xref: /netbsd-src/external/bsd/openldap/dist/libraries/liblmdb/mdb.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: mdb.c,v 1.1.1.3 2018/02/06 01:53:08 christos Exp $	*/
2 
3 /** @file mdb.c
4  *	@brief Lightning memory-mapped database library
5  *
6  *	A Btree-based database management library modeled loosely on the
7  *	BerkeleyDB API, but much simplified.
8  */
9 /*
10  * Copyright 2011-2017 Howard Chu, Symas Corp.
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted only as authorized by the OpenLDAP
15  * Public License.
16  *
17  * A copy of this license is available in the file LICENSE in the
18  * top-level directory of the distribution or, alternatively, at
19  * <http://www.OpenLDAP.org/license.html>.
20  *
21  * This code is derived from btree.c written by Martin Hedenfalk.
22  *
23  * Copyright (c) 2009, 2010 Martin Hedenfalk <martin@bzero.se>
24  *
25  * Permission to use, copy, modify, and distribute this software for any
26  * purpose with or without fee is hereby granted, provided that the above
27  * copyright notice and this permission notice appear in all copies.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
30  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
31  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
32  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
33  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
34  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
35  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
36  */
37 #ifndef _GNU_SOURCE
38 #define _GNU_SOURCE 1
39 #endif
40 #if defined(__WIN64__)
41 #define _FILE_OFFSET_BITS	64
42 #endif
43 #ifdef _WIN32
44 #include <malloc.h>
45 #include <windows.h>
46 #include <wchar.h>				/* get wcscpy() */
47 
48 /** getpid() returns int; MinGW defines pid_t but MinGW64 typedefs it
49  *  as int64 which is wrong. MSVC doesn't define it at all, so just
50  *  don't use it.
51  */
52 #define MDB_PID_T	int
53 #define MDB_THR_T	DWORD
54 #include <sys/types.h>
55 #include <sys/stat.h>
56 #ifdef __GNUC__
57 # include <sys/param.h>
58 #else
59 # define LITTLE_ENDIAN	1234
60 # define BIG_ENDIAN	4321
61 # define BYTE_ORDER	LITTLE_ENDIAN
62 # ifndef SSIZE_MAX
63 #  define SSIZE_MAX	INT_MAX
64 # endif
65 #endif
66 #else
67 #include <sys/types.h>
68 #include <sys/stat.h>
69 #define MDB_PID_T	pid_t
70 #define MDB_THR_T	pthread_t
71 #include <sys/param.h>
72 #include <sys/uio.h>
73 #include <sys/mman.h>
74 #ifdef HAVE_SYS_FILE_H
75 #include <sys/file.h>
76 #endif
77 #include <fcntl.h>
78 #endif
79 
80 #if defined(__mips) && defined(__linux)
81 /* MIPS has cache coherency issues, requires explicit cache control */
82 #include <asm/cachectl.h>
83 extern int cacheflush(char *addr, int nbytes, int cache);
84 #define CACHEFLUSH(addr, bytes, cache)	cacheflush(addr, bytes, cache)
85 #else
86 #define CACHEFLUSH(addr, bytes, cache)
87 #endif
88 
89 #if defined(__linux) && !defined(MDB_FDATASYNC_WORKS)
90 /** fdatasync is broken on ext3/ext4fs on older kernels, see
91  *	description in #mdb_env_open2 comments. You can safely
92  *	define MDB_FDATASYNC_WORKS if this code will only be run
93  *	on kernels 3.6 and newer.
94  */
95 #define	BROKEN_FDATASYNC
96 #endif
97 
98 #include <errno.h>
99 #include <limits.h>
100 #include <stddef.h>
101 #include <inttypes.h>
102 #include <stdio.h>
103 #include <stdlib.h>
104 #include <string.h>
105 #include <time.h>
106 
107 #ifdef _MSC_VER
108 #include <io.h>
109 typedef SSIZE_T	ssize_t;
110 #else
111 #include <unistd.h>
112 #endif
113 
114 #if defined(__sun) || defined(ANDROID)
115 /* Most platforms have posix_memalign, older may only have memalign */
116 #define HAVE_MEMALIGN	1
117 #include <malloc.h>
118 #endif
119 
120 #if !(defined(BYTE_ORDER) || defined(__BYTE_ORDER))
121 #include <netinet/in.h>
122 #include <resolv.h>	/* defines BYTE_ORDER on HPUX and Solaris */
123 #endif
124 
125 #if defined(__APPLE__) || defined (BSD) || defined(__FreeBSD_kernel__)
126 # define MDB_USE_POSIX_SEM	1
127 # define MDB_FDATASYNC		fsync
128 #elif defined(ANDROID)
129 # define MDB_FDATASYNC		fsync
130 #endif
131 
132 #ifndef _WIN32
133 #include <pthread.h>
134 #include <signal.h>
135 #ifdef MDB_USE_POSIX_SEM
136 # define MDB_USE_HASH		1
137 #include <semaphore.h>
138 #else
139 #define MDB_USE_POSIX_MUTEX	1
140 #endif
141 #endif
142 
143 #if defined(_WIN32) + defined(MDB_USE_POSIX_SEM) \
144 	+ defined(MDB_USE_POSIX_MUTEX) != 1
145 # error "Ambiguous shared-lock implementation"
146 #endif
147 
148 #ifdef USE_VALGRIND
149 #include <valgrind/memcheck.h>
150 #define VGMEMP_CREATE(h,r,z)    VALGRIND_CREATE_MEMPOOL(h,r,z)
151 #define VGMEMP_ALLOC(h,a,s) VALGRIND_MEMPOOL_ALLOC(h,a,s)
152 #define VGMEMP_FREE(h,a) VALGRIND_MEMPOOL_FREE(h,a)
153 #define VGMEMP_DESTROY(h)	VALGRIND_DESTROY_MEMPOOL(h)
154 #define VGMEMP_DEFINED(a,s)	VALGRIND_MAKE_MEM_DEFINED(a,s)
155 #else
156 #define VGMEMP_CREATE(h,r,z)
157 #define VGMEMP_ALLOC(h,a,s)
158 #define VGMEMP_FREE(h,a)
159 #define VGMEMP_DESTROY(h)
160 #define VGMEMP_DEFINED(a,s)
161 #endif
162 
163 #ifndef BYTE_ORDER
164 # if (defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN))
165 /* Solaris just defines one or the other */
166 #  define LITTLE_ENDIAN	1234
167 #  define BIG_ENDIAN	4321
168 #  ifdef _LITTLE_ENDIAN
169 #   define BYTE_ORDER  LITTLE_ENDIAN
170 #  else
171 #   define BYTE_ORDER  BIG_ENDIAN
172 #  endif
173 # else
174 #  define BYTE_ORDER   __BYTE_ORDER
175 # endif
176 #endif
177 
178 #ifndef LITTLE_ENDIAN
179 #define LITTLE_ENDIAN	__LITTLE_ENDIAN
180 #endif
181 #ifndef BIG_ENDIAN
182 #define BIG_ENDIAN	__BIG_ENDIAN
183 #endif
184 
185 #if defined(__i386) || defined(__x86_64) || defined(_M_IX86)
186 #define MISALIGNED_OK	1
187 #endif
188 
189 #include "lmdb.h"
190 #include "midl.h"
191 
192 #if (BYTE_ORDER == LITTLE_ENDIAN) == (BYTE_ORDER == BIG_ENDIAN)
193 # error "Unknown or unsupported endianness (BYTE_ORDER)"
194 #elif (-6 & 5) || CHAR_BIT != 8 || UINT_MAX < 0xffffffff || ULONG_MAX % 0xFFFF
195 # error "Two's complement, reasonably sized integer types, please"
196 #endif
197 
198 #ifdef __GNUC__
199 /** Put infrequently used env functions in separate section */
200 # ifdef __APPLE__
201 #  define	ESECT	__attribute__ ((section("__TEXT,text_env")))
202 # else
203 #  define	ESECT	__attribute__ ((section("text_env")))
204 # endif
205 #else
206 #define ESECT
207 #endif
208 
209 #ifdef _WIN32
210 #define CALL_CONV WINAPI
211 #else
212 #define CALL_CONV
213 #endif
214 
215 /** @defgroup internal	LMDB Internals
216  *	@{
217  */
218 /** @defgroup compat	Compatibility Macros
219  *	A bunch of macros to minimize the amount of platform-specific ifdefs
220  *	needed throughout the rest of the code. When the features this library
221  *	needs are similar enough to POSIX to be hidden in a one-or-two line
222  *	replacement, this macro approach is used.
223  *	@{
224  */
225 
226 	/** Features under development */
227 #ifndef MDB_DEVEL
228 #define MDB_DEVEL 0
229 #endif
230 
231 	/** Wrapper around __func__, which is a C99 feature */
232 #if __STDC_VERSION__ >= 199901L
233 # define mdb_func_	__func__
234 #elif __GNUC__ >= 2 || _MSC_VER >= 1300
235 # define mdb_func_	__FUNCTION__
236 #else
237 /* If a debug message says <mdb_unknown>(), update the #if statements above */
238 # define mdb_func_	"<mdb_unknown>"
239 #endif
240 
241 /* Internal error codes, not exposed outside liblmdb */
242 #define	MDB_NO_ROOT		(MDB_LAST_ERRCODE + 10)
243 #ifdef _WIN32
244 #define MDB_OWNERDEAD	((int) WAIT_ABANDONED)
245 #elif defined(MDB_USE_POSIX_MUTEX) && defined(EOWNERDEAD)
246 #define MDB_OWNERDEAD	EOWNERDEAD	/**< #LOCK_MUTEX0() result if dead owner */
247 #endif
248 
249 #ifdef __GLIBC__
250 #define	GLIBC_VER	((__GLIBC__ << 16 )| __GLIBC_MINOR__)
251 #endif
252 /** Some platforms define the EOWNERDEAD error code
253  * even though they don't support Robust Mutexes.
254  * Compile with -DMDB_USE_ROBUST=0, or use some other
255  * mechanism like -DMDB_USE_POSIX_SEM instead of
256  * -DMDB_USE_POSIX_MUTEX.
257  * (Posix semaphores are not robust.)
258  */
259 #ifndef MDB_USE_ROBUST
260 /* Android currently lacks Robust Mutex support. So does glibc < 2.4. */
261 # if defined(MDB_USE_POSIX_MUTEX) && (defined(ANDROID) || \
262 	(defined(__GLIBC__) && GLIBC_VER < 0x020004))
263 #  define MDB_USE_ROBUST	0
264 # else
265 #  define MDB_USE_ROBUST	1
266 # endif
267 #endif /* !MDB_USE_ROBUST */
268 
269 #if defined(MDB_USE_POSIX_MUTEX) && (MDB_USE_ROBUST)
270 /* glibc < 2.12 only provided _np API */
271 #  if (defined(__GLIBC__) && GLIBC_VER < 0x02000c) || \
272 	(defined(PTHREAD_MUTEX_ROBUST_NP) && !defined(PTHREAD_MUTEX_ROBUST))
273 #   define PTHREAD_MUTEX_ROBUST	PTHREAD_MUTEX_ROBUST_NP
274 #   define pthread_mutexattr_setrobust(attr, flag)	pthread_mutexattr_setrobust_np(attr, flag)
275 #   define pthread_mutex_consistent(mutex)	pthread_mutex_consistent_np(mutex)
276 #  endif
277 #endif /* MDB_USE_POSIX_MUTEX && MDB_USE_ROBUST */
278 
279 #if defined(MDB_OWNERDEAD) && (MDB_USE_ROBUST)
280 #define MDB_ROBUST_SUPPORTED	1
281 #endif
282 
283 #ifdef _WIN32
284 #define MDB_USE_HASH	1
285 #define MDB_PIDLOCK	0
286 #define THREAD_RET	DWORD
287 #define pthread_t	HANDLE
288 #define pthread_mutex_t	HANDLE
289 #define pthread_cond_t	HANDLE
290 typedef HANDLE mdb_mutex_t, mdb_mutexref_t;
291 #define pthread_key_t	DWORD
292 #define pthread_self()	GetCurrentThreadId()
293 #define pthread_key_create(x,y)	\
294 	((*(x) = TlsAlloc()) == TLS_OUT_OF_INDEXES ? ErrCode() : 0)
295 #define pthread_key_delete(x)	TlsFree(x)
296 #define pthread_getspecific(x)	TlsGetValue(x)
297 #define pthread_setspecific(x,y)	(TlsSetValue(x,y) ? 0 : ErrCode())
298 #define pthread_mutex_unlock(x)	ReleaseMutex(*x)
299 #define pthread_mutex_lock(x)	WaitForSingleObject(*x, INFINITE)
300 #define pthread_cond_signal(x)	SetEvent(*x)
301 #define pthread_cond_wait(cond,mutex)	do{SignalObjectAndWait(*mutex, *cond, INFINITE, FALSE); WaitForSingleObject(*mutex, INFINITE);}while(0)
302 #define THREAD_CREATE(thr,start,arg) \
303 	(((thr) = CreateThread(NULL, 0, start, arg, 0, NULL)) ? 0 : ErrCode())
304 #define THREAD_FINISH(thr) \
305 	(WaitForSingleObject(thr, INFINITE) ? ErrCode() : 0)
306 #define LOCK_MUTEX0(mutex)		WaitForSingleObject(mutex, INFINITE)
307 #define UNLOCK_MUTEX(mutex)		ReleaseMutex(mutex)
308 #define mdb_mutex_consistent(mutex)	0
309 #define getpid()	GetCurrentProcessId()
310 #define	MDB_FDATASYNC(fd)	(!FlushFileBuffers(fd))
311 #define	MDB_MSYNC(addr,len,flags)	(!FlushViewOfFile(addr,len))
312 #define	ErrCode()	GetLastError()
313 #define GET_PAGESIZE(x) {SYSTEM_INFO si; GetSystemInfo(&si); (x) = si.dwPageSize;}
314 #define	close(fd)	(CloseHandle(fd) ? 0 : -1)
315 #define	munmap(ptr,len)	UnmapViewOfFile(ptr)
316 #ifdef PROCESS_QUERY_LIMITED_INFORMATION
317 #define MDB_PROCESS_QUERY_LIMITED_INFORMATION PROCESS_QUERY_LIMITED_INFORMATION
318 #else
319 #define MDB_PROCESS_QUERY_LIMITED_INFORMATION 0x1000
320 #endif
321 #define	Z	"I"
322 #else
323 #define THREAD_RET	void *
324 #define THREAD_CREATE(thr,start,arg)	pthread_create(&thr,NULL,start,arg)
325 #define THREAD_FINISH(thr)	pthread_join(thr,NULL)
326 #define	Z	"z"			/**< printf format modifier for size_t */
327 
328 	/** For MDB_LOCK_FORMAT: True if readers take a pid lock in the lockfile */
329 #define MDB_PIDLOCK			1
330 
331 #ifdef MDB_USE_POSIX_SEM
332 
333 typedef sem_t *mdb_mutex_t, *mdb_mutexref_t;
334 #define LOCK_MUTEX0(mutex)		mdb_sem_wait(mutex)
335 #define UNLOCK_MUTEX(mutex)		sem_post(mutex)
336 
337 static int
338 mdb_sem_wait(sem_t *sem)
339 {
340    int rc;
341    while ((rc = sem_wait(sem)) && (rc = errno) == EINTR) ;
342    return rc;
343 }
344 
345 #else	/* MDB_USE_POSIX_MUTEX: */
346 	/** Shared mutex/semaphore as the original is stored.
347 	 *
348 	 *	Not for copies.  Instead it can be assigned to an #mdb_mutexref_t.
349 	 *	When mdb_mutexref_t is a pointer and mdb_mutex_t is not, then it
350 	 *	is array[size 1] so it can be assigned to the pointer.
351 	 */
352 typedef pthread_mutex_t mdb_mutex_t[1];
353 	/** Reference to an #mdb_mutex_t */
354 typedef pthread_mutex_t *mdb_mutexref_t;
355 	/** Lock the reader or writer mutex.
356 	 *	Returns 0 or a code to give #mdb_mutex_failed(), as in #LOCK_MUTEX().
357 	 */
358 #define LOCK_MUTEX0(mutex)	pthread_mutex_lock(mutex)
359 	/** Unlock the reader or writer mutex.
360 	 */
361 #define UNLOCK_MUTEX(mutex)	pthread_mutex_unlock(mutex)
362 	/** Mark mutex-protected data as repaired, after death of previous owner.
363 	 */
364 #define mdb_mutex_consistent(mutex)	pthread_mutex_consistent(mutex)
365 #endif	/* MDB_USE_POSIX_SEM */
366 
367 	/** Get the error code for the last failed system function.
368 	 */
369 #define	ErrCode()	errno
370 
371 	/** An abstraction for a file handle.
372 	 *	On POSIX systems file handles are small integers. On Windows
373 	 *	they're opaque pointers.
374 	 */
375 #define	HANDLE	int
376 
377 	/**	A value for an invalid file handle.
378 	 *	Mainly used to initialize file variables and signify that they are
379 	 *	unused.
380 	 */
381 #define INVALID_HANDLE_VALUE	(-1)
382 
383 	/** Get the size of a memory page for the system.
384 	 *	This is the basic size that the platform's memory manager uses, and is
385 	 *	fundamental to the use of memory-mapped files.
386 	 */
387 #define	GET_PAGESIZE(x)	((x) = sysconf(_SC_PAGE_SIZE))
388 #endif
389 
390 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
391 #define MNAME_LEN	32
392 #else
393 #define MNAME_LEN	(sizeof(pthread_mutex_t))
394 #endif
395 
396 /** @} */
397 
398 #ifdef MDB_ROBUST_SUPPORTED
399 	/** Lock mutex, handle any error, set rc = result.
400 	 *	Return 0 on success, nonzero (not rc) on error.
401 	 */
402 #define LOCK_MUTEX(rc, env, mutex) \
403 	(((rc) = LOCK_MUTEX0(mutex)) && \
404 	 ((rc) = mdb_mutex_failed(env, mutex, rc)))
405 static int mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc);
406 #else
407 #define LOCK_MUTEX(rc, env, mutex) ((rc) = LOCK_MUTEX0(mutex))
408 #define mdb_mutex_failed(env, mutex, rc) (rc)
409 #endif
410 
411 #ifndef _WIN32
412 /**	A flag for opening a file and requesting synchronous data writes.
413  *	This is only used when writing a meta page. It's not strictly needed;
414  *	we could just do a normal write and then immediately perform a flush.
415  *	But if this flag is available it saves us an extra system call.
416  *
417  *	@note If O_DSYNC is undefined but exists in /usr/include,
418  * preferably set some compiler flag to get the definition.
419  */
420 #ifndef MDB_DSYNC
421 # ifdef O_DSYNC
422 # define MDB_DSYNC	O_DSYNC
423 # else
424 # define MDB_DSYNC	O_SYNC
425 # endif
426 #endif
427 #endif
428 
429 /** Function for flushing the data of a file. Define this to fsync
430  *	if fdatasync() is not supported.
431  */
432 #ifndef MDB_FDATASYNC
433 # define MDB_FDATASYNC	fdatasync
434 #endif
435 
436 #ifndef MDB_MSYNC
437 # define MDB_MSYNC(addr,len,flags)	msync(addr,len,flags)
438 #endif
439 
440 #ifndef MS_SYNC
441 #define	MS_SYNC	1
442 #endif
443 
444 #ifndef MS_ASYNC
445 #define	MS_ASYNC	0
446 #endif
447 
448 	/** A page number in the database.
449 	 *	Note that 64 bit page numbers are overkill, since pages themselves
450 	 *	already represent 12-13 bits of addressable memory, and the OS will
451 	 *	always limit applications to a maximum of 63 bits of address space.
452 	 *
453 	 *	@note In the #MDB_node structure, we only store 48 bits of this value,
454 	 *	which thus limits us to only 60 bits of addressable data.
455 	 */
456 typedef MDB_ID	pgno_t;
457 
458 	/** A transaction ID.
459 	 *	See struct MDB_txn.mt_txnid for details.
460 	 */
461 typedef MDB_ID	txnid_t;
462 
463 /** @defgroup debug	Debug Macros
464  *	@{
465  */
466 #ifndef MDB_DEBUG
467 	/**	Enable debug output.  Needs variable argument macros (a C99 feature).
468 	 *	Set this to 1 for copious tracing. Set to 2 to add dumps of all IDLs
469 	 *	read from and written to the database (used for free space management).
470 	 */
471 #define MDB_DEBUG 0
472 #endif
473 
474 #if MDB_DEBUG
475 static int mdb_debug;
476 static txnid_t mdb_debug_start;
477 
478 	/**	Print a debug message with printf formatting.
479 	 *	Requires double parenthesis around 2 or more args.
480 	 */
481 # define DPRINTF(args) ((void) ((mdb_debug) && DPRINTF0 args))
482 # define DPRINTF0(fmt, ...) \
483 	fprintf(stderr, "%s:%d " fmt "\n", mdb_func_, __LINE__, __VA_ARGS__)
484 #else
485 # define DPRINTF(args)	((void) 0)
486 #endif
487 	/**	Print a debug string.
488 	 *	The string is printed literally, with no format processing.
489 	 */
490 #define DPUTS(arg)	DPRINTF(("%s", arg))
491 	/** Debuging output value of a cursor DBI: Negative in a sub-cursor. */
492 #define DDBI(mc) \
493 	(((mc)->mc_flags & C_SUB) ? -(int)(mc)->mc_dbi : (int)(mc)->mc_dbi)
494 /** @} */
495 
496 	/**	@brief The maximum size of a database page.
497 	 *
498 	 *	It is 32k or 64k, since value-PAGEBASE must fit in
499 	 *	#MDB_page.%mp_upper.
500 	 *
501 	 *	LMDB will use database pages < OS pages if needed.
502 	 *	That causes more I/O in write transactions: The OS must
503 	 *	know (read) the whole page before writing a partial page.
504 	 *
505 	 *	Note that we don't currently support Huge pages. On Linux,
506 	 *	regular data files cannot use Huge pages, and in general
507 	 *	Huge pages aren't actually pageable. We rely on the OS
508 	 *	demand-pager to read our data and page it out when memory
509 	 *	pressure from other processes is high. So until OSs have
510 	 *	actual paging support for Huge pages, they're not viable.
511 	 */
512 #define MAX_PAGESIZE	 (PAGEBASE ? 0x10000 : 0x8000)
513 
514 	/** The minimum number of keys required in a database page.
515 	 *	Setting this to a larger value will place a smaller bound on the
516 	 *	maximum size of a data item. Data items larger than this size will
517 	 *	be pushed into overflow pages instead of being stored directly in
518 	 *	the B-tree node. This value used to default to 4. With a page size
519 	 *	of 4096 bytes that meant that any item larger than 1024 bytes would
520 	 *	go into an overflow page. That also meant that on average 2-3KB of
521 	 *	each overflow page was wasted space. The value cannot be lower than
522 	 *	2 because then there would no longer be a tree structure. With this
523 	 *	value, items larger than 2KB will go into overflow pages, and on
524 	 *	average only 1KB will be wasted.
525 	 */
526 #define MDB_MINKEYS	 2
527 
528 	/**	A stamp that identifies a file as an LMDB file.
529 	 *	There's nothing special about this value other than that it is easily
530 	 *	recognizable, and it will reflect any byte order mismatches.
531 	 */
532 #define MDB_MAGIC	 0xBEEFC0DE
533 
534 	/**	The version number for a database's datafile format. */
535 #define MDB_DATA_VERSION	 ((MDB_DEVEL) ? 999 : 1)
536 	/**	The version number for a database's lockfile format. */
537 #define MDB_LOCK_VERSION	 1
538 
539 	/**	@brief The max size of a key we can write, or 0 for computed max.
540 	 *
541 	 *	This macro should normally be left alone or set to 0.
542 	 *	Note that a database with big keys or dupsort data cannot be
543 	 *	reliably modified by a liblmdb which uses a smaller max.
544 	 *	The default is 511 for backwards compat, or 0 when #MDB_DEVEL.
545 	 *
546 	 *	Other values are allowed, for backwards compat.  However:
547 	 *	A value bigger than the computed max can break if you do not
548 	 *	know what you are doing, and liblmdb <= 0.9.10 can break when
549 	 *	modifying a DB with keys/dupsort data bigger than its max.
550 	 *
551 	 *	Data items in an #MDB_DUPSORT database are also limited to
552 	 *	this size, since they're actually keys of a sub-DB.  Keys and
553 	 *	#MDB_DUPSORT data items must fit on a node in a regular page.
554 	 */
555 #ifndef MDB_MAXKEYSIZE
556 #define MDB_MAXKEYSIZE	 ((MDB_DEVEL) ? 0 : 511)
557 #endif
558 
559 	/**	The maximum size of a key we can write to the environment. */
560 #if MDB_MAXKEYSIZE
561 #define ENV_MAXKEY(env)	(MDB_MAXKEYSIZE)
562 #else
563 #define ENV_MAXKEY(env)	((env)->me_maxkey)
564 #endif
565 
566 	/**	@brief The maximum size of a data item.
567 	 *
568 	 *	We only store a 32 bit value for node sizes.
569 	 */
570 #define MAXDATASIZE	0xffffffffUL
571 
572 #if MDB_DEBUG
573 	/**	Key size which fits in a #DKBUF.
574 	 *	@ingroup debug
575 	 */
576 #define DKBUF_MAXKEYSIZE ((MDB_MAXKEYSIZE) > 0 ? (MDB_MAXKEYSIZE) : 511)
577 	/**	A key buffer.
578 	 *	@ingroup debug
579 	 *	This is used for printing a hex dump of a key's contents.
580 	 */
581 #define DKBUF	char kbuf[DKBUF_MAXKEYSIZE*2+1]
582 	/**	Display a key in hex.
583 	 *	@ingroup debug
584 	 *	Invoke a function to display a key in hex.
585 	 */
586 #define	DKEY(x)	mdb_dkey(x, kbuf)
587 #else
588 #define	DKBUF
589 #define DKEY(x)	0
590 #endif
591 
592 	/** An invalid page number.
593 	 *	Mainly used to denote an empty tree.
594 	 */
595 #define P_INVALID	 (~(pgno_t)0)
596 
597 	/** Test if the flags \b f are set in a flag word \b w. */
598 #define F_ISSET(w, f)	 (((w) & (f)) == (f))
599 
600 	/** Round \b n up to an even number. */
601 #define EVEN(n)		(((n) + 1U) & -2) /* sign-extending -2 to match n+1U */
602 
603 	/**	Used for offsets within a single page.
604 	 *	Since memory pages are typically 4 or 8KB in size, 12-13 bits,
605 	 *	this is plenty.
606 	 */
607 typedef uint16_t	 indx_t;
608 
609 	/**	Default size of memory map.
610 	 *	This is certainly too small for any actual applications. Apps should always set
611 	 *	the size explicitly using #mdb_env_set_mapsize().
612 	 */
613 #define DEFAULT_MAPSIZE	1048576
614 
615 /**	@defgroup readers	Reader Lock Table
616  *	Readers don't acquire any locks for their data access. Instead, they
617  *	simply record their transaction ID in the reader table. The reader
618  *	mutex is needed just to find an empty slot in the reader table. The
619  *	slot's address is saved in thread-specific data so that subsequent read
620  *	transactions started by the same thread need no further locking to proceed.
621  *
622  *	If #MDB_NOTLS is set, the slot address is not saved in thread-specific data.
623  *
624  *	No reader table is used if the database is on a read-only filesystem, or
625  *	if #MDB_NOLOCK is set.
626  *
627  *	Since the database uses multi-version concurrency control, readers don't
628  *	actually need any locking. This table is used to keep track of which
629  *	readers are using data from which old transactions, so that we'll know
630  *	when a particular old transaction is no longer in use. Old transactions
631  *	that have discarded any data pages can then have those pages reclaimed
632  *	for use by a later write transaction.
633  *
634  *	The lock table is constructed such that reader slots are aligned with the
635  *	processor's cache line size. Any slot is only ever used by one thread.
636  *	This alignment guarantees that there will be no contention or cache
637  *	thrashing as threads update their own slot info, and also eliminates
638  *	any need for locking when accessing a slot.
639  *
640  *	A writer thread will scan every slot in the table to determine the oldest
641  *	outstanding reader transaction. Any freed pages older than this will be
642  *	reclaimed by the writer. The writer doesn't use any locks when scanning
643  *	this table. This means that there's no guarantee that the writer will
644  *	see the most up-to-date reader info, but that's not required for correct
645  *	operation - all we need is to know the upper bound on the oldest reader,
646  *	we don't care at all about the newest reader. So the only consequence of
647  *	reading stale information here is that old pages might hang around a
648  *	while longer before being reclaimed. That's actually good anyway, because
649  *	the longer we delay reclaiming old pages, the more likely it is that a
650  *	string of contiguous pages can be found after coalescing old pages from
651  *	many old transactions together.
652  *	@{
653  */
654 	/**	Number of slots in the reader table.
655 	 *	This value was chosen somewhat arbitrarily. 126 readers plus a
656 	 *	couple mutexes fit exactly into 8KB on my development machine.
657 	 *	Applications should set the table size using #mdb_env_set_maxreaders().
658 	 */
659 #define DEFAULT_READERS	126
660 
661 	/**	The size of a CPU cache line in bytes. We want our lock structures
662 	 *	aligned to this size to avoid false cache line sharing in the
663 	 *	lock table.
664 	 *	This value works for most CPUs. For Itanium this should be 128.
665 	 */
666 #ifndef CACHELINE
667 #define CACHELINE	64
668 #endif
669 
670 	/**	The information we store in a single slot of the reader table.
671 	 *	In addition to a transaction ID, we also record the process and
672 	 *	thread ID that owns a slot, so that we can detect stale information,
673 	 *	e.g. threads or processes that went away without cleaning up.
674 	 *	@note We currently don't check for stale records. We simply re-init
675 	 *	the table when we know that we're the only process opening the
676 	 *	lock file.
677 	 */
678 typedef struct MDB_rxbody {
679 	/**	Current Transaction ID when this transaction began, or (txnid_t)-1.
680 	 *	Multiple readers that start at the same time will probably have the
681 	 *	same ID here. Again, it's not important to exclude them from
682 	 *	anything; all we need to know is which version of the DB they
683 	 *	started from so we can avoid overwriting any data used in that
684 	 *	particular version.
685 	 */
686 	volatile txnid_t		mrb_txnid;
687 	/** The process ID of the process owning this reader txn. */
688 	volatile MDB_PID_T	mrb_pid;
689 	/** The thread ID of the thread owning this txn. */
690 	volatile MDB_THR_T	mrb_tid;
691 } MDB_rxbody;
692 
693 	/** The actual reader record, with cacheline padding. */
694 typedef struct MDB_reader {
695 	union {
696 		MDB_rxbody mrx;
697 		/** shorthand for mrb_txnid */
698 #define	mr_txnid	mru.mrx.mrb_txnid
699 #define	mr_pid	mru.mrx.mrb_pid
700 #define	mr_tid	mru.mrx.mrb_tid
701 		/** cache line alignment */
702 		char pad[(sizeof(MDB_rxbody)+CACHELINE-1) & ~(CACHELINE-1)];
703 	} mru;
704 } MDB_reader;
705 
706 	/** The header for the reader table.
707 	 *	The table resides in a memory-mapped file. (This is a different file
708 	 *	than is used for the main database.)
709 	 *
710 	 *	For POSIX the actual mutexes reside in the shared memory of this
711 	 *	mapped file. On Windows, mutexes are named objects allocated by the
712 	 *	kernel; we store the mutex names in this mapped file so that other
713 	 *	processes can grab them. This same approach is also used on
714 	 *	MacOSX/Darwin (using named semaphores) since MacOSX doesn't support
715 	 *	process-shared POSIX mutexes. For these cases where a named object
716 	 *	is used, the object name is derived from a 64 bit FNV hash of the
717 	 *	environment pathname. As such, naming collisions are extremely
718 	 *	unlikely. If a collision occurs, the results are unpredictable.
719 	 */
720 typedef struct MDB_txbody {
721 		/** Stamp identifying this as an LMDB file. It must be set
722 		 *	to #MDB_MAGIC. */
723 	uint32_t	mtb_magic;
724 		/** Format of this lock file. Must be set to #MDB_LOCK_FORMAT. */
725 	uint32_t	mtb_format;
726 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
727 	char	mtb_rmname[MNAME_LEN];
728 #else
729 		/** Mutex protecting access to this table.
730 		 *	This is the reader table lock used with LOCK_MUTEX().
731 		 */
732 	mdb_mutex_t	mtb_rmutex;
733 #endif
734 		/**	The ID of the last transaction committed to the database.
735 		 *	This is recorded here only for convenience; the value can always
736 		 *	be determined by reading the main database meta pages.
737 		 */
738 	volatile txnid_t		mtb_txnid;
739 		/** The number of slots that have been used in the reader table.
740 		 *	This always records the maximum count, it is not decremented
741 		 *	when readers release their slots.
742 		 */
743 	volatile unsigned	mtb_numreaders;
744 } MDB_txbody;
745 
746 	/** The actual reader table definition. */
747 typedef struct MDB_txninfo {
748 	union {
749 		MDB_txbody mtb;
750 #define mti_magic	mt1.mtb.mtb_magic
751 #define mti_format	mt1.mtb.mtb_format
752 #define mti_rmutex	mt1.mtb.mtb_rmutex
753 #define mti_rmname	mt1.mtb.mtb_rmname
754 #define mti_txnid	mt1.mtb.mtb_txnid
755 #define mti_numreaders	mt1.mtb.mtb_numreaders
756 		char pad[(sizeof(MDB_txbody)+CACHELINE-1) & ~(CACHELINE-1)];
757 	} mt1;
758 	union {
759 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
760 		char mt2_wmname[MNAME_LEN];
761 #define	mti_wmname	mt2.mt2_wmname
762 #else
763 		mdb_mutex_t	mt2_wmutex;
764 #define mti_wmutex	mt2.mt2_wmutex
765 #endif
766 		char pad[(MNAME_LEN+CACHELINE-1) & ~(CACHELINE-1)];
767 	} mt2;
768 	MDB_reader	mti_readers[1];
769 } MDB_txninfo;
770 
771 	/** Lockfile format signature: version, features and field layout */
772 #define MDB_LOCK_FORMAT \
773 	((uint32_t) \
774 	 ((MDB_LOCK_VERSION) \
775 	  /* Flags which describe functionality */ \
776 	  + (((MDB_PIDLOCK) != 0) << 16)))
777 /** @} */
778 
779 /** Common header for all page types. The page type depends on #mp_flags.
780  *
781  * #P_BRANCH and #P_LEAF pages have unsorted '#MDB_node's at the end, with
782  * sorted #mp_ptrs[] entries referring to them. Exception: #P_LEAF2 pages
783  * omit mp_ptrs and pack sorted #MDB_DUPFIXED values after the page header.
784  *
785  * #P_OVERFLOW records occupy one or more contiguous pages where only the
786  * first has a page header. They hold the real data of #F_BIGDATA nodes.
787  *
788  * #P_SUBP sub-pages are small leaf "pages" with duplicate data.
789  * A node with flag #F_DUPDATA but not #F_SUBDATA contains a sub-page.
790  * (Duplicate data can also go in sub-databases, which use normal pages.)
791  *
792  * #P_META pages contain #MDB_meta, the start point of an LMDB snapshot.
793  *
794  * Each non-metapage up to #MDB_meta.%mm_last_pg is reachable exactly once
795  * in the snapshot: Either used by a database or listed in a freeDB record.
796  */
797 typedef struct MDB_page {
798 #define	mp_pgno	mp_p.p_pgno
799 #define	mp_next	mp_p.p_next
800 	union {
801 		pgno_t		p_pgno;	/**< page number */
802 		struct MDB_page *p_next; /**< for in-memory list of freed pages */
803 	} mp_p;
804 	uint16_t	mp_pad;			/**< key size if this is a LEAF2 page */
805 /**	@defgroup mdb_page	Page Flags
806  *	@ingroup internal
807  *	Flags for the page headers.
808  *	@{
809  */
810 #define	P_BRANCH	 0x01		/**< branch page */
811 #define	P_LEAF		 0x02		/**< leaf page */
812 #define	P_OVERFLOW	 0x04		/**< overflow page */
813 #define	P_META		 0x08		/**< meta page */
814 #define	P_DIRTY		 0x10		/**< dirty page, also set for #P_SUBP pages */
815 #define	P_LEAF2		 0x20		/**< for #MDB_DUPFIXED records */
816 #define	P_SUBP		 0x40		/**< for #MDB_DUPSORT sub-pages */
817 #define	P_LOOSE		 0x4000		/**< page was dirtied then freed, can be reused */
818 #define	P_KEEP		 0x8000		/**< leave this page alone during spill */
819 /** @} */
820 	uint16_t	mp_flags;		/**< @ref mdb_page */
821 #define mp_lower	mp_pb.pb.pb_lower
822 #define mp_upper	mp_pb.pb.pb_upper
823 #define mp_pages	mp_pb.pb_pages
824 	union {
825 		struct {
826 			indx_t		pb_lower;		/**< lower bound of free space */
827 			indx_t		pb_upper;		/**< upper bound of free space */
828 		} pb;
829 		uint32_t	pb_pages;	/**< number of overflow pages */
830 	} mp_pb;
831 	indx_t		mp_ptrs[1];		/**< dynamic size */
832 } MDB_page;
833 
834 	/** Size of the page header, excluding dynamic data at the end */
835 #define PAGEHDRSZ	 ((unsigned) offsetof(MDB_page, mp_ptrs))
836 
837 	/** Address of first usable data byte in a page, after the header */
838 #define METADATA(p)	 ((void *)((char *)(p) + PAGEHDRSZ))
839 
840 	/** ITS#7713, change PAGEBASE to handle 65536 byte pages */
841 #define	PAGEBASE	((MDB_DEVEL) ? PAGEHDRSZ : 0)
842 
843 	/** Number of nodes on a page */
844 #define NUMKEYS(p)	 (((p)->mp_lower - (PAGEHDRSZ-PAGEBASE)) >> 1)
845 
846 	/** The amount of space remaining in the page */
847 #define SIZELEFT(p)	 (indx_t)((p)->mp_upper - (p)->mp_lower)
848 
849 	/** The percentage of space used in the page, in tenths of a percent. */
850 #define PAGEFILL(env, p) (1000L * ((env)->me_psize - PAGEHDRSZ - SIZELEFT(p)) / \
851 				((env)->me_psize - PAGEHDRSZ))
852 	/** The minimum page fill factor, in tenths of a percent.
853 	 *	Pages emptier than this are candidates for merging.
854 	 */
855 #define FILL_THRESHOLD	 250
856 
857 	/** Test if a page is a leaf page */
858 #define IS_LEAF(p)	 F_ISSET((p)->mp_flags, P_LEAF)
859 	/** Test if a page is a LEAF2 page */
860 #define IS_LEAF2(p)	 F_ISSET((p)->mp_flags, P_LEAF2)
861 	/** Test if a page is a branch page */
862 #define IS_BRANCH(p)	 F_ISSET((p)->mp_flags, P_BRANCH)
863 	/** Test if a page is an overflow page */
864 #define IS_OVERFLOW(p)	 F_ISSET((p)->mp_flags, P_OVERFLOW)
865 	/** Test if a page is a sub page */
866 #define IS_SUBP(p)	 F_ISSET((p)->mp_flags, P_SUBP)
867 
868 	/** The number of overflow pages needed to store the given size. */
869 #define OVPAGES(size, psize)	((PAGEHDRSZ-1 + (size)) / (psize) + 1)
870 
871 	/** Link in #MDB_txn.%mt_loose_pgs list.
872 	 *  Kept outside the page header, which is needed when reusing the page.
873 	 */
874 #define NEXT_LOOSE_PAGE(p)		(*(MDB_page **)((p) + 2))
875 
876 	/** Header for a single key/data pair within a page.
877 	 * Used in pages of type #P_BRANCH and #P_LEAF without #P_LEAF2.
878 	 * We guarantee 2-byte alignment for 'MDB_node's.
879 	 *
880 	 * #mn_lo and #mn_hi are used for data size on leaf nodes, and for child
881 	 * pgno on branch nodes.  On 64 bit platforms, #mn_flags is also used
882 	 * for pgno.  (Branch nodes have no flags).  Lo and hi are in host byte
883 	 * order in case some accesses can be optimized to 32-bit word access.
884 	 *
885 	 * Leaf node flags describe node contents.  #F_BIGDATA says the node's
886 	 * data part is the page number of an overflow page with actual data.
887 	 * #F_DUPDATA and #F_SUBDATA can be combined giving duplicate data in
888 	 * a sub-page/sub-database, and named databases (just #F_SUBDATA).
889 	 */
890 typedef struct MDB_node {
891 	/** part of data size or pgno
892 	 *	@{ */
893 #if BYTE_ORDER == LITTLE_ENDIAN
894 	unsigned short	mn_lo, mn_hi;
895 #else
896 	unsigned short	mn_hi, mn_lo;
897 #endif
898 	/** @} */
899 /** @defgroup mdb_node Node Flags
900  *	@ingroup internal
901  *	Flags for node headers.
902  *	@{
903  */
904 #define F_BIGDATA	 0x01			/**< data put on overflow page */
905 #define F_SUBDATA	 0x02			/**< data is a sub-database */
906 #define F_DUPDATA	 0x04			/**< data has duplicates */
907 
908 /** valid flags for #mdb_node_add() */
909 #define	NODE_ADD_FLAGS	(F_DUPDATA|F_SUBDATA|MDB_RESERVE|MDB_APPEND)
910 
911 /** @} */
912 	unsigned short	mn_flags;		/**< @ref mdb_node */
913 	unsigned short	mn_ksize;		/**< key size */
914 	char		mn_data[1];			/**< key and data are appended here */
915 } MDB_node;
916 
917 	/** Size of the node header, excluding dynamic data at the end */
918 #define NODESIZE	 offsetof(MDB_node, mn_data)
919 
920 	/** Bit position of top word in page number, for shifting mn_flags */
921 #define PGNO_TOPWORD ((pgno_t)-1 > 0xffffffffu ? 32 : 0)
922 
923 	/** Size of a node in a branch page with a given key.
924 	 *	This is just the node header plus the key, there is no data.
925 	 */
926 #define INDXSIZE(k)	 (NODESIZE + ((k) == NULL ? 0 : (k)->mv_size))
927 
928 	/** Size of a node in a leaf page with a given key and data.
929 	 *	This is node header plus key plus data size.
930 	 */
931 #define LEAFSIZE(k, d)	 (NODESIZE + (k)->mv_size + (d)->mv_size)
932 
933 	/** Address of node \b i in page \b p */
934 #define NODEPTR(p, i)	 ((MDB_node *)((char *)(p) + (p)->mp_ptrs[i] + PAGEBASE))
935 
936 	/** Address of the key for the node */
937 #define NODEKEY(node)	 (void *)((node)->mn_data)
938 
939 	/** Address of the data for a node */
940 #define NODEDATA(node)	 (void *)((char *)(node)->mn_data + (node)->mn_ksize)
941 
942 	/** Get the page number pointed to by a branch node */
943 #define NODEPGNO(node) \
944 	((node)->mn_lo | ((pgno_t) (node)->mn_hi << 16) | \
945 	 (PGNO_TOPWORD ? ((pgno_t) (node)->mn_flags << PGNO_TOPWORD) : 0))
946 	/** Set the page number in a branch node */
947 #define SETPGNO(node,pgno)	do { \
948 	(node)->mn_lo = (pgno) & 0xffff; (node)->mn_hi = (pgno) >> 16; \
949 	if (PGNO_TOPWORD) (node)->mn_flags = (pgno) >> PGNO_TOPWORD; } while(0)
950 
951 	/** Get the size of the data in a leaf node */
952 #define NODEDSZ(node)	 ((node)->mn_lo | ((unsigned)(node)->mn_hi << 16))
953 	/** Set the size of the data for a leaf node */
954 #define SETDSZ(node,size)	do { \
955 	(node)->mn_lo = (size) & 0xffff; (node)->mn_hi = (size) >> 16;} while(0)
956 	/** The size of a key in a node */
957 #define NODEKSZ(node)	 ((node)->mn_ksize)
958 
959 	/** Copy a page number from src to dst */
960 #ifdef MISALIGNED_OK
961 #define COPY_PGNO(dst,src)	dst = src
962 #else
963 #if SIZE_MAX > 4294967295UL
964 #define COPY_PGNO(dst,src)	do { \
965 	unsigned short *s, *d;	\
966 	s = (unsigned short *)&(src);	\
967 	d = (unsigned short *)&(dst);	\
968 	*d++ = *s++;	\
969 	*d++ = *s++;	\
970 	*d++ = *s++;	\
971 	*d = *s;	\
972 } while (0)
973 #else
974 #define COPY_PGNO(dst,src)	do { \
975 	unsigned short *s, *d;	\
976 	s = (unsigned short *)&(src);	\
977 	d = (unsigned short *)&(dst);	\
978 	*d++ = *s++;	\
979 	*d = *s;	\
980 } while (0)
981 #endif
982 #endif
983 	/** The address of a key in a LEAF2 page.
984 	 *	LEAF2 pages are used for #MDB_DUPFIXED sorted-duplicate sub-DBs.
985 	 *	There are no node headers, keys are stored contiguously.
986 	 */
987 #define LEAF2KEY(p, i, ks)	((char *)(p) + PAGEHDRSZ + ((i)*(ks)))
988 
989 	/** Set the \b node's key into \b keyptr, if requested. */
990 #define MDB_GET_KEY(node, keyptr)	{ if ((keyptr) != NULL) { \
991 	(keyptr)->mv_size = NODEKSZ(node); (keyptr)->mv_data = NODEKEY(node); } }
992 
993 	/** Set the \b node's key into \b key. */
994 #define MDB_GET_KEY2(node, key)	{ key.mv_size = NODEKSZ(node); key.mv_data = NODEKEY(node); }
995 
996 	/** Information about a single database in the environment. */
997 typedef struct MDB_db {
998 	uint32_t	md_pad;		/**< also ksize for LEAF2 pages */
999 	uint16_t	md_flags;	/**< @ref mdb_dbi_open */
1000 	uint16_t	md_depth;	/**< depth of this tree */
1001 	pgno_t		md_branch_pages;	/**< number of internal pages */
1002 	pgno_t		md_leaf_pages;		/**< number of leaf pages */
1003 	pgno_t		md_overflow_pages;	/**< number of overflow pages */
1004 	size_t		md_entries;		/**< number of data items */
1005 	pgno_t		md_root;		/**< the root page of this tree */
1006 } MDB_db;
1007 
1008 #define MDB_VALID	0x8000		/**< DB handle is valid, for me_dbflags */
1009 #define PERSISTENT_FLAGS	(0xffff & ~(MDB_VALID))
1010 	/** #mdb_dbi_open() flags */
1011 #define VALID_FLAGS	(MDB_REVERSEKEY|MDB_DUPSORT|MDB_INTEGERKEY|MDB_DUPFIXED|\
1012 	MDB_INTEGERDUP|MDB_REVERSEDUP|MDB_CREATE)
1013 
1014 	/** Handle for the DB used to track free pages. */
1015 #define	FREE_DBI	0
1016 	/** Handle for the default DB. */
1017 #define	MAIN_DBI	1
1018 	/** Number of DBs in metapage (free and main) - also hardcoded elsewhere */
1019 #define CORE_DBS	2
1020 
1021 	/** Number of meta pages - also hardcoded elsewhere */
1022 #define NUM_METAS	2
1023 
1024 	/** Meta page content.
1025 	 *	A meta page is the start point for accessing a database snapshot.
1026 	 *	Pages 0-1 are meta pages. Transaction N writes meta page #(N % 2).
1027 	 */
1028 typedef struct MDB_meta {
1029 		/** Stamp identifying this as an LMDB file. It must be set
1030 		 *	to #MDB_MAGIC. */
1031 	uint32_t	mm_magic;
1032 		/** Version number of this file. Must be set to #MDB_DATA_VERSION. */
1033 	uint32_t	mm_version;
1034 	void		*mm_address;		/**< address for fixed mapping */
1035 	size_t		mm_mapsize;			/**< size of mmap region */
1036 	MDB_db		mm_dbs[CORE_DBS];	/**< first is free space, 2nd is main db */
1037 	/** The size of pages used in this DB */
1038 #define	mm_psize	mm_dbs[FREE_DBI].md_pad
1039 	/** Any persistent environment flags. @ref mdb_env */
1040 #define	mm_flags	mm_dbs[FREE_DBI].md_flags
1041 	/** Last used page in the datafile.
1042 	 *	Actually the file may be shorter if the freeDB lists the final pages.
1043 	 */
1044 	pgno_t		mm_last_pg;
1045 	volatile txnid_t	mm_txnid;	/**< txnid that committed this page */
1046 } MDB_meta;
1047 
1048 	/** Buffer for a stack-allocated meta page.
1049 	 *	The members define size and alignment, and silence type
1050 	 *	aliasing warnings.  They are not used directly; that could
1051 	 *	mean incorrectly using several union members in parallel.
1052 	 */
1053 typedef union MDB_metabuf {
1054 	MDB_page	mb_page;
1055 	struct {
1056 		char		mm_pad[PAGEHDRSZ];
1057 		MDB_meta	mm_meta;
1058 	} mb_metabuf;
1059 } MDB_metabuf;
1060 
1061 	/** Auxiliary DB info.
1062 	 *	The information here is mostly static/read-only. There is
1063 	 *	only a single copy of this record in the environment.
1064 	 */
1065 typedef struct MDB_dbx {
1066 	MDB_val		md_name;		/**< name of the database */
1067 	MDB_cmp_func	*md_cmp;	/**< function for comparing keys */
1068 	MDB_cmp_func	*md_dcmp;	/**< function for comparing data items */
1069 	MDB_rel_func	*md_rel;	/**< user relocate function */
1070 	void		*md_relctx;		/**< user-provided context for md_rel */
1071 } MDB_dbx;
1072 
1073 	/** A database transaction.
1074 	 *	Every operation requires a transaction handle.
1075 	 */
1076 struct MDB_txn {
1077 	MDB_txn		*mt_parent;		/**< parent of a nested txn */
1078 	/** Nested txn under this txn, set together with flag #MDB_TXN_HAS_CHILD */
1079 	MDB_txn		*mt_child;
1080 	pgno_t		mt_next_pgno;	/**< next unallocated page */
1081 	/** The ID of this transaction. IDs are integers incrementing from 1.
1082 	 *	Only committed write transactions increment the ID. If a transaction
1083 	 *	aborts, the ID may be re-used by the next writer.
1084 	 */
1085 	txnid_t		mt_txnid;
1086 	MDB_env		*mt_env;		/**< the DB environment */
1087 	/** The list of pages that became unused during this transaction.
1088 	 */
1089 	MDB_IDL		mt_free_pgs;
1090 	/** The list of loose pages that became unused and may be reused
1091 	 *	in this transaction, linked through #NEXT_LOOSE_PAGE(page).
1092 	 */
1093 	MDB_page	*mt_loose_pgs;
1094 	/** Number of loose pages (#mt_loose_pgs) */
1095 	int			mt_loose_count;
1096 	/** The sorted list of dirty pages we temporarily wrote to disk
1097 	 *	because the dirty list was full. page numbers in here are
1098 	 *	shifted left by 1, deleted slots have the LSB set.
1099 	 */
1100 	MDB_IDL		mt_spill_pgs;
1101 	union {
1102 		/** For write txns: Modified pages. Sorted when not MDB_WRITEMAP. */
1103 		MDB_ID2L	dirty_list;
1104 		/** For read txns: This thread/txn's reader table slot, or NULL. */
1105 		MDB_reader	*reader;
1106 	} mt_u;
1107 	/** Array of records for each DB known in the environment. */
1108 	MDB_dbx		*mt_dbxs;
1109 	/** Array of MDB_db records for each known DB */
1110 	MDB_db		*mt_dbs;
1111 	/** Array of sequence numbers for each DB handle */
1112 	unsigned int	*mt_dbiseqs;
1113 /** @defgroup mt_dbflag	Transaction DB Flags
1114  *	@ingroup internal
1115  * @{
1116  */
1117 #define DB_DIRTY	0x01		/**< DB was written in this txn */
1118 #define DB_STALE	0x02		/**< Named-DB record is older than txnID */
1119 #define DB_NEW		0x04		/**< Named-DB handle opened in this txn */
1120 #define DB_VALID	0x08		/**< DB handle is valid, see also #MDB_VALID */
1121 #define DB_USRVALID	0x10		/**< As #DB_VALID, but not set for #FREE_DBI */
1122 #define DB_DUPDATA	0x20		/**< DB is #MDB_DUPSORT data */
1123 /** @} */
1124 	/** In write txns, array of cursors for each DB */
1125 	MDB_cursor	**mt_cursors;
1126 	/** Array of flags for each DB */
1127 	unsigned char	*mt_dbflags;
1128 	/**	Number of DB records in use, or 0 when the txn is finished.
1129 	 *	This number only ever increments until the txn finishes; we
1130 	 *	don't decrement it when individual DB handles are closed.
1131 	 */
1132 	MDB_dbi		mt_numdbs;
1133 
1134 /** @defgroup mdb_txn	Transaction Flags
1135  *	@ingroup internal
1136  *	@{
1137  */
1138 	/** #mdb_txn_begin() flags */
1139 #define MDB_TXN_BEGIN_FLAGS	MDB_RDONLY
1140 #define MDB_TXN_RDONLY		MDB_RDONLY	/**< read-only transaction */
1141 	/* internal txn flags */
1142 #define MDB_TXN_WRITEMAP	MDB_WRITEMAP	/**< copy of #MDB_env flag in writers */
1143 #define MDB_TXN_FINISHED	0x01		/**< txn is finished or never began */
1144 #define MDB_TXN_ERROR		0x02		/**< txn is unusable after an error */
1145 #define MDB_TXN_DIRTY		0x04		/**< must write, even if dirty list is empty */
1146 #define MDB_TXN_SPILLS		0x08		/**< txn or a parent has spilled pages */
1147 #define MDB_TXN_HAS_CHILD	0x10		/**< txn has an #MDB_txn.%mt_child */
1148 	/** most operations on the txn are currently illegal */
1149 #define MDB_TXN_BLOCKED		(MDB_TXN_FINISHED|MDB_TXN_ERROR|MDB_TXN_HAS_CHILD)
1150 /** @} */
1151 	unsigned int	mt_flags;		/**< @ref mdb_txn */
1152 	/** #dirty_list room: Array size - \#dirty pages visible to this txn.
1153 	 *	Includes ancestor txns' dirty pages not hidden by other txns'
1154 	 *	dirty/spilled pages. Thus commit(nested txn) has room to merge
1155 	 *	dirty_list into mt_parent after freeing hidden mt_parent pages.
1156 	 */
1157 	unsigned int	mt_dirty_room;
1158 };
1159 
1160 /** Enough space for 2^32 nodes with minimum of 2 keys per node. I.e., plenty.
1161  * At 4 keys per node, enough for 2^64 nodes, so there's probably no need to
1162  * raise this on a 64 bit machine.
1163  */
1164 #define CURSOR_STACK		 32
1165 
1166 struct MDB_xcursor;
1167 
1168 	/** Cursors are used for all DB operations.
1169 	 *	A cursor holds a path of (page pointer, key index) from the DB
1170 	 *	root to a position in the DB, plus other state. #MDB_DUPSORT
1171 	 *	cursors include an xcursor to the current data item. Write txns
1172 	 *	track their cursors and keep them up to date when data moves.
1173 	 *	Exception: An xcursor's pointer to a #P_SUBP page can be stale.
1174 	 *	(A node with #F_DUPDATA but no #F_SUBDATA contains a subpage).
1175 	 */
1176 struct MDB_cursor {
1177 	/** Next cursor on this DB in this txn */
1178 	MDB_cursor	*mc_next;
1179 	/** Backup of the original cursor if this cursor is a shadow */
1180 	MDB_cursor	*mc_backup;
1181 	/** Context used for databases with #MDB_DUPSORT, otherwise NULL */
1182 	struct MDB_xcursor	*mc_xcursor;
1183 	/** The transaction that owns this cursor */
1184 	MDB_txn		*mc_txn;
1185 	/** The database handle this cursor operates on */
1186 	MDB_dbi		mc_dbi;
1187 	/** The database record for this cursor */
1188 	MDB_db		*mc_db;
1189 	/** The database auxiliary record for this cursor */
1190 	MDB_dbx		*mc_dbx;
1191 	/** The @ref mt_dbflag for this database */
1192 	unsigned char	*mc_dbflag;
1193 	unsigned short 	mc_snum;	/**< number of pushed pages */
1194 	unsigned short	mc_top;		/**< index of top page, normally mc_snum-1 */
1195 /** @defgroup mdb_cursor	Cursor Flags
1196  *	@ingroup internal
1197  *	Cursor state flags.
1198  *	@{
1199  */
1200 #define C_INITIALIZED	0x01	/**< cursor has been initialized and is valid */
1201 #define C_EOF	0x02			/**< No more data */
1202 #define C_SUB	0x04			/**< Cursor is a sub-cursor */
1203 #define C_DEL	0x08			/**< last op was a cursor_del */
1204 #define C_UNTRACK	0x40		/**< Un-track cursor when closing */
1205 /** @} */
1206 	unsigned int	mc_flags;	/**< @ref mdb_cursor */
1207 	MDB_page	*mc_pg[CURSOR_STACK];	/**< stack of pushed pages */
1208 	indx_t		mc_ki[CURSOR_STACK];	/**< stack of page indices */
1209 };
1210 
1211 	/** Context for sorted-dup records.
1212 	 *	We could have gone to a fully recursive design, with arbitrarily
1213 	 *	deep nesting of sub-databases. But for now we only handle these
1214 	 *	levels - main DB, optional sub-DB, sorted-duplicate DB.
1215 	 */
1216 typedef struct MDB_xcursor {
1217 	/** A sub-cursor for traversing the Dup DB */
1218 	MDB_cursor mx_cursor;
1219 	/** The database record for this Dup DB */
1220 	MDB_db	mx_db;
1221 	/**	The auxiliary DB record for this Dup DB */
1222 	MDB_dbx	mx_dbx;
1223 	/** The @ref mt_dbflag for this Dup DB */
1224 	unsigned char mx_dbflag;
1225 } MDB_xcursor;
1226 
1227 	/** Check if there is an inited xcursor, so #XCURSOR_REFRESH() is proper */
1228 #define XCURSOR_INITED(mc) \
1229 	((mc)->mc_xcursor && ((mc)->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))
1230 
1231 	/** Update sub-page pointer, if any, in \b mc->mc_xcursor.  Needed
1232 	 *	when the node which contains the sub-page may have moved.  Called
1233 	 *	with \b mp = mc->mc_pg[mc->mc_top], \b ki = mc->mc_ki[mc->mc_top].
1234 	 */
1235 #define XCURSOR_REFRESH(mc, mp, ki) do { \
1236 	MDB_page *xr_pg = (mp); \
1237 	MDB_node *xr_node = NODEPTR(xr_pg, ki); \
1238 	if ((xr_node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) \
1239 		(mc)->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(xr_node); \
1240 } while (0)
1241 
1242 	/** State of FreeDB old pages, stored in the MDB_env */
1243 typedef struct MDB_pgstate {
1244 	pgno_t		*mf_pghead;	/**< Reclaimed freeDB pages, or NULL before use */
1245 	txnid_t		mf_pglast;	/**< ID of last used record, or 0 if !mf_pghead */
1246 } MDB_pgstate;
1247 
1248 	/** The database environment. */
1249 struct MDB_env {
1250 	HANDLE		me_fd;		/**< The main data file */
1251 	HANDLE		me_lfd;		/**< The lock file */
1252 	HANDLE		me_mfd;		/**< For writing and syncing the meta pages */
1253 	/** Failed to update the meta page. Probably an I/O error. */
1254 #define	MDB_FATAL_ERROR	0x80000000U
1255 	/** Some fields are initialized. */
1256 #define	MDB_ENV_ACTIVE	0x20000000U
1257 	/** me_txkey is set */
1258 #define	MDB_ENV_TXKEY	0x10000000U
1259 	/** fdatasync is unreliable */
1260 #define	MDB_FSYNCONLY	0x08000000U
1261 	uint32_t 	me_flags;		/**< @ref mdb_env */
1262 	unsigned int	me_psize;	/**< DB page size, inited from me_os_psize */
1263 	unsigned int	me_os_psize;	/**< OS page size, from #GET_PAGESIZE */
1264 	unsigned int	me_maxreaders;	/**< size of the reader table */
1265 	/** Max #MDB_txninfo.%mti_numreaders of interest to #mdb_env_close() */
1266 	volatile int	me_close_readers;
1267 	MDB_dbi		me_numdbs;		/**< number of DBs opened */
1268 	MDB_dbi		me_maxdbs;		/**< size of the DB table */
1269 	MDB_PID_T	me_pid;		/**< process ID of this env */
1270 	char		*me_path;		/**< path to the DB files */
1271 	char		*me_map;		/**< the memory map of the data file */
1272 	MDB_txninfo	*me_txns;		/**< the memory map of the lock file or NULL */
1273 	MDB_meta	*me_metas[NUM_METAS];	/**< pointers to the two meta pages */
1274 	void		*me_pbuf;		/**< scratch area for DUPSORT put() */
1275 	MDB_txn		*me_txn;		/**< current write transaction */
1276 	MDB_txn		*me_txn0;		/**< prealloc'd write transaction */
1277 	size_t		me_mapsize;		/**< size of the data memory map */
1278 	off_t		me_size;		/**< current file size */
1279 	pgno_t		me_maxpg;		/**< me_mapsize / me_psize */
1280 	MDB_dbx		*me_dbxs;		/**< array of static DB info */
1281 	uint16_t	*me_dbflags;	/**< array of flags from MDB_db.md_flags */
1282 	unsigned int	*me_dbiseqs;	/**< array of dbi sequence numbers */
1283 	pthread_key_t	me_txkey;	/**< thread-key for readers */
1284 	txnid_t		me_pgoldest;	/**< ID of oldest reader last time we looked */
1285 	MDB_pgstate	me_pgstate;		/**< state of old pages from freeDB */
1286 #	define		me_pglast	me_pgstate.mf_pglast
1287 #	define		me_pghead	me_pgstate.mf_pghead
1288 	MDB_page	*me_dpages;		/**< list of malloc'd blocks for re-use */
1289 	/** IDL of pages that became unused in a write txn */
1290 	MDB_IDL		me_free_pgs;
1291 	/** ID2L of pages written during a write txn. Length MDB_IDL_UM_SIZE. */
1292 	MDB_ID2L	me_dirty_list;
1293 	/** Max number of freelist items that can fit in a single overflow page */
1294 	int			me_maxfree_1pg;
1295 	/** Max size of a node on a page */
1296 	unsigned int	me_nodemax;
1297 #if !(MDB_MAXKEYSIZE)
1298 	unsigned int	me_maxkey;	/**< max size of a key */
1299 #endif
1300 	int		me_live_reader;		/**< have liveness lock in reader table */
1301 #ifdef _WIN32
1302 	int		me_pidquery;		/**< Used in OpenProcess */
1303 #endif
1304 #ifdef MDB_USE_POSIX_MUTEX	/* Posix mutexes reside in shared mem */
1305 #	define		me_rmutex	me_txns->mti_rmutex /**< Shared reader lock */
1306 #	define		me_wmutex	me_txns->mti_wmutex /**< Shared writer lock */
1307 #else
1308 	mdb_mutex_t	me_rmutex;
1309 	mdb_mutex_t	me_wmutex;
1310 #endif
1311 	void		*me_userctx;	 /**< User-settable context */
1312 	MDB_assert_func *me_assert_func; /**< Callback for assertion failures */
1313 };
1314 
1315 	/** Nested transaction */
1316 typedef struct MDB_ntxn {
1317 	MDB_txn		mnt_txn;		/**< the transaction */
1318 	MDB_pgstate	mnt_pgstate;	/**< parent transaction's saved freestate */
1319 } MDB_ntxn;
1320 
1321 	/** max number of pages to commit in one writev() call */
1322 #define MDB_COMMIT_PAGES	 64
1323 #if defined(IOV_MAX) && IOV_MAX < MDB_COMMIT_PAGES
1324 #undef MDB_COMMIT_PAGES
1325 #define MDB_COMMIT_PAGES	IOV_MAX
1326 #endif
1327 
1328 	/** max bytes to write in one call */
1329 #define MAX_WRITE		(0x40000000U >> (sizeof(ssize_t) == 4))
1330 
1331 	/** Check \b txn and \b dbi arguments to a function */
1332 #define TXN_DBI_EXIST(txn, dbi, validity) \
1333 	((txn) && (dbi)<(txn)->mt_numdbs && ((txn)->mt_dbflags[dbi] & (validity)))
1334 
1335 	/** Check for misused \b dbi handles */
1336 #define TXN_DBI_CHANGED(txn, dbi) \
1337 	((txn)->mt_dbiseqs[dbi] != (txn)->mt_env->me_dbiseqs[dbi])
1338 
1339 static int  mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp);
1340 static int  mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp);
1341 static int  mdb_page_touch(MDB_cursor *mc);
1342 
1343 #define MDB_END_NAMES {"committed", "empty-commit", "abort", "reset", \
1344 	"reset-tmp", "fail-begin", "fail-beginchild"}
1345 enum {
1346 	/* mdb_txn_end operation number, for logging */
1347 	MDB_END_COMMITTED, MDB_END_EMPTY_COMMIT, MDB_END_ABORT, MDB_END_RESET,
1348 	MDB_END_RESET_TMP, MDB_END_FAIL_BEGIN, MDB_END_FAIL_BEGINCHILD
1349 };
1350 #define MDB_END_OPMASK	0x0F	/**< mask for #mdb_txn_end() operation number */
1351 #define MDB_END_UPDATE	0x10	/**< update env state (DBIs) */
1352 #define MDB_END_FREE	0x20	/**< free txn unless it is #MDB_env.%me_txn0 */
1353 #define MDB_END_SLOT MDB_NOTLS	/**< release any reader slot if #MDB_NOTLS */
1354 static void mdb_txn_end(MDB_txn *txn, unsigned mode);
1355 
1356 static int  mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **mp, int *lvl);
1357 static int  mdb_page_search_root(MDB_cursor *mc,
1358 			    MDB_val *key, int modify);
1359 #define MDB_PS_MODIFY	1
1360 #define MDB_PS_ROOTONLY	2
1361 #define MDB_PS_FIRST	4
1362 #define MDB_PS_LAST		8
1363 static int  mdb_page_search(MDB_cursor *mc,
1364 			    MDB_val *key, int flags);
1365 static int	mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst);
1366 
1367 #define MDB_SPLIT_REPLACE	MDB_APPENDDUP	/**< newkey is not new */
1368 static int	mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata,
1369 				pgno_t newpgno, unsigned int nflags);
1370 
1371 static int  mdb_env_read_header(MDB_env *env, MDB_meta *meta);
1372 static MDB_meta *mdb_env_pick_meta(const MDB_env *env);
1373 static int  mdb_env_write_meta(MDB_txn *txn);
1374 #ifdef MDB_USE_POSIX_MUTEX /* Drop unused excl arg */
1375 # define mdb_env_close0(env, excl) mdb_env_close1(env)
1376 #endif
1377 static void mdb_env_close0(MDB_env *env, int excl);
1378 
1379 static MDB_node *mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp);
1380 static int  mdb_node_add(MDB_cursor *mc, indx_t indx,
1381 			    MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags);
1382 static void mdb_node_del(MDB_cursor *mc, int ksize);
1383 static void mdb_node_shrink(MDB_page *mp, indx_t indx);
1384 static int	mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft);
1385 static int  mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data);
1386 static size_t	mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data);
1387 static size_t	mdb_branch_size(MDB_env *env, MDB_val *key);
1388 
1389 static int	mdb_rebalance(MDB_cursor *mc);
1390 static int	mdb_update_key(MDB_cursor *mc, MDB_val *key);
1391 
1392 static void	mdb_cursor_pop(MDB_cursor *mc);
1393 static int	mdb_cursor_push(MDB_cursor *mc, MDB_page *mp);
1394 
1395 static int	mdb_cursor_del0(MDB_cursor *mc);
1396 static int	mdb_del0(MDB_txn *txn, MDB_dbi dbi, MDB_val *key, MDB_val *data, unsigned flags);
1397 static int	mdb_cursor_sibling(MDB_cursor *mc, int move_right);
1398 static int	mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
1399 static int	mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
1400 static int	mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op,
1401 				int *exactp);
1402 static int	mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data);
1403 static int	mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data);
1404 
1405 static void	mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx);
1406 static void	mdb_xcursor_init0(MDB_cursor *mc);
1407 static void	mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node);
1408 static void	mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int force);
1409 
1410 static int	mdb_drop0(MDB_cursor *mc, int subs);
1411 static void mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi);
1412 static int mdb_reader_check0(MDB_env *env, int rlocked, int *dead);
1413 
1414 /** @cond */
1415 static MDB_cmp_func	mdb_cmp_memn, mdb_cmp_memnr, mdb_cmp_int, mdb_cmp_cint, mdb_cmp_long;
1416 /** @endcond */
1417 
1418 /** Compare two items pointing at size_t's of unknown alignment. */
1419 #ifdef MISALIGNED_OK
1420 # define mdb_cmp_clong mdb_cmp_long
1421 #else
1422 # define mdb_cmp_clong mdb_cmp_cint
1423 #endif
1424 
1425 #ifdef _WIN32
1426 static SECURITY_DESCRIPTOR mdb_null_sd;
1427 static SECURITY_ATTRIBUTES mdb_all_sa;
1428 static int mdb_sec_inited;
1429 
1430 struct MDB_name;
1431 static int utf8_to_utf16(const char *src, struct MDB_name *dst, int xtra);
1432 #endif
1433 
1434 /** Return the library version info. */
1435 char * ESECT
1436 mdb_version(int *major, int *minor, int *patch)
1437 {
1438 	if (major) *major = MDB_VERSION_MAJOR;
1439 	if (minor) *minor = MDB_VERSION_MINOR;
1440 	if (patch) *patch = MDB_VERSION_PATCH;
1441 	return MDB_VERSION_STRING;
1442 }
1443 
1444 /** Table of descriptions for LMDB @ref errors */
1445 static char *const mdb_errstr[] = {
1446 	"MDB_KEYEXIST: Key/data pair already exists",
1447 	"MDB_NOTFOUND: No matching key/data pair found",
1448 	"MDB_PAGE_NOTFOUND: Requested page not found",
1449 	"MDB_CORRUPTED: Located page was wrong type",
1450 	"MDB_PANIC: Update of meta page failed or environment had fatal error",
1451 	"MDB_VERSION_MISMATCH: Database environment version mismatch",
1452 	"MDB_INVALID: File is not an LMDB file",
1453 	"MDB_MAP_FULL: Environment mapsize limit reached",
1454 	"MDB_DBS_FULL: Environment maxdbs limit reached",
1455 	"MDB_READERS_FULL: Environment maxreaders limit reached",
1456 	"MDB_TLS_FULL: Thread-local storage keys full - too many environments open",
1457 	"MDB_TXN_FULL: Transaction has too many dirty pages - transaction too big",
1458 	"MDB_CURSOR_FULL: Internal error - cursor stack limit reached",
1459 	"MDB_PAGE_FULL: Internal error - page has no more space",
1460 	"MDB_MAP_RESIZED: Database contents grew beyond environment mapsize",
1461 	"MDB_INCOMPATIBLE: Operation and DB incompatible, or DB flags changed",
1462 	"MDB_BAD_RSLOT: Invalid reuse of reader locktable slot",
1463 	"MDB_BAD_TXN: Transaction must abort, has a child, or is invalid",
1464 	"MDB_BAD_VALSIZE: Unsupported size of key/DB name/data, or wrong DUPFIXED size",
1465 	"MDB_BAD_DBI: The specified DBI handle was closed/changed unexpectedly",
1466 };
1467 
1468 char *
1469 mdb_strerror(int err)
1470 {
1471 #ifdef _WIN32
1472 	/** HACK: pad 4KB on stack over the buf. Return system msgs in buf.
1473 	 *	This works as long as no function between the call to mdb_strerror
1474 	 *	and the actual use of the message uses more than 4K of stack.
1475 	 */
1476 #define MSGSIZE	1024
1477 #define PADSIZE	4096
1478 	char buf[MSGSIZE+PADSIZE], *ptr = buf;
1479 #endif
1480 	int i;
1481 	if (!err)
1482 		return ("Successful return: 0");
1483 
1484 	if (err >= MDB_KEYEXIST && err <= MDB_LAST_ERRCODE) {
1485 		i = err - MDB_KEYEXIST;
1486 		return mdb_errstr[i];
1487 	}
1488 
1489 #ifdef _WIN32
1490 	/* These are the C-runtime error codes we use. The comment indicates
1491 	 * their numeric value, and the Win32 error they would correspond to
1492 	 * if the error actually came from a Win32 API. A major mess, we should
1493 	 * have used LMDB-specific error codes for everything.
1494 	 */
1495 	switch(err) {
1496 	case ENOENT:	/* 2, FILE_NOT_FOUND */
1497 	case EIO:		/* 5, ACCESS_DENIED */
1498 	case ENOMEM:	/* 12, INVALID_ACCESS */
1499 	case EACCES:	/* 13, INVALID_DATA */
1500 	case EBUSY:		/* 16, CURRENT_DIRECTORY */
1501 	case EINVAL:	/* 22, BAD_COMMAND */
1502 	case ENOSPC:	/* 28, OUT_OF_PAPER */
1503 		return strerror(err);
1504 	default:
1505 		;
1506 	}
1507 	buf[0] = 0;
1508 	FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM |
1509 		FORMAT_MESSAGE_IGNORE_INSERTS,
1510 		NULL, err, 0, ptr, MSGSIZE, (va_list *)buf+MSGSIZE);
1511 	return ptr;
1512 #else
1513 	return strerror(err);
1514 #endif
1515 }
1516 
1517 /** assert(3) variant in cursor context */
1518 #define mdb_cassert(mc, expr)	mdb_assert0((mc)->mc_txn->mt_env, expr, #expr)
1519 /** assert(3) variant in transaction context */
1520 #define mdb_tassert(txn, expr)	mdb_assert0((txn)->mt_env, expr, #expr)
1521 /** assert(3) variant in environment context */
1522 #define mdb_eassert(env, expr)	mdb_assert0(env, expr, #expr)
1523 
1524 #ifndef NDEBUG
1525 # define mdb_assert0(env, expr, expr_txt) ((expr) ? (void)0 : \
1526 		mdb_assert_fail(env, expr_txt, mdb_func_, __FILE__, __LINE__))
1527 
1528 static void ESECT
1529 mdb_assert_fail(MDB_env *env, const char *expr_txt,
1530 	const char *func, const char *file, int line)
1531 {
1532 	char buf[400];
1533 	sprintf(buf, "%.100s:%d: Assertion '%.200s' failed in %.40s()",
1534 		file, line, expr_txt, func);
1535 	if (env->me_assert_func)
1536 		env->me_assert_func(env, buf);
1537 	fprintf(stderr, "%s\n", buf);
1538 	abort();
1539 }
1540 #else
1541 # define mdb_assert0(env, expr, expr_txt) ((void) 0)
1542 #endif /* NDEBUG */
1543 
1544 #if MDB_DEBUG
1545 /** Return the page number of \b mp which may be sub-page, for debug output */
1546 static pgno_t
1547 mdb_dbg_pgno(MDB_page *mp)
1548 {
1549 	pgno_t ret;
1550 	COPY_PGNO(ret, mp->mp_pgno);
1551 	return ret;
1552 }
1553 
1554 /** Display a key in hexadecimal and return the address of the result.
1555  * @param[in] key the key to display
1556  * @param[in] buf the buffer to write into. Should always be #DKBUF.
1557  * @return The key in hexadecimal form.
1558  */
1559 char *
1560 mdb_dkey(MDB_val *key, char *buf)
1561 {
1562 	char *ptr = buf;
1563 	unsigned char *c = key->mv_data;
1564 	unsigned int i;
1565 
1566 	if (!key)
1567 		return "";
1568 
1569 	if (key->mv_size > DKBUF_MAXKEYSIZE)
1570 		return "MDB_MAXKEYSIZE";
1571 	/* may want to make this a dynamic check: if the key is mostly
1572 	 * printable characters, print it as-is instead of converting to hex.
1573 	 */
1574 #if 1
1575 	buf[0] = '\0';
1576 	for (i=0; i<key->mv_size; i++)
1577 		ptr += sprintf(ptr, "%02x", *c++);
1578 #else
1579 	sprintf(buf, "%.*s", key->mv_size, key->mv_data);
1580 #endif
1581 	return buf;
1582 }
1583 
1584 static const char *
1585 mdb_leafnode_type(MDB_node *n)
1586 {
1587 	static char *const tp[2][2] = {{"", ": DB"}, {": sub-page", ": sub-DB"}};
1588 	return F_ISSET(n->mn_flags, F_BIGDATA) ? ": overflow page" :
1589 		tp[F_ISSET(n->mn_flags, F_DUPDATA)][F_ISSET(n->mn_flags, F_SUBDATA)];
1590 }
1591 
1592 /** Display all the keys in the page. */
1593 void
1594 mdb_page_list(MDB_page *mp)
1595 {
1596 	pgno_t pgno = mdb_dbg_pgno(mp);
1597 	const char *type, *state = (mp->mp_flags & P_DIRTY) ? ", dirty" : "";
1598 	MDB_node *node;
1599 	unsigned int i, nkeys, nsize, total = 0;
1600 	MDB_val key;
1601 	DKBUF;
1602 
1603 	switch (mp->mp_flags & (P_BRANCH|P_LEAF|P_LEAF2|P_META|P_OVERFLOW|P_SUBP)) {
1604 	case P_BRANCH:              type = "Branch page";		break;
1605 	case P_LEAF:                type = "Leaf page";			break;
1606 	case P_LEAF|P_SUBP:         type = "Sub-page";			break;
1607 	case P_LEAF|P_LEAF2:        type = "LEAF2 page";		break;
1608 	case P_LEAF|P_LEAF2|P_SUBP: type = "LEAF2 sub-page";	break;
1609 	case P_OVERFLOW:
1610 		fprintf(stderr, "Overflow page %"Z"u pages %u%s\n",
1611 			pgno, mp->mp_pages, state);
1612 		return;
1613 	case P_META:
1614 		fprintf(stderr, "Meta-page %"Z"u txnid %"Z"u\n",
1615 			pgno, ((MDB_meta *)METADATA(mp))->mm_txnid);
1616 		return;
1617 	default:
1618 		fprintf(stderr, "Bad page %"Z"u flags 0x%X\n", pgno, mp->mp_flags);
1619 		return;
1620 	}
1621 
1622 	nkeys = NUMKEYS(mp);
1623 	fprintf(stderr, "%s %"Z"u numkeys %d%s\n", type, pgno, nkeys, state);
1624 
1625 	for (i=0; i<nkeys; i++) {
1626 		if (IS_LEAF2(mp)) {	/* LEAF2 pages have no mp_ptrs[] or node headers */
1627 			key.mv_size = nsize = mp->mp_pad;
1628 			key.mv_data = LEAF2KEY(mp, i, nsize);
1629 			total += nsize;
1630 			fprintf(stderr, "key %d: nsize %d, %s\n", i, nsize, DKEY(&key));
1631 			continue;
1632 		}
1633 		node = NODEPTR(mp, i);
1634 		key.mv_size = node->mn_ksize;
1635 		key.mv_data = node->mn_data;
1636 		nsize = NODESIZE + key.mv_size;
1637 		if (IS_BRANCH(mp)) {
1638 			fprintf(stderr, "key %d: page %"Z"u, %s\n", i, NODEPGNO(node),
1639 				DKEY(&key));
1640 			total += nsize;
1641 		} else {
1642 			if (F_ISSET(node->mn_flags, F_BIGDATA))
1643 				nsize += sizeof(pgno_t);
1644 			else
1645 				nsize += NODEDSZ(node);
1646 			total += nsize;
1647 			nsize += sizeof(indx_t);
1648 			fprintf(stderr, "key %d: nsize %d, %s%s\n",
1649 				i, nsize, DKEY(&key), mdb_leafnode_type(node));
1650 		}
1651 		total = EVEN(total);
1652 	}
1653 	fprintf(stderr, "Total: header %d + contents %d + unused %d\n",
1654 		IS_LEAF2(mp) ? PAGEHDRSZ : PAGEBASE + mp->mp_lower, total, SIZELEFT(mp));
1655 }
1656 
1657 void
1658 mdb_cursor_chk(MDB_cursor *mc)
1659 {
1660 	unsigned int i;
1661 	MDB_node *node;
1662 	MDB_page *mp;
1663 
1664 	if (!mc->mc_snum || !(mc->mc_flags & C_INITIALIZED)) return;
1665 	for (i=0; i<mc->mc_top; i++) {
1666 		mp = mc->mc_pg[i];
1667 		node = NODEPTR(mp, mc->mc_ki[i]);
1668 		if (NODEPGNO(node) != mc->mc_pg[i+1]->mp_pgno)
1669 			printf("oops!\n");
1670 	}
1671 	if (mc->mc_ki[i] >= NUMKEYS(mc->mc_pg[i]))
1672 		printf("ack!\n");
1673 	if (XCURSOR_INITED(mc)) {
1674 		node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
1675 		if (((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) &&
1676 			mc->mc_xcursor->mx_cursor.mc_pg[0] != NODEDATA(node)) {
1677 			printf("blah!\n");
1678 		}
1679 	}
1680 }
1681 #endif
1682 
1683 #if (MDB_DEBUG) > 2
1684 /** Count all the pages in each DB and in the freelist
1685  *  and make sure it matches the actual number of pages
1686  *  being used.
1687  *  All named DBs must be open for a correct count.
1688  */
1689 static void mdb_audit(MDB_txn *txn)
1690 {
1691 	MDB_cursor mc;
1692 	MDB_val key, data;
1693 	MDB_ID freecount, count;
1694 	MDB_dbi i;
1695 	int rc;
1696 
1697 	freecount = 0;
1698 	mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
1699 	while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
1700 		freecount += *(MDB_ID *)data.mv_data;
1701 	mdb_tassert(txn, rc == MDB_NOTFOUND);
1702 
1703 	count = 0;
1704 	for (i = 0; i<txn->mt_numdbs; i++) {
1705 		MDB_xcursor mx;
1706 		if (!(txn->mt_dbflags[i] & DB_VALID))
1707 			continue;
1708 		mdb_cursor_init(&mc, txn, i, &mx);
1709 		if (txn->mt_dbs[i].md_root == P_INVALID)
1710 			continue;
1711 		count += txn->mt_dbs[i].md_branch_pages +
1712 			txn->mt_dbs[i].md_leaf_pages +
1713 			txn->mt_dbs[i].md_overflow_pages;
1714 		if (txn->mt_dbs[i].md_flags & MDB_DUPSORT) {
1715 			rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST);
1716 			for (; rc == MDB_SUCCESS; rc = mdb_cursor_sibling(&mc, 1)) {
1717 				unsigned j;
1718 				MDB_page *mp;
1719 				mp = mc.mc_pg[mc.mc_top];
1720 				for (j=0; j<NUMKEYS(mp); j++) {
1721 					MDB_node *leaf = NODEPTR(mp, j);
1722 					if (leaf->mn_flags & F_SUBDATA) {
1723 						MDB_db db;
1724 						memcpy(&db, NODEDATA(leaf), sizeof(db));
1725 						count += db.md_branch_pages + db.md_leaf_pages +
1726 							db.md_overflow_pages;
1727 					}
1728 				}
1729 			}
1730 			mdb_tassert(txn, rc == MDB_NOTFOUND);
1731 		}
1732 	}
1733 	if (freecount + count + NUM_METAS != txn->mt_next_pgno) {
1734 		fprintf(stderr, "audit: %"Z"u freecount: %"Z"u count: %"Z"u total: %"Z"u next_pgno: %"Z"u\n",
1735 			txn->mt_txnid, freecount, count+NUM_METAS,
1736 			freecount+count+NUM_METAS, txn->mt_next_pgno);
1737 	}
1738 }
1739 #endif
1740 
1741 int
1742 mdb_cmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
1743 {
1744 	return txn->mt_dbxs[dbi].md_cmp(a, b);
1745 }
1746 
1747 int
1748 mdb_dcmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
1749 {
1750 	MDB_cmp_func *dcmp = txn->mt_dbxs[dbi].md_dcmp;
1751 #if UINT_MAX < SIZE_MAX
1752 	if (dcmp == mdb_cmp_int && a->mv_size == sizeof(size_t))
1753 		dcmp = mdb_cmp_clong;
1754 #endif
1755 	return dcmp(a, b);
1756 }
1757 
1758 /** Allocate memory for a page.
1759  * Re-use old malloc'd pages first for singletons, otherwise just malloc.
1760  * Set #MDB_TXN_ERROR on failure.
1761  */
1762 static MDB_page *
1763 mdb_page_malloc(MDB_txn *txn, unsigned num)
1764 {
1765 	MDB_env *env = txn->mt_env;
1766 	MDB_page *ret = env->me_dpages;
1767 	size_t psize = env->me_psize, sz = psize, off;
1768 	/* For ! #MDB_NOMEMINIT, psize counts how much to init.
1769 	 * For a single page alloc, we init everything after the page header.
1770 	 * For multi-page, we init the final page; if the caller needed that
1771 	 * many pages they will be filling in at least up to the last page.
1772 	 */
1773 	if (num == 1) {
1774 		if (ret) {
1775 			VGMEMP_ALLOC(env, ret, sz);
1776 			VGMEMP_DEFINED(ret, sizeof(ret->mp_next));
1777 			env->me_dpages = ret->mp_next;
1778 			return ret;
1779 		}
1780 		psize -= off = PAGEHDRSZ;
1781 	} else {
1782 		sz *= num;
1783 		off = sz - psize;
1784 	}
1785 	if ((ret = malloc(sz)) != NULL) {
1786 		VGMEMP_ALLOC(env, ret, sz);
1787 		if (!(env->me_flags & MDB_NOMEMINIT)) {
1788 			memset((char *)ret + off, 0, psize);
1789 			ret->mp_pad = 0;
1790 		}
1791 	} else {
1792 		txn->mt_flags |= MDB_TXN_ERROR;
1793 	}
1794 	return ret;
1795 }
1796 /** Free a single page.
1797  * Saves single pages to a list, for future reuse.
1798  * (This is not used for multi-page overflow pages.)
1799  */
1800 static void
1801 mdb_page_free(MDB_env *env, MDB_page *mp)
1802 {
1803 	mp->mp_next = env->me_dpages;
1804 	VGMEMP_FREE(env, mp);
1805 	env->me_dpages = mp;
1806 }
1807 
1808 /** Free a dirty page */
1809 static void
1810 mdb_dpage_free(MDB_env *env, MDB_page *dp)
1811 {
1812 	if (!IS_OVERFLOW(dp) || dp->mp_pages == 1) {
1813 		mdb_page_free(env, dp);
1814 	} else {
1815 		/* large pages just get freed directly */
1816 		VGMEMP_FREE(env, dp);
1817 		free(dp);
1818 	}
1819 }
1820 
1821 /**	Return all dirty pages to dpage list */
1822 static void
1823 mdb_dlist_free(MDB_txn *txn)
1824 {
1825 	MDB_env *env = txn->mt_env;
1826 	MDB_ID2L dl = txn->mt_u.dirty_list;
1827 	unsigned i, n = dl[0].mid;
1828 
1829 	for (i = 1; i <= n; i++) {
1830 		mdb_dpage_free(env, dl[i].mptr);
1831 	}
1832 	dl[0].mid = 0;
1833 }
1834 
1835 /** Loosen or free a single page.
1836  * Saves single pages to a list for future reuse
1837  * in this same txn. It has been pulled from the freeDB
1838  * and already resides on the dirty list, but has been
1839  * deleted. Use these pages first before pulling again
1840  * from the freeDB.
1841  *
1842  * If the page wasn't dirtied in this txn, just add it
1843  * to this txn's free list.
1844  */
1845 static int
1846 mdb_page_loose(MDB_cursor *mc, MDB_page *mp)
1847 {
1848 	int loose = 0;
1849 	pgno_t pgno = mp->mp_pgno;
1850 	MDB_txn *txn = mc->mc_txn;
1851 
1852 	if ((mp->mp_flags & P_DIRTY) && mc->mc_dbi != FREE_DBI) {
1853 		if (txn->mt_parent) {
1854 			MDB_ID2 *dl = txn->mt_u.dirty_list;
1855 			/* If txn has a parent, make sure the page is in our
1856 			 * dirty list.
1857 			 */
1858 			if (dl[0].mid) {
1859 				unsigned x = mdb_mid2l_search(dl, pgno);
1860 				if (x <= dl[0].mid && dl[x].mid == pgno) {
1861 					if (mp != dl[x].mptr) { /* bad cursor? */
1862 						mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
1863 						txn->mt_flags |= MDB_TXN_ERROR;
1864 						return MDB_CORRUPTED;
1865 					}
1866 					/* ok, it's ours */
1867 					loose = 1;
1868 				}
1869 			}
1870 		} else {
1871 			/* no parent txn, so it's just ours */
1872 			loose = 1;
1873 		}
1874 	}
1875 	if (loose) {
1876 		DPRINTF(("loosen db %d page %"Z"u", DDBI(mc),
1877 			mp->mp_pgno));
1878 		NEXT_LOOSE_PAGE(mp) = txn->mt_loose_pgs;
1879 		txn->mt_loose_pgs = mp;
1880 		txn->mt_loose_count++;
1881 		mp->mp_flags |= P_LOOSE;
1882 	} else {
1883 		int rc = mdb_midl_append(&txn->mt_free_pgs, pgno);
1884 		if (rc)
1885 			return rc;
1886 	}
1887 
1888 	return MDB_SUCCESS;
1889 }
1890 
1891 /** Set or clear P_KEEP in dirty, non-overflow, non-sub pages watched by txn.
1892  * @param[in] mc A cursor handle for the current operation.
1893  * @param[in] pflags Flags of the pages to update:
1894  * P_DIRTY to set P_KEEP, P_DIRTY|P_KEEP to clear it.
1895  * @param[in] all No shortcuts. Needed except after a full #mdb_page_flush().
1896  * @return 0 on success, non-zero on failure.
1897  */
1898 static int
1899 mdb_pages_xkeep(MDB_cursor *mc, unsigned pflags, int all)
1900 {
1901 	enum { Mask = P_SUBP|P_DIRTY|P_LOOSE|P_KEEP };
1902 	MDB_txn *txn = mc->mc_txn;
1903 	MDB_cursor *m3, *m0 = mc;
1904 	MDB_xcursor *mx;
1905 	MDB_page *dp, *mp;
1906 	MDB_node *leaf;
1907 	unsigned i, j;
1908 	int rc = MDB_SUCCESS, level;
1909 
1910 	/* Mark pages seen by cursors */
1911 	if (mc->mc_flags & C_UNTRACK)
1912 		mc = NULL;				/* will find mc in mt_cursors */
1913 	for (i = txn->mt_numdbs;; mc = txn->mt_cursors[--i]) {
1914 		for (; mc; mc=mc->mc_next) {
1915 			if (!(mc->mc_flags & C_INITIALIZED))
1916 				continue;
1917 			for (m3 = mc;; m3 = &mx->mx_cursor) {
1918 				mp = NULL;
1919 				for (j=0; j<m3->mc_snum; j++) {
1920 					mp = m3->mc_pg[j];
1921 					if ((mp->mp_flags & Mask) == pflags)
1922 						mp->mp_flags ^= P_KEEP;
1923 				}
1924 				mx = m3->mc_xcursor;
1925 				/* Proceed to mx if it is at a sub-database */
1926 				if (! (mx && (mx->mx_cursor.mc_flags & C_INITIALIZED)))
1927 					break;
1928 				if (! (mp && (mp->mp_flags & P_LEAF)))
1929 					break;
1930 				leaf = NODEPTR(mp, m3->mc_ki[j-1]);
1931 				if (!(leaf->mn_flags & F_SUBDATA))
1932 					break;
1933 			}
1934 		}
1935 		if (i == 0)
1936 			break;
1937 	}
1938 
1939 	if (all) {
1940 		/* Mark dirty root pages */
1941 		for (i=0; i<txn->mt_numdbs; i++) {
1942 			if (txn->mt_dbflags[i] & DB_DIRTY) {
1943 				pgno_t pgno = txn->mt_dbs[i].md_root;
1944 				if (pgno == P_INVALID)
1945 					continue;
1946 				if ((rc = mdb_page_get(m0, pgno, &dp, &level)) != MDB_SUCCESS)
1947 					break;
1948 				if ((dp->mp_flags & Mask) == pflags && level <= 1)
1949 					dp->mp_flags ^= P_KEEP;
1950 			}
1951 		}
1952 	}
1953 
1954 	return rc;
1955 }
1956 
1957 static int mdb_page_flush(MDB_txn *txn, int keep);
1958 
1959 /**	Spill pages from the dirty list back to disk.
1960  * This is intended to prevent running into #MDB_TXN_FULL situations,
1961  * but note that they may still occur in a few cases:
1962  *	1) our estimate of the txn size could be too small. Currently this
1963  *	 seems unlikely, except with a large number of #MDB_MULTIPLE items.
1964  *	2) child txns may run out of space if their parents dirtied a
1965  *	 lot of pages and never spilled them. TODO: we probably should do
1966  *	 a preemptive spill during #mdb_txn_begin() of a child txn, if
1967  *	 the parent's dirty_room is below a given threshold.
1968  *
1969  * Otherwise, if not using nested txns, it is expected that apps will
1970  * not run into #MDB_TXN_FULL any more. The pages are flushed to disk
1971  * the same way as for a txn commit, e.g. their P_DIRTY flag is cleared.
1972  * If the txn never references them again, they can be left alone.
1973  * If the txn only reads them, they can be used without any fuss.
1974  * If the txn writes them again, they can be dirtied immediately without
1975  * going thru all of the work of #mdb_page_touch(). Such references are
1976  * handled by #mdb_page_unspill().
1977  *
1978  * Also note, we never spill DB root pages, nor pages of active cursors,
1979  * because we'll need these back again soon anyway. And in nested txns,
1980  * we can't spill a page in a child txn if it was already spilled in a
1981  * parent txn. That would alter the parent txns' data even though
1982  * the child hasn't committed yet, and we'd have no way to undo it if
1983  * the child aborted.
1984  *
1985  * @param[in] m0 cursor A cursor handle identifying the transaction and
1986  *	database for which we are checking space.
1987  * @param[in] key For a put operation, the key being stored.
1988  * @param[in] data For a put operation, the data being stored.
1989  * @return 0 on success, non-zero on failure.
1990  */
1991 static int
1992 mdb_page_spill(MDB_cursor *m0, MDB_val *key, MDB_val *data)
1993 {
1994 	MDB_txn *txn = m0->mc_txn;
1995 	MDB_page *dp;
1996 	MDB_ID2L dl = txn->mt_u.dirty_list;
1997 	unsigned int i, j, need;
1998 	int rc;
1999 
2000 	if (m0->mc_flags & C_SUB)
2001 		return MDB_SUCCESS;
2002 
2003 	/* Estimate how much space this op will take */
2004 	i = m0->mc_db->md_depth;
2005 	/* Named DBs also dirty the main DB */
2006 	if (m0->mc_dbi >= CORE_DBS)
2007 		i += txn->mt_dbs[MAIN_DBI].md_depth;
2008 	/* For puts, roughly factor in the key+data size */
2009 	if (key)
2010 		i += (LEAFSIZE(key, data) + txn->mt_env->me_psize) / txn->mt_env->me_psize;
2011 	i += i;	/* double it for good measure */
2012 	need = i;
2013 
2014 	if (txn->mt_dirty_room > i)
2015 		return MDB_SUCCESS;
2016 
2017 	if (!txn->mt_spill_pgs) {
2018 		txn->mt_spill_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX);
2019 		if (!txn->mt_spill_pgs)
2020 			return ENOMEM;
2021 	} else {
2022 		/* purge deleted slots */
2023 		MDB_IDL sl = txn->mt_spill_pgs;
2024 		unsigned int num = sl[0];
2025 		j=0;
2026 		for (i=1; i<=num; i++) {
2027 			if (!(sl[i] & 1))
2028 				sl[++j] = sl[i];
2029 		}
2030 		sl[0] = j;
2031 	}
2032 
2033 	/* Preserve pages which may soon be dirtied again */
2034 	if ((rc = mdb_pages_xkeep(m0, P_DIRTY, 1)) != MDB_SUCCESS)
2035 		goto done;
2036 
2037 	/* Less aggressive spill - we originally spilled the entire dirty list,
2038 	 * with a few exceptions for cursor pages and DB root pages. But this
2039 	 * turns out to be a lot of wasted effort because in a large txn many
2040 	 * of those pages will need to be used again. So now we spill only 1/8th
2041 	 * of the dirty pages. Testing revealed this to be a good tradeoff,
2042 	 * better than 1/2, 1/4, or 1/10.
2043 	 */
2044 	if (need < MDB_IDL_UM_MAX / 8)
2045 		need = MDB_IDL_UM_MAX / 8;
2046 
2047 	/* Save the page IDs of all the pages we're flushing */
2048 	/* flush from the tail forward, this saves a lot of shifting later on. */
2049 	for (i=dl[0].mid; i && need; i--) {
2050 		MDB_ID pn = dl[i].mid << 1;
2051 		dp = dl[i].mptr;
2052 		if (dp->mp_flags & (P_LOOSE|P_KEEP))
2053 			continue;
2054 		/* Can't spill twice, make sure it's not already in a parent's
2055 		 * spill list.
2056 		 */
2057 		if (txn->mt_parent) {
2058 			MDB_txn *tx2;
2059 			for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) {
2060 				if (tx2->mt_spill_pgs) {
2061 					j = mdb_midl_search(tx2->mt_spill_pgs, pn);
2062 					if (j <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[j] == pn) {
2063 						dp->mp_flags |= P_KEEP;
2064 						break;
2065 					}
2066 				}
2067 			}
2068 			if (tx2)
2069 				continue;
2070 		}
2071 		if ((rc = mdb_midl_append(&txn->mt_spill_pgs, pn)))
2072 			goto done;
2073 		need--;
2074 	}
2075 	mdb_midl_sort(txn->mt_spill_pgs);
2076 
2077 	/* Flush the spilled part of dirty list */
2078 	if ((rc = mdb_page_flush(txn, i)) != MDB_SUCCESS)
2079 		goto done;
2080 
2081 	/* Reset any dirty pages we kept that page_flush didn't see */
2082 	rc = mdb_pages_xkeep(m0, P_DIRTY|P_KEEP, i);
2083 
2084 done:
2085 	txn->mt_flags |= rc ? MDB_TXN_ERROR : MDB_TXN_SPILLS;
2086 	return rc;
2087 }
2088 
2089 /** Find oldest txnid still referenced. Expects txn->mt_txnid > 0. */
2090 static txnid_t
2091 mdb_find_oldest(MDB_txn *txn)
2092 {
2093 	int i;
2094 	txnid_t mr, oldest = txn->mt_txnid - 1;
2095 	if (txn->mt_env->me_txns) {
2096 		MDB_reader *r = txn->mt_env->me_txns->mti_readers;
2097 		for (i = txn->mt_env->me_txns->mti_numreaders; --i >= 0; ) {
2098 			if (r[i].mr_pid) {
2099 				mr = r[i].mr_txnid;
2100 				if (oldest > mr)
2101 					oldest = mr;
2102 			}
2103 		}
2104 	}
2105 	return oldest;
2106 }
2107 
2108 /** Add a page to the txn's dirty list */
2109 static void
2110 mdb_page_dirty(MDB_txn *txn, MDB_page *mp)
2111 {
2112 	MDB_ID2 mid;
2113 	int rc, (*insert)(MDB_ID2L, MDB_ID2 *);
2114 
2115 	if (txn->mt_flags & MDB_TXN_WRITEMAP) {
2116 		insert = mdb_mid2l_append;
2117 	} else {
2118 		insert = mdb_mid2l_insert;
2119 	}
2120 	mid.mid = mp->mp_pgno;
2121 	mid.mptr = mp;
2122 	rc = insert(txn->mt_u.dirty_list, &mid);
2123 	mdb_tassert(txn, rc == 0);
2124 	txn->mt_dirty_room--;
2125 }
2126 
2127 /** Allocate page numbers and memory for writing.  Maintain me_pglast,
2128  * me_pghead and mt_next_pgno.  Set #MDB_TXN_ERROR on failure.
2129  *
2130  * If there are free pages available from older transactions, they
2131  * are re-used first. Otherwise allocate a new page at mt_next_pgno.
2132  * Do not modify the freedB, just merge freeDB records into me_pghead[]
2133  * and move me_pglast to say which records were consumed.  Only this
2134  * function can create me_pghead and move me_pglast/mt_next_pgno.
2135  * @param[in] mc cursor A cursor handle identifying the transaction and
2136  *	database for which we are allocating.
2137  * @param[in] num the number of pages to allocate.
2138  * @param[out] mp Address of the allocated page(s). Requests for multiple pages
2139  *  will always be satisfied by a single contiguous chunk of memory.
2140  * @return 0 on success, non-zero on failure.
2141  */
2142 static int
2143 mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp)
2144 {
2145 #ifdef MDB_PARANOID	/* Seems like we can ignore this now */
2146 	/* Get at most <Max_retries> more freeDB records once me_pghead
2147 	 * has enough pages.  If not enough, use new pages from the map.
2148 	 * If <Paranoid> and mc is updating the freeDB, only get new
2149 	 * records if me_pghead is empty. Then the freelist cannot play
2150 	 * catch-up with itself by growing while trying to save it.
2151 	 */
2152 	enum { Paranoid = 1, Max_retries = 500 };
2153 #else
2154 	enum { Paranoid = 0, Max_retries = INT_MAX /*infinite*/ };
2155 #endif
2156 	int rc, retry = num * 60;
2157 	MDB_txn *txn = mc->mc_txn;
2158 	MDB_env *env = txn->mt_env;
2159 	pgno_t pgno, *mop = env->me_pghead;
2160 	unsigned i, j, mop_len = mop ? mop[0] : 0, n2 = num-1;
2161 	MDB_page *np;
2162 	txnid_t oldest = 0, last;
2163 	MDB_cursor_op op;
2164 	MDB_cursor m2;
2165 	int found_old = 0;
2166 
2167 	/* If there are any loose pages, just use them */
2168 	if (num == 1 && txn->mt_loose_pgs) {
2169 		np = txn->mt_loose_pgs;
2170 		txn->mt_loose_pgs = NEXT_LOOSE_PAGE(np);
2171 		txn->mt_loose_count--;
2172 		DPRINTF(("db %d use loose page %"Z"u", DDBI(mc),
2173 				np->mp_pgno));
2174 		*mp = np;
2175 		return MDB_SUCCESS;
2176 	}
2177 
2178 	*mp = NULL;
2179 
2180 	/* If our dirty list is already full, we can't do anything */
2181 	if (txn->mt_dirty_room == 0) {
2182 		rc = MDB_TXN_FULL;
2183 		goto fail;
2184 	}
2185 
2186 	for (op = MDB_FIRST;; op = MDB_NEXT) {
2187 		MDB_val key, data;
2188 		MDB_node *leaf;
2189 		pgno_t *idl;
2190 
2191 		/* Seek a big enough contiguous page range. Prefer
2192 		 * pages at the tail, just truncating the list.
2193 		 */
2194 		if (mop_len > n2) {
2195 			i = mop_len;
2196 			do {
2197 				pgno = mop[i];
2198 				if (mop[i-n2] == pgno+n2)
2199 					goto search_done;
2200 			} while (--i > n2);
2201 			if (--retry < 0)
2202 				break;
2203 		}
2204 
2205 		if (op == MDB_FIRST) {	/* 1st iteration */
2206 			/* Prepare to fetch more and coalesce */
2207 			last = env->me_pglast;
2208 			oldest = env->me_pgoldest;
2209 			mdb_cursor_init(&m2, txn, FREE_DBI, NULL);
2210 			if (last) {
2211 				op = MDB_SET_RANGE;
2212 				key.mv_data = &last; /* will look up last+1 */
2213 				key.mv_size = sizeof(last);
2214 			}
2215 			if (Paranoid && mc->mc_dbi == FREE_DBI)
2216 				retry = -1;
2217 		}
2218 		if (Paranoid && retry < 0 && mop_len)
2219 			break;
2220 
2221 		last++;
2222 		/* Do not fetch more if the record will be too recent */
2223 		if (oldest <= last) {
2224 			if (!found_old) {
2225 				oldest = mdb_find_oldest(txn);
2226 				env->me_pgoldest = oldest;
2227 				found_old = 1;
2228 			}
2229 			if (oldest <= last)
2230 				break;
2231 		}
2232 		rc = mdb_cursor_get(&m2, &key, NULL, op);
2233 		if (rc) {
2234 			if (rc == MDB_NOTFOUND)
2235 				break;
2236 			goto fail;
2237 		}
2238 		last = *(txnid_t*)key.mv_data;
2239 		if (oldest <= last) {
2240 			if (!found_old) {
2241 				oldest = mdb_find_oldest(txn);
2242 				env->me_pgoldest = oldest;
2243 				found_old = 1;
2244 			}
2245 			if (oldest <= last)
2246 				break;
2247 		}
2248 		np = m2.mc_pg[m2.mc_top];
2249 		leaf = NODEPTR(np, m2.mc_ki[m2.mc_top]);
2250 		if ((rc = mdb_node_read(&m2, leaf, &data)) != MDB_SUCCESS)
2251 			goto fail;
2252 
2253 		idl = (MDB_ID *) data.mv_data;
2254 		i = idl[0];
2255 		if (!mop) {
2256 			if (!(env->me_pghead = mop = mdb_midl_alloc(i))) {
2257 				rc = ENOMEM;
2258 				goto fail;
2259 			}
2260 		} else {
2261 			if ((rc = mdb_midl_need(&env->me_pghead, i)) != 0)
2262 				goto fail;
2263 			mop = env->me_pghead;
2264 		}
2265 		env->me_pglast = last;
2266 #if (MDB_DEBUG) > 1
2267 		DPRINTF(("IDL read txn %"Z"u root %"Z"u num %u",
2268 			last, txn->mt_dbs[FREE_DBI].md_root, i));
2269 		for (j = i; j; j--)
2270 			DPRINTF(("IDL %"Z"u", idl[j]));
2271 #endif
2272 		/* Merge in descending sorted order */
2273 		mdb_midl_xmerge(mop, idl);
2274 		mop_len = mop[0];
2275 	}
2276 
2277 	/* Use new pages from the map when nothing suitable in the freeDB */
2278 	i = 0;
2279 	pgno = txn->mt_next_pgno;
2280 	if (pgno + num >= env->me_maxpg) {
2281 			DPUTS("DB size maxed out");
2282 			rc = MDB_MAP_FULL;
2283 			goto fail;
2284 	}
2285 
2286 search_done:
2287 	if (env->me_flags & MDB_WRITEMAP) {
2288 		np = (MDB_page *)(env->me_map + env->me_psize * pgno);
2289 	} else {
2290 		if (!(np = mdb_page_malloc(txn, num))) {
2291 			rc = ENOMEM;
2292 			goto fail;
2293 		}
2294 	}
2295 	if (i) {
2296 		mop[0] = mop_len -= num;
2297 		/* Move any stragglers down */
2298 		for (j = i-num; j < mop_len; )
2299 			mop[++j] = mop[++i];
2300 	} else {
2301 		txn->mt_next_pgno = pgno + num;
2302 	}
2303 	np->mp_pgno = pgno;
2304 	mdb_page_dirty(txn, np);
2305 	*mp = np;
2306 
2307 	return MDB_SUCCESS;
2308 
2309 fail:
2310 	txn->mt_flags |= MDB_TXN_ERROR;
2311 	return rc;
2312 }
2313 
2314 /** Copy the used portions of a non-overflow page.
2315  * @param[in] dst page to copy into
2316  * @param[in] src page to copy from
2317  * @param[in] psize size of a page
2318  */
2319 static void
2320 mdb_page_copy(MDB_page *dst, MDB_page *src, unsigned int psize)
2321 {
2322 	enum { Align = sizeof(pgno_t) };
2323 	indx_t upper = src->mp_upper, lower = src->mp_lower, unused = upper-lower;
2324 
2325 	/* If page isn't full, just copy the used portion. Adjust
2326 	 * alignment so memcpy may copy words instead of bytes.
2327 	 */
2328 	if ((unused &= -Align) && !IS_LEAF2(src)) {
2329 		upper = (upper + PAGEBASE) & -Align;
2330 		memcpy(dst, src, (lower + PAGEBASE + (Align-1)) & -Align);
2331 		memcpy((pgno_t *)((char *)dst+upper), (pgno_t *)((char *)src+upper),
2332 			psize - upper);
2333 	} else {
2334 		memcpy(dst, src, psize - unused);
2335 	}
2336 }
2337 
2338 /** Pull a page off the txn's spill list, if present.
2339  * If a page being referenced was spilled to disk in this txn, bring
2340  * it back and make it dirty/writable again.
2341  * @param[in] txn the transaction handle.
2342  * @param[in] mp the page being referenced. It must not be dirty.
2343  * @param[out] ret the writable page, if any. ret is unchanged if
2344  * mp wasn't spilled.
2345  */
2346 static int
2347 mdb_page_unspill(MDB_txn *txn, MDB_page *mp, MDB_page **ret)
2348 {
2349 	MDB_env *env = txn->mt_env;
2350 	const MDB_txn *tx2;
2351 	unsigned x;
2352 	pgno_t pgno = mp->mp_pgno, pn = pgno << 1;
2353 
2354 	for (tx2 = txn; tx2; tx2=tx2->mt_parent) {
2355 		if (!tx2->mt_spill_pgs)
2356 			continue;
2357 		x = mdb_midl_search(tx2->mt_spill_pgs, pn);
2358 		if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) {
2359 			MDB_page *np;
2360 			int num;
2361 			if (txn->mt_dirty_room == 0)
2362 				return MDB_TXN_FULL;
2363 			if (IS_OVERFLOW(mp))
2364 				num = mp->mp_pages;
2365 			else
2366 				num = 1;
2367 			if (env->me_flags & MDB_WRITEMAP) {
2368 				np = mp;
2369 			} else {
2370 				np = mdb_page_malloc(txn, num);
2371 				if (!np)
2372 					return ENOMEM;
2373 				if (num > 1)
2374 					memcpy(np, mp, num * env->me_psize);
2375 				else
2376 					mdb_page_copy(np, mp, env->me_psize);
2377 			}
2378 			if (tx2 == txn) {
2379 				/* If in current txn, this page is no longer spilled.
2380 				 * If it happens to be the last page, truncate the spill list.
2381 				 * Otherwise mark it as deleted by setting the LSB.
2382 				 */
2383 				if (x == txn->mt_spill_pgs[0])
2384 					txn->mt_spill_pgs[0]--;
2385 				else
2386 					txn->mt_spill_pgs[x] |= 1;
2387 			}	/* otherwise, if belonging to a parent txn, the
2388 				 * page remains spilled until child commits
2389 				 */
2390 
2391 			mdb_page_dirty(txn, np);
2392 			np->mp_flags |= P_DIRTY;
2393 			*ret = np;
2394 			break;
2395 		}
2396 	}
2397 	return MDB_SUCCESS;
2398 }
2399 
2400 /** Touch a page: make it dirty and re-insert into tree with updated pgno.
2401  * Set #MDB_TXN_ERROR on failure.
2402  * @param[in] mc cursor pointing to the page to be touched
2403  * @return 0 on success, non-zero on failure.
2404  */
2405 static int
2406 mdb_page_touch(MDB_cursor *mc)
2407 {
2408 	MDB_page *mp = mc->mc_pg[mc->mc_top], *np;
2409 	MDB_txn *txn = mc->mc_txn;
2410 	MDB_cursor *m2, *m3;
2411 	pgno_t	pgno;
2412 	int rc;
2413 
2414 	if (!F_ISSET(mp->mp_flags, P_DIRTY)) {
2415 		if (txn->mt_flags & MDB_TXN_SPILLS) {
2416 			np = NULL;
2417 			rc = mdb_page_unspill(txn, mp, &np);
2418 			if (rc)
2419 				goto fail;
2420 			if (np)
2421 				goto done;
2422 		}
2423 		if ((rc = mdb_midl_need(&txn->mt_free_pgs, 1)) ||
2424 			(rc = mdb_page_alloc(mc, 1, &np)))
2425 			goto fail;
2426 		pgno = np->mp_pgno;
2427 		DPRINTF(("touched db %d page %"Z"u -> %"Z"u", DDBI(mc),
2428 			mp->mp_pgno, pgno));
2429 		mdb_cassert(mc, mp->mp_pgno != pgno);
2430 		mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
2431 		/* Update the parent page, if any, to point to the new page */
2432 		if (mc->mc_top) {
2433 			MDB_page *parent = mc->mc_pg[mc->mc_top-1];
2434 			MDB_node *node = NODEPTR(parent, mc->mc_ki[mc->mc_top-1]);
2435 			SETPGNO(node, pgno);
2436 		} else {
2437 			mc->mc_db->md_root = pgno;
2438 		}
2439 	} else if (txn->mt_parent && !IS_SUBP(mp)) {
2440 		MDB_ID2 mid, *dl = txn->mt_u.dirty_list;
2441 		pgno = mp->mp_pgno;
2442 		/* If txn has a parent, make sure the page is in our
2443 		 * dirty list.
2444 		 */
2445 		if (dl[0].mid) {
2446 			unsigned x = mdb_mid2l_search(dl, pgno);
2447 			if (x <= dl[0].mid && dl[x].mid == pgno) {
2448 				if (mp != dl[x].mptr) { /* bad cursor? */
2449 					mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
2450 					txn->mt_flags |= MDB_TXN_ERROR;
2451 					return MDB_CORRUPTED;
2452 				}
2453 				return 0;
2454 			}
2455 		}
2456 		mdb_cassert(mc, dl[0].mid < MDB_IDL_UM_MAX);
2457 		/* No - copy it */
2458 		np = mdb_page_malloc(txn, 1);
2459 		if (!np)
2460 			return ENOMEM;
2461 		mid.mid = pgno;
2462 		mid.mptr = np;
2463 		rc = mdb_mid2l_insert(dl, &mid);
2464 		mdb_cassert(mc, rc == 0);
2465 	} else {
2466 		return 0;
2467 	}
2468 
2469 	mdb_page_copy(np, mp, txn->mt_env->me_psize);
2470 	np->mp_pgno = pgno;
2471 	np->mp_flags |= P_DIRTY;
2472 
2473 done:
2474 	/* Adjust cursors pointing to mp */
2475 	mc->mc_pg[mc->mc_top] = np;
2476 	m2 = txn->mt_cursors[mc->mc_dbi];
2477 	if (mc->mc_flags & C_SUB) {
2478 		for (; m2; m2=m2->mc_next) {
2479 			m3 = &m2->mc_xcursor->mx_cursor;
2480 			if (m3->mc_snum < mc->mc_snum) continue;
2481 			if (m3->mc_pg[mc->mc_top] == mp)
2482 				m3->mc_pg[mc->mc_top] = np;
2483 		}
2484 	} else {
2485 		for (; m2; m2=m2->mc_next) {
2486 			if (m2->mc_snum < mc->mc_snum) continue;
2487 			if (m2 == mc) continue;
2488 			if (m2->mc_pg[mc->mc_top] == mp) {
2489 				m2->mc_pg[mc->mc_top] = np;
2490 				if (XCURSOR_INITED(m2) && IS_LEAF(np))
2491 					XCURSOR_REFRESH(m2, np, m2->mc_ki[mc->mc_top]);
2492 			}
2493 		}
2494 	}
2495 	return 0;
2496 
2497 fail:
2498 	txn->mt_flags |= MDB_TXN_ERROR;
2499 	return rc;
2500 }
2501 
2502 int
2503 mdb_env_sync(MDB_env *env, int force)
2504 {
2505 	int rc = 0;
2506 	if (env->me_flags & MDB_RDONLY)
2507 		return EACCES;
2508 	if (force || !F_ISSET(env->me_flags, MDB_NOSYNC)) {
2509 		if (env->me_flags & MDB_WRITEMAP) {
2510 			int flags = ((env->me_flags & MDB_MAPASYNC) && !force)
2511 				? MS_ASYNC : MS_SYNC;
2512 			if (MDB_MSYNC(env->me_map, env->me_mapsize, flags))
2513 				rc = ErrCode();
2514 #ifdef _WIN32
2515 			else if (flags == MS_SYNC && MDB_FDATASYNC(env->me_fd))
2516 				rc = ErrCode();
2517 #endif
2518 		} else {
2519 #ifdef BROKEN_FDATASYNC
2520 			if (env->me_flags & MDB_FSYNCONLY) {
2521 				if (fsync(env->me_fd))
2522 					rc = ErrCode();
2523 			} else
2524 #endif
2525 			if (MDB_FDATASYNC(env->me_fd))
2526 				rc = ErrCode();
2527 		}
2528 	}
2529 	return rc;
2530 }
2531 
2532 /** Back up parent txn's cursors, then grab the originals for tracking */
2533 static int
2534 mdb_cursor_shadow(MDB_txn *src, MDB_txn *dst)
2535 {
2536 	MDB_cursor *mc, *bk;
2537 	MDB_xcursor *mx;
2538 	size_t size;
2539 	int i;
2540 
2541 	for (i = src->mt_numdbs; --i >= 0; ) {
2542 		if ((mc = src->mt_cursors[i]) != NULL) {
2543 			size = sizeof(MDB_cursor);
2544 			if (mc->mc_xcursor)
2545 				size += sizeof(MDB_xcursor);
2546 			for (; mc; mc = bk->mc_next) {
2547 				bk = malloc(size);
2548 				if (!bk)
2549 					return ENOMEM;
2550 				*bk = *mc;
2551 				mc->mc_backup = bk;
2552 				mc->mc_db = &dst->mt_dbs[i];
2553 				/* Kill pointers into src to reduce abuse: The
2554 				 * user may not use mc until dst ends. But we need a valid
2555 				 * txn pointer here for cursor fixups to keep working.
2556 				 */
2557 				mc->mc_txn    = dst;
2558 				mc->mc_dbflag = &dst->mt_dbflags[i];
2559 				if ((mx = mc->mc_xcursor) != NULL) {
2560 					*(MDB_xcursor *)(bk+1) = *mx;
2561 					mx->mx_cursor.mc_txn = dst;
2562 				}
2563 				mc->mc_next = dst->mt_cursors[i];
2564 				dst->mt_cursors[i] = mc;
2565 			}
2566 		}
2567 	}
2568 	return MDB_SUCCESS;
2569 }
2570 
2571 /** Close this write txn's cursors, give parent txn's cursors back to parent.
2572  * @param[in] txn the transaction handle.
2573  * @param[in] merge true to keep changes to parent cursors, false to revert.
2574  * @return 0 on success, non-zero on failure.
2575  */
2576 static void
2577 mdb_cursors_close(MDB_txn *txn, unsigned merge)
2578 {
2579 	MDB_cursor **cursors = txn->mt_cursors, *mc, *next, *bk;
2580 	MDB_xcursor *mx;
2581 	int i;
2582 
2583 	for (i = txn->mt_numdbs; --i >= 0; ) {
2584 		for (mc = cursors[i]; mc; mc = next) {
2585 			next = mc->mc_next;
2586 			if ((bk = mc->mc_backup) != NULL) {
2587 				if (merge) {
2588 					/* Commit changes to parent txn */
2589 					mc->mc_next = bk->mc_next;
2590 					mc->mc_backup = bk->mc_backup;
2591 					mc->mc_txn = bk->mc_txn;
2592 					mc->mc_db = bk->mc_db;
2593 					mc->mc_dbflag = bk->mc_dbflag;
2594 					if ((mx = mc->mc_xcursor) != NULL)
2595 						mx->mx_cursor.mc_txn = bk->mc_txn;
2596 				} else {
2597 					/* Abort nested txn */
2598 					*mc = *bk;
2599 					if ((mx = mc->mc_xcursor) != NULL)
2600 						*mx = *(MDB_xcursor *)(bk+1);
2601 				}
2602 				mc = bk;
2603 			}
2604 			/* Only malloced cursors are permanently tracked. */
2605 			free(mc);
2606 		}
2607 		cursors[i] = NULL;
2608 	}
2609 }
2610 
2611 #if !(MDB_PIDLOCK)		/* Currently the same as defined(_WIN32) */
2612 enum Pidlock_op {
2613 	Pidset, Pidcheck
2614 };
2615 #else
2616 enum Pidlock_op {
2617 	Pidset = F_SETLK, Pidcheck = F_GETLK
2618 };
2619 #endif
2620 
2621 /** Set or check a pid lock. Set returns 0 on success.
2622  * Check returns 0 if the process is certainly dead, nonzero if it may
2623  * be alive (the lock exists or an error happened so we do not know).
2624  *
2625  * On Windows Pidset is a no-op, we merely check for the existence
2626  * of the process with the given pid. On POSIX we use a single byte
2627  * lock on the lockfile, set at an offset equal to the pid.
2628  */
2629 static int
2630 mdb_reader_pid(MDB_env *env, enum Pidlock_op op, MDB_PID_T pid)
2631 {
2632 #if !(MDB_PIDLOCK)		/* Currently the same as defined(_WIN32) */
2633 	int ret = 0;
2634 	HANDLE h;
2635 	if (op == Pidcheck) {
2636 		h = OpenProcess(env->me_pidquery, FALSE, pid);
2637 		/* No documented "no such process" code, but other program use this: */
2638 		if (!h)
2639 			return ErrCode() != ERROR_INVALID_PARAMETER;
2640 		/* A process exists until all handles to it close. Has it exited? */
2641 		ret = WaitForSingleObject(h, 0) != 0;
2642 		CloseHandle(h);
2643 	}
2644 	return ret;
2645 #else
2646 	for (;;) {
2647 		int rc;
2648 		struct flock lock_info;
2649 		memset(&lock_info, 0, sizeof(lock_info));
2650 		lock_info.l_type = F_WRLCK;
2651 		lock_info.l_whence = SEEK_SET;
2652 		lock_info.l_start = pid;
2653 		lock_info.l_len = 1;
2654 		if ((rc = fcntl(env->me_lfd, op, &lock_info)) == 0) {
2655 			if (op == F_GETLK && lock_info.l_type != F_UNLCK)
2656 				rc = -1;
2657 		} else if ((rc = ErrCode()) == EINTR) {
2658 			continue;
2659 		}
2660 		return rc;
2661 	}
2662 #endif
2663 }
2664 
2665 /** Common code for #mdb_txn_begin() and #mdb_txn_renew().
2666  * @param[in] txn the transaction handle to initialize
2667  * @return 0 on success, non-zero on failure.
2668  */
2669 static int
2670 mdb_txn_renew0(MDB_txn *txn)
2671 {
2672 	MDB_env *env = txn->mt_env;
2673 	MDB_txninfo *ti = env->me_txns;
2674 	MDB_meta *meta;
2675 	unsigned int i, nr, flags = txn->mt_flags;
2676 	uint16_t x;
2677 	int rc, new_notls = 0;
2678 
2679 	if ((flags &= MDB_TXN_RDONLY) != 0) {
2680 		if (!ti) {
2681 			meta = mdb_env_pick_meta(env);
2682 			txn->mt_txnid = meta->mm_txnid;
2683 			txn->mt_u.reader = NULL;
2684 		} else {
2685 			MDB_reader *r = (env->me_flags & MDB_NOTLS) ? txn->mt_u.reader :
2686 				pthread_getspecific(env->me_txkey);
2687 			if (r) {
2688 				if (r->mr_pid != env->me_pid || r->mr_txnid != (txnid_t)-1)
2689 					return MDB_BAD_RSLOT;
2690 			} else {
2691 				MDB_PID_T pid = env->me_pid;
2692 				MDB_THR_T tid = pthread_self();
2693 				mdb_mutexref_t rmutex = env->me_rmutex;
2694 
2695 				if (!env->me_live_reader) {
2696 					rc = mdb_reader_pid(env, Pidset, pid);
2697 					if (rc)
2698 						return rc;
2699 					env->me_live_reader = 1;
2700 				}
2701 
2702 				if (LOCK_MUTEX(rc, env, rmutex))
2703 					return rc;
2704 				nr = ti->mti_numreaders;
2705 				for (i=0; i<nr; i++)
2706 					if (ti->mti_readers[i].mr_pid == 0)
2707 						break;
2708 				if (i == env->me_maxreaders) {
2709 					UNLOCK_MUTEX(rmutex);
2710 					return MDB_READERS_FULL;
2711 				}
2712 				r = &ti->mti_readers[i];
2713 				/* Claim the reader slot, carefully since other code
2714 				 * uses the reader table un-mutexed: First reset the
2715 				 * slot, next publish it in mti_numreaders.  After
2716 				 * that, it is safe for mdb_env_close() to touch it.
2717 				 * When it will be closed, we can finally claim it.
2718 				 */
2719 				r->mr_pid = 0;
2720 				r->mr_txnid = (txnid_t)-1;
2721 				r->mr_tid = tid;
2722 				if (i == nr)
2723 					ti->mti_numreaders = ++nr;
2724 				env->me_close_readers = nr;
2725 				r->mr_pid = pid;
2726 				UNLOCK_MUTEX(rmutex);
2727 
2728 				new_notls = (env->me_flags & MDB_NOTLS);
2729 				if (!new_notls && (rc=pthread_setspecific(env->me_txkey, r))) {
2730 					r->mr_pid = 0;
2731 					return rc;
2732 				}
2733 			}
2734 			do /* LY: Retry on a race, ITS#7970. */
2735 				r->mr_txnid = ti->mti_txnid;
2736 			while(r->mr_txnid != ti->mti_txnid);
2737 			txn->mt_txnid = r->mr_txnid;
2738 			txn->mt_u.reader = r;
2739 			meta = env->me_metas[txn->mt_txnid & 1];
2740 		}
2741 
2742 	} else {
2743 		/* Not yet touching txn == env->me_txn0, it may be active */
2744 		if (ti) {
2745 			if (LOCK_MUTEX(rc, env, env->me_wmutex))
2746 				return rc;
2747 			txn->mt_txnid = ti->mti_txnid;
2748 			meta = env->me_metas[txn->mt_txnid & 1];
2749 		} else {
2750 			meta = mdb_env_pick_meta(env);
2751 			txn->mt_txnid = meta->mm_txnid;
2752 		}
2753 		txn->mt_txnid++;
2754 #if MDB_DEBUG
2755 		if (txn->mt_txnid == mdb_debug_start)
2756 			mdb_debug = 1;
2757 #endif
2758 		txn->mt_child = NULL;
2759 		txn->mt_loose_pgs = NULL;
2760 		txn->mt_loose_count = 0;
2761 		txn->mt_dirty_room = MDB_IDL_UM_MAX;
2762 		txn->mt_u.dirty_list = env->me_dirty_list;
2763 		txn->mt_u.dirty_list[0].mid = 0;
2764 		txn->mt_free_pgs = env->me_free_pgs;
2765 		txn->mt_free_pgs[0] = 0;
2766 		txn->mt_spill_pgs = NULL;
2767 		env->me_txn = txn;
2768 		memcpy(txn->mt_dbiseqs, env->me_dbiseqs, env->me_maxdbs * sizeof(unsigned int));
2769 	}
2770 
2771 	/* Copy the DB info and flags */
2772 	memcpy(txn->mt_dbs, meta->mm_dbs, CORE_DBS * sizeof(MDB_db));
2773 
2774 	/* Moved to here to avoid a data race in read TXNs */
2775 	txn->mt_next_pgno = meta->mm_last_pg+1;
2776 
2777 	txn->mt_flags = flags;
2778 
2779 	/* Setup db info */
2780 	txn->mt_numdbs = env->me_numdbs;
2781 	for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
2782 		x = env->me_dbflags[i];
2783 		txn->mt_dbs[i].md_flags = x & PERSISTENT_FLAGS;
2784 		txn->mt_dbflags[i] = (x & MDB_VALID) ? DB_VALID|DB_USRVALID|DB_STALE : 0;
2785 	}
2786 	txn->mt_dbflags[MAIN_DBI] = DB_VALID|DB_USRVALID;
2787 	txn->mt_dbflags[FREE_DBI] = DB_VALID;
2788 
2789 	if (env->me_flags & MDB_FATAL_ERROR) {
2790 		DPUTS("environment had fatal error, must shutdown!");
2791 		rc = MDB_PANIC;
2792 	} else if (env->me_maxpg < txn->mt_next_pgno) {
2793 		rc = MDB_MAP_RESIZED;
2794 	} else {
2795 		return MDB_SUCCESS;
2796 	}
2797 	mdb_txn_end(txn, new_notls /*0 or MDB_END_SLOT*/ | MDB_END_FAIL_BEGIN);
2798 	return rc;
2799 }
2800 
2801 int
2802 mdb_txn_renew(MDB_txn *txn)
2803 {
2804 	int rc;
2805 
2806 	if (!txn || !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY|MDB_TXN_FINISHED))
2807 		return EINVAL;
2808 
2809 	rc = mdb_txn_renew0(txn);
2810 	if (rc == MDB_SUCCESS) {
2811 		DPRINTF(("renew txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
2812 			txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
2813 			(void *)txn, (void *)txn->mt_env, txn->mt_dbs[MAIN_DBI].md_root));
2814 	}
2815 	return rc;
2816 }
2817 
2818 int
2819 mdb_txn_begin(MDB_env *env, MDB_txn *parent, unsigned int flags, MDB_txn **ret)
2820 {
2821 	MDB_txn *txn;
2822 	MDB_ntxn *ntxn;
2823 	int rc, size, tsize;
2824 
2825 	flags &= MDB_TXN_BEGIN_FLAGS;
2826 	flags |= env->me_flags & MDB_WRITEMAP;
2827 
2828 	if (env->me_flags & MDB_RDONLY & ~flags) /* write txn in RDONLY env */
2829 		return EACCES;
2830 
2831 	if (parent) {
2832 		/* Nested transactions: Max 1 child, write txns only, no writemap */
2833 		flags |= parent->mt_flags;
2834 		if (flags & (MDB_RDONLY|MDB_WRITEMAP|MDB_TXN_BLOCKED)) {
2835 			return (parent->mt_flags & MDB_TXN_RDONLY) ? EINVAL : MDB_BAD_TXN;
2836 		}
2837 		/* Child txns save MDB_pgstate and use own copy of cursors */
2838 		size = env->me_maxdbs * (sizeof(MDB_db)+sizeof(MDB_cursor *)+1);
2839 		size += tsize = sizeof(MDB_ntxn);
2840 	} else if (flags & MDB_RDONLY) {
2841 		size = env->me_maxdbs * (sizeof(MDB_db)+1);
2842 		size += tsize = sizeof(MDB_txn);
2843 	} else {
2844 		/* Reuse preallocated write txn. However, do not touch it until
2845 		 * mdb_txn_renew0() succeeds, since it currently may be active.
2846 		 */
2847 		txn = env->me_txn0;
2848 		goto renew;
2849 	}
2850 	if ((txn = calloc(1, size)) == NULL) {
2851 		DPRINTF(("calloc: %s", strerror(errno)));
2852 		return ENOMEM;
2853 	}
2854 	txn->mt_dbxs = env->me_dbxs;	/* static */
2855 	txn->mt_dbs = (MDB_db *) ((char *)txn + tsize);
2856 	txn->mt_dbflags = (unsigned char *)txn + size - env->me_maxdbs;
2857 	txn->mt_flags = flags;
2858 	txn->mt_env = env;
2859 
2860 	if (parent) {
2861 		unsigned int i;
2862 		txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
2863 		txn->mt_dbiseqs = parent->mt_dbiseqs;
2864 		txn->mt_u.dirty_list = malloc(sizeof(MDB_ID2)*MDB_IDL_UM_SIZE);
2865 		if (!txn->mt_u.dirty_list ||
2866 			!(txn->mt_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)))
2867 		{
2868 			free(txn->mt_u.dirty_list);
2869 			free(txn);
2870 			return ENOMEM;
2871 		}
2872 		txn->mt_txnid = parent->mt_txnid;
2873 		txn->mt_dirty_room = parent->mt_dirty_room;
2874 		txn->mt_u.dirty_list[0].mid = 0;
2875 		txn->mt_spill_pgs = NULL;
2876 		txn->mt_next_pgno = parent->mt_next_pgno;
2877 		parent->mt_flags |= MDB_TXN_HAS_CHILD;
2878 		parent->mt_child = txn;
2879 		txn->mt_parent = parent;
2880 		txn->mt_numdbs = parent->mt_numdbs;
2881 		memcpy(txn->mt_dbs, parent->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
2882 		/* Copy parent's mt_dbflags, but clear DB_NEW */
2883 		for (i=0; i<txn->mt_numdbs; i++)
2884 			txn->mt_dbflags[i] = parent->mt_dbflags[i] & ~DB_NEW;
2885 		rc = 0;
2886 		ntxn = (MDB_ntxn *)txn;
2887 		ntxn->mnt_pgstate = env->me_pgstate; /* save parent me_pghead & co */
2888 		if (env->me_pghead) {
2889 			size = MDB_IDL_SIZEOF(env->me_pghead);
2890 			env->me_pghead = mdb_midl_alloc(env->me_pghead[0]);
2891 			if (env->me_pghead)
2892 				memcpy(env->me_pghead, ntxn->mnt_pgstate.mf_pghead, size);
2893 			else
2894 				rc = ENOMEM;
2895 		}
2896 		if (!rc)
2897 			rc = mdb_cursor_shadow(parent, txn);
2898 		if (rc)
2899 			mdb_txn_end(txn, MDB_END_FAIL_BEGINCHILD);
2900 	} else { /* MDB_RDONLY */
2901 		txn->mt_dbiseqs = env->me_dbiseqs;
2902 renew:
2903 		rc = mdb_txn_renew0(txn);
2904 	}
2905 	if (rc) {
2906 		if (txn != env->me_txn0)
2907 			free(txn);
2908 	} else {
2909 		txn->mt_flags |= flags;	/* could not change txn=me_txn0 earlier */
2910 		*ret = txn;
2911 		DPRINTF(("begin txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
2912 			txn->mt_txnid, (flags & MDB_RDONLY) ? 'r' : 'w',
2913 			(void *) txn, (void *) env, txn->mt_dbs[MAIN_DBI].md_root));
2914 	}
2915 
2916 	return rc;
2917 }
2918 
2919 MDB_env *
2920 mdb_txn_env(MDB_txn *txn)
2921 {
2922 	if(!txn) return NULL;
2923 	return txn->mt_env;
2924 }
2925 
2926 size_t
2927 mdb_txn_id(MDB_txn *txn)
2928 {
2929     if(!txn) return 0;
2930     return txn->mt_txnid;
2931 }
2932 
2933 /** Export or close DBI handles opened in this txn. */
2934 static void
2935 mdb_dbis_update(MDB_txn *txn, int keep)
2936 {
2937 	int i;
2938 	MDB_dbi n = txn->mt_numdbs;
2939 	MDB_env *env = txn->mt_env;
2940 	unsigned char *tdbflags = txn->mt_dbflags;
2941 
2942 	for (i = n; --i >= CORE_DBS;) {
2943 		if (tdbflags[i] & DB_NEW) {
2944 			if (keep) {
2945 				env->me_dbflags[i] = txn->mt_dbs[i].md_flags | MDB_VALID;
2946 			} else {
2947 				char *ptr = env->me_dbxs[i].md_name.mv_data;
2948 				if (ptr) {
2949 					env->me_dbxs[i].md_name.mv_data = NULL;
2950 					env->me_dbxs[i].md_name.mv_size = 0;
2951 					env->me_dbflags[i] = 0;
2952 					env->me_dbiseqs[i]++;
2953 					free(ptr);
2954 				}
2955 			}
2956 		}
2957 	}
2958 	if (keep && env->me_numdbs < n)
2959 		env->me_numdbs = n;
2960 }
2961 
2962 /** End a transaction, except successful commit of a nested transaction.
2963  * May be called twice for readonly txns: First reset it, then abort.
2964  * @param[in] txn the transaction handle to end
2965  * @param[in] mode why and how to end the transaction
2966  */
2967 static void
2968 mdb_txn_end(MDB_txn *txn, unsigned mode)
2969 {
2970 	MDB_env	*env = txn->mt_env;
2971 #if MDB_DEBUG
2972 	static const char *const names[] = MDB_END_NAMES;
2973 #endif
2974 
2975 	/* Export or close DBI handles opened in this txn */
2976 	mdb_dbis_update(txn, mode & MDB_END_UPDATE);
2977 
2978 	DPRINTF(("%s txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
2979 		names[mode & MDB_END_OPMASK],
2980 		txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
2981 		(void *) txn, (void *)env, txn->mt_dbs[MAIN_DBI].md_root));
2982 
2983 	if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
2984 		if (txn->mt_u.reader) {
2985 			txn->mt_u.reader->mr_txnid = (txnid_t)-1;
2986 			if (!(env->me_flags & MDB_NOTLS)) {
2987 				txn->mt_u.reader = NULL; /* txn does not own reader */
2988 			} else if (mode & MDB_END_SLOT) {
2989 				txn->mt_u.reader->mr_pid = 0;
2990 				txn->mt_u.reader = NULL;
2991 			} /* else txn owns the slot until it does MDB_END_SLOT */
2992 		}
2993 		txn->mt_numdbs = 0;		/* prevent further DBI activity */
2994 		txn->mt_flags |= MDB_TXN_FINISHED;
2995 
2996 	} else if (!F_ISSET(txn->mt_flags, MDB_TXN_FINISHED)) {
2997 		pgno_t *pghead = env->me_pghead;
2998 
2999 		if (!(mode & MDB_END_UPDATE)) /* !(already closed cursors) */
3000 			mdb_cursors_close(txn, 0);
3001 		if (!(env->me_flags & MDB_WRITEMAP)) {
3002 			mdb_dlist_free(txn);
3003 		}
3004 
3005 		txn->mt_numdbs = 0;
3006 		txn->mt_flags = MDB_TXN_FINISHED;
3007 
3008 		if (!txn->mt_parent) {
3009 			mdb_midl_shrink(&txn->mt_free_pgs);
3010 			env->me_free_pgs = txn->mt_free_pgs;
3011 			/* me_pgstate: */
3012 			env->me_pghead = NULL;
3013 			env->me_pglast = 0;
3014 
3015 			env->me_txn = NULL;
3016 			mode = 0;	/* txn == env->me_txn0, do not free() it */
3017 
3018 			/* The writer mutex was locked in mdb_txn_begin. */
3019 			if (env->me_txns)
3020 				UNLOCK_MUTEX(env->me_wmutex);
3021 		} else {
3022 			txn->mt_parent->mt_child = NULL;
3023 			txn->mt_parent->mt_flags &= ~MDB_TXN_HAS_CHILD;
3024 			env->me_pgstate = ((MDB_ntxn *)txn)->mnt_pgstate;
3025 			mdb_midl_free(txn->mt_free_pgs);
3026 			mdb_midl_free(txn->mt_spill_pgs);
3027 			free(txn->mt_u.dirty_list);
3028 		}
3029 
3030 		mdb_midl_free(pghead);
3031 	}
3032 
3033 	if (mode & MDB_END_FREE)
3034 		free(txn);
3035 }
3036 
3037 void
3038 mdb_txn_reset(MDB_txn *txn)
3039 {
3040 	if (txn == NULL)
3041 		return;
3042 
3043 	/* This call is only valid for read-only txns */
3044 	if (!(txn->mt_flags & MDB_TXN_RDONLY))
3045 		return;
3046 
3047 	mdb_txn_end(txn, MDB_END_RESET);
3048 }
3049 
3050 void
3051 mdb_txn_abort(MDB_txn *txn)
3052 {
3053 	if (txn == NULL)
3054 		return;
3055 
3056 	if (txn->mt_child)
3057 		mdb_txn_abort(txn->mt_child);
3058 
3059 	mdb_txn_end(txn, MDB_END_ABORT|MDB_END_SLOT|MDB_END_FREE);
3060 }
3061 
3062 /** Save the freelist as of this transaction to the freeDB.
3063  * This changes the freelist. Keep trying until it stabilizes.
3064  */
3065 static int
3066 mdb_freelist_save(MDB_txn *txn)
3067 {
3068 	/* env->me_pghead[] can grow and shrink during this call.
3069 	 * env->me_pglast and txn->mt_free_pgs[] can only grow.
3070 	 * Page numbers cannot disappear from txn->mt_free_pgs[].
3071 	 */
3072 	MDB_cursor mc;
3073 	MDB_env	*env = txn->mt_env;
3074 	int rc, maxfree_1pg = env->me_maxfree_1pg, more = 1;
3075 	txnid_t	pglast = 0, head_id = 0;
3076 	pgno_t	freecnt = 0, *free_pgs, *mop;
3077 	ssize_t	head_room = 0, total_room = 0, mop_len, clean_limit;
3078 
3079 	mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
3080 
3081 	if (env->me_pghead) {
3082 		/* Make sure first page of freeDB is touched and on freelist */
3083 		rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST|MDB_PS_MODIFY);
3084 		if (rc && rc != MDB_NOTFOUND)
3085 			return rc;
3086 	}
3087 
3088 	if (!env->me_pghead && txn->mt_loose_pgs) {
3089 		/* Put loose page numbers in mt_free_pgs, since
3090 		 * we may be unable to return them to me_pghead.
3091 		 */
3092 		MDB_page *mp = txn->mt_loose_pgs;
3093 		if ((rc = mdb_midl_need(&txn->mt_free_pgs, txn->mt_loose_count)) != 0)
3094 			return rc;
3095 		for (; mp; mp = NEXT_LOOSE_PAGE(mp))
3096 			mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
3097 		txn->mt_loose_pgs = NULL;
3098 		txn->mt_loose_count = 0;
3099 	}
3100 
3101 	/* MDB_RESERVE cancels meminit in ovpage malloc (when no WRITEMAP) */
3102 	clean_limit = (env->me_flags & (MDB_NOMEMINIT|MDB_WRITEMAP))
3103 		? SSIZE_MAX : maxfree_1pg;
3104 
3105 	for (;;) {
3106 		/* Come back here after each Put() in case freelist changed */
3107 		MDB_val key, data;
3108 		pgno_t *pgs;
3109 		ssize_t j;
3110 
3111 		/* If using records from freeDB which we have not yet
3112 		 * deleted, delete them and any we reserved for me_pghead.
3113 		 */
3114 		while (pglast < env->me_pglast) {
3115 			rc = mdb_cursor_first(&mc, &key, NULL);
3116 			if (rc)
3117 				return rc;
3118 			pglast = head_id = *(txnid_t *)key.mv_data;
3119 			total_room = head_room = 0;
3120 			mdb_tassert(txn, pglast <= env->me_pglast);
3121 			rc = mdb_cursor_del(&mc, 0);
3122 			if (rc)
3123 				return rc;
3124 		}
3125 
3126 		/* Save the IDL of pages freed by this txn, to a single record */
3127 		if (freecnt < txn->mt_free_pgs[0]) {
3128 			if (!freecnt) {
3129 				/* Make sure last page of freeDB is touched and on freelist */
3130 				rc = mdb_page_search(&mc, NULL, MDB_PS_LAST|MDB_PS_MODIFY);
3131 				if (rc && rc != MDB_NOTFOUND)
3132 					return rc;
3133 			}
3134 			free_pgs = txn->mt_free_pgs;
3135 			/* Write to last page of freeDB */
3136 			key.mv_size = sizeof(txn->mt_txnid);
3137 			key.mv_data = &txn->mt_txnid;
3138 			do {
3139 				freecnt = free_pgs[0];
3140 				data.mv_size = MDB_IDL_SIZEOF(free_pgs);
3141 				rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
3142 				if (rc)
3143 					return rc;
3144 				/* Retry if mt_free_pgs[] grew during the Put() */
3145 				free_pgs = txn->mt_free_pgs;
3146 			} while (freecnt < free_pgs[0]);
3147 			mdb_midl_sort(free_pgs);
3148 			memcpy(data.mv_data, free_pgs, data.mv_size);
3149 #if (MDB_DEBUG) > 1
3150 			{
3151 				unsigned int i = free_pgs[0];
3152 				DPRINTF(("IDL write txn %"Z"u root %"Z"u num %u",
3153 					txn->mt_txnid, txn->mt_dbs[FREE_DBI].md_root, i));
3154 				for (; i; i--)
3155 					DPRINTF(("IDL %"Z"u", free_pgs[i]));
3156 			}
3157 #endif
3158 			continue;
3159 		}
3160 
3161 		mop = env->me_pghead;
3162 		mop_len = (mop ? mop[0] : 0) + txn->mt_loose_count;
3163 
3164 		/* Reserve records for me_pghead[]. Split it if multi-page,
3165 		 * to avoid searching freeDB for a page range. Use keys in
3166 		 * range [1,me_pglast]: Smaller than txnid of oldest reader.
3167 		 */
3168 		if (total_room >= mop_len) {
3169 			if (total_room == mop_len || --more < 0)
3170 				break;
3171 		} else if (head_room >= maxfree_1pg && head_id > 1) {
3172 			/* Keep current record (overflow page), add a new one */
3173 			head_id--;
3174 			head_room = 0;
3175 		}
3176 		/* (Re)write {key = head_id, IDL length = head_room} */
3177 		total_room -= head_room;
3178 		head_room = mop_len - total_room;
3179 		if (head_room > maxfree_1pg && head_id > 1) {
3180 			/* Overflow multi-page for part of me_pghead */
3181 			head_room /= head_id; /* amortize page sizes */
3182 			head_room += maxfree_1pg - head_room % (maxfree_1pg + 1);
3183 		} else if (head_room < 0) {
3184 			/* Rare case, not bothering to delete this record */
3185 			head_room = 0;
3186 		}
3187 		key.mv_size = sizeof(head_id);
3188 		key.mv_data = &head_id;
3189 		data.mv_size = (head_room + 1) * sizeof(pgno_t);
3190 		rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
3191 		if (rc)
3192 			return rc;
3193 		/* IDL is initially empty, zero out at least the length */
3194 		pgs = (pgno_t *)data.mv_data;
3195 		j = head_room > clean_limit ? head_room : 0;
3196 		do {
3197 			pgs[j] = 0;
3198 		} while (--j >= 0);
3199 		total_room += head_room;
3200 	}
3201 
3202 	/* Return loose page numbers to me_pghead, though usually none are
3203 	 * left at this point.  The pages themselves remain in dirty_list.
3204 	 */
3205 	if (txn->mt_loose_pgs) {
3206 		MDB_page *mp = txn->mt_loose_pgs;
3207 		unsigned count = txn->mt_loose_count;
3208 		MDB_IDL loose;
3209 		/* Room for loose pages + temp IDL with same */
3210 		if ((rc = mdb_midl_need(&env->me_pghead, 2*count+1)) != 0)
3211 			return rc;
3212 		mop = env->me_pghead;
3213 		loose = mop + MDB_IDL_ALLOCLEN(mop) - count;
3214 		for (count = 0; mp; mp = NEXT_LOOSE_PAGE(mp))
3215 			loose[ ++count ] = mp->mp_pgno;
3216 		loose[0] = count;
3217 		mdb_midl_sort(loose);
3218 		mdb_midl_xmerge(mop, loose);
3219 		txn->mt_loose_pgs = NULL;
3220 		txn->mt_loose_count = 0;
3221 		mop_len = mop[0];
3222 	}
3223 
3224 	/* Fill in the reserved me_pghead records */
3225 	rc = MDB_SUCCESS;
3226 	if (mop_len) {
3227 		MDB_val key, data;
3228 
3229 		mop += mop_len;
3230 		rc = mdb_cursor_first(&mc, &key, &data);
3231 		for (; !rc; rc = mdb_cursor_next(&mc, &key, &data, MDB_NEXT)) {
3232 			txnid_t id = *(txnid_t *)key.mv_data;
3233 			ssize_t	len = (ssize_t)(data.mv_size / sizeof(MDB_ID)) - 1;
3234 			MDB_ID save;
3235 
3236 			mdb_tassert(txn, len >= 0 && id <= env->me_pglast);
3237 			key.mv_data = &id;
3238 			if (len > mop_len) {
3239 				len = mop_len;
3240 				data.mv_size = (len + 1) * sizeof(MDB_ID);
3241 			}
3242 			data.mv_data = mop -= len;
3243 			save = mop[0];
3244 			mop[0] = len;
3245 			rc = mdb_cursor_put(&mc, &key, &data, MDB_CURRENT);
3246 			mop[0] = save;
3247 			if (rc || !(mop_len -= len))
3248 				break;
3249 		}
3250 	}
3251 	return rc;
3252 }
3253 
3254 /** Flush (some) dirty pages to the map, after clearing their dirty flag.
3255  * @param[in] txn the transaction that's being committed
3256  * @param[in] keep number of initial pages in dirty_list to keep dirty.
3257  * @return 0 on success, non-zero on failure.
3258  */
3259 static int
3260 mdb_page_flush(MDB_txn *txn, int keep)
3261 {
3262 	MDB_env		*env = txn->mt_env;
3263 	MDB_ID2L	dl = txn->mt_u.dirty_list;
3264 	unsigned	psize = env->me_psize, j;
3265 	int			i, pagecount = dl[0].mid, rc;
3266 	size_t		size = 0, pos = 0;
3267 	pgno_t		pgno = 0;
3268 	MDB_page	*dp = NULL;
3269 #ifdef _WIN32
3270 	OVERLAPPED	ov;
3271 #else
3272 	struct iovec iov[MDB_COMMIT_PAGES];
3273 	ssize_t		wpos = 0, wsize = 0, wres;
3274 	size_t		next_pos = 1; /* impossible pos, so pos != next_pos */
3275 	int			n = 0;
3276 #endif
3277 
3278 	j = i = keep;
3279 
3280 	if (env->me_flags & MDB_WRITEMAP) {
3281 		/* Clear dirty flags */
3282 		while (++i <= pagecount) {
3283 			dp = dl[i].mptr;
3284 			/* Don't flush this page yet */
3285 			if (dp->mp_flags & (P_LOOSE|P_KEEP)) {
3286 				dp->mp_flags &= ~P_KEEP;
3287 				dl[++j] = dl[i];
3288 				continue;
3289 			}
3290 			dp->mp_flags &= ~P_DIRTY;
3291 		}
3292 		goto done;
3293 	}
3294 
3295 	/* Write the pages */
3296 	for (;;) {
3297 		if (++i <= pagecount) {
3298 			dp = dl[i].mptr;
3299 			/* Don't flush this page yet */
3300 			if (dp->mp_flags & (P_LOOSE|P_KEEP)) {
3301 				dp->mp_flags &= ~P_KEEP;
3302 				dl[i].mid = 0;
3303 				continue;
3304 			}
3305 			pgno = dl[i].mid;
3306 			/* clear dirty flag */
3307 			dp->mp_flags &= ~P_DIRTY;
3308 			pos = pgno * psize;
3309 			size = psize;
3310 			if (IS_OVERFLOW(dp)) size *= dp->mp_pages;
3311 		}
3312 #ifdef _WIN32
3313 		else break;
3314 
3315 		/* Windows actually supports scatter/gather I/O, but only on
3316 		 * unbuffered file handles. Since we're relying on the OS page
3317 		 * cache for all our data, that's self-defeating. So we just
3318 		 * write pages one at a time. We use the ov structure to set
3319 		 * the write offset, to at least save the overhead of a Seek
3320 		 * system call.
3321 		 */
3322 		DPRINTF(("committing page %"Z"u", pgno));
3323 		memset(&ov, 0, sizeof(ov));
3324 		ov.Offset = pos & 0xffffffff;
3325 		ov.OffsetHigh = pos >> 16 >> 16;
3326 		if (!WriteFile(env->me_fd, dp, size, NULL, &ov)) {
3327 			rc = ErrCode();
3328 			DPRINTF(("WriteFile: %d", rc));
3329 			return rc;
3330 		}
3331 #else
3332 		/* Write up to MDB_COMMIT_PAGES dirty pages at a time. */
3333 		if (pos!=next_pos || n==MDB_COMMIT_PAGES || wsize+size>MAX_WRITE) {
3334 			if (n) {
3335 retry_write:
3336 				/* Write previous page(s) */
3337 #ifdef MDB_USE_PWRITEV
3338 				wres = pwritev(env->me_fd, iov, n, wpos);
3339 #else
3340 				if (n == 1) {
3341 					wres = pwrite(env->me_fd, iov[0].iov_base, wsize, wpos);
3342 				} else {
3343 retry_seek:
3344 					if (lseek(env->me_fd, wpos, SEEK_SET) == -1) {
3345 						rc = ErrCode();
3346 						if (rc == EINTR)
3347 							goto retry_seek;
3348 						DPRINTF(("lseek: %s", strerror(rc)));
3349 						return rc;
3350 					}
3351 					wres = writev(env->me_fd, iov, n);
3352 				}
3353 #endif
3354 				if (wres != wsize) {
3355 					if (wres < 0) {
3356 						rc = ErrCode();
3357 						if (rc == EINTR)
3358 							goto retry_write;
3359 						DPRINTF(("Write error: %s", strerror(rc)));
3360 					} else {
3361 						rc = EIO; /* TODO: Use which error code? */
3362 						DPUTS("short write, filesystem full?");
3363 					}
3364 					return rc;
3365 				}
3366 				n = 0;
3367 			}
3368 			if (i > pagecount)
3369 				break;
3370 			wpos = pos;
3371 			wsize = 0;
3372 		}
3373 		DPRINTF(("committing page %"Z"u", pgno));
3374 		next_pos = pos + size;
3375 		iov[n].iov_len = size;
3376 		iov[n].iov_base = (char *)dp;
3377 		wsize += size;
3378 		n++;
3379 #endif	/* _WIN32 */
3380 	}
3381 
3382 	/* MIPS has cache coherency issues, this is a no-op everywhere else
3383 	 * Note: for any size >= on-chip cache size, entire on-chip cache is
3384 	 * flushed.
3385 	 */
3386 	CACHEFLUSH(env->me_map, txn->mt_next_pgno * env->me_psize, DCACHE);
3387 
3388 	for (i = keep; ++i <= pagecount; ) {
3389 		dp = dl[i].mptr;
3390 		/* This is a page we skipped above */
3391 		if (!dl[i].mid) {
3392 			dl[++j] = dl[i];
3393 			dl[j].mid = dp->mp_pgno;
3394 			continue;
3395 		}
3396 		mdb_dpage_free(env, dp);
3397 	}
3398 
3399 done:
3400 	i--;
3401 	txn->mt_dirty_room += i - j;
3402 	dl[0].mid = j;
3403 	return MDB_SUCCESS;
3404 }
3405 
3406 int
3407 mdb_txn_commit(MDB_txn *txn)
3408 {
3409 	int		rc;
3410 	unsigned int i, end_mode;
3411 	MDB_env	*env;
3412 
3413 	if (txn == NULL)
3414 		return EINVAL;
3415 
3416 	/* mdb_txn_end() mode for a commit which writes nothing */
3417 	end_mode = MDB_END_EMPTY_COMMIT|MDB_END_UPDATE|MDB_END_SLOT|MDB_END_FREE;
3418 
3419 	if (txn->mt_child) {
3420 		rc = mdb_txn_commit(txn->mt_child);
3421 		if (rc)
3422 			goto fail;
3423 	}
3424 
3425 	env = txn->mt_env;
3426 
3427 	if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
3428 		goto done;
3429 	}
3430 
3431 	if (txn->mt_flags & (MDB_TXN_FINISHED|MDB_TXN_ERROR)) {
3432 		DPUTS("txn has failed/finished, can't commit");
3433 		if (txn->mt_parent)
3434 			txn->mt_parent->mt_flags |= MDB_TXN_ERROR;
3435 		rc = MDB_BAD_TXN;
3436 		goto fail;
3437 	}
3438 
3439 	if (txn->mt_parent) {
3440 		MDB_txn *parent = txn->mt_parent;
3441 		MDB_page **lp;
3442 		MDB_ID2L dst, src;
3443 		MDB_IDL pspill;
3444 		unsigned x, y, len, ps_len;
3445 
3446 		/* Append our free list to parent's */
3447 		rc = mdb_midl_append_list(&parent->mt_free_pgs, txn->mt_free_pgs);
3448 		if (rc)
3449 			goto fail;
3450 		mdb_midl_free(txn->mt_free_pgs);
3451 		/* Failures after this must either undo the changes
3452 		 * to the parent or set MDB_TXN_ERROR in the parent.
3453 		 */
3454 
3455 		parent->mt_next_pgno = txn->mt_next_pgno;
3456 		parent->mt_flags = txn->mt_flags;
3457 
3458 		/* Merge our cursors into parent's and close them */
3459 		mdb_cursors_close(txn, 1);
3460 
3461 		/* Update parent's DB table. */
3462 		memcpy(parent->mt_dbs, txn->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
3463 		parent->mt_numdbs = txn->mt_numdbs;
3464 		parent->mt_dbflags[FREE_DBI] = txn->mt_dbflags[FREE_DBI];
3465 		parent->mt_dbflags[MAIN_DBI] = txn->mt_dbflags[MAIN_DBI];
3466 		for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
3467 			/* preserve parent's DB_NEW status */
3468 			x = parent->mt_dbflags[i] & DB_NEW;
3469 			parent->mt_dbflags[i] = txn->mt_dbflags[i] | x;
3470 		}
3471 
3472 		dst = parent->mt_u.dirty_list;
3473 		src = txn->mt_u.dirty_list;
3474 		/* Remove anything in our dirty list from parent's spill list */
3475 		if ((pspill = parent->mt_spill_pgs) && (ps_len = pspill[0])) {
3476 			x = y = ps_len;
3477 			pspill[0] = (pgno_t)-1;
3478 			/* Mark our dirty pages as deleted in parent spill list */
3479 			for (i=0, len=src[0].mid; ++i <= len; ) {
3480 				MDB_ID pn = src[i].mid << 1;
3481 				while (pn > pspill[x])
3482 					x--;
3483 				if (pn == pspill[x]) {
3484 					pspill[x] = 1;
3485 					y = --x;
3486 				}
3487 			}
3488 			/* Squash deleted pagenums if we deleted any */
3489 			for (x=y; ++x <= ps_len; )
3490 				if (!(pspill[x] & 1))
3491 					pspill[++y] = pspill[x];
3492 			pspill[0] = y;
3493 		}
3494 
3495 		/* Remove anything in our spill list from parent's dirty list */
3496 		if (txn->mt_spill_pgs && txn->mt_spill_pgs[0]) {
3497 			for (i=1; i<=txn->mt_spill_pgs[0]; i++) {
3498 				MDB_ID pn = txn->mt_spill_pgs[i];
3499 				if (pn & 1)
3500 					continue;	/* deleted spillpg */
3501 				pn >>= 1;
3502 				y = mdb_mid2l_search(dst, pn);
3503 				if (y <= dst[0].mid && dst[y].mid == pn) {
3504 					free(dst[y].mptr);
3505 					while (y < dst[0].mid) {
3506 						dst[y] = dst[y+1];
3507 						y++;
3508 					}
3509 					dst[0].mid--;
3510 				}
3511 			}
3512 		}
3513 
3514 		/* Find len = length of merging our dirty list with parent's */
3515 		x = dst[0].mid;
3516 		dst[0].mid = 0;		/* simplify loops */
3517 		if (parent->mt_parent) {
3518 			len = x + src[0].mid;
3519 			y = mdb_mid2l_search(src, dst[x].mid + 1) - 1;
3520 			for (i = x; y && i; y--) {
3521 				pgno_t yp = src[y].mid;
3522 				while (yp < dst[i].mid)
3523 					i--;
3524 				if (yp == dst[i].mid) {
3525 					i--;
3526 					len--;
3527 				}
3528 			}
3529 		} else { /* Simplify the above for single-ancestor case */
3530 			len = MDB_IDL_UM_MAX - txn->mt_dirty_room;
3531 		}
3532 		/* Merge our dirty list with parent's */
3533 		y = src[0].mid;
3534 		for (i = len; y; dst[i--] = src[y--]) {
3535 			pgno_t yp = src[y].mid;
3536 			while (yp < dst[x].mid)
3537 				dst[i--] = dst[x--];
3538 			if (yp == dst[x].mid)
3539 				free(dst[x--].mptr);
3540 		}
3541 		mdb_tassert(txn, i == x);
3542 		dst[0].mid = len;
3543 		free(txn->mt_u.dirty_list);
3544 		parent->mt_dirty_room = txn->mt_dirty_room;
3545 		if (txn->mt_spill_pgs) {
3546 			if (parent->mt_spill_pgs) {
3547 				/* TODO: Prevent failure here, so parent does not fail */
3548 				rc = mdb_midl_append_list(&parent->mt_spill_pgs, txn->mt_spill_pgs);
3549 				if (rc)
3550 					parent->mt_flags |= MDB_TXN_ERROR;
3551 				mdb_midl_free(txn->mt_spill_pgs);
3552 				mdb_midl_sort(parent->mt_spill_pgs);
3553 			} else {
3554 				parent->mt_spill_pgs = txn->mt_spill_pgs;
3555 			}
3556 		}
3557 
3558 		/* Append our loose page list to parent's */
3559 		for (lp = &parent->mt_loose_pgs; *lp; lp = &NEXT_LOOSE_PAGE(*lp))
3560 			;
3561 		*lp = txn->mt_loose_pgs;
3562 		parent->mt_loose_count += txn->mt_loose_count;
3563 
3564 		parent->mt_child = NULL;
3565 		mdb_midl_free(((MDB_ntxn *)txn)->mnt_pgstate.mf_pghead);
3566 		free(txn);
3567 		return rc;
3568 	}
3569 
3570 	if (txn != env->me_txn) {
3571 		DPUTS("attempt to commit unknown transaction");
3572 		rc = EINVAL;
3573 		goto fail;
3574 	}
3575 
3576 	mdb_cursors_close(txn, 0);
3577 
3578 	if (!txn->mt_u.dirty_list[0].mid &&
3579 		!(txn->mt_flags & (MDB_TXN_DIRTY|MDB_TXN_SPILLS)))
3580 		goto done;
3581 
3582 	DPRINTF(("committing txn %"Z"u %p on mdbenv %p, root page %"Z"u",
3583 	    txn->mt_txnid, (void*)txn, (void*)env, txn->mt_dbs[MAIN_DBI].md_root));
3584 
3585 	/* Update DB root pointers */
3586 	if (txn->mt_numdbs > CORE_DBS) {
3587 		MDB_cursor mc;
3588 		MDB_dbi i;
3589 		MDB_val data;
3590 		data.mv_size = sizeof(MDB_db);
3591 
3592 		mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
3593 		for (i = CORE_DBS; i < txn->mt_numdbs; i++) {
3594 			if (txn->mt_dbflags[i] & DB_DIRTY) {
3595 				if (TXN_DBI_CHANGED(txn, i)) {
3596 					rc = MDB_BAD_DBI;
3597 					goto fail;
3598 				}
3599 				data.mv_data = &txn->mt_dbs[i];
3600 				rc = mdb_cursor_put(&mc, &txn->mt_dbxs[i].md_name, &data,
3601 					F_SUBDATA);
3602 				if (rc)
3603 					goto fail;
3604 			}
3605 		}
3606 	}
3607 
3608 	rc = mdb_freelist_save(txn);
3609 	if (rc)
3610 		goto fail;
3611 
3612 	mdb_midl_free(env->me_pghead);
3613 	env->me_pghead = NULL;
3614 	mdb_midl_shrink(&txn->mt_free_pgs);
3615 
3616 #if (MDB_DEBUG) > 2
3617 	mdb_audit(txn);
3618 #endif
3619 
3620 	if ((rc = mdb_page_flush(txn, 0)) ||
3621 		(rc = mdb_env_sync(env, 0)) ||
3622 		(rc = mdb_env_write_meta(txn)))
3623 		goto fail;
3624 	end_mode = MDB_END_COMMITTED|MDB_END_UPDATE;
3625 
3626 done:
3627 	mdb_txn_end(txn, end_mode);
3628 	return MDB_SUCCESS;
3629 
3630 fail:
3631 	mdb_txn_abort(txn);
3632 	return rc;
3633 }
3634 
3635 /** Read the environment parameters of a DB environment before
3636  * mapping it into memory.
3637  * @param[in] env the environment handle
3638  * @param[out] meta address of where to store the meta information
3639  * @return 0 on success, non-zero on failure.
3640  */
3641 static int ESECT
3642 mdb_env_read_header(MDB_env *env, MDB_meta *meta)
3643 {
3644 	MDB_metabuf	pbuf;
3645 	MDB_page	*p;
3646 	MDB_meta	*m;
3647 	int			i, rc, off;
3648 	enum { Size = sizeof(pbuf) };
3649 
3650 	/* We don't know the page size yet, so use a minimum value.
3651 	 * Read both meta pages so we can use the latest one.
3652 	 */
3653 
3654 	for (i=off=0; i<NUM_METAS; i++, off += meta->mm_psize) {
3655 #ifdef _WIN32
3656 		DWORD len;
3657 		OVERLAPPED ov;
3658 		memset(&ov, 0, sizeof(ov));
3659 		ov.Offset = off;
3660 		rc = ReadFile(env->me_fd, &pbuf, Size, &len, &ov) ? (int)len : -1;
3661 		if (rc == -1 && ErrCode() == ERROR_HANDLE_EOF)
3662 			rc = 0;
3663 #else
3664 		rc = pread(env->me_fd, &pbuf, Size, off);
3665 #endif
3666 		if (rc != Size) {
3667 			if (rc == 0 && off == 0)
3668 				return ENOENT;
3669 			rc = rc < 0 ? (int) ErrCode() : MDB_INVALID;
3670 			DPRINTF(("read: %s", mdb_strerror(rc)));
3671 			return rc;
3672 		}
3673 
3674 		p = (MDB_page *)&pbuf;
3675 
3676 		if (!F_ISSET(p->mp_flags, P_META)) {
3677 			DPRINTF(("page %"Z"u not a meta page", p->mp_pgno));
3678 			return MDB_INVALID;
3679 		}
3680 
3681 		m = METADATA(p);
3682 		if (m->mm_magic != MDB_MAGIC) {
3683 			DPUTS("meta has invalid magic");
3684 			return MDB_INVALID;
3685 		}
3686 
3687 		if (m->mm_version != MDB_DATA_VERSION) {
3688 			DPRINTF(("database is version %u, expected version %u",
3689 				m->mm_version, MDB_DATA_VERSION));
3690 			return MDB_VERSION_MISMATCH;
3691 		}
3692 
3693 		if (off == 0 || m->mm_txnid > meta->mm_txnid)
3694 			*meta = *m;
3695 	}
3696 	return 0;
3697 }
3698 
3699 /** Fill in most of the zeroed #MDB_meta for an empty database environment */
3700 static void ESECT
3701 mdb_env_init_meta0(MDB_env *env, MDB_meta *meta)
3702 {
3703 	meta->mm_magic = MDB_MAGIC;
3704 	meta->mm_version = MDB_DATA_VERSION;
3705 	meta->mm_mapsize = env->me_mapsize;
3706 	meta->mm_psize = env->me_psize;
3707 	meta->mm_last_pg = NUM_METAS-1;
3708 	meta->mm_flags = env->me_flags & 0xffff;
3709 	meta->mm_flags |= MDB_INTEGERKEY; /* this is mm_dbs[FREE_DBI].md_flags */
3710 	meta->mm_dbs[FREE_DBI].md_root = P_INVALID;
3711 	meta->mm_dbs[MAIN_DBI].md_root = P_INVALID;
3712 }
3713 
3714 /** Write the environment parameters of a freshly created DB environment.
3715  * @param[in] env the environment handle
3716  * @param[in] meta the #MDB_meta to write
3717  * @return 0 on success, non-zero on failure.
3718  */
3719 static int ESECT
3720 mdb_env_init_meta(MDB_env *env, MDB_meta *meta)
3721 {
3722 	MDB_page *p, *q;
3723 	int rc;
3724 	unsigned int	 psize;
3725 #ifdef _WIN32
3726 	DWORD len;
3727 	OVERLAPPED ov;
3728 	memset(&ov, 0, sizeof(ov));
3729 #define DO_PWRITE(rc, fd, ptr, size, len, pos)	do { \
3730 	ov.Offset = pos;	\
3731 	rc = WriteFile(fd, ptr, size, &len, &ov);	} while(0)
3732 #else
3733 	int len;
3734 #define DO_PWRITE(rc, fd, ptr, size, len, pos)	do { \
3735 	len = pwrite(fd, ptr, size, pos);	\
3736 	if (len == -1 && ErrCode() == EINTR) continue; \
3737 	rc = (len >= 0); break; } while(1)
3738 #endif
3739 
3740 	DPUTS("writing new meta page");
3741 
3742 	psize = env->me_psize;
3743 
3744 	p = calloc(NUM_METAS, psize);
3745 	if (!p)
3746 		return ENOMEM;
3747 
3748 	p->mp_pgno = 0;
3749 	p->mp_flags = P_META;
3750 	*(MDB_meta *)METADATA(p) = *meta;
3751 
3752 	q = (MDB_page *)((char *)p + psize);
3753 	q->mp_pgno = 1;
3754 	q->mp_flags = P_META;
3755 	*(MDB_meta *)METADATA(q) = *meta;
3756 
3757 	DO_PWRITE(rc, env->me_fd, p, psize * NUM_METAS, len, 0);
3758 	if (!rc)
3759 		rc = ErrCode();
3760 	else if ((unsigned) len == psize * NUM_METAS)
3761 		rc = MDB_SUCCESS;
3762 	else
3763 		rc = ENOSPC;
3764 	free(p);
3765 	return rc;
3766 }
3767 
3768 /** Update the environment info to commit a transaction.
3769  * @param[in] txn the transaction that's being committed
3770  * @return 0 on success, non-zero on failure.
3771  */
3772 static int
3773 mdb_env_write_meta(MDB_txn *txn)
3774 {
3775 	MDB_env *env;
3776 	MDB_meta	meta, metab, *mp;
3777 	unsigned flags;
3778 	size_t mapsize;
3779 	off_t off;
3780 	int rc, len, toggle;
3781 	char *ptr;
3782 	HANDLE mfd;
3783 #ifdef _WIN32
3784 	OVERLAPPED ov;
3785 #else
3786 	int r2;
3787 #endif
3788 
3789 	toggle = txn->mt_txnid & 1;
3790 	DPRINTF(("writing meta page %d for root page %"Z"u",
3791 		toggle, txn->mt_dbs[MAIN_DBI].md_root));
3792 
3793 	env = txn->mt_env;
3794 	flags = env->me_flags;
3795 	mp = env->me_metas[toggle];
3796 	mapsize = env->me_metas[toggle ^ 1]->mm_mapsize;
3797 	/* Persist any increases of mapsize config */
3798 	if (mapsize < env->me_mapsize)
3799 		mapsize = env->me_mapsize;
3800 
3801 	if (flags & MDB_WRITEMAP) {
3802 		mp->mm_mapsize = mapsize;
3803 		mp->mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI];
3804 		mp->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
3805 		mp->mm_last_pg = txn->mt_next_pgno - 1;
3806 #if (__GNUC__ * 100 + __GNUC_MINOR__ >= 404) && /* TODO: portability */	\
3807 	!(defined(__i386__) || defined(__x86_64__))
3808 		/* LY: issue a memory barrier, if not x86. ITS#7969 */
3809 		__sync_synchronize();
3810 #endif
3811 		mp->mm_txnid = txn->mt_txnid;
3812 		if (!(flags & (MDB_NOMETASYNC|MDB_NOSYNC))) {
3813 			unsigned meta_size = env->me_psize;
3814 			rc = (env->me_flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC;
3815 			ptr = (char *)mp - PAGEHDRSZ;
3816 #ifndef _WIN32	/* POSIX msync() requires ptr = start of OS page */
3817 			r2 = (ptr - env->me_map) & (env->me_os_psize - 1);
3818 			ptr -= r2;
3819 			meta_size += r2;
3820 #endif
3821 			if (MDB_MSYNC(ptr, meta_size, rc)) {
3822 				rc = ErrCode();
3823 				goto fail;
3824 			}
3825 		}
3826 		goto done;
3827 	}
3828 	metab.mm_txnid = mp->mm_txnid;
3829 	metab.mm_last_pg = mp->mm_last_pg;
3830 
3831 	meta.mm_mapsize = mapsize;
3832 	meta.mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI];
3833 	meta.mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
3834 	meta.mm_last_pg = txn->mt_next_pgno - 1;
3835 	meta.mm_txnid = txn->mt_txnid;
3836 
3837 	off = offsetof(MDB_meta, mm_mapsize);
3838 	ptr = (char *)&meta + off;
3839 	len = sizeof(MDB_meta) - off;
3840 	off += (char *)mp - env->me_map;
3841 
3842 	/* Write to the SYNC fd unless MDB_NOSYNC/MDB_NOMETASYNC.
3843 	 * (me_mfd goes to the same file as me_fd, but writing to it
3844 	 * also syncs to disk.  Avoids a separate fdatasync() call.)
3845 	 */
3846 	mfd = (flags & (MDB_NOSYNC|MDB_NOMETASYNC)) ? env->me_fd : env->me_mfd;
3847 #ifdef _WIN32
3848 	{
3849 		memset(&ov, 0, sizeof(ov));
3850 		ov.Offset = off;
3851 		if (!WriteFile(mfd, ptr, len, (DWORD *)&rc, &ov))
3852 			rc = -1;
3853 	}
3854 #else
3855 retry_write:
3856 	rc = pwrite(mfd, ptr, len, off);
3857 #endif
3858 	if (rc != len) {
3859 		rc = rc < 0 ? ErrCode() : EIO;
3860 #ifndef _WIN32
3861 		if (rc == EINTR)
3862 			goto retry_write;
3863 #endif
3864 		DPUTS("write failed, disk error?");
3865 		/* On a failure, the pagecache still contains the new data.
3866 		 * Write some old data back, to prevent it from being used.
3867 		 * Use the non-SYNC fd; we know it will fail anyway.
3868 		 */
3869 		meta.mm_last_pg = metab.mm_last_pg;
3870 		meta.mm_txnid = metab.mm_txnid;
3871 #ifdef _WIN32
3872 		memset(&ov, 0, sizeof(ov));
3873 		ov.Offset = off;
3874 		WriteFile(env->me_fd, ptr, len, NULL, &ov);
3875 #else
3876 		r2 = pwrite(env->me_fd, ptr, len, off);
3877 		(void)r2;	/* Silence warnings. We don't care about pwrite's return value */
3878 #endif
3879 fail:
3880 		env->me_flags |= MDB_FATAL_ERROR;
3881 		return rc;
3882 	}
3883 	/* MIPS has cache coherency issues, this is a no-op everywhere else */
3884 	CACHEFLUSH(env->me_map + off, len, DCACHE);
3885 done:
3886 	/* Memory ordering issues are irrelevant; since the entire writer
3887 	 * is wrapped by wmutex, all of these changes will become visible
3888 	 * after the wmutex is unlocked. Since the DB is multi-version,
3889 	 * readers will get consistent data regardless of how fresh or
3890 	 * how stale their view of these values is.
3891 	 */
3892 	if (env->me_txns)
3893 		env->me_txns->mti_txnid = txn->mt_txnid;
3894 
3895 	return MDB_SUCCESS;
3896 }
3897 
3898 /** Check both meta pages to see which one is newer.
3899  * @param[in] env the environment handle
3900  * @return newest #MDB_meta.
3901  */
3902 static MDB_meta *
3903 mdb_env_pick_meta(const MDB_env *env)
3904 {
3905 	MDB_meta *const *metas = env->me_metas;
3906 	return metas[ metas[0]->mm_txnid < metas[1]->mm_txnid ];
3907 }
3908 
3909 int ESECT
3910 mdb_env_create(MDB_env **env)
3911 {
3912 	MDB_env *e;
3913 
3914 	e = calloc(1, sizeof(MDB_env));
3915 	if (!e)
3916 		return ENOMEM;
3917 
3918 	e->me_maxreaders = DEFAULT_READERS;
3919 	e->me_maxdbs = e->me_numdbs = CORE_DBS;
3920 	e->me_fd = INVALID_HANDLE_VALUE;
3921 	e->me_lfd = INVALID_HANDLE_VALUE;
3922 	e->me_mfd = INVALID_HANDLE_VALUE;
3923 #ifdef MDB_USE_POSIX_SEM
3924 	e->me_rmutex = SEM_FAILED;
3925 	e->me_wmutex = SEM_FAILED;
3926 #endif
3927 	e->me_pid = getpid();
3928 	GET_PAGESIZE(e->me_os_psize);
3929 	VGMEMP_CREATE(e,0,0);
3930 	*env = e;
3931 	return MDB_SUCCESS;
3932 }
3933 
3934 static int ESECT
3935 mdb_env_map(MDB_env *env, void *addr)
3936 {
3937 	MDB_page *p;
3938 	unsigned int flags = env->me_flags;
3939 #ifdef _WIN32
3940 	int rc;
3941 	HANDLE mh;
3942 	LONG sizelo, sizehi;
3943 	size_t msize;
3944 
3945 	if (flags & MDB_RDONLY) {
3946 		/* Don't set explicit map size, use whatever exists */
3947 		msize = 0;
3948 		sizelo = 0;
3949 		sizehi = 0;
3950 	} else {
3951 		msize = env->me_mapsize;
3952 		sizelo = msize & 0xffffffff;
3953 		sizehi = msize >> 16 >> 16; /* only needed on Win64 */
3954 
3955 		/* Windows won't create mappings for zero length files.
3956 		 * and won't map more than the file size.
3957 		 * Just set the maxsize right now.
3958 		 */
3959 		if (SetFilePointer(env->me_fd, sizelo, &sizehi, 0) != (DWORD)sizelo
3960 			|| !SetEndOfFile(env->me_fd)
3961 			|| SetFilePointer(env->me_fd, 0, NULL, 0) != 0)
3962 			return ErrCode();
3963 	}
3964 
3965 	mh = CreateFileMapping(env->me_fd, NULL, flags & MDB_WRITEMAP ?
3966 		PAGE_READWRITE : PAGE_READONLY,
3967 		sizehi, sizelo, NULL);
3968 	if (!mh)
3969 		return ErrCode();
3970 	env->me_map = MapViewOfFileEx(mh, flags & MDB_WRITEMAP ?
3971 		FILE_MAP_WRITE : FILE_MAP_READ,
3972 		0, 0, msize, addr);
3973 	rc = env->me_map ? 0 : ErrCode();
3974 	CloseHandle(mh);
3975 	if (rc)
3976 		return rc;
3977 #else
3978 	int prot = PROT_READ;
3979 	if (flags & MDB_WRITEMAP) {
3980 		prot |= PROT_WRITE;
3981 		if (ftruncate(env->me_fd, env->me_mapsize) < 0)
3982 			return ErrCode();
3983 	}
3984 	env->me_map = mmap(addr, env->me_mapsize, prot, MAP_SHARED,
3985 		env->me_fd, 0);
3986 	if (env->me_map == MAP_FAILED) {
3987 		env->me_map = NULL;
3988 		return ErrCode();
3989 	}
3990 
3991 	if (flags & MDB_NORDAHEAD) {
3992 		/* Turn off readahead. It's harmful when the DB is larger than RAM. */
3993 #ifdef MADV_RANDOM
3994 		madvise(env->me_map, env->me_mapsize, MADV_RANDOM);
3995 #else
3996 #ifdef POSIX_MADV_RANDOM
3997 		posix_madvise(env->me_map, env->me_mapsize, POSIX_MADV_RANDOM);
3998 #endif /* POSIX_MADV_RANDOM */
3999 #endif /* MADV_RANDOM */
4000 	}
4001 #endif /* _WIN32 */
4002 
4003 	/* Can happen because the address argument to mmap() is just a
4004 	 * hint.  mmap() can pick another, e.g. if the range is in use.
4005 	 * The MAP_FIXED flag would prevent that, but then mmap could
4006 	 * instead unmap existing pages to make room for the new map.
4007 	 */
4008 	if (addr && env->me_map != addr)
4009 		return EBUSY;	/* TODO: Make a new MDB_* error code? */
4010 
4011 	p = (MDB_page *)env->me_map;
4012 	env->me_metas[0] = METADATA(p);
4013 	env->me_metas[1] = (MDB_meta *)((char *)env->me_metas[0] + env->me_psize);
4014 
4015 	return MDB_SUCCESS;
4016 }
4017 
4018 int ESECT
4019 mdb_env_set_mapsize(MDB_env *env, size_t size)
4020 {
4021 	/* If env is already open, caller is responsible for making
4022 	 * sure there are no active txns.
4023 	 */
4024 	if (env->me_map) {
4025 		int rc;
4026 		MDB_meta *meta;
4027 		void *old;
4028 		if (env->me_txn)
4029 			return EINVAL;
4030 		meta = mdb_env_pick_meta(env);
4031 		if (!size)
4032 			size = meta->mm_mapsize;
4033 		{
4034 			/* Silently round up to minimum if the size is too small */
4035 			size_t minsize = (meta->mm_last_pg + 1) * env->me_psize;
4036 			if (size < minsize)
4037 				size = minsize;
4038 		}
4039 		munmap(env->me_map, env->me_mapsize);
4040 		env->me_mapsize = size;
4041 		old = (env->me_flags & MDB_FIXEDMAP) ? env->me_map : NULL;
4042 		rc = mdb_env_map(env, old);
4043 		if (rc)
4044 			return rc;
4045 	}
4046 	env->me_mapsize = size;
4047 	if (env->me_psize)
4048 		env->me_maxpg = env->me_mapsize / env->me_psize;
4049 	return MDB_SUCCESS;
4050 }
4051 
4052 int ESECT
4053 mdb_env_set_maxdbs(MDB_env *env, MDB_dbi dbs)
4054 {
4055 	if (env->me_map)
4056 		return EINVAL;
4057 	env->me_maxdbs = dbs + CORE_DBS;
4058 	return MDB_SUCCESS;
4059 }
4060 
4061 int ESECT
4062 mdb_env_set_maxreaders(MDB_env *env, unsigned int readers)
4063 {
4064 	if (env->me_map || readers < 1)
4065 		return EINVAL;
4066 	env->me_maxreaders = readers;
4067 	return MDB_SUCCESS;
4068 }
4069 
4070 int ESECT
4071 mdb_env_get_maxreaders(MDB_env *env, unsigned int *readers)
4072 {
4073 	if (!env || !readers)
4074 		return EINVAL;
4075 	*readers = env->me_maxreaders;
4076 	return MDB_SUCCESS;
4077 }
4078 
4079 static int ESECT
4080 mdb_fsize(HANDLE fd, size_t *size)
4081 {
4082 #ifdef _WIN32
4083 	LARGE_INTEGER fsize;
4084 
4085 	if (!GetFileSizeEx(fd, &fsize))
4086 		return ErrCode();
4087 
4088 	*size = fsize.QuadPart;
4089 #else
4090 	struct stat st;
4091 
4092 	if (fstat(fd, &st))
4093 		return ErrCode();
4094 
4095 	*size = st.st_size;
4096 #endif
4097 	return MDB_SUCCESS;
4098 }
4099 
4100 
4101 #ifdef _WIN32
4102 typedef wchar_t	mdb_nchar_t;
4103 # define MDB_NAME(str)	L##str
4104 # define mdb_name_cpy	wcscpy
4105 #else
4106 /** Character type for file names: char on Unix, wchar_t on Windows */
4107 typedef char	mdb_nchar_t;
4108 # define MDB_NAME(str)	str		/**< #mdb_nchar_t[] string literal */
4109 # define mdb_name_cpy	strcpy	/**< Copy name (#mdb_nchar_t string) */
4110 #endif
4111 
4112 /** Filename - string of #mdb_nchar_t[] */
4113 typedef struct MDB_name {
4114 	int mn_len;					/**< Length  */
4115 	int mn_alloced;				/**< True if #mn_val was malloced */
4116 	mdb_nchar_t	*mn_val;		/**< Contents */
4117 } MDB_name;
4118 
4119 /** Filename suffixes [datafile,lockfile][without,with MDB_NOSUBDIR] */
4120 static const mdb_nchar_t *const mdb_suffixes[2][2] = {
4121 	{ MDB_NAME("/data.mdb"), MDB_NAME("")      },
4122 	{ MDB_NAME("/lock.mdb"), MDB_NAME("-lock") }
4123 };
4124 
4125 #define MDB_SUFFLEN 9	/**< Max string length in #mdb_suffixes[] */
4126 
4127 /** Set up filename + scratch area for filename suffix, for opening files.
4128  * It should be freed with #mdb_fname_destroy().
4129  * On Windows, paths are converted from char *UTF-8 to wchar_t *UTF-16.
4130  *
4131  * @param[in] path Pathname for #mdb_env_open().
4132  * @param[in] envflags Whether a subdir and/or lockfile will be used.
4133  * @param[out] fname Resulting filename, with room for a suffix if necessary.
4134  */
4135 static int ESECT
4136 mdb_fname_init(const char *path, unsigned envflags, MDB_name *fname)
4137 {
4138 	int no_suffix = F_ISSET(envflags, MDB_NOSUBDIR|MDB_NOLOCK);
4139 	fname->mn_alloced = 0;
4140 #ifdef _WIN32
4141 	return utf8_to_utf16(path, fname, no_suffix ? 0 : MDB_SUFFLEN);
4142 #else
4143 	fname->mn_len = strlen(path);
4144 	if (no_suffix)
4145 		fname->mn_val = (char *) path;
4146 	else if ((fname->mn_val = malloc(fname->mn_len + MDB_SUFFLEN+1)) != NULL) {
4147 		fname->mn_alloced = 1;
4148 		strcpy(fname->mn_val, path);
4149 	}
4150 	else
4151 		return ENOMEM;
4152 	return MDB_SUCCESS;
4153 #endif
4154 }
4155 
4156 /** Destroy \b fname from #mdb_fname_init() */
4157 #define mdb_fname_destroy(fname) \
4158 	do { if ((fname).mn_alloced) free((fname).mn_val); } while (0)
4159 
4160 #ifdef O_CLOEXEC /* POSIX.1-2008: Set FD_CLOEXEC atomically at open() */
4161 # define MDB_CLOEXEC		O_CLOEXEC
4162 #else
4163 # define MDB_CLOEXEC		0
4164 #endif
4165 
4166 /** File type, access mode etc. for #mdb_fopen() */
4167 enum mdb_fopen_type {
4168 #ifdef _WIN32
4169 	MDB_O_RDONLY, MDB_O_RDWR, MDB_O_META, MDB_O_COPY, MDB_O_LOCKS
4170 #else
4171 	/* A comment in mdb_fopen() explains some O_* flag choices. */
4172 	MDB_O_RDONLY= O_RDONLY,                            /**< for RDONLY me_fd */
4173 	MDB_O_RDWR  = O_RDWR  |O_CREAT,                    /**< for me_fd */
4174 	MDB_O_META  = O_WRONLY|MDB_DSYNC     |MDB_CLOEXEC, /**< for me_mfd */
4175 	MDB_O_COPY  = O_WRONLY|O_CREAT|O_EXCL|MDB_CLOEXEC, /**< for #mdb_env_copy() */
4176 	/** Bitmask for open() flags in enum #mdb_fopen_type.  The other bits
4177 	 * distinguish otherwise-equal MDB_O_* constants from each other.
4178 	 */
4179 	MDB_O_MASK  = MDB_O_RDWR|MDB_CLOEXEC | MDB_O_RDONLY|MDB_O_META|MDB_O_COPY,
4180 	MDB_O_LOCKS = MDB_O_RDWR|MDB_CLOEXEC | ((MDB_O_MASK+1) & ~MDB_O_MASK) /**< for me_lfd */
4181 #endif
4182 };
4183 
4184 /** Open an LMDB file.
4185  * @param[in] env	The LMDB environment.
4186  * @param[in,out] fname	Path from from #mdb_fname_init().  A suffix is
4187  * appended if necessary to create the filename, without changing mn_len.
4188  * @param[in] which	Determines file type, access mode, etc.
4189  * @param[in] mode	The Unix permissions for the file, if we create it.
4190  * @param[out] res	Resulting file handle.
4191  * @return 0 on success, non-zero on failure.
4192  */
4193 static int ESECT
4194 mdb_fopen(const MDB_env *env, MDB_name *fname,
4195 	enum mdb_fopen_type which, mdb_mode_t mode,
4196 	HANDLE *res)
4197 {
4198 	int rc = MDB_SUCCESS;
4199 	HANDLE fd;
4200 #ifdef _WIN32
4201 	DWORD acc, share, disp, attrs;
4202 #else
4203 	int flags;
4204 #endif
4205 
4206 	if (fname->mn_alloced)		/* modifiable copy */
4207 		mdb_name_cpy(fname->mn_val + fname->mn_len,
4208 			mdb_suffixes[which==MDB_O_LOCKS][F_ISSET(env->me_flags, MDB_NOSUBDIR)]);
4209 
4210 	/* The directory must already exist.  Usually the file need not.
4211 	 * MDB_O_META requires the file because we already created it using
4212 	 * MDB_O_RDWR.  MDB_O_COPY must not overwrite an existing file.
4213 	 *
4214 	 * With MDB_O_COPY we do not want the OS to cache the writes, since
4215 	 * the source data is already in the OS cache.
4216 	 *
4217 	 * The lockfile needs FD_CLOEXEC (close file descriptor on exec*())
4218 	 * to avoid the flock() issues noted under Caveats in lmdb.h.
4219 	 * Also set it for other filehandles which the user cannot get at
4220 	 * and close himself, which he may need after fork().  I.e. all but
4221 	 * me_fd, which programs do use via mdb_env_get_fd().
4222 	 */
4223 
4224 #ifdef _WIN32
4225 	acc = GENERIC_READ|GENERIC_WRITE;
4226 	share = FILE_SHARE_READ|FILE_SHARE_WRITE;
4227 	disp = OPEN_ALWAYS;
4228 	attrs = FILE_ATTRIBUTE_NORMAL;
4229 	switch (which) {
4230 	case MDB_O_RDONLY:			/* read-only datafile */
4231 		acc = GENERIC_READ;
4232 		disp = OPEN_EXISTING;
4233 		break;
4234 	case MDB_O_META:			/* for writing metapages */
4235 		acc = GENERIC_WRITE;
4236 		disp = OPEN_EXISTING;
4237 		attrs = FILE_ATTRIBUTE_NORMAL|FILE_FLAG_WRITE_THROUGH;
4238 		break;
4239 	case MDB_O_COPY:			/* mdb_env_copy() & co */
4240 		acc = GENERIC_WRITE;
4241 		share = 0;
4242 		disp = CREATE_NEW;
4243 		attrs = FILE_FLAG_NO_BUFFERING|FILE_FLAG_WRITE_THROUGH;
4244 		break;
4245 	default: break;	/* silence gcc -Wswitch (not all enum values handled) */
4246 	}
4247 	fd = CreateFileW(fname->mn_val, acc, share, NULL, disp, attrs, NULL);
4248 #else
4249 	fd = open(fname->mn_val, which & MDB_O_MASK, mode);
4250 #endif
4251 
4252 	if (fd == INVALID_HANDLE_VALUE)
4253 		rc = ErrCode();
4254 #ifndef _WIN32
4255 	else {
4256 		if (which != MDB_O_RDONLY && which != MDB_O_RDWR) {
4257 			/* Set CLOEXEC if we could not pass it to open() */
4258 			if (!MDB_CLOEXEC && (flags = fcntl(fd, F_GETFD)) != -1)
4259 				(void) fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4260 		}
4261 		if (which == MDB_O_COPY && env->me_psize >= env->me_os_psize) {
4262 			/* This may require buffer alignment.  There is no portable
4263 			 * way to ask how much, so we require OS pagesize alignment.
4264 			 */
4265 # ifdef F_NOCACHE	/* __APPLE__ */
4266 			(void) fcntl(fd, F_NOCACHE, 1);
4267 # elif defined O_DIRECT
4268 			/* open(...O_DIRECT...) would break on filesystems without
4269 			 * O_DIRECT support (ITS#7682). Try to set it here instead.
4270 			 */
4271 			if ((flags = fcntl(fd, F_GETFL)) != -1)
4272 				(void) fcntl(fd, F_SETFL, flags | O_DIRECT);
4273 # endif
4274 		}
4275 	}
4276 #endif	/* !_WIN32 */
4277 
4278 	*res = fd;
4279 	return rc;
4280 }
4281 
4282 
4283 #ifdef BROKEN_FDATASYNC
4284 #include <sys/utsname.h>
4285 #include <sys/vfs.h>
4286 #endif
4287 
4288 /** Further setup required for opening an LMDB environment
4289  */
4290 static int ESECT
4291 mdb_env_open2(MDB_env *env)
4292 {
4293 	unsigned int flags = env->me_flags;
4294 	int i, newenv = 0, rc;
4295 	MDB_meta meta;
4296 
4297 #ifdef _WIN32
4298 	/* See if we should use QueryLimited */
4299 	rc = GetVersion();
4300 	if ((rc & 0xff) > 5)
4301 		env->me_pidquery = MDB_PROCESS_QUERY_LIMITED_INFORMATION;
4302 	else
4303 		env->me_pidquery = PROCESS_QUERY_INFORMATION;
4304 #endif /* _WIN32 */
4305 
4306 #ifdef BROKEN_FDATASYNC
4307 	/* ext3/ext4 fdatasync is broken on some older Linux kernels.
4308 	 * https://lkml.org/lkml/2012/9/3/83
4309 	 * Kernels after 3.6-rc6 are known good.
4310 	 * https://lkml.org/lkml/2012/9/10/556
4311 	 * See if the DB is on ext3/ext4, then check for new enough kernel
4312 	 * Kernels 2.6.32.60, 2.6.34.15, 3.2.30, and 3.5.4 are also known
4313 	 * to be patched.
4314 	 */
4315 	{
4316 		struct statfs st;
4317 		fstatfs(env->me_fd, &st);
4318 		while (st.f_type == 0xEF53) {
4319 			struct utsname uts;
4320 			int i;
4321 			uname(&uts);
4322 			if (uts.release[0] < '3') {
4323 				if (!strncmp(uts.release, "2.6.32.", 7)) {
4324 					i = atoi(uts.release+7);
4325 					if (i >= 60)
4326 						break;	/* 2.6.32.60 and newer is OK */
4327 				} else if (!strncmp(uts.release, "2.6.34.", 7)) {
4328 					i = atoi(uts.release+7);
4329 					if (i >= 15)
4330 						break;	/* 2.6.34.15 and newer is OK */
4331 				}
4332 			} else if (uts.release[0] == '3') {
4333 				i = atoi(uts.release+2);
4334 				if (i > 5)
4335 					break;	/* 3.6 and newer is OK */
4336 				if (i == 5) {
4337 					i = atoi(uts.release+4);
4338 					if (i >= 4)
4339 						break;	/* 3.5.4 and newer is OK */
4340 				} else if (i == 2) {
4341 					i = atoi(uts.release+4);
4342 					if (i >= 30)
4343 						break;	/* 3.2.30 and newer is OK */
4344 				}
4345 			} else {	/* 4.x and newer is OK */
4346 				break;
4347 			}
4348 			env->me_flags |= MDB_FSYNCONLY;
4349 			break;
4350 		}
4351 	}
4352 #endif
4353 
4354 	if ((i = mdb_env_read_header(env, &meta)) != 0) {
4355 		if (i != ENOENT)
4356 			return i;
4357 		DPUTS("new mdbenv");
4358 		newenv = 1;
4359 		env->me_psize = env->me_os_psize;
4360 		if (env->me_psize > MAX_PAGESIZE)
4361 			env->me_psize = MAX_PAGESIZE;
4362 		memset(&meta, 0, sizeof(meta));
4363 		mdb_env_init_meta0(env, &meta);
4364 		meta.mm_mapsize = DEFAULT_MAPSIZE;
4365 	} else {
4366 		env->me_psize = meta.mm_psize;
4367 	}
4368 
4369 	/* Was a mapsize configured? */
4370 	if (!env->me_mapsize) {
4371 		env->me_mapsize = meta.mm_mapsize;
4372 	}
4373 	{
4374 		/* Make sure mapsize >= committed data size.  Even when using
4375 		 * mm_mapsize, which could be broken in old files (ITS#7789).
4376 		 */
4377 		size_t minsize = (meta.mm_last_pg + 1) * meta.mm_psize;
4378 		if (env->me_mapsize < minsize)
4379 			env->me_mapsize = minsize;
4380 	}
4381 	meta.mm_mapsize = env->me_mapsize;
4382 
4383 	if (newenv && !(flags & MDB_FIXEDMAP)) {
4384 		/* mdb_env_map() may grow the datafile.  Write the metapages
4385 		 * first, so the file will be valid if initialization fails.
4386 		 * Except with FIXEDMAP, since we do not yet know mm_address.
4387 		 * We could fill in mm_address later, but then a different
4388 		 * program might end up doing that - one with a memory layout
4389 		 * and map address which does not suit the main program.
4390 		 */
4391 		rc = mdb_env_init_meta(env, &meta);
4392 		if (rc)
4393 			return rc;
4394 		newenv = 0;
4395 	}
4396 
4397 	rc = mdb_env_map(env, (flags & MDB_FIXEDMAP) ? meta.mm_address : NULL);
4398 	if (rc)
4399 		return rc;
4400 
4401 	if (newenv) {
4402 		if (flags & MDB_FIXEDMAP)
4403 			meta.mm_address = env->me_map;
4404 		i = mdb_env_init_meta(env, &meta);
4405 		if (i != MDB_SUCCESS) {
4406 			return i;
4407 		}
4408 	}
4409 
4410 	env->me_maxfree_1pg = (env->me_psize - PAGEHDRSZ) / sizeof(pgno_t) - 1;
4411 	env->me_nodemax = (((env->me_psize - PAGEHDRSZ) / MDB_MINKEYS) & -2)
4412 		- sizeof(indx_t);
4413 #if !(MDB_MAXKEYSIZE)
4414 	env->me_maxkey = env->me_nodemax - (NODESIZE + sizeof(MDB_db));
4415 #endif
4416 	env->me_maxpg = env->me_mapsize / env->me_psize;
4417 
4418 #if MDB_DEBUG
4419 	{
4420 		MDB_meta *meta = mdb_env_pick_meta(env);
4421 		MDB_db *db = &meta->mm_dbs[MAIN_DBI];
4422 
4423 		DPRINTF(("opened database version %u, pagesize %u",
4424 			meta->mm_version, env->me_psize));
4425 		DPRINTF(("using meta page %d",    (int) (meta->mm_txnid & 1)));
4426 		DPRINTF(("depth: %u",             db->md_depth));
4427 		DPRINTF(("entries: %"Z"u",        db->md_entries));
4428 		DPRINTF(("branch pages: %"Z"u",   db->md_branch_pages));
4429 		DPRINTF(("leaf pages: %"Z"u",     db->md_leaf_pages));
4430 		DPRINTF(("overflow pages: %"Z"u", db->md_overflow_pages));
4431 		DPRINTF(("root: %"Z"u",           db->md_root));
4432 	}
4433 #endif
4434 
4435 	return MDB_SUCCESS;
4436 }
4437 
4438 
4439 /** Release a reader thread's slot in the reader lock table.
4440  *	This function is called automatically when a thread exits.
4441  * @param[in] ptr This points to the slot in the reader lock table.
4442  */
4443 static void
4444 mdb_env_reader_dest(void *ptr)
4445 {
4446 	MDB_reader *reader = ptr;
4447 
4448 #ifndef _WIN32
4449 	if (reader->mr_pid == getpid()) /* catch pthread_exit() in child process */
4450 #endif
4451 		/* We omit the mutex, so do this atomically (i.e. skip mr_txnid) */
4452 		reader->mr_pid = 0;
4453 }
4454 
4455 #ifdef _WIN32
4456 /** Junk for arranging thread-specific callbacks on Windows. This is
4457  *	necessarily platform and compiler-specific. Windows supports up
4458  *	to 1088 keys. Let's assume nobody opens more than 64 environments
4459  *	in a single process, for now. They can override this if needed.
4460  */
4461 #ifndef MAX_TLS_KEYS
4462 #define MAX_TLS_KEYS	64
4463 #endif
4464 static pthread_key_t mdb_tls_keys[MAX_TLS_KEYS];
4465 static int mdb_tls_nkeys;
4466 
4467 static void NTAPI mdb_tls_callback(PVOID module, DWORD reason, PVOID ptr)
4468 {
4469 	int i;
4470 	switch(reason) {
4471 	case DLL_PROCESS_ATTACH: break;
4472 	case DLL_THREAD_ATTACH: break;
4473 	case DLL_THREAD_DETACH:
4474 		for (i=0; i<mdb_tls_nkeys; i++) {
4475 			MDB_reader *r = pthread_getspecific(mdb_tls_keys[i]);
4476 			if (r) {
4477 				mdb_env_reader_dest(r);
4478 			}
4479 		}
4480 		break;
4481 	case DLL_PROCESS_DETACH: break;
4482 	}
4483 }
4484 #ifdef __GNUC__
4485 #ifdef _WIN64
4486 const PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback;
4487 #else
4488 PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback;
4489 #endif
4490 #else
4491 #ifdef _WIN64
4492 /* Force some symbol references.
4493  *	_tls_used forces the linker to create the TLS directory if not already done
4494  *	mdb_tls_cbp prevents whole-program-optimizer from dropping the symbol.
4495  */
4496 #pragma comment(linker, "/INCLUDE:_tls_used")
4497 #pragma comment(linker, "/INCLUDE:mdb_tls_cbp")
4498 #pragma const_seg(".CRT$XLB")
4499 extern const PIMAGE_TLS_CALLBACK mdb_tls_cbp;
4500 const PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback;
4501 #pragma const_seg()
4502 #else	/* _WIN32 */
4503 #pragma comment(linker, "/INCLUDE:__tls_used")
4504 #pragma comment(linker, "/INCLUDE:_mdb_tls_cbp")
4505 #pragma data_seg(".CRT$XLB")
4506 PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback;
4507 #pragma data_seg()
4508 #endif	/* WIN 32/64 */
4509 #endif	/* !__GNUC__ */
4510 #endif
4511 
4512 /** Downgrade the exclusive lock on the region back to shared */
4513 static int ESECT
4514 mdb_env_share_locks(MDB_env *env, int *excl)
4515 {
4516 	int rc = 0;
4517 	MDB_meta *meta = mdb_env_pick_meta(env);
4518 
4519 	env->me_txns->mti_txnid = meta->mm_txnid;
4520 
4521 #ifdef _WIN32
4522 	{
4523 		OVERLAPPED ov;
4524 		/* First acquire a shared lock. The Unlock will
4525 		 * then release the existing exclusive lock.
4526 		 */
4527 		memset(&ov, 0, sizeof(ov));
4528 		if (!LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) {
4529 			rc = ErrCode();
4530 		} else {
4531 			UnlockFile(env->me_lfd, 0, 0, 1, 0);
4532 			*excl = 0;
4533 		}
4534 	}
4535 #else
4536 	{
4537 		struct flock lock_info;
4538 		/* The shared lock replaces the existing lock */
4539 		memset((void *)&lock_info, 0, sizeof(lock_info));
4540 		lock_info.l_type = F_RDLCK;
4541 		lock_info.l_whence = SEEK_SET;
4542 		lock_info.l_start = 0;
4543 		lock_info.l_len = 1;
4544 		while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
4545 				(rc = ErrCode()) == EINTR) ;
4546 		*excl = rc ? -1 : 0;	/* error may mean we lost the lock */
4547 	}
4548 #endif
4549 
4550 	return rc;
4551 }
4552 
4553 /** Try to get exclusive lock, otherwise shared.
4554  *	Maintain *excl = -1: no/unknown lock, 0: shared, 1: exclusive.
4555  */
4556 static int ESECT
4557 mdb_env_excl_lock(MDB_env *env, int *excl)
4558 {
4559 	int rc = 0;
4560 #ifdef _WIN32
4561 	if (LockFile(env->me_lfd, 0, 0, 1, 0)) {
4562 		*excl = 1;
4563 	} else {
4564 		OVERLAPPED ov;
4565 		memset(&ov, 0, sizeof(ov));
4566 		if (LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) {
4567 			*excl = 0;
4568 		} else {
4569 			rc = ErrCode();
4570 		}
4571 	}
4572 #else
4573 	struct flock lock_info;
4574 	memset((void *)&lock_info, 0, sizeof(lock_info));
4575 	lock_info.l_type = F_WRLCK;
4576 	lock_info.l_whence = SEEK_SET;
4577 	lock_info.l_start = 0;
4578 	lock_info.l_len = 1;
4579 	while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
4580 			(rc = ErrCode()) == EINTR) ;
4581 	if (!rc) {
4582 		*excl = 1;
4583 	} else
4584 # ifndef MDB_USE_POSIX_MUTEX
4585 	if (*excl < 0) /* always true when MDB_USE_POSIX_MUTEX */
4586 # endif
4587 	{
4588 		lock_info.l_type = F_RDLCK;
4589 		while ((rc = fcntl(env->me_lfd, F_SETLKW, &lock_info)) &&
4590 				(rc = ErrCode()) == EINTR) ;
4591 		if (rc == 0)
4592 			*excl = 0;
4593 	}
4594 #endif
4595 	return rc;
4596 }
4597 
4598 #ifdef MDB_USE_HASH
4599 /*
4600  * hash_64 - 64 bit Fowler/Noll/Vo-0 FNV-1a hash code
4601  *
4602  * @(#) Revision: 5.1
4603  * @(#) Id: hash_64a.c,v 5.1 2009/06/30 09:01:38 chongo Exp
4604  * @(#) Source: /usr/local/src/cmd/fnv/RCS/hash_64a.c,v
4605  *
4606  *	  http://www.isthe.com/chongo/tech/comp/fnv/index.html
4607  *
4608  ***
4609  *
4610  * Please do not copyright this code.  This code is in the public domain.
4611  *
4612  * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
4613  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
4614  * EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
4615  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
4616  * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
4617  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
4618  * PERFORMANCE OF THIS SOFTWARE.
4619  *
4620  * By:
4621  *	chongo <Landon Curt Noll> /\oo/\
4622  *	  http://www.isthe.com/chongo/
4623  *
4624  * Share and Enjoy!	:-)
4625  */
4626 
4627 typedef unsigned long long	mdb_hash_t;
4628 #define MDB_HASH_INIT ((mdb_hash_t)0xcbf29ce484222325ULL)
4629 
4630 /** perform a 64 bit Fowler/Noll/Vo FNV-1a hash on a buffer
4631  * @param[in] val	value to hash
4632  * @param[in] hval	initial value for hash
4633  * @return 64 bit hash
4634  *
4635  * NOTE: To use the recommended 64 bit FNV-1a hash, use MDB_HASH_INIT as the
4636  * 	 hval arg on the first call.
4637  */
4638 static mdb_hash_t
4639 mdb_hash_val(MDB_val *val, mdb_hash_t hval)
4640 {
4641 	unsigned char *s = (unsigned char *)val->mv_data;	/* unsigned string */
4642 	unsigned char *end = s + val->mv_size;
4643 	/*
4644 	 * FNV-1a hash each octet of the string
4645 	 */
4646 	while (s < end) {
4647 		/* xor the bottom with the current octet */
4648 		hval ^= (mdb_hash_t)*s++;
4649 
4650 		/* multiply by the 64 bit FNV magic prime mod 2^64 */
4651 		hval += (hval << 1) + (hval << 4) + (hval << 5) +
4652 			(hval << 7) + (hval << 8) + (hval << 40);
4653 	}
4654 	/* return our new hash value */
4655 	return hval;
4656 }
4657 
4658 /** Hash the string and output the encoded hash.
4659  * This uses modified RFC1924 Ascii85 encoding to accommodate systems with
4660  * very short name limits. We don't care about the encoding being reversible,
4661  * we just want to preserve as many bits of the input as possible in a
4662  * small printable string.
4663  * @param[in] str string to hash
4664  * @param[out] encbuf an array of 11 chars to hold the hash
4665  */
4666 static const char mdb_a85[]= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~";
4667 
4668 static void ESECT
4669 mdb_pack85(unsigned long l, char *out)
4670 {
4671 	int i;
4672 
4673 	for (i=0; i<5; i++) {
4674 		*out++ = mdb_a85[l % 85];
4675 		l /= 85;
4676 	}
4677 }
4678 
4679 static void ESECT
4680 mdb_hash_enc(MDB_val *val, char *encbuf)
4681 {
4682 	mdb_hash_t h = mdb_hash_val(val, MDB_HASH_INIT);
4683 
4684 	mdb_pack85(h, encbuf);
4685 	mdb_pack85(h>>32, encbuf+5);
4686 	encbuf[10] = '\0';
4687 }
4688 #endif
4689 
4690 /** Open and/or initialize the lock region for the environment.
4691  * @param[in] env The LMDB environment.
4692  * @param[in] fname Filename + scratch area, from #mdb_fname_init().
4693  * @param[in] mode The Unix permissions for the file, if we create it.
4694  * @param[in,out] excl In -1, out lock type: -1 none, 0 shared, 1 exclusive
4695  * @return 0 on success, non-zero on failure.
4696  */
4697 static int ESECT
4698 mdb_env_setup_locks(MDB_env *env, MDB_name *fname, int mode, int *excl)
4699 {
4700 #ifdef _WIN32
4701 #	define MDB_ERRCODE_ROFS	ERROR_WRITE_PROTECT
4702 #else
4703 #	define MDB_ERRCODE_ROFS	EROFS
4704 #endif
4705 	int rc;
4706 	off_t size, rsize;
4707 
4708 	rc = mdb_fopen(env, fname, MDB_O_LOCKS, mode, &env->me_lfd);
4709 	if (rc) {
4710 		/* Omit lockfile if read-only env on read-only filesystem */
4711 		if (rc == MDB_ERRCODE_ROFS && (env->me_flags & MDB_RDONLY)) {
4712 			return MDB_SUCCESS;
4713 		}
4714 		goto fail;
4715 	}
4716 
4717 	if (!(env->me_flags & MDB_NOTLS)) {
4718 		rc = pthread_key_create(&env->me_txkey, mdb_env_reader_dest);
4719 		if (rc)
4720 			goto fail;
4721 		env->me_flags |= MDB_ENV_TXKEY;
4722 #ifdef _WIN32
4723 		/* Windows TLS callbacks need help finding their TLS info. */
4724 		if (mdb_tls_nkeys >= MAX_TLS_KEYS) {
4725 			rc = MDB_TLS_FULL;
4726 			goto fail;
4727 		}
4728 		mdb_tls_keys[mdb_tls_nkeys++] = env->me_txkey;
4729 #endif
4730 	}
4731 
4732 	/* Try to get exclusive lock. If we succeed, then
4733 	 * nobody is using the lock region and we should initialize it.
4734 	 */
4735 	if ((rc = mdb_env_excl_lock(env, excl))) goto fail;
4736 
4737 #ifdef _WIN32
4738 	size = GetFileSize(env->me_lfd, NULL);
4739 #else
4740 	size = lseek(env->me_lfd, 0, SEEK_END);
4741 	if (size == -1) goto fail_errno;
4742 #endif
4743 	rsize = (env->me_maxreaders-1) * sizeof(MDB_reader) + sizeof(MDB_txninfo);
4744 	if (size < rsize && *excl > 0) {
4745 #ifdef _WIN32
4746 		if (SetFilePointer(env->me_lfd, rsize, NULL, FILE_BEGIN) != (DWORD)rsize
4747 			|| !SetEndOfFile(env->me_lfd))
4748 			goto fail_errno;
4749 #else
4750 		if (ftruncate(env->me_lfd, rsize) != 0) goto fail_errno;
4751 #endif
4752 	} else {
4753 		rsize = size;
4754 		size = rsize - sizeof(MDB_txninfo);
4755 		env->me_maxreaders = size/sizeof(MDB_reader) + 1;
4756 	}
4757 	{
4758 #ifdef _WIN32
4759 		HANDLE mh;
4760 		mh = CreateFileMapping(env->me_lfd, NULL, PAGE_READWRITE,
4761 			0, 0, NULL);
4762 		if (!mh) goto fail_errno;
4763 		env->me_txns = MapViewOfFileEx(mh, FILE_MAP_WRITE, 0, 0, rsize, NULL);
4764 		CloseHandle(mh);
4765 		if (!env->me_txns) goto fail_errno;
4766 #else
4767 		void *m = mmap(NULL, rsize, PROT_READ|PROT_WRITE, MAP_SHARED,
4768 			env->me_lfd, 0);
4769 		if (m == MAP_FAILED) goto fail_errno;
4770 		env->me_txns = m;
4771 #endif
4772 	}
4773 	if (*excl > 0) {
4774 #ifdef _WIN32
4775 		BY_HANDLE_FILE_INFORMATION stbuf;
4776 		struct {
4777 			DWORD volume;
4778 			DWORD nhigh;
4779 			DWORD nlow;
4780 		} idbuf;
4781 		MDB_val val;
4782 		char encbuf[11];
4783 
4784 		if (!mdb_sec_inited) {
4785 			InitializeSecurityDescriptor(&mdb_null_sd,
4786 				SECURITY_DESCRIPTOR_REVISION);
4787 			SetSecurityDescriptorDacl(&mdb_null_sd, TRUE, 0, FALSE);
4788 			mdb_all_sa.nLength = sizeof(SECURITY_ATTRIBUTES);
4789 			mdb_all_sa.bInheritHandle = FALSE;
4790 			mdb_all_sa.lpSecurityDescriptor = &mdb_null_sd;
4791 			mdb_sec_inited = 1;
4792 		}
4793 		if (!GetFileInformationByHandle(env->me_lfd, &stbuf)) goto fail_errno;
4794 		idbuf.volume = stbuf.dwVolumeSerialNumber;
4795 		idbuf.nhigh  = stbuf.nFileIndexHigh;
4796 		idbuf.nlow   = stbuf.nFileIndexLow;
4797 		val.mv_data = &idbuf;
4798 		val.mv_size = sizeof(idbuf);
4799 		mdb_hash_enc(&val, encbuf);
4800 		sprintf(env->me_txns->mti_rmname, "Global\\MDBr%s", encbuf);
4801 		sprintf(env->me_txns->mti_wmname, "Global\\MDBw%s", encbuf);
4802 		env->me_rmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_rmname);
4803 		if (!env->me_rmutex) goto fail_errno;
4804 		env->me_wmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_wmname);
4805 		if (!env->me_wmutex) goto fail_errno;
4806 #elif defined(MDB_USE_POSIX_SEM)
4807 		struct stat stbuf;
4808 		struct {
4809 			dev_t dev;
4810 			ino_t ino;
4811 		} idbuf;
4812 		MDB_val val;
4813 		char encbuf[11];
4814 
4815 #if defined(__NetBSD__)
4816 #define	MDB_SHORT_SEMNAMES	1	/* limited to 14 chars */
4817 #endif
4818 		if (fstat(env->me_lfd, &stbuf)) goto fail_errno;
4819 		idbuf.dev = stbuf.st_dev;
4820 		idbuf.ino = stbuf.st_ino;
4821 		val.mv_data = &idbuf;
4822 		val.mv_size = sizeof(idbuf);
4823 		mdb_hash_enc(&val, encbuf);
4824 #ifdef MDB_SHORT_SEMNAMES
4825 		encbuf[9] = '\0';	/* drop name from 15 chars to 14 chars */
4826 #endif
4827 		sprintf(env->me_txns->mti_rmname, "/MDBr%s", encbuf);
4828 		sprintf(env->me_txns->mti_wmname, "/MDBw%s", encbuf);
4829 		/* Clean up after a previous run, if needed:  Try to
4830 		 * remove both semaphores before doing anything else.
4831 		 */
4832 		sem_unlink(env->me_txns->mti_rmname);
4833 		sem_unlink(env->me_txns->mti_wmname);
4834 		env->me_rmutex = sem_open(env->me_txns->mti_rmname,
4835 			O_CREAT|O_EXCL, mode, 1);
4836 		if (env->me_rmutex == SEM_FAILED) goto fail_errno;
4837 		env->me_wmutex = sem_open(env->me_txns->mti_wmname,
4838 			O_CREAT|O_EXCL, mode, 1);
4839 		if (env->me_wmutex == SEM_FAILED) goto fail_errno;
4840 #else	/* MDB_USE_POSIX_MUTEX: */
4841 		pthread_mutexattr_t mattr;
4842 
4843 		/* Solaris needs this before initing a robust mutex.  Otherwise
4844 		 * it may skip the init and return EBUSY "seems someone already
4845 		 * inited" or EINVAL "it was inited differently".
4846 		 */
4847 		memset(env->me_txns->mti_rmutex, 0, sizeof(*env->me_txns->mti_rmutex));
4848 		memset(env->me_txns->mti_wmutex, 0, sizeof(*env->me_txns->mti_wmutex));
4849 
4850 		if ((rc = pthread_mutexattr_init(&mattr)))
4851 			goto fail;
4852 
4853 		rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED);
4854 #ifdef MDB_ROBUST_SUPPORTED
4855 		if (!rc) rc = pthread_mutexattr_setrobust(&mattr, PTHREAD_MUTEX_ROBUST);
4856 #endif
4857 		if (!rc) rc = pthread_mutex_init(env->me_txns->mti_rmutex, &mattr);
4858 		if (!rc) rc = pthread_mutex_init(env->me_txns->mti_wmutex, &mattr);
4859 		pthread_mutexattr_destroy(&mattr);
4860 		if (rc)
4861 			goto fail;
4862 #endif	/* _WIN32 || MDB_USE_POSIX_SEM */
4863 
4864 		env->me_txns->mti_magic = MDB_MAGIC;
4865 		env->me_txns->mti_format = MDB_LOCK_FORMAT;
4866 		env->me_txns->mti_txnid = 0;
4867 		env->me_txns->mti_numreaders = 0;
4868 
4869 	} else {
4870 		if (env->me_txns->mti_magic != MDB_MAGIC) {
4871 			DPUTS("lock region has invalid magic");
4872 			rc = MDB_INVALID;
4873 			goto fail;
4874 		}
4875 		if (env->me_txns->mti_format != MDB_LOCK_FORMAT) {
4876 			DPRINTF(("lock region has format+version 0x%x, expected 0x%x",
4877 				env->me_txns->mti_format, MDB_LOCK_FORMAT));
4878 			rc = MDB_VERSION_MISMATCH;
4879 			goto fail;
4880 		}
4881 		rc = ErrCode();
4882 		if (rc && rc != EACCES && rc != EAGAIN) {
4883 			goto fail;
4884 		}
4885 #ifdef _WIN32
4886 		env->me_rmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_rmname);
4887 		if (!env->me_rmutex) goto fail_errno;
4888 		env->me_wmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_wmname);
4889 		if (!env->me_wmutex) goto fail_errno;
4890 #elif defined(MDB_USE_POSIX_SEM)
4891 		env->me_rmutex = sem_open(env->me_txns->mti_rmname, 0);
4892 		if (env->me_rmutex == SEM_FAILED) goto fail_errno;
4893 		env->me_wmutex = sem_open(env->me_txns->mti_wmname, 0);
4894 		if (env->me_wmutex == SEM_FAILED) goto fail_errno;
4895 #endif
4896 	}
4897 	return MDB_SUCCESS;
4898 
4899 fail_errno:
4900 	rc = ErrCode();
4901 fail:
4902 	return rc;
4903 }
4904 
4905 	/** Only a subset of the @ref mdb_env flags can be changed
4906 	 *	at runtime. Changing other flags requires closing the
4907 	 *	environment and re-opening it with the new flags.
4908 	 */
4909 #define	CHANGEABLE	(MDB_NOSYNC|MDB_NOMETASYNC|MDB_MAPASYNC|MDB_NOMEMINIT)
4910 #define	CHANGELESS	(MDB_FIXEDMAP|MDB_NOSUBDIR|MDB_RDONLY| \
4911 	MDB_WRITEMAP|MDB_NOTLS|MDB_NOLOCK|MDB_NORDAHEAD)
4912 
4913 #if VALID_FLAGS & PERSISTENT_FLAGS & (CHANGEABLE|CHANGELESS)
4914 # error "Persistent DB flags & env flags overlap, but both go in mm_flags"
4915 #endif
4916 
4917 int ESECT
4918 mdb_env_open(MDB_env *env, const char *path, unsigned int flags, mdb_mode_t mode)
4919 {
4920 	int rc, excl = -1;
4921 	MDB_name fname;
4922 
4923 	if (env->me_fd!=INVALID_HANDLE_VALUE || (flags & ~(CHANGEABLE|CHANGELESS)))
4924 		return EINVAL;
4925 
4926 	flags |= env->me_flags;
4927 
4928 	rc = mdb_fname_init(path, flags, &fname);
4929 	if (rc)
4930 		return rc;
4931 
4932 	if (flags & MDB_RDONLY) {
4933 		/* silently ignore WRITEMAP when we're only getting read access */
4934 		flags &= ~MDB_WRITEMAP;
4935 	} else {
4936 		if (!((env->me_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)) &&
4937 			  (env->me_dirty_list = calloc(MDB_IDL_UM_SIZE, sizeof(MDB_ID2)))))
4938 			rc = ENOMEM;
4939 	}
4940 	env->me_flags = flags |= MDB_ENV_ACTIVE;
4941 	if (rc)
4942 		goto leave;
4943 
4944 	env->me_path = strdup(path);
4945 	env->me_dbxs = calloc(env->me_maxdbs, sizeof(MDB_dbx));
4946 	env->me_dbflags = calloc(env->me_maxdbs, sizeof(uint16_t));
4947 	env->me_dbiseqs = calloc(env->me_maxdbs, sizeof(unsigned int));
4948 	if (!(env->me_dbxs && env->me_path && env->me_dbflags && env->me_dbiseqs)) {
4949 		rc = ENOMEM;
4950 		goto leave;
4951 	}
4952 	env->me_dbxs[FREE_DBI].md_cmp = mdb_cmp_long; /* aligned MDB_INTEGERKEY */
4953 
4954 	/* For RDONLY, get lockfile after we know datafile exists */
4955 	if (!(flags & (MDB_RDONLY|MDB_NOLOCK))) {
4956 		rc = mdb_env_setup_locks(env, &fname, mode, &excl);
4957 		if (rc)
4958 			goto leave;
4959 	}
4960 
4961 	rc = mdb_fopen(env, &fname,
4962 		(flags & MDB_RDONLY) ? MDB_O_RDONLY : MDB_O_RDWR,
4963 		mode, &env->me_fd);
4964 	if (rc)
4965 		goto leave;
4966 
4967 	if ((flags & (MDB_RDONLY|MDB_NOLOCK)) == MDB_RDONLY) {
4968 		rc = mdb_env_setup_locks(env, &fname, mode, &excl);
4969 		if (rc)
4970 			goto leave;
4971 	}
4972 
4973 	if ((rc = mdb_env_open2(env)) == MDB_SUCCESS) {
4974 		if (!(flags & (MDB_RDONLY|MDB_WRITEMAP))) {
4975 			/* Synchronous fd for meta writes. Needed even with
4976 			 * MDB_NOSYNC/MDB_NOMETASYNC, in case these get reset.
4977 			 */
4978 			rc = mdb_fopen(env, &fname, MDB_O_META, mode, &env->me_mfd);
4979 			if (rc)
4980 				goto leave;
4981 		}
4982 		DPRINTF(("opened dbenv %p", (void *) env));
4983 		if (excl > 0) {
4984 			rc = mdb_env_share_locks(env, &excl);
4985 			if (rc)
4986 				goto leave;
4987 		}
4988 		if (!(flags & MDB_RDONLY)) {
4989 			MDB_txn *txn;
4990 			int tsize = sizeof(MDB_txn), size = tsize + env->me_maxdbs *
4991 				(sizeof(MDB_db)+sizeof(MDB_cursor *)+sizeof(unsigned int)+1);
4992 			if ((env->me_pbuf = calloc(1, env->me_psize)) &&
4993 				(txn = calloc(1, size)))
4994 			{
4995 				txn->mt_dbs = (MDB_db *)((char *)txn + tsize);
4996 				txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
4997 				txn->mt_dbiseqs = (unsigned int *)(txn->mt_cursors + env->me_maxdbs);
4998 				txn->mt_dbflags = (unsigned char *)(txn->mt_dbiseqs + env->me_maxdbs);
4999 				txn->mt_env = env;
5000 				txn->mt_dbxs = env->me_dbxs;
5001 				txn->mt_flags = MDB_TXN_FINISHED;
5002 				env->me_txn0 = txn;
5003 			} else {
5004 				rc = ENOMEM;
5005 			}
5006 		}
5007 	}
5008 
5009 leave:
5010 	if (rc) {
5011 		mdb_env_close0(env, excl);
5012 	}
5013 	mdb_fname_destroy(fname);
5014 	return rc;
5015 }
5016 
5017 /** Destroy resources from mdb_env_open(), clear our readers & DBIs */
5018 static void ESECT
5019 mdb_env_close0(MDB_env *env, int excl)
5020 {
5021 	int i;
5022 
5023 	if (!(env->me_flags & MDB_ENV_ACTIVE))
5024 		return;
5025 
5026 	/* Doing this here since me_dbxs may not exist during mdb_env_close */
5027 	if (env->me_dbxs) {
5028 		for (i = env->me_maxdbs; --i >= CORE_DBS; )
5029 			free(env->me_dbxs[i].md_name.mv_data);
5030 		free(env->me_dbxs);
5031 	}
5032 
5033 	free(env->me_pbuf);
5034 	free(env->me_dbiseqs);
5035 	free(env->me_dbflags);
5036 	free(env->me_path);
5037 	free(env->me_dirty_list);
5038 	free(env->me_txn0);
5039 	mdb_midl_free(env->me_free_pgs);
5040 
5041 	if (env->me_flags & MDB_ENV_TXKEY) {
5042 		pthread_key_delete(env->me_txkey);
5043 #ifdef _WIN32
5044 		/* Delete our key from the global list */
5045 		for (i=0; i<mdb_tls_nkeys; i++)
5046 			if (mdb_tls_keys[i] == env->me_txkey) {
5047 				mdb_tls_keys[i] = mdb_tls_keys[mdb_tls_nkeys-1];
5048 				mdb_tls_nkeys--;
5049 				break;
5050 			}
5051 #endif
5052 	}
5053 
5054 	if (env->me_map) {
5055 		munmap(env->me_map, env->me_mapsize);
5056 	}
5057 	if (env->me_mfd != INVALID_HANDLE_VALUE)
5058 		(void) close(env->me_mfd);
5059 	if (env->me_fd != INVALID_HANDLE_VALUE)
5060 		(void) close(env->me_fd);
5061 	if (env->me_txns) {
5062 		MDB_PID_T pid = env->me_pid;
5063 		/* Clearing readers is done in this function because
5064 		 * me_txkey with its destructor must be disabled first.
5065 		 *
5066 		 * We skip the the reader mutex, so we touch only
5067 		 * data owned by this process (me_close_readers and
5068 		 * our readers), and clear each reader atomically.
5069 		 */
5070 		for (i = env->me_close_readers; --i >= 0; )
5071 			if (env->me_txns->mti_readers[i].mr_pid == pid)
5072 				env->me_txns->mti_readers[i].mr_pid = 0;
5073 #ifdef _WIN32
5074 		if (env->me_rmutex) {
5075 			CloseHandle(env->me_rmutex);
5076 			if (env->me_wmutex) CloseHandle(env->me_wmutex);
5077 		}
5078 		/* Windows automatically destroys the mutexes when
5079 		 * the last handle closes.
5080 		 */
5081 #elif defined(MDB_USE_POSIX_SEM)
5082 		if (env->me_rmutex != SEM_FAILED) {
5083 			sem_close(env->me_rmutex);
5084 			if (env->me_wmutex != SEM_FAILED)
5085 				sem_close(env->me_wmutex);
5086 			/* If we have the filelock:  If we are the
5087 			 * only remaining user, clean up semaphores.
5088 			 */
5089 			if (excl == 0)
5090 				mdb_env_excl_lock(env, &excl);
5091 			if (excl > 0) {
5092 				sem_unlink(env->me_txns->mti_rmname);
5093 				sem_unlink(env->me_txns->mti_wmname);
5094 			}
5095 		}
5096 #endif
5097 		munmap((void *)env->me_txns, (env->me_maxreaders-1)*sizeof(MDB_reader)+sizeof(MDB_txninfo));
5098 	}
5099 	if (env->me_lfd != INVALID_HANDLE_VALUE) {
5100 #ifdef _WIN32
5101 		if (excl >= 0) {
5102 			/* Unlock the lockfile.  Windows would have unlocked it
5103 			 * after closing anyway, but not necessarily at once.
5104 			 */
5105 			UnlockFile(env->me_lfd, 0, 0, 1, 0);
5106 		}
5107 #endif
5108 		(void) close(env->me_lfd);
5109 	}
5110 
5111 	env->me_flags &= ~(MDB_ENV_ACTIVE|MDB_ENV_TXKEY);
5112 }
5113 
5114 void ESECT
5115 mdb_env_close(MDB_env *env)
5116 {
5117 	MDB_page *dp;
5118 
5119 	if (env == NULL)
5120 		return;
5121 
5122 	VGMEMP_DESTROY(env);
5123 	while ((dp = env->me_dpages) != NULL) {
5124 		VGMEMP_DEFINED(&dp->mp_next, sizeof(dp->mp_next));
5125 		env->me_dpages = dp->mp_next;
5126 		free(dp);
5127 	}
5128 
5129 	mdb_env_close0(env, 0);
5130 	free(env);
5131 }
5132 
5133 /** Compare two items pointing at aligned size_t's */
5134 static int
5135 mdb_cmp_long(const MDB_val *a, const MDB_val *b)
5136 {
5137 	return (*(size_t *)a->mv_data < *(size_t *)b->mv_data) ? -1 :
5138 		*(size_t *)a->mv_data > *(size_t *)b->mv_data;
5139 }
5140 
5141 /** Compare two items pointing at aligned unsigned int's.
5142  *
5143  *	This is also set as #MDB_INTEGERDUP|#MDB_DUPFIXED's #MDB_dbx.%md_dcmp,
5144  *	but #mdb_cmp_clong() is called instead if the data type is size_t.
5145  */
5146 static int
5147 mdb_cmp_int(const MDB_val *a, const MDB_val *b)
5148 {
5149 	return (*(unsigned int *)a->mv_data < *(unsigned int *)b->mv_data) ? -1 :
5150 		*(unsigned int *)a->mv_data > *(unsigned int *)b->mv_data;
5151 }
5152 
5153 /** Compare two items pointing at unsigned ints of unknown alignment.
5154  *	Nodes and keys are guaranteed to be 2-byte aligned.
5155  */
5156 static int
5157 mdb_cmp_cint(const MDB_val *a, const MDB_val *b)
5158 {
5159 #if BYTE_ORDER == LITTLE_ENDIAN
5160 	unsigned short *u, *c;
5161 	int x;
5162 
5163 	u = (unsigned short *) ((char *) a->mv_data + a->mv_size);
5164 	c = (unsigned short *) ((char *) b->mv_data + a->mv_size);
5165 	do {
5166 		x = *--u - *--c;
5167 	} while(!x && u > (unsigned short *)a->mv_data);
5168 	return x;
5169 #else
5170 	unsigned short *u, *c, *end;
5171 	int x;
5172 
5173 	end = (unsigned short *) ((char *) a->mv_data + a->mv_size);
5174 	u = (unsigned short *)a->mv_data;
5175 	c = (unsigned short *)b->mv_data;
5176 	do {
5177 		x = *u++ - *c++;
5178 	} while(!x && u < end);
5179 	return x;
5180 #endif
5181 }
5182 
5183 /** Compare two items lexically */
5184 static int
5185 mdb_cmp_memn(const MDB_val *a, const MDB_val *b)
5186 {
5187 	int diff;
5188 	ssize_t len_diff;
5189 	unsigned int len;
5190 
5191 	len = a->mv_size;
5192 	len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size;
5193 	if (len_diff > 0) {
5194 		len = b->mv_size;
5195 		len_diff = 1;
5196 	}
5197 
5198 	diff = memcmp(a->mv_data, b->mv_data, len);
5199 	return diff ? diff : len_diff<0 ? -1 : len_diff;
5200 }
5201 
5202 /** Compare two items in reverse byte order */
5203 static int
5204 mdb_cmp_memnr(const MDB_val *a, const MDB_val *b)
5205 {
5206 	const unsigned char	*p1, *p2, *p1_lim;
5207 	ssize_t len_diff;
5208 	int diff;
5209 
5210 	p1_lim = (const unsigned char *)a->mv_data;
5211 	p1 = (const unsigned char *)a->mv_data + a->mv_size;
5212 	p2 = (const unsigned char *)b->mv_data + b->mv_size;
5213 
5214 	len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size;
5215 	if (len_diff > 0) {
5216 		p1_lim += len_diff;
5217 		len_diff = 1;
5218 	}
5219 
5220 	while (p1 > p1_lim) {
5221 		diff = *--p1 - *--p2;
5222 		if (diff)
5223 			return diff;
5224 	}
5225 	return len_diff<0 ? -1 : len_diff;
5226 }
5227 
5228 /** Search for key within a page, using binary search.
5229  * Returns the smallest entry larger or equal to the key.
5230  * If exactp is non-null, stores whether the found entry was an exact match
5231  * in *exactp (1 or 0).
5232  * Updates the cursor index with the index of the found entry.
5233  * If no entry larger or equal to the key is found, returns NULL.
5234  */
5235 static MDB_node *
5236 mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp)
5237 {
5238 	unsigned int	 i = 0, nkeys;
5239 	int		 low, high;
5240 	int		 rc = 0;
5241 	MDB_page *mp = mc->mc_pg[mc->mc_top];
5242 	MDB_node	*node = NULL;
5243 	MDB_val	 nodekey;
5244 	MDB_cmp_func *cmp;
5245 	DKBUF;
5246 
5247 	nkeys = NUMKEYS(mp);
5248 
5249 	DPRINTF(("searching %u keys in %s %spage %"Z"u",
5250 	    nkeys, IS_LEAF(mp) ? "leaf" : "branch", IS_SUBP(mp) ? "sub-" : "",
5251 	    mdb_dbg_pgno(mp)));
5252 
5253 	low = IS_LEAF(mp) ? 0 : 1;
5254 	high = nkeys - 1;
5255 	cmp = mc->mc_dbx->md_cmp;
5256 
5257 	/* Branch pages have no data, so if using integer keys,
5258 	 * alignment is guaranteed. Use faster mdb_cmp_int.
5259 	 */
5260 	if (cmp == mdb_cmp_cint && IS_BRANCH(mp)) {
5261 		if (NODEPTR(mp, 1)->mn_ksize == sizeof(size_t))
5262 			cmp = mdb_cmp_long;
5263 		else
5264 			cmp = mdb_cmp_int;
5265 	}
5266 
5267 	if (IS_LEAF2(mp)) {
5268 		nodekey.mv_size = mc->mc_db->md_pad;
5269 		node = NODEPTR(mp, 0);	/* fake */
5270 		while (low <= high) {
5271 			i = (low + high) >> 1;
5272 			nodekey.mv_data = LEAF2KEY(mp, i, nodekey.mv_size);
5273 			rc = cmp(key, &nodekey);
5274 			DPRINTF(("found leaf index %u [%s], rc = %i",
5275 			    i, DKEY(&nodekey), rc));
5276 			if (rc == 0)
5277 				break;
5278 			if (rc > 0)
5279 				low = i + 1;
5280 			else
5281 				high = i - 1;
5282 		}
5283 	} else {
5284 		while (low <= high) {
5285 			i = (low + high) >> 1;
5286 
5287 			node = NODEPTR(mp, i);
5288 			nodekey.mv_size = NODEKSZ(node);
5289 			nodekey.mv_data = NODEKEY(node);
5290 
5291 			rc = cmp(key, &nodekey);
5292 #if MDB_DEBUG
5293 			if (IS_LEAF(mp))
5294 				DPRINTF(("found leaf index %u [%s], rc = %i",
5295 				    i, DKEY(&nodekey), rc));
5296 			else
5297 				DPRINTF(("found branch index %u [%s -> %"Z"u], rc = %i",
5298 				    i, DKEY(&nodekey), NODEPGNO(node), rc));
5299 #endif
5300 			if (rc == 0)
5301 				break;
5302 			if (rc > 0)
5303 				low = i + 1;
5304 			else
5305 				high = i - 1;
5306 		}
5307 	}
5308 
5309 	if (rc > 0) {	/* Found entry is less than the key. */
5310 		i++;	/* Skip to get the smallest entry larger than key. */
5311 		if (!IS_LEAF2(mp))
5312 			node = NODEPTR(mp, i);
5313 	}
5314 	if (exactp)
5315 		*exactp = (rc == 0 && nkeys > 0);
5316 	/* store the key index */
5317 	mc->mc_ki[mc->mc_top] = i;
5318 	if (i >= nkeys)
5319 		/* There is no entry larger or equal to the key. */
5320 		return NULL;
5321 
5322 	/* nodeptr is fake for LEAF2 */
5323 	return node;
5324 }
5325 
5326 #if 0
5327 static void
5328 mdb_cursor_adjust(MDB_cursor *mc, func)
5329 {
5330 	MDB_cursor *m2;
5331 
5332 	for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
5333 		if (m2->mc_pg[m2->mc_top] == mc->mc_pg[mc->mc_top]) {
5334 			func(mc, m2);
5335 		}
5336 	}
5337 }
5338 #endif
5339 
5340 /** Pop a page off the top of the cursor's stack. */
5341 static void
5342 mdb_cursor_pop(MDB_cursor *mc)
5343 {
5344 	if (mc->mc_snum) {
5345 		DPRINTF(("popping page %"Z"u off db %d cursor %p",
5346 			mc->mc_pg[mc->mc_top]->mp_pgno, DDBI(mc), (void *) mc));
5347 
5348 		mc->mc_snum--;
5349 		if (mc->mc_snum) {
5350 			mc->mc_top--;
5351 		} else {
5352 			mc->mc_flags &= ~C_INITIALIZED;
5353 		}
5354 	}
5355 }
5356 
5357 /** Push a page onto the top of the cursor's stack.
5358  * Set #MDB_TXN_ERROR on failure.
5359  */
5360 static int
5361 mdb_cursor_push(MDB_cursor *mc, MDB_page *mp)
5362 {
5363 	DPRINTF(("pushing page %"Z"u on db %d cursor %p", mp->mp_pgno,
5364 		DDBI(mc), (void *) mc));
5365 
5366 	if (mc->mc_snum >= CURSOR_STACK) {
5367 		mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
5368 		return MDB_CURSOR_FULL;
5369 	}
5370 
5371 	mc->mc_top = mc->mc_snum++;
5372 	mc->mc_pg[mc->mc_top] = mp;
5373 	mc->mc_ki[mc->mc_top] = 0;
5374 
5375 	return MDB_SUCCESS;
5376 }
5377 
5378 /** Find the address of the page corresponding to a given page number.
5379  * Set #MDB_TXN_ERROR on failure.
5380  * @param[in] mc the cursor accessing the page.
5381  * @param[in] pgno the page number for the page to retrieve.
5382  * @param[out] ret address of a pointer where the page's address will be stored.
5383  * @param[out] lvl dirty_list inheritance level of found page. 1=current txn, 0=mapped page.
5384  * @return 0 on success, non-zero on failure.
5385  */
5386 static int
5387 mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **ret, int *lvl)
5388 {
5389 	MDB_txn *txn = mc->mc_txn;
5390 	MDB_env *env = txn->mt_env;
5391 	MDB_page *p = NULL;
5392 	int level;
5393 
5394 	if (! (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_WRITEMAP))) {
5395 		MDB_txn *tx2 = txn;
5396 		level = 1;
5397 		do {
5398 			MDB_ID2L dl = tx2->mt_u.dirty_list;
5399 			unsigned x;
5400 			/* Spilled pages were dirtied in this txn and flushed
5401 			 * because the dirty list got full. Bring this page
5402 			 * back in from the map (but don't unspill it here,
5403 			 * leave that unless page_touch happens again).
5404 			 */
5405 			if (tx2->mt_spill_pgs) {
5406 				MDB_ID pn = pgno << 1;
5407 				x = mdb_midl_search(tx2->mt_spill_pgs, pn);
5408 				if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) {
5409 					p = (MDB_page *)(env->me_map + env->me_psize * pgno);
5410 					goto done;
5411 				}
5412 			}
5413 			if (dl[0].mid) {
5414 				unsigned x = mdb_mid2l_search(dl, pgno);
5415 				if (x <= dl[0].mid && dl[x].mid == pgno) {
5416 					p = dl[x].mptr;
5417 					goto done;
5418 				}
5419 			}
5420 			level++;
5421 		} while ((tx2 = tx2->mt_parent) != NULL);
5422 	}
5423 
5424 	if (pgno < txn->mt_next_pgno) {
5425 		level = 0;
5426 		p = (MDB_page *)(env->me_map + env->me_psize * pgno);
5427 	} else {
5428 		DPRINTF(("page %"Z"u not found", pgno));
5429 		txn->mt_flags |= MDB_TXN_ERROR;
5430 		return MDB_PAGE_NOTFOUND;
5431 	}
5432 
5433 done:
5434 	*ret = p;
5435 	if (lvl)
5436 		*lvl = level;
5437 	return MDB_SUCCESS;
5438 }
5439 
5440 /** Finish #mdb_page_search() / #mdb_page_search_lowest().
5441  *	The cursor is at the root page, set up the rest of it.
5442  */
5443 static int
5444 mdb_page_search_root(MDB_cursor *mc, MDB_val *key, int flags)
5445 {
5446 	MDB_page	*mp = mc->mc_pg[mc->mc_top];
5447 	int rc;
5448 	DKBUF;
5449 
5450 	while (IS_BRANCH(mp)) {
5451 		MDB_node	*node;
5452 		indx_t		i;
5453 
5454 		DPRINTF(("branch page %"Z"u has %u keys", mp->mp_pgno, NUMKEYS(mp)));
5455 		/* Don't assert on branch pages in the FreeDB. We can get here
5456 		 * while in the process of rebalancing a FreeDB branch page; we must
5457 		 * let that proceed. ITS#8336
5458 		 */
5459 		mdb_cassert(mc, !mc->mc_dbi || NUMKEYS(mp) > 1);
5460 		DPRINTF(("found index 0 to page %"Z"u", NODEPGNO(NODEPTR(mp, 0))));
5461 
5462 		if (flags & (MDB_PS_FIRST|MDB_PS_LAST)) {
5463 			i = 0;
5464 			if (flags & MDB_PS_LAST) {
5465 				i = NUMKEYS(mp) - 1;
5466 				/* if already init'd, see if we're already in right place */
5467 				if (mc->mc_flags & C_INITIALIZED) {
5468 					if (mc->mc_ki[mc->mc_top] == i) {
5469 						mc->mc_top = mc->mc_snum++;
5470 						mp = mc->mc_pg[mc->mc_top];
5471 						goto ready;
5472 					}
5473 				}
5474 			}
5475 		} else {
5476 			int	 exact;
5477 			node = mdb_node_search(mc, key, &exact);
5478 			if (node == NULL)
5479 				i = NUMKEYS(mp) - 1;
5480 			else {
5481 				i = mc->mc_ki[mc->mc_top];
5482 				if (!exact) {
5483 					mdb_cassert(mc, i > 0);
5484 					i--;
5485 				}
5486 			}
5487 			DPRINTF(("following index %u for key [%s]", i, DKEY(key)));
5488 		}
5489 
5490 		mdb_cassert(mc, i < NUMKEYS(mp));
5491 		node = NODEPTR(mp, i);
5492 
5493 		if ((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0)
5494 			return rc;
5495 
5496 		mc->mc_ki[mc->mc_top] = i;
5497 		if ((rc = mdb_cursor_push(mc, mp)))
5498 			return rc;
5499 
5500 ready:
5501 		if (flags & MDB_PS_MODIFY) {
5502 			if ((rc = mdb_page_touch(mc)) != 0)
5503 				return rc;
5504 			mp = mc->mc_pg[mc->mc_top];
5505 		}
5506 	}
5507 
5508 	if (!IS_LEAF(mp)) {
5509 		DPRINTF(("internal error, index points to a %02X page!?",
5510 		    mp->mp_flags));
5511 		mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
5512 		return MDB_CORRUPTED;
5513 	}
5514 
5515 	DPRINTF(("found leaf page %"Z"u for key [%s]", mp->mp_pgno,
5516 	    key ? DKEY(key) : "null"));
5517 	mc->mc_flags |= C_INITIALIZED;
5518 	mc->mc_flags &= ~C_EOF;
5519 
5520 	return MDB_SUCCESS;
5521 }
5522 
5523 /** Search for the lowest key under the current branch page.
5524  * This just bypasses a NUMKEYS check in the current page
5525  * before calling mdb_page_search_root(), because the callers
5526  * are all in situations where the current page is known to
5527  * be underfilled.
5528  */
5529 static int
5530 mdb_page_search_lowest(MDB_cursor *mc)
5531 {
5532 	MDB_page	*mp = mc->mc_pg[mc->mc_top];
5533 	MDB_node	*node = NODEPTR(mp, 0);
5534 	int rc;
5535 
5536 	if ((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0)
5537 		return rc;
5538 
5539 	mc->mc_ki[mc->mc_top] = 0;
5540 	if ((rc = mdb_cursor_push(mc, mp)))
5541 		return rc;
5542 	return mdb_page_search_root(mc, NULL, MDB_PS_FIRST);
5543 }
5544 
5545 /** Search for the page a given key should be in.
5546  * Push it and its parent pages on the cursor stack.
5547  * @param[in,out] mc the cursor for this operation.
5548  * @param[in] key the key to search for, or NULL for first/last page.
5549  * @param[in] flags If MDB_PS_MODIFY is set, visited pages in the DB
5550  *   are touched (updated with new page numbers).
5551  *   If MDB_PS_FIRST or MDB_PS_LAST is set, find first or last leaf.
5552  *   This is used by #mdb_cursor_first() and #mdb_cursor_last().
5553  *   If MDB_PS_ROOTONLY set, just fetch root node, no further lookups.
5554  * @return 0 on success, non-zero on failure.
5555  */
5556 static int
5557 mdb_page_search(MDB_cursor *mc, MDB_val *key, int flags)
5558 {
5559 	int		 rc;
5560 	pgno_t		 root;
5561 
5562 	/* Make sure the txn is still viable, then find the root from
5563 	 * the txn's db table and set it as the root of the cursor's stack.
5564 	 */
5565 	if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) {
5566 		DPUTS("transaction may not be used now");
5567 		return MDB_BAD_TXN;
5568 	} else {
5569 		/* Make sure we're using an up-to-date root */
5570 		if (*mc->mc_dbflag & DB_STALE) {
5571 				MDB_cursor mc2;
5572 				if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi))
5573 					return MDB_BAD_DBI;
5574 				mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, NULL);
5575 				rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, 0);
5576 				if (rc)
5577 					return rc;
5578 				{
5579 					MDB_val data;
5580 					int exact = 0;
5581 					uint16_t flags;
5582 					MDB_node *leaf = mdb_node_search(&mc2,
5583 						&mc->mc_dbx->md_name, &exact);
5584 					if (!exact)
5585 						return MDB_NOTFOUND;
5586 					if ((leaf->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA)
5587 						return MDB_INCOMPATIBLE; /* not a named DB */
5588 					rc = mdb_node_read(&mc2, leaf, &data);
5589 					if (rc)
5590 						return rc;
5591 					memcpy(&flags, ((char *) data.mv_data + offsetof(MDB_db, md_flags)),
5592 						sizeof(uint16_t));
5593 					/* The txn may not know this DBI, or another process may
5594 					 * have dropped and recreated the DB with other flags.
5595 					 */
5596 					if ((mc->mc_db->md_flags & PERSISTENT_FLAGS) != flags)
5597 						return MDB_INCOMPATIBLE;
5598 					memcpy(mc->mc_db, data.mv_data, sizeof(MDB_db));
5599 				}
5600 				*mc->mc_dbflag &= ~DB_STALE;
5601 		}
5602 		root = mc->mc_db->md_root;
5603 
5604 		if (root == P_INVALID) {		/* Tree is empty. */
5605 			DPUTS("tree is empty");
5606 			return MDB_NOTFOUND;
5607 		}
5608 	}
5609 
5610 	mdb_cassert(mc, root > 1);
5611 	if (!mc->mc_pg[0] || mc->mc_pg[0]->mp_pgno != root)
5612 		if ((rc = mdb_page_get(mc, root, &mc->mc_pg[0], NULL)) != 0)
5613 			return rc;
5614 
5615 	mc->mc_snum = 1;
5616 	mc->mc_top = 0;
5617 
5618 	DPRINTF(("db %d root page %"Z"u has flags 0x%X",
5619 		DDBI(mc), root, mc->mc_pg[0]->mp_flags));
5620 
5621 	if (flags & MDB_PS_MODIFY) {
5622 		if ((rc = mdb_page_touch(mc)))
5623 			return rc;
5624 	}
5625 
5626 	if (flags & MDB_PS_ROOTONLY)
5627 		return MDB_SUCCESS;
5628 
5629 	return mdb_page_search_root(mc, key, flags);
5630 }
5631 
5632 static int
5633 mdb_ovpage_free(MDB_cursor *mc, MDB_page *mp)
5634 {
5635 	MDB_txn *txn = mc->mc_txn;
5636 	pgno_t pg = mp->mp_pgno;
5637 	unsigned x = 0, ovpages = mp->mp_pages;
5638 	MDB_env *env = txn->mt_env;
5639 	MDB_IDL sl = txn->mt_spill_pgs;
5640 	MDB_ID pn = pg << 1;
5641 	int rc;
5642 
5643 	DPRINTF(("free ov page %"Z"u (%d)", pg, ovpages));
5644 	/* If the page is dirty or on the spill list we just acquired it,
5645 	 * so we should give it back to our current free list, if any.
5646 	 * Otherwise put it onto the list of pages we freed in this txn.
5647 	 *
5648 	 * Won't create me_pghead: me_pglast must be inited along with it.
5649 	 * Unsupported in nested txns: They would need to hide the page
5650 	 * range in ancestor txns' dirty and spilled lists.
5651 	 */
5652 	if (env->me_pghead &&
5653 		!txn->mt_parent &&
5654 		((mp->mp_flags & P_DIRTY) ||
5655 		 (sl && (x = mdb_midl_search(sl, pn)) <= sl[0] && sl[x] == pn)))
5656 	{
5657 		unsigned i, j;
5658 		pgno_t *mop;
5659 		MDB_ID2 *dl, ix, iy;
5660 		rc = mdb_midl_need(&env->me_pghead, ovpages);
5661 		if (rc)
5662 			return rc;
5663 		if (!(mp->mp_flags & P_DIRTY)) {
5664 			/* This page is no longer spilled */
5665 			if (x == sl[0])
5666 				sl[0]--;
5667 			else
5668 				sl[x] |= 1;
5669 			goto release;
5670 		}
5671 		/* Remove from dirty list */
5672 		dl = txn->mt_u.dirty_list;
5673 		x = dl[0].mid--;
5674 		for (ix = dl[x]; ix.mptr != mp; ix = iy) {
5675 			if (x > 1) {
5676 				x--;
5677 				iy = dl[x];
5678 				dl[x] = ix;
5679 			} else {
5680 				mdb_cassert(mc, x > 1);
5681 				j = ++(dl[0].mid);
5682 				dl[j] = ix;		/* Unsorted. OK when MDB_TXN_ERROR. */
5683 				txn->mt_flags |= MDB_TXN_ERROR;
5684 				return MDB_CORRUPTED;
5685 			}
5686 		}
5687 		txn->mt_dirty_room++;
5688 		if (!(env->me_flags & MDB_WRITEMAP))
5689 			mdb_dpage_free(env, mp);
5690 release:
5691 		/* Insert in me_pghead */
5692 		mop = env->me_pghead;
5693 		j = mop[0] + ovpages;
5694 		for (i = mop[0]; i && mop[i] < pg; i--)
5695 			mop[j--] = mop[i];
5696 		while (j>i)
5697 			mop[j--] = pg++;
5698 		mop[0] += ovpages;
5699 	} else {
5700 		rc = mdb_midl_append_range(&txn->mt_free_pgs, pg, ovpages);
5701 		if (rc)
5702 			return rc;
5703 	}
5704 	mc->mc_db->md_overflow_pages -= ovpages;
5705 	return 0;
5706 }
5707 
5708 /** Return the data associated with a given node.
5709  * @param[in] mc The cursor for this operation.
5710  * @param[in] leaf The node being read.
5711  * @param[out] data Updated to point to the node's data.
5712  * @return 0 on success, non-zero on failure.
5713  */
5714 static int
5715 mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data)
5716 {
5717 	MDB_page	*omp;		/* overflow page */
5718 	pgno_t		 pgno;
5719 	int rc;
5720 
5721 	if (!F_ISSET(leaf->mn_flags, F_BIGDATA)) {
5722 		data->mv_size = NODEDSZ(leaf);
5723 		data->mv_data = NODEDATA(leaf);
5724 		return MDB_SUCCESS;
5725 	}
5726 
5727 	/* Read overflow data.
5728 	 */
5729 	data->mv_size = NODEDSZ(leaf);
5730 	memcpy(&pgno, NODEDATA(leaf), sizeof(pgno));
5731 	if ((rc = mdb_page_get(mc, pgno, &omp, NULL)) != 0) {
5732 		DPRINTF(("read overflow page %"Z"u failed", pgno));
5733 		return rc;
5734 	}
5735 	data->mv_data = METADATA(omp);
5736 
5737 	return MDB_SUCCESS;
5738 }
5739 
5740 int
5741 mdb_get(MDB_txn *txn, MDB_dbi dbi,
5742     MDB_val *key, MDB_val *data)
5743 {
5744 	MDB_cursor	mc;
5745 	MDB_xcursor	mx;
5746 	int exact = 0;
5747 	DKBUF;
5748 
5749 	DPRINTF(("===> get db %u key [%s]", dbi, DKEY(key)));
5750 
5751 	if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
5752 		return EINVAL;
5753 
5754 	if (txn->mt_flags & MDB_TXN_BLOCKED)
5755 		return MDB_BAD_TXN;
5756 
5757 	mdb_cursor_init(&mc, txn, dbi, &mx);
5758 	return mdb_cursor_set(&mc, key, data, MDB_SET, &exact);
5759 }
5760 
5761 /** Find a sibling for a page.
5762  * Replaces the page at the top of the cursor's stack with the
5763  * specified sibling, if one exists.
5764  * @param[in] mc The cursor for this operation.
5765  * @param[in] move_right Non-zero if the right sibling is requested,
5766  * otherwise the left sibling.
5767  * @return 0 on success, non-zero on failure.
5768  */
5769 static int
5770 mdb_cursor_sibling(MDB_cursor *mc, int move_right)
5771 {
5772 	int		 rc;
5773 	MDB_node	*indx;
5774 	MDB_page	*mp;
5775 
5776 	if (mc->mc_snum < 2) {
5777 		return MDB_NOTFOUND;		/* root has no siblings */
5778 	}
5779 
5780 	mdb_cursor_pop(mc);
5781 	DPRINTF(("parent page is page %"Z"u, index %u",
5782 		mc->mc_pg[mc->mc_top]->mp_pgno, mc->mc_ki[mc->mc_top]));
5783 
5784 	if (move_right ? (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mc->mc_pg[mc->mc_top]))
5785 		       : (mc->mc_ki[mc->mc_top] == 0)) {
5786 		DPRINTF(("no more keys left, moving to %s sibling",
5787 		    move_right ? "right" : "left"));
5788 		if ((rc = mdb_cursor_sibling(mc, move_right)) != MDB_SUCCESS) {
5789 			/* undo cursor_pop before returning */
5790 			mc->mc_top++;
5791 			mc->mc_snum++;
5792 			return rc;
5793 		}
5794 	} else {
5795 		if (move_right)
5796 			mc->mc_ki[mc->mc_top]++;
5797 		else
5798 			mc->mc_ki[mc->mc_top]--;
5799 		DPRINTF(("just moving to %s index key %u",
5800 		    move_right ? "right" : "left", mc->mc_ki[mc->mc_top]));
5801 	}
5802 	mdb_cassert(mc, IS_BRANCH(mc->mc_pg[mc->mc_top]));
5803 
5804 	indx = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
5805 	if ((rc = mdb_page_get(mc, NODEPGNO(indx), &mp, NULL)) != 0) {
5806 		/* mc will be inconsistent if caller does mc_snum++ as above */
5807 		mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
5808 		return rc;
5809 	}
5810 
5811 	mdb_cursor_push(mc, mp);
5812 	if (!move_right)
5813 		mc->mc_ki[mc->mc_top] = NUMKEYS(mp)-1;
5814 
5815 	return MDB_SUCCESS;
5816 }
5817 
5818 /** Move the cursor to the next data item. */
5819 static int
5820 mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
5821 {
5822 	MDB_page	*mp;
5823 	MDB_node	*leaf;
5824 	int rc;
5825 
5826 	if ((mc->mc_flags & C_DEL && op == MDB_NEXT_DUP))
5827 		return MDB_NOTFOUND;
5828 
5829 	if (!(mc->mc_flags & C_INITIALIZED))
5830 		return mdb_cursor_first(mc, key, data);
5831 
5832 	mp = mc->mc_pg[mc->mc_top];
5833 
5834 	if (mc->mc_flags & C_EOF) {
5835 		if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mp)-1)
5836 			return MDB_NOTFOUND;
5837 		mc->mc_flags ^= C_EOF;
5838 	}
5839 
5840 	if (mc->mc_db->md_flags & MDB_DUPSORT) {
5841 		leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
5842 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5843 			if (op == MDB_NEXT || op == MDB_NEXT_DUP) {
5844 				rc = mdb_cursor_next(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_NEXT);
5845 				if (op != MDB_NEXT || rc != MDB_NOTFOUND) {
5846 					if (rc == MDB_SUCCESS)
5847 						MDB_GET_KEY(leaf, key);
5848 					return rc;
5849 				}
5850 			}
5851 		} else {
5852 			mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
5853 			if (op == MDB_NEXT_DUP)
5854 				return MDB_NOTFOUND;
5855 		}
5856 	}
5857 
5858 	DPRINTF(("cursor_next: top page is %"Z"u in cursor %p",
5859 		mdb_dbg_pgno(mp), (void *) mc));
5860 	if (mc->mc_flags & C_DEL) {
5861 		mc->mc_flags ^= C_DEL;
5862 		goto skip;
5863 	}
5864 
5865 	if (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mp)) {
5866 		DPUTS("=====> move to next sibling page");
5867 		if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) {
5868 			mc->mc_flags |= C_EOF;
5869 			return rc;
5870 		}
5871 		mp = mc->mc_pg[mc->mc_top];
5872 		DPRINTF(("next page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]));
5873 	} else
5874 		mc->mc_ki[mc->mc_top]++;
5875 
5876 skip:
5877 	DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u",
5878 	    mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top]));
5879 
5880 	if (IS_LEAF2(mp)) {
5881 		key->mv_size = mc->mc_db->md_pad;
5882 		key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
5883 		return MDB_SUCCESS;
5884 	}
5885 
5886 	mdb_cassert(mc, IS_LEAF(mp));
5887 	leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
5888 
5889 	if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5890 		mdb_xcursor_init1(mc, leaf);
5891 	}
5892 	if (data) {
5893 		if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
5894 			return rc;
5895 
5896 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5897 			rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
5898 			if (rc != MDB_SUCCESS)
5899 				return rc;
5900 		}
5901 	}
5902 
5903 	MDB_GET_KEY(leaf, key);
5904 	return MDB_SUCCESS;
5905 }
5906 
5907 /** Move the cursor to the previous data item. */
5908 static int
5909 mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
5910 {
5911 	MDB_page	*mp;
5912 	MDB_node	*leaf;
5913 	int rc;
5914 
5915 	if (!(mc->mc_flags & C_INITIALIZED)) {
5916 		rc = mdb_cursor_last(mc, key, data);
5917 		if (rc)
5918 			return rc;
5919 		mc->mc_ki[mc->mc_top]++;
5920 	}
5921 
5922 	mp = mc->mc_pg[mc->mc_top];
5923 
5924 	if (mc->mc_db->md_flags & MDB_DUPSORT) {
5925 		leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
5926 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5927 			if (op == MDB_PREV || op == MDB_PREV_DUP) {
5928 				rc = mdb_cursor_prev(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_PREV);
5929 				if (op != MDB_PREV || rc != MDB_NOTFOUND) {
5930 					if (rc == MDB_SUCCESS) {
5931 						MDB_GET_KEY(leaf, key);
5932 						mc->mc_flags &= ~C_EOF;
5933 					}
5934 					return rc;
5935 				}
5936 			}
5937 		} else {
5938 			mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
5939 			if (op == MDB_PREV_DUP)
5940 				return MDB_NOTFOUND;
5941 		}
5942 	}
5943 
5944 	DPRINTF(("cursor_prev: top page is %"Z"u in cursor %p",
5945 		mdb_dbg_pgno(mp), (void *) mc));
5946 
5947 	mc->mc_flags &= ~(C_EOF|C_DEL);
5948 
5949 	if (mc->mc_ki[mc->mc_top] == 0)  {
5950 		DPUTS("=====> move to prev sibling page");
5951 		if ((rc = mdb_cursor_sibling(mc, 0)) != MDB_SUCCESS) {
5952 			return rc;
5953 		}
5954 		mp = mc->mc_pg[mc->mc_top];
5955 		mc->mc_ki[mc->mc_top] = NUMKEYS(mp) - 1;
5956 		DPRINTF(("prev page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]));
5957 	} else
5958 		mc->mc_ki[mc->mc_top]--;
5959 
5960 	DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u",
5961 	    mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top]));
5962 
5963 	if (IS_LEAF2(mp)) {
5964 		key->mv_size = mc->mc_db->md_pad;
5965 		key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
5966 		return MDB_SUCCESS;
5967 	}
5968 
5969 	mdb_cassert(mc, IS_LEAF(mp));
5970 	leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
5971 
5972 	if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5973 		mdb_xcursor_init1(mc, leaf);
5974 	}
5975 	if (data) {
5976 		if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
5977 			return rc;
5978 
5979 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
5980 			rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
5981 			if (rc != MDB_SUCCESS)
5982 				return rc;
5983 		}
5984 	}
5985 
5986 	MDB_GET_KEY(leaf, key);
5987 	return MDB_SUCCESS;
5988 }
5989 
5990 /** Set the cursor on a specific data item. */
5991 static int
5992 mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data,
5993     MDB_cursor_op op, int *exactp)
5994 {
5995 	int		 rc;
5996 	MDB_page	*mp;
5997 	MDB_node	*leaf = NULL;
5998 	DKBUF;
5999 
6000 	if (key->mv_size == 0)
6001 		return MDB_BAD_VALSIZE;
6002 
6003 	if (mc->mc_xcursor)
6004 		mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
6005 
6006 	/* See if we're already on the right page */
6007 	if (mc->mc_flags & C_INITIALIZED) {
6008 		MDB_val nodekey;
6009 
6010 		mp = mc->mc_pg[mc->mc_top];
6011 		if (!NUMKEYS(mp)) {
6012 			mc->mc_ki[mc->mc_top] = 0;
6013 			return MDB_NOTFOUND;
6014 		}
6015 		if (mp->mp_flags & P_LEAF2) {
6016 			nodekey.mv_size = mc->mc_db->md_pad;
6017 			nodekey.mv_data = LEAF2KEY(mp, 0, nodekey.mv_size);
6018 		} else {
6019 			leaf = NODEPTR(mp, 0);
6020 			MDB_GET_KEY2(leaf, nodekey);
6021 		}
6022 		rc = mc->mc_dbx->md_cmp(key, &nodekey);
6023 		if (rc == 0) {
6024 			/* Probably happens rarely, but first node on the page
6025 			 * was the one we wanted.
6026 			 */
6027 			mc->mc_ki[mc->mc_top] = 0;
6028 			if (exactp)
6029 				*exactp = 1;
6030 			goto set1;
6031 		}
6032 		if (rc > 0) {
6033 			unsigned int i;
6034 			unsigned int nkeys = NUMKEYS(mp);
6035 			if (nkeys > 1) {
6036 				if (mp->mp_flags & P_LEAF2) {
6037 					nodekey.mv_data = LEAF2KEY(mp,
6038 						 nkeys-1, nodekey.mv_size);
6039 				} else {
6040 					leaf = NODEPTR(mp, nkeys-1);
6041 					MDB_GET_KEY2(leaf, nodekey);
6042 				}
6043 				rc = mc->mc_dbx->md_cmp(key, &nodekey);
6044 				if (rc == 0) {
6045 					/* last node was the one we wanted */
6046 					mc->mc_ki[mc->mc_top] = nkeys-1;
6047 					if (exactp)
6048 						*exactp = 1;
6049 					goto set1;
6050 				}
6051 				if (rc < 0) {
6052 					if (mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) {
6053 						/* This is definitely the right page, skip search_page */
6054 						if (mp->mp_flags & P_LEAF2) {
6055 							nodekey.mv_data = LEAF2KEY(mp,
6056 								 mc->mc_ki[mc->mc_top], nodekey.mv_size);
6057 						} else {
6058 							leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
6059 							MDB_GET_KEY2(leaf, nodekey);
6060 						}
6061 						rc = mc->mc_dbx->md_cmp(key, &nodekey);
6062 						if (rc == 0) {
6063 							/* current node was the one we wanted */
6064 							if (exactp)
6065 								*exactp = 1;
6066 							goto set1;
6067 						}
6068 					}
6069 					rc = 0;
6070 					mc->mc_flags &= ~C_EOF;
6071 					goto set2;
6072 				}
6073 			}
6074 			/* If any parents have right-sibs, search.
6075 			 * Otherwise, there's nothing further.
6076 			 */
6077 			for (i=0; i<mc->mc_top; i++)
6078 				if (mc->mc_ki[i] <
6079 					NUMKEYS(mc->mc_pg[i])-1)
6080 					break;
6081 			if (i == mc->mc_top) {
6082 				/* There are no other pages */
6083 				mc->mc_ki[mc->mc_top] = nkeys;
6084 				return MDB_NOTFOUND;
6085 			}
6086 		}
6087 		if (!mc->mc_top) {
6088 			/* There are no other pages */
6089 			mc->mc_ki[mc->mc_top] = 0;
6090 			if (op == MDB_SET_RANGE && !exactp) {
6091 				rc = 0;
6092 				goto set1;
6093 			} else
6094 				return MDB_NOTFOUND;
6095 		}
6096 	} else {
6097 		mc->mc_pg[0] = 0;
6098 	}
6099 
6100 	rc = mdb_page_search(mc, key, 0);
6101 	if (rc != MDB_SUCCESS)
6102 		return rc;
6103 
6104 	mp = mc->mc_pg[mc->mc_top];
6105 	mdb_cassert(mc, IS_LEAF(mp));
6106 
6107 set2:
6108 	leaf = mdb_node_search(mc, key, exactp);
6109 	if (exactp != NULL && !*exactp) {
6110 		/* MDB_SET specified and not an exact match. */
6111 		return MDB_NOTFOUND;
6112 	}
6113 
6114 	if (leaf == NULL) {
6115 		DPUTS("===> inexact leaf not found, goto sibling");
6116 		if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) {
6117 			mc->mc_flags |= C_EOF;
6118 			return rc;		/* no entries matched */
6119 		}
6120 		mp = mc->mc_pg[mc->mc_top];
6121 		mdb_cassert(mc, IS_LEAF(mp));
6122 		leaf = NODEPTR(mp, 0);
6123 	}
6124 
6125 set1:
6126 	mc->mc_flags |= C_INITIALIZED;
6127 	mc->mc_flags &= ~C_EOF;
6128 
6129 	if (IS_LEAF2(mp)) {
6130 		if (op == MDB_SET_RANGE || op == MDB_SET_KEY) {
6131 			key->mv_size = mc->mc_db->md_pad;
6132 			key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
6133 		}
6134 		return MDB_SUCCESS;
6135 	}
6136 
6137 	if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6138 		mdb_xcursor_init1(mc, leaf);
6139 	}
6140 	if (data) {
6141 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6142 			if (op == MDB_SET || op == MDB_SET_KEY || op == MDB_SET_RANGE) {
6143 				rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
6144 			} else {
6145 				int ex2, *ex2p;
6146 				if (op == MDB_GET_BOTH) {
6147 					ex2p = &ex2;
6148 					ex2 = 0;
6149 				} else {
6150 					ex2p = NULL;
6151 				}
6152 				rc = mdb_cursor_set(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_SET_RANGE, ex2p);
6153 				if (rc != MDB_SUCCESS)
6154 					return rc;
6155 			}
6156 		} else if (op == MDB_GET_BOTH || op == MDB_GET_BOTH_RANGE) {
6157 			MDB_val olddata;
6158 			MDB_cmp_func *dcmp;
6159 			if ((rc = mdb_node_read(mc, leaf, &olddata)) != MDB_SUCCESS)
6160 				return rc;
6161 			dcmp = mc->mc_dbx->md_dcmp;
6162 #if UINT_MAX < SIZE_MAX
6163 			if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t))
6164 				dcmp = mdb_cmp_clong;
6165 #endif
6166 			rc = dcmp(data, &olddata);
6167 			if (rc) {
6168 				if (op == MDB_GET_BOTH || rc > 0)
6169 					return MDB_NOTFOUND;
6170 				rc = 0;
6171 			}
6172 			*data = olddata;
6173 
6174 		} else {
6175 			if (mc->mc_xcursor)
6176 				mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
6177 			if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
6178 				return rc;
6179 		}
6180 	}
6181 
6182 	/* The key already matches in all other cases */
6183 	if (op == MDB_SET_RANGE || op == MDB_SET_KEY)
6184 		MDB_GET_KEY(leaf, key);
6185 	DPRINTF(("==> cursor placed on key [%s]", DKEY(key)));
6186 
6187 	return rc;
6188 }
6189 
6190 /** Move the cursor to the first item in the database. */
6191 static int
6192 mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data)
6193 {
6194 	int		 rc;
6195 	MDB_node	*leaf;
6196 
6197 	if (mc->mc_xcursor)
6198 		mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
6199 
6200 	if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
6201 		rc = mdb_page_search(mc, NULL, MDB_PS_FIRST);
6202 		if (rc != MDB_SUCCESS)
6203 			return rc;
6204 	}
6205 	mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top]));
6206 
6207 	leaf = NODEPTR(mc->mc_pg[mc->mc_top], 0);
6208 	mc->mc_flags |= C_INITIALIZED;
6209 	mc->mc_flags &= ~C_EOF;
6210 
6211 	mc->mc_ki[mc->mc_top] = 0;
6212 
6213 	if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
6214 		key->mv_size = mc->mc_db->md_pad;
6215 		key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], 0, key->mv_size);
6216 		return MDB_SUCCESS;
6217 	}
6218 
6219 	if (data) {
6220 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6221 			mdb_xcursor_init1(mc, leaf);
6222 			rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
6223 			if (rc)
6224 				return rc;
6225 		} else {
6226 			if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
6227 				return rc;
6228 		}
6229 	}
6230 	MDB_GET_KEY(leaf, key);
6231 	return MDB_SUCCESS;
6232 }
6233 
6234 /** Move the cursor to the last item in the database. */
6235 static int
6236 mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data)
6237 {
6238 	int		 rc;
6239 	MDB_node	*leaf;
6240 
6241 	if (mc->mc_xcursor)
6242 		mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
6243 
6244 	if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
6245 		rc = mdb_page_search(mc, NULL, MDB_PS_LAST);
6246 		if (rc != MDB_SUCCESS)
6247 			return rc;
6248 	}
6249 	mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top]));
6250 
6251 	mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]) - 1;
6252 	mc->mc_flags |= C_INITIALIZED|C_EOF;
6253 	leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
6254 
6255 	if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
6256 		key->mv_size = mc->mc_db->md_pad;
6257 		key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], key->mv_size);
6258 		return MDB_SUCCESS;
6259 	}
6260 
6261 	if (data) {
6262 		if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6263 			mdb_xcursor_init1(mc, leaf);
6264 			rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
6265 			if (rc)
6266 				return rc;
6267 		} else {
6268 			if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
6269 				return rc;
6270 		}
6271 	}
6272 
6273 	MDB_GET_KEY(leaf, key);
6274 	return MDB_SUCCESS;
6275 }
6276 
6277 int
6278 mdb_cursor_get(MDB_cursor *mc, MDB_val *key, MDB_val *data,
6279     MDB_cursor_op op)
6280 {
6281 	int		 rc;
6282 	int		 exact = 0;
6283 	int		 (*mfunc)(MDB_cursor *mc, MDB_val *key, MDB_val *data);
6284 
6285 	if (mc == NULL)
6286 		return EINVAL;
6287 
6288 	if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED)
6289 		return MDB_BAD_TXN;
6290 
6291 	switch (op) {
6292 	case MDB_GET_CURRENT:
6293 		if (!(mc->mc_flags & C_INITIALIZED)) {
6294 			rc = EINVAL;
6295 		} else {
6296 			MDB_page *mp = mc->mc_pg[mc->mc_top];
6297 			int nkeys = NUMKEYS(mp);
6298 			if (!nkeys || mc->mc_ki[mc->mc_top] >= nkeys) {
6299 				mc->mc_ki[mc->mc_top] = nkeys;
6300 				rc = MDB_NOTFOUND;
6301 				break;
6302 			}
6303 			rc = MDB_SUCCESS;
6304 			if (IS_LEAF2(mp)) {
6305 				key->mv_size = mc->mc_db->md_pad;
6306 				key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
6307 			} else {
6308 				MDB_node *leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
6309 				MDB_GET_KEY(leaf, key);
6310 				if (data) {
6311 					if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6312 						rc = mdb_cursor_get(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_GET_CURRENT);
6313 					} else {
6314 						rc = mdb_node_read(mc, leaf, data);
6315 					}
6316 				}
6317 			}
6318 		}
6319 		break;
6320 	case MDB_GET_BOTH:
6321 	case MDB_GET_BOTH_RANGE:
6322 		if (data == NULL) {
6323 			rc = EINVAL;
6324 			break;
6325 		}
6326 		if (mc->mc_xcursor == NULL) {
6327 			rc = MDB_INCOMPATIBLE;
6328 			break;
6329 		}
6330 		/* FALLTHRU */
6331 	case MDB_SET:
6332 	case MDB_SET_KEY:
6333 	case MDB_SET_RANGE:
6334 		if (key == NULL) {
6335 			rc = EINVAL;
6336 		} else {
6337 			rc = mdb_cursor_set(mc, key, data, op,
6338 				op == MDB_SET_RANGE ? NULL : &exact);
6339 		}
6340 		break;
6341 	case MDB_GET_MULTIPLE:
6342 		if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) {
6343 			rc = EINVAL;
6344 			break;
6345 		}
6346 		if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
6347 			rc = MDB_INCOMPATIBLE;
6348 			break;
6349 		}
6350 		rc = MDB_SUCCESS;
6351 		if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) ||
6352 			(mc->mc_xcursor->mx_cursor.mc_flags & C_EOF))
6353 			break;
6354 		goto fetchm;
6355 	case MDB_NEXT_MULTIPLE:
6356 		if (data == NULL) {
6357 			rc = EINVAL;
6358 			break;
6359 		}
6360 		if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
6361 			rc = MDB_INCOMPATIBLE;
6362 			break;
6363 		}
6364 		rc = mdb_cursor_next(mc, key, data, MDB_NEXT_DUP);
6365 		if (rc == MDB_SUCCESS) {
6366 			if (mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) {
6367 				MDB_cursor *mx;
6368 fetchm:
6369 				mx = &mc->mc_xcursor->mx_cursor;
6370 				data->mv_size = NUMKEYS(mx->mc_pg[mx->mc_top]) *
6371 					mx->mc_db->md_pad;
6372 				data->mv_data = METADATA(mx->mc_pg[mx->mc_top]);
6373 				mx->mc_ki[mx->mc_top] = NUMKEYS(mx->mc_pg[mx->mc_top])-1;
6374 			} else {
6375 				rc = MDB_NOTFOUND;
6376 			}
6377 		}
6378 		break;
6379 	case MDB_PREV_MULTIPLE:
6380 		if (data == NULL) {
6381 			rc = EINVAL;
6382 			break;
6383 		}
6384 		if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
6385 			rc = MDB_INCOMPATIBLE;
6386 			break;
6387 		}
6388 		if (!(mc->mc_flags & C_INITIALIZED))
6389 			rc = mdb_cursor_last(mc, key, data);
6390 		else
6391 			rc = MDB_SUCCESS;
6392 		if (rc == MDB_SUCCESS) {
6393 			MDB_cursor *mx = &mc->mc_xcursor->mx_cursor;
6394 			if (mx->mc_flags & C_INITIALIZED) {
6395 				rc = mdb_cursor_sibling(mx, 0);
6396 				if (rc == MDB_SUCCESS)
6397 					goto fetchm;
6398 			} else {
6399 				rc = MDB_NOTFOUND;
6400 			}
6401 		}
6402 		break;
6403 	case MDB_NEXT:
6404 	case MDB_NEXT_DUP:
6405 	case MDB_NEXT_NODUP:
6406 		rc = mdb_cursor_next(mc, key, data, op);
6407 		break;
6408 	case MDB_PREV:
6409 	case MDB_PREV_DUP:
6410 	case MDB_PREV_NODUP:
6411 		rc = mdb_cursor_prev(mc, key, data, op);
6412 		break;
6413 	case MDB_FIRST:
6414 		rc = mdb_cursor_first(mc, key, data);
6415 		break;
6416 	case MDB_FIRST_DUP:
6417 		mfunc = mdb_cursor_first;
6418 	mmove:
6419 		if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) {
6420 			rc = EINVAL;
6421 			break;
6422 		}
6423 		if (mc->mc_xcursor == NULL) {
6424 			rc = MDB_INCOMPATIBLE;
6425 			break;
6426 		}
6427 		{
6428 			MDB_node *leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
6429 			if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6430 				MDB_GET_KEY(leaf, key);
6431 				rc = mdb_node_read(mc, leaf, data);
6432 				break;
6433 			}
6434 		}
6435 		if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) {
6436 			rc = EINVAL;
6437 			break;
6438 		}
6439 		rc = mfunc(&mc->mc_xcursor->mx_cursor, data, NULL);
6440 		break;
6441 	case MDB_LAST:
6442 		rc = mdb_cursor_last(mc, key, data);
6443 		break;
6444 	case MDB_LAST_DUP:
6445 		mfunc = mdb_cursor_last;
6446 		goto mmove;
6447 	default:
6448 		DPRINTF(("unhandled/unimplemented cursor operation %u", op));
6449 		rc = EINVAL;
6450 		break;
6451 	}
6452 
6453 	if (mc->mc_flags & C_DEL)
6454 		mc->mc_flags ^= C_DEL;
6455 
6456 	return rc;
6457 }
6458 
6459 /** Touch all the pages in the cursor stack. Set mc_top.
6460  *	Makes sure all the pages are writable, before attempting a write operation.
6461  * @param[in] mc The cursor to operate on.
6462  */
6463 static int
6464 mdb_cursor_touch(MDB_cursor *mc)
6465 {
6466 	int rc = MDB_SUCCESS;
6467 
6468 	if (mc->mc_dbi >= CORE_DBS && !(*mc->mc_dbflag & (DB_DIRTY|DB_DUPDATA))) {
6469 		/* Touch DB record of named DB */
6470 		MDB_cursor mc2;
6471 		MDB_xcursor mcx;
6472 		if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi))
6473 			return MDB_BAD_DBI;
6474 		mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, &mcx);
6475 		rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, MDB_PS_MODIFY);
6476 		if (rc)
6477 			 return rc;
6478 		*mc->mc_dbflag |= DB_DIRTY;
6479 	}
6480 	mc->mc_top = 0;
6481 	if (mc->mc_snum) {
6482 		do {
6483 			rc = mdb_page_touch(mc);
6484 		} while (!rc && ++(mc->mc_top) < mc->mc_snum);
6485 		mc->mc_top = mc->mc_snum-1;
6486 	}
6487 	return rc;
6488 }
6489 
6490 /** Do not spill pages to disk if txn is getting full, may fail instead */
6491 #define MDB_NOSPILL	0x8000
6492 
6493 int
6494 mdb_cursor_put(MDB_cursor *mc, MDB_val *key, MDB_val *data,
6495     unsigned int flags)
6496 {
6497 	MDB_env		*env;
6498 	MDB_node	*leaf = NULL;
6499 	MDB_page	*fp, *mp, *sub_root = NULL;
6500 	uint16_t	fp_flags;
6501 	MDB_val		xdata, *rdata, dkey, olddata;
6502 	MDB_db dummy;
6503 	int do_sub = 0, insert_key, insert_data;
6504 	unsigned int mcount = 0, dcount = 0, nospill;
6505 	size_t nsize;
6506 	int rc, rc2;
6507 	unsigned int nflags;
6508 	DKBUF;
6509 
6510 	if (mc == NULL || key == NULL)
6511 		return EINVAL;
6512 
6513 	env = mc->mc_txn->mt_env;
6514 
6515 	/* Check this first so counter will always be zero on any
6516 	 * early failures.
6517 	 */
6518 	if (flags & MDB_MULTIPLE) {
6519 		dcount = data[1].mv_size;
6520 		data[1].mv_size = 0;
6521 		if (!F_ISSET(mc->mc_db->md_flags, MDB_DUPFIXED))
6522 			return MDB_INCOMPATIBLE;
6523 	}
6524 
6525 	nospill = flags & MDB_NOSPILL;
6526 	flags &= ~MDB_NOSPILL;
6527 
6528 	if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
6529 		return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
6530 
6531 	if (key->mv_size-1 >= ENV_MAXKEY(env))
6532 		return MDB_BAD_VALSIZE;
6533 
6534 #if SIZE_MAX > MAXDATASIZE
6535 	if (data->mv_size > ((mc->mc_db->md_flags & MDB_DUPSORT) ? ENV_MAXKEY(env) : MAXDATASIZE))
6536 		return MDB_BAD_VALSIZE;
6537 #else
6538 	if ((mc->mc_db->md_flags & MDB_DUPSORT) && data->mv_size > ENV_MAXKEY(env))
6539 		return MDB_BAD_VALSIZE;
6540 #endif
6541 
6542 	DPRINTF(("==> put db %d key [%s], size %"Z"u, data size %"Z"u",
6543 		DDBI(mc), DKEY(key), key ? key->mv_size : 0, data->mv_size));
6544 
6545 	dkey.mv_size = 0;
6546 
6547 	if (flags == MDB_CURRENT) {
6548 		if (!(mc->mc_flags & C_INITIALIZED))
6549 			return EINVAL;
6550 		rc = MDB_SUCCESS;
6551 	} else if (mc->mc_db->md_root == P_INVALID) {
6552 		/* new database, cursor has nothing to point to */
6553 		mc->mc_snum = 0;
6554 		mc->mc_top = 0;
6555 		mc->mc_flags &= ~C_INITIALIZED;
6556 		rc = MDB_NO_ROOT;
6557 	} else {
6558 		int exact = 0;
6559 		MDB_val d2;
6560 		if (flags & MDB_APPEND) {
6561 			MDB_val k2;
6562 			rc = mdb_cursor_last(mc, &k2, &d2);
6563 			if (rc == 0) {
6564 				rc = mc->mc_dbx->md_cmp(key, &k2);
6565 				if (rc > 0) {
6566 					rc = MDB_NOTFOUND;
6567 					mc->mc_ki[mc->mc_top]++;
6568 				} else {
6569 					/* new key is <= last key */
6570 					rc = MDB_KEYEXIST;
6571 				}
6572 			}
6573 		} else {
6574 			rc = mdb_cursor_set(mc, key, &d2, MDB_SET, &exact);
6575 		}
6576 		if ((flags & MDB_NOOVERWRITE) && rc == 0) {
6577 			DPRINTF(("duplicate key [%s]", DKEY(key)));
6578 			*data = d2;
6579 			return MDB_KEYEXIST;
6580 		}
6581 		if (rc && rc != MDB_NOTFOUND)
6582 			return rc;
6583 	}
6584 
6585 	if (mc->mc_flags & C_DEL)
6586 		mc->mc_flags ^= C_DEL;
6587 
6588 	/* Cursor is positioned, check for room in the dirty list */
6589 	if (!nospill) {
6590 		if (flags & MDB_MULTIPLE) {
6591 			rdata = &xdata;
6592 			xdata.mv_size = data->mv_size * dcount;
6593 		} else {
6594 			rdata = data;
6595 		}
6596 		if ((rc2 = mdb_page_spill(mc, key, rdata)))
6597 			return rc2;
6598 	}
6599 
6600 	if (rc == MDB_NO_ROOT) {
6601 		MDB_page *np;
6602 		/* new database, write a root leaf page */
6603 		DPUTS("allocating new root leaf page");
6604 		if ((rc2 = mdb_page_new(mc, P_LEAF, 1, &np))) {
6605 			return rc2;
6606 		}
6607 		mdb_cursor_push(mc, np);
6608 		mc->mc_db->md_root = np->mp_pgno;
6609 		mc->mc_db->md_depth++;
6610 		*mc->mc_dbflag |= DB_DIRTY;
6611 		if ((mc->mc_db->md_flags & (MDB_DUPSORT|MDB_DUPFIXED))
6612 			== MDB_DUPFIXED)
6613 			np->mp_flags |= P_LEAF2;
6614 		mc->mc_flags |= C_INITIALIZED;
6615 	} else {
6616 		/* make sure all cursor pages are writable */
6617 		rc2 = mdb_cursor_touch(mc);
6618 		if (rc2)
6619 			return rc2;
6620 	}
6621 
6622 	insert_key = insert_data = rc;
6623 	if (insert_key) {
6624 		/* The key does not exist */
6625 		DPRINTF(("inserting key at index %i", mc->mc_ki[mc->mc_top]));
6626 		if ((mc->mc_db->md_flags & MDB_DUPSORT) &&
6627 			LEAFSIZE(key, data) > env->me_nodemax)
6628 		{
6629 			/* Too big for a node, insert in sub-DB.  Set up an empty
6630 			 * "old sub-page" for prep_subDB to expand to a full page.
6631 			 */
6632 			fp_flags = P_LEAF|P_DIRTY;
6633 			fp = env->me_pbuf;
6634 			fp->mp_pad = data->mv_size; /* used if MDB_DUPFIXED */
6635 			fp->mp_lower = fp->mp_upper = (PAGEHDRSZ-PAGEBASE);
6636 			olddata.mv_size = PAGEHDRSZ;
6637 			goto prep_subDB;
6638 		}
6639 	} else {
6640 		/* there's only a key anyway, so this is a no-op */
6641 		if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
6642 			char *ptr;
6643 			unsigned int ksize = mc->mc_db->md_pad;
6644 			if (key->mv_size != ksize)
6645 				return MDB_BAD_VALSIZE;
6646 			ptr = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], ksize);
6647 			memcpy(ptr, key->mv_data, ksize);
6648 fix_parent:
6649 			/* if overwriting slot 0 of leaf, need to
6650 			 * update branch key if there is a parent page
6651 			 */
6652 			if (mc->mc_top && !mc->mc_ki[mc->mc_top]) {
6653 				unsigned short dtop = 1;
6654 				mc->mc_top--;
6655 				/* slot 0 is always an empty key, find real slot */
6656 				while (mc->mc_top && !mc->mc_ki[mc->mc_top]) {
6657 					mc->mc_top--;
6658 					dtop++;
6659 				}
6660 				if (mc->mc_ki[mc->mc_top])
6661 					rc2 = mdb_update_key(mc, key);
6662 				else
6663 					rc2 = MDB_SUCCESS;
6664 				mc->mc_top += dtop;
6665 				if (rc2)
6666 					return rc2;
6667 			}
6668 			return MDB_SUCCESS;
6669 		}
6670 
6671 more:
6672 		leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
6673 		olddata.mv_size = NODEDSZ(leaf);
6674 		olddata.mv_data = NODEDATA(leaf);
6675 
6676 		/* DB has dups? */
6677 		if (F_ISSET(mc->mc_db->md_flags, MDB_DUPSORT)) {
6678 			/* Prepare (sub-)page/sub-DB to accept the new item,
6679 			 * if needed.  fp: old sub-page or a header faking
6680 			 * it.  mp: new (sub-)page.  offset: growth in page
6681 			 * size.  xdata: node data with new page or DB.
6682 			 */
6683 			unsigned	i, offset = 0;
6684 			mp = fp = xdata.mv_data = env->me_pbuf;
6685 			mp->mp_pgno = mc->mc_pg[mc->mc_top]->mp_pgno;
6686 
6687 			/* Was a single item before, must convert now */
6688 			if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
6689 				MDB_cmp_func *dcmp;
6690 				/* Just overwrite the current item */
6691 				if (flags == MDB_CURRENT)
6692 					goto current;
6693 				dcmp = mc->mc_dbx->md_dcmp;
6694 #if UINT_MAX < SIZE_MAX
6695 				if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t))
6696 					dcmp = mdb_cmp_clong;
6697 #endif
6698 				/* does data match? */
6699 				if (!dcmp(data, &olddata)) {
6700 					if (flags & (MDB_NODUPDATA|MDB_APPENDDUP))
6701 						return MDB_KEYEXIST;
6702 					/* overwrite it */
6703 					goto current;
6704 				}
6705 
6706 				/* Back up original data item */
6707 				dkey.mv_size = olddata.mv_size;
6708 				dkey.mv_data = memcpy(fp+1, olddata.mv_data, olddata.mv_size);
6709 
6710 				/* Make sub-page header for the dup items, with dummy body */
6711 				fp->mp_flags = P_LEAF|P_DIRTY|P_SUBP;
6712 				fp->mp_lower = (PAGEHDRSZ-PAGEBASE);
6713 				xdata.mv_size = PAGEHDRSZ + dkey.mv_size + data->mv_size;
6714 				if (mc->mc_db->md_flags & MDB_DUPFIXED) {
6715 					fp->mp_flags |= P_LEAF2;
6716 					fp->mp_pad = data->mv_size;
6717 					xdata.mv_size += 2 * data->mv_size;	/* leave space for 2 more */
6718 				} else {
6719 					xdata.mv_size += 2 * (sizeof(indx_t) + NODESIZE) +
6720 						(dkey.mv_size & 1) + (data->mv_size & 1);
6721 				}
6722 				fp->mp_upper = xdata.mv_size - PAGEBASE;
6723 				olddata.mv_size = xdata.mv_size; /* pretend olddata is fp */
6724 			} else if (leaf->mn_flags & F_SUBDATA) {
6725 				/* Data is on sub-DB, just store it */
6726 				flags |= F_DUPDATA|F_SUBDATA;
6727 				goto put_sub;
6728 			} else {
6729 				/* Data is on sub-page */
6730 				fp = olddata.mv_data;
6731 				switch (flags) {
6732 				default:
6733 					if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
6734 						offset = EVEN(NODESIZE + sizeof(indx_t) +
6735 							data->mv_size);
6736 						break;
6737 					}
6738 					offset = fp->mp_pad;
6739 					if (SIZELEFT(fp) < offset) {
6740 						offset *= 4; /* space for 4 more */
6741 						break;
6742 					}
6743 					/* FALLTHRU: Big enough MDB_DUPFIXED sub-page */
6744 				case MDB_CURRENT:
6745 					fp->mp_flags |= P_DIRTY;
6746 					COPY_PGNO(fp->mp_pgno, mp->mp_pgno);
6747 					mc->mc_xcursor->mx_cursor.mc_pg[0] = fp;
6748 					flags |= F_DUPDATA;
6749 					goto put_sub;
6750 				}
6751 				xdata.mv_size = olddata.mv_size + offset;
6752 			}
6753 
6754 			fp_flags = fp->mp_flags;
6755 			if (NODESIZE + NODEKSZ(leaf) + xdata.mv_size > env->me_nodemax) {
6756 					/* Too big for a sub-page, convert to sub-DB */
6757 					fp_flags &= ~P_SUBP;
6758 prep_subDB:
6759 					if (mc->mc_db->md_flags & MDB_DUPFIXED) {
6760 						fp_flags |= P_LEAF2;
6761 						dummy.md_pad = fp->mp_pad;
6762 						dummy.md_flags = MDB_DUPFIXED;
6763 						if (mc->mc_db->md_flags & MDB_INTEGERDUP)
6764 							dummy.md_flags |= MDB_INTEGERKEY;
6765 					} else {
6766 						dummy.md_pad = 0;
6767 						dummy.md_flags = 0;
6768 					}
6769 					dummy.md_depth = 1;
6770 					dummy.md_branch_pages = 0;
6771 					dummy.md_leaf_pages = 1;
6772 					dummy.md_overflow_pages = 0;
6773 					dummy.md_entries = NUMKEYS(fp);
6774 					xdata.mv_size = sizeof(MDB_db);
6775 					xdata.mv_data = &dummy;
6776 					if ((rc = mdb_page_alloc(mc, 1, &mp)))
6777 						return rc;
6778 					offset = env->me_psize - olddata.mv_size;
6779 					flags |= F_DUPDATA|F_SUBDATA;
6780 					dummy.md_root = mp->mp_pgno;
6781 					sub_root = mp;
6782 			}
6783 			if (mp != fp) {
6784 				mp->mp_flags = fp_flags | P_DIRTY;
6785 				mp->mp_pad   = fp->mp_pad;
6786 				mp->mp_lower = fp->mp_lower;
6787 				mp->mp_upper = fp->mp_upper + offset;
6788 				if (fp_flags & P_LEAF2) {
6789 					memcpy(METADATA(mp), METADATA(fp), NUMKEYS(fp) * fp->mp_pad);
6790 				} else {
6791 					memcpy((char *)mp + mp->mp_upper + PAGEBASE, (char *)fp + fp->mp_upper + PAGEBASE,
6792 						olddata.mv_size - fp->mp_upper - PAGEBASE);
6793 					for (i=0; i<NUMKEYS(fp); i++)
6794 						mp->mp_ptrs[i] = fp->mp_ptrs[i] + offset;
6795 				}
6796 			}
6797 
6798 			rdata = &xdata;
6799 			flags |= F_DUPDATA;
6800 			do_sub = 1;
6801 			if (!insert_key)
6802 				mdb_node_del(mc, 0);
6803 			goto new_sub;
6804 		}
6805 current:
6806 		/* LMDB passes F_SUBDATA in 'flags' to write a DB record */
6807 		if ((leaf->mn_flags ^ flags) & F_SUBDATA)
6808 			return MDB_INCOMPATIBLE;
6809 		/* overflow page overwrites need special handling */
6810 		if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
6811 			MDB_page *omp;
6812 			pgno_t pg;
6813 			int level, ovpages, dpages = OVPAGES(data->mv_size, env->me_psize);
6814 
6815 			memcpy(&pg, olddata.mv_data, sizeof(pg));
6816 			if ((rc2 = mdb_page_get(mc, pg, &omp, &level)) != 0)
6817 				return rc2;
6818 			ovpages = omp->mp_pages;
6819 
6820 			/* Is the ov page large enough? */
6821 			if (ovpages >= dpages) {
6822 			  if (!(omp->mp_flags & P_DIRTY) &&
6823 				  (level || (env->me_flags & MDB_WRITEMAP)))
6824 			  {
6825 				rc = mdb_page_unspill(mc->mc_txn, omp, &omp);
6826 				if (rc)
6827 					return rc;
6828 				level = 0;		/* dirty in this txn or clean */
6829 			  }
6830 			  /* Is it dirty? */
6831 			  if (omp->mp_flags & P_DIRTY) {
6832 				/* yes, overwrite it. Note in this case we don't
6833 				 * bother to try shrinking the page if the new data
6834 				 * is smaller than the overflow threshold.
6835 				 */
6836 				if (level > 1) {
6837 					/* It is writable only in a parent txn */
6838 					size_t sz = (size_t) env->me_psize * ovpages, off;
6839 					MDB_page *np = mdb_page_malloc(mc->mc_txn, ovpages);
6840 					MDB_ID2 id2;
6841 					if (!np)
6842 						return ENOMEM;
6843 					id2.mid = pg;
6844 					id2.mptr = np;
6845 					/* Note - this page is already counted in parent's dirty_room */
6846 					rc2 = mdb_mid2l_insert(mc->mc_txn->mt_u.dirty_list, &id2);
6847 					mdb_cassert(mc, rc2 == 0);
6848 					/* Currently we make the page look as with put() in the
6849 					 * parent txn, in case the user peeks at MDB_RESERVEd
6850 					 * or unused parts. Some users treat ovpages specially.
6851 					 */
6852 					if (!(flags & MDB_RESERVE)) {
6853 						/* Skip the part where LMDB will put *data.
6854 						 * Copy end of page, adjusting alignment so
6855 						 * compiler may copy words instead of bytes.
6856 						 */
6857 						off = (PAGEHDRSZ + data->mv_size) & -sizeof(size_t);
6858 						memcpy((size_t *)((char *)np + off),
6859 							(size_t *)((char *)omp + off), sz - off);
6860 						sz = PAGEHDRSZ;
6861 					}
6862 					memcpy(np, omp, sz); /* Copy beginning of page */
6863 					omp = np;
6864 				}
6865 				SETDSZ(leaf, data->mv_size);
6866 				if (F_ISSET(flags, MDB_RESERVE))
6867 					data->mv_data = METADATA(omp);
6868 				else
6869 					memcpy(METADATA(omp), data->mv_data, data->mv_size);
6870 				return MDB_SUCCESS;
6871 			  }
6872 			}
6873 			if ((rc2 = mdb_ovpage_free(mc, omp)) != MDB_SUCCESS)
6874 				return rc2;
6875 		} else if (data->mv_size == olddata.mv_size) {
6876 			/* same size, just replace it. Note that we could
6877 			 * also reuse this node if the new data is smaller,
6878 			 * but instead we opt to shrink the node in that case.
6879 			 */
6880 			if (F_ISSET(flags, MDB_RESERVE))
6881 				data->mv_data = olddata.mv_data;
6882 			else if (!(mc->mc_flags & C_SUB))
6883 				memcpy(olddata.mv_data, data->mv_data, data->mv_size);
6884 			else {
6885 				memcpy(NODEKEY(leaf), key->mv_data, key->mv_size);
6886 				goto fix_parent;
6887 			}
6888 			return MDB_SUCCESS;
6889 		}
6890 		mdb_node_del(mc, 0);
6891 	}
6892 
6893 	rdata = data;
6894 
6895 new_sub:
6896 	nflags = flags & NODE_ADD_FLAGS;
6897 	nsize = IS_LEAF2(mc->mc_pg[mc->mc_top]) ? key->mv_size : mdb_leaf_size(env, key, rdata);
6898 	if (SIZELEFT(mc->mc_pg[mc->mc_top]) < nsize) {
6899 		if (( flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA )
6900 			nflags &= ~MDB_APPEND; /* sub-page may need room to grow */
6901 		if (!insert_key)
6902 			nflags |= MDB_SPLIT_REPLACE;
6903 		rc = mdb_page_split(mc, key, rdata, P_INVALID, nflags);
6904 	} else {
6905 		/* There is room already in this leaf page. */
6906 		rc = mdb_node_add(mc, mc->mc_ki[mc->mc_top], key, rdata, 0, nflags);
6907 		if (rc == 0) {
6908 			/* Adjust other cursors pointing to mp */
6909 			MDB_cursor *m2, *m3;
6910 			MDB_dbi dbi = mc->mc_dbi;
6911 			unsigned i = mc->mc_top;
6912 			MDB_page *mp = mc->mc_pg[i];
6913 
6914 			for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
6915 				if (mc->mc_flags & C_SUB)
6916 					m3 = &m2->mc_xcursor->mx_cursor;
6917 				else
6918 					m3 = m2;
6919 				if (m3 == mc || m3->mc_snum < mc->mc_snum || m3->mc_pg[i] != mp) continue;
6920 				if (m3->mc_ki[i] >= mc->mc_ki[i] && insert_key) {
6921 					m3->mc_ki[i]++;
6922 				}
6923 				if (XCURSOR_INITED(m3))
6924 					XCURSOR_REFRESH(m3, mp, m3->mc_ki[i]);
6925 			}
6926 		}
6927 	}
6928 
6929 	if (rc == MDB_SUCCESS) {
6930 		/* Now store the actual data in the child DB. Note that we're
6931 		 * storing the user data in the keys field, so there are strict
6932 		 * size limits on dupdata. The actual data fields of the child
6933 		 * DB are all zero size.
6934 		 */
6935 		if (do_sub) {
6936 			int xflags, new_dupdata;
6937 			size_t ecount;
6938 put_sub:
6939 			xdata.mv_size = 0;
6940 			xdata.mv_data = "";
6941 			leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
6942 			if (flags & MDB_CURRENT) {
6943 				xflags = MDB_CURRENT|MDB_NOSPILL;
6944 			} else {
6945 				mdb_xcursor_init1(mc, leaf);
6946 				xflags = (flags & MDB_NODUPDATA) ?
6947 					MDB_NOOVERWRITE|MDB_NOSPILL : MDB_NOSPILL;
6948 			}
6949 			if (sub_root)
6950 				mc->mc_xcursor->mx_cursor.mc_pg[0] = sub_root;
6951 			new_dupdata = (int)dkey.mv_size;
6952 			/* converted, write the original data first */
6953 			if (dkey.mv_size) {
6954 				rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, &dkey, &xdata, xflags);
6955 				if (rc)
6956 					goto bad_sub;
6957 				/* we've done our job */
6958 				dkey.mv_size = 0;
6959 			}
6960 			if (!(leaf->mn_flags & F_SUBDATA) || sub_root) {
6961 				/* Adjust other cursors pointing to mp */
6962 				MDB_cursor *m2;
6963 				MDB_xcursor *mx = mc->mc_xcursor;
6964 				unsigned i = mc->mc_top;
6965 				MDB_page *mp = mc->mc_pg[i];
6966 				int nkeys = NUMKEYS(mp);
6967 
6968 				for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
6969 					if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
6970 					if (!(m2->mc_flags & C_INITIALIZED)) continue;
6971 					if (m2->mc_pg[i] == mp) {
6972 						if (m2->mc_ki[i] == mc->mc_ki[i]) {
6973 							mdb_xcursor_init2(m2, mx, new_dupdata);
6974 						} else if (!insert_key && m2->mc_ki[i] < nkeys) {
6975 							XCURSOR_REFRESH(m2, mp, m2->mc_ki[i]);
6976 						}
6977 					}
6978 				}
6979 			}
6980 			ecount = mc->mc_xcursor->mx_db.md_entries;
6981 			if (flags & MDB_APPENDDUP)
6982 				xflags |= MDB_APPEND;
6983 			rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, data, &xdata, xflags);
6984 			if (flags & F_SUBDATA) {
6985 				void *db = NODEDATA(leaf);
6986 				memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
6987 			}
6988 			insert_data = mc->mc_xcursor->mx_db.md_entries - ecount;
6989 		}
6990 		/* Increment count unless we just replaced an existing item. */
6991 		if (insert_data)
6992 			mc->mc_db->md_entries++;
6993 		if (insert_key) {
6994 			/* Invalidate txn if we created an empty sub-DB */
6995 			if (rc)
6996 				goto bad_sub;
6997 			/* If we succeeded and the key didn't exist before,
6998 			 * make sure the cursor is marked valid.
6999 			 */
7000 			mc->mc_flags |= C_INITIALIZED;
7001 		}
7002 		if (flags & MDB_MULTIPLE) {
7003 			if (!rc) {
7004 				mcount++;
7005 				/* let caller know how many succeeded, if any */
7006 				data[1].mv_size = mcount;
7007 				if (mcount < dcount) {
7008 					data[0].mv_data = (char *)data[0].mv_data + data[0].mv_size;
7009 					insert_key = insert_data = 0;
7010 					goto more;
7011 				}
7012 			}
7013 		}
7014 		return rc;
7015 bad_sub:
7016 		if (rc == MDB_KEYEXIST)	/* should not happen, we deleted that item */
7017 			rc = MDB_CORRUPTED;
7018 	}
7019 	mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
7020 	return rc;
7021 }
7022 
7023 int
7024 mdb_cursor_del(MDB_cursor *mc, unsigned int flags)
7025 {
7026 	MDB_node	*leaf;
7027 	MDB_page	*mp;
7028 	int rc;
7029 
7030 	if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
7031 		return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
7032 
7033 	if (!(mc->mc_flags & C_INITIALIZED))
7034 		return EINVAL;
7035 
7036 	if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top]))
7037 		return MDB_NOTFOUND;
7038 
7039 	if (!(flags & MDB_NOSPILL) && (rc = mdb_page_spill(mc, NULL, NULL)))
7040 		return rc;
7041 
7042 	rc = mdb_cursor_touch(mc);
7043 	if (rc)
7044 		return rc;
7045 
7046 	mp = mc->mc_pg[mc->mc_top];
7047 	if (IS_LEAF2(mp))
7048 		goto del_key;
7049 	leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
7050 
7051 	if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
7052 		if (flags & MDB_NODUPDATA) {
7053 			/* mdb_cursor_del0() will subtract the final entry */
7054 			mc->mc_db->md_entries -= mc->mc_xcursor->mx_db.md_entries - 1;
7055 			mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED;
7056 		} else {
7057 			if (!F_ISSET(leaf->mn_flags, F_SUBDATA)) {
7058 				mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
7059 			}
7060 			rc = mdb_cursor_del(&mc->mc_xcursor->mx_cursor, MDB_NOSPILL);
7061 			if (rc)
7062 				return rc;
7063 			/* If sub-DB still has entries, we're done */
7064 			if (mc->mc_xcursor->mx_db.md_entries) {
7065 				if (leaf->mn_flags & F_SUBDATA) {
7066 					/* update subDB info */
7067 					void *db = NODEDATA(leaf);
7068 					memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
7069 				} else {
7070 					MDB_cursor *m2;
7071 					/* shrink fake page */
7072 					mdb_node_shrink(mp, mc->mc_ki[mc->mc_top]);
7073 					leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
7074 					mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
7075 					/* fix other sub-DB cursors pointed at fake pages on this page */
7076 					for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
7077 						if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
7078 						if (!(m2->mc_flags & C_INITIALIZED)) continue;
7079 						if (m2->mc_pg[mc->mc_top] == mp) {
7080 							MDB_node *n2 = leaf;
7081 							if (m2->mc_ki[mc->mc_top] != mc->mc_ki[mc->mc_top]) {
7082 								n2 = NODEPTR(mp, m2->mc_ki[mc->mc_top]);
7083 								if (n2->mn_flags & F_SUBDATA) continue;
7084 							}
7085 							m2->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(n2);
7086 						}
7087 					}
7088 				}
7089 				mc->mc_db->md_entries--;
7090 				return rc;
7091 			} else {
7092 				mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED;
7093 			}
7094 			/* otherwise fall thru and delete the sub-DB */
7095 		}
7096 
7097 		if (leaf->mn_flags & F_SUBDATA) {
7098 			/* add all the child DB's pages to the free list */
7099 			rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
7100 			if (rc)
7101 				goto fail;
7102 		}
7103 	}
7104 	/* LMDB passes F_SUBDATA in 'flags' to delete a DB record */
7105 	else if ((leaf->mn_flags ^ flags) & F_SUBDATA) {
7106 		rc = MDB_INCOMPATIBLE;
7107 		goto fail;
7108 	}
7109 
7110 	/* add overflow pages to free list */
7111 	if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
7112 		MDB_page *omp;
7113 		pgno_t pg;
7114 
7115 		memcpy(&pg, NODEDATA(leaf), sizeof(pg));
7116 		if ((rc = mdb_page_get(mc, pg, &omp, NULL)) ||
7117 			(rc = mdb_ovpage_free(mc, omp)))
7118 			goto fail;
7119 	}
7120 
7121 del_key:
7122 	return mdb_cursor_del0(mc);
7123 
7124 fail:
7125 	mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
7126 	return rc;
7127 }
7128 
7129 /** Allocate and initialize new pages for a database.
7130  * Set #MDB_TXN_ERROR on failure.
7131  * @param[in] mc a cursor on the database being added to.
7132  * @param[in] flags flags defining what type of page is being allocated.
7133  * @param[in] num the number of pages to allocate. This is usually 1,
7134  * unless allocating overflow pages for a large record.
7135  * @param[out] mp Address of a page, or NULL on failure.
7136  * @return 0 on success, non-zero on failure.
7137  */
7138 static int
7139 mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp)
7140 {
7141 	MDB_page	*np;
7142 	int rc;
7143 
7144 	if ((rc = mdb_page_alloc(mc, num, &np)))
7145 		return rc;
7146 	DPRINTF(("allocated new mpage %"Z"u, page size %u",
7147 	    np->mp_pgno, mc->mc_txn->mt_env->me_psize));
7148 	np->mp_flags = flags | P_DIRTY;
7149 	np->mp_lower = (PAGEHDRSZ-PAGEBASE);
7150 	np->mp_upper = mc->mc_txn->mt_env->me_psize - PAGEBASE;
7151 
7152 	if (IS_BRANCH(np))
7153 		mc->mc_db->md_branch_pages++;
7154 	else if (IS_LEAF(np))
7155 		mc->mc_db->md_leaf_pages++;
7156 	else if (IS_OVERFLOW(np)) {
7157 		mc->mc_db->md_overflow_pages += num;
7158 		np->mp_pages = num;
7159 	}
7160 	*mp = np;
7161 
7162 	return 0;
7163 }
7164 
7165 /** Calculate the size of a leaf node.
7166  * The size depends on the environment's page size; if a data item
7167  * is too large it will be put onto an overflow page and the node
7168  * size will only include the key and not the data. Sizes are always
7169  * rounded up to an even number of bytes, to guarantee 2-byte alignment
7170  * of the #MDB_node headers.
7171  * @param[in] env The environment handle.
7172  * @param[in] key The key for the node.
7173  * @param[in] data The data for the node.
7174  * @return The number of bytes needed to store the node.
7175  */
7176 static size_t
7177 mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data)
7178 {
7179 	size_t		 sz;
7180 
7181 	sz = LEAFSIZE(key, data);
7182 	if (sz > env->me_nodemax) {
7183 		/* put on overflow page */
7184 		sz -= data->mv_size - sizeof(pgno_t);
7185 	}
7186 
7187 	return EVEN(sz + sizeof(indx_t));
7188 }
7189 
7190 /** Calculate the size of a branch node.
7191  * The size should depend on the environment's page size but since
7192  * we currently don't support spilling large keys onto overflow
7193  * pages, it's simply the size of the #MDB_node header plus the
7194  * size of the key. Sizes are always rounded up to an even number
7195  * of bytes, to guarantee 2-byte alignment of the #MDB_node headers.
7196  * @param[in] env The environment handle.
7197  * @param[in] key The key for the node.
7198  * @return The number of bytes needed to store the node.
7199  */
7200 static size_t
7201 mdb_branch_size(MDB_env *env, MDB_val *key)
7202 {
7203 	size_t		 sz;
7204 
7205 	sz = INDXSIZE(key);
7206 	if (sz > env->me_nodemax) {
7207 		/* put on overflow page */
7208 		/* not implemented */
7209 		/* sz -= key->size - sizeof(pgno_t); */
7210 	}
7211 
7212 	return sz + sizeof(indx_t);
7213 }
7214 
7215 /** Add a node to the page pointed to by the cursor.
7216  * Set #MDB_TXN_ERROR on failure.
7217  * @param[in] mc The cursor for this operation.
7218  * @param[in] indx The index on the page where the new node should be added.
7219  * @param[in] key The key for the new node.
7220  * @param[in] data The data for the new node, if any.
7221  * @param[in] pgno The page number, if adding a branch node.
7222  * @param[in] flags Flags for the node.
7223  * @return 0 on success, non-zero on failure. Possible errors are:
7224  * <ul>
7225  *	<li>ENOMEM - failed to allocate overflow pages for the node.
7226  *	<li>MDB_PAGE_FULL - there is insufficient room in the page. This error
7227  *	should never happen since all callers already calculate the
7228  *	page's free space before calling this function.
7229  * </ul>
7230  */
7231 static int
7232 mdb_node_add(MDB_cursor *mc, indx_t indx,
7233     MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags)
7234 {
7235 	unsigned int	 i;
7236 	size_t		 node_size = NODESIZE;
7237 	ssize_t		 room;
7238 	indx_t		 ofs;
7239 	MDB_node	*node;
7240 	MDB_page	*mp = mc->mc_pg[mc->mc_top];
7241 	MDB_page	*ofp = NULL;		/* overflow page */
7242 	void		*ndata;
7243 	DKBUF;
7244 
7245 	mdb_cassert(mc, mp->mp_upper >= mp->mp_lower);
7246 
7247 	DPRINTF(("add to %s %spage %"Z"u index %i, data size %"Z"u key size %"Z"u [%s]",
7248 	    IS_LEAF(mp) ? "leaf" : "branch",
7249 		IS_SUBP(mp) ? "sub-" : "",
7250 		mdb_dbg_pgno(mp), indx, data ? data->mv_size : 0,
7251 		key ? key->mv_size : 0, key ? DKEY(key) : "null"));
7252 
7253 	if (IS_LEAF2(mp)) {
7254 		/* Move higher keys up one slot. */
7255 		int ksize = mc->mc_db->md_pad, dif;
7256 		char *ptr = LEAF2KEY(mp, indx, ksize);
7257 		dif = NUMKEYS(mp) - indx;
7258 		if (dif > 0)
7259 			memmove(ptr+ksize, ptr, dif*ksize);
7260 		/* insert new key */
7261 		memcpy(ptr, key->mv_data, ksize);
7262 
7263 		/* Just using these for counting */
7264 		mp->mp_lower += sizeof(indx_t);
7265 		mp->mp_upper -= ksize - sizeof(indx_t);
7266 		return MDB_SUCCESS;
7267 	}
7268 
7269 	room = (ssize_t)SIZELEFT(mp) - (ssize_t)sizeof(indx_t);
7270 	if (key != NULL)
7271 		node_size += key->mv_size;
7272 	if (IS_LEAF(mp)) {
7273 		mdb_cassert(mc, key && data);
7274 		if (F_ISSET(flags, F_BIGDATA)) {
7275 			/* Data already on overflow page. */
7276 			node_size += sizeof(pgno_t);
7277 		} else if (node_size + data->mv_size > mc->mc_txn->mt_env->me_nodemax) {
7278 			int ovpages = OVPAGES(data->mv_size, mc->mc_txn->mt_env->me_psize);
7279 			int rc;
7280 			/* Put data on overflow page. */
7281 			DPRINTF(("data size is %"Z"u, node would be %"Z"u, put data on overflow page",
7282 			    data->mv_size, node_size+data->mv_size));
7283 			node_size = EVEN(node_size + sizeof(pgno_t));
7284 			if ((ssize_t)node_size > room)
7285 				goto full;
7286 			if ((rc = mdb_page_new(mc, P_OVERFLOW, ovpages, &ofp)))
7287 				return rc;
7288 			DPRINTF(("allocated overflow page %"Z"u", ofp->mp_pgno));
7289 			flags |= F_BIGDATA;
7290 			goto update;
7291 		} else {
7292 			node_size += data->mv_size;
7293 		}
7294 	}
7295 	node_size = EVEN(node_size);
7296 	if ((ssize_t)node_size > room)
7297 		goto full;
7298 
7299 update:
7300 	/* Move higher pointers up one slot. */
7301 	for (i = NUMKEYS(mp); i > indx; i--)
7302 		mp->mp_ptrs[i] = mp->mp_ptrs[i - 1];
7303 
7304 	/* Adjust free space offsets. */
7305 	ofs = mp->mp_upper - node_size;
7306 	mdb_cassert(mc, ofs >= mp->mp_lower + sizeof(indx_t));
7307 	mp->mp_ptrs[indx] = ofs;
7308 	mp->mp_upper = ofs;
7309 	mp->mp_lower += sizeof(indx_t);
7310 
7311 	/* Write the node data. */
7312 	node = NODEPTR(mp, indx);
7313 	node->mn_ksize = (key == NULL) ? 0 : key->mv_size;
7314 	node->mn_flags = flags;
7315 	if (IS_LEAF(mp))
7316 		SETDSZ(node,data->mv_size);
7317 	else
7318 		SETPGNO(node,pgno);
7319 
7320 	if (key)
7321 		memcpy(NODEKEY(node), key->mv_data, key->mv_size);
7322 
7323 	if (IS_LEAF(mp)) {
7324 		ndata = NODEDATA(node);
7325 		if (ofp == NULL) {
7326 			if (F_ISSET(flags, F_BIGDATA))
7327 				memcpy(ndata, data->mv_data, sizeof(pgno_t));
7328 			else if (F_ISSET(flags, MDB_RESERVE))
7329 				data->mv_data = ndata;
7330 			else
7331 				memcpy(ndata, data->mv_data, data->mv_size);
7332 		} else {
7333 			memcpy(ndata, &ofp->mp_pgno, sizeof(pgno_t));
7334 			ndata = METADATA(ofp);
7335 			if (F_ISSET(flags, MDB_RESERVE))
7336 				data->mv_data = ndata;
7337 			else
7338 				memcpy(ndata, data->mv_data, data->mv_size);
7339 		}
7340 	}
7341 
7342 	return MDB_SUCCESS;
7343 
7344 full:
7345 	DPRINTF(("not enough room in page %"Z"u, got %u ptrs",
7346 		mdb_dbg_pgno(mp), NUMKEYS(mp)));
7347 	DPRINTF(("upper-lower = %u - %u = %"Z"d", mp->mp_upper,mp->mp_lower,room));
7348 	DPRINTF(("node size = %"Z"u", node_size));
7349 	mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
7350 	return MDB_PAGE_FULL;
7351 }
7352 
7353 /** Delete the specified node from a page.
7354  * @param[in] mc Cursor pointing to the node to delete.
7355  * @param[in] ksize The size of a node. Only used if the page is
7356  * part of a #MDB_DUPFIXED database.
7357  */
7358 static void
7359 mdb_node_del(MDB_cursor *mc, int ksize)
7360 {
7361 	MDB_page *mp = mc->mc_pg[mc->mc_top];
7362 	indx_t	indx = mc->mc_ki[mc->mc_top];
7363 	unsigned int	 sz;
7364 	indx_t		 i, j, numkeys, ptr;
7365 	MDB_node	*node;
7366 	char		*base;
7367 
7368 	DPRINTF(("delete node %u on %s page %"Z"u", indx,
7369 	    IS_LEAF(mp) ? "leaf" : "branch", mdb_dbg_pgno(mp)));
7370 	numkeys = NUMKEYS(mp);
7371 	mdb_cassert(mc, indx < numkeys);
7372 
7373 	if (IS_LEAF2(mp)) {
7374 		int x = numkeys - 1 - indx;
7375 		base = LEAF2KEY(mp, indx, ksize);
7376 		if (x)
7377 			memmove(base, base + ksize, x * ksize);
7378 		mp->mp_lower -= sizeof(indx_t);
7379 		mp->mp_upper += ksize - sizeof(indx_t);
7380 		return;
7381 	}
7382 
7383 	node = NODEPTR(mp, indx);
7384 	sz = NODESIZE + node->mn_ksize;
7385 	if (IS_LEAF(mp)) {
7386 		if (F_ISSET(node->mn_flags, F_BIGDATA))
7387 			sz += sizeof(pgno_t);
7388 		else
7389 			sz += NODEDSZ(node);
7390 	}
7391 	sz = EVEN(sz);
7392 
7393 	ptr = mp->mp_ptrs[indx];
7394 	for (i = j = 0; i < numkeys; i++) {
7395 		if (i != indx) {
7396 			mp->mp_ptrs[j] = mp->mp_ptrs[i];
7397 			if (mp->mp_ptrs[i] < ptr)
7398 				mp->mp_ptrs[j] += sz;
7399 			j++;
7400 		}
7401 	}
7402 
7403 	base = (char *)mp + mp->mp_upper + PAGEBASE;
7404 	memmove(base + sz, base, ptr - mp->mp_upper);
7405 
7406 	mp->mp_lower -= sizeof(indx_t);
7407 	mp->mp_upper += sz;
7408 }
7409 
7410 /** Compact the main page after deleting a node on a subpage.
7411  * @param[in] mp The main page to operate on.
7412  * @param[in] indx The index of the subpage on the main page.
7413  */
7414 static void
7415 mdb_node_shrink(MDB_page *mp, indx_t indx)
7416 {
7417 	MDB_node *node;
7418 	MDB_page *sp, *xp;
7419 	char *base;
7420 	indx_t delta, nsize, len, ptr;
7421 	int i;
7422 
7423 	node = NODEPTR(mp, indx);
7424 	sp = (MDB_page *)NODEDATA(node);
7425 	delta = SIZELEFT(sp);
7426 	nsize = NODEDSZ(node) - delta;
7427 
7428 	/* Prepare to shift upward, set len = length(subpage part to shift) */
7429 	if (IS_LEAF2(sp)) {
7430 		len = nsize;
7431 		if (nsize & 1)
7432 			return;		/* do not make the node uneven-sized */
7433 	} else {
7434 		xp = (MDB_page *)((char *)sp + delta); /* destination subpage */
7435 		for (i = NUMKEYS(sp); --i >= 0; )
7436 			xp->mp_ptrs[i] = sp->mp_ptrs[i] - delta;
7437 		len = PAGEHDRSZ;
7438 	}
7439 	sp->mp_upper = sp->mp_lower;
7440 	COPY_PGNO(sp->mp_pgno, mp->mp_pgno);
7441 	SETDSZ(node, nsize);
7442 
7443 	/* Shift <lower nodes...initial part of subpage> upward */
7444 	base = (char *)mp + mp->mp_upper + PAGEBASE;
7445 	memmove(base + delta, base, (char *)sp + len - base);
7446 
7447 	ptr = mp->mp_ptrs[indx];
7448 	for (i = NUMKEYS(mp); --i >= 0; ) {
7449 		if (mp->mp_ptrs[i] <= ptr)
7450 			mp->mp_ptrs[i] += delta;
7451 	}
7452 	mp->mp_upper += delta;
7453 }
7454 
7455 /** Initial setup of a sorted-dups cursor.
7456  * Sorted duplicates are implemented as a sub-database for the given key.
7457  * The duplicate data items are actually keys of the sub-database.
7458  * Operations on the duplicate data items are performed using a sub-cursor
7459  * initialized when the sub-database is first accessed. This function does
7460  * the preliminary setup of the sub-cursor, filling in the fields that
7461  * depend only on the parent DB.
7462  * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
7463  */
7464 static void
7465 mdb_xcursor_init0(MDB_cursor *mc)
7466 {
7467 	MDB_xcursor *mx = mc->mc_xcursor;
7468 
7469 	mx->mx_cursor.mc_xcursor = NULL;
7470 	mx->mx_cursor.mc_txn = mc->mc_txn;
7471 	mx->mx_cursor.mc_db = &mx->mx_db;
7472 	mx->mx_cursor.mc_dbx = &mx->mx_dbx;
7473 	mx->mx_cursor.mc_dbi = mc->mc_dbi;
7474 	mx->mx_cursor.mc_dbflag = &mx->mx_dbflag;
7475 	mx->mx_cursor.mc_snum = 0;
7476 	mx->mx_cursor.mc_top = 0;
7477 	mx->mx_cursor.mc_flags = C_SUB;
7478 	mx->mx_dbx.md_name.mv_size = 0;
7479 	mx->mx_dbx.md_name.mv_data = NULL;
7480 	mx->mx_dbx.md_cmp = mc->mc_dbx->md_dcmp;
7481 	mx->mx_dbx.md_dcmp = NULL;
7482 	mx->mx_dbx.md_rel = mc->mc_dbx->md_rel;
7483 }
7484 
7485 /** Final setup of a sorted-dups cursor.
7486  *	Sets up the fields that depend on the data from the main cursor.
7487  * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
7488  * @param[in] node The data containing the #MDB_db record for the
7489  * sorted-dup database.
7490  */
7491 static void
7492 mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node)
7493 {
7494 	MDB_xcursor *mx = mc->mc_xcursor;
7495 
7496 	if (node->mn_flags & F_SUBDATA) {
7497 		memcpy(&mx->mx_db, NODEDATA(node), sizeof(MDB_db));
7498 		mx->mx_cursor.mc_pg[0] = 0;
7499 		mx->mx_cursor.mc_snum = 0;
7500 		mx->mx_cursor.mc_top = 0;
7501 		mx->mx_cursor.mc_flags = C_SUB;
7502 	} else {
7503 		MDB_page *fp = NODEDATA(node);
7504 		mx->mx_db.md_pad = 0;
7505 		mx->mx_db.md_flags = 0;
7506 		mx->mx_db.md_depth = 1;
7507 		mx->mx_db.md_branch_pages = 0;
7508 		mx->mx_db.md_leaf_pages = 1;
7509 		mx->mx_db.md_overflow_pages = 0;
7510 		mx->mx_db.md_entries = NUMKEYS(fp);
7511 		COPY_PGNO(mx->mx_db.md_root, fp->mp_pgno);
7512 		mx->mx_cursor.mc_snum = 1;
7513 		mx->mx_cursor.mc_top = 0;
7514 		mx->mx_cursor.mc_flags = C_INITIALIZED|C_SUB;
7515 		mx->mx_cursor.mc_pg[0] = fp;
7516 		mx->mx_cursor.mc_ki[0] = 0;
7517 		if (mc->mc_db->md_flags & MDB_DUPFIXED) {
7518 			mx->mx_db.md_flags = MDB_DUPFIXED;
7519 			mx->mx_db.md_pad = fp->mp_pad;
7520 			if (mc->mc_db->md_flags & MDB_INTEGERDUP)
7521 				mx->mx_db.md_flags |= MDB_INTEGERKEY;
7522 		}
7523 	}
7524 	DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi,
7525 		mx->mx_db.md_root));
7526 	mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA;
7527 #if UINT_MAX < SIZE_MAX
7528 	if (mx->mx_dbx.md_cmp == mdb_cmp_int && mx->mx_db.md_pad == sizeof(size_t))
7529 		mx->mx_dbx.md_cmp = mdb_cmp_clong;
7530 #endif
7531 }
7532 
7533 
7534 /** Fixup a sorted-dups cursor due to underlying update.
7535  *	Sets up some fields that depend on the data from the main cursor.
7536  *	Almost the same as init1, but skips initialization steps if the
7537  *	xcursor had already been used.
7538  * @param[in] mc The main cursor whose sorted-dups cursor is to be fixed up.
7539  * @param[in] src_mx The xcursor of an up-to-date cursor.
7540  * @param[in] new_dupdata True if converting from a non-#F_DUPDATA item.
7541  */
7542 static void
7543 mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int new_dupdata)
7544 {
7545 	MDB_xcursor *mx = mc->mc_xcursor;
7546 
7547 	if (new_dupdata) {
7548 		mx->mx_cursor.mc_snum = 1;
7549 		mx->mx_cursor.mc_top = 0;
7550 		mx->mx_cursor.mc_flags |= C_INITIALIZED;
7551 		mx->mx_cursor.mc_ki[0] = 0;
7552 		mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA;
7553 #if UINT_MAX < SIZE_MAX
7554 		mx->mx_dbx.md_cmp = src_mx->mx_dbx.md_cmp;
7555 #endif
7556 	} else if (!(mx->mx_cursor.mc_flags & C_INITIALIZED)) {
7557 		return;
7558 	}
7559 	mx->mx_db = src_mx->mx_db;
7560 	mx->mx_cursor.mc_pg[0] = src_mx->mx_cursor.mc_pg[0];
7561 	DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi,
7562 		mx->mx_db.md_root));
7563 }
7564 
7565 /** Initialize a cursor for a given transaction and database. */
7566 static void
7567 mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx)
7568 {
7569 	mc->mc_next = NULL;
7570 	mc->mc_backup = NULL;
7571 	mc->mc_dbi = dbi;
7572 	mc->mc_txn = txn;
7573 	mc->mc_db = &txn->mt_dbs[dbi];
7574 	mc->mc_dbx = &txn->mt_dbxs[dbi];
7575 	mc->mc_dbflag = &txn->mt_dbflags[dbi];
7576 	mc->mc_snum = 0;
7577 	mc->mc_top = 0;
7578 	mc->mc_pg[0] = 0;
7579 	mc->mc_ki[0] = 0;
7580 	mc->mc_flags = 0;
7581 	if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) {
7582 		mdb_tassert(txn, mx != NULL);
7583 		mc->mc_xcursor = mx;
7584 		mdb_xcursor_init0(mc);
7585 	} else {
7586 		mc->mc_xcursor = NULL;
7587 	}
7588 	if (*mc->mc_dbflag & DB_STALE) {
7589 		mdb_page_search(mc, NULL, MDB_PS_ROOTONLY);
7590 	}
7591 }
7592 
7593 int
7594 mdb_cursor_open(MDB_txn *txn, MDB_dbi dbi, MDB_cursor **ret)
7595 {
7596 	MDB_cursor	*mc;
7597 	size_t size = sizeof(MDB_cursor);
7598 
7599 	if (!ret || !TXN_DBI_EXIST(txn, dbi, DB_VALID))
7600 		return EINVAL;
7601 
7602 	if (txn->mt_flags & MDB_TXN_BLOCKED)
7603 		return MDB_BAD_TXN;
7604 
7605 	if (dbi == FREE_DBI && !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
7606 		return EINVAL;
7607 
7608 	if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT)
7609 		size += sizeof(MDB_xcursor);
7610 
7611 	if ((mc = malloc(size)) != NULL) {
7612 		mdb_cursor_init(mc, txn, dbi, (MDB_xcursor *)(mc + 1));
7613 		if (txn->mt_cursors) {
7614 			mc->mc_next = txn->mt_cursors[dbi];
7615 			txn->mt_cursors[dbi] = mc;
7616 			mc->mc_flags |= C_UNTRACK;
7617 		}
7618 	} else {
7619 		return ENOMEM;
7620 	}
7621 
7622 	*ret = mc;
7623 
7624 	return MDB_SUCCESS;
7625 }
7626 
7627 int
7628 mdb_cursor_renew(MDB_txn *txn, MDB_cursor *mc)
7629 {
7630 	if (!mc || !TXN_DBI_EXIST(txn, mc->mc_dbi, DB_VALID))
7631 		return EINVAL;
7632 
7633 	if ((mc->mc_flags & C_UNTRACK) || txn->mt_cursors)
7634 		return EINVAL;
7635 
7636 	if (txn->mt_flags & MDB_TXN_BLOCKED)
7637 		return MDB_BAD_TXN;
7638 
7639 	mdb_cursor_init(mc, txn, mc->mc_dbi, mc->mc_xcursor);
7640 	return MDB_SUCCESS;
7641 }
7642 
7643 /* Return the count of duplicate data items for the current key */
7644 int
7645 mdb_cursor_count(MDB_cursor *mc, size_t *countp)
7646 {
7647 	MDB_node	*leaf;
7648 
7649 	if (mc == NULL || countp == NULL)
7650 		return EINVAL;
7651 
7652 	if (mc->mc_xcursor == NULL)
7653 		return MDB_INCOMPATIBLE;
7654 
7655 	if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED)
7656 		return MDB_BAD_TXN;
7657 
7658 	if (!(mc->mc_flags & C_INITIALIZED))
7659 		return EINVAL;
7660 
7661 	if (!mc->mc_snum)
7662 		return MDB_NOTFOUND;
7663 
7664 	if (mc->mc_flags & C_EOF) {
7665 		if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top]))
7666 			return MDB_NOTFOUND;
7667 		mc->mc_flags ^= C_EOF;
7668 	}
7669 
7670 	leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
7671 	if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
7672 		*countp = 1;
7673 	} else {
7674 		if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))
7675 			return EINVAL;
7676 
7677 		*countp = mc->mc_xcursor->mx_db.md_entries;
7678 	}
7679 	return MDB_SUCCESS;
7680 }
7681 
7682 void
7683 mdb_cursor_close(MDB_cursor *mc)
7684 {
7685 	if (mc && !mc->mc_backup) {
7686 		/* remove from txn, if tracked */
7687 		if ((mc->mc_flags & C_UNTRACK) && mc->mc_txn->mt_cursors) {
7688 			MDB_cursor **prev = &mc->mc_txn->mt_cursors[mc->mc_dbi];
7689 			while (*prev && *prev != mc) prev = &(*prev)->mc_next;
7690 			if (*prev == mc)
7691 				*prev = mc->mc_next;
7692 		}
7693 		free(mc);
7694 	}
7695 }
7696 
7697 MDB_txn *
7698 mdb_cursor_txn(MDB_cursor *mc)
7699 {
7700 	if (!mc) return NULL;
7701 	return mc->mc_txn;
7702 }
7703 
7704 MDB_dbi
7705 mdb_cursor_dbi(MDB_cursor *mc)
7706 {
7707 	return mc->mc_dbi;
7708 }
7709 
7710 /** Replace the key for a branch node with a new key.
7711  * Set #MDB_TXN_ERROR on failure.
7712  * @param[in] mc Cursor pointing to the node to operate on.
7713  * @param[in] key The new key to use.
7714  * @return 0 on success, non-zero on failure.
7715  */
7716 static int
7717 mdb_update_key(MDB_cursor *mc, MDB_val *key)
7718 {
7719 	MDB_page		*mp;
7720 	MDB_node		*node;
7721 	char			*base;
7722 	size_t			 len;
7723 	int				 delta, ksize, oksize;
7724 	indx_t			 ptr, i, numkeys, indx;
7725 	DKBUF;
7726 
7727 	indx = mc->mc_ki[mc->mc_top];
7728 	mp = mc->mc_pg[mc->mc_top];
7729 	node = NODEPTR(mp, indx);
7730 	ptr = mp->mp_ptrs[indx];
7731 #if MDB_DEBUG
7732 	{
7733 		MDB_val	k2;
7734 		char kbuf2[DKBUF_MAXKEYSIZE*2+1];
7735 		k2.mv_data = NODEKEY(node);
7736 		k2.mv_size = node->mn_ksize;
7737 		DPRINTF(("update key %u (ofs %u) [%s] to [%s] on page %"Z"u",
7738 			indx, ptr,
7739 			mdb_dkey(&k2, kbuf2),
7740 			DKEY(key),
7741 			mp->mp_pgno));
7742 	}
7743 #endif
7744 
7745 	/* Sizes must be 2-byte aligned. */
7746 	ksize = EVEN(key->mv_size);
7747 	oksize = EVEN(node->mn_ksize);
7748 	delta = ksize - oksize;
7749 
7750 	/* Shift node contents if EVEN(key length) changed. */
7751 	if (delta) {
7752 		if (delta > 0 && SIZELEFT(mp) < delta) {
7753 			pgno_t pgno;
7754 			/* not enough space left, do a delete and split */
7755 			DPRINTF(("Not enough room, delta = %d, splitting...", delta));
7756 			pgno = NODEPGNO(node);
7757 			mdb_node_del(mc, 0);
7758 			return mdb_page_split(mc, key, NULL, pgno, MDB_SPLIT_REPLACE);
7759 		}
7760 
7761 		numkeys = NUMKEYS(mp);
7762 		for (i = 0; i < numkeys; i++) {
7763 			if (mp->mp_ptrs[i] <= ptr)
7764 				mp->mp_ptrs[i] -= delta;
7765 		}
7766 
7767 		base = (char *)mp + mp->mp_upper + PAGEBASE;
7768 		len = ptr - mp->mp_upper + NODESIZE;
7769 		memmove(base - delta, base, len);
7770 		mp->mp_upper -= delta;
7771 
7772 		node = NODEPTR(mp, indx);
7773 	}
7774 
7775 	/* But even if no shift was needed, update ksize */
7776 	if (node->mn_ksize != key->mv_size)
7777 		node->mn_ksize = key->mv_size;
7778 
7779 	if (key->mv_size)
7780 		memcpy(NODEKEY(node), key->mv_data, key->mv_size);
7781 
7782 	return MDB_SUCCESS;
7783 }
7784 
7785 static void
7786 mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst);
7787 
7788 /** Perform \b act while tracking temporary cursor \b mn */
7789 #define WITH_CURSOR_TRACKING(mn, act) do { \
7790 	MDB_cursor dummy, *tracked, **tp = &(mn).mc_txn->mt_cursors[mn.mc_dbi]; \
7791 	if ((mn).mc_flags & C_SUB) { \
7792 		dummy.mc_flags =  C_INITIALIZED; \
7793 		dummy.mc_xcursor = (MDB_xcursor *)&(mn);	\
7794 		tracked = &dummy; \
7795 	} else { \
7796 		tracked = &(mn); \
7797 	} \
7798 	tracked->mc_next = *tp; \
7799 	*tp = tracked; \
7800 	{ act; } \
7801 	*tp = tracked->mc_next; \
7802 } while (0)
7803 
7804 /** Move a node from csrc to cdst.
7805  */
7806 static int
7807 mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft)
7808 {
7809 	MDB_node		*srcnode;
7810 	MDB_val		 key, data;
7811 	pgno_t	srcpg;
7812 	MDB_cursor mn;
7813 	int			 rc;
7814 	unsigned short flags;
7815 
7816 	DKBUF;
7817 
7818 	/* Mark src and dst as dirty. */
7819 	if ((rc = mdb_page_touch(csrc)) ||
7820 	    (rc = mdb_page_touch(cdst)))
7821 		return rc;
7822 
7823 	if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
7824 		key.mv_size = csrc->mc_db->md_pad;
7825 		key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top], key.mv_size);
7826 		data.mv_size = 0;
7827 		data.mv_data = NULL;
7828 		srcpg = 0;
7829 		flags = 0;
7830 	} else {
7831 		srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top]);
7832 		mdb_cassert(csrc, !((size_t)srcnode & 1));
7833 		srcpg = NODEPGNO(srcnode);
7834 		flags = srcnode->mn_flags;
7835 		if (csrc->mc_ki[csrc->mc_top] == 0 && IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
7836 			unsigned int snum = csrc->mc_snum;
7837 			MDB_node *s2;
7838 			/* must find the lowest key below src */
7839 			rc = mdb_page_search_lowest(csrc);
7840 			if (rc)
7841 				return rc;
7842 			if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
7843 				key.mv_size = csrc->mc_db->md_pad;
7844 				key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
7845 			} else {
7846 				s2 = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
7847 				key.mv_size = NODEKSZ(s2);
7848 				key.mv_data = NODEKEY(s2);
7849 			}
7850 			csrc->mc_snum = snum--;
7851 			csrc->mc_top = snum;
7852 		} else {
7853 			key.mv_size = NODEKSZ(srcnode);
7854 			key.mv_data = NODEKEY(srcnode);
7855 		}
7856 		data.mv_size = NODEDSZ(srcnode);
7857 		data.mv_data = NODEDATA(srcnode);
7858 	}
7859 	mn.mc_xcursor = NULL;
7860 	if (IS_BRANCH(cdst->mc_pg[cdst->mc_top]) && cdst->mc_ki[cdst->mc_top] == 0) {
7861 		unsigned int snum = cdst->mc_snum;
7862 		MDB_node *s2;
7863 		MDB_val bkey;
7864 		/* must find the lowest key below dst */
7865 		mdb_cursor_copy(cdst, &mn);
7866 		rc = mdb_page_search_lowest(&mn);
7867 		if (rc)
7868 			return rc;
7869 		if (IS_LEAF2(mn.mc_pg[mn.mc_top])) {
7870 			bkey.mv_size = mn.mc_db->md_pad;
7871 			bkey.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, bkey.mv_size);
7872 		} else {
7873 			s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0);
7874 			bkey.mv_size = NODEKSZ(s2);
7875 			bkey.mv_data = NODEKEY(s2);
7876 		}
7877 		mn.mc_snum = snum--;
7878 		mn.mc_top = snum;
7879 		mn.mc_ki[snum] = 0;
7880 		rc = mdb_update_key(&mn, &bkey);
7881 		if (rc)
7882 			return rc;
7883 	}
7884 
7885 	DPRINTF(("moving %s node %u [%s] on page %"Z"u to node %u on page %"Z"u",
7886 	    IS_LEAF(csrc->mc_pg[csrc->mc_top]) ? "leaf" : "branch",
7887 	    csrc->mc_ki[csrc->mc_top],
7888 		DKEY(&key),
7889 	    csrc->mc_pg[csrc->mc_top]->mp_pgno,
7890 	    cdst->mc_ki[cdst->mc_top], cdst->mc_pg[cdst->mc_top]->mp_pgno));
7891 
7892 	/* Add the node to the destination page.
7893 	 */
7894 	rc = mdb_node_add(cdst, cdst->mc_ki[cdst->mc_top], &key, &data, srcpg, flags);
7895 	if (rc != MDB_SUCCESS)
7896 		return rc;
7897 
7898 	/* Delete the node from the source page.
7899 	 */
7900 	mdb_node_del(csrc, key.mv_size);
7901 
7902 	{
7903 		/* Adjust other cursors pointing to mp */
7904 		MDB_cursor *m2, *m3;
7905 		MDB_dbi dbi = csrc->mc_dbi;
7906 		MDB_page *mpd, *mps;
7907 
7908 		mps = csrc->mc_pg[csrc->mc_top];
7909 		/* If we're adding on the left, bump others up */
7910 		if (fromleft) {
7911 			mpd = cdst->mc_pg[csrc->mc_top];
7912 			for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
7913 				if (csrc->mc_flags & C_SUB)
7914 					m3 = &m2->mc_xcursor->mx_cursor;
7915 				else
7916 					m3 = m2;
7917 				if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top)
7918 					continue;
7919 				if (m3 != cdst &&
7920 					m3->mc_pg[csrc->mc_top] == mpd &&
7921 					m3->mc_ki[csrc->mc_top] >= cdst->mc_ki[csrc->mc_top]) {
7922 					m3->mc_ki[csrc->mc_top]++;
7923 				}
7924 				if (m3 !=csrc &&
7925 					m3->mc_pg[csrc->mc_top] == mps &&
7926 					m3->mc_ki[csrc->mc_top] == csrc->mc_ki[csrc->mc_top]) {
7927 					m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
7928 					m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
7929 					m3->mc_ki[csrc->mc_top-1]++;
7930 				}
7931 				if (XCURSOR_INITED(m3) && IS_LEAF(mps))
7932 					XCURSOR_REFRESH(m3, m3->mc_pg[csrc->mc_top], m3->mc_ki[csrc->mc_top]);
7933 			}
7934 		} else
7935 		/* Adding on the right, bump others down */
7936 		{
7937 			for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
7938 				if (csrc->mc_flags & C_SUB)
7939 					m3 = &m2->mc_xcursor->mx_cursor;
7940 				else
7941 					m3 = m2;
7942 				if (m3 == csrc) continue;
7943 				if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top)
7944 					continue;
7945 				if (m3->mc_pg[csrc->mc_top] == mps) {
7946 					if (!m3->mc_ki[csrc->mc_top]) {
7947 						m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
7948 						m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
7949 						m3->mc_ki[csrc->mc_top-1]--;
7950 					} else {
7951 						m3->mc_ki[csrc->mc_top]--;
7952 					}
7953 					if (XCURSOR_INITED(m3) && IS_LEAF(mps))
7954 						XCURSOR_REFRESH(m3, m3->mc_pg[csrc->mc_top], m3->mc_ki[csrc->mc_top]);
7955 				}
7956 			}
7957 		}
7958 	}
7959 
7960 	/* Update the parent separators.
7961 	 */
7962 	if (csrc->mc_ki[csrc->mc_top] == 0) {
7963 		if (csrc->mc_ki[csrc->mc_top-1] != 0) {
7964 			if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
7965 				key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
7966 			} else {
7967 				srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
7968 				key.mv_size = NODEKSZ(srcnode);
7969 				key.mv_data = NODEKEY(srcnode);
7970 			}
7971 			DPRINTF(("update separator for source page %"Z"u to [%s]",
7972 				csrc->mc_pg[csrc->mc_top]->mp_pgno, DKEY(&key)));
7973 			mdb_cursor_copy(csrc, &mn);
7974 			mn.mc_snum--;
7975 			mn.mc_top--;
7976 			/* We want mdb_rebalance to find mn when doing fixups */
7977 			WITH_CURSOR_TRACKING(mn,
7978 				rc = mdb_update_key(&mn, &key));
7979 			if (rc)
7980 				return rc;
7981 		}
7982 		if (IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
7983 			MDB_val	 nullkey;
7984 			indx_t	ix = csrc->mc_ki[csrc->mc_top];
7985 			nullkey.mv_size = 0;
7986 			csrc->mc_ki[csrc->mc_top] = 0;
7987 			rc = mdb_update_key(csrc, &nullkey);
7988 			csrc->mc_ki[csrc->mc_top] = ix;
7989 			mdb_cassert(csrc, rc == MDB_SUCCESS);
7990 		}
7991 	}
7992 
7993 	if (cdst->mc_ki[cdst->mc_top] == 0) {
7994 		if (cdst->mc_ki[cdst->mc_top-1] != 0) {
7995 			if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
7996 				key.mv_data = LEAF2KEY(cdst->mc_pg[cdst->mc_top], 0, key.mv_size);
7997 			} else {
7998 				srcnode = NODEPTR(cdst->mc_pg[cdst->mc_top], 0);
7999 				key.mv_size = NODEKSZ(srcnode);
8000 				key.mv_data = NODEKEY(srcnode);
8001 			}
8002 			DPRINTF(("update separator for destination page %"Z"u to [%s]",
8003 				cdst->mc_pg[cdst->mc_top]->mp_pgno, DKEY(&key)));
8004 			mdb_cursor_copy(cdst, &mn);
8005 			mn.mc_snum--;
8006 			mn.mc_top--;
8007 			/* We want mdb_rebalance to find mn when doing fixups */
8008 			WITH_CURSOR_TRACKING(mn,
8009 				rc = mdb_update_key(&mn, &key));
8010 			if (rc)
8011 				return rc;
8012 		}
8013 		if (IS_BRANCH(cdst->mc_pg[cdst->mc_top])) {
8014 			MDB_val	 nullkey;
8015 			indx_t	ix = cdst->mc_ki[cdst->mc_top];
8016 			nullkey.mv_size = 0;
8017 			cdst->mc_ki[cdst->mc_top] = 0;
8018 			rc = mdb_update_key(cdst, &nullkey);
8019 			cdst->mc_ki[cdst->mc_top] = ix;
8020 			mdb_cassert(cdst, rc == MDB_SUCCESS);
8021 		}
8022 	}
8023 
8024 	return MDB_SUCCESS;
8025 }
8026 
8027 /** Merge one page into another.
8028  *  The nodes from the page pointed to by \b csrc will
8029  *	be copied to the page pointed to by \b cdst and then
8030  *	the \b csrc page will be freed.
8031  * @param[in] csrc Cursor pointing to the source page.
8032  * @param[in] cdst Cursor pointing to the destination page.
8033  * @return 0 on success, non-zero on failure.
8034  */
8035 static int
8036 mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst)
8037 {
8038 	MDB_page	*psrc, *pdst;
8039 	MDB_node	*srcnode;
8040 	MDB_val		 key, data;
8041 	unsigned	 nkeys;
8042 	int			 rc;
8043 	indx_t		 i, j;
8044 
8045 	psrc = csrc->mc_pg[csrc->mc_top];
8046 	pdst = cdst->mc_pg[cdst->mc_top];
8047 
8048 	DPRINTF(("merging page %"Z"u into %"Z"u", psrc->mp_pgno, pdst->mp_pgno));
8049 
8050 	mdb_cassert(csrc, csrc->mc_snum > 1);	/* can't merge root page */
8051 	mdb_cassert(csrc, cdst->mc_snum > 1);
8052 
8053 	/* Mark dst as dirty. */
8054 	if ((rc = mdb_page_touch(cdst)))
8055 		return rc;
8056 
8057 	/* get dst page again now that we've touched it. */
8058 	pdst = cdst->mc_pg[cdst->mc_top];
8059 
8060 	/* Move all nodes from src to dst.
8061 	 */
8062 	j = nkeys = NUMKEYS(pdst);
8063 	if (IS_LEAF2(psrc)) {
8064 		key.mv_size = csrc->mc_db->md_pad;
8065 		key.mv_data = METADATA(psrc);
8066 		for (i = 0; i < NUMKEYS(psrc); i++, j++) {
8067 			rc = mdb_node_add(cdst, j, &key, NULL, 0, 0);
8068 			if (rc != MDB_SUCCESS)
8069 				return rc;
8070 			key.mv_data = (char *)key.mv_data + key.mv_size;
8071 		}
8072 	} else {
8073 		for (i = 0; i < NUMKEYS(psrc); i++, j++) {
8074 			srcnode = NODEPTR(psrc, i);
8075 			if (i == 0 && IS_BRANCH(psrc)) {
8076 				MDB_cursor mn;
8077 				MDB_node *s2;
8078 				mdb_cursor_copy(csrc, &mn);
8079 				mn.mc_xcursor = NULL;
8080 				/* must find the lowest key below src */
8081 				rc = mdb_page_search_lowest(&mn);
8082 				if (rc)
8083 					return rc;
8084 				if (IS_LEAF2(mn.mc_pg[mn.mc_top])) {
8085 					key.mv_size = mn.mc_db->md_pad;
8086 					key.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, key.mv_size);
8087 				} else {
8088 					s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0);
8089 					key.mv_size = NODEKSZ(s2);
8090 					key.mv_data = NODEKEY(s2);
8091 				}
8092 			} else {
8093 				key.mv_size = srcnode->mn_ksize;
8094 				key.mv_data = NODEKEY(srcnode);
8095 			}
8096 
8097 			data.mv_size = NODEDSZ(srcnode);
8098 			data.mv_data = NODEDATA(srcnode);
8099 			rc = mdb_node_add(cdst, j, &key, &data, NODEPGNO(srcnode), srcnode->mn_flags);
8100 			if (rc != MDB_SUCCESS)
8101 				return rc;
8102 		}
8103 	}
8104 
8105 	DPRINTF(("dst page %"Z"u now has %u keys (%.1f%% filled)",
8106 	    pdst->mp_pgno, NUMKEYS(pdst),
8107 		(float)PAGEFILL(cdst->mc_txn->mt_env, pdst) / 10));
8108 
8109 	/* Unlink the src page from parent and add to free list.
8110 	 */
8111 	csrc->mc_top--;
8112 	mdb_node_del(csrc, 0);
8113 	if (csrc->mc_ki[csrc->mc_top] == 0) {
8114 		key.mv_size = 0;
8115 		rc = mdb_update_key(csrc, &key);
8116 		if (rc) {
8117 			csrc->mc_top++;
8118 			return rc;
8119 		}
8120 	}
8121 	csrc->mc_top++;
8122 
8123 	psrc = csrc->mc_pg[csrc->mc_top];
8124 	/* If not operating on FreeDB, allow this page to be reused
8125 	 * in this txn. Otherwise just add to free list.
8126 	 */
8127 	rc = mdb_page_loose(csrc, psrc);
8128 	if (rc)
8129 		return rc;
8130 	if (IS_LEAF(psrc))
8131 		csrc->mc_db->md_leaf_pages--;
8132 	else
8133 		csrc->mc_db->md_branch_pages--;
8134 	{
8135 		/* Adjust other cursors pointing to mp */
8136 		MDB_cursor *m2, *m3;
8137 		MDB_dbi dbi = csrc->mc_dbi;
8138 		unsigned int top = csrc->mc_top;
8139 
8140 		for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8141 			if (csrc->mc_flags & C_SUB)
8142 				m3 = &m2->mc_xcursor->mx_cursor;
8143 			else
8144 				m3 = m2;
8145 			if (m3 == csrc) continue;
8146 			if (m3->mc_snum < csrc->mc_snum) continue;
8147 			if (m3->mc_pg[top] == psrc) {
8148 				m3->mc_pg[top] = pdst;
8149 				m3->mc_ki[top] += nkeys;
8150 				m3->mc_ki[top-1] = cdst->mc_ki[top-1];
8151 			} else if (m3->mc_pg[top-1] == csrc->mc_pg[top-1] &&
8152 				m3->mc_ki[top-1] > csrc->mc_ki[top-1]) {
8153 				m3->mc_ki[top-1]--;
8154 			}
8155 			if (XCURSOR_INITED(m3) && IS_LEAF(psrc))
8156 				XCURSOR_REFRESH(m3, m3->mc_pg[top], m3->mc_ki[top]);
8157 		}
8158 	}
8159 	{
8160 		unsigned int snum = cdst->mc_snum;
8161 		uint16_t depth = cdst->mc_db->md_depth;
8162 		mdb_cursor_pop(cdst);
8163 		rc = mdb_rebalance(cdst);
8164 		/* Did the tree height change? */
8165 		if (depth != cdst->mc_db->md_depth)
8166 			snum += cdst->mc_db->md_depth - depth;
8167 		cdst->mc_snum = snum;
8168 		cdst->mc_top = snum-1;
8169 	}
8170 	return rc;
8171 }
8172 
8173 /** Copy the contents of a cursor.
8174  * @param[in] csrc The cursor to copy from.
8175  * @param[out] cdst The cursor to copy to.
8176  */
8177 static void
8178 mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst)
8179 {
8180 	unsigned int i;
8181 
8182 	cdst->mc_txn = csrc->mc_txn;
8183 	cdst->mc_dbi = csrc->mc_dbi;
8184 	cdst->mc_db  = csrc->mc_db;
8185 	cdst->mc_dbx = csrc->mc_dbx;
8186 	cdst->mc_snum = csrc->mc_snum;
8187 	cdst->mc_top = csrc->mc_top;
8188 	cdst->mc_flags = csrc->mc_flags;
8189 
8190 	for (i=0; i<csrc->mc_snum; i++) {
8191 		cdst->mc_pg[i] = csrc->mc_pg[i];
8192 		cdst->mc_ki[i] = csrc->mc_ki[i];
8193 	}
8194 }
8195 
8196 /** Rebalance the tree after a delete operation.
8197  * @param[in] mc Cursor pointing to the page where rebalancing
8198  * should begin.
8199  * @return 0 on success, non-zero on failure.
8200  */
8201 static int
8202 mdb_rebalance(MDB_cursor *mc)
8203 {
8204 	MDB_node	*node;
8205 	int rc, fromleft;
8206 	unsigned int ptop, minkeys, thresh;
8207 	MDB_cursor	mn;
8208 	indx_t oldki;
8209 
8210 	if (IS_BRANCH(mc->mc_pg[mc->mc_top])) {
8211 		minkeys = 2;
8212 		thresh = 1;
8213 	} else {
8214 		minkeys = 1;
8215 		thresh = FILL_THRESHOLD;
8216 	}
8217 	DPRINTF(("rebalancing %s page %"Z"u (has %u keys, %.1f%% full)",
8218 	    IS_LEAF(mc->mc_pg[mc->mc_top]) ? "leaf" : "branch",
8219 	    mdb_dbg_pgno(mc->mc_pg[mc->mc_top]), NUMKEYS(mc->mc_pg[mc->mc_top]),
8220 		(float)PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) / 10));
8221 
8222 	if (PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) >= thresh &&
8223 		NUMKEYS(mc->mc_pg[mc->mc_top]) >= minkeys) {
8224 		DPRINTF(("no need to rebalance page %"Z"u, above fill threshold",
8225 		    mdb_dbg_pgno(mc->mc_pg[mc->mc_top])));
8226 		return MDB_SUCCESS;
8227 	}
8228 
8229 	if (mc->mc_snum < 2) {
8230 		MDB_page *mp = mc->mc_pg[0];
8231 		if (IS_SUBP(mp)) {
8232 			DPUTS("Can't rebalance a subpage, ignoring");
8233 			return MDB_SUCCESS;
8234 		}
8235 		if (NUMKEYS(mp) == 0) {
8236 			DPUTS("tree is completely empty");
8237 			mc->mc_db->md_root = P_INVALID;
8238 			mc->mc_db->md_depth = 0;
8239 			mc->mc_db->md_leaf_pages = 0;
8240 			rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
8241 			if (rc)
8242 				return rc;
8243 			/* Adjust cursors pointing to mp */
8244 			mc->mc_snum = 0;
8245 			mc->mc_top = 0;
8246 			mc->mc_flags &= ~C_INITIALIZED;
8247 			{
8248 				MDB_cursor *m2, *m3;
8249 				MDB_dbi dbi = mc->mc_dbi;
8250 
8251 				for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8252 					if (mc->mc_flags & C_SUB)
8253 						m3 = &m2->mc_xcursor->mx_cursor;
8254 					else
8255 						m3 = m2;
8256 					if (!(m3->mc_flags & C_INITIALIZED) || (m3->mc_snum < mc->mc_snum))
8257 						continue;
8258 					if (m3->mc_pg[0] == mp) {
8259 						m3->mc_snum = 0;
8260 						m3->mc_top = 0;
8261 						m3->mc_flags &= ~C_INITIALIZED;
8262 					}
8263 				}
8264 			}
8265 		} else if (IS_BRANCH(mp) && NUMKEYS(mp) == 1) {
8266 			int i;
8267 			DPUTS("collapsing root page!");
8268 			rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
8269 			if (rc)
8270 				return rc;
8271 			mc->mc_db->md_root = NODEPGNO(NODEPTR(mp, 0));
8272 			rc = mdb_page_get(mc, mc->mc_db->md_root, &mc->mc_pg[0], NULL);
8273 			if (rc)
8274 				return rc;
8275 			mc->mc_db->md_depth--;
8276 			mc->mc_db->md_branch_pages--;
8277 			mc->mc_ki[0] = mc->mc_ki[1];
8278 			for (i = 1; i<mc->mc_db->md_depth; i++) {
8279 				mc->mc_pg[i] = mc->mc_pg[i+1];
8280 				mc->mc_ki[i] = mc->mc_ki[i+1];
8281 			}
8282 			{
8283 				/* Adjust other cursors pointing to mp */
8284 				MDB_cursor *m2, *m3;
8285 				MDB_dbi dbi = mc->mc_dbi;
8286 
8287 				for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8288 					if (mc->mc_flags & C_SUB)
8289 						m3 = &m2->mc_xcursor->mx_cursor;
8290 					else
8291 						m3 = m2;
8292 					if (m3 == mc) continue;
8293 					if (!(m3->mc_flags & C_INITIALIZED))
8294 						continue;
8295 					if (m3->mc_pg[0] == mp) {
8296 						for (i=0; i<mc->mc_db->md_depth; i++) {
8297 							m3->mc_pg[i] = m3->mc_pg[i+1];
8298 							m3->mc_ki[i] = m3->mc_ki[i+1];
8299 						}
8300 						m3->mc_snum--;
8301 						m3->mc_top--;
8302 					}
8303 				}
8304 			}
8305 		} else
8306 			DPUTS("root page doesn't need rebalancing");
8307 		return MDB_SUCCESS;
8308 	}
8309 
8310 	/* The parent (branch page) must have at least 2 pointers,
8311 	 * otherwise the tree is invalid.
8312 	 */
8313 	ptop = mc->mc_top-1;
8314 	mdb_cassert(mc, NUMKEYS(mc->mc_pg[ptop]) > 1);
8315 
8316 	/* Leaf page fill factor is below the threshold.
8317 	 * Try to move keys from left or right neighbor, or
8318 	 * merge with a neighbor page.
8319 	 */
8320 
8321 	/* Find neighbors.
8322 	 */
8323 	mdb_cursor_copy(mc, &mn);
8324 	mn.mc_xcursor = NULL;
8325 
8326 	oldki = mc->mc_ki[mc->mc_top];
8327 	if (mc->mc_ki[ptop] == 0) {
8328 		/* We're the leftmost leaf in our parent.
8329 		 */
8330 		DPUTS("reading right neighbor");
8331 		mn.mc_ki[ptop]++;
8332 		node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
8333 		rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL);
8334 		if (rc)
8335 			return rc;
8336 		mn.mc_ki[mn.mc_top] = 0;
8337 		mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]);
8338 		fromleft = 0;
8339 	} else {
8340 		/* There is at least one neighbor to the left.
8341 		 */
8342 		DPUTS("reading left neighbor");
8343 		mn.mc_ki[ptop]--;
8344 		node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
8345 		rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL);
8346 		if (rc)
8347 			return rc;
8348 		mn.mc_ki[mn.mc_top] = NUMKEYS(mn.mc_pg[mn.mc_top]) - 1;
8349 		mc->mc_ki[mc->mc_top] = 0;
8350 		fromleft = 1;
8351 	}
8352 
8353 	DPRINTF(("found neighbor page %"Z"u (%u keys, %.1f%% full)",
8354 	    mn.mc_pg[mn.mc_top]->mp_pgno, NUMKEYS(mn.mc_pg[mn.mc_top]),
8355 		(float)PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) / 10));
8356 
8357 	/* If the neighbor page is above threshold and has enough keys,
8358 	 * move one key from it. Otherwise we should try to merge them.
8359 	 * (A branch page must never have less than 2 keys.)
8360 	 */
8361 	if (PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) >= thresh && NUMKEYS(mn.mc_pg[mn.mc_top]) > minkeys) {
8362 		rc = mdb_node_move(&mn, mc, fromleft);
8363 		if (fromleft) {
8364 			/* if we inserted on left, bump position up */
8365 			oldki++;
8366 		}
8367 	} else {
8368 		if (!fromleft) {
8369 			rc = mdb_page_merge(&mn, mc);
8370 		} else {
8371 			oldki += NUMKEYS(mn.mc_pg[mn.mc_top]);
8372 			mn.mc_ki[mn.mc_top] += mc->mc_ki[mn.mc_top] + 1;
8373 			/* We want mdb_rebalance to find mn when doing fixups */
8374 			WITH_CURSOR_TRACKING(mn,
8375 				rc = mdb_page_merge(mc, &mn));
8376 			mdb_cursor_copy(&mn, mc);
8377 		}
8378 		mc->mc_flags &= ~C_EOF;
8379 	}
8380 	mc->mc_ki[mc->mc_top] = oldki;
8381 	return rc;
8382 }
8383 
8384 /** Complete a delete operation started by #mdb_cursor_del(). */
8385 static int
8386 mdb_cursor_del0(MDB_cursor *mc)
8387 {
8388 	int rc;
8389 	MDB_page *mp;
8390 	indx_t ki;
8391 	unsigned int nkeys;
8392 	MDB_cursor *m2, *m3;
8393 	MDB_dbi dbi = mc->mc_dbi;
8394 
8395 	ki = mc->mc_ki[mc->mc_top];
8396 	mp = mc->mc_pg[mc->mc_top];
8397 	mdb_node_del(mc, mc->mc_db->md_pad);
8398 	mc->mc_db->md_entries--;
8399 	{
8400 		/* Adjust other cursors pointing to mp */
8401 		for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8402 			m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2;
8403 			if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED))
8404 				continue;
8405 			if (m3 == mc || m3->mc_snum < mc->mc_snum)
8406 				continue;
8407 			if (m3->mc_pg[mc->mc_top] == mp) {
8408 				if (m3->mc_ki[mc->mc_top] == ki) {
8409 					m3->mc_flags |= C_DEL;
8410 					if (mc->mc_db->md_flags & MDB_DUPSORT) {
8411 						/* Sub-cursor referred into dataset which is gone */
8412 						m3->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
8413 					}
8414 					continue;
8415 				} else if (m3->mc_ki[mc->mc_top] > ki) {
8416 					m3->mc_ki[mc->mc_top]--;
8417 				}
8418 				if (XCURSOR_INITED(m3))
8419 					XCURSOR_REFRESH(m3, m3->mc_pg[mc->mc_top], m3->mc_ki[mc->mc_top]);
8420 			}
8421 		}
8422 	}
8423 	rc = mdb_rebalance(mc);
8424 
8425 	if (rc == MDB_SUCCESS) {
8426 		/* DB is totally empty now, just bail out.
8427 		 * Other cursors adjustments were already done
8428 		 * by mdb_rebalance and aren't needed here.
8429 		 */
8430 		if (!mc->mc_snum)
8431 			return rc;
8432 
8433 		mp = mc->mc_pg[mc->mc_top];
8434 		nkeys = NUMKEYS(mp);
8435 
8436 		/* Adjust other cursors pointing to mp */
8437 		for (m2 = mc->mc_txn->mt_cursors[dbi]; !rc && m2; m2=m2->mc_next) {
8438 			m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2;
8439 			if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED))
8440 				continue;
8441 			if (m3->mc_snum < mc->mc_snum)
8442 				continue;
8443 			if (m3->mc_pg[mc->mc_top] == mp) {
8444 				/* if m3 points past last node in page, find next sibling */
8445 				if (m3->mc_ki[mc->mc_top] >= mc->mc_ki[mc->mc_top]) {
8446 					if (m3->mc_ki[mc->mc_top] >= nkeys) {
8447 						rc = mdb_cursor_sibling(m3, 1);
8448 						if (rc == MDB_NOTFOUND) {
8449 							m3->mc_flags |= C_EOF;
8450 							rc = MDB_SUCCESS;
8451 							continue;
8452 						}
8453 					}
8454 					if (mc->mc_db->md_flags & MDB_DUPSORT) {
8455 						MDB_node *node = NODEPTR(m3->mc_pg[m3->mc_top], m3->mc_ki[m3->mc_top]);
8456 						/* If this node has dupdata, it may need to be reinited
8457 						 * because its data has moved.
8458 						 * If the xcursor was not initd it must be reinited.
8459 						 * Else if node points to a subDB, nothing is needed.
8460 						 * Else (xcursor was initd, not a subDB) needs mc_pg[0] reset.
8461 						 */
8462 						if (node->mn_flags & F_DUPDATA) {
8463 							if (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) {
8464 								if (!(node->mn_flags & F_SUBDATA))
8465 									m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node);
8466 							} else
8467 								mdb_xcursor_init1(m3, node);
8468 						}
8469 					}
8470 				}
8471 			}
8472 		}
8473 		mc->mc_flags |= C_DEL;
8474 	}
8475 
8476 	if (rc)
8477 		mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
8478 	return rc;
8479 }
8480 
8481 int
8482 mdb_del(MDB_txn *txn, MDB_dbi dbi,
8483     MDB_val *key, MDB_val *data)
8484 {
8485 	if (!key || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
8486 		return EINVAL;
8487 
8488 	if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
8489 		return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
8490 
8491 	if (!F_ISSET(txn->mt_dbs[dbi].md_flags, MDB_DUPSORT)) {
8492 		/* must ignore any data */
8493 		data = NULL;
8494 	}
8495 
8496 	return mdb_del0(txn, dbi, key, data, 0);
8497 }
8498 
8499 static int
8500 mdb_del0(MDB_txn *txn, MDB_dbi dbi,
8501 	MDB_val *key, MDB_val *data, unsigned flags)
8502 {
8503 	MDB_cursor mc;
8504 	MDB_xcursor mx;
8505 	MDB_cursor_op op;
8506 	MDB_val rdata, *xdata;
8507 	int		 rc, exact = 0;
8508 	DKBUF;
8509 
8510 	DPRINTF(("====> delete db %u key [%s]", dbi, DKEY(key)));
8511 
8512 	mdb_cursor_init(&mc, txn, dbi, &mx);
8513 
8514 	if (data) {
8515 		op = MDB_GET_BOTH;
8516 		rdata = *data;
8517 		xdata = &rdata;
8518 	} else {
8519 		op = MDB_SET;
8520 		xdata = NULL;
8521 		flags |= MDB_NODUPDATA;
8522 	}
8523 	rc = mdb_cursor_set(&mc, key, xdata, op, &exact);
8524 	if (rc == 0) {
8525 		/* let mdb_page_split know about this cursor if needed:
8526 		 * delete will trigger a rebalance; if it needs to move
8527 		 * a node from one page to another, it will have to
8528 		 * update the parent's separator key(s). If the new sepkey
8529 		 * is larger than the current one, the parent page may
8530 		 * run out of space, triggering a split. We need this
8531 		 * cursor to be consistent until the end of the rebalance.
8532 		 */
8533 		mc.mc_flags |= C_UNTRACK;
8534 		mc.mc_next = txn->mt_cursors[dbi];
8535 		txn->mt_cursors[dbi] = &mc;
8536 		rc = mdb_cursor_del(&mc, flags);
8537 		txn->mt_cursors[dbi] = mc.mc_next;
8538 	}
8539 	return rc;
8540 }
8541 
8542 /** Split a page and insert a new node.
8543  * Set #MDB_TXN_ERROR on failure.
8544  * @param[in,out] mc Cursor pointing to the page and desired insertion index.
8545  * The cursor will be updated to point to the actual page and index where
8546  * the node got inserted after the split.
8547  * @param[in] newkey The key for the newly inserted node.
8548  * @param[in] newdata The data for the newly inserted node.
8549  * @param[in] newpgno The page number, if the new node is a branch node.
8550  * @param[in] nflags The #NODE_ADD_FLAGS for the new node.
8551  * @return 0 on success, non-zero on failure.
8552  */
8553 static int
8554 mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, pgno_t newpgno,
8555 	unsigned int nflags)
8556 {
8557 	unsigned int flags;
8558 	int		 rc = MDB_SUCCESS, new_root = 0, did_split = 0;
8559 	indx_t		 newindx;
8560 	pgno_t		 pgno = 0;
8561 	int	 i, j, split_indx, nkeys, pmax;
8562 	MDB_env 	*env = mc->mc_txn->mt_env;
8563 	MDB_node	*node;
8564 	MDB_val	 sepkey, rkey, xdata, *rdata = &xdata;
8565 	MDB_page	*copy = NULL;
8566 	MDB_page	*mp, *rp, *pp;
8567 	int ptop;
8568 	MDB_cursor	mn;
8569 	DKBUF;
8570 
8571 	mp = mc->mc_pg[mc->mc_top];
8572 	newindx = mc->mc_ki[mc->mc_top];
8573 	nkeys = NUMKEYS(mp);
8574 
8575 	DPRINTF(("-----> splitting %s page %"Z"u and adding [%s] at index %i/%i",
8576 	    IS_LEAF(mp) ? "leaf" : "branch", mp->mp_pgno,
8577 	    DKEY(newkey), mc->mc_ki[mc->mc_top], nkeys));
8578 
8579 	/* Create a right sibling. */
8580 	if ((rc = mdb_page_new(mc, mp->mp_flags, 1, &rp)))
8581 		return rc;
8582 	rp->mp_pad = mp->mp_pad;
8583 	DPRINTF(("new right sibling: page %"Z"u", rp->mp_pgno));
8584 
8585 	/* Usually when splitting the root page, the cursor
8586 	 * height is 1. But when called from mdb_update_key,
8587 	 * the cursor height may be greater because it walks
8588 	 * up the stack while finding the branch slot to update.
8589 	 */
8590 	if (mc->mc_top < 1) {
8591 		if ((rc = mdb_page_new(mc, P_BRANCH, 1, &pp)))
8592 			goto done;
8593 		/* shift current top to make room for new parent */
8594 		for (i=mc->mc_snum; i>0; i--) {
8595 			mc->mc_pg[i] = mc->mc_pg[i-1];
8596 			mc->mc_ki[i] = mc->mc_ki[i-1];
8597 		}
8598 		mc->mc_pg[0] = pp;
8599 		mc->mc_ki[0] = 0;
8600 		mc->mc_db->md_root = pp->mp_pgno;
8601 		DPRINTF(("root split! new root = %"Z"u", pp->mp_pgno));
8602 		new_root = mc->mc_db->md_depth++;
8603 
8604 		/* Add left (implicit) pointer. */
8605 		if ((rc = mdb_node_add(mc, 0, NULL, NULL, mp->mp_pgno, 0)) != MDB_SUCCESS) {
8606 			/* undo the pre-push */
8607 			mc->mc_pg[0] = mc->mc_pg[1];
8608 			mc->mc_ki[0] = mc->mc_ki[1];
8609 			mc->mc_db->md_root = mp->mp_pgno;
8610 			mc->mc_db->md_depth--;
8611 			goto done;
8612 		}
8613 		mc->mc_snum++;
8614 		mc->mc_top++;
8615 		ptop = 0;
8616 	} else {
8617 		ptop = mc->mc_top-1;
8618 		DPRINTF(("parent branch page is %"Z"u", mc->mc_pg[ptop]->mp_pgno));
8619 	}
8620 
8621 	mdb_cursor_copy(mc, &mn);
8622 	mn.mc_xcursor = NULL;
8623 	mn.mc_pg[mn.mc_top] = rp;
8624 	mn.mc_ki[ptop] = mc->mc_ki[ptop]+1;
8625 
8626 	if (nflags & MDB_APPEND) {
8627 		mn.mc_ki[mn.mc_top] = 0;
8628 		sepkey = *newkey;
8629 		split_indx = newindx;
8630 		nkeys = 0;
8631 	} else {
8632 
8633 		split_indx = (nkeys+1) / 2;
8634 
8635 		if (IS_LEAF2(rp)) {
8636 			char *split, *ins;
8637 			int x;
8638 			unsigned int lsize, rsize, ksize;
8639 			/* Move half of the keys to the right sibling */
8640 			x = mc->mc_ki[mc->mc_top] - split_indx;
8641 			ksize = mc->mc_db->md_pad;
8642 			split = LEAF2KEY(mp, split_indx, ksize);
8643 			rsize = (nkeys - split_indx) * ksize;
8644 			lsize = (nkeys - split_indx) * sizeof(indx_t);
8645 			mp->mp_lower -= lsize;
8646 			rp->mp_lower += lsize;
8647 			mp->mp_upper += rsize - lsize;
8648 			rp->mp_upper -= rsize - lsize;
8649 			sepkey.mv_size = ksize;
8650 			if (newindx == split_indx) {
8651 				sepkey.mv_data = newkey->mv_data;
8652 			} else {
8653 				sepkey.mv_data = split;
8654 			}
8655 			if (x<0) {
8656 				ins = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], ksize);
8657 				memcpy(rp->mp_ptrs, split, rsize);
8658 				sepkey.mv_data = rp->mp_ptrs;
8659 				memmove(ins+ksize, ins, (split_indx - mc->mc_ki[mc->mc_top]) * ksize);
8660 				memcpy(ins, newkey->mv_data, ksize);
8661 				mp->mp_lower += sizeof(indx_t);
8662 				mp->mp_upper -= ksize - sizeof(indx_t);
8663 			} else {
8664 				if (x)
8665 					memcpy(rp->mp_ptrs, split, x * ksize);
8666 				ins = LEAF2KEY(rp, x, ksize);
8667 				memcpy(ins, newkey->mv_data, ksize);
8668 				memcpy(ins+ksize, split + x * ksize, rsize - x * ksize);
8669 				rp->mp_lower += sizeof(indx_t);
8670 				rp->mp_upper -= ksize - sizeof(indx_t);
8671 				mc->mc_ki[mc->mc_top] = x;
8672 			}
8673 		} else {
8674 			int psize, nsize, k;
8675 			/* Maximum free space in an empty page */
8676 			pmax = env->me_psize - PAGEHDRSZ;
8677 			if (IS_LEAF(mp))
8678 				nsize = mdb_leaf_size(env, newkey, newdata);
8679 			else
8680 				nsize = mdb_branch_size(env, newkey);
8681 			nsize = EVEN(nsize);
8682 
8683 			/* grab a page to hold a temporary copy */
8684 			copy = mdb_page_malloc(mc->mc_txn, 1);
8685 			if (copy == NULL) {
8686 				rc = ENOMEM;
8687 				goto done;
8688 			}
8689 			copy->mp_pgno  = mp->mp_pgno;
8690 			copy->mp_flags = mp->mp_flags;
8691 			copy->mp_lower = (PAGEHDRSZ-PAGEBASE);
8692 			copy->mp_upper = env->me_psize - PAGEBASE;
8693 
8694 			/* prepare to insert */
8695 			for (i=0, j=0; i<nkeys; i++) {
8696 				if (i == newindx) {
8697 					copy->mp_ptrs[j++] = 0;
8698 				}
8699 				copy->mp_ptrs[j++] = mp->mp_ptrs[i];
8700 			}
8701 
8702 			/* When items are relatively large the split point needs
8703 			 * to be checked, because being off-by-one will make the
8704 			 * difference between success or failure in mdb_node_add.
8705 			 *
8706 			 * It's also relevant if a page happens to be laid out
8707 			 * such that one half of its nodes are all "small" and
8708 			 * the other half of its nodes are "large." If the new
8709 			 * item is also "large" and falls on the half with
8710 			 * "large" nodes, it also may not fit.
8711 			 *
8712 			 * As a final tweak, if the new item goes on the last
8713 			 * spot on the page (and thus, onto the new page), bias
8714 			 * the split so the new page is emptier than the old page.
8715 			 * This yields better packing during sequential inserts.
8716 			 */
8717 			if (nkeys < 20 || nsize > pmax/16 || newindx >= nkeys) {
8718 				/* Find split point */
8719 				psize = 0;
8720 				if (newindx <= split_indx || newindx >= nkeys) {
8721 					i = 0; j = 1;
8722 					k = newindx >= nkeys ? nkeys : split_indx+1+IS_LEAF(mp);
8723 				} else {
8724 					i = nkeys; j = -1;
8725 					k = split_indx-1;
8726 				}
8727 				for (; i!=k; i+=j) {
8728 					if (i == newindx) {
8729 						psize += nsize;
8730 						node = NULL;
8731 					} else {
8732 						node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE);
8733 						psize += NODESIZE + NODEKSZ(node) + sizeof(indx_t);
8734 						if (IS_LEAF(mp)) {
8735 							if (F_ISSET(node->mn_flags, F_BIGDATA))
8736 								psize += sizeof(pgno_t);
8737 							else
8738 								psize += NODEDSZ(node);
8739 						}
8740 						psize = EVEN(psize);
8741 					}
8742 					if (psize > pmax || i == k-j) {
8743 						split_indx = i + (j<0);
8744 						break;
8745 					}
8746 				}
8747 			}
8748 			if (split_indx == newindx) {
8749 				sepkey.mv_size = newkey->mv_size;
8750 				sepkey.mv_data = newkey->mv_data;
8751 			} else {
8752 				node = (MDB_node *)((char *)mp + copy->mp_ptrs[split_indx] + PAGEBASE);
8753 				sepkey.mv_size = node->mn_ksize;
8754 				sepkey.mv_data = NODEKEY(node);
8755 			}
8756 		}
8757 	}
8758 
8759 	DPRINTF(("separator is %d [%s]", split_indx, DKEY(&sepkey)));
8760 
8761 	/* Copy separator key to the parent.
8762 	 */
8763 	if (SIZELEFT(mn.mc_pg[ptop]) < mdb_branch_size(env, &sepkey)) {
8764 		int snum = mc->mc_snum;
8765 		mn.mc_snum--;
8766 		mn.mc_top--;
8767 		did_split = 1;
8768 		/* We want other splits to find mn when doing fixups */
8769 		WITH_CURSOR_TRACKING(mn,
8770 			rc = mdb_page_split(&mn, &sepkey, NULL, rp->mp_pgno, 0));
8771 		if (rc)
8772 			goto done;
8773 
8774 		/* root split? */
8775 		if (mc->mc_snum > snum) {
8776 			ptop++;
8777 		}
8778 		/* Right page might now have changed parent.
8779 		 * Check if left page also changed parent.
8780 		 */
8781 		if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
8782 		    mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
8783 			for (i=0; i<ptop; i++) {
8784 				mc->mc_pg[i] = mn.mc_pg[i];
8785 				mc->mc_ki[i] = mn.mc_ki[i];
8786 			}
8787 			mc->mc_pg[ptop] = mn.mc_pg[ptop];
8788 			if (mn.mc_ki[ptop]) {
8789 				mc->mc_ki[ptop] = mn.mc_ki[ptop] - 1;
8790 			} else {
8791 				/* find right page's left sibling */
8792 				mc->mc_ki[ptop] = mn.mc_ki[ptop];
8793 				mdb_cursor_sibling(mc, 0);
8794 			}
8795 		}
8796 	} else {
8797 		mn.mc_top--;
8798 		rc = mdb_node_add(&mn, mn.mc_ki[ptop], &sepkey, NULL, rp->mp_pgno, 0);
8799 		mn.mc_top++;
8800 	}
8801 	if (rc != MDB_SUCCESS) {
8802 		goto done;
8803 	}
8804 	if (nflags & MDB_APPEND) {
8805 		mc->mc_pg[mc->mc_top] = rp;
8806 		mc->mc_ki[mc->mc_top] = 0;
8807 		rc = mdb_node_add(mc, 0, newkey, newdata, newpgno, nflags);
8808 		if (rc)
8809 			goto done;
8810 		for (i=0; i<mc->mc_top; i++)
8811 			mc->mc_ki[i] = mn.mc_ki[i];
8812 	} else if (!IS_LEAF2(mp)) {
8813 		/* Move nodes */
8814 		mc->mc_pg[mc->mc_top] = rp;
8815 		i = split_indx;
8816 		j = 0;
8817 		do {
8818 			if (i == newindx) {
8819 				rkey.mv_data = newkey->mv_data;
8820 				rkey.mv_size = newkey->mv_size;
8821 				if (IS_LEAF(mp)) {
8822 					rdata = newdata;
8823 				} else
8824 					pgno = newpgno;
8825 				flags = nflags;
8826 				/* Update index for the new key. */
8827 				mc->mc_ki[mc->mc_top] = j;
8828 			} else {
8829 				node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE);
8830 				rkey.mv_data = NODEKEY(node);
8831 				rkey.mv_size = node->mn_ksize;
8832 				if (IS_LEAF(mp)) {
8833 					xdata.mv_data = NODEDATA(node);
8834 					xdata.mv_size = NODEDSZ(node);
8835 					rdata = &xdata;
8836 				} else
8837 					pgno = NODEPGNO(node);
8838 				flags = node->mn_flags;
8839 			}
8840 
8841 			if (!IS_LEAF(mp) && j == 0) {
8842 				/* First branch index doesn't need key data. */
8843 				rkey.mv_size = 0;
8844 			}
8845 
8846 			rc = mdb_node_add(mc, j, &rkey, rdata, pgno, flags);
8847 			if (rc)
8848 				goto done;
8849 			if (i == nkeys) {
8850 				i = 0;
8851 				j = 0;
8852 				mc->mc_pg[mc->mc_top] = copy;
8853 			} else {
8854 				i++;
8855 				j++;
8856 			}
8857 		} while (i != split_indx);
8858 
8859 		nkeys = NUMKEYS(copy);
8860 		for (i=0; i<nkeys; i++)
8861 			mp->mp_ptrs[i] = copy->mp_ptrs[i];
8862 		mp->mp_lower = copy->mp_lower;
8863 		mp->mp_upper = copy->mp_upper;
8864 		memcpy(NODEPTR(mp, nkeys-1), NODEPTR(copy, nkeys-1),
8865 			env->me_psize - copy->mp_upper - PAGEBASE);
8866 
8867 		/* reset back to original page */
8868 		if (newindx < split_indx) {
8869 			mc->mc_pg[mc->mc_top] = mp;
8870 		} else {
8871 			mc->mc_pg[mc->mc_top] = rp;
8872 			mc->mc_ki[ptop]++;
8873 			/* Make sure mc_ki is still valid.
8874 			 */
8875 			if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
8876 				mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
8877 				for (i=0; i<=ptop; i++) {
8878 					mc->mc_pg[i] = mn.mc_pg[i];
8879 					mc->mc_ki[i] = mn.mc_ki[i];
8880 				}
8881 			}
8882 		}
8883 		if (nflags & MDB_RESERVE) {
8884 			node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
8885 			if (!(node->mn_flags & F_BIGDATA))
8886 				newdata->mv_data = NODEDATA(node);
8887 		}
8888 	} else {
8889 		if (newindx >= split_indx) {
8890 			mc->mc_pg[mc->mc_top] = rp;
8891 			mc->mc_ki[ptop]++;
8892 			/* Make sure mc_ki is still valid.
8893 			 */
8894 			if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
8895 				mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
8896 				for (i=0; i<=ptop; i++) {
8897 					mc->mc_pg[i] = mn.mc_pg[i];
8898 					mc->mc_ki[i] = mn.mc_ki[i];
8899 				}
8900 			}
8901 		}
8902 	}
8903 
8904 	{
8905 		/* Adjust other cursors pointing to mp */
8906 		MDB_cursor *m2, *m3;
8907 		MDB_dbi dbi = mc->mc_dbi;
8908 		nkeys = NUMKEYS(mp);
8909 
8910 		for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
8911 			if (mc->mc_flags & C_SUB)
8912 				m3 = &m2->mc_xcursor->mx_cursor;
8913 			else
8914 				m3 = m2;
8915 			if (m3 == mc)
8916 				continue;
8917 			if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED))
8918 				continue;
8919 			if (new_root) {
8920 				int k;
8921 				/* sub cursors may be on different DB */
8922 				if (m3->mc_pg[0] != mp)
8923 					continue;
8924 				/* root split */
8925 				for (k=new_root; k>=0; k--) {
8926 					m3->mc_ki[k+1] = m3->mc_ki[k];
8927 					m3->mc_pg[k+1] = m3->mc_pg[k];
8928 				}
8929 				if (m3->mc_ki[0] >= nkeys) {
8930 					m3->mc_ki[0] = 1;
8931 				} else {
8932 					m3->mc_ki[0] = 0;
8933 				}
8934 				m3->mc_pg[0] = mc->mc_pg[0];
8935 				m3->mc_snum++;
8936 				m3->mc_top++;
8937 			}
8938 			if (m3->mc_top >= mc->mc_top && m3->mc_pg[mc->mc_top] == mp) {
8939 				if (m3->mc_ki[mc->mc_top] >= newindx && !(nflags & MDB_SPLIT_REPLACE))
8940 					m3->mc_ki[mc->mc_top]++;
8941 				if (m3->mc_ki[mc->mc_top] >= nkeys) {
8942 					m3->mc_pg[mc->mc_top] = rp;
8943 					m3->mc_ki[mc->mc_top] -= nkeys;
8944 					for (i=0; i<mc->mc_top; i++) {
8945 						m3->mc_ki[i] = mn.mc_ki[i];
8946 						m3->mc_pg[i] = mn.mc_pg[i];
8947 					}
8948 				}
8949 			} else if (!did_split && m3->mc_top >= ptop && m3->mc_pg[ptop] == mc->mc_pg[ptop] &&
8950 				m3->mc_ki[ptop] >= mc->mc_ki[ptop]) {
8951 				m3->mc_ki[ptop]++;
8952 			}
8953 			if (XCURSOR_INITED(m3) && IS_LEAF(mp))
8954 				XCURSOR_REFRESH(m3, m3->mc_pg[mc->mc_top], m3->mc_ki[mc->mc_top]);
8955 		}
8956 	}
8957 	DPRINTF(("mp left: %d, rp left: %d", SIZELEFT(mp), SIZELEFT(rp)));
8958 
8959 done:
8960 	if (copy)					/* tmp page */
8961 		mdb_page_free(env, copy);
8962 	if (rc)
8963 		mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
8964 	return rc;
8965 }
8966 
8967 int
8968 mdb_put(MDB_txn *txn, MDB_dbi dbi,
8969     MDB_val *key, MDB_val *data, unsigned int flags)
8970 {
8971 	MDB_cursor mc;
8972 	MDB_xcursor mx;
8973 	int rc;
8974 
8975 	if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
8976 		return EINVAL;
8977 
8978 	if (flags & ~(MDB_NOOVERWRITE|MDB_NODUPDATA|MDB_RESERVE|MDB_APPEND|MDB_APPENDDUP))
8979 		return EINVAL;
8980 
8981 	if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
8982 		return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
8983 
8984 	mdb_cursor_init(&mc, txn, dbi, &mx);
8985 	mc.mc_next = txn->mt_cursors[dbi];
8986 	txn->mt_cursors[dbi] = &mc;
8987 	rc = mdb_cursor_put(&mc, key, data, flags);
8988 	txn->mt_cursors[dbi] = mc.mc_next;
8989 	return rc;
8990 }
8991 
8992 #ifndef MDB_WBUF
8993 #define MDB_WBUF	(1024*1024)
8994 #endif
8995 #define MDB_EOF		0x10	/**< #mdb_env_copyfd1() is done reading */
8996 
8997 	/** State needed for a double-buffering compacting copy. */
8998 typedef struct mdb_copy {
8999 	MDB_env *mc_env;
9000 	MDB_txn *mc_txn;
9001 	pthread_mutex_t mc_mutex;
9002 	pthread_cond_t mc_cond;	/**< Condition variable for #mc_new */
9003 	char *mc_wbuf[2];
9004 	char *mc_over[2];
9005 	int mc_wlen[2];
9006 	int mc_olen[2];
9007 	pgno_t mc_next_pgno;
9008 	HANDLE mc_fd;
9009 	int mc_toggle;			/**< Buffer number in provider */
9010 	int mc_new;				/**< (0-2 buffers to write) | (#MDB_EOF at end) */
9011 	/** Error code.  Never cleared if set.  Both threads can set nonzero
9012 	 *	to fail the copy.  Not mutex-protected, LMDB expects atomic int.
9013 	 */
9014 	volatile int mc_error;
9015 } mdb_copy;
9016 
9017 	/** Dedicated writer thread for compacting copy. */
9018 static THREAD_RET ESECT CALL_CONV
9019 mdb_env_copythr(void *arg)
9020 {
9021 	mdb_copy *my = arg;
9022 	char *ptr;
9023 	int toggle = 0, wsize, rc;
9024 #ifdef _WIN32
9025 	DWORD len;
9026 #define DO_WRITE(rc, fd, ptr, w2, len)	rc = WriteFile(fd, ptr, w2, &len, NULL)
9027 #else
9028 	int len;
9029 #define DO_WRITE(rc, fd, ptr, w2, len)	len = write(fd, ptr, w2); rc = (len >= 0)
9030 #ifdef SIGPIPE
9031 	sigset_t set;
9032 	sigemptyset(&set);
9033 	sigaddset(&set, SIGPIPE);
9034 	if ((rc = pthread_sigmask(SIG_BLOCK, &set, NULL)) != 0)
9035 		my->mc_error = rc;
9036 #endif
9037 #endif
9038 
9039 	pthread_mutex_lock(&my->mc_mutex);
9040 	for(;;) {
9041 		while (!my->mc_new)
9042 			pthread_cond_wait(&my->mc_cond, &my->mc_mutex);
9043 		if (my->mc_new == 0 + MDB_EOF) /* 0 buffers, just EOF */
9044 			break;
9045 		wsize = my->mc_wlen[toggle];
9046 		ptr = my->mc_wbuf[toggle];
9047 again:
9048 		rc = MDB_SUCCESS;
9049 		while (wsize > 0 && !my->mc_error) {
9050 			DO_WRITE(rc, my->mc_fd, ptr, wsize, len);
9051 			if (!rc) {
9052 				rc = ErrCode();
9053 #if defined(SIGPIPE) && !defined(_WIN32)
9054 				if (rc == EPIPE) {
9055 					/* Collect the pending SIGPIPE, otherwise at least OS X
9056 					 * gives it to the process on thread-exit (ITS#8504).
9057 					 */
9058 					int tmp;
9059 					sigwait(&set, &tmp);
9060 				}
9061 #endif
9062 				break;
9063 			} else if (len > 0) {
9064 				rc = MDB_SUCCESS;
9065 				ptr += len;
9066 				wsize -= len;
9067 				continue;
9068 			} else {
9069 				rc = EIO;
9070 				break;
9071 			}
9072 		}
9073 		if (rc) {
9074 			my->mc_error = rc;
9075 		}
9076 		/* If there's an overflow page tail, write it too */
9077 		if (my->mc_olen[toggle]) {
9078 			wsize = my->mc_olen[toggle];
9079 			ptr = my->mc_over[toggle];
9080 			my->mc_olen[toggle] = 0;
9081 			goto again;
9082 		}
9083 		my->mc_wlen[toggle] = 0;
9084 		toggle ^= 1;
9085 		/* Return the empty buffer to provider */
9086 		my->mc_new--;
9087 		pthread_cond_signal(&my->mc_cond);
9088 	}
9089 	pthread_mutex_unlock(&my->mc_mutex);
9090 	return (THREAD_RET)0;
9091 #undef DO_WRITE
9092 }
9093 
9094 	/** Give buffer and/or #MDB_EOF to writer thread, await unused buffer.
9095 	 *
9096 	 * @param[in] my control structure.
9097 	 * @param[in] adjust (1 to hand off 1 buffer) | (MDB_EOF when ending).
9098 	 */
9099 static int ESECT
9100 mdb_env_cthr_toggle(mdb_copy *my, int adjust)
9101 {
9102 	pthread_mutex_lock(&my->mc_mutex);
9103 	my->mc_new += adjust;
9104 	pthread_cond_signal(&my->mc_cond);
9105 	while (my->mc_new & 2)		/* both buffers in use */
9106 		pthread_cond_wait(&my->mc_cond, &my->mc_mutex);
9107 	pthread_mutex_unlock(&my->mc_mutex);
9108 
9109 	my->mc_toggle ^= (adjust & 1);
9110 	/* Both threads reset mc_wlen, to be safe from threading errors */
9111 	my->mc_wlen[my->mc_toggle] = 0;
9112 	return my->mc_error;
9113 }
9114 
9115 	/** Depth-first tree traversal for compacting copy.
9116 	 * @param[in] my control structure.
9117 	 * @param[in,out] pg database root.
9118 	 * @param[in] flags includes #F_DUPDATA if it is a sorted-duplicate sub-DB.
9119 	 */
9120 static int ESECT
9121 mdb_env_cwalk(mdb_copy *my, pgno_t *pg, int flags)
9122 {
9123 	MDB_cursor mc = {0};
9124 	MDB_node *ni;
9125 	MDB_page *mo, *mp, *leaf;
9126 	char *buf, *ptr;
9127 	int rc, toggle;
9128 	unsigned int i;
9129 
9130 	/* Empty DB, nothing to do */
9131 	if (*pg == P_INVALID)
9132 		return MDB_SUCCESS;
9133 
9134 	mc.mc_snum = 1;
9135 	mc.mc_txn = my->mc_txn;
9136 
9137 	rc = mdb_page_get(&mc, *pg, &mc.mc_pg[0], NULL);
9138 	if (rc)
9139 		return rc;
9140 	rc = mdb_page_search_root(&mc, NULL, MDB_PS_FIRST);
9141 	if (rc)
9142 		return rc;
9143 
9144 	/* Make cursor pages writable */
9145 	buf = ptr = malloc(my->mc_env->me_psize * mc.mc_snum);
9146 	if (buf == NULL)
9147 		return ENOMEM;
9148 
9149 	for (i=0; i<mc.mc_top; i++) {
9150 		mdb_page_copy((MDB_page *)ptr, mc.mc_pg[i], my->mc_env->me_psize);
9151 		mc.mc_pg[i] = (MDB_page *)ptr;
9152 		ptr += my->mc_env->me_psize;
9153 	}
9154 
9155 	/* This is writable space for a leaf page. Usually not needed. */
9156 	leaf = (MDB_page *)ptr;
9157 
9158 	toggle = my->mc_toggle;
9159 	while (mc.mc_snum > 0) {
9160 		unsigned n;
9161 		mp = mc.mc_pg[mc.mc_top];
9162 		n = NUMKEYS(mp);
9163 
9164 		if (IS_LEAF(mp)) {
9165 			if (!IS_LEAF2(mp) && !(flags & F_DUPDATA)) {
9166 				for (i=0; i<n; i++) {
9167 					ni = NODEPTR(mp, i);
9168 					if (ni->mn_flags & F_BIGDATA) {
9169 						MDB_page *omp;
9170 						pgno_t pg;
9171 
9172 						/* Need writable leaf */
9173 						if (mp != leaf) {
9174 							mc.mc_pg[mc.mc_top] = leaf;
9175 							mdb_page_copy(leaf, mp, my->mc_env->me_psize);
9176 							mp = leaf;
9177 							ni = NODEPTR(mp, i);
9178 						}
9179 
9180 						memcpy(&pg, NODEDATA(ni), sizeof(pg));
9181 						memcpy(NODEDATA(ni), &my->mc_next_pgno, sizeof(pgno_t));
9182 						rc = mdb_page_get(&mc, pg, &omp, NULL);
9183 						if (rc)
9184 							goto done;
9185 						if (my->mc_wlen[toggle] >= MDB_WBUF) {
9186 							rc = mdb_env_cthr_toggle(my, 1);
9187 							if (rc)
9188 								goto done;
9189 							toggle = my->mc_toggle;
9190 						}
9191 						mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]);
9192 						memcpy(mo, omp, my->mc_env->me_psize);
9193 						mo->mp_pgno = my->mc_next_pgno;
9194 						my->mc_next_pgno += omp->mp_pages;
9195 						my->mc_wlen[toggle] += my->mc_env->me_psize;
9196 						if (omp->mp_pages > 1) {
9197 							my->mc_olen[toggle] = my->mc_env->me_psize * (omp->mp_pages - 1);
9198 							my->mc_over[toggle] = (char *)omp + my->mc_env->me_psize;
9199 							rc = mdb_env_cthr_toggle(my, 1);
9200 							if (rc)
9201 								goto done;
9202 							toggle = my->mc_toggle;
9203 						}
9204 					} else if (ni->mn_flags & F_SUBDATA) {
9205 						MDB_db db;
9206 
9207 						/* Need writable leaf */
9208 						if (mp != leaf) {
9209 							mc.mc_pg[mc.mc_top] = leaf;
9210 							mdb_page_copy(leaf, mp, my->mc_env->me_psize);
9211 							mp = leaf;
9212 							ni = NODEPTR(mp, i);
9213 						}
9214 
9215 						memcpy(&db, NODEDATA(ni), sizeof(db));
9216 						my->mc_toggle = toggle;
9217 						rc = mdb_env_cwalk(my, &db.md_root, ni->mn_flags & F_DUPDATA);
9218 						if (rc)
9219 							goto done;
9220 						toggle = my->mc_toggle;
9221 						memcpy(NODEDATA(ni), &db, sizeof(db));
9222 					}
9223 				}
9224 			}
9225 		} else {
9226 			mc.mc_ki[mc.mc_top]++;
9227 			if (mc.mc_ki[mc.mc_top] < n) {
9228 				pgno_t pg;
9229 again:
9230 				ni = NODEPTR(mp, mc.mc_ki[mc.mc_top]);
9231 				pg = NODEPGNO(ni);
9232 				rc = mdb_page_get(&mc, pg, &mp, NULL);
9233 				if (rc)
9234 					goto done;
9235 				mc.mc_top++;
9236 				mc.mc_snum++;
9237 				mc.mc_ki[mc.mc_top] = 0;
9238 				if (IS_BRANCH(mp)) {
9239 					/* Whenever we advance to a sibling branch page,
9240 					 * we must proceed all the way down to its first leaf.
9241 					 */
9242 					mdb_page_copy(mc.mc_pg[mc.mc_top], mp, my->mc_env->me_psize);
9243 					goto again;
9244 				} else
9245 					mc.mc_pg[mc.mc_top] = mp;
9246 				continue;
9247 			}
9248 		}
9249 		if (my->mc_wlen[toggle] >= MDB_WBUF) {
9250 			rc = mdb_env_cthr_toggle(my, 1);
9251 			if (rc)
9252 				goto done;
9253 			toggle = my->mc_toggle;
9254 		}
9255 		mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]);
9256 		mdb_page_copy(mo, mp, my->mc_env->me_psize);
9257 		mo->mp_pgno = my->mc_next_pgno++;
9258 		my->mc_wlen[toggle] += my->mc_env->me_psize;
9259 		if (mc.mc_top) {
9260 			/* Update parent if there is one */
9261 			ni = NODEPTR(mc.mc_pg[mc.mc_top-1], mc.mc_ki[mc.mc_top-1]);
9262 			SETPGNO(ni, mo->mp_pgno);
9263 			mdb_cursor_pop(&mc);
9264 		} else {
9265 			/* Otherwise we're done */
9266 			*pg = mo->mp_pgno;
9267 			break;
9268 		}
9269 	}
9270 done:
9271 	free(buf);
9272 	return rc;
9273 }
9274 
9275 	/** Copy environment with compaction. */
9276 static int ESECT
9277 mdb_env_copyfd1(MDB_env *env, HANDLE fd)
9278 {
9279 	MDB_meta *mm;
9280 	MDB_page *mp;
9281 	mdb_copy my = {0};
9282 	MDB_txn *txn = NULL;
9283 	pthread_t thr;
9284 	pgno_t root, new_root;
9285 	int rc = MDB_SUCCESS;
9286 
9287 #ifdef _WIN32
9288 	if (!(my.mc_mutex = CreateMutex(NULL, FALSE, NULL)) ||
9289 		!(my.mc_cond = CreateEvent(NULL, FALSE, FALSE, NULL))) {
9290 		rc = ErrCode();
9291 		goto done;
9292 	}
9293 	my.mc_wbuf[0] = _aligned_malloc(MDB_WBUF*2, env->me_os_psize);
9294 	if (my.mc_wbuf[0] == NULL) {
9295 		/* _aligned_malloc() sets errno, but we use Windows error codes */
9296 		rc = ERROR_NOT_ENOUGH_MEMORY;
9297 		goto done;
9298 	}
9299 #else
9300 	if ((rc = pthread_mutex_init(&my.mc_mutex, NULL)) != 0)
9301 		return rc;
9302 	if ((rc = pthread_cond_init(&my.mc_cond, NULL)) != 0)
9303 		goto done2;
9304 #ifdef HAVE_MEMALIGN
9305 	my.mc_wbuf[0] = memalign(env->me_os_psize, MDB_WBUF*2);
9306 	if (my.mc_wbuf[0] == NULL) {
9307 		rc = errno;
9308 		goto done;
9309 	}
9310 #else
9311 	{
9312 		void *p;
9313 		if ((rc = posix_memalign(&p, env->me_os_psize, MDB_WBUF*2)) != 0)
9314 			goto done;
9315 		my.mc_wbuf[0] = p;
9316 	}
9317 #endif
9318 #endif
9319 	memset(my.mc_wbuf[0], 0, MDB_WBUF*2);
9320 	my.mc_wbuf[1] = my.mc_wbuf[0] + MDB_WBUF;
9321 	my.mc_next_pgno = NUM_METAS;
9322 	my.mc_env = env;
9323 	my.mc_fd = fd;
9324 	rc = THREAD_CREATE(thr, mdb_env_copythr, &my);
9325 	if (rc)
9326 		goto done;
9327 
9328 	rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
9329 	if (rc)
9330 		goto finish;
9331 
9332 	mp = (MDB_page *)my.mc_wbuf[0];
9333 	memset(mp, 0, NUM_METAS * env->me_psize);
9334 	mp->mp_pgno = 0;
9335 	mp->mp_flags = P_META;
9336 	mm = (MDB_meta *)METADATA(mp);
9337 	mdb_env_init_meta0(env, mm);
9338 	mm->mm_address = env->me_metas[0]->mm_address;
9339 
9340 	mp = (MDB_page *)(my.mc_wbuf[0] + env->me_psize);
9341 	mp->mp_pgno = 1;
9342 	mp->mp_flags = P_META;
9343 	*(MDB_meta *)METADATA(mp) = *mm;
9344 	mm = (MDB_meta *)METADATA(mp);
9345 
9346 	/* Set metapage 1 with current main DB */
9347 	root = new_root = txn->mt_dbs[MAIN_DBI].md_root;
9348 	if (root != P_INVALID) {
9349 		/* Count free pages + freeDB pages.  Subtract from last_pg
9350 		 * to find the new last_pg, which also becomes the new root.
9351 		 */
9352 		MDB_ID freecount = 0;
9353 		MDB_cursor mc;
9354 		MDB_val key, data;
9355 		mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
9356 		while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
9357 			freecount += *(MDB_ID *)data.mv_data;
9358 		if (rc != MDB_NOTFOUND)
9359 			goto finish;
9360 		freecount += txn->mt_dbs[FREE_DBI].md_branch_pages +
9361 			txn->mt_dbs[FREE_DBI].md_leaf_pages +
9362 			txn->mt_dbs[FREE_DBI].md_overflow_pages;
9363 
9364 		new_root = txn->mt_next_pgno - 1 - freecount;
9365 		mm->mm_last_pg = new_root;
9366 		mm->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
9367 		mm->mm_dbs[MAIN_DBI].md_root = new_root;
9368 	} else {
9369 		/* When the DB is empty, handle it specially to
9370 		 * fix any breakage like page leaks from ITS#8174.
9371 		 */
9372 		mm->mm_dbs[MAIN_DBI].md_flags = txn->mt_dbs[MAIN_DBI].md_flags;
9373 	}
9374 	if (root != P_INVALID || mm->mm_dbs[MAIN_DBI].md_flags) {
9375 		mm->mm_txnid = 1;		/* use metapage 1 */
9376 	}
9377 
9378 	my.mc_wlen[0] = env->me_psize * NUM_METAS;
9379 	my.mc_txn = txn;
9380 	rc = mdb_env_cwalk(&my, &root, 0);
9381 	if (rc == MDB_SUCCESS && root != new_root) {
9382 		rc = MDB_INCOMPATIBLE;	/* page leak or corrupt DB */
9383 	}
9384 
9385 finish:
9386 	if (rc)
9387 		my.mc_error = rc;
9388 	mdb_env_cthr_toggle(&my, 1 | MDB_EOF);
9389 	rc = THREAD_FINISH(thr);
9390 	mdb_txn_abort(txn);
9391 
9392 done:
9393 #ifdef _WIN32
9394 	if (my.mc_wbuf[0]) _aligned_free(my.mc_wbuf[0]);
9395 	if (my.mc_cond)  CloseHandle(my.mc_cond);
9396 	if (my.mc_mutex) CloseHandle(my.mc_mutex);
9397 #else
9398 	free(my.mc_wbuf[0]);
9399 	pthread_cond_destroy(&my.mc_cond);
9400 done2:
9401 	pthread_mutex_destroy(&my.mc_mutex);
9402 #endif
9403 	return rc ? rc : my.mc_error;
9404 }
9405 
9406 	/** Copy environment as-is. */
9407 static int ESECT
9408 mdb_env_copyfd0(MDB_env *env, HANDLE fd)
9409 {
9410 	MDB_txn *txn = NULL;
9411 	mdb_mutexref_t wmutex = NULL;
9412 	int rc;
9413 	size_t wsize, w3;
9414 	char *ptr;
9415 #ifdef _WIN32
9416 	DWORD len, w2;
9417 #define DO_WRITE(rc, fd, ptr, w2, len)	rc = WriteFile(fd, ptr, w2, &len, NULL)
9418 #else
9419 	ssize_t len;
9420 	size_t w2;
9421 #define DO_WRITE(rc, fd, ptr, w2, len)	len = write(fd, ptr, w2); rc = (len >= 0)
9422 #endif
9423 
9424 	/* Do the lock/unlock of the reader mutex before starting the
9425 	 * write txn.  Otherwise other read txns could block writers.
9426 	 */
9427 	rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
9428 	if (rc)
9429 		return rc;
9430 
9431 	if (env->me_txns) {
9432 		/* We must start the actual read txn after blocking writers */
9433 		mdb_txn_end(txn, MDB_END_RESET_TMP);
9434 
9435 		/* Temporarily block writers until we snapshot the meta pages */
9436 		wmutex = env->me_wmutex;
9437 		if (LOCK_MUTEX(rc, env, wmutex))
9438 			goto leave;
9439 
9440 		rc = mdb_txn_renew0(txn);
9441 		if (rc) {
9442 			UNLOCK_MUTEX(wmutex);
9443 			goto leave;
9444 		}
9445 	}
9446 
9447 	wsize = env->me_psize * NUM_METAS;
9448 	ptr = env->me_map;
9449 	w2 = wsize;
9450 	while (w2 > 0) {
9451 		DO_WRITE(rc, fd, ptr, w2, len);
9452 		if (!rc) {
9453 			rc = ErrCode();
9454 			break;
9455 		} else if (len > 0) {
9456 			rc = MDB_SUCCESS;
9457 			ptr += len;
9458 			w2 -= len;
9459 			continue;
9460 		} else {
9461 			/* Non-blocking or async handles are not supported */
9462 			rc = EIO;
9463 			break;
9464 		}
9465 	}
9466 	if (wmutex)
9467 		UNLOCK_MUTEX(wmutex);
9468 
9469 	if (rc)
9470 		goto leave;
9471 
9472 	w3 = txn->mt_next_pgno * env->me_psize;
9473 	{
9474 		size_t fsize = 0;
9475 		if ((rc = mdb_fsize(env->me_fd, &fsize)))
9476 			goto leave;
9477 		if (w3 > fsize)
9478 			w3 = fsize;
9479 	}
9480 	wsize = w3 - wsize;
9481 	while (wsize > 0) {
9482 		if (wsize > MAX_WRITE)
9483 			w2 = MAX_WRITE;
9484 		else
9485 			w2 = wsize;
9486 		DO_WRITE(rc, fd, ptr, w2, len);
9487 		if (!rc) {
9488 			rc = ErrCode();
9489 			break;
9490 		} else if (len > 0) {
9491 			rc = MDB_SUCCESS;
9492 			ptr += len;
9493 			wsize -= len;
9494 			continue;
9495 		} else {
9496 			rc = EIO;
9497 			break;
9498 		}
9499 	}
9500 
9501 leave:
9502 	mdb_txn_abort(txn);
9503 	return rc;
9504 }
9505 
9506 int ESECT
9507 mdb_env_copyfd2(MDB_env *env, HANDLE fd, unsigned int flags)
9508 {
9509 	if (flags & MDB_CP_COMPACT)
9510 		return mdb_env_copyfd1(env, fd);
9511 	else
9512 		return mdb_env_copyfd0(env, fd);
9513 }
9514 
9515 int ESECT
9516 mdb_env_copyfd(MDB_env *env, HANDLE fd)
9517 {
9518 	return mdb_env_copyfd2(env, fd, 0);
9519 }
9520 
9521 int ESECT
9522 mdb_env_copy2(MDB_env *env, const char *path, unsigned int flags)
9523 {
9524 	int rc;
9525 	MDB_name fname;
9526 	HANDLE newfd = INVALID_HANDLE_VALUE;
9527 
9528 	rc = mdb_fname_init(path, env->me_flags | MDB_NOLOCK, &fname);
9529 	if (rc == MDB_SUCCESS) {
9530 		rc = mdb_fopen(env, &fname, MDB_O_COPY, 0666, &newfd);
9531 		mdb_fname_destroy(fname);
9532 	}
9533 	if (rc == MDB_SUCCESS) {
9534 		rc = mdb_env_copyfd2(env, newfd, flags);
9535 		if (close(newfd) < 0 && rc == MDB_SUCCESS)
9536 			rc = ErrCode();
9537 	}
9538 	return rc;
9539 }
9540 
9541 int ESECT
9542 mdb_env_copy(MDB_env *env, const char *path)
9543 {
9544 	return mdb_env_copy2(env, path, 0);
9545 }
9546 
9547 int ESECT
9548 mdb_env_set_flags(MDB_env *env, unsigned int flag, int onoff)
9549 {
9550 	if (flag & ~CHANGEABLE)
9551 		return EINVAL;
9552 	if (onoff)
9553 		env->me_flags |= flag;
9554 	else
9555 		env->me_flags &= ~flag;
9556 	return MDB_SUCCESS;
9557 }
9558 
9559 int ESECT
9560 mdb_env_get_flags(MDB_env *env, unsigned int *arg)
9561 {
9562 	if (!env || !arg)
9563 		return EINVAL;
9564 
9565 	*arg = env->me_flags & (CHANGEABLE|CHANGELESS);
9566 	return MDB_SUCCESS;
9567 }
9568 
9569 int ESECT
9570 mdb_env_set_userctx(MDB_env *env, void *ctx)
9571 {
9572 	if (!env)
9573 		return EINVAL;
9574 	env->me_userctx = ctx;
9575 	return MDB_SUCCESS;
9576 }
9577 
9578 void * ESECT
9579 mdb_env_get_userctx(MDB_env *env)
9580 {
9581 	return env ? env->me_userctx : NULL;
9582 }
9583 
9584 int ESECT
9585 mdb_env_set_assert(MDB_env *env, MDB_assert_func *func)
9586 {
9587 	if (!env)
9588 		return EINVAL;
9589 #ifndef NDEBUG
9590 	env->me_assert_func = func;
9591 #endif
9592 	return MDB_SUCCESS;
9593 }
9594 
9595 int ESECT
9596 mdb_env_get_path(MDB_env *env, const char **arg)
9597 {
9598 	if (!env || !arg)
9599 		return EINVAL;
9600 
9601 	*arg = env->me_path;
9602 	return MDB_SUCCESS;
9603 }
9604 
9605 int ESECT
9606 mdb_env_get_fd(MDB_env *env, mdb_filehandle_t *arg)
9607 {
9608 	if (!env || !arg)
9609 		return EINVAL;
9610 
9611 	*arg = env->me_fd;
9612 	return MDB_SUCCESS;
9613 }
9614 
9615 /** Common code for #mdb_stat() and #mdb_env_stat().
9616  * @param[in] env the environment to operate in.
9617  * @param[in] db the #MDB_db record containing the stats to return.
9618  * @param[out] arg the address of an #MDB_stat structure to receive the stats.
9619  * @return 0, this function always succeeds.
9620  */
9621 static int ESECT
9622 mdb_stat0(MDB_env *env, MDB_db *db, MDB_stat *arg)
9623 {
9624 	arg->ms_psize = env->me_psize;
9625 	arg->ms_depth = db->md_depth;
9626 	arg->ms_branch_pages = db->md_branch_pages;
9627 	arg->ms_leaf_pages = db->md_leaf_pages;
9628 	arg->ms_overflow_pages = db->md_overflow_pages;
9629 	arg->ms_entries = db->md_entries;
9630 
9631 	return MDB_SUCCESS;
9632 }
9633 
9634 int ESECT
9635 mdb_env_stat(MDB_env *env, MDB_stat *arg)
9636 {
9637 	MDB_meta *meta;
9638 
9639 	if (env == NULL || arg == NULL)
9640 		return EINVAL;
9641 
9642 	meta = mdb_env_pick_meta(env);
9643 
9644 	return mdb_stat0(env, &meta->mm_dbs[MAIN_DBI], arg);
9645 }
9646 
9647 int ESECT
9648 mdb_env_info(MDB_env *env, MDB_envinfo *arg)
9649 {
9650 	MDB_meta *meta;
9651 
9652 	if (env == NULL || arg == NULL)
9653 		return EINVAL;
9654 
9655 	meta = mdb_env_pick_meta(env);
9656 	arg->me_mapaddr = meta->mm_address;
9657 	arg->me_last_pgno = meta->mm_last_pg;
9658 	arg->me_last_txnid = meta->mm_txnid;
9659 
9660 	arg->me_mapsize = env->me_mapsize;
9661 	arg->me_maxreaders = env->me_maxreaders;
9662 	arg->me_numreaders = env->me_txns ? env->me_txns->mti_numreaders : 0;
9663 	return MDB_SUCCESS;
9664 }
9665 
9666 /** Set the default comparison functions for a database.
9667  * Called immediately after a database is opened to set the defaults.
9668  * The user can then override them with #mdb_set_compare() or
9669  * #mdb_set_dupsort().
9670  * @param[in] txn A transaction handle returned by #mdb_txn_begin()
9671  * @param[in] dbi A database handle returned by #mdb_dbi_open()
9672  */
9673 static void
9674 mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi)
9675 {
9676 	uint16_t f = txn->mt_dbs[dbi].md_flags;
9677 
9678 	txn->mt_dbxs[dbi].md_cmp =
9679 		(f & MDB_REVERSEKEY) ? mdb_cmp_memnr :
9680 		(f & MDB_INTEGERKEY) ? mdb_cmp_cint  : mdb_cmp_memn;
9681 
9682 	txn->mt_dbxs[dbi].md_dcmp =
9683 		!(f & MDB_DUPSORT) ? 0 :
9684 		((f & MDB_INTEGERDUP)
9685 		 ? ((f & MDB_DUPFIXED)   ? mdb_cmp_int   : mdb_cmp_cint)
9686 		 : ((f & MDB_REVERSEDUP) ? mdb_cmp_memnr : mdb_cmp_memn));
9687 }
9688 
9689 int mdb_dbi_open(MDB_txn *txn, const char *name, unsigned int flags, MDB_dbi *dbi)
9690 {
9691 	MDB_val key, data;
9692 	MDB_dbi i;
9693 	MDB_cursor mc;
9694 	MDB_db dummy;
9695 	int rc, dbflag, exact;
9696 	unsigned int unused = 0, seq;
9697 	char *namedup;
9698 	size_t len;
9699 
9700 	if (flags & ~VALID_FLAGS)
9701 		return EINVAL;
9702 	if (txn->mt_flags & MDB_TXN_BLOCKED)
9703 		return MDB_BAD_TXN;
9704 
9705 	/* main DB? */
9706 	if (!name) {
9707 		*dbi = MAIN_DBI;
9708 		if (flags & PERSISTENT_FLAGS) {
9709 			uint16_t f2 = flags & PERSISTENT_FLAGS;
9710 			/* make sure flag changes get committed */
9711 			if ((txn->mt_dbs[MAIN_DBI].md_flags | f2) != txn->mt_dbs[MAIN_DBI].md_flags) {
9712 				txn->mt_dbs[MAIN_DBI].md_flags |= f2;
9713 				txn->mt_flags |= MDB_TXN_DIRTY;
9714 			}
9715 		}
9716 		mdb_default_cmp(txn, MAIN_DBI);
9717 		return MDB_SUCCESS;
9718 	}
9719 
9720 	if (txn->mt_dbxs[MAIN_DBI].md_cmp == NULL) {
9721 		mdb_default_cmp(txn, MAIN_DBI);
9722 	}
9723 
9724 	/* Is the DB already open? */
9725 	len = strlen(name);
9726 	for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
9727 		if (!txn->mt_dbxs[i].md_name.mv_size) {
9728 			/* Remember this free slot */
9729 			if (!unused) unused = i;
9730 			continue;
9731 		}
9732 		if (len == txn->mt_dbxs[i].md_name.mv_size &&
9733 			!strncmp(name, txn->mt_dbxs[i].md_name.mv_data, len)) {
9734 			*dbi = i;
9735 			return MDB_SUCCESS;
9736 		}
9737 	}
9738 
9739 	/* If no free slot and max hit, fail */
9740 	if (!unused && txn->mt_numdbs >= txn->mt_env->me_maxdbs)
9741 		return MDB_DBS_FULL;
9742 
9743 	/* Cannot mix named databases with some mainDB flags */
9744 	if (txn->mt_dbs[MAIN_DBI].md_flags & (MDB_DUPSORT|MDB_INTEGERKEY))
9745 		return (flags & MDB_CREATE) ? MDB_INCOMPATIBLE : MDB_NOTFOUND;
9746 
9747 	/* Find the DB info */
9748 	dbflag = DB_NEW|DB_VALID|DB_USRVALID;
9749 	exact = 0;
9750 	key.mv_size = len;
9751 	key.mv_data = (void *)name;
9752 	mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
9753 	rc = mdb_cursor_set(&mc, &key, &data, MDB_SET, &exact);
9754 	if (rc == MDB_SUCCESS) {
9755 		/* make sure this is actually a DB */
9756 		MDB_node *node = NODEPTR(mc.mc_pg[mc.mc_top], mc.mc_ki[mc.mc_top]);
9757 		if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA)
9758 			return MDB_INCOMPATIBLE;
9759 	} else if (! (rc == MDB_NOTFOUND && (flags & MDB_CREATE))) {
9760 		return rc;
9761 	}
9762 
9763 	/* Done here so we cannot fail after creating a new DB */
9764 	if ((namedup = strdup(name)) == NULL)
9765 		return ENOMEM;
9766 
9767 	if (rc) {
9768 		/* MDB_NOTFOUND and MDB_CREATE: Create new DB */
9769 		data.mv_size = sizeof(MDB_db);
9770 		data.mv_data = &dummy;
9771 		memset(&dummy, 0, sizeof(dummy));
9772 		dummy.md_root = P_INVALID;
9773 		dummy.md_flags = flags & PERSISTENT_FLAGS;
9774 		WITH_CURSOR_TRACKING(mc,
9775 			rc = mdb_cursor_put(&mc, &key, &data, F_SUBDATA));
9776 		dbflag |= DB_DIRTY;
9777 	}
9778 
9779 	if (rc) {
9780 		free(namedup);
9781 	} else {
9782 		/* Got info, register DBI in this txn */
9783 		unsigned int slot = unused ? unused : txn->mt_numdbs;
9784 		txn->mt_dbxs[slot].md_name.mv_data = namedup;
9785 		txn->mt_dbxs[slot].md_name.mv_size = len;
9786 		txn->mt_dbxs[slot].md_rel = NULL;
9787 		txn->mt_dbflags[slot] = dbflag;
9788 		/* txn-> and env-> are the same in read txns, use
9789 		 * tmp variable to avoid undefined assignment
9790 		 */
9791 		seq = ++txn->mt_env->me_dbiseqs[slot];
9792 		txn->mt_dbiseqs[slot] = seq;
9793 
9794 		memcpy(&txn->mt_dbs[slot], data.mv_data, sizeof(MDB_db));
9795 		*dbi = slot;
9796 		mdb_default_cmp(txn, slot);
9797 		if (!unused) {
9798 			txn->mt_numdbs++;
9799 		}
9800 	}
9801 
9802 	return rc;
9803 }
9804 
9805 int ESECT
9806 mdb_stat(MDB_txn *txn, MDB_dbi dbi, MDB_stat *arg)
9807 {
9808 	if (!arg || !TXN_DBI_EXIST(txn, dbi, DB_VALID))
9809 		return EINVAL;
9810 
9811 	if (txn->mt_flags & MDB_TXN_BLOCKED)
9812 		return MDB_BAD_TXN;
9813 
9814 	if (txn->mt_dbflags[dbi] & DB_STALE) {
9815 		MDB_cursor mc;
9816 		MDB_xcursor mx;
9817 		/* Stale, must read the DB's root. cursor_init does it for us. */
9818 		mdb_cursor_init(&mc, txn, dbi, &mx);
9819 	}
9820 	return mdb_stat0(txn->mt_env, &txn->mt_dbs[dbi], arg);
9821 }
9822 
9823 void mdb_dbi_close(MDB_env *env, MDB_dbi dbi)
9824 {
9825 	char *ptr;
9826 	if (dbi < CORE_DBS || dbi >= env->me_maxdbs)
9827 		return;
9828 	ptr = env->me_dbxs[dbi].md_name.mv_data;
9829 	/* If there was no name, this was already closed */
9830 	if (ptr) {
9831 		env->me_dbxs[dbi].md_name.mv_data = NULL;
9832 		env->me_dbxs[dbi].md_name.mv_size = 0;
9833 		env->me_dbflags[dbi] = 0;
9834 		env->me_dbiseqs[dbi]++;
9835 		free(ptr);
9836 	}
9837 }
9838 
9839 int mdb_dbi_flags(MDB_txn *txn, MDB_dbi dbi, unsigned int *flags)
9840 {
9841 	/* We could return the flags for the FREE_DBI too but what's the point? */
9842 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
9843 		return EINVAL;
9844 	*flags = txn->mt_dbs[dbi].md_flags & PERSISTENT_FLAGS;
9845 	return MDB_SUCCESS;
9846 }
9847 
9848 /** Add all the DB's pages to the free list.
9849  * @param[in] mc Cursor on the DB to free.
9850  * @param[in] subs non-Zero to check for sub-DBs in this DB.
9851  * @return 0 on success, non-zero on failure.
9852  */
9853 static int
9854 mdb_drop0(MDB_cursor *mc, int subs)
9855 {
9856 	int rc;
9857 
9858 	rc = mdb_page_search(mc, NULL, MDB_PS_FIRST);
9859 	if (rc == MDB_SUCCESS) {
9860 		MDB_txn *txn = mc->mc_txn;
9861 		MDB_node *ni;
9862 		MDB_cursor mx;
9863 		unsigned int i;
9864 
9865 		/* DUPSORT sub-DBs have no ovpages/DBs. Omit scanning leaves.
9866 		 * This also avoids any P_LEAF2 pages, which have no nodes.
9867 		 * Also if the DB doesn't have sub-DBs and has no overflow
9868 		 * pages, omit scanning leaves.
9869 		 */
9870 		if ((mc->mc_flags & C_SUB) ||
9871 			(!subs && !mc->mc_db->md_overflow_pages))
9872 			mdb_cursor_pop(mc);
9873 
9874 		mdb_cursor_copy(mc, &mx);
9875 		while (mc->mc_snum > 0) {
9876 			MDB_page *mp = mc->mc_pg[mc->mc_top];
9877 			unsigned n = NUMKEYS(mp);
9878 			if (IS_LEAF(mp)) {
9879 				for (i=0; i<n; i++) {
9880 					ni = NODEPTR(mp, i);
9881 					if (ni->mn_flags & F_BIGDATA) {
9882 						MDB_page *omp;
9883 						pgno_t pg;
9884 						memcpy(&pg, NODEDATA(ni), sizeof(pg));
9885 						rc = mdb_page_get(mc, pg, &omp, NULL);
9886 						if (rc != 0)
9887 							goto done;
9888 						mdb_cassert(mc, IS_OVERFLOW(omp));
9889 						rc = mdb_midl_append_range(&txn->mt_free_pgs,
9890 							pg, omp->mp_pages);
9891 						if (rc)
9892 							goto done;
9893 						mc->mc_db->md_overflow_pages -= omp->mp_pages;
9894 						if (!mc->mc_db->md_overflow_pages && !subs)
9895 							break;
9896 					} else if (subs && (ni->mn_flags & F_SUBDATA)) {
9897 						mdb_xcursor_init1(mc, ni);
9898 						rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
9899 						if (rc)
9900 							goto done;
9901 					}
9902 				}
9903 				if (!subs && !mc->mc_db->md_overflow_pages)
9904 					goto pop;
9905 			} else {
9906 				if ((rc = mdb_midl_need(&txn->mt_free_pgs, n)) != 0)
9907 					goto done;
9908 				for (i=0; i<n; i++) {
9909 					pgno_t pg;
9910 					ni = NODEPTR(mp, i);
9911 					pg = NODEPGNO(ni);
9912 					/* free it */
9913 					mdb_midl_xappend(txn->mt_free_pgs, pg);
9914 				}
9915 			}
9916 			if (!mc->mc_top)
9917 				break;
9918 			mc->mc_ki[mc->mc_top] = i;
9919 			rc = mdb_cursor_sibling(mc, 1);
9920 			if (rc) {
9921 				if (rc != MDB_NOTFOUND)
9922 					goto done;
9923 				/* no more siblings, go back to beginning
9924 				 * of previous level.
9925 				 */
9926 pop:
9927 				mdb_cursor_pop(mc);
9928 				mc->mc_ki[0] = 0;
9929 				for (i=1; i<mc->mc_snum; i++) {
9930 					mc->mc_ki[i] = 0;
9931 					mc->mc_pg[i] = mx.mc_pg[i];
9932 				}
9933 			}
9934 		}
9935 		/* free it */
9936 		rc = mdb_midl_append(&txn->mt_free_pgs, mc->mc_db->md_root);
9937 done:
9938 		if (rc)
9939 			txn->mt_flags |= MDB_TXN_ERROR;
9940 	} else if (rc == MDB_NOTFOUND) {
9941 		rc = MDB_SUCCESS;
9942 	}
9943 	mc->mc_flags &= ~C_INITIALIZED;
9944 	return rc;
9945 }
9946 
9947 int mdb_drop(MDB_txn *txn, MDB_dbi dbi, int del)
9948 {
9949 	MDB_cursor *mc, *m2;
9950 	int rc;
9951 
9952 	if ((unsigned)del > 1 || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
9953 		return EINVAL;
9954 
9955 	if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
9956 		return EACCES;
9957 
9958 	if (TXN_DBI_CHANGED(txn, dbi))
9959 		return MDB_BAD_DBI;
9960 
9961 	rc = mdb_cursor_open(txn, dbi, &mc);
9962 	if (rc)
9963 		return rc;
9964 
9965 	rc = mdb_drop0(mc, mc->mc_db->md_flags & MDB_DUPSORT);
9966 	/* Invalidate the dropped DB's cursors */
9967 	for (m2 = txn->mt_cursors[dbi]; m2; m2 = m2->mc_next)
9968 		m2->mc_flags &= ~(C_INITIALIZED|C_EOF);
9969 	if (rc)
9970 		goto leave;
9971 
9972 	/* Can't delete the main DB */
9973 	if (del && dbi >= CORE_DBS) {
9974 		rc = mdb_del0(txn, MAIN_DBI, &mc->mc_dbx->md_name, NULL, F_SUBDATA);
9975 		if (!rc) {
9976 			txn->mt_dbflags[dbi] = DB_STALE;
9977 			mdb_dbi_close(txn->mt_env, dbi);
9978 		} else {
9979 			txn->mt_flags |= MDB_TXN_ERROR;
9980 		}
9981 	} else {
9982 		/* reset the DB record, mark it dirty */
9983 		txn->mt_dbflags[dbi] |= DB_DIRTY;
9984 		txn->mt_dbs[dbi].md_depth = 0;
9985 		txn->mt_dbs[dbi].md_branch_pages = 0;
9986 		txn->mt_dbs[dbi].md_leaf_pages = 0;
9987 		txn->mt_dbs[dbi].md_overflow_pages = 0;
9988 		txn->mt_dbs[dbi].md_entries = 0;
9989 		txn->mt_dbs[dbi].md_root = P_INVALID;
9990 
9991 		txn->mt_flags |= MDB_TXN_DIRTY;
9992 	}
9993 leave:
9994 	mdb_cursor_close(mc);
9995 	return rc;
9996 }
9997 
9998 int mdb_set_compare(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
9999 {
10000 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
10001 		return EINVAL;
10002 
10003 	txn->mt_dbxs[dbi].md_cmp = cmp;
10004 	return MDB_SUCCESS;
10005 }
10006 
10007 int mdb_set_dupsort(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
10008 {
10009 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
10010 		return EINVAL;
10011 
10012 	txn->mt_dbxs[dbi].md_dcmp = cmp;
10013 	return MDB_SUCCESS;
10014 }
10015 
10016 int mdb_set_relfunc(MDB_txn *txn, MDB_dbi dbi, MDB_rel_func *rel)
10017 {
10018 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
10019 		return EINVAL;
10020 
10021 	txn->mt_dbxs[dbi].md_rel = rel;
10022 	return MDB_SUCCESS;
10023 }
10024 
10025 int mdb_set_relctx(MDB_txn *txn, MDB_dbi dbi, void *ctx)
10026 {
10027 	if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
10028 		return EINVAL;
10029 
10030 	txn->mt_dbxs[dbi].md_relctx = ctx;
10031 	return MDB_SUCCESS;
10032 }
10033 
10034 int ESECT
10035 mdb_env_get_maxkeysize(MDB_env *env)
10036 {
10037 	return ENV_MAXKEY(env);
10038 }
10039 
10040 int ESECT
10041 mdb_reader_list(MDB_env *env, MDB_msg_func *func, void *ctx)
10042 {
10043 	unsigned int i, rdrs;
10044 	MDB_reader *mr;
10045 	char buf[64];
10046 	int rc = 0, first = 1;
10047 
10048 	if (!env || !func)
10049 		return -1;
10050 	if (!env->me_txns) {
10051 		return func("(no reader locks)\n", ctx);
10052 	}
10053 	rdrs = env->me_txns->mti_numreaders;
10054 	mr = env->me_txns->mti_readers;
10055 	for (i=0; i<rdrs; i++) {
10056 		if (mr[i].mr_pid) {
10057 			txnid_t	txnid = mr[i].mr_txnid;
10058 			sprintf(buf, txnid == (txnid_t)-1 ?
10059 				"%10d %"Z"x -\n" : "%10d %"Z"x %"Z"u\n",
10060 				(int)mr[i].mr_pid, (size_t)mr[i].mr_tid, txnid);
10061 			if (first) {
10062 				first = 0;
10063 				rc = func("    pid     thread     txnid\n", ctx);
10064 				if (rc < 0)
10065 					break;
10066 			}
10067 			rc = func(buf, ctx);
10068 			if (rc < 0)
10069 				break;
10070 		}
10071 	}
10072 	if (first) {
10073 		rc = func("(no active readers)\n", ctx);
10074 	}
10075 	return rc;
10076 }
10077 
10078 /** Insert pid into list if not already present.
10079  * return -1 if already present.
10080  */
10081 static int ESECT
10082 mdb_pid_insert(MDB_PID_T *ids, MDB_PID_T pid)
10083 {
10084 	/* binary search of pid in list */
10085 	unsigned base = 0;
10086 	unsigned cursor = 1;
10087 	int val = 0;
10088 	unsigned n = ids[0];
10089 
10090 	while( 0 < n ) {
10091 		unsigned pivot = n >> 1;
10092 		cursor = base + pivot + 1;
10093 		val = pid - ids[cursor];
10094 
10095 		if( val < 0 ) {
10096 			n = pivot;
10097 
10098 		} else if ( val > 0 ) {
10099 			base = cursor;
10100 			n -= pivot + 1;
10101 
10102 		} else {
10103 			/* found, so it's a duplicate */
10104 			return -1;
10105 		}
10106 	}
10107 
10108 	if( val > 0 ) {
10109 		++cursor;
10110 	}
10111 	ids[0]++;
10112 	for (n = ids[0]; n > cursor; n--)
10113 		ids[n] = ids[n-1];
10114 	ids[n] = pid;
10115 	return 0;
10116 }
10117 
10118 int ESECT
10119 mdb_reader_check(MDB_env *env, int *dead)
10120 {
10121 	if (!env)
10122 		return EINVAL;
10123 	if (dead)
10124 		*dead = 0;
10125 	return env->me_txns ? mdb_reader_check0(env, 0, dead) : MDB_SUCCESS;
10126 }
10127 
10128 /** As #mdb_reader_check(). \b rlocked is set if caller locked #me_rmutex. */
10129 static int ESECT
10130 mdb_reader_check0(MDB_env *env, int rlocked, int *dead)
10131 {
10132 	mdb_mutexref_t rmutex = rlocked ? NULL : env->me_rmutex;
10133 	unsigned int i, j, rdrs;
10134 	MDB_reader *mr;
10135 	MDB_PID_T *pids, pid;
10136 	int rc = MDB_SUCCESS, count = 0;
10137 
10138 	rdrs = env->me_txns->mti_numreaders;
10139 	pids = malloc((rdrs+1) * sizeof(MDB_PID_T));
10140 	if (!pids)
10141 		return ENOMEM;
10142 	pids[0] = 0;
10143 	mr = env->me_txns->mti_readers;
10144 	for (i=0; i<rdrs; i++) {
10145 		pid = mr[i].mr_pid;
10146 		if (pid && pid != env->me_pid) {
10147 			if (mdb_pid_insert(pids, pid) == 0) {
10148 				if (!mdb_reader_pid(env, Pidcheck, pid)) {
10149 					/* Stale reader found */
10150 					j = i;
10151 					if (rmutex) {
10152 						if ((rc = LOCK_MUTEX0(rmutex)) != 0) {
10153 							if ((rc = mdb_mutex_failed(env, rmutex, rc)))
10154 								break;
10155 							rdrs = 0; /* the above checked all readers */
10156 						} else {
10157 							/* Recheck, a new process may have reused pid */
10158 							if (mdb_reader_pid(env, Pidcheck, pid))
10159 								j = rdrs;
10160 						}
10161 					}
10162 					for (; j<rdrs; j++)
10163 							if (mr[j].mr_pid == pid) {
10164 								DPRINTF(("clear stale reader pid %u txn %"Z"d",
10165 									(unsigned) pid, mr[j].mr_txnid));
10166 								mr[j].mr_pid = 0;
10167 								count++;
10168 							}
10169 					if (rmutex)
10170 						UNLOCK_MUTEX(rmutex);
10171 				}
10172 			}
10173 		}
10174 	}
10175 	free(pids);
10176 	if (dead)
10177 		*dead = count;
10178 	return rc;
10179 }
10180 
10181 #ifdef MDB_ROBUST_SUPPORTED
10182 /** Handle #LOCK_MUTEX0() failure.
10183  * Try to repair the lock file if the mutex owner died.
10184  * @param[in] env	the environment handle
10185  * @param[in] mutex	LOCK_MUTEX0() mutex
10186  * @param[in] rc	LOCK_MUTEX0() error (nonzero)
10187  * @return 0 on success with the mutex locked, or an error code on failure.
10188  */
10189 static int ESECT
10190 mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc)
10191 {
10192 	int rlocked, rc2;
10193 	MDB_meta *meta;
10194 
10195 	if (rc == MDB_OWNERDEAD) {
10196 		/* We own the mutex. Clean up after dead previous owner. */
10197 		rc = MDB_SUCCESS;
10198 		rlocked = (mutex == env->me_rmutex);
10199 		if (!rlocked) {
10200 			/* Keep mti_txnid updated, otherwise next writer can
10201 			 * overwrite data which latest meta page refers to.
10202 			 */
10203 			meta = mdb_env_pick_meta(env);
10204 			env->me_txns->mti_txnid = meta->mm_txnid;
10205 			/* env is hosed if the dead thread was ours */
10206 			if (env->me_txn) {
10207 				env->me_flags |= MDB_FATAL_ERROR;
10208 				env->me_txn = NULL;
10209 				rc = MDB_PANIC;
10210 			}
10211 		}
10212 		DPRINTF(("%cmutex owner died, %s", (rlocked ? 'r' : 'w'),
10213 			(rc ? "this process' env is hosed" : "recovering")));
10214 		rc2 = mdb_reader_check0(env, rlocked, NULL);
10215 		if (rc2 == 0)
10216 			rc2 = mdb_mutex_consistent(mutex);
10217 		if (rc || (rc = rc2)) {
10218 			DPRINTF(("LOCK_MUTEX recovery failed, %s", mdb_strerror(rc)));
10219 			UNLOCK_MUTEX(mutex);
10220 		}
10221 	} else {
10222 #ifdef _WIN32
10223 		rc = ErrCode();
10224 #endif
10225 		DPRINTF(("LOCK_MUTEX failed, %s", mdb_strerror(rc)));
10226 	}
10227 
10228 	return rc;
10229 }
10230 #endif	/* MDB_ROBUST_SUPPORTED */
10231 
10232 #if defined(_WIN32)
10233 /** Convert \b src to new wchar_t[] string with room for \b xtra extra chars */
10234 static int ESECT
10235 utf8_to_utf16(const char *src, MDB_name *dst, int xtra)
10236 {
10237 	int rc, need = 0;
10238 	wchar_t *result = NULL;
10239 	for (;;) {					/* malloc result, then fill it in */
10240 		need = MultiByteToWideChar(CP_UTF8, 0, src, -1, result, need);
10241 		if (!need) {
10242 			rc = ErrCode();
10243 			free(result);
10244 			return rc;
10245 		}
10246 		if (!result) {
10247 			result = malloc(sizeof(wchar_t) * (need + xtra));
10248 			if (!result)
10249 				return ENOMEM;
10250 			continue;
10251 		}
10252 		dst->mn_alloced = 1;
10253 		dst->mn_len = need - 1;
10254 		dst->mn_val = result;
10255 		return MDB_SUCCESS;
10256 	}
10257 }
10258 #endif /* defined(_WIN32) */
10259 /** @} */
10260