xref: /netbsd-src/external/bsd/nvi/dist/common/key.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: key.c,v 1.3 2013/11/25 22:43:46 christos Exp $ */
2 /*-
3  * Copyright (c) 1991, 1993, 1994
4  *	The Regents of the University of California.  All rights reserved.
5  * Copyright (c) 1991, 1993, 1994, 1995, 1996
6  *	Keith Bostic.  All rights reserved.
7  *
8  * See the LICENSE file for redistribution information.
9  */
10 
11 #include "config.h"
12 
13 #ifndef lint
14 static const char sccsid[] = "Id: key.c,v 10.48 2001/06/25 15:19:10 skimo Exp  (Berkeley) Date: 2001/06/25 15:19:10 ";
15 #endif /* not lint */
16 
17 #include <sys/types.h>
18 #include <sys/queue.h>
19 #include <sys/time.h>
20 
21 #include <bitstring.h>
22 #include <ctype.h>
23 #include <errno.h>
24 #include <limits.h>
25 #include <locale.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <unistd.h>
30 
31 #include "common.h"
32 #include "../vi/vi.h"
33 
34 static int	v_event_append __P((SCR *, EVENT *));
35 static int	v_event_grow __P((SCR *, int));
36 static int	v_key_cmp __P((const void *, const void *));
37 static void	v_keyval __P((SCR *, int, scr_keyval_t));
38 static void	v_sync __P((SCR *, int));
39 
40 /*
41  * !!!
42  * Historic vi always used:
43  *
44  *	^D: autoindent deletion
45  *	^H: last character deletion
46  *	^W: last word deletion
47  *	^Q: quote the next character (if not used in flow control).
48  *	^V: quote the next character
49  *
50  * regardless of the user's choices for these characters.  The user's erase
51  * and kill characters worked in addition to these characters.  Nvi wires
52  * down the above characters, but in addition permits the VEOF, VERASE, VKILL
53  * and VWERASE characters described by the user's termios structure.
54  *
55  * Ex was not consistent with this scheme, as it historically ran in tty
56  * cooked mode.  This meant that the scroll command and autoindent erase
57  * characters were mapped to the user's EOF character, and the character
58  * and word deletion characters were the user's tty character and word
59  * deletion characters.  This implementation makes it all consistent, as
60  * described above for vi.
61  *
62  * !!!
63  * This means that all screens share a special key set.
64  */
65 KEYLIST keylist[] = {
66 	{K_BACKSLASH,	  '\\'},	/*  \ */
67 	{K_CARAT,	   '^'},	/*  ^ */
68 	{K_CNTRLD,	'\004'},	/* ^D */
69 	{K_CNTRLR,	'\022'},	/* ^R */
70 	{K_CNTRLT,	'\024'},	/* ^T */
71 	{K_CNTRLZ,	'\032'},	/* ^Z */
72 	{K_COLON,	   ':'},	/*  : */
73 	{K_CR,		  '\r'},	/* \r */
74 	{K_ESCAPE,	'\033'},	/* ^[ */
75 	{K_FORMFEED,	  '\f'},	/* \f */
76 	{K_HEXCHAR,	'\030'},	/* ^X */
77 	{K_NL,		  '\n'},	/* \n */
78 	{K_RIGHTBRACE,	   '}'},	/*  } */
79 	{K_RIGHTPAREN,	   ')'},	/*  ) */
80 	{K_TAB,		  '\t'},	/* \t */
81 	{K_VERASE,	  '\b'},	/* \b */
82 	{K_VKILL,	'\025'},	/* ^U */
83 	{K_VLNEXT,	'\021'},	/* ^Q */
84 	{K_VLNEXT,	'\026'},	/* ^V */
85 	{K_VWERASE,	'\027'},	/* ^W */
86 	{K_ZERO,	   '0'},	/*  0 */
87 
88 #define	ADDITIONAL_CHARACTERS	4
89 	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
90 	{K_NOTUSED, 0},
91 	{K_NOTUSED, 0},
92 	{K_NOTUSED, 0},
93 };
94 static int nkeylist =
95     (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
96 
97 /*
98  * v_key_init --
99  *	Initialize the special key lookup table.
100  *
101  * PUBLIC: int v_key_init __P((SCR *));
102  */
103 int
104 v_key_init(SCR *sp)
105 {
106 	int ch;
107 	GS *gp;
108 	KEYLIST *kp;
109 	int cnt;
110 
111 	gp = sp->gp;
112 
113 	/*
114 	 * XXX
115 	 * 8-bit only, for now.  Recompilation should get you any 8-bit
116 	 * character set, as long as nul isn't a character.
117 	 */
118 	(void)setlocale(LC_ALL, "");
119 #if __linux__
120 	/*
121 	 * In libc 4.5.26, setlocale(LC_ALL, ""), doesn't setup the table
122 	 * for ctype(3c) correctly.  This bug is fixed in libc 4.6.x.
123 	 *
124 	 * This code works around this problem for libc 4.5.x users.
125 	 * Note that this code is harmless if you're using libc 4.6.x.
126 	 */
127 	(void)setlocale(LC_CTYPE, "");
128 #endif
129 	v_key_ilookup(sp);
130 
131 	v_keyval(sp, K_CNTRLD, KEY_VEOF);
132 	v_keyval(sp, K_VERASE, KEY_VERASE);
133 	v_keyval(sp, K_VKILL, KEY_VKILL);
134 	v_keyval(sp, K_VWERASE, KEY_VWERASE);
135 
136 	/* Sort the special key list. */
137 	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
138 
139 	/* Initialize the fast lookup table. */
140 	for (kp = keylist, cnt = nkeylist; cnt--; ++kp)
141 		gp->special_key[kp->ch] = kp->value;
142 
143 	/* Find a non-printable character to use as a message separator. */
144 	for (ch = 1; ch <= UCHAR_MAX; ++ch)
145 		if (!isprint(ch)) {
146 			gp->noprint = ch;
147 			break;
148 		}
149 	if (ch != gp->noprint) {
150 		msgq(sp, M_ERR, "079|No non-printable character found");
151 		return (1);
152 	}
153 	return (0);
154 }
155 
156 /*
157  * v_keyval --
158  *	Set key values.
159  *
160  * We've left some open slots in the keylist table, and if these values exist,
161  * we put them into place.  Note, they may reset (or duplicate) values already
162  * in the table, so we check for that first.
163  */
164 static void
165 v_keyval(SCR *sp, int val, scr_keyval_t name)
166 {
167 	KEYLIST *kp;
168 	CHAR_T ch;
169 	int dne;
170 
171 	/* Get the key's value from the screen. */
172 	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
173 		return;
174 	if (dne)
175 		return;
176 
177 	/* Check for duplication. */
178 	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
179 		if (kp->ch == ch) {
180 			kp->value = val;
181 			return;
182 		}
183 
184 	/* Add a new entry. */
185 	if (kp->value == K_NOTUSED) {
186 		keylist[nkeylist].ch = ch;
187 		keylist[nkeylist].value = val;
188 		++nkeylist;
189 	}
190 }
191 
192 /*
193  * v_key_ilookup --
194  *	Build the fast-lookup key display array.
195  *
196  * PUBLIC: void v_key_ilookup __P((SCR *));
197  */
198 void
199 v_key_ilookup(SCR *sp)
200 {
201 	UCHAR_T ch;
202 	unsigned char *p, *t;
203 	GS *gp;
204 	size_t len;
205 
206 	for (gp = sp->gp, ch = 0;; ++ch) {
207 		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
208 		    len = gp->cname[ch].len = sp->clen; len--;)
209 			*p++ = *t++;
210 		if (ch == MAX_FAST_KEY)
211 			break;
212 	}
213 }
214 
215 /*
216  * v_key_len --
217  *	Return the length of the string that will display the key.
218  *	This routine is the backup for the KEY_LEN() macro.
219  *
220  * PUBLIC: size_t v_key_len __P((SCR *, ARG_CHAR_T));
221  */
222 size_t
223 v_key_len(SCR *sp, ARG_CHAR_T ch)
224 {
225 	(void)v_key_name(sp, ch);
226 	return (sp->clen);
227 }
228 
229 /*
230  * v_key_name --
231  *	Return the string that will display the key.  This routine
232  *	is the backup for the KEY_NAME() macro.
233  *
234  * PUBLIC: u_char *v_key_name __P((SCR *, ARG_CHAR_T));
235  */
236 u_char *
237 v_key_name(SCR *sp, ARG_CHAR_T ach)
238 {
239 	static const char hexdigit[] = "0123456789abcdef";
240 	static const char octdigit[] = "01234567";
241 	int ch;
242 	size_t len, i;
243 	const char *chp;
244 
245 	if (INTISWIDE(ach))
246 		goto vis;
247 	ch = (unsigned char)ach;
248 
249 	/* See if the character was explicitly declared printable or not. */
250 	if ((chp = O_STR(sp, O_PRINT)) != NULL)
251 		for (; *chp != '\0'; ++chp)
252 			if (*chp == ch)
253 				goto pr;
254 	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
255 		for (; *chp != '\0'; ++chp)
256 			if (*chp == ch)
257 				goto nopr;
258 
259 	/*
260 	 * Historical (ARPA standard) mappings.  Printable characters are left
261 	 * alone.  Control characters less than 0x20 are represented as '^'
262 	 * followed by the character offset from the '@' character in the ASCII
263 	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
264 	 *
265 	 * XXX
266 	 * The following code depends on the current locale being identical to
267 	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
268 	 * told that this is a reasonable assumption...
269 	 *
270 	 * XXX
271 	 * This code will only work with CHAR_T's that are multiples of 8-bit
272 	 * bytes.
273 	 *
274 	 * XXX
275 	 * NB: There's an assumption here that all printable characters take
276 	 * up a single column on the screen.  This is not always correct.
277 	 */
278 	if (isprint(ch)) {
279 pr:		sp->cname[0] = ch;
280 		len = 1;
281 		goto done;
282 	}
283 nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
284 		sp->cname[0] = '^';
285 		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
286 		len = 2;
287 		goto done;
288 	}
289 vis:	for (i = 1; i <= sizeof(CHAR_T); ++i)
290 		if ((ach >> i * CHAR_BIT) == 0)
291 			break;
292 	ch = (ach >> --i * CHAR_BIT) & UCHAR_MAX;
293 	if (O_ISSET(sp, O_OCTAL)) {
294 		sp->cname[0] = '\\';
295 		sp->cname[1] = octdigit[(ch & 0300) >> 6];
296 		sp->cname[2] = octdigit[(ch &  070) >> 3];
297 		sp->cname[3] = octdigit[ ch &   07      ];
298 	} else {
299 		sp->cname[0] = '\\';
300 		sp->cname[1] = 'x';
301 		sp->cname[2] = hexdigit[(ch & 0xf0) >> 4];
302 		sp->cname[3] = hexdigit[ ch & 0x0f      ];
303 	}
304 	len = 4;
305 done:	sp->cname[sp->clen = len] = '\0';
306 	return (sp->cname);
307 }
308 
309 /*
310  * v_key_val --
311  *	Fill in the value for a key.  This routine is the backup
312  *	for the KEY_VAL() macro.
313  *
314  * PUBLIC: e_key_t v_key_val __P((SCR *, ARG_CHAR_T));
315  */
316 e_key_t
317 v_key_val(SCR *sp, ARG_CHAR_T ch)
318 {
319 	KEYLIST k, *kp;
320 
321 	k.ch = ch;
322 	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
323 	return (kp == NULL ? K_NOTUSED : kp->value);
324 }
325 
326 /*
327  * v_event_push --
328  *	Push events/keys onto the front of the buffer.
329  *
330  * There is a single input buffer in ex/vi.  Characters are put onto the
331  * end of the buffer by the terminal input routines, and pushed onto the
332  * front of the buffer by various other functions in ex/vi.  Each key has
333  * an associated flag value, which indicates if it has already been quoted,
334  * and if it is the result of a mapping or an abbreviation.
335  *
336  * PUBLIC: int v_event_push __P((SCR *, EVENT *, const CHAR_T *, size_t, u_int));
337  */
338 int
339 v_event_push(SCR *sp, EVENT *p_evp, const CHAR_T *p_s, size_t nitems, u_int flags)
340 
341 	             			/* Push event. */
342 	            			/* Push characters. */
343 	              			/* Number of items to push. */
344 	            			/* CH_* flags. */
345 {
346 	EVENT *evp;
347 	WIN *wp;
348 	size_t total;
349 
350 	/* If we have room, stuff the items into the buffer. */
351 	wp = sp->wp;
352 	if (nitems <= wp->i_next ||
353 	    (wp->i_event != NULL && wp->i_cnt == 0 && nitems <= wp->i_nelem)) {
354 		if (wp->i_cnt != 0)
355 			wp->i_next -= nitems;
356 		goto copy;
357 	}
358 
359 	/*
360 	 * If there are currently items in the queue, shift them up,
361 	 * leaving some extra room.  Get enough space plus a little
362 	 * extra.
363 	 */
364 #define	TERM_PUSH_SHIFT	30
365 	total = wp->i_cnt + wp->i_next + nitems + TERM_PUSH_SHIFT;
366 	if (total >= wp->i_nelem && v_event_grow(sp, MAX(total, 64)))
367 		return (1);
368 	if (wp->i_cnt)
369 		MEMMOVE(wp->i_event + TERM_PUSH_SHIFT + nitems,
370 		    wp->i_event + wp->i_next, wp->i_cnt);
371 	wp->i_next = TERM_PUSH_SHIFT;
372 
373 	/* Put the new items into the queue. */
374 copy:	wp->i_cnt += nitems;
375 	for (evp = wp->i_event + wp->i_next; nitems--; ++evp) {
376 		if (p_evp != NULL)
377 			*evp = *p_evp++;
378 		else {
379 			evp->e_event = E_CHARACTER;
380 			evp->e_c = *p_s++;
381 			evp->e_value = KEY_VAL(sp, evp->e_c);
382 			FL_INIT(evp->e_flags, flags);
383 		}
384 	}
385 	return (0);
386 }
387 
388 /*
389  * v_event_append --
390  *	Append events onto the tail of the buffer.
391  */
392 static int
393 v_event_append(SCR *sp, EVENT *argp)
394 {
395 	CHAR_T *s;			/* Characters. */
396 	EVENT *evp;
397 	WIN *wp;
398 	size_t nevents;			/* Number of events. */
399 
400 	/* Grow the buffer as necessary. */
401 	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
402 	wp = sp->wp;
403 	if (wp->i_event == NULL ||
404 	    nevents > wp->i_nelem - (wp->i_next + wp->i_cnt))
405 		v_event_grow(sp, MAX(nevents, 64));
406 	evp = wp->i_event + wp->i_next + wp->i_cnt;
407 	wp->i_cnt += nevents;
408 
409 	/* Transform strings of characters into single events. */
410 	if (argp->e_event == E_STRING)
411 		for (s = argp->e_csp; nevents--; ++evp) {
412 			evp->e_event = E_CHARACTER;
413 			evp->e_c = *s++;
414 			evp->e_value = KEY_VAL(sp, evp->e_c);
415 			evp->e_flags = 0;
416 		}
417 	else
418 		*evp = *argp;
419 	return (0);
420 }
421 
422 /* Remove events from the queue. */
423 #define	QREM(len) {							\
424 	if ((wp->i_cnt -= len) == 0)					\
425 		wp->i_next = 0;						\
426 	else								\
427 		wp->i_next += len;					\
428 }
429 
430 /*
431  * v_event_get --
432  *	Return the next event.
433  *
434  * !!!
435  * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
436  * mapping keys is that one or more keystrokes act like a function key.
437  * What's going on is that vi is reading a number, and the character following
438  * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
439  * user is entering the z command, a valid command is "z40+", and we don't want
440  * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
441  * into "z40xxx".  However, if the user enters "35x", we want to put all of the
442  * characters through the mapping code.
443  *
444  * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
445  * mapping digits as long as they weren't the first character of the map, e.g.
446  * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
447  * (the digit 0 was a special case as it doesn't indicate the start of a count)
448  * as the first character of the map, but then ignored those mappings.  While
449  * it's probably stupid to map digits, vi isn't your mother.
450  *
451  * The way this works is that the EC_MAPNODIGIT causes term_key to return the
452  * end-of-digit without "looking" at the next character, i.e. leaving it as the
453  * user entered it.  Presumably, the next term_key call will tell us how the
454  * user wants it handled.
455  *
456  * There is one more complication.  Users might map keys to digits, and, as
457  * it's described above, the commands:
458  *
459  *	:map g 1G
460  *	d2g
461  *
462  * would return the keys "d2<end-of-digits>1G", when the user probably wanted
463  * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
464  * before, otherwise, we pretend we haven't mapped the character, and return
465  * <end-of-digits>.
466  *
467  * Now that that's out of the way, let's talk about Energizer Bunny macros.
468  * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
469  * fairly easy to detect this example, because it's all internal to term_key.
470  * If we're expanding a macro and it gets big enough, at some point we can
471  * assume it's looping and kill it.  The examples that are tough are the ones
472  * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
473  * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
474  * find the looping macro again.  There is no way that we can detect this
475  * without doing a full parse of the command, because the character that might
476  * cause the loop (in this case 'x') may be a literal character, e.g. the map
477  * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
478  *
479  * Historic vi tried to detect looping macros by disallowing obvious cases in
480  * the map command, maps that that ended with the same letter as they started
481  * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
482  * too many times before keys were returned to the command parser.  It didn't
483  * get many (most?) of the tricky cases right, however, and it was certainly
484  * possible to create macros that ran forever.  And, even if it did figure out
485  * what was going on, the user was usually tossed into ex mode.  Finally, any
486  * changes made before vi realized that the macro was recursing were left in
487  * place.  We recover gracefully, but the only recourse the user has in an
488  * infinite macro loop is to interrupt.
489  *
490  * !!!
491  * It is historic practice that mapping characters to themselves as the first
492  * part of the mapped string was legal, and did not cause infinite loops, i.e.
493  * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
494  * characters were returned instead of being remapped.
495  *
496  * !!!
497  * It is also historic practice that the macro "map ] ]]^" caused a single ]
498  * keypress to behave as the command ]] (the ^ got the map past the vi check
499  * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
500  * What happened was that, in the historic vi, maps were expanded as the keys
501  * were retrieved, but not all at once and not centrally.  So, the keypress ]
502  * pushed ]]^ on the stack, and then the first ] from the stack was passed to
503  * the ]] command code.  The ]] command then retrieved a key without entering
504  * the mapping code.  This could bite us anytime a user has a map that depends
505  * on secondary keys NOT being mapped.  I can't see any possible way to make
506  * this work in here without the complete abandonment of Rationality Itself.
507  *
508  * XXX
509  * The final issue is recovery.  It would be possible to undo all of the work
510  * that was done by the macro if we entered a record into the log so that we
511  * knew when the macro started, and, in fact, this might be worth doing at some
512  * point.  Given that this might make the log grow unacceptably (consider that
513  * cursor keys are done with maps), for now we leave any changes made in place.
514  *
515  * PUBLIC: int v_event_get __P((SCR *, EVENT *, int, u_int32_t));
516  */
517 int
518 v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags)
519 {
520 	EVENT *evp, ev;
521 	GS *gp;
522 	SEQ *qp;
523 	int init_nomap, ispartial, istimeout, remap_cnt;
524 	WIN *wp;
525 
526 	gp = sp->gp;
527 	wp = sp->wp;
528 
529 	/* If simply checking for interrupts, argp may be NULL. */
530 	if (argp == NULL)
531 		argp = &ev;
532 
533 retry:	istimeout = remap_cnt = 0;
534 
535 	/*
536 	 * If the queue isn't empty and we're timing out for characters,
537 	 * return immediately.
538 	 */
539 	if (wp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
540 		return (0);
541 
542 	/*
543 	 * If the queue is empty, we're checking for interrupts, or we're
544 	 * timing out for characters, get more events.
545 	 */
546 	if (wp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
547 		/*
548 		 * If we're reading new characters, check any scripting
549 		 * windows for input.
550 		 */
551 		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
552 			return (1);
553 loop:		if (gp->scr_event(sp, argp,
554 		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
555 			return (1);
556 		switch (argp->e_event) {
557 		case E_ERR:
558 		case E_SIGHUP:
559 		case E_SIGTERM:
560 			/*
561 			 * Fatal conditions cause the file to be synced to
562 			 * disk immediately.
563 			 */
564 			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
565 			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
566 			return (1);
567 		case E_TIMEOUT:
568 			istimeout = 1;
569 			break;
570 		case E_INTERRUPT:
571 			/* Set the global interrupt flag. */
572 			F_SET(sp->gp, G_INTERRUPTED);
573 
574 			/*
575 			 * If the caller was interested in interrupts, return
576 			 * immediately.
577 			 */
578 			if (LF_ISSET(EC_INTERRUPT))
579 				return (0);
580 			goto append;
581 		default:
582 append:			if (v_event_append(sp, argp))
583 				return (1);
584 			break;
585 		}
586 	}
587 
588 	/*
589 	 * If the caller was only interested in interrupts or timeouts, return
590 	 * immediately.  (We may have gotten characters, and that's okay, they
591 	 * were queued up for later use.)
592 	 */
593 	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
594 		return (0);
595 
596 newmap:	evp = &wp->i_event[wp->i_next];
597 
598 	/*
599 	 * If the next event in the queue isn't a character event, return
600 	 * it, we're done.
601 	 */
602 	if (evp->e_event != E_CHARACTER) {
603 		*argp = *evp;
604 		QREM(1);
605 		return (0);
606 	}
607 
608 	/*
609 	 * If the key isn't mappable because:
610 	 *
611 	 *	+ ... the timeout has expired
612 	 *	+ ... it's not a mappable key
613 	 *	+ ... neither the command or input map flags are set
614 	 *	+ ... there are no maps that can apply to it
615 	 *
616 	 * return it forthwith.
617 	 */
618 	if (istimeout || FL_ISSET(evp->e_flags, CH_NOMAP) ||
619 	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
620 	    ((evp->e_c & ~MAX_BIT_SEQ) == 0 &&
621 	    !bit_test(gp->seqb, evp->e_c)))
622 		goto nomap;
623 
624 	/* Search the map. */
625 	qp = seq_find(sp, NULL, evp, NULL, wp->i_cnt,
626 	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
627 
628 	/*
629 	 * If get a partial match, get more characters and retry the map.
630 	 * If time out without further characters, return the characters
631 	 * unmapped.
632 	 *
633 	 * !!!
634 	 * <escape> characters are a problem.  Cursor keys start with <escape>
635 	 * characters, so there's almost always a map in place that begins with
636 	 * an <escape> character.  If we timeout <escape> keys in the same way
637 	 * that we timeout other keys, the user will get a noticeable pause as
638 	 * they enter <escape> to terminate input mode.  If key timeout is set
639 	 * for a slow link, users will get an even longer pause.  Nvi used to
640 	 * simply timeout <escape> characters at 1/10th of a second, but this
641 	 * loses over PPP links where the latency is greater than 100Ms.
642 	 */
643 	if (ispartial) {
644 		if (O_ISSET(sp, O_TIMEOUT))
645 			timeout = (evp->e_value == K_ESCAPE ?
646 			    O_VAL(sp, O_ESCAPETIME) :
647 			    O_VAL(sp, O_KEYTIME)) * 100;
648 		else
649 			timeout = 0;
650 		goto loop;
651 	}
652 
653 	/* If no map, return the character. */
654 	if (qp == NULL) {
655 nomap:		if (!ISDIGIT(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
656 			goto not_digit;
657 		*argp = *evp;
658 		QREM(1);
659 		return (0);
660 	}
661 
662 	/*
663 	 * If looking for the end of a digit string, and the first character
664 	 * of the map is it, pretend we haven't seen the character.
665 	 */
666 	if (LF_ISSET(EC_MAPNODIGIT) &&
667 	    qp->output != NULL && !ISDIGIT(qp->output[0])) {
668 not_digit:	argp->e_c = CH_NOT_DIGIT;
669 		argp->e_value = K_NOTUSED;
670 		argp->e_event = E_CHARACTER;
671 		FL_INIT(argp->e_flags, 0);
672 		return (0);
673 	}
674 
675 	/* Find out if the initial segments are identical. */
676 	init_nomap = !e_memcmp(qp->output, &wp->i_event[wp->i_next], qp->ilen);
677 
678 	/* Delete the mapped characters from the queue. */
679 	QREM(qp->ilen);
680 
681 	/* If keys mapped to nothing, go get more. */
682 	if (qp->output == NULL)
683 		goto retry;
684 
685 	/* If remapping characters... */
686 	if (O_ISSET(sp, O_REMAP)) {
687 		/*
688 		 * Periodically check for interrupts.  Always check the first
689 		 * time through, because it's possible to set up a map that
690 		 * will return a character every time, but will expand to more,
691 		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
692 		 * get anywhere useful.
693 		 */
694 		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
695 		    (gp->scr_event(sp, &ev,
696 		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
697 			F_SET(sp->gp, G_INTERRUPTED);
698 			argp->e_event = E_INTERRUPT;
699 			return (0);
700 		}
701 
702 		/*
703 		 * If an initial part of the characters mapped, they are not
704 		 * further remapped -- return the first one.  Push the rest
705 		 * of the characters, or all of the characters if no initial
706 		 * part mapped, back on the queue.
707 		 */
708 		if (init_nomap) {
709 			if (v_event_push(sp, NULL, qp->output + qp->ilen,
710 			    qp->olen - qp->ilen, CH_MAPPED))
711 				return (1);
712 			if (v_event_push(sp, NULL,
713 			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
714 				return (1);
715 			evp = &wp->i_event[wp->i_next];
716 			goto nomap;
717 		}
718 		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
719 			return (1);
720 		goto newmap;
721 	}
722 
723 	/* Else, push the characters on the queue and return one. */
724 	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
725 		return (1);
726 
727 	goto nomap;
728 }
729 
730 /*
731  * v_sync --
732  *	Walk the screen lists, sync'ing files to their backup copies.
733  */
734 static void
735 v_sync(SCR *sp, int flags)
736 {
737 	GS *gp;
738 	WIN *wp;
739 
740 	gp = sp->gp;
741 	TAILQ_FOREACH(wp, &gp->dq, q)
742 		TAILQ_FOREACH(sp, &wp->scrq, q)
743 			rcv_sync(sp, flags);
744 	TAILQ_FOREACH(sp, &gp->hq, q)
745 		rcv_sync(sp, flags);
746 }
747 
748 /*
749  * v_event_err --
750  *	Unexpected event.
751  *
752  * PUBLIC: void v_event_err __P((SCR *, EVENT *));
753  */
754 void
755 v_event_err(SCR *sp, EVENT *evp)
756 {
757 	switch (evp->e_event) {
758 	case E_CHARACTER:
759 		msgq(sp, M_ERR, "276|Unexpected character event");
760 		break;
761 	case E_EOF:
762 		msgq(sp, M_ERR, "277|Unexpected end-of-file event");
763 		break;
764 	case E_INTERRUPT:
765 		msgq(sp, M_ERR, "279|Unexpected interrupt event");
766 		break;
767 	case E_IPCOMMAND:
768 		msgq(sp, M_ERR, "318|Unexpected command or input");
769 		break;
770 	case E_REPAINT:
771 		msgq(sp, M_ERR, "281|Unexpected repaint event");
772 		break;
773 	case E_STRING:
774 		msgq(sp, M_ERR, "285|Unexpected string event");
775 		break;
776 	case E_TIMEOUT:
777 		msgq(sp, M_ERR, "286|Unexpected timeout event");
778 		break;
779 	case E_WRESIZE:
780 		msgq(sp, M_ERR, "316|Unexpected resize event");
781 		break;
782 
783 	/*
784 	 * Theoretically, none of these can occur, as they're handled at the
785 	 * top editor level.
786 	 */
787 	case E_ERR:
788 	case E_SIGHUP:
789 	case E_SIGTERM:
790 	default:
791 		abort();
792 	}
793 }
794 
795 /*
796  * v_event_flush --
797  *	Flush any flagged keys, returning if any keys were flushed.
798  *
799  * PUBLIC: int v_event_flush __P((SCR *, u_int));
800  */
801 int
802 v_event_flush(SCR *sp, u_int flags)
803 {
804 	WIN *wp;
805 	int rval;
806 
807 	for (rval = 0, wp = sp->wp; wp->i_cnt != 0 &&
808 	    FL_ISSET(wp->i_event[wp->i_next].e_flags, flags); rval = 1)
809 		QREM(1);
810 	return (rval);
811 }
812 
813 /*
814  * v_event_grow --
815  *	Grow the terminal queue.
816  */
817 static int
818 v_event_grow(SCR *sp, int add)
819 {
820 	WIN *wp;
821 	size_t new_nelem, olen;
822 
823 	wp = sp->wp;
824 	new_nelem = wp->i_nelem + add;
825 	olen = wp->i_nelem * sizeof(wp->i_event[0]);
826 	BINC_RET(sp, EVENT, wp->i_event, olen, new_nelem * sizeof(EVENT));
827 	wp->i_nelem = olen / sizeof(wp->i_event[0]);
828 	return (0);
829 }
830 
831 /*
832  * v_key_cmp --
833  *	Compare two keys for sorting.
834  */
835 static int
836 v_key_cmp(const void *ap, const void *bp)
837 {
838 	return (((const KEYLIST *)ap)->ch - ((const KEYLIST *)bp)->ch);
839 }
840