdb_cursor_first(&mc, &key, &data);
3268 		for (; !rc; rc = mdb_cursor_next(&mc, &key, &data, MDB_NEXT)) {
3269 			txnid_t id = *(txnid_t *)key.mv_data;
3270 			ssize_t	len = (ssize_t)(data.mv_size / sizeof(MDB_ID)) - 1;
3271 			MDB_ID save;
3272 
3273 			mdb_tassert(txn, len >= 0 && id <= env->me_pglast);
3274 			key.mv_data = &id;
3275 			if (len > mop_len) {
3276 				len = mop_len;
3277 				data.mv_size = (len + 1) * sizeof(MDB_ID);
3278 			}
3279 			data.mv_data = mop -= len;
3280 			save = mop[0];
3281 			mop[0] = len;
3282 			rc = mdb_cursor_put(&mc, &key, &data, MDB_CURRENT);
3283 			mop[0] = save;
3284 			if (rc || !(mop_len -= len))
3285 				break;
3286 		}
3287 	}
3288 	return rc;
3289 }
3290 
3291 /** Flush (some) dirty pages to the map, after clearing their dirty flag.
3292  * @param[in] txn the transaction that's being committed
3293  * @param[in] keep number of initial pages in dirty_list to keep dirty.
3294  * @return 0 on success, non-zero on failure.
3295  */
3296 static int
3297 mdb_page_flush(MDB_txn *txn, int keep)
3298 {
3299 	MDB_env		*env = txn->mt_env;
3300 	MDB_ID2L	dl = txn->mt_u.dirty_list;
3301 	unsigned	psize = env->me_psize, j;
3302 	int			i, pagecount = dl[0].mid, rc;
3303 	size_t		size = 0, pos = 0;
3304 	pgno_t		pgno = 0;
3305 	MDB_page	*dp = NULL;
3306 #ifdef _WIN32
3307 	OVERLAPPED	ov;
3308 #else
3309 	struct iovec iov[MDB_COMMIT_PAGES];
3310 	ssize_t		wpos = 0, wsize = 0, wres;
3311 	size_t		next_pos = 1; /* impossible pos, so pos != next_pos */
3312 	int			n = 0;
3313 #endif
3314 
3315 	j = i = keep;
3316 
3317 	if (env->me_flags & MDB_WRITEMAP) {
3318 		/* Clear dirty flags */
3319 		while (++i <= pagecount) {
3320 			dp = dl[i].mptr;
3321 			/* Don't flush this page yet */
3322 			if (dp->mp_flags & (P_LOOSE|P_KEEP)) {
3323 				dp->mp_flags &= ~P_KEEP;
3324 				dl[++j] = dl[i];
3325 				continue;
3326 			}
3327 			dp->mp_flags &= ~P_DIRTY;
3328 		}
3329 		goto done;
3330 	}
3331 
3332 	/* Write the pages */
3333 	for (;;) {
3334 		if (++i <= pagecount) {
3335 			dp = dl[i].mptr;
3336 			/* Don't flush this page yet */
3337 			if (dp->mp_flags & (P_LOOSE|P_KEEP)) {
3338 				dp->mp_flags &= ~P_KEEP;
3339 				dl[i].mid = 0;
3340 				continue;
3341 			}
3342 			pgno = dl[i].mid;
3343 			/* clear dirty flag */
3344 			dp->mp_flags &= ~P_DIRTY;
3345 			pos = pgno * psize;
3346 			size = psize;
3347 			if (IS_OVERFLOW(dp)) size *= dp->mp_pages;
3348 		}
3349 #ifdef _WIN32
3350 		else break;
3351 
3352 		/* Windows actually supports scatter/gather I/O, but only on
3353 		 * unbuffered file handles. Since we're relying on the OS page
3354 		 * cache for all our data, that's self-defeating. So we just
3355 		 * write pages one at a time. We use the ov structure to set
3356 		 * the write offset, to at least save the overhead of a Seek
3357 		 * system call.
3358 		 */
3359 		DPRINTF(("committing page %"Z"u", pgno));
3360 		memset(&ov, 0, sizeof(ov));
3361 		ov.Offset = pos & 0xffffffff;
3362 		ov.OffsetHigh = pos >> 16 >> 16;
3363 		if (!WriteFile(env->me_fd, dp, size, NULL, &ov)) {
3364 			rc = ErrCode();
3365 			DPRINTF(("WriteFile: %d", rc));
3366 			return rc;
3367 		}
3368 #else
3369 		/* Write up to MDB_COMMIT_PAGES dirty pages at a time. */
3370 		if (pos!=next_pos || n==MDB_COMMIT_PAGES || wsize+size>MAX_WRITE) {
3371 			if (n) {
3372 retry_write:
3373 				/* Write previous page(s) */
3374 #ifdef MDB_USE_PWRITEV
3375 				wres = pwritev(env->me_fd, iov, n, wpos);
3376 #else
3377 				if (n == 1) {
3378 					wres = pwrite(env->me_fd, iov[0].iov_base, wsize, wpos);
3379 				} else {
3380 retry_seek:
3381 					if (lseek(env->me_fd, wpos, SEEK_SET) == -1) {
3382 						rc = ErrCode();
3383 						if (rc == EINTR)
3384 							goto retry_seek;
3385 						DPRINTF(("lseek: %s", strerror(rc)));
3386 						return rc;
3387 					}
3388 					wres = writev(env->me_fd, iov, n);
3389 				}
3390 #endif
3391 				if (wres != wsize) {
3392 					if (wres < 0) {
3393 						rc = ErrCode();
3394 						if (rc == EINTR)
3395 							goto retry_write;
3396 						DPRINTF(("Write error: %s", strerror(rc)));
3397 					} else {
3398 						rc = EIO; /* TODO: Use which error code? */
3399 						DPUTS("short write, filesystem full?");
3400 					}
3401 					return rc;
3402 				}
3403 				n = 0;
3404 			}
3405 			if (i > pagecount)
3406 				break;
3407 			wpos = pos;
3408 			wsize = 0;
3409 		}
3410 		DPRINTF(("committing page %"Z"u", pgno));
3411 		next_pos = pos + size;
3412 		iov[n].iov_len = size;
3413 		iov[n].iov_base = (char *)dp;
3414 		wsize += size;
3415 		n++;
3416 #endif	/* _WIN32 */
3417 	}
3418 
3419 	/* MIPS has cache coherency issues, this is a no-op everywhere else
3420 	 * Note: for any size >= on-chip cache size, entire on-chip cache is
3421 	 * flushed.
3422 	 */
3423 	CACHEFLUSH(env->me_map, txn->mt_next_pgno * env->me_psize, DCACHE);
3424 
3425 	for (i = keep; ++i <= pagecount; ) {
3426 		dp = dl[i].mptr;
3427 		/* This is a page we skipped above */
3428 		if (!dl[i].mid) {
3429 			dl[++j] = dl[i];
3430 			dl[j].mid = dp->mp_pgno;
3431 			continue;
3432 		}
3433 		mdb_dpage_free(env, dp);
3434 	}
3435 
3436 done:
3437 	i--;
3438 	txn->mt_dirty_room += i - j;
3439 	dl[0].mid = j;
3440 	return MDB_SUCCESS;
3441 }
3442 
3443 int
3444 mdb_txn_commit(MDB_txn *txn)
3445 {
3446 	int		rc;
3447 	unsigned int i, end_mode;
3448 	MDB_env	*env;
3449 
3450 	if (txn == NULL)
3451 		return EINVAL;
3452 
3453 	/* mdb_txn_end() mode for a commit which writes nothing */
3454 	end_mode = MDB_END_EMPTY_COMMIT|MDB_END_UPDATE|MDB_END_SLOT|MDB_END_FREE;
3455 
3456 	if (txn->mt_child) {
3457 		rc = mdb_txn_commit(txn->mt_child);
3458 		if (rc)
3459 			goto fail;
3460 	}
3461 
3462 	env = txn->mt_env;
3463 
3464 	if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
3465 		goto done;
3466 	}
3467 
3468 	if (txn->mt_flags & (MDB_TXN_FINISHED|MDB_TXN_ERROR)) {
3469 		DPUTS("txn has failed/finished, can't commit");
3470 		if (txn->mt_parent)
3471 			txn->mt_parent->mt_flags |= MDB_TXN_ERROR;
3472 		rc = MDB_BAD_TXN;
3473 		goto fail;
3474 	}
3475 
3476 	if (txn->mt_parent) {
3477 		MDB_txn *parent = txn->mt_parent;
3478 		MDB_page **lp;
3479 		MDB_ID2L dst, src;
3480 		MDB_IDL pspill;
3481 		unsigned x, y, len, ps_len;
3482 
3483 		/* Append our free list to parent's */
3484 		rc = mdb_midl_append_list(&parent->mt_free_pgs, txn->mt_free_pgs);
3485 		if (rc)
3486 			goto fail;
3487 		mdb_midl_free(txn->mt_free_pgs);
3488 		/* Failures after this must either undo the changes
3489 		 * to the parent or set MDB_TXN_ERROR in the parent.
3490 		 */
3491 
3492 		parent->mt_next_pgno = txn->mt_next_pgno;
3493 		parent->mt_flags = txn->mt_flags;
3494 
3495 		/* Merge our cursors into parent's and close them */
3496 		mdb_cursors_close(txn, 1);
3497 
3498 		/* Update parent's DB table. */
3499 		memcpy(parent->mt_dbs, txn->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
3500 		parent->mt_numdbs = txn->mt_numdbs;
3501 		parent->mt_dbflags[FREE_DBI] = txn->mt_dbflags[FREE_DBI];
3502 		parent->mt_dbflags[MAIN_DBI] = txn->mt_dbflags[MAIN_DBI];
3503 		for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
3504 			/* preserve parent's DB_NEW status */
3505 			x = parent->mt_dbflags[i] & DB_NEW;
3506 			parent->mt_dbflags[i] = txn->mt_dbflags[i] | x;
3507 		}
3508 
3509 		dst = parent->mt_u.dirty_list;
3510 		src = txn->mt_u.dirty_list;
3511 		/* Remove anything in our dirty list from parent's spill list */
3512 		if ((pspill = parent->mt_spill_pgs) && (ps_len = pspill[0])) {
3513 			x = y = ps_len;
3514 			pspill[0] = (pgno_t)-1;
3515 			/* Mark our dirty pages as deleted in parent spill list */
3516 			for (i=0, len=src[0].mid; ++i <= len; ) {
3517 				MDB_ID pn = src[i].mid << 1;
3518 				while (pn > pspill[x])
3519 					x--;
3520 				if (pn == pspill[x]) {
3521 					pspill[x] = 1;
3522 					y = --x;
3523 				}
3524 			}
3525 			/* Squash deleted pagenums if we deleted any */
3526 			for (x=y; ++x <= ps_len; )
3527 				if (!(pspill[x] & 1))
3528 					pspill[++y] = pspill[x];
3529 			pspill[0] = y;
3530 		}
3531 
3532 		/* Remove anything in our spill list from parent's dirty list */
3533 		if (txn->mt_spill_pgs && txn->mt_spill_pgs[0]) {
3534 			for (i=1; i<=txn->mt_spill_pgs[0]; i++) {
3535 				MDB_ID pn = txn->mt_spill_pgs[i];
3536 				if (pn & 1)
3537 					continue;	/* deleted spillpg */
3538 				pn >>= 1;
3539 				y = mdb_mid2l_search(dst, pn);
3540 				if (y <= dst[0].mid && dst[y].mid == pn) {
3541 					free(dst[y].mptr);
3542 					while (y < dst[0].mid) {
3543 						dst[y] = dst[y+1];
3544 						y++;
3545 					}
3546 					dst[0].mid--;
3547 				}
3548 			}
3549 		}
3550 
3551 		/* Find len = length of merging our dirty list with parent's */
3552 		x = dst[0].mid;
3553 		dst[0].mid = 0;		/* simplify loops */
3554 		if (parent->mt_parent) {
3555 			len = x + src[0].mid;
3556 			y = mdb_mid2l_search(src, dst[x].mid + 1) - 1;
3557 			for (i = x; y && i; y--) {
3558 				pgno_t yp = src[y].mid;
3559 				while (yp < dst[i].mid)
3560 					i--;
3561 				if (yp == dst[i].mid) {
3562 					i--;
3563 					len--;
3564 				}
3565 			}
3566 		} else { /* Simplify the above for single-ancestor case */
3567 			len = MDB_IDL_UM_MAX - txn->mt_dirty_room;
3568 		}
3569 		/* Merge our dirty list with parent's */
3570 		y = src[0].mid;
3571 		for (i = len; y; dst[i--] = src[y--]) {
3572 			pgno_t yp = src[y].mid;
3573 			while (yp < dst[x].mid)
3574 				dst[i--] = dst[x--];
3575 			if (yp == dst[x].mid)
3576 				free(dst[x--].mptr);
3577 		}
3578 		mdb_tassert(txn, i == x);
3579 		dst[0].mid = len;
3580 		free(txn->mt_u.dirty_list);
3581 		parent->mt_dirty_room = txn->mt_dirty_room;
3582 		if (txn->mt_spill_pgs) {
3583 			if (parent->mt_spill_pgs) {
3584 				/* TODO: Prevent failure here, so parent does not fail */
3585 				rc = mdb_midl_append_list(&parent->mt_spill_pgs, txn->mt_spill_pgs);
3586 				if (rc)
3587 					parent->mt_flags |= MDB_TXN_ERROR;
3588 				mdb_midl_free(txn->mt_spill_pgs);
3589 				mdb_midl_sort(parent->mt_spill_pgs);
3590 			} else {
3591 				parent->mt_spill_pgs = txn->mt_spill_pgs;
3592 			}
3593 		}
3594 
3595 		/* Append our loose page list to parent's */
3596 		for (lp = &parent->mt_loose_pgs; *lp; lp = &NEXT_LOOSE_PAGE(*lp))
3597 			;
3598 		*lp = txn->mt_loose_pgs;
3599 		parent->mt_loose_count += txn->mt_loose_count;
3600 
3601 		parent->mt_child = NULL;
3602 		mdb_midl_free(((MDB_ntxn *)txn)->mnt_pgstate.mf_pghead);
3603 		free(txn);
3604 		return rc;
3605 	}
3606 
3607 	if (txn != env->me_txn) {
3608 		DPUTS("attempt to commit unknown transaction");
3609 		rc = EINVAL;
3610 		goto fail;
3611 	}
3612 
3613 	mdb_cursors_close(txn, 0);
3614 
3615 	if (!txn->mt_u.dirty_list[0].mid &&
3616 		!(txn->mt_flags & (MDB_TXN_DIRTY|MDB_TXN_SPILLS)))
3617 		goto done;
3618 
3619 	DPRINTF(("committing txn %"Z"u %p on mdbenv %p, root page %"Z"u",
3620 	    txn->mt_txnid, (void*)txn, (void*)env, txn->mt_dbs[MAIN_DBI].md_root));
3621 
3622 	/* Update DB root pointers */
3623 	if (txn->mt_numdbs > CORE_DBS) {
3624 		MDB_cursor mc;
3625 		MDB_dbi i;
3626 		MDB_val data;
3627 		data.mv_size = sizeof(MDB_db);
3628 
3629 		mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
3630 		for (i = CORE_DBS; i < txn->mt_numdbs; i++) {
3631 			if (txn->mt_dbflags[i] & DB_DIRTY) {
3632 				if (TXN_DBI_CHANGED(txn, i)) {
3633 					rc = MDB_BAD_DBI;
3634 					goto fail;
3635 				}
3636 				data.mv_data = &txn->mt_dbs[i];
3637 				rc = mdb_cursor_put(&mc, &txn->mt_dbxs[i].md_name, &data,
3638 					F_SUBDATA);
3639 				if (rc)
3640 					goto fail;
3641 			}
3642 		}
3643 	}
3644 
3645 	rc = mdb_freelist_save(txn);
3646 	if (rc)
3647 		goto fail;
3648 
3649 	mdb_midl_free(env->me_pghead);
3650 	env->me_pghead = NULL;
3651 	mdb_midl_shrink(&txn->mt_free_pgs);
3652 
3653 #if (MDB_DEBUG) > 2
3654 	mdb_audit(txn);
3655 #endif
3656 
3657 	if ((rc = mdb_page_flush(txn, 0)) ||
3658 		(rc = mdb_env_sync(env, 0)) ||
3659 		(rc = mdb_env_write_meta(txn)))
3660 		goto fail;
3661 	end_mode = MDB_END_COMMITTED|MDB_END_UPDATE;
3662 
3663 done:
3664 	mdb_txn_end(txn, end_mode);
3665 	return MDB_SUCCESS;
3666 
3667 fail:
3668 	mdb_txn_abort(txn);
3669 	return rc;
3670 }
3671 
3672 /** Read the environment parameters of a DB environment before
3673  * mapping it into memory.
3674  * @param[in] env the environment handle
3675  * @param[out] meta address of where to store the meta information
3676  * @return 0 on success, non-zero on failure.
3677  */
3678 static int ESECT
3679 mdb_env_read_header(MDB_env *env, MDB_meta *meta)
3680 {
3681 	MDB_metabuf	pbuf;
3682 	MDB_page	*p;
3683 	MDB_meta	*m;
3684 	int			i, rc, off;
3685 	enum { Size = sizeof(pbuf) };
3686 
3687 	/* We don't know the page size yet, so use a minimum value.
3688 	 * Read both meta pages so we can use the latest one.
3689 	 */
3690 
3691 	for (i=off=0; i<NUM_METAS; i++, off += meta->mm_psize) {
3692 #ifdef _WIN32
3693 		DWORD len;
3694 		OVERLAPPED ov;
3695 		memset(&ov, 0, sizeof(ov));
3696 		ov.Offset = off;
3697 		rc = ReadFile(env->me_fd, &pbuf, Size, &len, &ov) ? (int)len : -1;
3698 		if (rc == -1 && ErrCode() == ERROR_HANDLE_EOF)
3699 			rc = 0;
3700 #else
3701 		rc = pread(env->me_fd, &pbuf, Size, off);
3702 #endif
3703 		if (rc != Size) {
3704 			if (rc == 0 && off == 0)
3705 				return ENOENT;
3706 			rc = rc < 0 ? (int) ErrCode() : MDB_INVALID;
3707 			DPRINTF(("read: %s", mdb_strerror(rc)));
3708 			return rc;
3709 		}
3710 
3711 		p = (MDB_page *)&pbuf;
3712 
3713 		if (!F_ISSET(p->mp_flags, P_META)) {
3714 			DPRINTF(("page %"Z"u not a meta page", p->mp_pgno));
3715 			return MDB_INVALID;
3716 		}
3717 
3718 		m = METADATA(p);
3719 		if (m->mm_magic != MDB_MAGIC) {
3720 			DPUTS("meta has invalid magic");
3721 			return MDB_INVALID;
3722 		}
3723 
3724 		if (m->mm_version != MDB_DATA_VERSION) {
3725 			DPRINTF(("database is version %u, expected version %u",
3726 				m->mm_version, MDB_DATA_VERSION));
3727 			return MDB_VERSION_MISMATCH;
3728 		}
3729 
3730 		if (off == 0 || m->mm_txnid > meta->mm_txnid)
3731 			*meta = *m;
3732 	}
3733 	return 0;
3734 }
3735 
3736 /** Fill in most of the zeroed #MDB_meta for an empty database environment */
3737 static void ESECT
3738 mdb_env_init_meta0(MDB_env *env, MDB_meta *meta)
3739 {
3740 	meta->mm_magic = MDB_MAGIC;
3741 	meta->mm_version = MDB_DATA_VERSION;
3742 	meta->mm_mapsize = env->me_mapsize;
3743 	meta->mm_psize = env->me_psize;
3744 	meta->mm_last_pg = NUM_METAS-1;
3745 	meta->mm_flags = env->me_flags & 0xffff;
3746 	meta->mm_flags |= MDB_INTEGERKEY; /* this is mm_dbs[FREE_DBI].md_flags */
3747 	meta->mm_dbs[FREE_DBI].md_root = P_INVALID;
3748 	meta->mm_dbs[MAIN_DBI].md_root = P_INVALID;
3749 }
3750 
3751 /** Write the environment parameters of a freshly created DB environment.
3752  * @param[in] env the environment handle
3753  * @param[in] meta the #MDB_meta to write
3754  * @return 0 on success, non-zero on failure.
3755  */
3756 static int ESECT
3757 mdb_env_init_meta(MDB_env *env, MDB_meta *meta)
3758 {
3759 	MDB_page *p, *q;
3760 	int rc;
3761 	unsigned int	 psize;
3762 #ifdef _WIN32
3763 	DWORD len;
3764 	OVERLAPPED ov;
3765 	memset(&ov, 0, sizeof(ov));
3766 #define DO_PWRITE(rc, fd, ptr, size, len, pos)	do { \
3767 	ov.Offset = pos;	\
3768 	rc = WriteFile(fd, ptr, size, &len, &ov);	} while(0)
3769 #else
3770 	int len;
3771 #define DO_PWRITE(rc, fd, ptr, size, len, pos)	do { \
3772 	len = pwrite(fd, ptr, size, pos);	\
3773 	if (len == -1 && ErrCode() == EINTR) continue; \
3774 	rc = (len >= 0); break; } while(1)
3775 #endif
3776 
3777 	DPUTS("writing new meta page");
3778 
3779 	psize = env->me_psize;
3780 
3781 	p = calloc(NUM_METAS, psize);
3782 	if (!p)
3783 		return ENOMEM;
3784 
3785 	p->mp_pgno = 0;
3786 	p->mp_flags = P_META;
3787 	*(MDB_meta *)METADATA(p) = *meta;
3788 
3789 	q = (MDB_page *)((char *)p + psize);
3790 	q->mp_pgno = 1;
3791 	q->mp_flags = P_META;
3792 	*(MDB_meta *)METADATA(q) = *meta;
3793 
3794 	DO_PWRITE(rc, env->me_fd, p, psize * NUM_METAS, len, 0);
3795 	if (!rc)
3796 		rc = ErrCode();
3797 	else if ((unsigned) len == psize * NUM_METAS)
3798 		rc = MDB_SUCCESS;
3799 	else
3800 		rc = ENOSPC;
3801 	free(p);
3802 	return rc;
3803 }
3804 
3805 /** Update the environment info to commit a transaction.
3806  * @param[in] txn the transaction that's being committed
3807  * @return 0 on success, non-zero on failure.
3808  */
3809 static int
3810 mdb_env_write_meta(MDB_txn *txn)
3811 {
3812 	MDB_env *env;
3813 	MDB_meta	meta, metab, *mp;
3814 	unsigned flags;
3815 	size_t mapsize;
3816 	off_t off;
3817 	int rc, len, toggle;
3818 	char *ptr;
3819 	HANDLE mfd;
3820 #ifdef _WIN32
3821 	OVERLAPPED ov;
3822 #else
3823 	int r2;
3824 #endif
3825 
3826 	toggle = txn->mt_txnid & 1;
3827 	DPRINTF(("writing meta page %d for root page %"Z"u",
3828 		toggle, txn->mt_dbs[MAIN_DBI].md_root));
3829 
3830 	env = txn->mt_env;
3831 	flags = env->me_flags;
3832 	mp = env->me_metas[toggle];
3833 	mapsize = env->me_metas[toggle ^ 1]->mm_mapsize;
3834 	/* Persist any increases of mapsize config */
3835 	if (mapsize < env->me_mapsize)
3836 		mapsize = env->me_mapsize;
3837 
3838 	if (flags & MDB_WRITEMAP) {
3839 		mp->mm_mapsize = mapsize;
3840 		mp->mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI];
3841 		mp->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
3842 		mp->mm_last_pg = txn->mt_next_pgno - 1;
3843 #if (__GNUC__ * 100 + __GNUC_MINOR__ >= 404) && /* TODO: portability */	\
3844 	!(defined(__i386__) || defined(__x86_64__))
3845 		/* LY: issue a memory barrier, if not x86. ITS#7969 */
3846 		__sync_synchronize();
3847 #endif
3848 		mp->mm_txnid = txn->mt_txnid;
3849 		if (!(flags & (MDB_NOMETASYNC|MDB_NOSYNC))) {
3850 			unsigned meta_size = env->me_psize;
3851 			rc = (env->me_flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC;
3852 			ptr = (char *)mp - PAGEHDRSZ;
3853 #ifndef _WIN32	/* POSIX msync() requires ptr = start of OS page */
3854 			r2 = (ptr - env->me_map) & (env->me_os_psize - 1);
3855 			ptr -= r2;
3856 			meta_size += r2;
3857 #endif
3858 			if (MDB_MSYNC(ptr, meta_size, rc)) {
3859 				rc = ErrCode();
3860 				goto fail;
3861 			}
3862 		}
3863 		goto done;
3864 	}
3865 	metab.mm_txnid = mp->mm_txnid;
3866 	metab.mm_last_pg = mp->mm_last_pg;
3867 
3868 	meta.mm_mapsize = mapsize;
3869 	meta.mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI];
3870 	meta.mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
3871 	meta.mm_last_pg = txn->mt_next_pgno - 1;
3872 	meta.mm_txnid = txn->mt_txnid;
3873 
3874 	off = offsetof(MDB_meta, mm_mapsize);
3875 	ptr = (char *)&meta + off;
3876 	len = sizeof(MDB_meta) - off;
3877 	off += (char *)mp - env->me_map;
3878 
3879 	/* Write to the SYNC fd unless MDB_NOSYNC/MDB_NOMETASYNC.
3880 	 * (me_mfd goes to the same file as me_fd, but writing to it
3881 	 * also syncs to disk.  Avoids a separate fdatasync() call.)
3882 	 */
3883 	mfd = (flags & (MDB_NOSYNC|MDB_NOMETASYNC)) ? env->me_fd : env->me_mfd;
3884 #ifdef _WIN32
3885 	{
3886 		memset(&ov, 0, sizeof(ov));
3887 		ov.Offset = off;
3888 		if (!WriteFile(mfd, ptr, len, (DWORD *)&rc, &ov))
3889 			rc = -1;
3890 	}
3891 #else
3892 retry_write:
3893 	rc = pwrite(mfd, ptr, len, off);
3894 #endif
3895 	if (rc != len) {
3896 		rc = rc < 0 ? ErrCode() : EIO;
3897 #ifndef _WIN32
3898 		if (rc == EINTR)
3899 			goto retry_write;
3900 #endif
3901 		DPUTS("write failed, disk error?");
3902 		/* On a failure, the pagecache still contains the new data.
3903 		 * Write some old data back, to prevent it from being used.
3904 		 * Use the non-SYNC fd; we know it will fail anyway.
3905 		 */
3906 		meta.mm_last_pg = metab.mm_last_pg;
3907 		meta.mm_txnid = metab.mm_txnid;
3908 #ifdef _WIN32
3909 		memset(&ov, 0, sizeof(ov));
3910 		ov.Offset = off;
3911 		WriteFile(env->me_fd, ptr, len, NULL, &ov);
3912 #else
3913 		r2 = pwrite(env->me_fd, ptr, len, off);
3914 		(void)r2;	/* Silence warnings. We don't care about pwrite's return value */
3915 #endif
3916 fail:
3917 		env->me_flags |= MDB_FATAL_ERROR;
3918 		return rc;
3919 	}
3920 	/* MIPS has cache coherency issues, this is a no-op everywhere else */
3921 	CACHEFLUSH(env->me_map + off, len, DCACHE);
3922 done:
3923 	/* Memory ordering issues are irrelevant; since the entire writer
3924 	 * is wrapped by wmutex, all of these changes will become visible
3925 	 * after the wmutex is unlocked. Since the DB is multi-version,
3926 	 * readers will get consistent data regardless of how fresh or
3927 	 * how stale their view of these values is.
3928 	 */
3929 	if (env->me_txns)
3930 		env->me_txns->mti_txnid = txn->mt_txnid;
3931 
3932 	return MDB_SUCCESS;
3933 }
3934 
3935 /** Check both meta pages to see which one is newer.
3936  * @param[in] env the environment handle
3937  * @return newest #MDB_meta.
3938  */
3939 static MDB_meta *
3940 mdb_env_pick_meta(const MDB_env *env)
3941 {
3942 	MDB_meta *const *metas = env->me_metas;
3943 	return metas[ metas[0]->mm_txnid < metas[1]->mm_txnid ];
3944 }
3945 
3946 int ESECT
3947 mdb_env_create(MDB_env **env)
3948 {
3949 	MDB_env *e;
3950 
3951 	e = calloc(1, sizeof(MDB_env));
3952 	if (!e)
3953 		return ENOMEM;
3954 
3955 	e->me_maxreaders = DEFAULT_READERS;
3956 	e->me_maxdbs = e->me_numdbs = CORE_DBS;
3957 	e->me_fd = INVALID_HANDLE_VALUE;
3958 	e->me_lfd = INVALID_HANDLE_VALUE;
3959 	e->me_mfd = INVALID_HANDLE_VALUE;
3960 #ifdef MDB_USE_POSIX_SEM
3961 	e->me_rmutex = SEM_FAILED;
3962 	e->me_wmutex = SEM_FAILED;
3963 #endif
3964 	e->me_pid = getpid();
3965 	GET_PAGESIZE(e->me_os_psize);
3966 	VGMEMP_CREATE(e,0,0);
3967 	*env = e;
3968 	return MDB_SUCCESS;
3969 }
3970 
3971 static int ESECT
3972 mdb_env_map(MDB_env *env, void *addr)
3973 {
3974 	MDB_page *p;
3975 	unsigned int flags = env->me_flags;
3976 #ifdef _WIN32
3977 	int rc;
3978 	HANDLE mh;
3979 	LONG sizelo, sizehi;
3980 	size_t msize;
3981 
3982 	if (flags & MDB_RDONLY) {
3983 		/* Don't set explicit map size, use whatever exists */
3984 		msize = 0;
3985 		sizelo = 0;
3986 		sizehi = 0;
3987 	} else {
3988 		msize = env->me_mapsize;
3989 		sizelo = msize & 0xffffffff;
3990 		sizehi = msize >> 16 >> 16; /* only needed on Win64 */
3991 
3992 		/* Windows won't create mappings for zero length files.
3993 		 * and won't map more than the file size.
3994 		 * Just set the maxsize right now.
3995 		 */
3996 		if (!(flags & MDB_WRITEMAP) && (SetFilePointer(env->me_fd, sizelo, &sizehi, 0) != (DWORD)sizelo
3997 			|| !SetEndOfFile(env->me_fd)
3998 			|| SetFilePointer(env->me_fd, 0, NULL, 0) != 0))
3999 			return ErrCode();
4000 	}
4001 
4002 	mh = CreateFileMapping(env->me_fd, NULL, flags & MDB_WRITEMAP ?
4003 		PAGE_READWRITE : PAGE_READONLY,
4004 		sizehi, sizelo, NULL);
4005 	if (!mh)
4006 		return ErrCode();
4007 	env->me_map = MapViewOfFileEx(mh, flags & MDB_WRITEMAP ?
4008 		FILE_MAP_WRITE : FILE_MAP_READ,
4009 		0, 0, msize, addr);
4010 	rc = env->me_map ? 0 : ErrCode();
4011 	CloseHandle(mh);
4012 	if (rc)
4013 		return rc;
4014 #else
4015 	int prot = PROT_READ;
4016 	if (flags & MDB_WRITEMAP) {
4017 		prot |= PROT_WRITE;
4018 		if (ftruncate(env->me_fd, env->me_mapsize) < 0)
4019 			return ErrCode();
4020 	}
4021 	env->me_map = mmap(addr, env->me_mapsize, prot, MAP_SHARED,
4022 		env->me_fd, 0);
4023 	if (env->me_map == MAP_FAILED) {
4024 		env->me_map = NULL;
4025 		return ErrCode();
4026 	}
4027 
4028 	if (flags & MDB_NORDAHEAD) {
4029 		/* Turn off readahead. It's harmful when the DB is larger than RAM. */
4030 #ifdef MADV_RANDOM
4031 		madvise(env->me_map, env->me_mapsize, MADV_RANDOM);
4032 #else
4033 #ifdef POSIX_MADV_RANDOM
4034 		posix_madvise(env->me_map, env->me_mapsize, POSIX_MADV_RANDOM);
4035 #endif /* POSIX_MADV_RANDOM */
4036 #endif /* MADV_RANDOM */
4037 	}
4038 #endif /* _WIN32 */
4039 
4040 	/* Can happen because the address argument to mmap() is just a
4041 	 * hint.  mmap() can pick another, e.g. if the range is in use.
4042 	 * The MAP_FIXED flag would prevent that, but then mmap could
4043 	 * instead unmap existing pages to make room for the new map.
4044 	 */
4045 	if (addr && env->me_map != addr)
4046 		return EBUSY;	/* TODO: Make a new MDB_* error code? */
4047 
4048 	p = (MDB_page *)env->me_map;
4049 	env->me_metas[0] = METADATA(p);
4050 	env->me_metas[1] = (MDB_meta *)((char *)env->me_metas[0] + env->me_psize);
4051 
4052 	return MDB_SUCCESS;
4053 }
4054 
4055 int ESECT
4056 mdb_env_set_mapsize(MDB_env *env, size_t size)
4057 {
4058 	/* If env is already open, caller is responsible for making
4059 	 * sure there are no active txns.
4060 	 */
4061 	if (env->me_map) {
4062 		int rc;
4063 		MDB_meta *meta;
4064 		void *old;
4065 		if (env->me_txn)
4066 			return EINVAL;
4067 		meta = mdb_env_pick_meta(env);
4068 		if (!size)
4069 			size = meta->mm_mapsize;
4070 		{
4071 			/* Silently round up to minimum if the size is too small */
4072 			size_t minsize = (meta->mm_last_pg + 1) * env->me_psize;
4073 			if (size < minsize)
4074 				size = minsize;
4075 		}
4076 		munmap(env->me_map, env->me_mapsize);
4077 		env->me_mapsize = size;
4078 		old = (env->me_flags & MDB_FIXEDMAP) ? env->me_map : NULL;
4079 		rc = mdb_env_map(env, old);
4080 		if (rc)
4081 			return rc;
4082 	}
4083 	env->me_mapsize = size;
4084 	if (env->me_psize)
4085 		env->me_maxpg = env->me_mapsize / env->me_psize;
4086 	return MDB_SUCCESS;
4087 }
4088 
4089 int ESECT
4090 mdb_env_set_maxdbs(MDB_env *env, MDB_dbi dbs)
4091 {
4092 	if (env->me_map)
4093 		return EINVAL;
4094 	env->me_maxdbs = dbs + CORE_DBS;
4095 	return MDB_SUCCESS;
4096 }
4097 
4098 int ESECT
4099 mdb_env_set_maxreaders(MDB_env *env, unsigned int readers)
4100 {
4101 	if (env->me_map || readers < 1)
4102 		return EINVAL;
4103 	env->me_maxreaders = readers;
4104 	return MDB_SUCCESS;
4105 }
4106 
4107 int ESECT
4108 mdb_env_get_maxreaders(MDB_env *env, unsigned int *readers)
4109 {
4110 	if (!env || !readers)
4111 		return EINVAL;
4112 	*readers = env->me_maxreaders;
4113 	return MDB_SUCCESS;
4114 }
4115 
4116 static int ESECT
4117 mdb_fsize(HANDLE fd, size_t *size)
4118 {
4119 #ifdef _WIN32
4120 	LARGE_INTEGER fsize;
4121 
4122 	if (!GetFileSizeEx(fd, &fsize))
4123 		return ErrCode();
4124 
4125 	*size = fsize.QuadPart;
4126 #else
4127 	struct stat st;
4128 
4129 	if (fstat(fd, &st))
4130 		return ErrCode();
4131 
4132 	*size = st.st_size;
4133 #endif
4134 	return MDB_SUCCESS;
4135 }
4136 
4137 
4138 #ifdef _WIN32
4139 typedef wchar_t	mdb_nchar_t;
4140 # define MDB_NAME(str)	L##str
4141 # define mdb_name_cpy	wcscpy
4142 #else
4143 /** Character type for file names: char on Unix, wchar_t on Windows */
4144 typedef char	mdb_nchar_t;
4145 # define MDB_NAME(str)	str		/**< #mdb_nchar_t[] string literal */
4146 # define mdb_name_cpy	strcpy	/**< Copy name (#mdb_nchar_t string) */
4147 #endif
4148 
4149 /** Filename - string of #mdb_nchar_t[] */
4150 typedef struct MDB_name {
4151 	int mn_len;					/**< Length  */
4152 	int mn_alloced;				/**< True if #mn_val was malloced */
4153 	mdb_nchar_t	*mn_val;		/**< Contents */
4154 } MDB_name;
4155 
4156 /** Filename suffixes [datafile,lockfile][without,with MDB_NOSUBDIR] */
4157 static const mdb_nchar_t *const mdb_suffixes[2][2] = {
4158 	{ MDB_NAME("/data.mdb"), MDB_NAME("")      },
4159 	{ MDB_NAME("/lock.mdb"), MDB_NAME("-lock") }
4160 };
4161 
4162 #define MDB_SUFFLEN 9	/**< Max string length in #mdb_suffixes[] */
4163 
4164 /** Set up filename + scratch area for filename suffix, for opening files.
4165  * It should be freed with #mdb_fname_destroy().
4166  * On Windows, paths are converted from char *UTF-8 to wchar_t *UTF-16.
4167  *
4168  * @param[in] path Pathname for #mdb_env_open().
4169  * @param[in] envflags Whether a subdir and/or lockfile will be used.
4170  * @param[out] fname Resulting filename, with room for a suffix if necessary.
4171  */
4172 static int ESECT
4173 mdb_fname_init(const char *path, unsigned envflags, MDB_name *fname)
4174 {
4175 	int no_suffix = F_ISSET(envflags, MDB_NOSUBDIR|MDB_NOLOCK);
4176 	fname->mn_alloced = 0;
4177 #ifdef _WIN32
4178 	return utf8_to_utf16(path, fname, no_suffix ? 0 : MDB_SUFFLEN);
4179 #else
4180 	fname->mn_len = strlen(path);
4181 	if (no_suffix)
4182 		fname->mn_val = (char *) path;
4183 	else if ((fname->mn_val = malloc(fname->mn_len + MDB_SUFFLEN+1)) != NULL) {
4184 		fname->mn_alloced = 1;
4185 		strcpy(fname->mn_val, path);
4186 	}
4187 	else
4188 		return ENOMEM;
4189 	return MDB_SUCCESS;
4190 #endif
4191 }
4192 
4193 /** Destroy \b fname from #mdb_fname_init() */
4194 #define mdb_fname_destroy(fname) \
4195 	do { if ((fname).mn_alloced) free((fname).mn_val); } while (0)
4196 
4197 #ifdef O_CLOEXEC /* POSIX.1-2008: Set FD_CLOEXEC atomically at open() */
4198 # define MDB_CLOEXEC		O_CLOEXEC
4199 #else
4200 # define MDB_CLOEXEC		0
4201 #endif
4202 
4203 /** File type, access mode etc. for #mdb_fopen() */
4204 enum mdb_fopen_type {
4205 #ifdef _WIN32
4206 	MDB_O_RDONLY, MDB_O_RDWR, MDB_O_META, MDB_O_COPY, MDB_O_LOCKS
4207 #else
4208 	/* A comment in mdb_fopen() explains some O_* flag choices. */
4209 	MDB_O_RDONLY= O_RDONLY,                            /**< for RDONLY me_fd */
4210 	MDB_O_RDWR  = O_RDWR  |O_CREAT,                    /**< for me_fd */
4211 	MDB_O_META  = O_WRONLY|MDB_DSYNC     |MDB_CLOEXEC, /**< for me_mfd */
4212 	MDB_O_COPY  = O_WRONLY|O_CREAT|O_EXCL|MDB_CLOEXEC, /**< for #mdb_env_copy() */
4213 	/** Bitmask for open() flags in enum #mdb_fopen_type.  The other bits
4214 	 * distinguish otherwise-equal MDB_O_* constants from each other.
4215 	 */
4216 	MDB_O_MASK  = MDB_O_RDWR|MDB_CLOEXEC | MDB_O_RDONLY|MDB_O_META|MDB_O_COPY,
4217 	MDB_O_LOCKS = MDB_O_RDWR|MDB_CLOEXEC | ((MDB_O_MASK+1) & ~MDB_O_MASK) /**< for me_lfd */
4218 #endif
4219 };
4220 
4221 /** Open an LMDB file.
4222  * @param[in] env	The LMDB environment.
4223  * @param[in,out] fname	Path from from #mdb_fname_init().  A suffix is
4224  * appended if necessary to create the filename, without changing mn_len.
4225  * @param[in] which	Determines file type, access mode, etc.
4226  * @param[in] mode	The Unix permissions for the file, if we create it.
4227  * @param[out] res	Resulting file handle.
4228  * @return 0 on success, non-zero on failure.
4229  */
4230 static int ESECT
4231 mdb_fopen(const MDB_env *env, MDB_name *fname,
4232 	enum mdb_fopen_type which, mdb_mode_t mode,
4233 	HANDLE *res)
4234 {
4235 	int rc = MDB_SUCCESS;
4236 	HANDLE fd;
4237 #ifdef _WIN32
4238 	DWORD acc, share, disp, attrs;
4239 #else
4240 	int flags;
4241 #endif
4242 
4243 	if (fname->mn_alloced)		/* modifiable copy */
4244 		mdb_name_cpy(fname->mn_val + fname->mn_len,
4245 			mdb_suffixes[which==MDB_O_LOCKS][F_ISSET(env->me_flags, MDB_NOSUBDIR)]);
4246 
4247 	/* The directory must already exist.  Usually the file need not.
4248 	 * MDB_O_META requires the file because we already created it using
4249 	 * MDB_O_RDWR.  MDB_O_COPY must not overwrite an existing file.
4250 	 *
4251 	 * With MDB_O_COPY we do not want the OS to cache the writes, since
4252 	 * the source data is already in the OS cache.
4253 	 *
4254 	 * The lockfile needs FD_CLOEXEC (close file descriptor on exec*())
4255 	 * to avoid the flock() issues noted under Caveats in lmdb.h.
4256 	 * Also set it for other filehandles which the user cannot get at
4257 	 * and close himself, which he may need after fork().  I.e. all but
4258 	 * me_fd, which programs do use via mdb_env_get_fd().
4259 	 */
4260 
4261 #ifdef _WIN32
4262 	acc = GENERIC_READ|GENERIC_WRITE;
4263 	share = FILE_SHARE_READ|FILE_SHARE_WRITE;
4264 	disp = OPEN_ALWAYS;
4265 	attrs = FILE_ATTRIBUTE_NORMAL;
4266 	switch (which) {
4267 	case MDB_O_RDONLY:			/* read-only datafile */
4268 		acc = GENERIC_READ;
4269 		disp = OPEN_EXISTING;
4270 		break;
4271 	case MDB_O_META:			/* for writing metapages */
4272 		acc = GENERIC_WRITE;
4273 		disp = OPEN_EXISTING;
4274 		attrs = FILE_ATTRIBUTE_NORMAL|FILE_FLAG_WRITE_THROUGH;
4275 		break;
4276 	case MDB_O_COPY:			/* mdb_env_copy() & co */
4277 		acc = GENERIC_WRITE;
4278 		share = 0;
4279 		disp = CREATE_NEW;
4280 		attrs = FILE_FLAG_NO_BUFFERING|FILE_FLAG_WRITE_THROUGH;
4281 		break;
4282 	default: break;	/* silence gcc -Wswitch (not all enum values handled) */
4283 	}
4284 	fd = CreateFileW(fname->mn_val, acc, share, NULL, disp, attrs, NULL);
4285 #else
4286 	fd = open(fname->mn_val, which & MDB_O_MASK, mode);
4287 #endif
4288 
4289 	if (fd == INVALID_HANDLE_VALUE)
4290 		rc = ErrCode();
4291 #ifndef _WIN32
4292 	else {
4293 		if (which != MDB_O_RDONLY && which != MDB_O_RDWR) {
4294 			/* Set CLOEXEC if we could not pass it to open() */
4295 			if (!MDB_CLOEXEC && (flags = fcntl(fd, F_GETFD)) != -1)
4296 				(void) fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4297 		}
4298 		if (which == MDB_O_COPY && env->me_psize >= env->me_os_psize) {
4299 			/* This may require buffer alignment.  There is no portable
4300 			 * way to ask how much, so we require OS pagesize alignment.
4301 			 */
4302 # ifdef F_NOCACHE	/* __APPLE__ */
4303 			(void) fcntl(fd, F_NOCACHE, 1);
4304 # elif defined O_DIRECT
4305 			/* open(...O_DIRECT...) would break on filesystems without
4306 			 * O_DIRECT support (ITS#7682). Try to set it here instead.
4307 			 */
4308 			if ((flags = fcntl(fd, F_GETFL)) != -1)
4309 				(void) fcntl(fd, F_SETFL, flags | O_DIRECT);
4310 # endif
4311 		}
4312 	}
4313 #endif	/* !_WIN32 */
4314 
4315 	*res = fd;
4316 	return rc;
4317 }
4318 
4319 
4320 #ifdef BROKEN_FDATASYNC
4321 #include <sys/utsname.h>
4322 #include <sys/vfs.h>
4323 #endif
4324 
4325 /** Further setup required for opening an LMDB environment
4326  */
4327 static int ESECT
4328 mdb_env_open2(MDB_env *env)
4329 {
4330 	unsigned int flags = env->me_flags;
4331 	int i, newenv = 0, rc;
4332 	MDB_meta meta;
4333 
4334 #ifdef _WIN32
4335 	/* See if we should use QueryLimited */
4336 	rc = GetVersion();
4337 	if ((rc & 0xff) > 5)
4338 		env->me_pidquery = MDB_PROCESS_QUERY_LIMITED_INFORMATION;
4339 	else
4340 		env->me_pidquery = PROCESS_QUERY_INFORMATION;
4341 #endif /* _WIN32 */
4342 
4343 #ifdef BROKEN_FDATASYNC
4344 	/* ext3/ext4 fdatasync is broken on some older Linux kernels.
4345 	 * https://lkml.org/lkml/2012/9/3/83
4346 	 * Kernels after 3.6-rc6 are known good.
4347 	 * https://lkml.org/lkml/2012/9/10/556
4348 	 * See if the DB is on ext3/ext4, then check for new enough kernel
4349 	 * Kernels 2.6.32.60, 2.6.34.15, 3.2.30, and 3.5.4 are also known
4350 	 * to be patched.
4351 	 */
4352 	{
4353 		struct statfs st;
4354 		fstatfs(env->me_fd, &st);
4355 		while (st.f_type == 0xEF53) {
4356 			struct utsname uts;
4357 			int i;
4358 			uname(&uts);
4359 			if (uts.release[0] < '3') {
4360 				if (!strncmp(uts.release, "2.6.32.", 7)) {
4361 					i = atoi(uts.release+7);
4362 					if (i >= 60)
4363 						break;	/* 2.6.32.60 and newer is OK */
4364 				} else if (!strncmp(uts.release, "2.6.34.", 7)) {
4365 					i = atoi(uts.release+7);
4366 					if (i >= 15)
4367 						break;	/* 2.6.34.15 and newer is OK */
4368 				}
4369 			} else if (uts.release[0] == '3') {
4370 				i = atoi(uts.release+2);
4371 				if (i > 5)
4372 					break;	/* 3.6 and newer is OK */
4373 				if (i == 5) {
4374 					i = atoi(uts.release+4);
4375 					if (i >= 4)
4376 						break;	/* 3.5.4 and newer is OK */
4377 				} else if (i == 2) {
4378 					i = atoi(uts.release+4);
4379 					if (i >= 30)
4380 						break;	/* 3.2.30 and newer is OK */
4381 				}
4382 			} else {	/* 4.x and newer is OK */
4383 				break;
4384 			}
4385 			env->me_flags |= MDB_FSYNCONLY;
4386 			break;
4387 		}
4388 	}
4389 #endif
4390 
4391 	if ((i = mdb_env_read_header(env, &meta)) != 0) {
4392 		if (i != ENOENT)
4393 			return i;
4394 		DPUTS("new mdbenv");
4395 		newenv = 1;
4396 		env->me_psize = env->me_os_psize;
4397 		if (env->me_psize > MAX_PAGESIZE)
4398 			env->me_psize = MAX_PAGESIZE;
4399 		memset(&meta, 0, sizeof(meta));
4400 		mdb_env_init_meta0(env, &meta);
4401 		meta.mm_mapsize = DEFAULT_MAPSIZE;
4402 	} else {
4403 		env->me_psize = meta.mm_psize;
4404 	}
4405 
4406 	/* Was a mapsize configured? */
4407 	if (!env->me_mapsize) {
4408 		env->me_mapsize = meta.mm_mapsize;
4409 	}
4410 	{
4411 		/* Make sure mapsize >= committed data size.  Even when using
4412 		 * mm_mapsize, which could be broken in old files (ITS#7789).
4413 		 */
4414 		size_t minsize = (meta.mm_last_pg + 1) * meta.mm_psize;
4415 		if (env->me_mapsize < minsize)
4416 			env->me_mapsize = minsize;
4417 	}
4418 	meta.mm_mapsize = env->me_mapsize;
4419 
4420 	if (newenv && !(flags & MDB_FIXEDMAP)) {
4421 		/* mdb_env_map() may grow the datafile.  Write the metapages
4422 		 * first, so the file will be valid if initialization fails.
4423 		 * Except with FIXEDMAP, since we do not yet know mm_address.
4424 		 * We could fill in mm_address later, but then a different
4425 		 * program might end up doing that - one with a memory layout
4426 		 * and map address which does not suit the main program.
4427 		 */
4428 		rc = mdb_env_init_meta(env, &meta);
4429 		if (rc)
4430 			return rc;
4431 		newenv = 0;
4432 	}
4433 
4434 	rc = mdb_env_map(env, (flags & MDB_FIXEDMAP) ? meta.mm_address : NULL);
4435 	if (rc)
4436 		return rc;
4437 
4438 	if (newenv) {
4439 		if (flags & MDB_FIXEDMAP)
4440 			meta.mm_address = env->me_map;
4441 		i = mdb_env_init_meta(env, &meta);
4442 		if (i != MDB_SUCCESS) {
4443 			return i;
4444 		}
4445 	}
4446 
4447 	env->me_maxfree_1pg = (env->me_psize - PAGEHDRSZ) / sizeof(pgno_t) - 1;
4448 	env->me_nodemax = (((env->me_psize - PAGEHDRSZ) / MDB_MINKEYS) & -2)
4449 		- sizeof(indx_t);
4450 #if !(MDB_MAXKEYSIZE)
4451 	env->me_maxkey = env->me_nodemax - (NODESIZE + sizeof(MDB_db));
4452 #endif
4453 	env->me_maxpg = env->me_mapsize / env->me_psize;
4454 
4455 #if MDB_DEBUG
4456 	{
4457 		MDB_meta *meta = mdb_env_pick_meta(env);
4458 		MDB_db *db = &meta->mm_dbs[MAIN_DBI];
4459 
4460 		DPRINTF(("opened database version %u, pagesize %u",
4461 			meta->mm_version, env->me_psize));
4462 		DPRINTF(("using meta page %d",    (int) (meta->mm_txnid & 1)));
4463 		DPRINTF(("depth: %u",             db->md_depth));
4464 		DPRINTF(("entries: %"Z"u",        db->md_entries));
4465 		DPRINTF(("branch pages: %"Z"u",   db->md_branch_pages));
4466 		DPRINTF(("leaf pages: %"Z"u",     db->md_leaf_pages));
4467 		DPRINTF(("overflow pages: %"Z"u", db->md_overflow_pages));
4468 		DPRINTF(("root: %"Z"u",           db->md_root));
4469 	}
4470 #endif
4471 
4472 	return MDB_SUCCESS;
4473 }
4474 
4475 
4476 /** Release a reader thread's slot in the reader lock table.
4477  *	This function is called automatically when a thread exits.
4478  * @param[in] ptr This points to the slot in the reader lock table.
4479  */
4480 static void
4481 mdb_env_reader_dest(void *ptr)
4482 {
4483 	MDB_reader *reader = ptr;
4484 
4485 #ifndef _WIN32
4486 	if (reader->mr_pid == getpid()) /* catch pthread_exit() in child process */
4487 #endif
4488 		/* We omit the mutex, so do this atomically (i.e. skip mr_txnid) */
4489 		reader->mr_pid = 0;
4490 }
4491 
4492 #ifdef _WIN32
4493 /** Junk for arranging thread-specific callbacks on Windows. This is
4494  *	necessarily platform and compiler-specific. Windows supports up
4495  *	to 1088 keys. Let's assume nobody opens more than 64 environments
4496  *	in a single process, for now. They can override this if needed.
4497  */
4498 #ifndef MAX_TLS_KEYS
4499 #define MAX_TLS_KEYS	64
4500 #endif
4501 static pthread_key_t mdb_tls_keys[MAX_TLS_KEYS];
4502 static int mdb_tls_nkeys;
4503 
4504 static void NTAPI mdb_tls_callback(PVOID module, DWORD reason, PVOID ptr)
4505 {
4506 	int i;
4507 	switch(reason) {
4508 	case DLL_PROCESS_ATTACH: break;
4509 	case DLL_THREAD_ATTACH: break;
4510 	case DLL_THREAD_DETACH:
4511 		for (i=0; i<mdb_tls_nkeys; i++) {
4512 			MDB_reader *r = pthread_getspecific(mdb_tls_keys[i]);
4513 			if (r) {
4514 				mdb_env_reader_dest(r);
4515 			}
4516 		}
4517 		break;
4518 	case DLL_PROCESS_DETACH: break;
4519 	}
4520 }
4521 #ifdef __GNUC__
4522 #ifdef _WIN64
4523 const PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback;
4524 #else
4525 PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback;
4526 #endif
4527 #else
4528 #ifdef _WIN64
4529 /* Force some symbol references.
4530  *	_tls_used forces the linker to create the TLS directory if not already done
4531  *	mdb_tls_cbp prevents whole-program-optimizer from dropping the symbol.
4532  */
4533 #pragma comment(linker, "/INCLUDE:_tls_used")
4534 #pragma comment(linker, "/INCLUDE:mdb_tls_cbp")
4535 #pragma const_seg(".CRT$XLB")
4536 extern const PIMAGE_TLS_CALLBACK mdb_tls_cbp;
4537 const PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback;
4538 #pragma const_seg()
4539 #else	/* _WIN32 */
4540 #pragma comment(linker, "/INCLUDE:__tls_used")
4541 #pragma comment(linker, "/INCLUDE:_mdb_tls_cbp")
4542 #pragma data_seg(".CRT$XLB")
4543 PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback;
4544 #pragma data_seg()
4545 #endif	/* WIN 32/64 */
4546 #endif	/* !__GNUC__ */
4547 #endif
4548 
4549 /** Downgrade the exclusive lock on the region back to shared */
4550 static int ESECT
4551 mdb_env_share_locks(MDB_env *env, int *excl)
4552 {
4553 	int rc = 0;
4554 	MDB_meta *meta = mdb_env_pick_meta(env);
4555 
4556 	env->me_txns->mti_txnid = meta->mm_txnid;
4557 
4558 #ifdef _WIN32
4559 	{
4560 		OVERLAPPED ov;
4561 		/* First acquire a shared lock. The Unlock will
4562 		 * then release the existing exclusive lock.
4563 		 */
4564 		memset(&ov, 0, sizeof(ov));
4565 		if (!LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) {
4566 			rc = ErrCode();
4567 		} else {
4568 			UnlockFile(env->me_lfd, 0, 0, 1, 0);
4569 			*excl = 0;
4570 		}
4571 	}
4572 #else
4573 	{
4574 		struct flock lock_info;
4575 		/* The shared lock replaces the existing lock */
4576 		memset((void *)&lock_info, 0, sizeof(lock_info));
4577 		lock_info.l_type = F_RDLCK;
4578 		lock_info.l_whence = SEEK_SET;
4579 		lock_info.l_start = 0;
4580 		lock_info.l_len = 1;
4581 		while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
4582 				(rc = ErrCode()) == EINTR) ;
4583 		*excl = rc ? -1 : 0;	/* error may mean we lost the lock */
4584 	}
4585 #endif
4586 
4587 	return rc;
4588 }
4589 
4590 /** Try to get exclusive lock, otherwise shared.
4591  *	Maintain *excl = -1: no/unknown lock, 0: shared, 1: exclusive.
4592  */
4593 static int ESECT
4594 mdb_env_excl_lock(MDB_env *env, int *excl)
4595 {
4596 	int rc = 0;
4597 #ifdef _WIN32
4598 	if (LockFile(env->me_lfd, 0, 0, 1, 0)) {
4599 		*excl = 1;
4600 	} else {
4601 		OVERLAPPED ov;
4602 		memset(&ov, 0, sizeof(ov));
4603 		if (LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) {
4604 			*excl = 0;
4605 		} else {
4606 			rc = ErrCode();
4607 		}
4608 	}
4609 #else
4610 	struct flock lock_info;
4611 	memset((void *)&lock_info, 0, sizeof(lock_info));
4612 	lock_info.l_type = F_WRLCK;
4613 	lock_info.l_whence = SEEK_SET;
4614 	lock_info.l_start = 0;
4615 	lock_info.l_len = 1;
4616 	while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
4617 			(rc = ErrCode()) == EINTR) ;
4618 	if (!rc) {
4619 		*excl = 1;
4620 	} else
4621 # ifndef MDB_USE_POSIX_MUTEX
4622 	if (*excl < 0) /* always true when MDB_USE_POSIX_MUTEX */
4623 # endif
4624 	{
4625 		lock_info.l_type = F_RDLCK;
4626 		while ((rc = fcntl(env->me_lfd, F_SETLKW, &lock_info)) &&
4627 				(rc = ErrCode()) == EINTR) ;
4628 		if (rc == 0)
4629 			*excl = 0;
4630 	}
4631 #endif
4632 	return rc;
4633 }
4634 
4635 #ifdef MDB_USE_HASH
4636 /*
4637  * hash_64 - 64 bit Fowler/Noll/Vo-0 FNV-1a hash code
4638  *
4639  * @(#) Revision: 5.1
4640  * @(#) Id: hash_64a.c,v 5.1 2009/06/30 09:01:38 chongo Exp
4641  * @(#) Source: /usr/local/src/cmd/fnv/RCS/hash_64a.c,v
4642  *
4643  *	  http://www.isthe.com/chongo/tech/comp/fnv/index.html
4644  *
4645  ***
4646  *
4647  * Please do not copyright this code.  This code is in the public domain.
4648  *
4649  * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
4650  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
4651  * EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
4652  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
4653  * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
4654  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
4655  * PERFORMANCE OF THIS SOFTWARE.
4656  *
4657  * By:
4658  *	chongo <Landon Curt Noll> /\oo/\
4659  *	  http://www.isthe.com/chongo/
4660  *
4661  * Share and Enjoy!	:-)
4662  */
4663 
4664 typedef unsigned long long	mdb_hash_t;
4665 #define MDB_HASH_INIT ((mdb_hash_t)0xcbf29ce484222325ULL)
4666 
4667 /** perform a 64 bit Fowler/Noll/Vo FNV-1a hash on a buffer
4668  * @param[in] val	value to hash
4669  * @param[in] hval	initial value for hash
4670  * @return 64 bit hash
4671  *
4672  * NOTE: To use the recommended 64 bit FNV-1a hash, use MDB_HASH_INIT as the
4673  * 	 hval arg on the first call.
4674  */
4675 static mdb_hash_t
4676 mdb_hash_val(MDB_val *val, mdb_hash_t hval)
4677 {
4678 	unsigned char *s = (unsigned char *)val->mv_data;	/* unsigned string */
4679 	unsigned char *end = s + val->mv_size;
4680 	/*
4681 	 * FNV-1a hash each octet of the string
4682 	 */
4683 	while (s < end) {
4684 		/* xor the bottom with the current octet */
4685 		hval ^= (mdb_hash_t)*s++;
4686 
4687 		/* multiply by the 64 bit FNV magic prime mod 2^64 */
4688 		hval += (hval << 1) + (hval << 4) + (hval << 5) +
4689 			(hval << 7) + (hval << 8) + (hval << 40);
4690 	}
4691 	/* return our new hash value */
4692 	return hval;
4693 }
4694 
4695 /** Hash the string and output the encoded hash.
4696  * This uses modified RFC1924 Ascii85 encoding to accommodate systems with
4697  * very short name limits. We don't care about the encoding being reversible,
4698  * we just want to preserve as many bits of the input as possible in a
4699  * small printable string.
4700  * @param[in] str string to hash
4701  * @param[out] encbuf an array of 11 chars to hold the hash
4702  */
4703 static const char mdb_a85[]= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~";
4704 
4705 static void ESECT
4706 mdb_pack85(unsigned long l, char *out)
4707 {
4708 	int i;
4709 
4710 	for (i=0; i<5; i++) {
4711 		*out++ = mdb_a85[l % 85];
4712 		l /= 85;
4713 	}
4714 }
4715 
4716 static void ESECT
4717 mdb_hash_enc(MDB_val *val, char *encbuf)
4718 {
4719 	mdb_hash_t h = mdb_hash_val(val, MDB_HASH_INIT);
4720 
4721 	mdb_pack85(h, encbuf);
4722 	mdb_pack85(h>>32, encbuf+5);
4723 	encbuf[10] = '\0';
4724 }
4725 #endif
4726 
4727 /** Open and/or initialize the lock region for the environment.
4728  * @param[in] env The LMDB environment.
4729  * @param[in] fname Filename + scratch area, from #mdb_fname_init().
4730  * @param[in] mode The Unix permissions for the file, if we create it.
4731  * @param[in,out] excl In -1, out lock type: -1 none, 0 shared, 1 exclusive
4732  * @return 0 on success, non-zero on failure.
4733  */
4734 static int ESECT
4735 mdb_env_setup_locks(MDB_env *env, MDB_name *fname, int mode, int *excl)
4736 {
4737 #ifdef _WIN32
4738 #	define MDB_ERRCODE_ROFS	ERROR_WRITE_PROTECT
4739 #else
4740 #	define MDB_ERRCODE_ROFS	EROFS
4741 #endif
4742 	int rc;
4743 	off_t size, rsize;
4744 
4745 	rc = mdb_fopen(env, fname, MDB_O_LOCKS, mode, &env->me_lfd);
4746 	if (rc) {
4747 		/* Omit lockfile if read-only env on read-only filesystem */
4748 		if (rc == MDB_ERRCODE_ROFS && (env->me_flags & MDB_RDONLY)) {
4749 			return MDB_SUCCESS;
4750 		}
4751 		goto fail;
4752 	}
4753 
4754 	if (!(env->me_flags & MDB_NOTLS)) {
4755 		rc = pthread_key_create(&env->me_txkey, mdb_env_reader_dest);
4756 		if (rc)
4757 			goto fail;
4758 		env->me_flags |= MDB_ENV_TXKEY;
4759 #ifdef _WIN32
4760 		/* Windows TLS callbacks need help finding their TLS info. */
4761 		if (mdb_tls_nkeys >= MAX_TLS_KEYS) {
4762 			rc = MDB_TLS_FULL;
4763 			goto fail;
4764 		}
4765 		mdb_tls_keys[mdb_tls_nkeys++] = env->me_txkey;
4766 #endif
4767 	}
4768 
4769 	/* Try to get exclusive lock. If we succeed, then
4770 	 * nobody is using the lock region and we should initialize it.
4771 	 */
4772 	if ((rc = mdb_env_excl_lock(env, excl))) goto fail;
4773 
4774 #ifdef _WIN32
4775 	size = GetFileSize(env->me_lfd, NULL);
4776 #else
4777 	size = lseek(env->me_lfd, 0, SEEK_END);
4778 	if (size == -1) goto fail_errno;
4779 #endif
4780 	rsize = (env->me_maxreaders-1) * sizeof(MDB_reader) + sizeof(MDB_txninfo);
4781 	if (size < rsize && *excl > 0) {
4782 #ifdef _WIN32
4783 		if (SetFilePointer(env->me_lfd, rsize, NULL, FILE_BEGIN) != (DWORD)rsize
4784 			|| !SetEndOfFile(env->me_lfd))
4785 			goto fail_errno;
4786 #else
4787 		if (ftruncate(env->me_lfd, rsize) != 0) goto fail_errno;
4788 #endif
4789 	} else {
4790 		rsize = size;
4791 		size = rsize - sizeof(MDB_txninfo);
4792 		env->me_maxreaders = size/sizeof(MDB_reader) + 1;
4793 	}
4794 	{
4795 #ifdef _WIN32
4796 		HANDLE mh;
4797 		mh = CreateFileMapping(env->me_lfd, NULL, PAGE_READWRITE,
4798 			0, 0, NULL);
4799 		if (!mh) goto fail_errno;
4800 		env->me_txns = MapViewOfFileEx(mh, FILE_MAP_WRITE, 0, 0, rsize, NULL);
4801 		CloseHandle(mh);
4802 		if (!env->me_txns) goto fail_errno;
4803 #else
4804 		void *m = mmap(NULL, rsize, PROT_READ|PROT_WRITE, MAP_SHARED,
4805 			env->me_lfd, 0);
4806 		if (m == MAP_FAILED) goto fail_errno;
4807 		env->me_txns = m;
4808 #endif
4809 	}
4810 	if (*excl > 0) {
4811 #ifdef _WIN32
4812 		BY_HANDLE_FILE_INFORMATION stbuf;
4813 		struct {
4814 			DWORD volume;
4815 			DWORD nhigh;
4816 			DWORD nlow;
4817 		} idbuf;
4818 		MDB_val val;
4819 		char encbuf[11];
4820 
4821 		if (!mdb_sec_inited) {
4822 			InitializeSecurityDescriptor(&mdb_null_sd,
4823 				SECURITY_DESCRIPTOR_REVISION);
4824 			SetSecurityDescriptorDacl(&mdb_null_sd, TRUE, 0, FALSE);
4825 			mdb_all_sa.nLength = sizeof(SECURITY_ATTRIBUTES);
4826 			mdb_all_sa.bInheritHandle = FALSE;
4827 			mdb_all_sa.lpSecurityDescriptor = &mdb_null_sd;
4828 			mdb_sec_inited = 1;
4829 		}
4830 		if (!GetFileInformationByHandle(env->me_lfd, &stbuf)) goto fail_errno;
4831 		idbuf.volume = stbuf.dwVolumeSerialNumber;
4832 		idbuf.nhigh  = stbuf.nFileIndexHigh;
4833 		idbuf.nlow   = stbuf.nFileIndexLow;
4834 		val.mv_data = &idbuf;
4835 		val.mv_size = sizeof(idbuf);
4836 		mdb_hash_enc(&val, encbuf);
4837 		sprintf(env->me_txns->mti_rmname, "Global\\MDBr%s", encbuf);
4838 		sprintf(env->me_txns->mti_wmname, "Global\\MDBw%s", encbuf);
4839 		env->me_rmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_rmname);
4840 		if (!env->me_rmutex) goto fail_errno;
4841 		env->me_wmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_wmname);
4842 		if (!env->me_wmutex) goto fail_errno;
4843 #elif defined(MDB_USE_POSIX_SEM)
4844 		struct stat stbuf;
4845 		struct {
4846 			dev_t dev;
4847 			ino_t ino;
4848 		} idbuf;
4849 		MDB_val val;
4850 		char encbuf[11];
4851 
4852 #if defined(__NetBSD__)
4853 #define	MDB_SHORT_SEMNAMES	1	/* limited to 14 chars */
4854 #endif
4855 		if (fstat(env->me_lfd, &stbuf)) goto fail_errno;
4856 		idbuf.dev = stbuf.st_dev;
4857 		idbuf.ino = stbuf.st_ino;
4858 		val.mv_data = &idbuf;
4859 		val.mv_size = sizeof(idbuf);
4860 		mdb_hash_enc(&val, encbuf);
4861 #ifdef MDB_SHORT_SEMNAMES
4862 		encbuf[9] = '\0';	/* drop name from 15 chars to 14 chars */
4863 #endif
4864 		sprintf(env->me_txns->mti_rmname, "/MDBr%s", encbuf);
4865 		sprintf(env->me_txns->mti_wmname, "/MDBw%s", encbuf);
4866 		/* Clean up after a previous run, if needed:  Try to
4867 		 * remove both semaphores before doing anything else.
4868 		 */
4869 		sem_unlink(env->me_txns->mti_rmname);
4870 		sem_unlink(env->me_txns->mti_wmname);
4871 		env->me_rmutex = sem_open(env->me_txns->mti_rmname,
4872 			O_CREAT|O_EXCL, mode, 1);
4873 		if (env->me_rmutex == SEM_FAILED) goto fail_errno;
4874 		env->me_wmutex = sem_open(env->me_txns->mti_wmname,
4875 			O_CREAT|O_EXCL, mode, 1);
4876 		if (env->me_wmutex == SEM_FAILED) goto fail_errno;
4877 #else	/* MDB_USE_POSIX_MUTEX: */
4878 		pthread_mutexattr_t mattr;
4879 
4880 		/* Solaris needs this before initing a robust mutex.  Otherwise
4881 		 * it may skip the init and return EBUSY "seems someone already
4882 		 * inited" or EINVAL "it was inited differently".
4883 		 */
4884 		memset(env->me_txns->mti_rmutex, 0, sizeof(*env->me_txns->mti_rmutex));
4885 		memset(env->me_txns->mti_wmutex, 0, sizeof(*env->me_txns->mti_wmutex));
4886 
4887 		if ((rc = pthread_mutexattr_init(&mattr)))
4888 			goto fail;
4889 
4890 		rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED);
4891 #ifdef MDB_ROBUST_SUPPORTED
4892 		if (!rc) rc = pthread_mutexattr_setrobust(&mattr, PTHREAD_MUTEX_ROBUST);
4893 #endif
4894 		if (!rc) rc = pthread_mutex_init(env->me_txns->mti_rmutex, &mattr);
4895 		if (!rc) rc = pthread_mutex_init(env->me_txns->mti_wmutex, &mattr);
4896 		pthread_mutexattr_destroy(&mattr);
4897 		if (rc)
4898 			goto fail;
4899 #endif	/* _WIN32 || MDB_USE_POSIX_SEM */
4900 
4901 		env->me_txns->mti_magic = MDB_MAGIC;
4902 		env->me_txns->mti_format = MDB_LOCK_FORMAT;
4903 		env->me_txns->mti_txnid = 0;
4904 		env->me_txns->mti_numreaders = 0;
4905 
4906 	} else {
4907 		if (env->me_txns->mti_magic != MDB_MAGIC) {
4908 			DPUTS("lock region has invalid magic");
4909 			rc = MDB_INVALID;
4910 			goto fail;
4911 		}
4912 		if (env->me_txns->mti_format != MDB_LOCK_FORMAT) {
4913 			DPRINTF(("lock region has format+version 0x%x, expected 0x%x",
4914 				env->me_txns->mti_format, MDB_LOCK_FORMAT));
4915 			rc = MDB_VERSION_MISMATCH;
4916 			goto fail;
4917 		}
4918 		rc = ErrCode();
4919 		if (rc && rc != EACCES && rc != EAGAIN) {
4920 			goto fail;
4921 		}
4922 #ifdef _WIN32
4923 		env->me_rmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_rmname);
4924 		if (!env->me_rmutex) goto fail_errno;
4925 		env->me_wmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_wmname);
4926 		if (!env->me_wmutex) goto fail_errno;
4927 #elif defined(MDB_USE_POSIX_SEM)
4928 		env->me_rmutex = sem_open(env->me_txns->mti_rmname, 0);
4929 		if (env->me_rmutex == SEM_FAILED) goto fail_errno;
4930 		env->me_wmutex = sem_open(env->me_txns->mti_wmname, 0);
4931 		if (env->me_wmutex == SEM_FAILED) goto fail_errno;
4932 #endif
4933 	}
4934 	return MDB_SUCCESS;
4935 
4936 fail_errno:
4937 	rc = ErrCode();
4938 fail:
4939 	return rc;
4940 }
4941 
4942 	/** Only a subset of the @ref mdb_env flags can be changed
4943 	 *	at runtime. Changing other flags requires closing the
4944 	 *	environment and re-opening it with the new flags.
4945 	 */
4946 #define	CHANGEABLE	(MDB_NOSYNC|MDB_NOMETASYNC|MDB_MAPASYNC|MDB_NOMEMINIT)
4947 #define	CHANGELESS	(MDB_FIXEDMAP|MDB_NOSUBDIR|MDB_RDONLY| \
4948 	MDB_WRITEMAP|MDB_NOTLS|MDB_NOLOCK|MDB_NORDAHEAD)
4949 
4950 #if VALID_FLAGS & PERSISTENT_FLAGS & (CHANGEABLE|CHANGELESS)
4951 # error "Persistent DB flags & env flags overlap, but both go in mm_flags"
4952 #endif
4953 
4954 int ESECT
4955 mdb_env_open(MDB_env *env, const char *path, unsigned int flags, mdb_mode_t mode)
4956 {
4957 	int rc, excl = -1;
4958 	MDB_name fname;
4959 
4960 	if (env->me_fd!=INVALID_HANDLE_VALUE || (flags & ~(CHANGEABLE|CHANGELESS)))
4961 		return EINVAL;
4962 
4963 	flags |= env->me_flags;
4964 
4965 	rc = mdb_fname_init(path, flags, &fname);
4966 	if (rc)
4967 		return rc;
4968 
4969 	if (flags & MDB_RDONLY) {
4970 		/* silently ignore WRITEMAP when we're only getting read access */
4971 		flags &= ~MDB_WRITEMAP;
4972 	} else {
4973 		if (!((env->me_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)) &&
4974 			  (env->me_dirty_list = calloc(MDB_IDL_UM_SIZE, sizeof(MDB_ID2)))))
4975 			rc = ENOMEM;
4976 	}
4977 	env->me_flags = flags |= MDB_ENV_ACTIVE;
4978 	if (rc)
4979 		goto leave;
4980 
4981 	env->me_path = strdup(path);
4982 	env->me_dbxs = calloc(env->me_maxdbs, sizeof(MDB_dbx));
4983 	env->me_dbflags = calloc(env->me_maxdbs, sizeof(uint16_t));
4984 	env->me_dbiseqs = calloc(env->me_maxdbs, sizeof(unsigned int));
4985 	if (!(env->me_dbxs && env->me_path && env->me_dbflags && env->me_dbiseqs)) {
4986 		rc = ENOMEM;
4987 		goto leave;
4988 	}
4989 	env->me_dbxs[FREE_DBI].md_cmp = mdb_cmp_long; /* aligned MDB_INTEGERKEY */
4990 
4991 	/* For RDONLY, get lockfile after we know datafile exists */
4992 	if (!(flags & (MDB_RDONLY|MDB_NOLOCK))) {
4993 		rc = mdb_env_setup_locks(env, &fname, mode, &excl);
4994 		if (rc)
4995 			goto leave;
4996 	}
4997 
4998 	rc = mdb_fopen(env, &fname,
4999 		(flags & MDB_RDONLY) ? MDB_O_RDONLY : MDB_O_RDWR,
5000 		mode, &env->me_fd);
5001 	if (rc)
5002 		goto leave;
5003 
5004 	if ((flags & (MDB_RDONLY|MDB_NOLOCK)) == MDB_RDONLY) {
5005 		rc = mdb_env_setup_locks(env, &fname, mode, &excl);
5006 		if (rc)
5007 			goto leave;
5008 	}
5009 
5010 	if ((rc = mdb_env_open2(env)) == MDB_SUCCESS) {
5011 		if (!(flags & (MDB_RDONLY|MDB_WRITEMAP))) {
5012 			/* Synchronous fd for meta writes. Needed even with
5013 			 * MDB_NOSYNC/MDB_NOMETASYNC, in case these get reset.
5014 			 */
5015 			rc = mdb_fopen(env, &fname, MDB_O_META, mode, &env->me_mfd);
5016 			if (rc)
5017 				goto leave;
5018 		}
5019 		DPRINTF(("opened dbenv %p", (void *) env));
5020 		if (excl > 0) {
5021 			rc = mdb_env_share_locks(env, &excl);
5022 			if (rc)
5023 				goto leave;
5024 		}
5025 		if (!(flags & MDB_RDONLY)) {
5026 			MDB_txn *txn;
5027 			int tsize = sizeof(MDB_txn), size = tsize + env->me_maxdbs *
5028 				(sizeof(MDB_db)+sizeof(MDB_cursor *)+sizeof(unsigned int)+1);
5029 			if ((env->me_pbuf = calloc(1, env->me_psize)) &&
5030 				(txn = calloc(1, size)))
5031 			{
5032 				txn->mt_dbs = (MDB_db *)((char *)txn + tsize);
5033 				txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
5034 				txn->mt_dbiseqs = (unsigned int *)(txn->mt_cursors + env->me_maxdbs);
5035 				txn->mt_dbflags = (unsigned char *)(txn->mt_dbiseqs + env->me_maxdbs);
5036 				txn->mt_env = env;
5037 				txn->mt_dbxs = env->me_dbxs;
5038 				txn->mt_flags = MDB_TXN_FINISHED;
5039 				env->me_txn0 = txn;
5040 			} else {
5041 				rc = ENOMEM;
5042 			}
5043 		}
5044 	}
5045 
5046 leave:
5047 	if (rc) {
5048 		mdb_env_close0(env, excl);
5049 	}
5050 	mdb_fname_destroy(fname);
5051 	return rc;
5052 }
5053 
5054 /** Destroy resources from mdb_env_open(), clear our readers & DBIs */
5055 static void ESECT
5056 mdb_env_close0(MDB_env *env, int excl)
5057 {
5058 	int i;
5059 
5060 	if (!(env->me_flags & MDB_ENV_ACTIVE))
5061 		return;
5062 
5063 	/* Doing this here since me_dbxs may not exist during mdb_env_close */
5064 	if (env->me_dbxs) {
5065 		for (i = env->me_maxdbs; --i >= CORE_DBS; )
5066 			free(env->me_dbxs[i].md_name.mv_data);
5067 		free(env->me_dbxs);
5068 	}
5069 
5070 	free(env->me_pbuf);
5071 	free(env->me_dbiseqs);
5072 	free(env->me_dbflags);
5073 	free(env->me_path);
5074 	free(env->me_dirty_list);
5075 	free(env->me_txn0);
5076 	mdb_midl_free(env->me_free_pgs);
5077 
5078 	if (env->me_flags & MDB_ENV_TXKEY) {
5079 		pthread_key_delete(env->me_txkey);
5080 #ifdef _WIN32
5081 		/* Delete our key from the global list */
5082 		for (i=0; i<mdb_tls_nkeys; i++)
5083 			if (mdb_tls_keys[i] == env->me_txkey) {
5084 				mdb_tls_keys[i] = mdb_tls_keys[mdb_tls_nkeys-1];
5085 				mdb_tls_nkeys--;
5086 				break;
5087 			}
5088 #endif
5089 	}
5090 
5091 	if (env->me_map) {
5092 		munmap(env->me_map, env->me_mapsize);
5093 	}
5094 	if (env->me_mfd != INVALID_HANDLE_VALUE)
5095 		(void) close(env->me_mfd);
5096 	if (env->me_fd != INVALID_HANDLE_VALUE)
5097 		(void) close(env->me_fd);
5098 	if (env->me_txns) {
5099 		MDB_PID_T pid = getpid();
5100 		/* Clearing readers is done in this function because
5101 		 * me_txkey with its destructor must be disabled first.
5102 		 *
5103 		 * We skip the the reader mutex, so we touch only
5104 		 * data owned by this process (me_close_readers and
5105 		 * our readers), and clear each reader atomically.
5106 		 */
5107 		for (i = env->me_close_readers; --i >= 0; )
5108 			if (env->me_txns->mti_readers[i].mr_pid == pid)
5109 				env->me_txns->mti_readers[i].mr_pid = 0;
5110 #ifdef _WIN32
5111 		if (env->me_rmutex) {
5112 			CloseHandle(env->me_rmutex);
5113 			if (env->me_wmutex) CloseHandle(env->me_wmutex);
5114 		}
5115 		/* Windows automatically destroys the mutexes when
5116 		 * the last handle closes.
5117 		 */
5118 #elif defined(MDB_USE_POSIX_SEM)
5119 		if (env->me_rmutex != SEM_FAILED) {
5120 			sem_close(env->me_rmutex);
5121 			if (env->me_wmutex != SEM_FAILED)
5122 				sem_close(env->me_wmutex);
5123 			/* If we have the filelock:  If we are the
5124 			 * only remaining user, clean up semaphores.
5125 			 */
5126 			if (excl == 0)
5127 				mdb_env_excl_lock(env, &excl);
5128 			if (excl > 0) {
5129 				sem_unlink(env->me_txns->mti_rmname);
5130 				sem_unlink(env->me_txns->mti_wmname);
5131 			}
5132 		}
5133 #endif
5134 		munmap((void *)env->me_txns, (env->me_maxreaders-1)*sizeof(MDB_reader)+sizeof(MDB_txninfo));
5135 	}
5136 	if (env->me_lfd != INVALID_HANDLE_VALUE) {
5137 #ifdef _WIN32
5138 		if (excl >= 0) {
5139 			/* Unlock the lockfile.  Windows would have unlocked it
5140 			 * after closing anyway, but not necessarily at once.
5141 			 */
5142 			UnlockFile(env->me_lfd, 0, 0, 1, 0);
5143 		}
5144 #endif
5145 		(void) close(env->me_lfd);
5146 	}
5147 
5148 	env->me_flags &= ~(MDB_ENV_ACTIVE|MDB_ENV_TXKEY);
5149 }
5150 
5151 void ESECT
5152 mdb_env_close(MDB_env *env)
5153 {
5154 	MDB_page *dp;
5155 
5156 	if (env == NULL)
5157 		return;
5158 
5159 	VGMEMP_DESTROY(env);
5160 	while ((dp = env->me_dpages) != NULL) {
5161 		VGMEMP_DEFINED(&dp->mp_next, sizeof(dp->mp_next));
5162 		env->me_dpages = dp->mp_next;
5163 		free(dp);
5164 	}
5165 
5166 	mdb_env_close0(env, 0);
5167 	free(env);
5168 }
5169 
5170 /** Compare two items pointing at aligned size_t's */
5171 static int
5172 mdb_cmp_long(const MDB_val *a, const MDB_val *b)
5173 {
5174 	return (*(size_t *)a->mv_data < *(size_t *)b->mv_data) ? -1 :
5175 		*(size_t *)a->mv_data > *(size_t *)b->mv_data;
5176 }
5177 
5178 /** Compare two items pointing at aligned unsigned int's.
5179  *
5180  *	This is also set as #MDB_INTEGERDUP|#MDB_DUPFIXED's #MDB_dbx.%md_dcmp,
5181  *	but #mdb_cmp_clong() is called instead if the data type is size_t.
5182  */
5183 static int
5184 mdb_cmp_int(const MDB_val *a, const MDB_val *b)
5185 {
5186 	return (*(unsigned int *)a->mv_data < *(unsigned int *)b->mv_data) ? -1 :
5187 		*(unsigned int *)a->mv_data > *(unsigned int *)b->mv_data;
5188 }
5189 
5190 /** Compare two items pointing at unsigned ints of unknown alignment.
5191  *	Nodes and keys are guaranteed to be 2-byte aligned.
5192  */
5193 static int
5194 mdb_cmp_cint(const MDB_val *a, const MDB_val *b)
5195 {
5196 #if BYTE_ORDER == LITTLE_ENDIAN
5197 	unsigned short *u, *c;
5198 	int x;
5199 
5200 	u = (unsigned short *) ((char *) a->mv_data + a->mv_size);
5201 	c = (unsigned short *) ((char *) b->mv_data + a->mv_size);
5202 	do {
5203 		x = *--u - *--c;
5204 	} while(!x && u > (unsigned short *)a->mv_data);
5205 	return x;
5206 #else
5207 	unsigned short *u, *c, *end;
5208 	int x;
5209 
5210 	end = (unsigned short *) ((char *) a->mv_data + a->mv_size);
5211 	u = (unsigned short *)a->mv_data;
5212 	c = (unsigned short *)b->mv_data;
5213 	do {
5214 		x = *u++ - *c++;
5215 	} while(!x && u < end);
5216 	return x;
5217 #endif
5218 }
5219 
5220 /** Compare two items lexically */
5221 static int
5222 mdb_cmp_memn(const MDB_val *a, const MDB_val *b)
5223 {
5224 	int diff;
5225 	ssize_t len_diff;
5226 	unsigned int len;
5227 
5228 	len = a->mv_size;
5229 	len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size;
5230 	if (len_diff > 0) {
5231 		len = b->mv_size;
5232 		len_diff = 1;
5233 	}
5234 
5235 	diff = memcmp(a->mv_data, b->mv_data, len);
5236 	return diff ? diff : len_diff<0 ? -1 : len_diff;
5237 }
5238 
5239 /** Compare two items in reverse byte order */
5240 static int
5241 mdb_cmp_memnr(const MDB_val *a, const MDB_val *b)
5242 {
5243 	const unsigned char	*p1, *p2, *p1_lim;
5244 	ssize_t len_diff;
5245 	int diff;
5246 
5247 	p1_lim = (const unsigned char *)a->mv_data;
5248 	p1 = (const unsigned char *)a->mv_data + a->mv_size;
5249 	p2 = (const unsigned char *)b->mv_data + b->mv_size;
5250 
5251 	len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size;
5252 	if (len_diff > 0) {
5253 		p1_lim += len_diff;
5254 		len_diff = 1;
5255 	}
5256 
5257 	while (p1 > p1_lim) {
5258 		diff = *--p1 - *--p2;
5259 		if (diff)
5260 			return diff;
5261 	}
5262 	return len_diff<0 ? -1 : len_diff;
5263 }
5264 
5265 /** Search for key within a page, using binary search.
5266  * Returns the smallest entry larger or equal to the key.
5267  * If exactp is non-null, stores whether the found entry was an exact match
5268  * in *exactp (1 or 0).
5269  * Updates the cursor index with the index of the found entry.
5270  * If no entry larger or equal to the key is found, returns NULL.
5271  */
5272 static MDB_node *
5273 mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp)
5274 {
5275 	unsigned int	 i = 0, nkeys;
5276 	int		 low, high;
5277 	int		 rc = 0;
5278 	MDB_page *mp = mc->mc_pg[mc->mc_top];
5279 	MDB_node	*node = NULL;
5280 	MDB_val	 nodekey;
5281 	MDB_cmp_func *cmp;
5282 	DKBUF;
5283 
5284 	nkeys = NUMKEYS(mp);
5285 
5286 	DPRINTF(("searching %u keys in %s %spage %"Z"u",
5287 	    nkeys, IS_LEAF(mp) ? "leaf" : "branch", IS_SUBP(mp) ? "sub-" : "",
5288 	    mdb_dbg_pgno(mp)));
5289 
5290 	low = IS_LEAF(mp) ? 0 : 1;
5291 	high = nkeys - 1;
5292 	cmp = mc->mc_dbx->md_cmp;
5293 
5294 	/* Branch pages have no data, so if using integer keys,
5295 	 * alignment is guaranteed. Use faster mdb_cmp_int.
5296 	 */
5297 	if (cmp == mdb_cmp_cint && IS_BRANCH(mp)) {
5298 		if (NODEPTR(mp, 1)->mn_ksize == sizeof(size_t))
5299 			cmp = mdb_cmp_long;
5300 		else
5301 			cmp = mdb_cmp_int;
5302 	}
5303 
5304 	if (IS_LEAF2(mp)) {
5305 		nodekey.mv_size = mc->mc_db->md_pad;
5306 		node = NODEPTR(mp, 0);	/* fake */
5307 		while (low <= high) {
5308 			i = (low + high) >> 1;
5309 			nodekey.mv_data = LEAF2KEY(mp, i, nodekey.mv_size);
5310 			rc = cmp(key, &nodekey);
5311 			DPRINTF(("found leaf index %u [%s], rc = %i",
5312 			    i, DKEY(&nodekey), rc));
5313 			if (rc == 0)
5314 				break;
5315 			if (rc > 0)
5316 				low = i + 1;
5317 			else
5318 				high = i - 1;
5319 		}
5320 	} else {
5321 		while (low <= high) {
5322 			i = (low + high) >> 1;
5323 
5324 			node = NODEPTR(mp, i);
5325 			nodekey.mv_size = NODEKSZ(node);
5326 			nodekey.mv_data = NODEKEY(node);
5327 
5328 			rc = cmp(key, &nodekey);
5329 #if MDB_DEBUG
5330 			if (IS_LEAF(mp))
5331 				DPRINTF(("found leaf index %u [%s], rc = %i",
5332 				    i, DKEY(&nodekey), rc));
5333 			else
5334 				DPRINTF(("found branch index %u [%s -> %"Z"u], rc = %i",
5335 				    i, DKEY(&nodekey), NODEPGNO(node), rc));
5336 #endif
5337 			if (rc == 0)
5338 				break;
5339 			if (rc > 0)
5340 				low = i + 1;
5341 			else
5342 				high = i - 1;
5343 		}
5344 	}
5345 
5346 	if (rc > 0) {	/* Found entry is less than the key. */
5347 		i++;	/* Skip to get the smallest entry larger than key. */
5348 		if (!IS_LEAF2(mp))
5349 			node = NODEPTR(mp, i);
5350 	}
5351 	if (exactp)
5352 		*exactp = (rc == 0 && nkeys > 0);
5353 	/* store the key index */
5354 	mc->mc_ki[mc->mc_top] = i;
5355 	if (i >= nkeys)
5356 		/* There is no entry larger or equal to the key. */
5357 		return NULL;
5358 
5359 	/* nodeptr is fake for LEAF2 */
5360 	return node;
5361 }
5362 
5363 #if 0
5364 static void
5365 mdb_cursor_adjust(MDB_cursor *mc, func)
5366 {
5367 	MDB_cursor *m2;
5368 
5369 	for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
5370 		if (m2->mc_pg[m2->mc_top] == mc->mc_pg[mc->mc_top]) {
5371 			func(mc, m2);
5372 		}
5373 	}
5374 }
5375 #endif
5376 
5377 /** Pop a page off the top of the cursor's stack. */
5378 static void
5379 mdb_cursor_pop(MDB_cursor *mc)
5380 {
5381 	if (mc->mc_snum) {
5382 		DPRINTF(("popping page %"Z"u off db %d cursor %p",
5383 			mc->mc_pg[mc->mc_top]->mp_pgno, DDBI(mc), (void *) mc));
5384 
5385 		mc->mc_snum--;
5386 		if (mc->mc_snum) {
5387 			mc->mc_top--;
5388 		} else {
5389 			mc->mc_flags &= ~C_INITIALIZED;
5390 		}
5391 	}
5392 }
5393 
5394 /** Push a page onto the top of the cursor's stack.
5395  * Set #MDB_TXN_ERROR on failure.
5396  */
5397 static int
5398 mdb_cursor_push(MDB_cursor *mc, MDB_page *mp)
5399 {
5400 	DPRINTF(("pushing page %"Z"u on db %d cursor %p", mp->mp_pgno,
5401 		DDBI(mc), (void *) mc));
5402 
5403 	if (mc->mc_snum >= CURSOR_STACK) {
5404 		mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
5405 		return MDB_CURSOR_FULL;
5406 	}
5407 
5408 	mc->mc_top = mc->mc_snum++;
5409 	mc->mc_pg[mc->mc_top] = mp;
5410 	mc->mc_ki[mc->mc_top] = 0;
5411 
5412 	return MDB_SUCCESS;
5413 }
5414 
5415 /** Find the address of the page corresponding to a given page number.
5416  * Set #MDB_TXN_ERROR on failure.
5417  * @param[in] mc the cursor accessing the page.
5418  * @param[in] pgno the page number for the page to retrieve.
5419  * @param[out] ret address of a pointer where the page's address will be stored.
5420  * @param[out] lvl dirty_list inheritance level of found page. 1=current txn, 0=mapped page.
5421  * @return 0 on success, non-zero on failure.
5422  */
5423 static int
5424 mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **ret, int *lvl)
5425 {
5426 	MDB_txn *txn = mc->mc_txn;
5427 	MDB_env *env = txn->mt_env;
5428 	MDB_page *p = NULL;
5429 	int level;
5430 
5431 	if (! (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_WRITEMAP))) {
5432 		MDB_txn *tx2 = txn;
5433 		level = 1;
5434 		do {
5435 			MDB_ID2L dl = tx2->mt_u.dirty_list;
5436 			unsigned x;
5437 			/* Spilled pages were dirtied in this txn and flushed
5438 			 * because the dirty list got full. Bring this page
5439 			 * back in from the map (but don't unspill it here,
5440 			 * leave that unless page_touch happens again).
5441 			 */
5442 			if (tx2->mt_spill_pgs) {
5443 				MDB_ID pn = pgno << 1;
5444 				x = mdb_midl_search(tx2->mt_spill_pgs, pn);
5445 				if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) {
5446 					p = (MDB_page *)(env->me_map + env->me_psize * pgno);
5447 					goto done;
5448 				}
5449 			}
5450 			if (dl[0].mid) {
5451 				unsigned x = mdb_mid2l_search(dl, pgno);
5452 				if (x <= dl[0].mid && dl[x].mid == pgno) {
5453 					p = dl[x].mptr;
5454 					goto done;
5455 				}
5456 			}
5457 			level++;
5458 		} while ((tx2 = tx2->mt_parent) != NULL);
5459 	}
5460 
5461 	if (pgno < txn->mt_next_pgno) {
5462 		level = 0;
5463 		p = (MDB_page *)(env->me_map + env->me_psize * pgno);
5464 	} else {
5465 		DPRINTF(("page %"Z"u not found", pgno));
5466 		txn->mt_flags |= MDB_TXN_ERROR;
5467 		return MDB_PAGE_NOTFOUND;
5468 	}
5469 
5470 done:
5471 	*ret = p;
5472 	if (lvl)
5473 		*lvl = level;
5474 	return MDB_SUCCESS;
5475 }
5476 
5477 /** Finish #mdb_page_search() / #mdb_page_search_lowest().
5478  *	The cursor is at the root page, set up the rest of it.
5479  */
5480 static int
5481 mdb_page_search_root(MDB_cursor *mc, MDB_val *key, int flags)
5482 {
5483 	MDB_page	*mp = mc->mc_pg[mc->mc_top];
5484 	int rc;
5485 	DKBUF;
5486 
5487 	while (IS_BRANCH(mp)) {
5488 		MDB_node	*node;
5489 		indx_t		i;
5490 
5491 		DPRINTF(("branch page %"Z"u has %u keys", mp->mp_pgno, NUMKEYS(mp)));
5492 		/* Don't assert on branch pages in the FreeDB. We can get here
5493 		 * while in the process of rebalancing a FreeDB branch page; we must
5494 		 * let that proceed. ITS#8336
5495 		 */
5496 		mdb_cassert(mc, !mc->mc_dbi || NUMKEYS(mp) > 1);
5497 		DPRINTF(("found index 0 to page %"Z"u", NODEPGNO(NODEPTR(mp, 0))));
5498 
5499 		if (flags & (MDB_PS_FIRST|MDB_PS_LAST)) {
5500 			i = 0;
5501 			if (flags & MDB_PS_LAST) {
5502 				i = NUMKEYS(mp) - 1;
5503 				/* if already init'd, see if we're already in right place */
5504 				if (mc->mc_flags & C_INITIALIZED) {
5505 					if (mc->mc_ki[mc->mc_top] == i) {
5506 						mc->mc_top = mc->mc_snum++;
5507 						mp = mc->mc_pg[mc->mc_top];
5508 						goto ready;
5509 					}
5510 				}
5511 			}
5512 		} else {
5513 			int	 exact;
5514 			node = mdb_node_search(mc, key, &exact);
5515 			if (node == NULL)
5516 				i = NUMKEYS(mp) - 1;
5517 			else {
5518 				i = mc->mc_ki[mc->mc_top];
5519 				if (!exact) {
5520 					mdb_cassert(mc, i > 0);
5521 					i--;
5522 				}
5523 			}
5524 			DPRINTF(("following index %u for key [%s]", i, DKEY(key)));
5525 		}
5526 
5527 		mdb_cassert(mc, i < NUMKEYS(mp));
5528 		node = NODEPTR(mp, i);
5529 
5530 		if ((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0)
5531 			return rc;
5532 
5533 		mc->mc_ki[mc->mc_top] = i;
5534 		if ((rc = mdb_cursor_push(mc, mp)))
5535 			return rc;
5536 
5537 ready:
5538 		if (flags & MDB_PS_MODIFY) {
5539 			if ((rc = mdb_page_touch(mc)) != 0)
5540 				return rc;
5541 			mp = mc->mc_pg[mc->mc_top];
5542 		}
5543 	}
5544 
5545 	if (!IS_LEAF(mp)) {
5546 		DPRINTF(("internal error, index points to a %02X page!?",
5547 		    mp->mp_flags));
5548 		mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
5549 		return MDB_CORRUPTED;
5550 	}
5551 
5552 	DPRINTF(("found leaf page %"Z"u for key [%s]", mp->mp_pgno,
5553 	    key ? DKEY(key) : "null"));
5554 	mc->mc_flags |= C_INITIALIZED;
5555 	mc->mc_flags &= ~C_EOF;
5556 
5557 	return MDB_SUCCESS;
5558 }
5559 
5560 /** Search for the lowest key under the current branch page.
5561  * This just bypasses a NUMKEYS check in the current page
5562  * before calling mdb_page_search_root(), because the callers
5563  * are all in situations where the current page is known to
5564  * be underfilled.
5565  */
5566 static int
5567 mdb_page_search_lowest(MDB_cursor *mc)
5568 {
5569 	MDB_page	*mp = mc->mc_pg[mc->mc_top];
5570 	MDB_node	*node = NODEPTR(mp, 0);
5571 	int rc;
5572 
5573 	if ((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0)
5574 		return rc;
5575 
5576 	mc->mc_ki[mc->mc_top] = 0;
5577 	if ((rc = mdb_cursor_push(mc, mp)))
5578 		return rc;
5579 	return mdb_page_search_root(mc, NULL, MDB_PS_FIRST);
5580 }
5581 
5582 /** Search for the page a given key should be in.
5583  * Push it and its parent pages on the cursor stack.
5584  * @param[in,out] mc the cursor for this operation.
5585  * @param[in] key the key to search for, or NULL for first/last page.
5586  * @param[in] flags If MDB_PS_MODIFY is set, visited pages in the DB
5587  *   are touched (updated with new page numbers).
5588  *   If MDB_PS_FIRST or MDB_PS_LAST is set, find first or last leaf.
5589  *   This is used by #mdb_cursor_first() and #mdb_cursor_last().
5590  *   If MDB_PS_ROOTONLY set, just fetch root node, no further lookups.
5591  * @return 0 on success, non-zero on failure.
5592  */
5593 static int
5594 mdb_page_search(MDB_cursor *mc, MDB_val *key, int flags)
5595 {
5596 	int		 rc;
5597 	pgno_t		 root;
5598 
5599 	/* Make sure the txn is still viable, then find the root from
5600 	 * the txn's db table and set it as the root of the cursor's stack.
5601 	 */
5602 	if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) {
5603 		DPUTS("transaction may not be used now");
5604 		return MDB_BAD_TXN;
5605 	} else {
5606 		/* Make sure we're using an up-to-date root */
5607 		if (*mc->mc_dbflag & DB_STALE) {
5608 				MDB_cursor mc2;
5609 				if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi))
5610 					return MDB_BAD_DBI;
5611 				mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, NULL);
5612 				rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, 0);
5613 				if (rc)
5614 					return rc;
5615 				{
5616 					MDB_val data;
5617 					int exact = 0;
5618 					uint16_t flags;
5619 					MDB_node *leaf = mdb_node_search(&mc2,
5620 						&mc->mc_dbx->md_name, &exact);
5621 					if (!exact)
5622 						return MDB_NOTFOUND;
5623 					if ((leaf->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA)
5624 						return MDB_INCOMPATIBLE; /* not a named DB */
5625 					rc = mdb_node_read(&mc2, leaf, &data);
5626 					if (rc)
5627 						return rc;
5628 					memcpy(&flags, ((char *) data.mv_data + offsetof(MDB_db, md_flags)),
5629 						sizeof(uint16_t));
5630 					/* The txn may not know this DBI, or another process may
5631 					 * have dropped and recreated the DB with other flags.
5632 					 */
5633 					if ((mc->mc_db->md_flags & PERSISTENT_FLAGS) != flags)
5634 						return MDB_INCOMPATIBLE;
5635 					memcpy(mc->mc_db, data.mv_data, sizeof(MDB_db));
5636 				}
5637 				*mc->mc_dbflag &= ~DB_STALE;
5638 		}
5639 		root = mc->mc_db->md_root;
5640 
5641 		if (root == P_INVALID) {		/* Tree is empty. */
5642 			DPUTS("tree is empty");
5643 			return MDB_NOTFOUND;
5644 		}
5645 	}
5646 
5647 	mdb_cassert(mc, root > 1);
5648 	if (!mc->mc_pg[0] || mc->mc_pg[0]->mp_pgno != root)
5649 		if ((rc = mdb_page_get(mc, root, &mc->mc_pg[0], NULL)) != 0)
5650 			return rc;
5651 
5652 	mc->mc_snum = 1;
5653 	mc->mc_top = 0;
5654 
5655 	DPRINTF(("db %d root page %"Z"u has flags 0x%X",
5656 		DDBI(mc), root, mc->mc_pg[0]->mp_flags));
5657 
5658 	if (flags & MDB_PS_MODIFY) {
5659 		if ((rc = mdb_page_touch(mc)))
5660 			return rc;
5661 	}
5662 
5663 	if (flags & MDB_PS_ROOTONLY)
5664 		return MDB_SUCCESS;
5665 
5666 	return mdb_page_search_root(mc, key, flags);
5667 }
5668 
5669 static int
5670 mdb_ovpage_free(MDB_cursor *mc, MDB_page *mp)
5671 {
5672 	MDB_txn *txn = mc->mc_txn;
5673 	pgno_t pg = mp->mp_pgno;
5674 	unsigned x = 0, ovpages = mp->mp_pages;
5675 	MDB_env *env = txn->mt_env;
5676 	MDB_IDL sl = txn->mt_spill_pgs;
5677 	MDB_ID pn = pg << 1;
5678 	int rc;
5679 
5680 	DPRINTF(("free ov page %"Z"u (%d)", pg, ovpages));
5681 	/* If the page is dirty or on the spill list we just acquired it,
5682 	 * so we should give it back to our current free list, if any.
5683 	 * Otherwise put it onto the list of pages we freed in this txn.
5684 	 *
5685 	 * Won't create me_pghead: me_pglast must be inited along with it.
5686 	 * Unsupported in nested txns: They would need to hide the page
5687 	 * range in ancestor txns' dirty and spilled lists.
5688 	 */
5689 	if (env->me_pghead &&
5690 		!txn->mt_parent &&
5691 		((mp->mp_flags & P_DIRTY) ||
5692 		 (sl && (x = mdb_midl_search(sl, pn)) <= sl[0] && sl[x] == pn)))
5693 	{
5694 		unsigned i, j;
5695 		pgno_t *mop;
5696 		MDB_ID2 *dl, ix, iy;
5697 		rc = mdb_midl_need(&env->me_pghead, ovpages);
5698 		if (rc)
5699 			return rc;
5700 		if (!(mp->mp_flags & P_DIRTY)) {
5701 			/* This page is no longer spilled */
5702 			if (x == sl[0])
5703 				sl[0]--;
5704 			else
5705 				sl[x] |= 1;
5706 			goto release;
5707 		}
5708 		/* Remove from dirty list */
5709 		dl = txn->mt_u.dirty_list;
5710 		x = dl[0].mid--;
5711 		for (ix = dl[x]; ix.mptr != mp; ix = iy) {
5712 			if (x > 1) {
5713 				x--;
5714 				iy = dl[x];
5715 				dl[x] = ix;
5716 			} else {
5717 				mdb_cassert(mc, x > 1);
5718 				j = ++(dl[0].mid);
5719 				dl[j] = ix;		/* Unsorted. OK when MDB_TXN_ERROR. */
5720 				txn->mt_flags |= MDB_TXN_ERROR;
5721 				return MDB_CORRUPTED;
5722 			}
5723 		}
5724 		txn->mt_dirty_room++;
5725 		if (!(env->me_flags & MDB_WRITEMAP))
5726 			mdb_dpage_free(env, mp);
5727 release:
5728 		/* Insert in me_pghead */
5729 		mop = env->me_pghead;
5730 		j = mop[0] + ovpages;
5731 		for (i = mop[0]; i && mop[i] < pg; i--)
5732 			mop[j--] = mop[i];
5733 		while (j>i)
5734 			mop[j--] = pg++;
5735 		mop[0] += ovpages;
5736 	} else {
5737 		rc = mdb_midl_append_range(&txn->mt_free_pgs, pg, ovpages);
5738 		if (rc)
5739 			return rc;
5740 	}
5741 	mc->mc_db->md_overflow_pages -= ovpages;
5742 	return 0;
5743 }
5744 
5745 /** Return the data associated with a given node.
5746  * @param[in] mc The cursor for this operation.
5747  * @param[in] leaf The node being read.
5748  * @param[out] data Updated to point to the node's data.
5749  * @return 0 on success, non-zero on failure.
5750  */
5751 static int
5752 mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data)
5753 {
5754 	MDB_page	*omp;		/* overflow page */
5755 	pgno_t		 pgno;
5756 	int rc;
5757 
5758 	if (!F_ISSET(leaf->mn_flags, F_BIGDATA)) {
5759 		data->mv_size = NODEDSZ(leaf);
5760 		data->mv_data = NODEDATA(leaf);
5761 		return MDB_SUCCESS;
5762 	}
5763 
5764 	/* Read overflow data.
5765 	 */
5766 	data->mv_size = NODEDSZ(leaf);
5767 	memcpy(&pgno, NODEDATA(leaf), sizeof(pgno));
5768 	if ((rc = mdb_page_get(mc, pgno, &omp, NULL)) != 0) {
5769 		DPRINTF(("read overflow page %"Z"u failed", pgno));
5770 		return rc;
5771 	}
5772 	data->mv_data = METADATA(omp);
5773 
5774 	return MDB_SUCCESS;
5775 }
5776 
5777 int
5778 mdb_get(MDB_txn *txn, MDB_dbi dbi,
5779     MDB_val *key, MDB_val *data)
5780 {
5781 	MDB_cursor	mc;
5782 	MDB_xcursor	mx;
5783 	int exact = 0;
5784 	DKBUF;
5785 
5786 	DPRINTF(("===> get db %u key [%s]", dbi, DKEY(key)));
5787 
5788 	if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
5789 		return EINVAL;
5790 
5791 	if (txn->mt_flags & MDB_TXN_BLOCKED)
5792 		return MDB_BAD_TXN;
5793 
5794 	mdb_cursor_init(&mc, txn, dbi, &mx);
5795 	return mdb_cursor_set(&mc, key, data, MDB_SET, &exact);
5796 }
5797 
5798 /** Find a sibling for a page.
5799  * Replaces the page at the top of the cursor's stack with the
5800  * specified sibling, if one exists.
5801  * @param[in] mc The cursor for this operation.
5802  * @param[in] move_right Non-zero if the right sibling is requested,
5803  * otherwise the left sibling.
5804  * @return 0 on success, non-zero on failure.
5805  */
5806 static int
5807 mdb_cursor_sibling(MDB_cursor *mc, int move_right)
5808 {
5809 	int		 rc;
5810 	MDB_node	*indx;
5811 	MDB_page	*mp;
5812 
5813 	if (mc->mc_snum < 2) {
5814 		return MDB_NOTFOUND;		/* root has no siblings */
5815 	}
5816 
5817 	mdb_cursor_pop(mc);
5818 	DPRINTF(("parent page is page %"Z"u, index %u",
5819 		mc->mc_pg[mc->mc_top]->mp_pgno, mc->mc_ki[mc->mc_top]));
5820 
5821 	if (move_right ? (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mc->mc_pg[mc->mc_top]))
5822 		       : (mc->mc_ki[mc->mc_top] == 0)) {
5823 		DPRINTF(("no more keys left, moving to %s sibling",
5824 		    move_right ? "right" : "left"));
5825 		if ((rc = mdb_cursor_sibling(mc, move_right)) != MDB_SUCCESS) {
5826 			/* undo cursor_pop before returning */
5827 			mc->mc_top++;
5828 			mc->mc_snum++;
5829 			return rc;
5830 		}
5831 	} else {
5832 		if (move_right)
5833 			mc->mc_ki[mc->mc_top]++;
5834 		else
5835 			mc->mc_ki[mc->mc_top]--;
5836 		DPRINTF(("just moving to %s index key %u",
5837 		    move_right ? "right" : "left", mc->mc_ki[mc->mc_top]));
5838 	}
5839 	mdb_cassert(mc, IS_BRANCH(mc->mc_pg[mc->mc_top]));
5840 
5841 	indx = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
5842 	if ((rc = mdb_page_get(mc, NODEPGNO(indx), &mp, NULL)) != 0) {
5843 		/* mc will be inconsistent if caller does mc_snum++ as above */
5844 		mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
5845 		return rc;
5846 	}
5847 
5848 	mdb_cursor_push(mc, mp);
5849 	if (!move_right)
5850 		mc->mc_ki[mc->mc_top] = NUMKEYS(mp)-1;
5851 
5852 	return MDB_SUCCESS;
5853 }
5854 
5855 /** Move the cursor to the next data item. */
5856 static int
5857 mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
5858 {
5859 	MDB_page	*mp;
5860 	MDB_node	*leaf;
5861 	int rc;
5862 
5863 	if ((mc->mc_flags & C_DEL && op == MDB_NEXT_DUP))
5864 		return MDB_NOTFOUND;
5865 
5866 	if (!(mc->mc_flags & C_INITIALIZED))
5867 		return mdb_cursor_first(mc, key, data);
5868 
5869 	mp = mc->mc_pg[mc->mc_top];
5870 
5871 	if (mc->mc_flags & C_EOF) {
5872 		if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mp)-1)
5873 			return MDB_NOTFOUND;
5874 		mc->mc_flags ^= C_EOF;
5875 	}
5876 
5877 	if (mc->mc_db->md_flags & MDB_DUPSORT) {
5878 		leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
5879 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5880 			if (op == MDB_NEXT || op == MDB_NEXT_DUP) {
5881 				rc = mdb_cursor_next(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_NEXT);
5882 				if (op != MDB_NEXT || rc != MDB_NOTFOUND) {
5883 					if (rc == MDB_SUCCESS)
5884 						MDB_GET_KEY(leaf, key);
5885 					return rc;
5886 				}
5887 			}
5888 		} else {
5889 			mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
5890 			if (op == MDB_NEXT_DUP)
5891 				return MDB_NOTFOUND;
5892 		}
5893 	}
5894 
5895 	DPRINTF(("cursor_next: top page is %"Z"u in cursor %p",
5896 		mdb_dbg_pgno(mp), (void *) mc));
5897 	if (mc->mc_flags & C_DEL) {
5898 		mc->mc_flags ^= C_DEL;
5899 		goto skip;
5900 	}
5901 
5902 	if (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mp)) {
5903 		DPUTS("=====> move to next sibling page");
5904 		if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) {
5905 			mc->mc_flags |= C_EOF;
5906 			return rc;
5907 		}
5908 		mp = mc->mc_pg[mc->mc_top];
5909 		DPRINTF(("next page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]));
5910 	} else
5911 		mc->mc_ki[mc->mc_top]++;
5912 
5913 skip:
5914 	DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u",
5915 	    mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top]));
5916 
5917 	if (IS_LEAF2(mp)) {
5918 		key->mv_size = mc->mc_db->md_pad;
5919 		key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
5920 		return MDB_SUCCESS;
5921 	}
5922 
5923 	mdb_cassert(mc, IS_LEAF(mp));
5924 	leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
5925 
5926 	if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5927 		mdb_xcursor_init1(mc, leaf);
5928 	}
5929 	if (data) {
5930 		if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
5931 			return rc;
5932 
5933 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5934 			rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
5935 			if (rc != MDB_SUCCESS)
5936 				return rc;
5937 		}
5938 	}
5939 
5940 	MDB_GET_KEY(leaf, key);
5941 	return MDB_SUCCESS;
5942 }
5943 
5944 /** Move the cursor to the previous data item. */
5945 static int
5946 mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
5947 {
5948 	MDB_page	*mp;
5949 	MDB_node	*leaf;
5950 	int rc;
5951 
5952 	if (!(mc->mc_flags & C_INITIALIZED)) {
5953 		rc = mdb_cursor_last(mc, key, data);
5954 		if (rc)
5955 			return rc;
5956 		mc->mc_ki[mc->mc_top]++;
5957 	}
5958 
5959 	mp = mc->mc_pg[mc->mc_top];
5960 
5961 	if (mc->mc_db->md_flags & MDB_DUPSORT) {
5962 		leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
5963 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5964 			if (op == MDB_PREV || op == MDB_PREV_DUP) {
5965 				rc = mdb_cursor_prev(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_PREV);
5966 				if (op != MDB_PREV || rc != MDB_NOTFOUND) {
5967 					if (rc == MDB_SUCCESS) {
5968 						MDB_GET_KEY(leaf, key);
5969 						mc->mc_flags &= ~C_EOF;
5970 					}
5971 					return rc;
5972 				}
5973 			}
5974 		} else {
5975 			mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
5976 			if (op == MDB_PREV_DUP)
5977 				return MDB_NOTFOUND;
5978 		}
5979 	}
5980 
5981 	DPRINTF(("cursor_prev: top page is %"Z"u in cursor %p",
5982 		mdb_dbg_pgno(mp), (void *) mc));
5983 
5984 	mc->mc_flags &= ~(C_EOF|C_DEL);
5985 
5986 	if (mc->mc_ki[mc->mc_top] == 0)  {
5987 		DPUTS("=====> move to prev sibling page");
5988 		if ((rc = mdb_cursor_sibling(mc, 0)) != MDB_SUCCESS) {
5989 			return rc;
5990 		}
5991 		mp = mc->mc_pg[mc->mc_top];
5992 		mc->mc_ki[mc->mc_top] = NUMKEYS(mp) - 1;
5993 		DPRINTF(("prev page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]));
5994 	} else
5995 		mc->mc_ki[mc->mc_top]--;
5996 
5997 	DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u",
5998 	    mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top]));
5999 
6000 	if (IS_LEAF2(mp)) {
6001 		key->mv_size = mc->mc_db->md_pad;
6002 		key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
6003 		return MDB_SUCCESS;
6004 	}
6005 
6006 	mdb_cassert(mc, IS_LEAF(mp));
6007 	leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
6008 
6009 	if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6010 		mdb_xcursor_init1(mc, leaf);
6011 	}
6012 	if (data) {
6013 		if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
6014 			return rc;
6015 
6016 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6017 			rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
6018 			if (rc != MDB_SUCCESS)
6019 				return rc;
6020 		}
6021 	}
6022 
6023 	MDB_GET_KEY(leaf, key);
6024 	return MDB_SUCCESS;
6025 }
6026 
6027 /** Set the cursor on a specific data item. */
6028 static int
6029 mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data,
6030     MDB_cursor_op op, int *exactp)
6031 {
6032 	int		 rc;
6033 	MDB_page	*mp;
6034 	MDB_node	*leaf = NULL;
6035 	DKBUF;
6036 
6037 	if (key->mv_size == 0)
6038 		return MDB_BAD_VALSIZE;
6039 
6040 	if (mc->mc_xcursor)
6041 		mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
6042 
6043 	/* See if we're already on the right page */
6044 	if (mc->mc_flags & C_INITIALIZED) {
6045 		MDB_val nodekey;
6046 
6047 		mp = mc->mc_pg[mc->mc_top];
6048 		if (!NUMKEYS(mp)) {
6049 			mc->mc_ki[mc->mc_top] = 0;
6050 			return MDB_NOTFOUND;
6051 		}
6052 		if (mp->mp_flags & P_LEAF2) {
6053 			nodekey.mv_size = mc->mc_db->md_pad;
6054 			nodekey.mv_data = LEAF2KEY(mp, 0, nodekey.mv_size);
6055 		} else {
6056 			leaf = NODEPTR(mp, 0);
6057 			MDB_GET_KEY2(leaf, nodekey);
6058 		}
6059 		rc = mc->mc_dbx->md_cmp(key, &nodekey);
6060 		if (rc == 0) {
6061 			/* Probably happens rarely, but first node on the page
6062 			 * was the one we wanted.
6063 			 */
6064 			mc->mc_ki[mc->mc_top] = 0;
6065 			if (exactp)
6066 				*exactp = 1;
6067 			goto set1;
6068 		}
6069 		if (rc > 0) {
6070 			unsigned int i;
6071 			unsigned int nkeys = NUMKEYS(mp);
6072 			if (nkeys > 1) {
6073 				if (mp->mp_flags & P_LEAF2) {
6074 					nodekey.mv_data = LEAF2KEY(mp,
6075 						 nkeys-1, nodekey.mv_size);
6076 				} else {
6077 					leaf = NODEPTR(mp, nkeys-1);
6078 					MDB_GET_KEY2(leaf, nodekey);
6079 				}
6080 				rc = mc->mc_dbx->md_cmp(key, &nodekey);
6081 				if (rc == 0) {
6082 					/* last node was the one we wanted */
6083 					mc->mc_ki[mc->mc_top] = nkeys-1;
6084 					if (exactp)
6085 						*exactp = 1;
6086 					goto set1;
6087 				}
6088 				if (rc < 0) {
6089 					if (mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) {
6090 						/* This is definitely the right page, skip search_page */
6091 						if (mp->mp_flags & P_LEAF2) {
6092 							nodekey.mv_data = LEAF2KEY(mp,
6093 								 mc->mc_ki[mc->mc_top], nodekey.mv_size);
6094 						} else {
6095 							leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
6096 							MDB_GET_KEY2(leaf, nodekey);
6097 						}
6098 						rc = mc->mc_dbx->md_cmp(key, &nodekey);
6099 						if (rc == 0) {
6100 							/* current node was the one we wanted */
6101 							if (exactp)
6102 								*exactp = 1;
6103 							goto set1;
6104 						}
6105 					}
6106 					rc = 0;
6107 					mc->mc_flags &= ~C_EOF;
6108 					goto set2;
6109 				}
6110 			}
6111 			/* If any parents have right-sibs, search.
6112 			 * Otherwise, there's nothing further.
6113 			 */
6114 			for (i=0; i<mc->mc_top; i++)
6115 				if (mc->mc_ki[i] <
6116 					NUMKEYS(mc->mc_pg[i])-1)
6117 					break;
6118 			if (i == mc->mc_top) {
6119 				/* There are no other pages */
6120 				mc->mc_ki[mc->mc_top] = nkeys;
6121 				return MDB_NOTFOUND;
6122 			}
6123 		}
6124 		if (!mc->mc_top) {
6125 			/* There are no other pages */
6126 			mc->mc_ki[mc->mc_top] = 0;
6127 			if (op == MDB_SET_RANGE && !exactp) {
6128 				rc = 0;
6129 				goto set1;
6130 			} else
6131 				return MDB_NOTFOUND;
6132 		}
6133 	} else {
6134 		mc->mc_pg[0] = 0;
6135 	}
6136 
6137 	rc = mdb_page_search(mc, key, 0);
6138 	if (rc != MDB_SUCCESS)
6139 		return rc;
6140 
6141 	mp = mc->mc_pg[mc->mc_top];
6142 	mdb_cassert(mc, IS_LEAF(mp));
6143 
6144 set2:
6145 	leaf = mdb_node_search(mc, key, exactp);
6146 	if (exactp != NULL && !*exactp) {
6147 		/* MDB_SET specified and not an exact match. */
6148 		return MDB_NOTFOUND;
6149 	}
6150 
6151 	if (leaf == NULL) {
6152 		DPUTS("===> inexact leaf not found, goto sibling");
6153 		if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) {
6154 			mc->mc_flags |= C_EOF;
6155 			return rc;		/* no entries matched */
6156 		}
6157 		mp = mc->mc_pg[mc->mc_top];
6158 		mdb_cassert(mc, IS_LEAF(mp));
6159 		leaf = NODEPTR(mp, 0);
6160 	}
6161 
6162 set1:
6163 	mc->mc_flags |= C_INITIALIZED;
6164 	mc->mc_flags &= ~C_EOF;
6165 
6166 	if (IS_LEAF2(mp)) {
6167 		if (op == MDB_SET_RANGE || op == MDB_SET_KEY) {
6168 			key->mv_size = mc->mc_db->md_pad;
6169 			key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
6170 		}
6171 		return MDB_SUCCESS;
6172 	}
6173 
6174 	if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6175 		mdb_xcursor_init1(mc, leaf);
6176 	}
6177 	if (data) {
6178 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6179 			if (op == MDB_SET || op == MDB_SET_KEY || op == MDB_SET_RANGE) {
6180 				rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
6181 			} else {
6182 				int ex2, *ex2p;
6183 				if (op == MDB_GET_BOTH) {
6184 					ex2p = &ex2;
6185 					ex2 = 0;
6186 				} else {
6187 					ex2p = NULL;
6188 				}
6189 				rc = mdb_cursor_set(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_SET_RANGE, ex2p);
6190 				if (rc != MDB_SUCCESS)
6191 					return rc;
6192 			}
6193 		} else if (op == MDB_GET_BOTH || op == MDB_GET_BOTH_RANGE) {
6194 			MDB_val olddata;
6195 			MDB_cmp_func *dcmp;
6196 			if ((rc = mdb_node_read(mc, leaf, &olddata)) != MDB_SUCCESS)
6197 				return rc;
6198 			dcmp = mc->mc_dbx->md_dcmp;
6199 #if UINT_MAX < SIZE_MAX
6200 			if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t))
6201 				dcmp = mdb_cmp_clong;
6202 #endif
6203 			rc = dcmp(data, &olddata);
6204 			if (rc) {
6205 				if (op == MDB_GET_BOTH || rc > 0)
6206 					return MDB_NOTFOUND;
6207 				rc = 0;
6208 			}
6209 			*data = olddata;
6210 
6211 		} else {
6212 			if (mc->mc_xcursor)
6213 				mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
6214 			if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
6215 				return rc;
6216 		}
6217 	}
6218 
6219 	/* The key already matches in all other cases */
6220 	if (op == MDB_SET_RANGE || op == MDB_SET_KEY)
6221 		MDB_GET_KEY(leaf, key);
6222 	DPRINTF(("==> cursor placed on key [%s]", DKEY(key)));
6223 
6224 	return rc;
6225 }
6226 
6227 /** Move the cursor to the first item in the database. */
6228 static int
6229 mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data)
6230 {
6231 	int		 rc;
6232 	MDB_node	*leaf;
6233 
6234 	if (mc->mc_xcursor)
6235 		mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
6236 
6237 	if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
6238 		rc = mdb_page_search(mc, NULL, MDB_PS_FIRST);
6239 		if (rc != MDB_SUCCESS)
6240 			return rc;
6241 	}
6242 	mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top]));
6243 
6244 	leaf = NODEPTR(mc->mc_pg[mc->mc_top], 0);
6245 	mc->mc_flags |= C_INITIALIZED;
6246 	mc->mc_flags &= ~C_EOF;
6247 
6248 	mc->mc_ki[mc->mc_top] = 0;
6249 
6250 	if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
6251 		key->mv_size = mc->mc_db->md_pad;
6252 		key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], 0, key->mv_size);
6253 		return MDB_SUCCESS;
6254 	}
6255 
6256 	if (data) {
6257 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6258 			mdb_xcursor_init1(mc, leaf);
6259 			rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
6260 			if (rc)
6261 				return rc;
6262 		} else {
6263 			if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
6264 				return rc;
6265 		}
6266 	}
6267 	MDB_GET_KEY(leaf, key);
6268 	return MDB_SUCCESS;
6269 }
6270 
6271 /** Move the cursor to the last item in the database. */
6272 static int
6273 mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data)
6274 {
6275 	int		 rc;
6276 	MDB_node	*leaf;
6277 
6278 	if (mc->mc_xcursor)
6279 		mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
6280 
6281 	if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
6282 		rc = mdb_page_search(mc, NULL, MDB_PS_LAST);
6283 		if (rc != MDB_SUCCESS)
6284 			return rc;
6285 	}
6286 	mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top]));
6287 
6288 	mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]) - 1;
6289 	mc->mc_flags |= C_INITIALIZED|C_EOF;
6290 	leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
6291 
6292 	if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
6293 		key->mv_size = mc->mc_db->md_pad;
6294 		key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], key->mv_size);
6295 		return MDB_SUCCESS;
6296 	}
6297 
6298 	if (data) {
6299 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6300 			mdb_xcursor_init1(mc, leaf);
6301 			rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
6302 			if (rc)
6303 				return rc;
6304 		} else {
6305 			if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
6306 				return rc;
6307 		}
6308 	}
6309 
6310 	MDB_GET_KEY(leaf, key);
6311 	return MDB_SUCCESS;
6312 }
6313 
6314 int
6315 mdb_cursor_get(MDB_cursor *mc, MDB_val *key, MDB_val *data,
6316     MDB_cursor_op op)
6317 {
6318 	int		 rc;
6319 	int		 exact = 0;
6320 	int		 (*mfunc)(MDB_cursor *mc, MDB_val *key, MDB_val *data);
6321 
6322 	if (mc == NULL)
6323 		return EINVAL;
6324 
6325 	if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED)
6326 		return MDB_BAD_TXN;
6327 
6328 	switch (op) {
6329 	case MDB_GET_CURRENT:
6330 		if (!(mc->mc_flags & C_INITIALIZED)) {
6331 			rc = EINVAL;
6332 		} else {
6333 			MDB_page *mp = mc->mc_pg[mc->mc_top];
6334 			int nkeys = NUMKEYS(mp);
6335 			if (!nkeys || mc->mc_ki[mc->mc_top] >= nkeys) {
6336 				mc->mc_ki[mc->mc_top] = nkeys;
6337 				rc = MDB_NOTFOUND;
6338 				break;
6339 			}
6340 			rc = MDB_SUCCESS;
6341 			if (IS_LEAF2(mp)) {
6342 				key->mv_size = mc->mc_db->md_pad;
6343 				key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
6344 			} else {
6345 				MDB_node *leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
6346 				MDB_GET_KEY(leaf, key);
6347 				if (data) {
6348 					if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6349 						rc = mdb_cursor_get(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_GET_CURRENT);
6350 					} else {
6351 						rc = mdb_node_read(mc, leaf, data);
6352 					}
6353 				}
6354 			}
6355 		}
6356 		break;
6357 	case MDB_GET_BOTH:
6358 	case MDB_GET_BOTH_RANGE:
6359 		if (data == NULL) {
6360 			rc = EINVAL;
6361 			break;
6362 		}
6363 		if (mc->mc_xcursor == NULL) {
6364 			rc = MDB_INCOMPATIBLE;
6365 			break;
6366 		}
6367 		/* FALLTHRU */
6368 	case MDB_SET:
6369 	case MDB_SET_KEY:
6370 	case MDB_SET_RANGE:
6371 		if (key == NULL) {
6372 			rc = EINVAL;
6373 		} else {
6374 			rc = mdb_cursor_set(mc, key, data, op,
6375 				op == MDB_SET_RANGE ? NULL : &exact);
6376 		}
6377 		break;
6378 	case MDB_GET_MULTIPLE:
6379 		if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) {
6380 			rc = EINVAL;
6381 			break;
6382 		}
6383 		if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
6384 			rc = MDB_INCOMPATIBLE;
6385 			break;
6386 		}
6387 		rc = MDB_SUCCESS;
6388 		if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) ||
6389 			(mc->mc_xcursor->mx_cursor.mc_flags & C_EOF))
6390 			break;
6391 		goto fetchm;
6392 	case MDB_NEXT_MULTIPLE:
6393 		if (data == NULL) {
6394 			rc = EINVAL;
6395 			break;
6396 		}
6397 		if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
6398 			rc = MDB_INCOMPATIBLE;
6399 			break;
6400 		}
6401 		rc = mdb_cursor_next(mc, key, data, MDB_NEXT_DUP);
6402 		if (rc == MDB_SUCCESS) {
6403 			if (mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) {
6404 				MDB_cursor *mx;
6405 fetchm:
6406 				mx = &mc->mc_xcursor->mx_cursor;
6407 				data->mv_size = NUMKEYS(mx->mc_pg[mx->mc_top]) *
6408 					mx->mc_db->md_pad;
6409 				data->mv_data = METADATA(mx->mc_pg[mx->mc_top]);
6410 				mx->mc_ki[mx->mc_top] = NUMKEYS(mx->mc_pg[mx->mc_top])-1;
6411 			} else {
6412 				rc = MDB_NOTFOUND;
6413 			}
6414 		}
6415 		break;
6416 	case MDB_PREV_MULTIPLE:
6417 		if (data == NULL) {
6418 			rc = EINVAL;
6419 			break;
6420 		}
6421 		if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
6422 			rc = MDB_INCOMPATIBLE;
6423 			break;
6424 		}
6425 		if (!(mc->mc_flags & C_INITIALIZED))
6426 			rc = mdb_cursor_last(mc, key, data);
6427 		else
6428 			rc = MDB_SUCCESS;
6429 		if (rc == MDB_SUCCESS) {
6430 			MDB_cursor *mx = &mc->mc_xcursor->mx_cursor;
6431 			if (mx->mc_flags & C_INITIALIZED) {
6432 				rc = mdb_cursor_sibling(mx, 0);
6433 				if (rc == MDB_SUCCESS)
6434 					goto fetchm;
6435 			} else {
6436 				rc = MDB_NOTFOUND;
6437 			}
6438 		}
6439 		break;
6440 	case MDB_NEXT:
6441 	case MDB_NEXT_DUP:
6442 	case MDB_NEXT_NODUP:
6443 		rc = mdb_cursor_next(mc, key, data, op);
6444 		break;
6445 	case MDB_PREV:
6446 	case MDB_PREV_DUP:
6447 	case MDB_PREV_NODUP:
6448 		rc = mdb_cursor_prev(mc, key, data, op);
6449 		break;
6450 	case MDB_FIRST:
6451 		rc = mdb_cursor_first(mc, key, data);
6452 		break;
6453 	case MDB_FIRST_DUP:
6454 		mfunc = mdb_cursor_first;
6455 	mmove:
6456 		if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) {
6457 			rc = EINVAL;
6458 			break;
6459 		}
6460 		if (mc->mc_xcursor == NULL) {
6461 			rc = MDB_INCOMPATIBLE;
6462 			break;
6463 		}
6464 		if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top])) {
6465 			mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]);
6466 			rc = MDB_NOTFOUND;
6467 			break;
6468 		}
6469 		{
6470 			MDB_node *leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
6471 			if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6472 				MDB_GET_KEY(leaf, key);
6473 				rc = mdb_node_read(mc, leaf, data);
6474 				break;
6475 			}
6476 		}
6477 		if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) {
6478 			rc = EINVAL;
6479 			break;
6480 		}
6481 		rc = mfunc(&mc->mc_xcursor->mx_cursor, data, NULL);
6482 		break;
6483 	case MDB_LAST:
6484 		rc = mdb_cursor_last(mc, key, data);
6485 		break;
6486 	case MDB_LAST_DUP:
6487 		mfunc = mdb_cursor_last;
6488 		goto mmove;
6489 	default:
6490 		DPRINTF(("unhandled/unimplemented cursor operation %u", op));
6491 		rc = EINVAL;
6492 		break;
6493 	}
6494 
6495 	if (mc->mc_flags & C_DEL)
6496 		mc->mc_flags ^= C_DEL;
6497 
6498 	return rc;
6499 }
6500 
6501 /** Touch all the pages in the cursor stack. Set mc_top.
6502  *	Makes sure all the pages are writable, before attempting a write operation.
6503  * @param[in] mc The cursor to operate on.
6504  */
6505 static int
6506 mdb_cursor_touch(MDB_cursor *mc)
6507 {
6508 	int rc = MDB_SUCCESS;
6509 
6510 	if (mc->mc_dbi >= CORE_DBS && !(*mc->mc_dbflag & (DB_DIRTY|DB_DUPDATA))) {
6511 		/* Touch DB record of named DB */
6512 		MDB_cursor mc2;
6513 		MDB_xcursor mcx;
6514 		if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi))
6515 			return MDB_BAD_DBI;
6516 		mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, &mcx);
6517 		rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, MDB_PS_MODIFY);
6518 		if (rc)
6519 			 return rc;
6520 		*mc->mc_dbflag |= DB_DIRTY;
6521 	}
6522 	mc->mc_top = 0;
6523 	if (mc->mc_snum) {
6524 		do {
6525 			rc = mdb_page_touch(mc);
6526 		} while (!rc && ++(mc->mc_top) < mc->mc_snum);
6527 		mc->mc_top = mc->mc_snum-1;
6528 	}
6529 	return rc;
6530 }
6531 
6532 /** Do not spill pages to disk if txn is getting full, may fail instead */
6533 #define MDB_NOSPILL	0x8000
6534 
6535 int
6536 mdb_cursor_put(MDB_cursor *mc, MDB_val *key, MDB_val *data,
6537     unsigned int flags)
6538 {
6539 	MDB_env		*env;
6540 	MDB_node	*leaf = NULL;
6541 	MDB_page	*fp, *mp, *sub_root = NULL;
6542 	uint16_t	fp_flags;
6543 	MDB_val		xdata, *rdata, dkey, olddata;
6544 	MDB_db dummy;
6545 	int do_sub = 0, insert_key, insert_data;
6546 	unsigned int mcount = 0, dcount = 0, nospill;
6547 	size_t nsize;
6548 	int rc, rc2;
6549 	unsigned int nflags;
6550 	DKBUF;
6551 
6552 	if (mc == NULL || key == NULL)
6553 		return EINVAL;
6554 
6555 	env = mc->mc_txn->mt_env;
6556 
6557 	/* Check this first so counter will always be zero on any
6558 	 * early failures.
6559 	 */
6560 	if (flags & MDB_MULTIPLE) {
6561 		dcount = data[1].mv_size;
6562 		data[1].mv_size = 0;
6563 		if (!F_ISSET(mc->mc_db->md_flags, MDB_DUPFIXED))
6564 			return MDB_INCOMPATIBLE;
6565 	}
6566 
6567 	nospill = flags & MDB_NOSPILL;
6568 	flags &= ~MDB_NOSPILL;
6569 
6570 	if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
6571 		return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
6572 
6573 	if (key->mv_size-1 >= ENV_MAXKEY(env))
6574 		return MDB_BAD_VALSIZE;
6575 
6576 #if SIZE_MAX > MAXDATASIZE
6577 	if (data->mv_size > ((mc->mc_db->md_flags & MDB_DUPSORT) ? ENV_MAXKEY(env) : MAXDATASIZE))
6578 		return MDB_BAD_VALSIZE;
6579 #else
6580 	if ((mc->mc_db->md_flags & MDB_DUPSORT) && data->mv_size > ENV_MAXKEY(env))
6581 		return MDB_BAD_VALSIZE;
6582 #endif
6583 
6584 	DPRINTF(("==> put db %d key [%s], size %"Z"u, data size %"Z"u",
6585 		DDBI(mc), DKEY(key), key ? key->mv_size : 0, data->mv_size));
6586 
6587 	dkey.mv_size = 0;
6588 
6589 	if (flags == MDB_CURRENT) {
6590 		if (!(mc->mc_flags & C_INITIALIZED))
6591 			return EINVAL;
6592 		rc = MDB_SUCCESS;
6593 	} else if (mc->mc_db->md_root == P_INVALID) {
6594 		/* new database, cursor has nothing to point to */
6595 		mc->mc_snum = 0;
6596 		mc->mc_top = 0;
6597 		mc->mc_flags &= ~C_INITIALIZED;
6598 		rc = MDB_NO_ROOT;
6599 	} else {
6600 		int exact = 0;
6601 		MDB_val d2;
6602 		if (flags & MDB_APPEND) {
6603 			MDB_val k2;
6604 			rc = mdb_cursor_last(mc, &k2, &d2);
6605 			if (rc == 0) {
6606 				rc = mc->mc_dbx->md_cmp(key, &k2);
6607 				if (rc > 0) {
6608 					rc = MDB_NOTFOUND;
6609 					mc->mc_ki[mc->mc_top]++;
6610 				} else {
6611 					/* new key is <= last key */
6612 					rc = MDB_KEYEXIST;
6613 				}
6614 			}
6615 		} else {
6616 			rc = mdb_cursor_set(mc, key, &d2, MDB_SET, &exact);
6617 		}
6618 		if ((flags & MDB_NOOVERWRITE) && rc == 0) {
6619 			DPRINTF(("duplicate key [%s]", DKEY(key)));
6620 			*data = d2;
6621 			return MDB_KEYEXIST;
6622 		}
6623 		if (rc && rc != MDB_NOTFOUND)
6624 			return rc;
6625 	}
6626 
6627 	if (mc->mc_flags & C_DEL)
6628 		mc->mc_flags ^= C_DEL;
6629 
6630 	/* Cursor is positioned, check for room in the dirty list */
6631 	if (!nospill) {
6632 		if (flags & MDB_MULTIPLE) {
6633 			rdata = &xdata;
6634 			xdata.mv_size = data->mv_size * dcount;
6635 		} else {
6636 			rdata = data;
6637 		}
6638 		if ((rc2 = mdb_page_spill(mc, key, rdata)))
6639 			return rc2;
6640 	}
6641 
6642 	if (rc == MDB_NO_ROOT) {
6643 		MDB_page *np;
6644 		/* new database, write a root leaf page */
6645 		DPUTS("allocating new root leaf page");
6646 		if ((rc2 = mdb_page_new(mc, P_LEAF, 1, &np))) {
6647 			return rc2;
6648 		}
6649 		mdb_cursor_push(mc, np);
6650 		mc->mc_db->md_root = np->mp_pgno;
6651 		mc->mc_db->md_depth++;
6652 		*mc->mc_dbflag |= DB_DIRTY;
6653 		if ((mc->mc_db->md_flags & (MDB_DUPSORT|MDB_DUPFIXED))
6654 			== MDB_DUPFIXED)
6655 			np->mp_flags |= P_LEAF2;
6656 		mc->mc_flags |= C_INITIALIZED;
6657 	} else {
6658 		/* make sure all cursor pages are writable */
6659 		rc2 = mdb_cursor_touch(mc);
6660 		if (rc2)
6661 			return rc2;
6662 	}
6663 
6664 	insert_key = insert_data = rc;
6665 	if (insert_key) {
6666 		/* The key does not exist */
6667 		DPRINTF(("inserting key at index %i", mc->mc_ki[mc->mc_top]));
6668 		if ((mc->mc_db->md_flags & MDB_DUPSORT) &&
6669 			LEAFSIZE(key, data) > env->me_nodemax)
6670 		{
6671 			/* Too big for a node, insert in sub-DB.  Set up an empty
6672 			 * "old sub-page" for prep_subDB to expand to a full page.
6673 			 */
6674 			fp_flags = P_LEAF|P_DIRTY;
6675 			fp = env->me_pbuf;
6676 			fp->mp_pad = data->mv_size; /* used if MDB_DUPFIXED */
6677 			fp->mp_lower = fp->mp_upper = (PAGEHDRSZ-PAGEBASE);
6678 			olddata.mv_size = PAGEHDRSZ;
6679 			goto prep_subDB;
6680 		}
6681 	} else {
6682 		/* there's only a key anyway, so this is a no-op */
6683 		if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
6684 			char *ptr;
6685 			unsigned int ksize = mc->mc_db->md_pad;
6686 			if (key->mv_size != ksize)
6687 				return MDB_BAD_VALSIZE;
6688 			ptr = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], ksize);
6689 			memcpy(ptr, key->mv_data, ksize);
6690 fix_parent:
6691 			/* if overwriting slot 0 of leaf, need to
6692 			 * update branch key if there is a parent page
6693 			 */
6694 			if (mc->mc_top && !mc->mc_ki[mc->mc_top]) {
6695 				unsigned short dtop = 1;
6696 				mc->mc_top--;
6697 				/* slot 0 is always an empty key, find real slot */
6698 				while (mc->mc_top && !mc->mc_ki[mc->mc_top]) {
6699 					mc->mc_top--;
6700 					dtop++;
6701 				}
6702 				if (mc->mc_ki[mc->mc_top])
6703 					rc2 = mdb_update_key(mc, key);
6704 				else
6705 					rc2 = MDB_SUCCESS;
6706 				mc->mc_top += dtop;
6707 				if (rc2)
6708 					return rc2;
6709 			}
6710 			return MDB_SUCCESS;
6711 		}
6712 
6713 more:
6714 		leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
6715 		olddata.mv_size = NODEDSZ(leaf);
6716 		olddata.mv_data = NODEDATA(leaf);
6717 
6718 		/* DB has dups? */
6719 		if (F_ISSET(mc->mc_db->md_flags, MDB_DUPSORT)) {
6720 			/* Prepare (sub-)page/sub-DB to accept the new item,
6721 			 * if needed.  fp: old sub-page or a header faking
6722 			 * it.  mp: new (sub-)page.  offset: growth in page
6723 			 * size.  xdata: node data with new page or DB.
6724 			 */
6725 			unsigned	i, offset = 0;
6726 			mp = fp = xdata.mv_data = env->me_pbuf;
6727 			mp->mp_pgno = mc->mc_pg[mc->mc_top]->mp_pgno;
6728 
6729 			/* Was a single item before, must convert now */
6730 			if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6731 				MDB_cmp_func *dcmp;
6732 				/* Just overwrite the current item */
6733 				if (flags == MDB_CURRENT)
6734 					goto current;
6735 				dcmp = mc->mc_dbx->md_dcmp;
6736 #if UINT_MAX < SIZE_MAX
6737 				if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t))
6738 					dcmp = mdb_cmp_clong;
6739 #endif
6740 				/* does data match? */
6741 				if (!dcmp(data, &olddata)) {
6742 					if (flags & (MDB_NODUPDATA|MDB_APPENDDUP))
6743 						return MDB_KEYEXIST;
6744 					/* overwrite it */
6745 					goto current;
6746 				}
6747 
6748 				/* Back up original data item */
6749 				dkey.mv_size = olddata.mv_size;
6750 				dkey.mv_data = memcpy(fp+1, olddata.mv_data, olddata.mv_size);
6751 
6752 				/* Make sub-page header for the dup items, with dummy body */
6753 				fp->mp_flags = P_LEAF|P_DIRTY|P_SUBP;
6754 				fp->mp_lower = (PAGEHDRSZ-PAGEBASE);
6755 				xdata.mv_size = PAGEHDRSZ + dkey.mv_size + data->mv_size;
6756 				if (mc->mc_db->md_flags & MDB_DUPFIXED) {
6757 					fp->mp_flags |= P_LEAF2;
6758 					fp->mp_pad = data->mv_size;
6759 					xdata.mv_size += 2 * data->mv_size;	/* leave space for 2 more */
6760 				} else {
6761 					xdata.mv_size += 2 * (sizeof(indx_t) + NODESIZE) +
6762 						(dkey.mv_size & 1) + (data->mv_size & 1);
6763 				}
6764 				fp->mp_upper = xdata.mv_size - PAGEBASE;
6765 				olddata.mv_size = xdata.mv_size; /* pretend olddata is fp */
6766 			} else if (leaf->mn_flags & F_SUBDATA) {
6767 				/* Data is on sub-DB, just store it */
6768 				flags |= F_DUPDATA|F_SUBDATA;
6769 				goto put_sub;
6770 			} else {
6771 				/* Data is on sub-page */
6772 				fp = olddata.mv_data;
6773 				switch (flags) {
6774 				default:
6775 					if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
6776 						offset = EVEN(NODESIZE + sizeof(indx_t) +
6777 							data->mv_size);
6778 						break;
6779 					}
6780 					offset = fp->mp_pad;
6781 					if (SIZELEFT(fp) < offset) {
6782 						offset *= 4; /* space for 4 more */
6783 						break;
6784 					}
6785 					/* FALLTHRU: Big enough MDB_DUPFIXED sub-page */
6786 				case MDB_CURRENT:
6787 					fp->mp_flags |= P_DIRTY;
6788 					COPY_PGNO(fp->mp_pgno, mp->mp_pgno);
6789 					mc->mc_xcursor->mx_cursor.mc_pg[0] = fp;
6790 					flags |= F_DUPDATA;
6791 					goto put_sub;
6792 				}
6793 				xdata.mv_size = olddata.mv_size + offset;
6794 			}
6795 
6796 			fp_flags = fp->mp_flags;
6797 			if (NODESIZE + NODEKSZ(leaf) + xdata.mv_size > env->me_nodemax) {
6798 					/* Too big for a sub-page, convert to sub-DB */
6799 					fp_flags &= ~P_SUBP;
6800 prep_subDB:
6801 					if (mc->mc_db->md_flags & MDB_DUPFIXED) {
6802 						fp_flags |= P_LEAF2;
6803 						dummy.md_pad = fp->mp_pad;
6804 						dummy.md_flags = MDB_DUPFIXED;
6805 						if (mc->mc_db->md_flags & MDB_INTEGERDUP)
6806 							dummy.md_flags |= MDB_INTEGERKEY;
6807 					} else {
6808 						dummy.md_pad = 0;
6809 						dummy.md_flags = 0;
6810 					}
6811 					dummy.md_depth = 1;
6812 					dummy.md_branch_pages = 0;
6813 					dummy.md_leaf_pages = 1;
6814 					dummy.md_overflow_pages = 0;
6815 					dummy.md_entries = NUMKEYS(fp);
6816 					xdata.mv_size = sizeof(MDB_db);
6817 					xdata.mv_data = &dummy;
6818 					if ((rc = mdb_page_alloc(mc, 1, &mp)))
6819 						return rc;
6820 					offset = env->me_psize - olddata.mv_size;
6821 					flags |= F_DUPDATA|F_SUBDATA;
6822 					dummy.md_root = mp->mp_pgno;
6823 					sub_root = mp;
6824 			}
6825 			if (mp != fp) {
6826 				mp->mp_flags = fp_flags | P_DIRTY;
6827 				mp->mp_pad   = fp->mp_pad;
6828 				mp->mp_lower = fp->mp_lower;
6829 				mp->mp_upper = fp->mp_upper + offset;
6830 				if (fp_flags & P_LEAF2) {
6831 					memcpy(METADATA(mp), METADATA(fp), NUMKEYS(fp) * fp->mp_pad);
6832 				} else {
6833 					memcpy((char *)mp + mp->mp_upper + PAGEBASE, (char *)fp + fp->mp_upper + PAGEBASE,
6834 						olddata.mv_size - fp->mp_upper - PAGEBASE);
6835 					memcpy((char *)(&mp->mp_ptrs), (char *)(&fp->mp_ptrs), NUMKEYS(fp) * sizeof(mp->mp_ptrs[0]));
6836 					for (i=0; i<NUMKEYS(fp); i++)
6837 						mp->mp_ptrs[i] += offset;
6838 				}
6839 			}
6840 
6841 			rdata = &xdata;
6842 			flags |= F_DUPDATA;
6843 			do_sub = 1;
6844 			if (!insert_key)
6845 				mdb_node_del(mc, 0);
6846 			goto new_sub;
6847 		}
6848 current:
6849 		/* LMDB passes F_SUBDATA in 'flags' to write a DB record */
6850 		if ((leaf->mn_flags ^ flags) & F_SUBDATA)
6851 			return MDB_INCOMPATIBLE;
6852 		/* overflow page overwrites need special handling */
6853 		if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
6854 			MDB_page *omp;
6855 			pgno_t pg;
6856 			int level, ovpages, dpages = OVPAGES(data->mv_size, env->me_psize);
6857 
6858 			memcpy(&pg, olddata.mv_data, sizeof(pg));
6859 			if ((rc2 = mdb_page_get(mc, pg, &omp, &level)) != 0)
6860 				return rc2;
6861 			ovpages = omp->mp_pages;
6862 
6863 			/* Is the ov page large enough? */
6864 			if (ovpages >= dpages) {
6865 			  if (!(omp->mp_flags & P_DIRTY) &&
6866 				  (level || (env->me_flags & MDB_WRITEMAP)))
6867 			  {
6868 				rc = mdb_page_unspill(mc->mc_txn, omp, &omp);
6869 				if (rc)
6870 					return rc;
6871 				level = 0;		/* dirty in this txn or clean */
6872 			  }
6873 			  /* Is it dirty? */
6874 			  if (omp->mp_flags & P_DIRTY) {
6875 				/* yes, overwrite it. Note in this case we don't
6876 				 * bother to try shrinking the page if the new data
6877 				 * is smaller than the overflow threshold.
6878 				 */
6879 				if (level > 1) {
6880 					/* It is writable only in a parent txn */
6881 					size_t sz = (size_t) env->me_psize * ovpages, off;
6882 					MDB_page *np = mdb_page_malloc(mc->mc_txn, ovpages);
6883 					MDB_ID2 id2;
6884 					if (!np)
6885 						return ENOMEM;
6886 					id2.mid = pg;
6887 					id2.mptr = np;
6888 					/* Note - this page is already counted in parent's dirty_room */
6889 					rc2 = mdb_mid2l_insert(mc->mc_txn->mt_u.dirty_list, &id2);
6890 					mdb_cassert(mc, rc2 == 0);
6891 					/* Currently we make the page look as with put() in the
6892 					 * parent txn, in case the user peeks at MDB_RESERVEd
6893 					 * or unused parts. Some users treat ovpages specially.
6894 					 */
6895 					if (!(flags & MDB_RESERVE)) {
6896 						/* Skip the part where LMDB will put *data.
6897 						 * Copy end of page, adjusting alignment so
6898 						 * compiler may copy words instead of bytes.
6899 						 */
6900 						off = (PAGEHDRSZ + data->mv_size) & -sizeof(size_t);
6901 						memcpy((size_t *)((char *)np + off),
6902 							(size_t *)((char *)omp + off), sz - off);
6903 						sz = PAGEHDRSZ;
6904 					}
6905 					memcpy(np, omp, sz); /* Copy beginning of page */
6906 					omp = np;
6907 				}
6908 				SETDSZ(leaf, data->mv_size);
6909 				if (F_ISSET(flags, MDB_RESERVE))
6910 					data->mv_data = METADATA(omp);
6911 				else
6912 					memcpy(METADATA(omp), data->mv_data, data->mv_size);
6913 				return MDB_SUCCESS;
6914 			  }
6915 			}
6916 			if ((rc2 = mdb_ovpage_free(mc, omp)) != MDB_SUCCESS)
6917 				return rc2;
6918 		} else if (data->mv_size == olddata.mv_size) {
6919 			/* same size, just replace it. Note that we could
6920 			 * also reuse this node if the new data is smaller,
6921 			 * but instead we opt to shrink the node in that case.
6922 			 */
6923 			if (F_ISSET(flags, MDB_RESERVE))
6924 				data->mv_data = olddata.mv_data;
6925 			else if (!(mc->mc_flags & C_SUB))
6926 				memcpy(olddata.mv_data, data->mv_data, data->mv_size);
6927 			else {
6928 				memcpy(NODEKEY(leaf), key->mv_data, key->mv_size);
6929 				goto fix_parent;
6930 			}
6931 			return MDB_SUCCESS;
6932 		}
6933 		mdb_node_del(mc, 0);
6934 	}
6935 
6936 	rdata = data;
6937 
6938 new_sub:
6939 	nflags = flags & NODE_ADD_FLAGS;
6940 	nsize = IS_LEAF2(mc->mc_pg[mc->mc_top]) ? key->mv_size : mdb_leaf_size(env, key, rdata);
6941 	if (SIZELEFT(mc->mc_pg[mc->mc_top]) < nsize) {
6942 		if (( flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA )
6943 			nflags &= ~MDB_APPEND; /* sub-page may need room to grow */
6944 		if (!insert_key)
6945 			nflags |= MDB_SPLIT_REPLACE;
6946 		rc = mdb_page_split(mc, key, rdata, P_INVALID, nflags);
6947 	} else {
6948 		/* There is room already in this leaf page. */
6949 		rc = mdb_node_add(mc, mc->mc_ki[mc->mc_top], key, rdata, 0, nflags);
6950 		if (rc == 0) {
6951 			/* Adjust other cursors pointing to mp */
6952 			MDB_cursor *m2, *m3;
6953 			MDB_dbi dbi = mc->mc_dbi;
6954 			unsigned i = mc->mc_top;
6955 			MDB_page *mp = mc->mc_pg[i];
6956 
6957 			for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
6958 				if (mc->mc_flags & C_SUB)
6959 					m3 = &m2->mc_xcursor->mx_cursor;
6960 				else
6961 					m3 = m2;
6962 				if (m3 == mc || m3->mc_snum < mc->mc_snum || m3->mc_pg[i] != mp) continue;
6963 				if (m3->mc_ki[i] >= mc->mc_ki[i] && insert_key) {
6964 					m3->mc_ki[i]++;
6965 				}
6966 				XCURSOR_REFRESH(m3, i, mp);
6967 			}
6968 		}
6969 	}
6970 
6971 	if (rc == MDB_SUCCESS) {
6972 		/* Now store the actual data in the child DB. Note that we're
6973 		 * storing the user data in the keys field, so there are strict
6974 		 * size limits on dupdata. The actual data fields of the child
6975 		 * DB are all zero size.
6976 		 */
6977 		if (do_sub) {
6978 			int xflags, new_dupdata;
6979 			size_t ecount;
6980 put_sub:
6981 			xdata.mv_size = 0;
6982 			xdata.mv_data = "";
6983 			leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
6984 			if (flags & MDB_CURRENT) {
6985 				xflags = MDB_CURRENT|MDB_NOSPILL;
6986 			} else {
6987 				mdb_xcursor_init1(mc, leaf);
6988 				xflags = (flags & MDB_NODUPDATA) ?
6989 					MDB_NOOVERWRITE|MDB_NOSPILL : MDB_NOSPILL;
6990 			}
6991 			if (sub_root)
6992 				mc->mc_xcursor->mx_cursor.mc_pg[0] = sub_root;
6993 			new_dupdata = (int)dkey.mv_size;
6994 			/* converted, write the original data first */
6995 			if (dkey.mv_size) {
6996 				rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, &dkey, &xdata, xflags);
6997 				if (rc)
6998 					goto bad_sub;
6999 				/* we've done our job */
7000 				dkey.mv_size = 0;
7001 			}
7002 			if (!(leaf->mn_flags & F_SUBDATA) || sub_root) {
7003 				/* Adjust other cursors pointing to mp */
7004 				MDB_cursor *m2;
7005 				MDB_xcursor *mx = mc->mc_xcursor;
7006 				unsigned i = mc->mc_top;
7007 				MDB_page *mp = mc->mc_pg[i];
7008 
7009 				for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
7010 					if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
7011 					if (!(m2->mc_flags & C_INITIALIZED)) continue;
7012 					if (m2->mc_pg[i] == mp) {
7013 						if (m2->mc_ki[i] == mc->mc_ki[i]) {
7014 							mdb_xcursor_init2(m2, mx, new_dupdata);
7015 						} else if (!insert_key) {
7016 							XCURSOR_REFRESH(m2, i, mp);
7017 						}
7018 					}
7019 				}
7020 			}
7021 			ecount = mc->mc_xcursor->mx_db.md_entries;
7022 			if (flags & MDB_APPENDDUP)
7023 				xflags |= MDB_APPEND;
7024 			rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, data, &xdata, xflags);
7025 			if (flags & F_SUBDATA) {
7026 				void *db = NODEDATA(leaf);
7027 				memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
7028 			}
7029 			insert_data = mc->mc_xcursor->mx_db.md_entries - ecount;
7030 		}
7031 		/* Increment count unless we just replaced an existing item. */
7032 		if (insert_data)
7033 			mc->mc_db->md_entries++;
7034 		if (insert_key) {
7035 			/* Invalidate txn if we created an empty sub-DB */
7036 			if (rc)
7037 				goto bad_sub;
7038 			/* If we succeeded and the key didn't exist before,
7039 			 * make sure the cursor is marked valid.
7040 			 */
7041 			mc->mc_flags |= C_INITIALIZED;
7042 		}
7043 		if (flags & MDB_MULTIPLE) {
7044 			if (!rc) {
7045 				mcount++;
7046 				/* let caller know how many succeeded, if any */
7047 				data[1].mv_size = mcount;
7048 				if (mcount < dcount) {
7049 					data[0].mv_data = (char *)data[0].mv_data + data[0].mv_size;
7050 					insert_key = insert_data = 0;
7051 					goto more;
7052 				}
7053 			}
7054 		}
7055 		return rc;
7056 bad_sub:
7057 		if (rc == MDB_KEYEXIST)	/* should not happen, we deleted that item */
7058 			rc = MDB_CORRUPTED;
7059 	}
7060 	mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
7061 	return rc;
7062 }
7063 
7064 int
7065 mdb_cursor_del(MDB_cursor *mc, unsigned int flags)
7066 {
7067 	MDB_node	*leaf;
7068 	MDB_page	*mp;
7069 	int rc;
7070 
7071 	if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
7072 		return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
7073 
7074 	if (!(mc->mc_flags & C_INITIALIZED))
7075 		return EINVAL;
7076 
7077 	if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top]))
7078 		return MDB_NOTFOUND;
7079 
7080 	if (!(flags & MDB_NOSPILL) && (rc = mdb_page_spill(mc, NULL, NULL)))
7081 		return rc;
7082 
7083 	rc = mdb_cursor_touch(mc);
7084 	if (rc)
7085 		return rc;
7086 
7087 	mp = mc->mc_pg[mc->mc_top];
7088 	if (IS_LEAF2(mp))
7089 		goto del_key;
7090 	leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
7091 
7092 	if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
7093 		if (flags & MDB_NODUPDATA) {
7094 			/* mdb_cursor_del0() will subtract the final entry */
7095 			mc->mc_db->md_entries -= mc->mc_xcursor->mx_db.md_entries - 1;
7096 			mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED;
7097 		} else {
7098 			if (!F_ISSET(leaf->mn_flags, F_SUBDATA)) {
7099 				mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
7100 			}
7101 			rc = mdb_cursor_del(&mc->mc_xcursor->mx_cursor, MDB_NOSPILL);
7102 			if (rc)
7103 				return rc;
7104 			/* If sub-DB still has entries, we're done */
7105 			if (mc->mc_xcursor->mx_db.md_entries) {
7106 				if (leaf->mn_flags & F_SUBDATA) {
7107 					/* update subDB info */
7108 					void *db = NODEDATA(leaf);
7109 					memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
7110 				} else {
7111 					MDB_cursor *m2;
7112 					/* shrink fake page */
7113 					mdb_node_shrink(mp, mc->mc_ki[mc->mc_top]);
7114 					leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
7115 					mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
7116 					/* fix other sub-DB cursors pointed at fake pages on this page */
7117 					for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
7118 						if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
7119 						if (!(m2->mc_flags & C_INITIALIZED)) continue;
7120 						if (m2->mc_pg[mc->mc_top] == mp) {
7121 							XCURSOR_REFRESH(m2, mc->mc_top, mp);
7122 						}
7123 					}
7124 				}
7125 				mc->mc_db->md_entries--;
7126 				return rc;
7127 			} else {
7128 				mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED;
7129 			}
7130 			/* otherwise fall thru and delete the sub-DB */
7131 		}
7132 
7133 		if (leaf->mn_flags & F_SUBDATA) {
7134 			/* add all the child DB's pages to the free list */
7135 			rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
7136 			if (rc)
7137 				goto fail;
7138 		}
7139 	}
7140 	/* LMDB passes F_SUBDATA in 'flags' to delete a DB record */
7141 	else if ((leaf->mn_flags ^ flags) & F_SUBDATA) {
7142 		rc = MDB_INCOMPATIBLE;
7143 		goto fail;
7144 	}
7145 
7146 	/* add overflow pages to free list */
7147 	if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
7148 		MDB_page *omp;
7149 		pgno_t pg;
7150 
7151 		memcpy(&pg, NODEDATA(leaf), sizeof(pg));
7152 		if ((rc = mdb_page_get(mc, pg, &omp, NULL)) ||
7153 			(rc = mdb_ovpage_free(mc, omp)))
7154 			goto fail;
7155 	}
7156 
7157 del_key:
7158 	return mdb_cursor_del0(mc);
7159 
7160 fail:
7161 	mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
7162 	return rc;
7163 }
7164 
7165 /** Allocate and initialize new pages for a database.
7166  * Set #MDB_TXN_ERROR on failure.
7167  * @param[in] mc a cursor on the database being added to.
7168  * @param[in] flags flags defining what type of page is being allocated.
7169  * @param[in] num the number of pages to allocate. This is usually 1,
7170  * unless allocating overflow pages for a large record.
7171  * @param[out] mp Address of a page, or NULL on failure.
7172  * @return 0 on success, non-zero on failure.
7173  */
7174 static int
7175 mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp)
7176 {
7177 	MDB_page	*np;
7178 	int rc;
7179 
7180 	if ((rc = mdb_page_alloc(mc, num, &np)))
7181 		return rc;
7182 	DPRINTF(("allocated new mpage %"Z"u, page size %u",
7183 	    np->mp_pgno, mc->mc_txn->mt_env->me_psize));
7184 	np->mp_flags = flags | P_DIRTY;
7185 	np->mp_lower = (PAGEHDRSZ-PAGEBASE);
7186 	np->mp_upper = mc->mc_txn->mt_env->me_psize - PAGEBASE;
7187 
7188 	if (IS_BRANCH(np))
7189 		mc->mc_db->md_branch_pages++;
7190 	else if (IS_LEAF(np))
7191 		mc->mc_db->md_leaf_pages++;
7192 	else if (IS_OVERFLOW(np)) {
7193 		mc->mc_db->md_overflow_pages += num;
7194 		np->mp_pages = num;
7195 	}
7196 	*mp = np;
7197 
7198 	return 0;
7199 }
7200 
7201 /** Calculate the size of a leaf node.
7202  * The size depends on the environment's page size; if a data item
7203  * is too large it will be put onto an overflow page and the node
7204  * size will only include the key and not the data. Sizes are always
7205  * rounded up to an even number of bytes, to guarantee 2-byte alignment
7206  * of the #MDB_node headers.
7207  * @param[in] env The environment handle.
7208  * @param[in] key The key for the node.
7209  * @param[in] data The data for the node.
7210  * @return The number of bytes needed to store the node.
7211  */
7212 static size_t
7213 mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data)
7214 {
7215 	size_t		 sz;
7216 
7217 	sz = LEAFSIZE(key, data);
7218 	if (sz > env->me_nodemax) {
7219 		/* put on overflow page */
7220 		sz -= data->mv_size - sizeof(pgno_t);
7221 	}
7222 
7223 	return EVEN(sz + sizeof(indx_t));
7224 }
7225 
7226 /** Calculate the size of a branch node.
7227  * The size should depend on the environment's page size but since
7228  * we currently don't support spilling large keys onto overflow
7229  * pages, it's simply the size of the #MDB_node header plus the
7230  * size of the key. Sizes are always rounded up to an even number
7231  * of bytes, to guarantee 2-byte alignment of the #MDB_node headers.
7232  * @param[in] env The environment handle.
7233  * @param[in] key The key for the node.
7234  * @return The number of bytes needed to store the node.
7235  */
7236 static size_t
7237 mdb_branch_size(MDB_env *env, MDB_val *key)
7238 {
7239 	size_t		 sz;
7240 
7241 	sz = INDXSIZE(key);
7242 	if (sz > env->me_nodemax) {
7243 		/* put on overflow page */
7244 		/* not implemented */
7245 		/* sz -= key->size - sizeof(pgno_t); */
7246 	}
7247 
7248 	return sz + sizeof(indx_t);
7249 }
7250 
7251 /** Add a node to the page pointed to by the cursor.
7252  * Set #MDB_TXN_ERROR on failure.
7253  * @param[in] mc The cursor for this operation.
7254  * @param[in] indx The index on the page where the new node should be added.
7255  * @param[in] key The key for the new node.
7256  * @param[in] data The data for the new node, if any.
7257  * @param[in] pgno The page number, if adding a branch node.
7258  * @param[in] flags Flags for the node.
7259  * @return 0 on success, non-zero on failure. Possible errors are:
7260  * <ul>
7261  *	<li>ENOMEM - failed to allocate overflow pages for the node.
7262  *	<li>MDB_PAGE_FULL - there is insufficient room in the page. This error
7263  *	should never happen since all callers already calculate the
7264  *	page's free space before calling this function.
7265  * </ul>
7266  */
7267 static int
7268 mdb_node_add(MDB_cursor *mc, indx_t indx,
7269     MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags)
7270 {
7271 	unsigned int	 i;
7272 	size_t		 node_size = NODESIZE;
7273 	ssize_t		 room;
7274 	indx_t		 ofs;
7275 	MDB_node	*node;
7276 	MDB_page	*mp = mc->mc_pg[mc->mc_top];
7277 	MDB_page	*ofp = NULL;		/* overflow page */
7278 	void		*ndata;
7279 	DKBUF;
7280 
7281 	mdb_cassert(mc, mp->mp_upper >= mp->mp_lower);
7282 
7283 	DPRINTF(("add to %s %spage %"Z"u index %i, data size %"Z"u key size %"Z"u [%s]",
7284 	    IS_LEAF(mp) ? "leaf" : "branch",
7285 		IS_SUBP(mp) ? "sub-" : "",
7286 		mdb_dbg_pgno(mp), indx, data ? data->mv_size : 0,
7287 		key ? key->mv_size : 0, key ? DKEY(key) : "null"));
7288 
7289 	if (IS_LEAF2(mp)) {
7290 		/* Move higher keys up one slot. */
7291 		int ksize = mc->mc_db->md_pad, dif;
7292 		char *ptr = LEAF2KEY(mp, indx, ksize);
7293 		dif = NUMKEYS(mp) - indx;
7294 		if (dif > 0)
7295 			memmove(ptr+ksize, ptr, dif*ksize);
7296 		/* insert new key */
7297 		memcpy(ptr, key->mv_data, ksize);
7298 
7299 		/* Just using these for counting */
7300 		mp->mp_lower += sizeof(indx_t);
7301 		mp->mp_upper -= ksize - sizeof(indx_t);
7302 		return MDB_SUCCESS;
7303 	}
7304 
7305 	room = (ssize_t)SIZELEFT(mp) - (ssize_t)sizeof(indx_t);
7306 	if (key != NULL)
7307 		node_size += key->mv_size;
7308 	if (IS_LEAF(mp)) {
7309 		mdb_cassert(mc, key && data);
7310 		if (F_ISSET(flags, F_BIGDATA)) {
7311 			/* Data already on overflow page. */
7312 			node_size += sizeof(pgno_t);
7313 		} else if (node_size + data->mv_size > mc->mc_txn->mt_env->me_nodemax) {
7314 			int ovpages = OVPAGES(data->mv_size, mc->mc_txn->mt_env->me_psize);
7315 			int rc;
7316 			/* Put data on overflow page. */
7317 			DPRINTF(("data size is %"Z"u, node would be %"Z"u, put data on overflow page",
7318 			    data->mv_size, node_size+data->mv_size));
7319 			node_size = EVEN(node_size + sizeof(pgno_t));
7320 			if ((ssize_t)node_size > room)
7321 				goto full;
7322 			if ((rc = mdb_page_new(mc, P_OVERFLOW, ovpages, &ofp)))
7323 				return rc;
7324 			DPRINTF(("allocated overflow page %"Z"u", ofp->mp_pgno));
7325 			flags |= F_BIGDATA;
7326 			goto update;
7327 		} else {
7328 			node_size += data->mv_size;
7329 		}
7330 	}
7331 	node_size = EVEN(node_size);
7332 	if ((ssize_t)node_size > room)
7333 		goto full;
7334 
7335 update:
7336 	/* Move higher pointers up one slot. */
7337 	for (i = NUMKEYS(mp); i > indx; i--)
7338 		mp->mp_ptrs[i] = mp->mp_ptrs[i - 1];
7339 
7340 	/* Adjust free space offsets. */
7341 	ofs = mp->mp_upper - node_size;
7342 	mdb_cassert(mc, ofs >= mp->mp_lower + sizeof(indx_t));
7343 	mp->mp_ptrs[indx] = ofs;
7344 	mp->mp_upper = ofs;
7345 	mp->mp_lower += sizeof(indx_t);
7346 
7347 	/* Write the node data. */
7348 	node = NODEPTR(mp, indx);
7349 	node->mn_ksize = (key == NULL) ? 0 : key->mv_size;
7350 	node->mn_flags = flags;
7351 	if (IS_LEAF(mp))
7352 		SETDSZ(node,data->mv_size);
7353 	else
7354 		SETPGNO(node,pgno);
7355 
7356 	if (key)
7357 		memcpy(NODEKEY(node), key->mv_data, key->mv_size);
7358 
7359 	if (IS_LEAF(mp)) {
7360 		ndata = NODEDATA(node);
7361 		if (ofp == NULL) {
7362 			if (F_ISSET(flags, F_BIGDATA))
7363 				memcpy(ndata, data->mv_data, sizeof(pgno_t));
7364 			else if (F_ISSET(flags, MDB_RESERVE))
7365 				data->mv_data = ndata;
7366 			else
7367 				memcpy(ndata, data->mv_data, data->mv_size);
7368 		} else {
7369 			memcpy(ndata, &ofp->mp_pgno, sizeof(pgno_t));
7370 			ndata = METADATA(ofp);
7371 			if (F_ISSET(flags, MDB_RESERVE))
7372 				data->mv_data = ndata;
7373 			else
7374 				memcpy(ndata, data->mv_data, data->mv_size);
7375 		}
7376 	}
7377 
7378 	return MDB_SUCCESS;
7379 
7380 full:
7381 	DPRINTF(("not enough room in page %"Z"u, got %u ptrs",
7382 		mdb_dbg_pgno(mp), NUMKEYS(mp)));
7383 	DPRINTF(("upper-lower = %u - %u = %"Z"d", mp->mp_upper,mp->mp_lower,room));
7384 	DPRINTF(("node size = %"Z"u", node_size));
7385 	mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
7386 	return MDB_PAGE_FULL;
7387 }
7388 
7389 /** Delete the specified node from a page.
7390  * @param[in] mc Cursor pointing to the node to delete.
7391  * @param[in] ksize The size of a node. Only used if the page is
7392  * part of a #MDB_DUPFIXED database.
7393  */
7394 static void
7395 mdb_node_del(MDB_cursor *mc, int ksize)
7396 {
7397 	MDB_page *mp = mc->mc_pg[mc->mc_top];
7398 	indx_t	indx = mc->mc_ki[mc->mc_top];
7399 	unsigned int	 sz;
7400 	indx_t		 i, j, numkeys, ptr;
7401 	MDB_node	*node;
7402 	char		*base;
7403 
7404 	DPRINTF(("delete node %u on %s page %"Z"u", indx,
7405 	    IS_LEAF(mp) ? "leaf" : "branch", mdb_dbg_pgno(mp)));
7406 	numkeys = NUMKEYS(mp);
7407 	mdb_cassert(mc, indx < numkeys);
7408 
7409 	if (IS_LEAF2(mp)) {
7410 		int x = numkeys - 1 - indx;
7411 		base = LEAF2KEY(mp, indx, ksize);
7412 		if (x)
7413 			memmove(base, base + ksize, x * ksize);
7414 		mp->mp_lower -= sizeof(indx_t);
7415 		mp->mp_upper += ksize - sizeof(indx_t);
7416 		return;
7417 	}
7418 
7419 	node = NODEPTR(mp, indx);
7420 	sz = NODESIZE + node->mn_ksize;
7421 	if (IS_LEAF(mp)) {
7422 		if (F_ISSET(node->mn_flags, F_BIGDATA))
7423 			sz += sizeof(pgno_t);
7424 		else
7425 			sz += NODEDSZ(node);
7426 	}
7427 	sz = EVEN(sz);
7428 
7429 	ptr = mp->mp_ptrs[indx];
7430 	for (i = j = 0; i < numkeys; i++) {
7431 		if (i != indx) {
7432 			mp->mp_ptrs[j] = mp->mp_ptrs[i];
7433 			if (mp->mp_ptrs[i] < ptr)
7434 				mp->mp_ptrs[j] += sz;
7435 			j++;
7436 		}
7437 	}
7438 
7439 	base = (char *)mp + mp->mp_upper + PAGEBASE;
7440 	memmove(base + sz, base, ptr - mp->mp_upper);
7441 
7442 	mp->mp_lower -= sizeof(indx_t);
7443 	mp->mp_upper += sz;
7444 }
7445 
7446 /** Compact the main page after deleting a node on a subpage.
7447  * @param[in] mp The main page to operate on.
7448  * @param[in] indx The index of the subpage on the main page.
7449  */
7450 static void
7451 mdb_node_shrink(MDB_page *mp, indx_t indx)
7452 {
7453 	MDB_node *node;
7454 	MDB_page *sp, *xp;
7455 	char *base;
7456 	indx_t delta, nsize, len, ptr;
7457 	int i;
7458 
7459 	node = NODEPTR(mp, indx);
7460 	sp = (MDB_page *)NODEDATA(node);
7461 	delta = SIZELEFT(sp);
7462 	nsize = NODEDSZ(node) - delta;
7463 
7464 	/* Prepare to shift upward, set len = length(subpage part to shift) */
7465 	if (IS_LEAF2(sp)) {
7466 		len = nsize;
7467 		if (nsize & 1)
7468 			return;		/* do not make the node uneven-sized */
7469 	} else {
7470 		xp = (MDB_page *)((char *)sp + delta); /* destination subpage */
7471 		for (i = NUMKEYS(sp); --i >= 0; )
7472 			xp->mp_ptrs[i] = sp->mp_ptrs[i] - delta;
7473 		len = PAGEHDRSZ;
7474 	}
7475 	sp->mp_upper = sp->mp_lower;
7476 	COPY_PGNO(sp->mp_pgno, mp->mp_pgno);
7477 	SETDSZ(node, nsize);
7478 
7479 	/* Shift <lower nodes...initial part of subpage> upward */
7480 	base = (char *)mp + mp->mp_upper + PAGEBASE;
7481 	memmove(base + delta, base, (char *)sp + len - base);
7482 
7483 	ptr = mp->mp_ptrs[indx];
7484 	for (i = NUMKEYS(mp); --i >= 0; ) {
7485 		if (mp->mp_ptrs[i] <= ptr)
7486 			mp->mp_ptrs[i] += delta;
7487 	}
7488 	mp->mp_upper += delta;
7489 }
7490 
7491 /** Initial setup of a sorted-dups cursor.
7492  * Sorted duplicates are implemented as a sub-database for the given key.
7493  * The duplicate data items are actually keys of the sub-database.
7494  * Operations on the duplicate data items are performed using a sub-cursor
7495  * initialized when the sub-database is first accessed. This function does
7496  * the preliminary setup of the sub-cursor, filling in the fields that
7497  * depend only on the parent DB.
7498  * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
7499  */
7500 static void
7501 mdb_xcursor_init0(MDB_cursor *mc)
7502 {
7503 	MDB_xcursor *mx = mc->mc_xcursor;
7504 
7505 	mx->mx_cursor.mc_xcursor = NULL;
7506 	mx->mx_cursor.mc_txn = mc->mc_txn;
7507 	mx->mx_cursor.mc_db = &mx->mx_db;
7508 	mx->mx_cursor.mc_dbx = &mx->mx_dbx;
7509 	mx->mx_cursor.mc_dbi = mc->mc_dbi;
7510 	mx->mx_cursor.mc_dbflag = &mx->mx_dbflag;
7511 	mx->mx_cursor.mc_snum = 0;
7512 	mx->mx_cursor.mc_top = 0;
7513 	mx->mx_cursor.mc_flags = C_SUB;
7514 	mx->mx_dbx.md_name.mv_size = 0;
7515 	mx->mx_dbx.md_name.mv_data = NULL;
7516 	mx->mx_dbx.md_cmp = mc->mc_dbx->md_dcmp;
7517 	mx->mx_dbx.md_dcmp = NULL;
7518 	mx->mx_dbx.md_rel = mc->mc_dbx->md_rel;
7519 }
7520 
7521 /** Final setup of a sorted-dups cursor.
7522  *	Sets up the fields that depend on the data from the main cursor.
7523  * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
7524  * @param[in] node The data containing the #MDB_db record for the
7525  * sorted-dup database.
7526  */
7527 static void
7528 mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node)
7529 {
7530 	MDB_xcursor *mx = mc->mc_xcursor;
7531 
7532 	if (node->mn_flags & F_SUBDATA) {
7533 		memcpy(&mx->mx_db, NODEDATA(node), sizeof(MDB_db));
7534 		mx->mx_cursor.mc_pg[0] = 0;
7535 		mx->mx_cursor.mc_snum = 0;
7536 		mx->mx_cursor.mc_top = 0;
7537 		mx->mx_cursor.mc_flags = C_SUB;
7538 	} else {
7539 		MDB_page *fp = NODEDATA(node);
7540 		mx->mx_db.md_pad = 0;
7541 		mx->mx_db.md_flags = 0;
7542 		mx->mx_db.md_depth = 1;
7543 		mx->mx_db.md_branch_pages = 0;
7544 		mx->mx_db.md_leaf_pages = 1;
7545 		mx->mx_db.md_overflow_pages = 0;
7546 		mx->mx_db.md_entries = NUMKEYS(fp);
7547 		COPY_PGNO(mx->mx_db.md_root, fp->mp_pgno);
7548 		mx->mx_cursor.mc_snum = 1;
7549 		mx->mx_cursor.mc_top = 0;
7550 		mx->mx_cursor.mc_flags = C_INITIALIZED|C_SUB;
7551 		mx->mx_cursor.mc_pg[0] = fp;
7552 		mx->mx_cursor.mc_ki[0] = 0;
7553 		if (mc->mc_db->md_flags & MDB_DUPFIXED) {
7554 			mx->mx_db.md_flags = MDB_DUPFIXED;
7555 			mx->mx_db.md_pad = fp->mp_pad;
7556 			if (mc->mc_db->md_flags & MDB_INTEGERDUP)
7557 				mx->mx_db.md_flags |= MDB_INTEGERKEY;
7558 		}
7559 	}
7560 	DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi,
7561 		mx->mx_db.md_root));
7562 	mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA;
7563 #if UINT_MAX < SIZE_MAX
7564 	if (mx->mx_dbx.md_cmp == mdb_cmp_int && mx->mx_db.md_pad == sizeof(size_t))
7565 		mx->mx_dbx.md_cmp = mdb_cmp_clong;
7566 #endif
7567 }
7568 
7569 
7570 /** Fixup a sorted-dups cursor due to underlying update.
7571  *	Sets up some fields that depend on the data from the main cursor.
7572  *	Almost the same as init1, but skips initialization steps if the
7573  *	xcursor had already been used.
7574  * @param[in] mc The main cursor whose sorted-dups cursor is to be fixed up.
7575  * @param[in] src_mx The xcursor of an up-to-date cursor.
7576  * @param[in] new_dupdata True if converting from a non-#F_DUPDATA item.
7577  */
7578 static void
7579 mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int new_dupdata)
7580 {
7581 	MDB_xcursor *mx = mc->mc_xcursor;
7582 
7583 	if (new_dupdata) {
7584 		mx->mx_cursor.mc_snum = 1;
7585 		mx->mx_cursor.mc_top = 0;
7586 		mx->mx_cursor.mc_flags |= C_INITIALIZED;
7587 		mx->mx_cursor.mc_ki[0] = 0;
7588 		mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA;
7589 #if UINT_MAX < SIZE_MAX
7590 		mx->mx_dbx.md_cmp = src_mx->mx_dbx.md_cmp;
7591 #endif
7592 	} else if (!(mx->mx_cursor.mc_flags & C_INITIALIZED)) {
7593 		return;
7594 	}
7595 	mx->mx_db = src_mx->mx_db;
7596 	mx->mx_cursor.mc_pg[0] = src_mx->mx_cursor.mc_pg[0];
7597 	DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi,
7598 		mx->mx_db.md_root));
7599 }
7600 
7601 /** Initialize a cursor for a given transaction and database. */
7602 static void
7603 mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx)
7604 {
7605 	mc->mc_next = NULL;
7606 	mc->mc_backup = NULL;
7607 	mc->mc_dbi = dbi;
7608 	mc->mc_txn = txn;
7609 	mc->mc_db = &txn->mt_dbs[dbi];
7610 	mc->mc_dbx = &txn->mt_dbxs[dbi];
7611 	mc->mc_dbflag = &txn->mt_dbflags[dbi];
7612 	mc->mc_snum = 0;
7613 	mc->mc_top = 0;
7614 	mc->mc_pg[0] = 0;
7615 	mc->mc_ki[0] = 0;
7616 	mc->mc_flags = 0;
7617 	if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) {
7618 		mdb_tassert(txn, mx != NULL);
7619 		mc->mc_xcursor = mx;
7620 		mdb_xcursor_init0(mc);
7621 	} else {
7622 		mc->mc_xcursor = NULL;
7623 	}
7624 	if (*mc->mc_dbflag & DB_STALE) {
7625 		mdb_page_search(mc, NULL, MDB_PS_ROOTONLY);
7626 	}
7627 }
7628 
7629 int
7630 mdb_cursor_open(MDB_txn *txn, MDB_dbi dbi, MDB_cursor **ret)
7631 {
7632 	MDB_cursor	*mc;
7633 	size_t size = sizeof(MDB_cursor);
7634 
7635 	if (!ret || !TXN_DBI_EXIST(txn, dbi, DB_VALID))
7636 		return EINVAL;
7637 
7638 	if (txn->mt_flags & MDB_TXN_BLOCKED)
7639 		return MDB_BAD_TXN;
7640 
7641 	if (dbi == FREE_DBI && !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
7642 		return EINVAL;
7643 
7644 	if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT)
7645 		size += sizeof(MDB_xcursor);
7646 
7647 	if ((mc = malloc(size)) != NULL) {
7648 		mdb_cursor_init(mc, txn, dbi, (MDB_xcursor *)(mc + 1));
7649 		if (txn->mt_cursors) {
7650 			mc->mc_next = txn->mt_cursors[dbi];
7651 			txn->mt_cursors[dbi] = mc;
7652 			mc->mc_flags |= C_UNTRACK;
7653 		}
7654 	} else {
7655 		return ENOMEM;
7656 	}
7657 
7658 	*ret = mc;
7659 
7660 	return MDB_SUCCESS;
7661 }
7662 
7663 int
7664 mdb_cursor_renew(MDB_txn *txn, MDB_cursor *mc)
7665 {
7666 	if (!mc || !TXN_DBI_EXIST(txn, mc->mc_dbi, DB_VALID))
7667 		return EINVAL;
7668 
7669 	if ((mc->mc_flags & C_UNTRACK) || txn->mt_cursors)
7670 		return EINVAL;
7671 
7672 	if (txn->mt_flags & MDB_TXN_BLOCKED)
7673 		return MDB_BAD_TXN;
7674 
7675 	mdb_cursor_init(mc, txn, mc->mc_dbi, mc->mc_xcursor);
7676 	return MDB_SUCCESS;
7677 }
7678 
7679 /* Return the count of duplicate data items for the current key */
7680 int
7681 mdb_cursor_count(MDB_cursor *mc, size_t *countp)
7682 {
7683 	MDB_node	*leaf;
7684 
7685 	if (mc == NULL || countp == NULL)
7686 		return EINVAL;
7687 
7688 	if (mc->mc_xcursor == NULL)
7689 		return MDB_INCOMPATIBLE;
7690 
7691 	if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED)
7692 		return MDB_BAD_TXN;
7693 
7694 	if (!(mc->mc_flags & C_INITIALIZED))
7695 		return EINVAL;
7696 
7697 	if (!mc->mc_snum)
7698 		return MDB_NOTFOUND;
7699 
7700 	if (mc->mc_flags & C_EOF) {
7701 		if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top]))
7702 			return MDB_NOTFOUND;
7703 		mc->mc_flags ^= C_EOF;
7704 	}
7705 
7706 	leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
7707 	if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
7708 		*countp = 1;
7709 	} else {
7710 		if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))
7711 			return EINVAL;
7712 
7713 		*countp = mc->mc_xcursor->mx_db.md_entries;
7714 	}
7715 	return MDB_SUCCESS;
7716 }
7717 
7718 void
7719 mdb_cursor_close(MDB_cursor *mc)
7720 {
7721 	if (mc && !mc->mc_backup) {
7722 		/* remove from txn, if tracked */
7723 		if ((mc->mc_flags & C_UNTRACK) && mc->mc_txn->mt_cursors) {
7724 			MDB_cursor **prev = &mc->mc_txn->mt_cursors[mc->mc_dbi];
7725 			while (*prev && *prev != mc) prev = &(*prev)->mc_next;
7726 			if (*prev == mc)
7727 				*prev = mc->mc_next;
7728 		}
7729 		free(mc);
7730 	}
7731 }
7732 
7733 MDB_txn *
7734 mdb_cursor_txn(MDB_cursor *mc)
7735 {
7736 	if (!mc) return NULL;
7737 	return mc->mc_txn;
7738 }
7739 
7740 MDB_dbi
7741 mdb_cursor_dbi(MDB_cursor *mc)
7742 {
7743 	return mc->mc_dbi;
7744 }
7745 
7746 /** Replace the key for a branch node with a new key.
7747  * Set #MDB_TXN_ERROR on failure.
7748  * @param[in] mc Cursor pointing to the node to operate on.
7749  * @param[in] key The new key to use.
7750  * @return 0 on success, non-zero on failure.
7751  */
7752 static int
7753 mdb_update_key(MDB_cursor *mc, MDB_val *key)
7754 {
7755 	MDB_page		*mp;
7756 	MDB_node		*node;
7757 	char			*base;
7758 	size_t			 len;
7759 	int				 delta, ksize, oksize;
7760 	indx_t			 ptr, i, numkeys, indx;
7761 	DKBUF;
7762 
7763 	indx = mc->mc_ki[mc->mc_top];
7764 	mp = mc->mc_pg[mc->mc_top];
7765 	node = NODEPTR(mp, indx);
7766 	ptr = mp->mp_ptrs[indx];
7767 #if MDB_DEBUG
7768 	{
7769 		MDB_val	k2;
7770 		char kbuf2[DKBUF_MAXKEYSIZE*2+1];
7771 		k2.mv_data = NODEKEY(node);
7772 		k2.mv_size = node->mn_ksize;
7773 		DPRINTF(("update key %u (ofs %u) [%s] to [%s] on page %"Z"u",
7774 			indx, ptr,
7775 			mdb_dkey(&k2, kbuf2),
7776 			DKEY(key),
7777 			mp->mp_pgno));
7778 	}
7779 #endif
7780 
7781 	/* Sizes must be 2-byte aligned. */
7782 	ksize = EVEN(key->mv_size);
7783 	oksize = EVEN(node->mn_ksize);
7784 	delta = ksize - oksize;
7785 
7786 	/* Shift node contents if EVEN(key length) changed. */
7787 	if (delta) {
7788 		if (delta > 0 && SIZELEFT(mp) < delta) {
7789 			pgno_t pgno;
7790 			/* not enough space left, do a delete and split */
7791 			DPRINTF(("Not enough room, delta = %d, splitting...", delta));
7792 			pgno = NODEPGNO(node);
7793 			mdb_node_del(mc, 0);
7794 			return mdb_page_split(mc, key, NULL, pgno, MDB_SPLIT_REPLACE);
7795 		}
7796 
7797 		numkeys = NUMKEYS(mp);
7798 		for (i = 0; i < numkeys; i++) {
7799 			if (mp->mp_ptrs[i] <= ptr)
7800 				mp->mp_ptrs[i] -= delta;
7801 		}
7802 
7803 		base = (char *)mp + mp->mp_upper + PAGEBASE;
7804 		len = ptr - mp->mp_upper + NODESIZE;
7805 		memmove(base - delta, base, len);
7806 		mp->mp_upper -= delta;
7807 
7808 		node = NODEPTR(mp, indx);
7809 	}
7810 
7811 	/* But even if no shift was needed, update ksize */
7812 	if (node->mn_ksize != key->mv_size)
7813 		node->mn_ksize = key->mv_size;
7814 
7815 	if (key->mv_size)
7816 		memcpy(NODEKEY(node), key->mv_data, key->mv_size);
7817 
7818 	return MDB_SUCCESS;
7819 }
7820 
7821 static void
7822 mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst);
7823 
7824 /** Perform \b act while tracking temporary cursor \b mn */
7825 #define WITH_CURSOR_TRACKING(mn, act) do { \
7826 	MDB_cursor dummy, *tracked, **tp = &(mn).mc_txn->mt_cursors[mn.mc_dbi]; \
7827 	if ((mn).mc_flags & C_SUB) { \
7828 		dummy.mc_flags =  C_INITIALIZED; \
7829 		dummy.mc_xcursor = (MDB_xcursor *)&(mn);	\
7830 		tracked = &dummy; \
7831 	} else { \
7832 		tracked = &(mn); \
7833 	} \
7834 	tracked->mc_next = *tp; \
7835 	*tp = tracked; \
7836 	{ act; } \
7837 	*tp = tracked->mc_next; \
7838 } while (0)
7839 
7840 /** Move a node from csrc to cdst.
7841  */
7842 static int
7843 mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft)
7844 {
7845 	MDB_node		*srcnode;
7846 	MDB_val		 key, data;
7847 	pgno_t	srcpg;
7848 	MDB_cursor mn;
7849 	int			 rc;
7850 	unsigned short flags;
7851 
7852 	DKBUF;
7853 
7854 	/* Mark src and dst as dirty. */
7855 	if ((rc = mdb_page_touch(csrc)) ||
7856 	    (rc = mdb_page_touch(cdst)))
7857 		return rc;
7858 
7859 	if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
7860 		key.mv_size = csrc->mc_db->md_pad;
7861 		key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top], key.mv_size);
7862 		data.mv_size = 0;
7863 		data.mv_data = NULL;
7864 		srcpg = 0;
7865 		flags = 0;
7866 	} else {
7867 		srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top]);
7868 		mdb_cassert(csrc, !((size_t)srcnode & 1));
7869 		srcpg = NODEPGNO(srcnode);
7870 		flags = srcnode->mn_flags;
7871 		if (csrc->mc_ki[csrc->mc_top] == 0 && IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
7872 			unsigned int snum = csrc->mc_snum;
7873 			MDB_node *s2;
7874 			/* must find the lowest key below src */
7875 			rc = mdb_page_search_lowest(csrc);
7876 			if (rc)
7877 				return rc;
7878 			if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
7879 				key.mv_size = csrc->mc_db->md_pad;
7880 				key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
7881 			} else {
7882 				s2 = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
7883 				key.mv_size = NODEKSZ(s2);
7884 				key.mv_data = NODEKEY(s2);
7885 			}
7886 			csrc->mc_snum = snum--;
7887 			csrc->mc_top = snum;
7888 		} else {
7889 			key.mv_size = NODEKSZ(srcnode);
7890 			key.mv_data = NODEKEY(srcnode);
7891 		}
7892 		data.mv_size = NODEDSZ(srcnode);
7893 		data.mv_data = NODEDATA(srcnode);
7894 	}
7895 	mn.mc_xcursor = NULL;
7896 	if (IS_BRANCH(cdst->mc_pg[cdst->mc_top]) && cdst->mc_ki[cdst->mc_top] == 0) {
7897 		unsigned int snum = cdst->mc_snum;
7898 		MDB_node *s2;
7899 		MDB_val bkey;
7900 		/* must find the lowest key below dst */
7901 		mdb_cursor_copy(cdst, &mn);
7902 		rc = mdb_page_search_lowest(&mn);
7903 		if (rc)
7904 			return rc;
7905 		if (IS_LEAF2(mn.mc_pg[mn.mc_top])) {
7906 			bkey.mv_size = mn.mc_db->md_pad;
7907 			bkey.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, bkey.mv_size);
7908 		} else {
7909 			s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0);
7910 			bkey.mv_size = NODEKSZ(s2);
7911 			bkey.mv_data = NODEKEY(s2);
7912 		}
7913 		mn.mc_snum = snum--;
7914 		mn.mc_top = snum;
7915 		mn.mc_ki[snum] = 0;
7916 		rc = mdb_update_key(&mn, &bkey);
7917 		if (rc)
7918 			return rc;
7919 	}
7920 
7921 	DPRINTF(("moving %s node %u [%s] on page %"Z"u to node %u on page %"Z"u",
7922 	    IS_LEAF(csrc->mc_pg[csrc->mc_top]) ? "leaf" : "branch",
7923 	    csrc->mc_ki[csrc->mc_top],
7924 		DKEY(&key),
7925 	    csrc->mc_pg[csrc->mc_top]->mp_pgno,
7926 	    cdst->mc_ki[cdst->mc_top], cdst->mc_pg[cdst->mc_top]->mp_pgno));
7927 
7928 	/* Add the node to the destination page.
7929 	 */
7930 	rc = mdb_node_add(cdst, cdst->mc_ki[cdst->mc_top], &key, &data, srcpg, flags);
7931 	if (rc != MDB_SUCCESS)
7932 		return rc;
7933 
7934 	/* Delete the node from the source page.
7935 	 */
7936 	mdb_node_del(csrc, key.mv_size);
7937 
7938 	{
7939 		/* Adjust other cursors pointing to mp */
7940 		MDB_cursor *m2, *m3;
7941 		MDB_dbi dbi = csrc->mc_dbi;
7942 		MDB_page *mpd, *mps;
7943 
7944 		mps = csrc->mc_pg[csrc->mc_top];
7945 		/* If we're adding on the left, bump others up */
7946 		if (fromleft) {
7947 			mpd = cdst->mc_pg[csrc->mc_top];
7948 			for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
7949 				if (csrc->mc_flags & C_SUB)
7950 					m3 = &m2->mc_xcursor->mx_cursor;
7951 				else
7952 					m3 = m2;
7953 				if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top)
7954 					continue;
7955 				if (m3 != cdst &&
7956 					m3->mc_pg[csrc->mc_top] == mpd &&
7957 					m3->mc_ki[csrc->mc_top] >= cdst->mc_ki[csrc->mc_top]) {
7958 					m3->mc_ki[csrc->mc_top]++;
7959 				}
7960 				if (m3 !=csrc &&
7961 					m3->mc_pg[csrc->mc_top] == mps &&
7962 					m3->mc_ki[csrc->mc_top] == csrc->mc_ki[csrc->mc_top]) {
7963 					m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
7964 					m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
7965 					m3->mc_ki[csrc->mc_top-1]++;
7966 				}
7967 				if (IS_LEAF(mps))
7968 					XCURSOR_REFRESH(m3, csrc->mc_top, m3->mc_pg[csrc->mc_top]);
7969 			}
7970 		} else
7971 		/* Adding on the right, bump others down */
7972 		{
7973 			for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
7974 				if (csrc->mc_flags & C_SUB)
7975 					m3 = &m2->mc_xcursor->mx_cursor;
7976 				else
7977 					m3 = m2;
7978 				if (m3 == csrc) continue;
7979 				if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top)
7980 					continue;
7981 				if (m3->mc_pg[csrc->mc_top] == mps) {
7982 					if (!m3->mc_ki[csrc->mc_top]) {
7983 						m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
7984 						m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
7985 						m3->mc_ki[csrc->mc_top-1]--;
7986 					} else {
7987 						m3->mc_ki[csrc->mc_top]--;
7988 					}
7989 					if (IS_LEAF(mps))
7990 						XCURSOR_REFRESH(m3, csrc->mc_top, m3->mc_pg[csrc->mc_top]);
7991 				}
7992 			}
7993 		}
7994 	}
7995 
7996 	/* Update the parent separators.
7997 	 */
7998 	if (csrc->mc_ki[csrc->mc_top] == 0) {
7999 		if (csrc->mc_ki[csrc->mc_top-1] != 0) {
8000 			if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
8001 				key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
8002 			} else {
8003 				srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
8004 				key.mv_size = NODEKSZ(srcnode);
8005 				key.mv_data = NODEKEY(srcnode);
8006 			}
8007 			DPRINTF(("update separator for source page %"Z"u to [%s]",
8008 				csrc->mc_pg[csrc->mc_top]->mp_pgno, DKEY(&key)));
8009 			mdb_cursor_copy(csrc, &mn);
8010 			mn.mc_snum--;
8011 			mn.mc_top--;
8012 			/* We want mdb_rebalance to find mn when doing fixups */
8013 			WITH_CURSOR_TRACKING(mn,
8014 				rc = mdb_update_key(&mn, &key));
8015 			if (rc)
8016 				return rc;
8017 		}
8018 		if (IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
8019 			MDB_val	 nullkey;
8020 			indx_t	ix = csrc->mc_ki[csrc->mc_top];
8021 			nullkey.mv_size = 0;
8022 			csrc->mc_ki[csrc->mc_top] = 0;
8023 			rc = mdb_update_key(csrc, &nullkey);
8024 			csrc->mc_ki[csrc->mc_top] = ix;
8025 			mdb_cassert(csrc, rc == MDB_SUCCESS);
8026 		}
8027 	}
8028 
8029 	if (cdst->mc_ki[cdst->mc_top] == 0) {
8030 		if (cdst->mc_ki[cdst->mc_top-1] != 0) {
8031 			if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
8032 				key.mv_data = LEAF2KEY(cdst->mc_pg[cdst->mc_top], 0, key.mv_size);
8033 			} else {
8034 				srcnode = NODEPTR(cdst->mc_pg[cdst->mc_top], 0);
8035 				key.mv_size = NODEKSZ(srcnode);
8036 				key.mv_data = NODEKEY(srcnode);
8037 			}
8038 			DPRINTF(("update separator for destination page %"Z"u to [%s]",
8039 				cdst->mc_pg[cdst->mc_top]->mp_pgno, DKEY(&key)));
8040 			mdb_cursor_copy(cdst, &mn);
8041 			mn.mc_snum--;
8042 			mn.mc_top--;
8043 			/* We want mdb_rebalance to find mn when doing fixups */
8044 			WITH_CURSOR_TRACKING(mn,
8045 				rc = mdb_update_key(&mn, &key));
8046 			if (rc)
8047 				return rc;
8048 		}
8049 		if (IS_BRANCH(cdst->mc_pg[cdst->mc_top])) {
8050 			MDB_val	 nullkey;
8051 			indx_t	ix = cdst->mc_ki[cdst->mc_top];
8052 			nullkey.mv_size = 0;
8053 			cdst->mc_ki[cdst->mc_top] = 0;
8054 			rc = mdb_update_key(cdst, &nullkey);
8055 			cdst->mc_ki[cdst->mc_top] = ix;
8056 			mdb_cassert(cdst, rc == MDB_SUCCESS);
8057 		}
8058 	}
8059 
8060 	return MDB_SUCCESS;
8061 }
8062 
8063 /** Merge one page into another.
8064  *  The nodes from the page pointed to by \b csrc will
8065  *	be copied to the page pointed to by \b cdst and then
8066  *	the \b csrc page will be freed.
8067  * @param[in] csrc Cursor pointing to the source page.
8068  * @param[in] cdst Cursor pointing to the destination page.
8069  * @return 0 on success, non-zero on failure.
8070  */
8071 static int
8072 mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst)
8073 {
8074 	MDB_page	*psrc, *pdst;
8075 	MDB_node	*srcnode;
8076 	MDB_val		 key, data;
8077 	unsigned	 nkeys;
8078 	int			 rc;
8079 	indx_t		 i, j;
8080 
8081 	psrc = csrc->mc_pg[csrc->mc_top];
8082 	pdst = cdst->mc_pg[cdst->mc_top];
8083 
8084 	DPRINTF(("merging page %"Z"u into %"Z"u", psrc->mp_pgno, pdst->mp_pgno));
8085 
8086 	mdb_cassert(csrc, csrc->mc_snum > 1);	/* can't merge root page */
8087 	mdb_cassert(csrc, cdst->mc_snum > 1);
8088 
8089 	/* Mark dst as dirty. */
8090 	if ((rc = mdb_page_touch(cdst)))
8091 		return rc;
8092 
8093 	/* get dst page again now that we've touched it. */
8094 	pdst = cdst->mc_pg[cdst->mc_top];
8095 
8096 	/* Move all nodes from src to dst.
8097 	 */
8098 	j = nkeys = NUMKEYS(pdst);
8099 	if (IS_LEAF2(psrc)) {
8100 		key.mv_size = csrc->mc_db->md_pad;
8101 		key.mv_data = METADATA(psrc);
8102 		for (i = 0; i < NUMKEYS(psrc); i++, j++) {
8103 			rc = mdb_node_add(cdst, j, &key, NULL, 0, 0);
8104 			if (rc != MDB_SUCCESS)
8105 				return rc;
8106 			key.mv_data = (char *)key.mv_data + key.mv_size;
8107 		}
8108 	} else {
8109 		for (i = 0; i < NUMKEYS(psrc); i++, j++) {
8110 			srcnode = NODEPTR(psrc, i);
8111 			if (i == 0 && IS_BRANCH(psrc)) {
8112 				MDB_cursor mn;
8113 				MDB_node *s2;
8114 				mdb_cursor_copy(csrc, &mn);
8115 				mn.mc_xcursor = NULL;
8116 				/* must find the lowest key below src */
8117 				rc = mdb_page_search_lowest(&mn);
8118 				if (rc)
8119 					return rc;
8120 				if (IS_LEAF2(mn.mc_pg[mn.mc_top])) {
8121 					key.mv_size = mn.mc_db->md_pad;
8122 					key.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, key.mv_size);
8123 				} else {
8124 					s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0);
8125 					key.mv_size = NODEKSZ(s2);
8126 					key.mv_data = NODEKEY(s2);
8127 				}
8128 			} else {
8129 				key.mv_size = srcnode->mn_ksize;
8130 				key.mv_data = NODEKEY(srcnode);
8131 			}
8132 
8133 			data.mv_size = NODEDSZ(srcnode);
8134 			data.mv_data = NODEDATA(srcnode);
8135 			rc = mdb_node_add(cdst, j, &key, &data, NODEPGNO(srcnode), srcnode->mn_flags);
8136 			if (rc != MDB_SUCCESS)
8137 				return rc;
8138 		}
8139 	}
8140 
8141 	DPRINTF(("dst page %"Z"u now has %u keys (%.1f%% filled)",
8142 	    pdst->mp_pgno, NUMKEYS(pdst),
8143 		(float)PAGEFILL(cdst->mc_txn->mt_env, pdst) / 10));
8144 
8145 	/* Unlink the src page from parent and add to free list.
8146 	 */
8147 	csrc->mc_top--;
8148 	mdb_node_del(csrc, 0);
8149 	if (csrc->mc_ki[csrc->mc_top] == 0) {
8150 		key.mv_size = 0;
8151 		rc = mdb_update_key(csrc, &key);
8152 		if (rc) {
8153 			csrc->mc_top++;
8154 			return rc;
8155 		}
8156 	}
8157 	csrc->mc_top++;
8158 
8159 	psrc = csrc->mc_pg[csrc->mc_top];
8160 	/* If not operating on FreeDB, allow this page to be reused
8161 	 * in this txn. Otherwise just add to free list.
8162 	 */
8163 	rc = mdb_page_loose(csrc, psrc);
8164 	if (rc)
8165 		return rc;
8166 	if (IS_LEAF(psrc))
8167 		csrc->mc_db->md_leaf_pages--;
8168 	else
8169 		csrc->mc_db->md_branch_pages--;
8170 	{
8171 		/* Adjust other cursors pointing to mp */
8172 		MDB_cursor *m2, *m3;
8173 		MDB_dbi dbi = csrc->mc_dbi;
8174 		unsigned int top = csrc->mc_top;
8175 
8176 		for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8177 			if (csrc->mc_flags & C_SUB)
8178 				m3 = &m2->mc_xcursor->mx_cursor;
8179 			else
8180 				m3 = m2;
8181 			if (m3 == csrc) continue;
8182 			if (m3->mc_snum < csrc->mc_snum) continue;
8183 			if (m3->mc_pg[top] == psrc) {
8184 				m3->mc_pg[top] = pdst;
8185 				m3->mc_ki[top] += nkeys;
8186 				m3->mc_ki[top-1] = cdst->mc_ki[top-1];
8187 			} else if (m3->mc_pg[top-1] == csrc->mc_pg[top-1] &&
8188 				m3->mc_ki[top-1] > csrc->mc_ki[top-1]) {
8189 				m3->mc_ki[top-1]--;
8190 			}
8191 			if (IS_LEAF(psrc))
8192 				XCURSOR_REFRESH(m3, top, m3->mc_pg[top]);
8193 		}
8194 	}
8195 	{
8196 		unsigned int snum = cdst->mc_snum;
8197 		uint16_t depth = cdst->mc_db->md_depth;
8198 		mdb_cursor_pop(cdst);
8199 		rc = mdb_rebalance(cdst);
8200 		/* Did the tree height change? */
8201 		if (depth != cdst->mc_db->md_depth)
8202 			snum += cdst->mc_db->md_depth - depth;
8203 		cdst->mc_snum = snum;
8204 		cdst->mc_top = snum-1;
8205 	}
8206 	return rc;
8207 }
8208 
8209 /** Copy the contents of a cursor.
8210  * @param[in] csrc The cursor to copy from.
8211  * @param[out] cdst The cursor to copy to.
8212  */
8213 static void
8214 mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst)
8215 {
8216 	unsigned int i;
8217 
8218 	cdst->mc_txn = csrc->mc_txn;
8219 	cdst->mc_dbi = csrc->mc_dbi;
8220 	cdst->mc_db  = csrc->mc_db;
8221 	cdst->mc_dbx = csrc->mc_dbx;
8222 	cdst->mc_snum = csrc->mc_snum;
8223 	cdst->mc_top = csrc->mc_top;
8224 	cdst->mc_flags = csrc->mc_flags;
8225 
8226 	for (i=0; i<csrc->mc_snum; i++) {
8227 		cdst->mc_pg[i] = csrc->mc_pg[i];
8228 		cdst->mc_ki[i] = csrc->mc_ki[i];
8229 	}
8230 }
8231 
8232 /** Rebalance the tree after a delete operation.
8233  * @param[in] mc Cursor pointing to the page where rebalancing
8234  * should begin.
8235  * @return 0 on success, non-zero on failure.
8236  */
8237 static int
8238 mdb_rebalance(MDB_cursor *mc)
8239 {
8240 	MDB_node	*node;
8241 	int rc, fromleft;
8242 	unsigned int ptop, minkeys, thresh;
8243 	MDB_cursor	mn;
8244 	indx_t oldki;
8245 
8246 	if (IS_BRANCH(mc->mc_pg[mc->mc_top])) {
8247 		minkeys = 2;
8248 		thresh = 1;
8249 	} else {
8250 		minkeys = 1;
8251 		thresh = FILL_THRESHOLD;
8252 	}
8253 	DPRINTF(("rebalancing %s page %"Z"u (has %u keys, %.1f%% full)",
8254 	    IS_LEAF(mc->mc_pg[mc->mc_top]) ? "leaf" : "branch",
8255 	    mdb_dbg_pgno(mc->mc_pg[mc->mc_top]), NUMKEYS(mc->mc_pg[mc->mc_top]),
8256 		(float)PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) / 10));
8257 
8258 	if (PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) >= thresh &&
8259 		NUMKEYS(mc->mc_pg[mc->mc_top]) >= minkeys) {
8260 		DPRINTF(("no need to rebalance page %"Z"u, above fill threshold",
8261 		    mdb_dbg_pgno(mc->mc_pg[mc->mc_top])));
8262 		return MDB_SUCCESS;
8263 	}
8264 
8265 	if (mc->mc_snum < 2) {
8266 		MDB_page *mp = mc->mc_pg[0];
8267 		if (IS_SUBP(mp)) {
8268 			DPUTS("Can't rebalance a subpage, ignoring");
8269 			return MDB_SUCCESS;
8270 		}
8271 		if (NUMKEYS(mp) == 0) {
8272 			DPUTS("tree is completely empty");
8273 			mc->mc_db->md_root = P_INVALID;
8274 			mc->mc_db->md_depth = 0;
8275 			mc->mc_db->md_leaf_pages = 0;
8276 			rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
8277 			if (rc)
8278 				return rc;
8279 			/* Adjust cursors pointing to mp */
8280 			mc->mc_snum = 0;
8281 			mc->mc_top = 0;
8282 			mc->mc_flags &= ~C_INITIALIZED;
8283 			{
8284 				MDB_cursor *m2, *m3;
8285 				MDB_dbi dbi = mc->mc_dbi;
8286 
8287 				for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8288 					if (mc->mc_flags & C_SUB)
8289 						m3 = &m2->mc_xcursor->mx_cursor;
8290 					else
8291 						m3 = m2;
8292 					if (!(m3->mc_flags & C_INITIALIZED) || (m3->mc_snum < mc->mc_snum))
8293 						continue;
8294 					if (m3->mc_pg[0] == mp) {
8295 						m3->mc_snum = 0;
8296 						m3->mc_top = 0;
8297 						m3->mc_flags &= ~C_INITIALIZED;
8298 					}
8299 				}
8300 			}
8301 		} else if (IS_BRANCH(mp) && NUMKEYS(mp) == 1) {
8302 			int i;
8303 			DPUTS("collapsing root page!");
8304 			rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
8305 			if (rc)
8306 				return rc;
8307 			mc->mc_db->md_root = NODEPGNO(NODEPTR(mp, 0));
8308 			rc = mdb_page_get(mc, mc->mc_db->md_root, &mc->mc_pg[0], NULL);
8309 			if (rc)
8310 				return rc;
8311 			mc->mc_db->md_depth--;
8312 			mc->mc_db->md_branch_pages--;
8313 			mc->mc_ki[0] = mc->mc_ki[1];
8314 			for (i = 1; i<mc->mc_db->md_depth; i++) {
8315 				mc->mc_pg[i] = mc->mc_pg[i+1];
8316 				mc->mc_ki[i] = mc->mc_ki[i+1];
8317 			}
8318 			{
8319 				/* Adjust other cursors pointing to mp */
8320 				MDB_cursor *m2, *m3;
8321 				MDB_dbi dbi = mc->mc_dbi;
8322 
8323 				for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8324 					if (mc->mc_flags & C_SUB)
8325 						m3 = &m2->mc_xcursor->mx_cursor;
8326 					else
8327 						m3 = m2;
8328 					if (m3 == mc) continue;
8329 					if (!(m3->mc_flags & C_INITIALIZED))
8330 						continue;
8331 					if (m3->mc_pg[0] == mp) {
8332 						for (i=0; i<mc->mc_db->md_depth; i++) {
8333 							m3->mc_pg[i] = m3->mc_pg[i+1];
8334 							m3->mc_ki[i] = m3->mc_ki[i+1];
8335 						}
8336 						m3->mc_snum--;
8337 						m3->mc_top--;
8338 					}
8339 				}
8340 			}
8341 		} else
8342 			DPUTS("root page doesn't need rebalancing");
8343 		return MDB_SUCCESS;
8344 	}
8345 
8346 	/* The parent (branch page) must have at least 2 pointers,
8347 	 * otherwise the tree is invalid.
8348 	 */
8349 	ptop = mc->mc_top-1;
8350 	mdb_cassert(mc, NUMKEYS(mc->mc_pg[ptop]) > 1);
8351 
8352 	/* Leaf page fill factor is below the threshold.
8353 	 * Try to move keys from left or right neighbor, or
8354 	 * merge with a neighbor page.
8355 	 */
8356 
8357 	/* Find neighbors.
8358 	 */
8359 	mdb_cursor_copy(mc, &mn);
8360 	mn.mc_xcursor = NULL;
8361 
8362 	oldki = mc->mc_ki[mc->mc_top];
8363 	if (mc->mc_ki[ptop] == 0) {
8364 		/* We're the leftmost leaf in our parent.
8365 		 */
8366 		DPUTS("reading right neighbor");
8367 		mn.mc_ki[ptop]++;
8368 		node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
8369 		rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL);
8370 		if (rc)
8371 			return rc;
8372 		mn.mc_ki[mn.mc_top] = 0;
8373 		mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]);
8374 		fromleft = 0;
8375 	} else {
8376 		/* There is at least one neighbor to the left.
8377 		 */
8378 		DPUTS("reading left neighbor");
8379 		mn.mc_ki[ptop]--;
8380 		node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
8381 		rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL);
8382 		if (rc)
8383 			return rc;
8384 		mn.mc_ki[mn.mc_top] = NUMKEYS(mn.mc_pg[mn.mc_top]) - 1;
8385 		mc->mc_ki[mc->mc_top] = 0;
8386 		fromleft = 1;
8387 	}
8388 
8389 	DPRINTF(("found neighbor page %"Z"u (%u keys, %.1f%% full)",
8390 	    mn.mc_pg[mn.mc_top]->mp_pgno, NUMKEYS(mn.mc_pg[mn.mc_top]),
8391 		(float)PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) / 10));
8392 
8393 	/* If the neighbor page is above threshold and has enough keys,
8394 	 * move one key from it. Otherwise we should try to merge them.
8395 	 * (A branch page must never have less than 2 keys.)
8396 	 */
8397 	if (PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) >= thresh && NUMKEYS(mn.mc_pg[mn.mc_top]) > minkeys) {
8398 		rc = mdb_node_move(&mn, mc, fromleft);
8399 		if (fromleft) {
8400 			/* if we inserted on left, bump position up */
8401 			oldki++;
8402 		}
8403 	} else {
8404 		if (!fromleft) {
8405 			rc = mdb_page_merge(&mn, mc);
8406 		} else {
8407 			oldki += NUMKEYS(mn.mc_pg[mn.mc_top]);
8408 			mn.mc_ki[mn.mc_top] += mc->mc_ki[mn.mc_top] + 1;
8409 			/* We want mdb_rebalance to find mn when doing fixups */
8410 			WITH_CURSOR_TRACKING(mn,
8411 				rc = mdb_page_merge(mc, &mn));
8412 			mdb_cursor_copy(&mn, mc);
8413 		}
8414 		mc->mc_flags &= ~C_EOF;
8415 	}
8416 	mc->mc_ki[mc->mc_top] = oldki;
8417 	return rc;
8418 }
8419 
8420 /** Complete a delete operation started by #mdb_cursor_del(). */
8421 static int
8422 mdb_cursor_del0(MDB_cursor *mc)
8423 {
8424 	int rc;
8425 	MDB_page *mp;
8426 	indx_t ki;
8427 	unsigned int nkeys;
8428 	MDB_cursor *m2, *m3;
8429 	MDB_dbi dbi = mc->mc_dbi;
8430 
8431 	ki = mc->mc_ki[mc->mc_top];
8432 	mp = mc->mc_pg[mc->mc_top];
8433 	mdb_node_del(mc, mc->mc_db->md_pad);
8434 	mc->mc_db->md_entries--;
8435 	{
8436 		/* Adjust other cursors pointing to mp */
8437 		for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8438 			m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2;
8439 			if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED))
8440 				continue;
8441 			if (m3 == mc || m3->mc_snum < mc->mc_snum)
8442 				continue;
8443 			if (m3->mc_pg[mc->mc_top] == mp) {
8444 				if (m3->mc_ki[mc->mc_top] == ki) {
8445 					m3->mc_flags |= C_DEL;
8446 					if (mc->mc_db->md_flags & MDB_DUPSORT) {
8447 						/* Sub-cursor referred into dataset which is gone */
8448 						m3->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
8449 					}
8450 					continue;
8451 				} else if (m3->mc_ki[mc->mc_top] > ki) {
8452 					m3->mc_ki[mc->mc_top]--;
8453 				}
8454 				XCURSOR_REFRESH(m3, mc->mc_top, mp);
8455 			}
8456 		}
8457 	}
8458 	rc = mdb_rebalance(mc);
8459 
8460 	if (rc == MDB_SUCCESS) {
8461 		/* DB is totally empty now, just bail out.
8462 		 * Other cursors adjustments were already done
8463 		 * by mdb_rebalance and aren't needed here.
8464 		 */
8465 		if (!mc->mc_snum)
8466 			return rc;
8467 
8468 		mp = mc->mc_pg[mc->mc_top];
8469 		nkeys = NUMKEYS(mp);
8470 
8471 		/* Adjust other cursors pointing to mp */
8472 		for (m2 = mc->mc_txn->mt_cursors[dbi]; !rc && m2; m2=m2->mc_next) {
8473 			m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2;
8474 			if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED))
8475 				continue;
8476 			if (m3->mc_snum < mc->mc_snum)
8477 				continue;
8478 			if (m3->mc_pg[mc->mc_top] == mp) {
8479 				/* if m3 points past last node in page, find next sibling */
8480 				if (m3->mc_ki[mc->mc_top] >= mc->mc_ki[mc->mc_top]) {
8481 					if (m3->mc_ki[mc->mc_top] >= nkeys) {
8482 						rc = mdb_cursor_sibling(m3, 1);
8483 						if (rc == MDB_NOTFOUND) {
8484 							m3->mc_flags |= C_EOF;
8485 							rc = MDB_SUCCESS;
8486 							continue;
8487 						}
8488 					}
8489 					if (mc->mc_db->md_flags & MDB_DUPSORT) {
8490 						MDB_node *node = NODEPTR(m3->mc_pg[m3->mc_top], m3->mc_ki[m3->mc_top]);
8491 						/* If this node has dupdata, it may need to be reinited
8492 						 * because its data has moved.
8493 						 * If the xcursor was not initd it must be reinited.
8494 						 * Else if node points to a subDB, nothing is needed.
8495 						 * Else (xcursor was initd, not a subDB) needs mc_pg[0] reset.
8496 						 */
8497 						if (node->mn_flags & F_DUPDATA) {
8498 							if (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) {
8499 								if (!(node->mn_flags & F_SUBDATA))
8500 									m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node);
8501 							} else {
8502 								mdb_xcursor_init1(m3, node);
8503 								m3->mc_xcursor->mx_cursor.mc_flags |= C_DEL;
8504 							}
8505 						}
8506 					}
8507 				}
8508 			}
8509 		}
8510 		mc->mc_flags |= C_DEL;
8511 	}
8512 
8513 	if (rc)
8514 		mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
8515 	return rc;
8516 }
8517 
8518 int
8519 mdb_del(MDB_txn *txn, MDB_dbi dbi,
8520     MDB_val *key, MDB_val *data)
8521 {
8522 	if (!key || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
8523 		return EINVAL;
8524 
8525 	if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
8526 		return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
8527 
8528 	if (!F_ISSET(txn->mt_dbs[dbi].md_flags, MDB_DUPSORT)) {
8529 		/* must ignore any data */
8530 		data = NULL;
8531 	}
8532 
8533 	return mdb_del0(txn, dbi, key, data, 0);
8534 }
8535 
8536 static int
8537 mdb_del0(MDB_txn *txn, MDB_dbi dbi,
8538 	MDB_val *key, MDB_val *data, unsigned flags)
8539 {
8540 	MDB_cursor mc;
8541 	MDB_xcursor mx;
8542 	MDB_cursor_op op;
8543 	MDB_val rdata, *xdata;
8544 	int		 rc, exact = 0;
8545 	DKBUF;
8546 
8547 	DPRINTF(("====> delete db %u key [%s]", dbi, DKEY(key)));
8548 
8549 	mdb_cursor_init(&mc, txn, dbi, &mx);
8550 
8551 	if (data) {
8552 		op = MDB_GET_BOTH;
8553 		rdata = *data;
8554 		xdata = &rdata;
8555 	} else {
8556 		op = MDB_SET;
8557 		xdata = NULL;
8558 		flags |= MDB_NODUPDATA;
8559 	}
8560 	rc = mdb_cursor_set(&mc, key, xdata, op, &exact);
8561 	if (rc == 0) {
8562 		/* let mdb_page_split know about this cursor if needed:
8563 		 * delete will trigger a rebalance; if it needs to move
8564 		 * a node from one page to another, it will have to
8565 		 * update the parent's separator key(s). If the new sepkey
8566 		 * is larger than the current one, the parent page may
8567 		 * run out of space, triggering a split. We need this
8568 		 * cursor to be consistent until the end of the rebalance.
8569 		 */
8570 		mc.mc_flags |= C_UNTRACK;
8571 		mc.mc_next = txn->mt_cursors[dbi];
8572 		txn->mt_cursors[dbi] = &mc;
8573 		rc = mdb_cursor_del(&mc, flags);
8574 		txn->mt_cursors[dbi] = mc.mc_next;
8575 	}
8576 	return rc;
8577 }
8578 
8579 /** Split a page and insert a new node.
8580  * Set #MDB_TXN_ERROR on failure.
8581  * @param[in,out] mc Cursor pointing to the page and desired insertion index.
8582  * The cursor will be updated to point to the actual page and index where
8583  * the node got inserted after the split.
8584  * @param[in] newkey The key for the newly inserted node.
8585  * @param[in] newdata The data for the newly inserted node.
8586  * @param[in] newpgno The page number, if the new node is a branch node.
8587  * @param[in] nflags The #NODE_ADD_FLAGS for the new node.
8588  * @return 0 on success, non-zero on failure.
8589  */
8590 static int
8591 mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, pgno_t newpgno,
8592 	unsigned int nflags)
8593 {
8594 	unsigned int flags;
8595 	int		 rc = MDB_SUCCESS, new_root = 0, did_split = 0;
8596 	indx_t		 newindx;
8597 	pgno_t		 pgno = 0;
8598 	int	 i, j, split_indx, nkeys, pmax;
8599 	MDB_env 	*env = mc->mc_txn->mt_env;
8600 	MDB_node	*node;
8601 	MDB_val	 sepkey, rkey, xdata, *rdata = &xdata;
8602 	MDB_page	*copy = NULL;
8603 	MDB_page	*mp, *rp, *pp;
8604 	int ptop;
8605 	MDB_cursor	mn;
8606 	DKBUF;
8607 
8608 	mp = mc->mc_pg[mc->mc_top];
8609 	newindx = mc->mc_ki[mc->mc_top];
8610 	nkeys = NUMKEYS(mp);
8611 
8612 	DPRINTF(("-----> splitting %s page %"Z"u and adding [%s] at index %i/%i",
8613 	    IS_LEAF(mp) ? "leaf" : "branch", mp->mp_pgno,
8614 	    DKEY(newkey), mc->mc_ki[mc->mc_top], nkeys));
8615 
8616 	/* Create a right sibling. */
8617 	if ((rc = mdb_page_new(mc, mp->mp_flags, 1, &rp)))
8618 		return rc;
8619 	rp->mp_pad = mp->mp_pad;
8620 	DPRINTF(("new right sibling: page %"Z"u", rp->mp_pgno));
8621 
8622 	/* Usually when splitting the root page, the cursor
8623 	 * height is 1. But when called from mdb_update_key,
8624 	 * the cursor height may be greater because it walks
8625 	 * up the stack while finding the branch slot to update.
8626 	 */
8627 	if (mc->mc_top < 1) {
8628 		if ((rc = mdb_page_new(mc, P_BRANCH, 1, &pp)))
8629 			goto done;
8630 		/* shift current top to make room for new parent */
8631 		for (i=mc->mc_snum; i>0; i--) {
8632 			mc->mc_pg[i] = mc->mc_pg[i-1];
8633 			mc->mc_ki[i] = mc->mc_ki[i-1];
8634 		}
8635 		mc->mc_pg[0] = pp;
8636 		mc->mc_ki[0] = 0;
8637 		mc->mc_db->md_root = pp->mp_pgno;
8638 		DPRINTF(("root split! new root = %"Z"u", pp->mp_pgno));
8639 		new_root = mc->mc_db->md_depth++;
8640 
8641 		/* Add left (implicit) pointer. */
8642 		if ((rc = mdb_node_add(mc, 0, NULL, NULL, mp->mp_pgno, 0)) != MDB_SUCCESS) {
8643 			/* undo the pre-push */
8644 			mc->mc_pg[0] = mc->mc_pg[1];
8645 			mc->mc_ki[0] = mc->mc_ki[1];
8646 			mc->mc_db->md_root = mp->mp_pgno;
8647 			mc->mc_db->md_depth--;
8648 			goto done;
8649 		}
8650 		mc->mc_snum++;
8651 		mc->mc_top++;
8652 		ptop = 0;
8653 	} else {
8654 		ptop = mc->mc_top-1;
8655 		DPRINTF(("parent branch page is %"Z"u", mc->mc_pg[ptop]->mp_pgno));
8656 	}
8657 
8658 	mdb_cursor_copy(mc, &mn);
8659 	mn.mc_xcursor = NULL;
8660 	mn.mc_pg[mn.mc_top] = rp;
8661 	mn.mc_ki[ptop] = mc->mc_ki[ptop]+1;
8662 
8663 	if (nflags & MDB_APPEND) {
8664 		mn.mc_ki[mn.mc_top] = 0;
8665 		sepkey = *newkey;
8666 		split_indx = newindx;
8667 		nkeys = 0;
8668 	} else {
8669 
8670 		split_indx = (nkeys+1) / 2;
8671 
8672 		if (IS_LEAF2(rp)) {
8673 			char *split, *ins;
8674 			int x;
8675 			unsigned int lsize, rsize, ksize;
8676 			/* Move half of the keys to the right sibling */
8677 			x = mc->mc_ki[mc->mc_top] - split_indx;
8678 			ksize = mc->mc_db->md_pad;
8679 			split = LEAF2KEY(mp, split_indx, ksize);
8680 			rsize = (nkeys - split_indx) * ksize;
8681 			lsize = (nkeys - split_indx) * sizeof(indx_t);
8682 			mp->mp_lower -= lsize;
8683 			rp->mp_lower += lsize;
8684 			mp->mp_upper += rsize - lsize;
8685 			rp->mp_upper -= rsize - lsize;
8686 			sepkey.mv_size = ksize;
8687 			if (newindx == split_indx) {
8688 				sepkey.mv_data = newkey->mv_data;
8689 			} else {
8690 				sepkey.mv_data = split;
8691 			}
8692 			if (x<0) {
8693 				ins = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], ksize);
8694 				memcpy(rp->mp_ptrs, split, rsize);
8695 				sepkey.mv_data = rp->mp_ptrs;
8696 				memmove(ins+ksize, ins, (split_indx - mc->mc_ki[mc->mc_top]) * ksize);
8697 				memcpy(ins, newkey->mv_data, ksize);
8698 				mp->mp_lower += sizeof(indx_t);
8699 				mp->mp_upper -= ksize - sizeof(indx_t);
8700 			} else {
8701 				if (x)
8702 					memcpy(rp->mp_ptrs, split, x * ksize);
8703 				ins = LEAF2KEY(rp, x, ksize);
8704 				memcpy(ins, newkey->mv_data, ksize);
8705 				memcpy(ins+ksize, split + x * ksize, rsize - x * ksize);
8706 				rp->mp_lower += sizeof(indx_t);
8707 				rp->mp_upper -= ksize - sizeof(indx_t);
8708 				mc->mc_ki[mc->mc_top] = x;
8709 			}
8710 		} else {
8711 			int psize, nsize, k;
8712 			/* Maximum free space in an empty page */
8713 			pmax = env->me_psize - PAGEHDRSZ;
8714 			if (IS_LEAF(mp))
8715 				nsize = mdb_leaf_size(env, newkey, newdata);
8716 			else
8717 				nsize = mdb_branch_size(env, newkey);
8718 			nsize = EVEN(nsize);
8719 
8720 			/* grab a page to hold a temporary copy */
8721 			copy = mdb_page_malloc(mc->mc_txn, 1);
8722 			if (copy == NULL) {
8723 				rc = ENOMEM;
8724 				goto done;
8725 			}
8726 			copy->mp_pgno  = mp->mp_pgno;
8727 			copy->mp_flags = mp->mp_flags;
8728 			copy->mp_lower = (PAGEHDRSZ-PAGEBASE);
8729 			copy->mp_upper = env->me_psize - PAGEBASE;
8730 
8731 			/* prepare to insert */
8732 			for (i=0, j=0; i<nkeys; i++) {
8733 				if (i == newindx) {
8734 					copy->mp_ptrs[j++] = 0;
8735 				}
8736 				copy->mp_ptrs[j++] = mp->mp_ptrs[i];
8737 			}
8738 
8739 			/* When items are relatively large the split point needs
8740 			 * to be checked, because being off-by-one will make the
8741 			 * difference between success or failure in mdb_node_add.
8742 			 *
8743 			 * It's also relevant if a page happens to be laid out
8744 			 * such that one half of its nodes are all "small" and
8745 			 * the other half of its nodes are "large." If the new
8746 			 * item is also "large" and falls on the half with
8747 			 * "large" nodes, it also may not fit.
8748 			 *
8749 			 * As a final tweak, if the new item goes on the last
8750 			 * spot on the page (and thus, onto the new page), bias
8751 			 * the split so the new page is emptier than the old page.
8752 			 * This yields better packing during sequential inserts.
8753 			 */
8754 			if (nkeys < 32 || nsize > pmax/16 || newindx >= nkeys) {
8755 				/* Find split point */
8756 				psize = 0;
8757 				if (newindx <= split_indx || newindx >= nkeys) {
8758 					i = 0; j = 1;
8759 					k = newindx >= nkeys ? nkeys : split_indx+1+IS_LEAF(mp);
8760 				} else {
8761 					i = nkeys; j = -1;
8762 					k = split_indx-1;
8763 				}
8764 				for (; i!=k; i+=j) {
8765 					if (i == newindx) {
8766 						psize += nsize;
8767 						node = NULL;
8768 					} else {
8769 						node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE);
8770 						psize += NODESIZE + NODEKSZ(node) + sizeof(indx_t);
8771 						if (IS_LEAF(mp)) {
8772 							if (F_ISSET(node->mn_flags, F_BIGDATA))
8773 								psize += sizeof(pgno_t);
8774 							else
8775 								psize += NODEDSZ(node);
8776 						}
8777 						psize = EVEN(psize);
8778 					}
8779 					if (psize > pmax || i == k-j) {
8780 						split_indx = i + (j<0);
8781 						break;
8782 					}
8783 				}
8784 			}
8785 			if (split_indx == newindx) {
8786 				sepkey.mv_size = newkey->mv_size;
8787 				sepkey.mv_data = newkey->mv_data;
8788 			} else {
8789 				node = (MDB_node *)((char *)mp + copy->mp_ptrs[split_indx] + PAGEBASE);
8790 				sepkey.mv_size = node->mn_ksize;
8791 				sepkey.mv_data = NODEKEY(node);
8792 			}
8793 		}
8794 	}
8795 
8796 	DPRINTF(("separator is %d [%s]", split_indx, DKEY(&sepkey)));
8797 
8798 	/* Copy separator key to the parent.
8799 	 */
8800 	if (SIZELEFT(mn.mc_pg[ptop]) < mdb_branch_size(env, &sepkey)) {
8801 		int snum = mc->mc_snum;
8802 		mn.mc_snum--;
8803 		mn.mc_top--;
8804 		did_split = 1;
8805 		/* We want other splits to find mn when doing fixups */
8806 		WITH_CURSOR_TRACKING(mn,
8807 			rc = mdb_page_split(&mn, &sepkey, NULL, rp->mp_pgno, 0));
8808 		if (rc)
8809 			goto done;
8810 
8811 		/* root split? */
8812 		if (mc->mc_snum > snum) {
8813 			ptop++;
8814 		}
8815 		/* Right page might now have changed parent.
8816 		 * Check if left page also changed parent.
8817 		 */
8818 		if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
8819 		    mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
8820 			for (i=0; i<ptop; i++) {
8821 				mc->mc_pg[i] = mn.mc_pg[i];
8822 				mc->mc_ki[i] = mn.mc_ki[i];
8823 			}
8824 			mc->mc_pg[ptop] = mn.mc_pg[ptop];
8825 			if (mn.mc_ki[ptop]) {
8826 				mc->mc_ki[ptop] = mn.mc_ki[ptop] - 1;
8827 			} else {
8828 				/* find right page's left sibling */
8829 				mc->mc_ki[ptop] = mn.mc_ki[ptop];
8830 				mdb_cursor_sibling(mc, 0);
8831 			}
8832 		}
8833 	} else {
8834 		mn.mc_top--;
8835 		rc = mdb_node_add(&mn, mn.mc_ki[ptop], &sepkey, NULL, rp->mp_pgno, 0);
8836 		mn.mc_top++;
8837 	}
8838 	if (rc != MDB_SUCCESS) {
8839 		goto done;
8840 	}
8841 	if (nflags & MDB_APPEND) {
8842 		mc->mc_pg[mc->mc_top] = rp;
8843 		mc->mc_ki[mc->mc_top] = 0;
8844 		rc = mdb_node_add(mc, 0, newkey, newdata, newpgno, nflags);
8845 		if (rc)
8846 			goto done;
8847 		for (i=0; i<mc->mc_top; i++)
8848 			mc->mc_ki[i] = mn.mc_ki[i];
8849 	} else if (!IS_LEAF2(mp)) {
8850 		/* Move nodes */
8851 		mc->mc_pg[mc->mc_top] = rp;
8852 		i = split_indx;
8853 		j = 0;
8854 		do {
8855 			if (i == newindx) {
8856 				rkey.mv_data = newkey->mv_data;
8857 				rkey.mv_size = newkey->mv_size;
8858 				if (IS_LEAF(mp)) {
8859 					rdata = newdata;
8860 				} else
8861 					pgno = newpgno;
8862 				flags = nflags;
8863 				/* Update index for the new key. */
8864 				mc->mc_ki[mc->mc_top] = j;
8865 			} else {
8866 				node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE);
8867 				rkey.mv_data = NODEKEY(node);
8868 				rkey.mv_size = node->mn_ksize;
8869 				if (IS_LEAF(mp)) {
8870 					xdata.mv_data = NODEDATA(node);
8871 					xdata.mv_size = NODEDSZ(node);
8872 					rdata = &xdata;
8873 				} else
8874 					pgno = NODEPGNO(node);
8875 				flags = node->mn_flags;
8876 			}
8877 
8878 			if (!IS_LEAF(mp) && j == 0) {
8879 				/* First branch index doesn't need key data. */
8880 				rkey.mv_size = 0;
8881 			}
8882 
8883 			rc = mdb_node_add(mc, j, &rkey, rdata, pgno, flags);
8884 			if (rc)
8885 				goto done;
8886 			if (i == nkeys) {
8887 				i = 0;
8888 				j = 0;
8889 				mc->mc_pg[mc->mc_top] = copy;
8890 			} else {
8891 				i++;
8892 				j++;
8893 			}
8894 		} while (i != split_indx);
8895 
8896 		nkeys = NUMKEYS(copy);
8897 		for (i=0; i<nkeys; i++)
8898 			mp->mp_ptrs[i] = copy->mp_ptrs[i];
8899 		mp->mp_lower = copy->mp_lower;
8900 		mp->mp_upper = copy->mp_upper;
8901 		memcpy(NODEPTR(mp, nkeys-1), NODEPTR(copy, nkeys-1),
8902 			env->me_psize - copy->mp_upper - PAGEBASE);
8903 
8904 		/* reset back to original page */
8905 		if (newindx < split_indx) {
8906 			mc->mc_pg[mc->mc_top] = mp;
8907 		} else {
8908 			mc->mc_pg[mc->mc_top] = rp;
8909 			mc->mc_ki[ptop]++;
8910 			/* Make sure mc_ki is still valid.
8911 			 */
8912 			if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
8913 				mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
8914 				for (i=0; i<=ptop; i++) {
8915 					mc->mc_pg[i] = mn.mc_pg[i];
8916 					mc->mc_ki[i] = mn.mc_ki[i];
8917 				}
8918 			}
8919 		}
8920 		if (nflags & MDB_RESERVE) {
8921 			node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
8922 			if (!(node->mn_flags & F_BIGDATA))
8923 				newdata->mv_data = NODEDATA(node);
8924 		}
8925 	} else {
8926 		if (newindx >= split_indx) {
8927 			mc->mc_pg[mc->mc_top] = rp;
8928 			mc->mc_ki[ptop]++;
8929 			/* Make sure mc_ki is still valid.
8930 			 */
8931 			if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
8932 				mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
8933 				for (i=0; i<=ptop; i++) {
8934 					mc->mc_pg[i] = mn.mc_pg[i];
8935 					mc->mc_ki[i] = mn.mc_ki[i];
8936 				}
8937 			}
8938 		}
8939 	}
8940 
8941 	{
8942 		/* Adjust other cursors pointing to mp */
8943 		MDB_cursor *m2, *m3;
8944 		MDB_dbi dbi = mc->mc_dbi;
8945 		nkeys = NUMKEYS(mp);
8946 
8947 		for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8948 			if (mc->mc_flags & C_SUB)
8949 				m3 = &m2->mc_xcursor->mx_cursor;
8950 			else
8951 				m3 = m2;
8952 			if (m3 == mc)
8953 				continue;
8954 			if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED))
8955 				continue;
8956 			if (new_root) {
8957 				int k;
8958 				/* sub cursors may be on different DB */
8959 				if (m3->mc_pg[0] != mp)
8960 					continue;
8961 				/* root split */
8962 				for (k=new_root; k>=0; k--) {
8963 					m3->mc_ki[k+1] = m3->mc_ki[k];
8964 					m3->mc_pg[k+1] = m3->mc_pg[k];
8965 				}
8966 				if (m3->mc_ki[0] >= nkeys) {
8967 					m3->mc_ki[0] = 1;
8968 				} else {
8969 					m3->mc_ki[0] = 0;
8970 				}
8971 				m3->mc_pg[0] = mc->mc_pg[0];
8972 				m3->mc_snum++;
8973 				m3->mc_top++;
8974 			}
8975 			if (m3->mc_top >= mc->mc_top && m3->mc_pg[mc->mc_top] == mp) {
8976 				if (m3->mc_ki[mc->mc_top] >= newindx && !(nflags & MDB_SPLIT_REPLACE))
8977 					m3->mc_ki[mc->mc_top]++;
8978 				if (m3->mc_ki[mc->mc_top] >= nkeys) {
8979 					m3->mc_pg[mc->mc_top] = rp;
8980 					m3->mc_ki[mc->mc_top] -= nkeys;
8981 					for (i=0; i<mc->mc_top; i++) {
8982 						m3->mc_ki[i] = mn.mc_ki[i];
8983 						m3->mc_pg[i] = mn.mc_pg[i];
8984 					}
8985 				}
8986 			} else if (!did_split && m3->mc_top >= ptop && m3->mc_pg[ptop] == mc->mc_pg[ptop] &&
8987 				m3->mc_ki[ptop] >= mc->mc_ki[ptop]) {
8988 				m3->mc_ki[ptop]++;
8989 			}
8990 			if (IS_LEAF(mp))
8991 				XCURSOR_REFRESH(m3, mc->mc_top, m3->mc_pg[mc->mc_top]);
8992 		}
8993 	}
8994 	DPRINTF(("mp left: %d, rp left: %d", SIZELEFT(mp), SIZELEFT(rp)));
8995 
8996 done:
8997 	if (copy)					/* tmp page */
8998 		mdb_page_free(env, copy);
8999 	if (rc)
9000 		mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
9001 	return rc;
9002 }
9003 
9004 int
9005 mdb_put(MDB_txn *txn, MDB_dbi dbi,
9006     MDB_val *key, MDB_val *data, unsigned int flags)
9007 {
9008 	MDB_cursor mc;
9009 	MDB_xcursor mx;
9010 	int rc;
9011 
9012 	if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
9013 		return EINVAL;
9014 
9015 	if (flags & ~(MDB_NOOVERWRITE|MDB_NODUPDATA|MDB_RESERVE|MDB_APPEND|MDB_APPENDDUP))
9016 		return EINVAL;
9017 
9018 	if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
9019 		return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
9020 
9021 	mdb_cursor_init(&mc, txn, dbi, &mx);
9022 	mc.mc_next = txn->mt_cursors[dbi];
9023 	txn->mt_cursors[dbi] = &mc;
9024 	rc = mdb_cursor_put(&mc, key, data, flags);
9025 	txn->mt_cursors[dbi] = mc.mc_next;
9026 	return rc;
9027 }
9028 
9029 #ifndef MDB_WBUF
9030 #define MDB_WBUF	(1024*1024)
9031 #endif
9032 #define MDB_EOF		0x10	/**< #mdb_env_copyfd1() is done reading */
9033 
9034 	/** State needed for a double-buffering compacting copy. */
9035 typedef struct mdb_copy {
9036 	MDB_env *mc_env;
9037 	MDB_txn *mc_txn;
9038 	pthread_mutex_t mc_mutex;
9039 	pthread_cond_t mc_cond;	/**< Condition variable for #mc_new */
9040 	char *mc_wbuf[2];
9041 	char *mc_over[2];
9042 	int mc_wlen[2];
9043 	int mc_olen[2];
9044 	pgno_t mc_next_pgno;
9045 	HANDLE mc_fd;
9046 	int mc_toggle;			/**< Buffer number in provider */
9047 	int mc_new;				/**< (0-2 buffers to write) | (#MDB_EOF at end) */
9048 	/** Error code.  Never cleared if set.  Both threads can set nonzero
9049 	 *	to fail the copy.  Not mutex-protected, LMDB expects atomic int.
9050 	 */
9051 	volatile int mc_error;
9052 } mdb_copy;
9053 
9054 	/** Dedicated writer thread for compacting copy. */
9055 static THREAD_RET ESECT CALL_CONV
9056 mdb_env_copythr(void *arg)
9057 {
9058 	mdb_copy *my = arg;
9059 	char *ptr;
9060 	int toggle = 0, wsize, rc;
9061 #ifdef _WIN32
9062 	DWORD len;
9063 #define DO_WRITE(rc, fd, ptr, w2, len)	rc = WriteFile(fd, ptr, w2, &len, NULL)
9064 #else
9065 	int len;
9066 #define DO_WRITE(rc, fd, ptr, w2, len)	len = write(fd, ptr, w2); rc = (len >= 0)
9067 #ifdef SIGPIPE
9068 	sigset_t set;
9069 	sigemptyset(&set);
9070 	sigaddset(&set, SIGPIPE);
9071 	if ((rc = pthread_sigmask(SIG_BLOCK, &set, NULL)) != 0)
9072 		my->mc_error = rc;
9073 #endif
9074 #endif
9075 
9076 	pthread_mutex_lock(&my->mc_mutex);
9077 	for(;;) {
9078 		while (!my->mc_new)
9079 			pthread_cond_wait(&my->mc_cond, &my->mc_mutex);
9080 		if (my->mc_new == 0 + MDB_EOF) /* 0 buffers, just EOF */
9081 			break;
9082 		wsize = my->mc_wlen[toggle];
9083 		ptr = my->mc_wbuf[toggle];
9084 again:
9085 		rc = MDB_SUCCESS;
9086 		while (wsize > 0 && !my->mc_error) {
9087 			DO_WRITE(rc, my->mc_fd, ptr, wsize, len);
9088 			if (!rc) {
9089 				rc = ErrCode();
9090 #if defined(SIGPIPE) && !defined(_WIN32)
9091 				if (rc == EPIPE) {
9092 					/* Collect the pending SIGPIPE, otherwise at least OS X
9093 					 * gives it to the process on thread-exit (ITS#8504).
9094 					 */
9095 					int tmp;
9096 					sigwait(&set, &tmp);
9097 				}
9098 #endif
9099 				break;
9100 			} else if (len > 0) {
9101 				rc = MDB_SUCCESS;
9102 				ptr += len;
9103 				wsize -= len;
9104 				continue;
9105 			} else {
9106 				rc = EIO;
9107 				break;
9108 			}
9109 		}
9110 		if (rc) {
9111 			my->mc_error = rc;
9112 		}
9113 		/* If there's an overflow page tail, write it too */
9114 		if (my->mc_olen[toggle]) {
9115 			wsize = my->mc_olen[toggle];
9116 			ptr = my->mc_over[toggle];
9117 			my->mc_olen[toggle] = 0;
9118 			goto again;
9119 		}
9120 		my->mc_wlen[toggle] = 0;
9121 		toggle ^= 1;
9122 		/* Return the empty buffer to provider */
9123 		my->mc_new--;
9124 		pthread_cond_signal(&my->mc_cond);
9125 	}
9126 	pthread_mutex_unlock(&my->mc_mutex);
9127 	return (THREAD_RET)0;
9128 #undef DO_WRITE
9129 }
9130 
9131 	/** Give buffer and/or #MDB_EOF to writer thread, await unused buffer.
9132 	 *
9133 	 * @param[in] my control structure.
9134 	 * @param[in] adjust (1 to hand off 1 buffer) | (MDB_EOF when ending).
9135 	 */
9136 static int ESECT
9137 mdb_env_cthr_toggle(mdb_copy *my, int adjust)
9138 {
9139 	pthread_mutex_lock(&my->mc_mutex);
9140 	my->mc_new += adjust;
9141 	pthread_cond_signal(&my->mc_cond);
9142 	while (my->mc_new & 2)		/* both buffers in use */
9143 		pthread_cond_wait(&my->mc_cond, &my->mc_mutex);
9144 	pthread_mutex_unlock(&my->mc_mutex);
9145 
9146 	my->mc_toggle ^= (adjust & 1);
9147 	/* Both threads reset mc_wlen, to be safe from threading errors */
9148 	my->mc_wlen[my->mc_toggle] = 0;
9149 	return my->mc_error;
9150 }
9151 
9152 	/** Depth-first tree traversal for compacting copy.
9153 	 * @param[in] my control structure.
9154 	 * @param[in,out] pg database root.
9155 	 * @param[in] flags includes #F_DUPDATA if it is a sorted-duplicate sub-DB.
9156 	 */
9157 static int ESECT
9158 mdb_env_cwalk(mdb_copy *my, pgno_t *pg, int flags)
9159 {
9160 	MDB_cursor mc = {0};
9161 	MDB_node *ni;
9162 	MDB_page *mo, *mp, *leaf;
9163 	char *buf, *ptr;
9164 	int rc, toggle;
9165 	unsigned int i;
9166 
9167 	/* Empty DB, nothing to do */
9168 	if (*pg == P_INVALID)
9169 		return MDB_SUCCESS;
9170 
9171 	mc.mc_snum = 1;
9172 	mc.mc_txn = my->mc_txn;
9173 
9174 	rc = mdb_page_get(&mc, *pg, &mc.mc_pg[0], NULL);
9175 	if (rc)
9176 		return rc;
9177 	rc = mdb_page_search_root(&mc, NULL, MDB_PS_FIRST);
9178 	if (rc)
9179 		return rc;
9180 
9181 	/* Make cursor pages writable */
9182 	buf = ptr = malloc(my->mc_env->me_psize * mc.mc_snum);
9183 	if (buf == NULL)
9184 		return ENOMEM;
9185 
9186 	for (i=0; i<mc.mc_top; i++) {
9187 		mdb_page_copy((MDB_page *)ptr, mc.mc_pg[i], my->mc_env->me_psize);
9188 		mc.mc_pg[i] = (MDB_page *)ptr;
9189 		ptr += my->mc_env->me_psize;
9190 	}
9191 
9192 	/* This is writable space for a leaf page. Usually not needed. */
9193 	leaf = (MDB_page *)ptr;
9194 
9195 	toggle = my->mc_toggle;
9196 	while (mc.mc_snum > 0) {
9197 		unsigned n;
9198 		mp = mc.mc_pg[mc.mc_top];
9199 		n = NUMKEYS(mp);
9200 
9201 		if (IS_LEAF(mp)) {
9202 			if (!IS_LEAF2(mp) && !(flags & F_DUPDATA)) {
9203 				for (i=0; i<n; i++) {
9204 					ni = NODEPTR(mp, i);
9205 					if (ni->mn_flags & F_BIGDATA) {
9206 						MDB_page *omp;
9207 						pgno_t pg;
9208 
9209 						/* Need writable leaf */
9210 						if (mp != leaf) {
9211 							mc.mc_pg[mc.mc_top] = leaf;
9212 							mdb_page_copy(leaf, mp, my->mc_env->me_psize);
9213 							mp = leaf;
9214 							ni = NODEPTR(mp, i);
9215 						}
9216 
9217 						memcpy(&pg, NODEDATA(ni), sizeof(pg));
9218 						memcpy(NODEDATA(ni), &my->mc_next_pgno, sizeof(pgno_t));
9219 						rc = mdb_page_get(&mc, pg, &omp, NULL);
9220 						if (rc)
9221 							goto done;
9222 						if (my->mc_wlen[toggle] >= MDB_WBUF) {
9223 							rc = mdb_env_cthr_toggle(my, 1);
9224 							if (rc)
9225 								goto done;
9226 							toggle = my->mc_toggle;
9227 						}
9228 						mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]);
9229 						memcpy(mo, omp, my->mc_env->me_psize);
9230 						mo->mp_pgno = my->mc_next_pgno;
9231 						my->mc_next_pgno += omp->mp_pages;
9232 						my->mc_wlen[toggle] += my->mc_env->me_psize;
9233 						if (omp->mp_pages > 1) {
9234 							my->mc_olen[toggle] = my->mc_env->me_psize * (omp->mp_pages - 1);
9235 							my->mc_over[toggle] = (char *)omp + my->mc_env->me_psize;
9236 							rc = mdb_env_cthr_toggle(my, 1);
9237 							if (rc)
9238 								goto done;
9239 							toggle = my->mc_toggle;
9240 						}
9241 					} else if (ni->mn_flags & F_SUBDATA) {
9242 						MDB_db db;
9243 
9244 						/* Need writable leaf */
9245 						if (mp != leaf) {
9246 							mc.mc_pg[mc.mc_top] = leaf;
9247 							mdb_page_copy(leaf, mp, my->mc_env->me_psize);
9248 							mp = leaf;
9249 							ni = NODEPTR(mp, i);
9250 						}
9251 
9252 						memcpy(&db, NODEDATA(ni), sizeof(db));
9253 						my->mc_toggle = toggle;
9254 						rc = mdb_env_cwalk(my, &db.md_root, ni->mn_flags & F_DUPDATA);
9255 						if (rc)
9256 							goto done;
9257 						toggle = my->mc_toggle;
9258 						memcpy(NODEDATA(ni), &db, sizeof(db));
9259 					}
9260 				}
9261 			}
9262 		} else {
9263 			mc.mc_ki[mc.mc_top]++;
9264 			if (mc.mc_ki[mc.mc_top] < n) {
9265 				pgno_t pg;
9266 again:
9267 				ni = NODEPTR(mp, mc.mc_ki[mc.mc_top]);
9268 				pg = NODEPGNO(ni);
9269 				rc = mdb_page_get(&mc, pg, &mp, NULL);
9270 				if (rc)
9271 					goto done;
9272 				mc.mc_top++;
9273 				mc.mc_snum++;
9274 				mc.mc_ki[mc.mc_top] = 0;
9275 				if (IS_BRANCH(mp)) {
9276 					/* Whenever we advance to a sibling branch page,
9277 					 * we must proceed all the way down to its first leaf.
9278 					 */
9279 					mdb_page_copy(mc.mc_pg[mc.mc_top], mp, my->mc_env->me_psize);
9280 					goto again;
9281 				} else
9282 					mc.mc_pg[mc.mc_top] = mp;
9283 				continue;
9284 			}
9285 		}
9286 		if (my->mc_wlen[toggle] >= MDB_WBUF) {
9287 			rc = mdb_env_cthr_toggle(my, 1);
9288 			if (rc)
9289 				goto done;
9290 			toggle = my->mc_toggle;
9291 		}
9292 		mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]);
9293 		mdb_page_copy(mo, mp, my->mc_env->me_psize);
9294 		mo->mp_pgno = my->mc_next_pgno++;
9295 		my->mc_wlen[toggle] += my->mc_env->me_psize;
9296 		if (mc.mc_top) {
9297 			/* Update parent if there is one */
9298 			ni = NODEPTR(mc.mc_pg[mc.mc_top-1], mc.mc_ki[mc.mc_top-1]);
9299 			SETPGNO(ni, mo->mp_pgno);
9300 			mdb_cursor_pop(&mc);
9301 		} else {
9302 			/* Otherwise we're done */
9303 			*pg = mo->mp_pgno;
9304 			break;
9305 		}
9306 	}
9307 done:
9308 	free(buf);
9309 	return rc;
9310 }
9311 
9312 	/** Copy environment with compaction. */
9313 static int ESECT
9314 mdb_env_copyfd1(MDB_env *env, HANDLE fd)
9315 {
9316 	MDB_meta *mm;
9317 	MDB_page *mp;
9318 	mdb_copy my = {0};
9319 	MDB_txn *txn = NULL;
9320 	pthread_t thr;
9321 	pgno_t root, new_root;
9322 	int rc = MDB_SUCCESS;
9323 
9324 #ifdef _WIN32
9325 	if (!(my.mc_mutex = CreateMutex(NULL, FALSE, NULL)) ||
9326 		!(my.mc_cond = CreateEvent(NULL, FALSE, FALSE, NULL))) {
9327 		rc = ErrCode();
9328 		goto done;
9329 	}
9330 	my.mc_wbuf[0] = _aligned_malloc(MDB_WBUF*2, env->me_os_psize);
9331 	if (my.mc_wbuf[0] == NULL) {
9332 		/* _aligned_malloc() sets errno, but we use Windows error codes */
9333 		rc = ERROR_NOT_ENOUGH_MEMORY;
9334 		goto done;
9335 	}
9336 #else
9337 	if ((rc = pthread_mutex_init(&my.mc_mutex, NULL)) != 0)
9338 		return rc;
9339 	if ((rc = pthread_cond_init(&my.mc_cond, NULL)) != 0)
9340 		goto done2;
9341 #ifdef HAVE_MEMALIGN
9342 	my.mc_wbuf[0] = memalign(env->me_os_psize, MDB_WBUF*2);
9343 	if (my.mc_wbuf[0] == NULL) {
9344 		rc = errno;
9345 		goto done;
9346 	}
9347 #else
9348 	{
9349 		void *p;
9350 		if ((rc = posix_memalign(&p, env->me_os_psize, MDB_WBUF*2)) != 0)
9351 			goto done;
9352 		my.mc_wbuf[0] = p;
9353 	}
9354 #endif
9355 #endif
9356 	memset(my.mc_wbuf[0], 0, MDB_WBUF*2);
9357 	my.mc_wbuf[1] = my.mc_wbuf[0] + MDB_WBUF;
9358 	my.mc_next_pgno = NUM_METAS;
9359 	my.mc_env = env;
9360 	my.mc_fd = fd;
9361 	rc = THREAD_CREATE(thr, mdb_env_copythr, &my);
9362 	if (rc)
9363 		goto done;
9364 
9365 	rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
9366 	if (rc)
9367 		goto finish;
9368 
9369 	mp = (MDB_page *)my.mc_wbuf[0];
9370 	memset(mp, 0, NUM_METAS * env->me_psize);
9371 	mp->mp_pgno = 0;
9372 	mp->mp_flags = P_META;
9373 	mm = (MDB_meta *)METADATA(mp);
9374 	mdb_env_init_meta0(env, mm);
9375 	mm->mm_address = env->me_metas[0]->mm_address;
9376 
9377 	mp = (MDB_page *)(my.mc_wbuf[0] + env->me_psize);
9378 	mp->mp_pgno = 1;
9379 	mp->mp_flags = P_META;
9380 	*(MDB_meta *)METADATA(mp) = *mm;
9381 	mm = (MDB_meta *)METADATA(mp);
9382 
9383 	/* Set metapage 1 with current main DB */
9384 	root = new_root = txn->mt_dbs[MAIN_DBI].md_root;
9385 	if (root != P_INVALID) {
9386 		/* Count free pages + freeDB pages.  Subtract from last_pg
9387 		 * to find the new last_pg, which also becomes the new root.
9388 		 */
9389 		MDB_ID freecount = 0;
9390 		MDB_cursor mc;
9391 		MDB_val key, data;
9392 		mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
9393 		while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
9394 			freecount += *(MDB_ID *)data.mv_data;
9395 		if (rc != MDB_NOTFOUND)
9396 			goto finish;
9397 		freecount += txn->mt_dbs[FREE_DBI].md_branch_pages +
9398 			txn->mt_dbs[FREE_DBI].md_leaf_pages +
9399 			txn->mt_dbs[FREE_DBI].md_overflow_pages;
9400 
9401 		new_root = txn->mt_next_pgno - 1 - freecount;
9402 		mm->mm_last_pg = new_root;
9403 		mm->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
9404 		mm->mm_dbs[MAIN_DBI].md_root = new_root;
9405 	} else {
9406 		/* When the DB is empty, handle it specially to
9407 		 * fix any breakage like page leaks from ITS#8174.
9408 		 */
9409 		mm->mm_dbs[MAIN_DBI].md_flags = txn->mt_dbs[MAIN_DBI].md_flags;
9410 	}
9411 	if (root != P_INVALID || mm->mm_dbs[MAIN_DBI].md_flags) {
9412 		mm->mm_txnid = 1;		/* use metapage 1 */
9413 	}
9414 
9415 	my.mc_wlen[0] = env->me_psize * NUM_METAS;
9416 	my.mc_txn = txn;
9417 	rc = mdb_env_cwalk(&my, &root, 0);
9418 	if (rc == MDB_SUCCESS && root != new_root) {
9419 		rc = MDB_INCOMPATIBLE;	/* page leak or corrupt DB */
9420 	}
9421 
9422 finish:
9423 	if (rc)
9424 		my.mc_error = rc;
9425 	mdb_env_cthr_toggle(&my, 1 | MDB_EOF);
9426 	rc = THREAD_FINISH(thr);
9427 	mdb_txn_abort(txn);
9428 
9429 done:
9430 #ifdef _WIN32
9431 	if (my.mc_wbuf[0]) _aligned_free(my.mc_wbuf[0]);
9432 	if (my.mc_cond)  CloseHandle(my.mc_cond);
9433 	if (my.mc_mutex) CloseHandle(my.mc_mutex);
9434 #else
9435 	free(my.mc_wbuf[0]);
9436 	pthread_cond_destroy(&my.mc_cond);
9437 done2:
9438 	pthread_mutex_destroy(&my.mc_mutex);
9439 #endif
9440 	return rc ? rc : my.mc_error;
9441 }
9442 
9443 	/** Copy environment as-is. */
9444 static int ESECT
9445 mdb_env_copyfd0(MDB_env *env, HANDLE fd)
9446 {
9447 	MDB_txn *txn = NULL;
9448 	mdb_mutexref_t wmutex = NULL;
9449 	int rc;
9450 	size_t wsize, w3;
9451 	char *ptr;
9452 #ifdef _WIN32
9453 	DWORD len, w2;
9454 #define DO_WRITE(rc, fd, ptr, w2, len)	rc = WriteFile(fd, ptr, w2, &len, NULL)
9455 #else
9456 	ssize_t len;
9457 	size_t w2;
9458 #define DO_WRITE(rc, fd, ptr, w2, len)	len = write(fd, ptr, w2); rc = (len >= 0)
9459 #endif
9460 
9461 	/* Do the lock/unlock of the reader mutex before starting the
9462 	 * write txn.  Otherwise other read txns could block writers.
9463 	 */
9464 	rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
9465 	if (rc)
9466 		return rc;
9467 
9468 	if (env->me_txns) {
9469 		/* We must start the actual read txn after blocking writers */
9470 		mdb_txn_end(txn, MDB_END_RESET_TMP);
9471 
9472 		/* Temporarily block writers until we snapshot the meta pages */
9473 		wmutex = env->me_wmutex;
9474 		if (LOCK_MUTEX(rc, env, wmutex))
9475 			goto leave;
9476 
9477 		rc = mdb_txn_renew0(txn);
9478 		if (rc) {
9479 			UNLOCK_MUTEX(wmutex);
9480 			goto leave;
9481 		}
9482 	}
9483 
9484 	wsize = env->me_psize * NUM_METAS;
9485 	ptr = env->me_map;
9486 	w2 = wsize;
9487 	while (w2 > 0) {
9488 		DO_WRITE(rc, fd, ptr, w2, len);
9489 		if (!rc) {
9490 			rc = ErrCode();
9491 			break;
9492 		} else if (len > 0) {
9493 			rc = MDB_SUCCESS;
9494 			ptr += len;
9495 			w2 -= len;
9496 			continue;
9497 		} else {
9498 			/* Non-blocking or async handles are not supported */
9499 			rc = EIO;
9500 			break;
9501 		}
9502 	}
9503 	if (wmutex)
9504 		UNLOCK_MUTEX(wmutex);
9505 
9506 	if (rc)
9507 		goto leave;
9508 
9509 	w3 = txn->mt_next_pgno * env->me_psize;
9510 	{
9511 		size_t fsize = 0;
9512 		if ((rc = mdb_fsize(env->me_fd, &fsize)))
9513 			goto leave;
9514 		if (w3 > fsize)
9515 			w3 = fsize;
9516 	}
9517 	wsize = w3 - wsize;
9518 	while (wsize > 0) {
9519 		if (wsize > MAX_WRITE)
9520 			w2 = MAX_WRITE;
9521 		else
9522 			w2 = wsize;
9523 		DO_WRITE(rc, fd, ptr, w2, len);
9524 		if (!rc) {
9525 			rc = ErrCode();
9526 			break;
9527 		} else if (len > 0) {
9528 			rc = MDB_SUCCESS;
9529 			ptr += len;
9530 			wsize -= len;
9531 			continue;
9532 		} else {
9533 			rc = EIO;
9534 			break;
9535 		}
9536 	}
9537 
9538 leave:
9539 	mdb_txn_abort(txn);
9540 	return rc;
9541 }
9542 
9543 int ESECT
9544 mdb_env_copyfd2(MDB_env *env, HANDLE fd, unsigned int flags)
9545 {
9546 	if (flags & MDB_CP_COMPACT)
9547 		return mdb_env_copyfd1(env, fd);
9548 	else
9549 		return mdb_env_copyfd0(env, fd);
9550 }
9551 
9552 int ESECT
9553 mdb_env_copyfd(MDB_env *env, HANDLE fd)
9554 {
9555 	return mdb_env_copyfd2(env, fd, 0);
9556 }
9557 
9558 int ESECT
9559 mdb_env_copy2(MDB_env *env, const char *path, unsigned int flags)
9560 {
9561 	int rc;
9562 	MDB_name fname;
9563 	HANDLE newfd = INVALID_HANDLE_VALUE;
9564 
9565 	rc = mdb_fname_init(path, env->me_flags | MDB_NOLOCK, &fname);
9566 	if (rc == MDB_SUCCESS) {
9567 		rc = mdb_fopen(env, &fname, MDB_O_COPY, 0666, &newfd);
9568 		mdb_fname_destroy(fname);
9569 	}
9570 	if (rc == MDB_SUCCESS) {
9571 		rc = mdb_env_copyfd2(env, newfd, flags);
9572 		if (close(newfd) < 0 && rc == MDB_SUCCESS)
9573 			rc = ErrCode();
9574 	}
9575 	return rc;
9576 }
9577 
9578 int ESECT
9579 mdb_env_copy(MDB_env *env, const char *path)
9580 {
9581 	return mdb_env_copy2(env, path, 0);
9582 }
9583 
9584 int ESECT
9585 mdb_env_set_flags(MDB_env *env, unsigned int flag, int onoff)
9586 {
9587 	if (flag & ~CHANGEABLE)
9588 		return EINVAL;
9589 	if (onoff)
9590 		env->me_flags |= flag;
9591 	else
9592 		env->me_flags &= ~flag;
9593 	return MDB_SUCCESS;
9594 }
9595 
9596 int ESECT
9597 mdb_env_get_flags(MDB_env *env, unsigned int *arg)
9598 {
9599 	if (!env || !arg)
9600 		return EINVAL;
9601 
9602 	*arg = env->me_flags & (CHANGEABLE|CHANGELESS);
9603 	return MDB_SUCCESS;
9604 }
9605 
9606 int ESECT
9607 mdb_env_set_userctx(MDB_env *env, void *ctx)
9608 {
9609 	if (!env)
9610 		return EINVAL;
9611 	env->me_userctx = ctx;
9612 	return MDB_SUCCESS;
9613 }
9614 
9615 void * ESECT
9616 mdb_env_get_userctx(MDB_env *env)
9617 {
9618 	return env ? env->me_userctx : NULL;
9619 }
9620 
9621 int ESECT
9622 mdb_env_set_assert(MDB_env *env, MDB_assert_func *func)
9623 {
9624 	if (!env)
9625 		return EINVAL;
9626 #ifndef NDEBUG
9627 	env->me_assert_func = func;
9628 #endif
9629 	return MDB_SUCCESS;
9630 }
9631 
9632 int ESECT
9633 mdb_env_get_path(MDB_env *env, const char **arg)
9634 {
9635 	if (!env || !arg)
9636 		return EINVAL;
9637 
9638 	*arg = env->me_path;
9639 	return MDB_SUCCESS;
9640 }
9641 
9642 int ESECT
9643 mdb_env_get_fd(MDB_env *env, mdb_filehandle_t *arg)
9644 {
9645 	if (!env || !arg)
9646 		return EINVAL;
9647 
9648 	*arg = env->me_fd;
9649 	return MDB_SUCCESS;
9650 }
9651 
9652 /** Common code for #mdb_stat() and #mdb_env_stat().
9653  * @param[in] env the environment to operate in.
9654  * @param[in] db the #MDB_db record containing the stats to return.
9655  * @param[out] arg the address of an #MDB_stat structure to receive the stats.
9656  * @return 0, this function always succeeds.
9657  */
9658 static int ESECT
9659 mdb_stat0(MDB_env *env, MDB_db *db, MDB_stat *arg)
9660 {
9661 	arg->ms_psize = env->me_psize;
9662 	arg->ms_depth = db->md_depth;
9663 	arg->ms_branch_pages = db->md_branch_pages;
9664 	arg->ms_leaf_pages = db->md_leaf_pages;
9665 	arg->ms_overflow_pages = db->md_overflow_pages;
9666 	arg->ms_entries = db->md_entries;
9667 
9668 	return MDB_SUCCESS;
9669 }
9670 
9671 int ESECT
9672 mdb_env_stat(MDB_env *env, MDB_stat *arg)
9673 {
9674 	MDB_meta *meta;
9675 
9676 	if (env == NULL || arg == NULL)
9677 		return EINVAL;
9678 
9679 	meta = mdb_env_pick_meta(env);
9680 
9681 	return mdb_stat0(env, &meta->mm_dbs[MAIN_DBI], arg);
9682 }
9683 
9684 int ESECT
9685 mdb_env_info(MDB_env *env, MDB_envinfo *arg)
9686 {
9687 	MDB_meta *meta;
9688 
9689 	if (env == NULL || arg == NULL)
9690 		return EINVAL;
9691 
9692 	meta = mdb_env_pick_meta(env);
9693 	arg->me_mapaddr = meta->mm_address;
9694 	arg->me_last_pgno = meta->mm_last_pg;
9695 	arg->me_last_txnid = meta->mm_txnid;
9696 
9697 	arg->me_mapsize = env->me_mapsize;
9698 	arg->me_maxreaders = env->me_maxreaders;
9699 	arg->me_numreaders = env->me_txns ? env->me_txns->mti_numreaders : 0;
9700 	return MDB_SUCCESS;
9701 }
9702 
9703 /** Set the default comparison functions for a database.
9704  * Called immediately after a database is opened to set the defaults.
9705  * The user can then override them with #mdb_set_compare() or
9706  * #mdb_set_dupsort().
9707  * @param[in] txn A transaction handle returned by #mdb_txn_begin()
9708  * @param[in] dbi A database handle returned by #mdb_dbi_open()
9709  */
9710 static void
9711 mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi)
9712 {
9713 	uint16_t f = txn->mt_dbs[dbi].md_flags;
9714 
9715 	txn->mt_dbxs[dbi].md_cmp =
9716 		(f & MDB_REVERSEKEY) ? mdb_cmp_memnr :
9717 		(f & MDB_INTEGERKEY) ? mdb_cmp_cint  : mdb_cmp_memn;
9718 
9719 	txn->mt_dbxs[dbi].md_dcmp =
9720 		!(f & MDB_DUPSORT) ? 0 :
9721 		((f & MDB_INTEGERDUP)
9722 		 ? ((f & MDB_DUPFIXED)   ? mdb_cmp_int   : mdb_cmp_cint)
9723 		 : ((f & MDB_REVERSEDUP) ? mdb_cmp_memnr : mdb_cmp_memn));
9724 }
9725 
9726 int mdb_dbi_open(MDB_txn *txn, const char *name, unsigned int flags, MDB_dbi *dbi)
9727 {
9728 	MDB_val key, data;
9729 	MDB_dbi i;
9730 	MDB_cursor mc;
9731 	MDB_db dummy;
9732 	int rc, dbflag, exact;
9733 	unsigned int unused = 0, seq;
9734 	char *namedup;
9735 	size_t len;
9736 
9737 	if (flags & ~VALID_FLAGS)
9738 		return EINVAL;
9739 	if (txn->mt_flags & MDB_TXN_BLOCKED)
9740 		return MDB_BAD_TXN;
9741 
9742 	/* main DB? */
9743 	if (!name) {
9744 		*dbi = MAIN_DBI;
9745 		if (flags & PERSISTENT_FLAGS) {
9746 			uint16_t f2 = flags & PERSISTENT_FLAGS;
9747 			/* make sure flag changes get committed */
9748 			if ((txn->mt_dbs[MAIN_DBI].md_flags | f2) != txn->mt_dbs[MAIN_DBI].md_flags) {
9749 				txn->mt_dbs[MAIN_DBI].md_flags |= f2;
9750 				txn->mt_flags |= MDB_TXN_DIRTY;
9751 			}
9752 		}
9753 		mdb_default_cmp(txn, MAIN_DBI);
9754 		return MDB_SUCCESS;
9755 	}
9756 
9757 	if (txn->mt_dbxs[MAIN_DBI].md_cmp == NULL) {
9758 		mdb_default_cmp(txn, MAIN_DBI);
9759 	}
9760 
9761 	/* Is the DB already open? */
9762 	len = strlen(name);
9763 	for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
9764 		if (!txn->mt_dbxs[i].md_name.mv_size) {
9765 			/* Remember this free slot */
9766 			if (!unused) unused = i;
9767 			continue;
9768 		}
9769 		if (len == txn->mt_dbxs[i].md_name.mv_size &&
9770 			!strncmp(name, txn->mt_dbxs[i].md_name.mv_data, len)) {
9771 			*dbi = i;
9772 			return MDB_SUCCESS;
9773 		}
9774 	}
9775 
9776 	/* If no free slot and max hit, fail */
9777 	if (!unused && txn->mt_numdbs >= txn->mt_env->me_maxdbs)
9778 		return MDB_DBS_FULL;
9779 
9780 	/* Cannot mix named databases with some mainDB flags */
9781 	if (txn->mt_dbs[MAIN_DBI].md_flags & (MDB_DUPSORT|MDB_INTEGERKEY))
9782 		return (flags & MDB_CREATE) ? MDB_INCOMPATIBLE : MDB_NOTFOUND;
9783 
9784 	/* Find the DB info */
9785 	dbflag = DB_NEW|DB_VALID|DB_USRVALID;
9786 	exact = 0;
9787 	key.mv_size = len;
9788 	key.mv_data = (void *)name;
9789 	mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
9790 	rc = mdb_cursor_set(&mc, &key, &data, MDB_SET, &exact);
9791 	if (rc == MDB_SUCCESS) {
9792 		/* make sure this is actually a DB */
9793 		MDB_node *node = NODEPTR(mc.mc_pg[mc.mc_top], mc.mc_ki[mc.mc_top]);
9794 		if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA)
9795 			return MDB_INCOMPATIBLE;
9796 	} else {
9797 		if (rc != MDB_NOTFOUND || !(flags & MDB_CREATE))
9798 			return rc;
9799 		if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
9800 			return EACCES;
9801 	}
9802 
9803 	/* Done here so we cannot fail after creating a new DB */
9804 	if ((namedup = strdup(name)) == NULL)
9805 		return ENOMEM;
9806 
9807 	if (rc) {
9808 		/* MDB_NOTFOUND and MDB_CREATE: Create new DB */
9809 		data.mv_size = sizeof(MDB_db);
9810 		data.mv_data = &dummy;
9811 		memset(&dummy, 0, sizeof(dummy));
9812 		dummy.md_root = P_INVALID;
9813 		dummy.md_flags = flags & PERSISTENT_FLAGS;
9814 		WITH_CURSOR_TRACKING(mc,
9815 			rc = mdb_cursor_put(&mc, &key, &data, F_SUBDATA));
9816 		dbflag |= DB_DIRTY;
9817 	}
9818 
9819 	if (rc) {
9820 		free(namedup);
9821 	} else {
9822 		/* Got info, register DBI in this txn */
9823 		unsigned int slot = unused ? unused : txn->mt_numdbs;
9824 		txn->mt_dbxs[slot].md_name.mv_data = namedup;
9825 		txn->mt_dbxs[slot].md_name.mv_size = len;
9826 		txn->mt_dbxs[slot].md_rel = NULL;
9827 		txn->mt_dbflags[slot] = dbflag;
9828 		/* txn-> and env-> are the same in read txns, use
9829 		 * tmp variable to avoid undefined assignment
9830 		 */
9831 		seq = ++txn->mt_env->me_dbiseqs[slot];
9832 		txn->mt_dbiseqs[slot] = seq;
9833 
9834 		memcpy(&txn->mt_dbs[slot], data.mv_data, sizeof(MDB_db));
9835 		*dbi = slot;
9836 		mdb_default_cmp(txn, slot);
9837 		if (!unused) {
9838 			txn->mt_numdbs++;
9839 		}
9840 	}
9841 
9842 	return rc;
9843 }
9844 
9845 int ESECT
9846 mdb_stat(MDB_txn *txn, MDB_dbi dbi, MDB_stat *arg)
9847 {
9848 	if (!arg || !TXN_DBI_EXIST(txn, dbi, DB_VALID))
9849 		return EINVAL;
9850 
9851 	if (txn->mt_flags & MDB_TXN_BLOCKED)
9852 		return MDB_BAD_TXN;
9853 
9854 	if (txn->mt_dbflags[dbi] & DB_STALE) {
9855 		MDB_cursor mc;
9856 		MDB_xcursor mx;
9857 		/* Stale, must read the DB's root. cursor_init does it for us. */
9858 		mdb_cursor_init(&mc, txn, dbi, &mx);
9859 	}
9860 	return mdb_stat0(txn->mt_env, &txn->mt_dbs[dbi], arg);
9861 }
9862 
9863 void mdb_dbi_close(MDB_env *env, MDB_dbi dbi)
9864 {
9865 	char *ptr;
9866 	if (dbi < CORE_DBS || dbi >= env->me_maxdbs)
9867 		return;
9868 	ptr = env->me_dbxs[dbi].md_name.mv_data;
9869 	/* If there was no name, this was already closed */
9870 	if (ptr) {
9871 		env->me_dbxs[dbi].md_name.mv_data = NULL;
9872 		env->me_dbxs[dbi].md_name.mv_size = 0;
9873 		env->me_dbflags[dbi] = 0;
9874 		env->me_dbiseqs[dbi]++;
9875 		free(ptr);
9876 	}
9877 }
9878 
9879 int mdb_dbi_flags(MDB_txn *txn, MDB_dbi dbi, unsigned int *flags)
9880 {
9881 	/* We could return the flags for the FREE_DBI too but what's the point? */
9882 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
9883 		return EINVAL;
9884 	*flags = txn->mt_dbs[dbi].md_flags & PERSISTENT_FLAGS;
9885 	return MDB_SUCCESS;
9886 }
9887 
9888 /** Add all the DB's pages to the free list.
9889  * @param[in] mc Cursor on the DB to free.
9890  * @param[in] subs non-Zero to check for sub-DBs in this DB.
9891  * @return 0 on success, non-zero on failure.
9892  */
9893 static int
9894 mdb_drop0(MDB_cursor *mc, int subs)
9895 {
9896 	int rc;
9897 
9898 	rc = mdb_page_search(mc, NULL, MDB_PS_FIRST);
9899 	if (rc == MDB_SUCCESS) {
9900 		MDB_txn *txn = mc->mc_txn;
9901 		MDB_node *ni;
9902 		MDB_cursor mx;
9903 		unsigned int i;
9904 
9905 		/* DUPSORT sub-DBs have no ovpages/DBs. Omit scanning leaves.
9906 		 * This also avoids any P_LEAF2 pages, which have no nodes.
9907 		 * Also if the DB doesn't have sub-DBs and has no overflow
9908 		 * pages, omit scanning leaves.
9909 		 */
9910 		if ((mc->mc_flags & C_SUB) ||
9911 			(!subs && !mc->mc_db->md_overflow_pages))
9912 			mdb_cursor_pop(mc);
9913 
9914 		mdb_cursor_copy(mc, &mx);
9915 		while (mc->mc_snum > 0) {
9916 			MDB_page *mp = mc->mc_pg[mc->mc_top];
9917 			unsigned n = NUMKEYS(mp);
9918 			if (IS_LEAF(mp)) {
9919 				for (i=0; i<n; i++) {
9920 					ni = NODEPTR(mp, i);
9921 					if (ni->mn_flags & F_BIGDATA) {
9922 						MDB_page *omp;
9923 						pgno_t pg;
9924 						memcpy(&pg, NODEDATA(ni), sizeof(pg));
9925 						rc = mdb_page_get(mc, pg, &omp, NULL);
9926 						if (rc != 0)
9927 							goto done;
9928 						mdb_cassert(mc, IS_OVERFLOW(omp));
9929 						rc = mdb_midl_append_range(&txn->mt_free_pgs,
9930 							pg, omp->mp_pages);
9931 						if (rc)
9932 							goto done;
9933 						mc->mc_db->md_overflow_pages -= omp->mp_pages;
9934 						if (!mc->mc_db->md_overflow_pages && !subs)
9935 							break;
9936 					} else if (subs && (ni->mn_flags & F_SUBDATA)) {
9937 						mdb_xcursor_init1(mc, ni);
9938 						rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
9939 						if (rc)
9940 							goto done;
9941 					}
9942 				}
9943 				if (!subs && !mc->mc_db->md_overflow_pages)
9944 					goto pop;
9945 			} else {
9946 				if ((rc = mdb_midl_need(&txn->mt_free_pgs, n)) != 0)
9947 					goto done;
9948 				for (i=0; i<n; i++) {
9949 					pgno_t pg;
9950 					ni = NODEPTR(mp, i);
9951 					pg = NODEPGNO(ni);
9952 					/* free it */
9953 					mdb_midl_xappend(txn->mt_free_pgs, pg);
9954 				}
9955 			}
9956 			if (!mc->mc_top)
9957 				break;
9958 			mc->mc_ki[mc->mc_top] = i;
9959 			rc = mdb_cursor_sibling(mc, 1);
9960 			if (rc) {
9961 				if (rc != MDB_NOTFOUND)
9962 					goto done;
9963 				/* no more siblings, go back to beginning
9964 				 * of previous level.
9965 				 */
9966 pop:
9967 				mdb_cursor_pop(mc);
9968 				mc->mc_ki[0] = 0;
9969 				for (i=1; i<mc->mc_snum; i++) {
9970 					mc->mc_ki[i] = 0;
9971 					mc->mc_pg[i] = mx.mc_pg[i];
9972 				}
9973 			}
9974 		}
9975 		/* free it */
9976 		rc = mdb_midl_append(&txn->mt_free_pgs, mc->mc_db->md_root);
9977 done:
9978 		if (rc)
9979 			txn->mt_flags |= MDB_TXN_ERROR;
9980 	} else if (rc == MDB_NOTFOUND) {
9981 		rc = MDB_SUCCESS;
9982 	}
9983 	mc->mc_flags &= ~C_INITIALIZED;
9984 	return rc;
9985 }
9986 
9987 int mdb_drop(MDB_txn *txn, MDB_dbi dbi, int del)
9988 {
9989 	MDB_cursor *mc, *m2;
9990 	int rc;
9991 
9992 	if ((unsigned)del > 1 || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
9993 		return EINVAL;
9994 
9995 	if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
9996 		return EACCES;
9997 
9998 	if (TXN_DBI_CHANGED(txn, dbi))
9999 		return MDB_BAD_DBI;
10000 
10001 	rc = mdb_cursor_open(txn, dbi, &mc);
10002 	if (rc)
10003 		return rc;
10004 
10005 	rc = mdb_drop0(mc, mc->mc_db->md_flags & MDB_DUPSORT);
10006 	/* Invalidate the dropped DB's cursors */
10007 	for (m2 = txn->mt_cursors[dbi]; m2; m2 = m2->mc_next)
10008 		m2->mc_flags &= ~(C_INITIALIZED|C_EOF);
10009 	if (rc)
10010 		goto leave;
10011 
10012 	/* Can't delete the main DB */
10013 	if (del && dbi >= CORE_DBS) {
10014 		rc = mdb_del0(txn, MAIN_DBI, &mc->mc_dbx->md_name, NULL, F_SUBDATA);
10015 		if (!rc) {
10016 			txn->mt_dbflags[dbi] = DB_STALE;
10017 			mdb_dbi_close(txn->mt_env, dbi);
10018 		} else {
10019 			txn->mt_flags |= MDB_TXN_ERROR;
10020 		}
10021 	} else {
10022 		/* reset the DB record, mark it dirty */
10023 		txn->mt_dbflags[dbi] |= DB_DIRTY;
10024 		txn->mt_dbs[dbi].md_depth = 0;
10025 		txn->mt_dbs[dbi].md_branch_pages = 0;
10026 		txn->mt_dbs[dbi].md_leaf_pages = 0;
10027 		txn->mt_dbs[dbi].md_overflow_pages = 0;
10028 		txn->mt_dbs[dbi].md_entries = 0;
10029 		txn->mt_dbs[dbi].md_root = P_INVALID;
10030 
10031 		txn->mt_flags |= MDB_TXN_DIRTY;
10032 	}
10033 leave:
10034 	mdb_cursor_close(mc);
10035 	return rc;
10036 }
10037 
10038 int mdb_set_compare(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
10039 {
10040 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
10041 		return EINVAL;
10042 
10043 	txn->mt_dbxs[dbi].md_cmp = cmp;
10044 	return MDB_SUCCESS;
10045 }
10046 
10047 int mdb_set_dupsort(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
10048 {
10049 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
10050 		return EINVAL;
10051 
10052 	txn->mt_dbxs[dbi].md_dcmp = cmp;
10053 	return MDB_SUCCESS;
10054 }
10055 
10056 int mdb_set_relfunc(MDB_txn *txn, MDB_dbi dbi, MDB_rel_func *rel)
10057 {
10058 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
10059 		return EINVAL;
10060 
10061 	txn->mt_dbxs[dbi].md_rel = rel;
10062 	return MDB_SUCCESS;
10063 }
10064 
10065 int mdb_set_relctx(MDB_txn *txn, MDB_dbi dbi, void *ctx)
10066 {
10067 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
10068 		return EINVAL;
10069 
10070 	txn->mt_dbxs[dbi].md_relctx = ctx;
10071 	return MDB_SUCCESS;
10072 }
10073 
10074 int ESECT
10075 mdb_env_get_maxkeysize(MDB_env *env)
10076 {
10077 	return ENV_MAXKEY(env);
10078 }
10079 
10080 int ESECT
10081 mdb_reader_list(MDB_env *env, MDB_msg_func *func, void *ctx)
10082 {
10083 	unsigned int i, rdrs;
10084 	MDB_reader *mr;
10085 	char buf[64];
10086 	int rc = 0, first = 1;
10087 
10088 	if (!env || !func)
10089 		return -1;
10090 	if (!env->me_txns) {
10091 		return func("(no reader locks)\n", ctx);
10092 	}
10093 	rdrs = env->me_txns->mti_numreaders;
10094 	mr = env->me_txns->mti_readers;
10095 	for (i=0; i<rdrs; i++) {
10096 		if (mr[i].mr_pid) {
10097 			txnid_t	txnid = mr[i].mr_txnid;
10098 			sprintf(buf, txnid == (txnid_t)-1 ?
10099 				"%10d %"Z"x -\n" : "%10d %"Z"x %"Z"u\n",
10100 				(int)mr[i].mr_pid, (size_t)mr[i].mr_tid, txnid);
10101 			if (first) {
10102 				first = 0;
10103 				rc = func("    pid     thread     txnid\n", ctx);
10104 				if (rc < 0)
10105 					break;
10106 			}
10107 			rc = func(buf, ctx);
10108 			if (rc < 0)
10109 				break;
10110 		}
10111 	}
10112 	if (first) {
10113 		rc = func("(no active readers)\n", ctx);
10114 	}
10115 	return rc;
10116 }
10117 
10118 /** Insert pid into list if not already present.
10119  * return -1 if already present.
10120  */
10121 static int ESECT
10122 mdb_pid_insert(MDB_PID_T *ids, MDB_PID_T pid)
10123 {
10124 	/* binary search of pid in list */
10125 	unsigned base = 0;
10126 	unsigned cursor = 1;
10127 	int val = 0;
10128 	unsigned n = ids[0];
10129 
10130 	while( 0 < n ) {
10131 		unsigned pivot = n >> 1;
10132 		cursor = base + pivot + 1;
10133 		val = pid - ids[cursor];
10134 
10135 		if( val < 0 ) {
10136 			n = pivot;
10137 
10138 		} else if ( val > 0 ) {
10139 			base = cursor;
10140 			n -= pivot + 1;
10141 
10142 		} else {
10143 			/* found, so it's a duplicate */
10144 			return -1;
10145 		}
10146 	}
10147 
10148 	if( val > 0 ) {
10149 		++cursor;
10150 	}
10151 	ids[0]++;
10152 	for (n = ids[0]; n > cursor; n--)
10153 		ids[n] = ids[n-1];
10154 	ids[n] = pid;
10155 	return 0;
10156 }
10157 
10158 int ESECT
10159 mdb_reader_check(MDB_env *env, int *dead)
10160 {
10161 	if (!env)
10162 		return EINVAL;
10163 	if (dead)
10164 		*dead = 0;
10165 	return env->me_txns ? mdb_reader_check0(env, 0, dead) : MDB_SUCCESS;
10166 }
10167 
10168 /** As #mdb_reader_check(). \b rlocked is set if caller locked #me_rmutex. */
10169 static int ESECT
10170 mdb_reader_check0(MDB_env *env, int rlocked, int *dead)
10171 {
10172 	mdb_mutexref_t rmutex = rlocked ? NULL : env->me_rmutex;
10173 	unsigned int i, j, rdrs;
10174 	MDB_reader *mr;
10175 	MDB_PID_T *pids, pid;
10176 	int rc = MDB_SUCCESS, count = 0;
10177 
10178 	rdrs = env->me_txns->mti_numreaders;
10179 	pids = malloc((rdrs+1) * sizeof(MDB_PID_T));
10180 	if (!pids)
10181 		return ENOMEM;
10182 	pids[0] = 0;
10183 	mr = env->me_txns->mti_readers;
10184 	for (i=0; i<rdrs; i++) {
10185 		pid = mr[i].mr_pid;
10186 		if (pid && pid != env->me_pid) {
10187 			if (mdb_pid_insert(pids, pid) == 0) {
10188 				if (!mdb_reader_pid(env, Pidcheck, pid)) {
10189 					/* Stale reader found */
10190 					j = i;
10191 					if (rmutex) {
10192 						if ((rc = LOCK_MUTEX0(rmutex)) != 0) {
10193 							if ((rc = mdb_mutex_failed(env, rmutex, rc)))
10194 								break;
10195 							rdrs = 0; /* the above checked all readers */
10196 						} else {
10197 							/* Recheck, a new process may have reused pid */
10198 							if (mdb_reader_pid(env, Pidcheck, pid))
10199 								j = rdrs;
10200 						}
10201 					}
10202 					for (; j<rdrs; j++)
10203 							if (mr[j].mr_pid == pid) {
10204 								DPRINTF(("clear stale reader pid %u txn %"Z"d",
10205 									(unsigned) pid, mr[j].mr_txnid));
10206 								mr[j].mr_pid = 0;
10207 								count++;
10208 							}
10209 					if (rmutex)
10210 						UNLOCK_MUTEX(rmutex);
10211 				}
10212 			}
10213 		}
10214 	}
10215 	free(pids);
10216 	if (dead)
10217 		*dead = count;
10218 	return rc;
10219 }
10220 
10221 #ifdef MDB_ROBUST_SUPPORTED
10222 /** Handle #LOCK_MUTEX0() failure.
10223  * Try to repair the lock file if the mutex owner died.
10224  * @param[in] env	the environment handle
10225  * @param[in] mutex	LOCK_MUTEX0() mutex
10226  * @param[in] rc	LOCK_MUTEX0() error (nonzero)
10227  * @return 0 on success with the mutex locked, or an error code on failure.
10228  */
10229 static int ESECT
10230 mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc)
10231 {
10232 	int rlocked, rc2;
10233 	MDB_meta *meta;
10234 
10235 	if (rc == MDB_OWNERDEAD) {
10236 		/* We own the mutex. Clean up after dead previous owner. */
10237 		rc = MDB_SUCCESS;
10238 		rlocked = (mutex == env->me_rmutex);
10239 		if (!rlocked) {
10240 			/* Keep mti_txnid updated, otherwise next writer can
10241 			 * overwrite data which latest meta page refers to.
10242 			 */
10243 			meta = mdb_env_pick_meta(env);
10244 			env->me_txns->mti_txnid = meta->mm_txnid;
10245 			/* env is hosed if the dead thread was ours */
10246 			if (env->me_txn) {
10247 				env->me_flags |= MDB_FATAL_ERROR;
10248 				env->me_txn = NULL;
10249 				rc = MDB_PANIC;
10250 			}
10251 		}
10252 		DPRINTF(("%cmutex owner died, %s", (rlocked ? 'r' : 'w'),
10253 			(rc ? "this process' env is hosed" : "recovering")));
10254 		rc2 = mdb_reader_check0(env, rlocked, NULL);
10255 		if (rc2 == 0)
10256 			rc2 = mdb_mutex_consistent(mutex);
10257 		if (rc || (rc = rc2)) {
10258 			DPRINTF(("LOCK_MUTEX recovery failed, %s", mdb_strerror(rc)));
10259 			UNLOCK_MUTEX(mutex);
10260 		}
10261 	} else {
10262 #ifdef _WIN32
10263 		rc = ErrCode();
10264 #endif
10265 		DPRINTF(("LOCK_MUTEX failed, %s", mdb_strerror(rc)));
10266 	}
10267 
10268 	return rc;
10269 }
10270 #endif	/* MDB_ROBUST_SUPPORTED */
10271 
10272 #if defined(_WIN32)
10273 /** Convert \b src to new wchar_t[] string with room for \b xtra extra chars */
10274 static int ESECT
10275 utf8_to_utf16(const char *src, MDB_name *dst, int xtra)
10276 {
10277 	int rc, need = 0;
10278 	wchar_t *result = NULL;
10279 	for (;;) {					/* malloc result, then fill it in */
10280 		need = MultiByteToWideChar(CP_UTF8, 0, src, -1, result, need);
10281 		if (!need) {
10282 			rc = ErrCode();
10283 			free(result);
10284 			return rc;
10285 		}
10286 		if (!result) {
10287 			result = malloc(sizeof(wchar_t) * (need + xtra));
10288 			if (!result)
10289 				return ENOMEM;
10290 			continue;
10291 		}
10292 		dst->mn_alloced = 1;
10293 		dst->mn_len = need - 1;
10294 		dst->mn_val = result;
10295 		return MDB_SUCCESS;
10296 	}
10297 }
10298 #endif /* defined(_WIN32) */
10299 /** @} */
10300