1 /* $NetBSD: ntp-keygen.c,v 1.1.1.1 2009/12/13 16:57:30 kardel Exp $ */ 2 3 /* 4 * Program to generate cryptographic keys for ntp clients and servers 5 * 6 * This program generates password encrypted data files for use with the 7 * Autokey security protocol and Network Time Protocol Version 4. Files 8 * are prefixed with a header giving the name and date of creation 9 * followed by a type-specific descriptive label and PEM-encoded data 10 * structure compatible with programs of the OpenSSL library. 11 * 12 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where 13 * <type> is the file type, <hostname> the generating host name and 14 * <filestamp> the generation time in NTP seconds. The NTP programs 15 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the 16 * association maintained by soft links. Following is a list of file 17 * types; the first line is the file name and the second link name. 18 * 19 * ntpkey_MD5key_<hostname>.<filestamp> 20 * MD5 (128-bit) keys used to compute message digests in symmetric 21 * key cryptography 22 * 23 * ntpkey_RSAhost_<hostname>.<filestamp> 24 * ntpkey_host_<hostname> 25 * RSA private/public host key pair used for public key signatures 26 * 27 * ntpkey_RSAsign_<hostname>.<filestamp> 28 * ntpkey_sign_<hostname> 29 * RSA private/public sign key pair used for public key signatures 30 * 31 * ntpkey_DSAsign_<hostname>.<filestamp> 32 * ntpkey_sign_<hostname> 33 * DSA Private/public sign key pair used for public key signatures 34 * 35 * Available digest/signature schemes 36 * 37 * RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160 38 * DSA: DSA-SHA, DSA-SHA1 39 * 40 * ntpkey_XXXcert_<hostname>.<filestamp> 41 * ntpkey_cert_<hostname> 42 * X509v3 certificate using RSA or DSA public keys and signatures. 43 * XXX is a code identifying the message digest and signature 44 * encryption algorithm 45 * 46 * Identity schemes. The key type par is used for the challenge; the key 47 * type key is used for the response. 48 * 49 * ntpkey_IFFkey_<groupname>.<filestamp> 50 * ntpkey_iffkey_<groupname> 51 * Schnorr (IFF) identity parameters and keys 52 * 53 * ntpkey_GQkey_<groupname>.<filestamp>, 54 * ntpkey_gqkey_<groupname> 55 * Guillou-Quisquater (GQ) identity parameters and keys 56 * 57 * ntpkey_MVkeyX_<groupname>.<filestamp>, 58 * ntpkey_mvkey_<groupname> 59 * Mu-Varadharajan (MV) identity parameters and keys 60 * 61 * Note: Once in a while because of some statistical fluke this program 62 * fails to generate and verify some cryptographic data, as indicated by 63 * exit status -1. In this case simply run the program again. If the 64 * program does complete with exit code 0, the data are correct as 65 * verified. 66 * 67 * These cryptographic routines are characterized by the prime modulus 68 * size in bits. The default value of 512 bits is a compromise between 69 * cryptographic strength and computing time and is ordinarily 70 * considered adequate for this application. The routines have been 71 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message 72 * digest and signature encryption schemes work with sizes less than 512 73 * bits. The computing time for sizes greater than 2048 bits is 74 * prohibitive on all but the fastest processors. An UltraSPARC Blade 75 * 1000 took something over nine minutes to generate and verify the 76 * values with size 2048. An old SPARC IPC would take a week. 77 * 78 * The OpenSSL library used by this program expects a random seed file. 79 * As described in the OpenSSL documentation, the file name defaults to 80 * first the RANDFILE environment variable in the user's home directory 81 * and then .rnd in the user's home directory. 82 */ 83 #ifdef HAVE_CONFIG_H 84 # include <config.h> 85 #endif 86 #include <string.h> 87 #include <stdio.h> 88 #include <stdlib.h> 89 #include <unistd.h> 90 #include <sys/stat.h> 91 #include <sys/time.h> 92 #include <sys/types.h> 93 #include "ntp_types.h" 94 #include "ntp_random.h" 95 #include "ntp_stdlib.h" 96 #include "ntp_assert.h" 97 98 #include "ntp-keygen-opts.h" 99 100 #ifdef OPENSSL 101 #include "openssl/bn.h" 102 #include "openssl/evp.h" 103 #include "openssl/err.h" 104 #include "openssl/rand.h" 105 #include "openssl/pem.h" 106 #include "openssl/x509v3.h" 107 #include <openssl/objects.h> 108 #endif /* OPENSSL */ 109 #include <ssl_applink.c> 110 111 /* 112 * Cryptodefines 113 */ 114 #define MD5KEYS 10 /* number of keys generated of each type */ 115 #define MD5SIZE 20 /* maximum key size */ 116 #define JAN_1970 2208988800UL /* NTP seconds */ 117 #define YEAR ((long)60*60*24*365) /* one year in seconds */ 118 #define MAXFILENAME 256 /* max file name length */ 119 #define MAXHOSTNAME 256 /* max host name length */ 120 #ifdef OPENSSL 121 #define PLEN 512 /* default prime modulus size (bits) */ 122 #define ILEN 256 /* default identity modulus size (bits) */ 123 #define MVMAX 100 /* max MV parameters */ 124 125 /* 126 * Strings used in X509v3 extension fields 127 */ 128 #define KEY_USAGE "digitalSignature,keyCertSign" 129 #define BASIC_CONSTRAINTS "critical,CA:TRUE" 130 #define EXT_KEY_PRIVATE "private" 131 #define EXT_KEY_TRUST "trustRoot" 132 #endif /* OPENSSL */ 133 134 /* 135 * Prototypes 136 */ 137 FILE *fheader (const char *, const char *, const char *); 138 int gen_md5 (char *); 139 #ifdef OPENSSL 140 EVP_PKEY *gen_rsa (char *); 141 EVP_PKEY *gen_dsa (char *); 142 EVP_PKEY *gen_iffkey (char *); 143 EVP_PKEY *gen_gqkey (char *); 144 EVP_PKEY *gen_mvkey (char *, EVP_PKEY **); 145 void gen_mvserv (char *, EVP_PKEY **); 146 int x509 (EVP_PKEY *, const EVP_MD *, char *, char *, 147 char *); 148 void cb (int, int, void *); 149 EVP_PKEY *genkey (char *, char *); 150 EVP_PKEY *readkey (char *, char *, u_int *, EVP_PKEY **); 151 void writekey (char *, char *, u_int *, EVP_PKEY **); 152 u_long asn2ntp (ASN1_TIME *); 153 #endif /* OPENSSL */ 154 155 /* 156 * Program variables 157 */ 158 extern char *optarg; /* command line argument */ 159 char *progname; 160 volatile int debug = 0; /* debug, not de bug */ 161 #ifdef OPENSSL 162 u_int modulus = PLEN; /* prime modulus size (bits) */ 163 u_int modulus2 = ILEN; /* identity modulus size (bits) */ 164 #endif 165 int nkeys; /* MV keys */ 166 time_t epoch; /* Unix epoch (seconds) since 1970 */ 167 u_int fstamp; /* NTP filestamp */ 168 char *hostname = NULL; /* host name (subject name) */ 169 char *groupname = NULL; /* trusted host name (issuer name) */ 170 char filename[MAXFILENAME + 1]; /* file name */ 171 char *passwd1 = NULL; /* input private key password */ 172 char *passwd2 = NULL; /* output private key password */ 173 #ifdef OPENSSL 174 long d0, d1, d2, d3; /* callback counters */ 175 #endif /* OPENSSL */ 176 177 #ifdef SYS_WINNT 178 BOOL init_randfile(); 179 180 /* 181 * Don't try to follow symbolic links 182 */ 183 int 184 readlink(char *link, char *file, int len) 185 { 186 return (-1); 187 } 188 189 /* 190 * Don't try to create a symbolic link for now. 191 * Just move the file to the name you need. 192 */ 193 int 194 symlink(char *filename, char *linkname) { 195 DeleteFile(linkname); 196 MoveFile(filename, linkname); 197 return (0); 198 } 199 void 200 InitWin32Sockets() { 201 WORD wVersionRequested; 202 WSADATA wsaData; 203 wVersionRequested = MAKEWORD(2,0); 204 if (WSAStartup(wVersionRequested, &wsaData)) 205 { 206 fprintf(stderr, "No useable winsock.dll\n"); 207 exit(1); 208 } 209 } 210 #endif /* SYS_WINNT */ 211 212 /* 213 * Main program 214 */ 215 int 216 main( 217 int argc, /* command line options */ 218 char **argv 219 ) 220 { 221 struct timeval tv; /* initialization vector */ 222 int md5key = 0; /* generate MD5 keys */ 223 #ifdef OPENSSL 224 X509 *cert = NULL; /* X509 certificate */ 225 X509_EXTENSION *ext; /* X509v3 extension */ 226 EVP_PKEY *pkey_host = NULL; /* host key */ 227 EVP_PKEY *pkey_sign = NULL; /* sign key */ 228 EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */ 229 EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */ 230 EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */ 231 EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */ 232 int hostkey = 0; /* generate RSA keys */ 233 int iffkey = 0; /* generate IFF keys */ 234 int gqkey = 0; /* generate GQ keys */ 235 int mvkey = 0; /* update MV keys */ 236 int mvpar = 0; /* generate MV parameters */ 237 char *sign = NULL; /* sign key */ 238 EVP_PKEY *pkey = NULL; /* temp key */ 239 const EVP_MD *ectx; /* EVP digest */ 240 char pathbuf[MAXFILENAME + 1]; 241 const char *scheme = NULL; /* digest/signature scheme */ 242 char *exten = NULL; /* private extension */ 243 char *grpkey = NULL; /* identity extension */ 244 int nid; /* X509 digest/signature scheme */ 245 FILE *fstr = NULL; /* file handle */ 246 #define iffsw HAVE_OPT(ID_KEY) 247 #endif /* OPENSSL */ 248 char hostbuf[MAXHOSTNAME + 1]; 249 char groupbuf[MAXHOSTNAME + 1]; 250 251 progname = argv[0]; 252 253 #ifdef SYS_WINNT 254 /* Initialize before OpenSSL checks */ 255 InitWin32Sockets(); 256 if (!init_randfile()) 257 fprintf(stderr, "Unable to initialize .rnd file\n"); 258 ssl_applink(); 259 #endif 260 261 #ifdef OPENSSL 262 ssl_check_version(); 263 fprintf(stderr, "Using OpenSSL version %lx\n", SSLeay()); 264 #endif /* OPENSSL */ 265 266 /* 267 * Process options, initialize host name and timestamp. 268 */ 269 gethostname(hostbuf, MAXHOSTNAME); 270 hostname = hostbuf; 271 gettimeofday(&tv, 0); 272 273 epoch = tv.tv_sec; 274 275 { 276 int optct = optionProcess(&ntp_keygenOptions, argc, argv); 277 argc -= optct; 278 argv += optct; 279 } 280 debug = DESC(DEBUG_LEVEL).optOccCt; 281 if (HAVE_OPT( MD5KEY )) 282 md5key++; 283 284 #ifdef OPENSSL 285 passwd1 = hostbuf; 286 if (HAVE_OPT( PVT_PASSWD )) 287 passwd1 = strdup(OPT_ARG( PVT_PASSWD )); 288 289 if (HAVE_OPT( GET_PVT_PASSWD )) 290 passwd2 = strdup(OPT_ARG( GET_PVT_PASSWD )); 291 292 if (HAVE_OPT( HOST_KEY )) 293 hostkey++; 294 295 if (HAVE_OPT( SIGN_KEY )) 296 sign = strdup(OPT_ARG( SIGN_KEY )); 297 298 if (HAVE_OPT( GQ_PARAMS )) 299 gqkey++; 300 301 if (HAVE_OPT( IFFKEY )) 302 iffkey++; 303 304 if (HAVE_OPT( MV_PARAMS )) { 305 mvkey++; 306 nkeys = OPT_VALUE_MV_PARAMS; 307 } 308 if (HAVE_OPT( MV_KEYS )) { 309 mvpar++; 310 nkeys = OPT_VALUE_MV_KEYS; 311 } 312 if (HAVE_OPT( MODULUS )) 313 modulus = OPT_VALUE_MODULUS; 314 315 if (HAVE_OPT( CERTIFICATE )) 316 scheme = OPT_ARG( CERTIFICATE ); 317 318 if (HAVE_OPT( SUBJECT_NAME )) 319 hostname = strdup(OPT_ARG( SUBJECT_NAME )); 320 321 if (HAVE_OPT( ISSUER_NAME )) 322 groupname = strdup(OPT_ARG( ISSUER_NAME )); 323 324 if (HAVE_OPT( PVT_CERT )) 325 exten = EXT_KEY_PRIVATE; 326 327 if (HAVE_OPT( TRUSTED_CERT )) 328 exten = EXT_KEY_TRUST; 329 330 /* 331 * Seed random number generator and grow weeds. 332 */ 333 ERR_load_crypto_strings(); 334 OpenSSL_add_all_algorithms(); 335 if (!RAND_status()) { 336 u_int temp; 337 338 if (RAND_file_name(pathbuf, MAXFILENAME) == NULL) { 339 fprintf(stderr, "RAND_file_name %s\n", 340 ERR_error_string(ERR_get_error(), NULL)); 341 exit (-1); 342 } 343 temp = RAND_load_file(pathbuf, -1); 344 if (temp == 0) { 345 fprintf(stderr, 346 "RAND_load_file %s not found or empty\n", 347 pathbuf); 348 exit (-1); 349 } 350 fprintf(stderr, 351 "Random seed file %s %u bytes\n", pathbuf, temp); 352 RAND_add(&epoch, sizeof(epoch), 4.0); 353 } 354 355 /* 356 * Load previous certificate if available. 357 */ 358 sprintf(filename, "ntpkey_cert_%s", hostname); 359 if ((fstr = fopen(filename, "r")) != NULL) { 360 cert = PEM_read_X509(fstr, NULL, NULL, NULL); 361 fclose(fstr); 362 } 363 if (cert != NULL) { 364 365 /* 366 * Extract subject name. 367 */ 368 X509_NAME_oneline(X509_get_subject_name(cert), groupbuf, 369 MAXFILENAME); 370 371 /* 372 * Extract digest/signature scheme. 373 */ 374 if (scheme == NULL) { 375 nid = OBJ_obj2nid(cert->cert_info-> 376 signature->algorithm); 377 scheme = OBJ_nid2sn(nid); 378 } 379 380 /* 381 * If a key_usage extension field is present, determine 382 * whether this is a trusted or private certificate. 383 */ 384 if (exten == NULL) { 385 BIO *bp; 386 int i, cnt; 387 char *ptr; 388 389 ptr = strstr(groupbuf, "CN="); 390 cnt = X509_get_ext_count(cert); 391 for (i = 0; i < cnt; i++) { 392 ext = X509_get_ext(cert, i); 393 if (OBJ_obj2nid(ext->object) == 394 NID_ext_key_usage) { 395 bp = BIO_new(BIO_s_mem()); 396 X509V3_EXT_print(bp, ext, 0, 0); 397 BIO_gets(bp, pathbuf, 398 MAXFILENAME); 399 BIO_free(bp); 400 if (strcmp(pathbuf, 401 "Trust Root") == 0) 402 exten = EXT_KEY_TRUST; 403 else if (strcmp(pathbuf, 404 "Private") == 0) 405 exten = EXT_KEY_PRIVATE; 406 if (groupname == NULL) 407 groupname = ptr + 3; 408 } 409 } 410 } 411 } 412 if (scheme == NULL) 413 scheme = "RSA-MD5"; 414 if (groupname == NULL) 415 groupname = hostname; 416 fprintf(stderr, "Using host %s group %s\n", hostname, 417 groupname); 418 if ((iffkey || gqkey || mvkey) && exten == NULL) 419 fprintf(stderr, 420 "Warning: identity files may not be useful with a nontrusted certificate.\n"); 421 #endif /* OPENSSL */ 422 423 /* 424 * Create new unencrypted MD5 keys file if requested. If this 425 * option is selected, ignore all other options. 426 */ 427 if (md5key) { 428 gen_md5("md5"); 429 exit (0); 430 } 431 432 #ifdef OPENSSL 433 /* 434 * Create a new encrypted RSA host key file if requested; 435 * otherwise, look for an existing host key file. If not found, 436 * create a new encrypted RSA host key file. If that fails, go 437 * no further. 438 */ 439 if (hostkey) 440 pkey_host = genkey("RSA", "host"); 441 if (pkey_host == NULL) { 442 sprintf(filename, "ntpkey_host_%s", hostname); 443 pkey_host = readkey(filename, passwd1, &fstamp, NULL); 444 if (pkey_host != NULL) { 445 readlink(filename, filename, sizeof(filename)); 446 fprintf(stderr, "Using host key %s\n", 447 filename); 448 } else { 449 pkey_host = genkey("RSA", "host"); 450 } 451 } 452 if (pkey_host == NULL) { 453 fprintf(stderr, "Generating host key fails\n"); 454 exit (-1); 455 } 456 457 /* 458 * Create new encrypted RSA or DSA sign keys file if requested; 459 * otherwise, look for an existing sign key file. If not found, 460 * use the host key instead. 461 */ 462 if (sign != NULL) 463 pkey_sign = genkey(sign, "sign"); 464 if (pkey_sign == NULL) { 465 sprintf(filename, "ntpkey_sign_%s", hostname); 466 pkey_sign = readkey(filename, passwd1, &fstamp, NULL); 467 if (pkey_sign != NULL) { 468 readlink(filename, filename, sizeof(filename)); 469 fprintf(stderr, "Using sign key %s\n", 470 filename); 471 } else if (pkey_host != NULL) { 472 pkey_sign = pkey_host; 473 fprintf(stderr, "Using host key as sign key\n"); 474 } 475 } 476 477 /* 478 * Create new encrypted GQ server keys file if requested; 479 * otherwise, look for an exisiting file. If found, fetch the 480 * public key for the certificate. 481 */ 482 if (gqkey) 483 pkey_gqkey = gen_gqkey("gqkey"); 484 if (pkey_gqkey == NULL) { 485 sprintf(filename, "ntpkey_gqkey_%s", groupname); 486 pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL); 487 if (pkey_gqkey != NULL) { 488 readlink(filename, filename, sizeof(filename)); 489 fprintf(stderr, "Using GQ parameters %s\n", 490 filename); 491 } 492 } 493 if (pkey_gqkey != NULL) 494 grpkey = BN_bn2hex(pkey_gqkey->pkey.rsa->q); 495 496 /* 497 * Write the nonencrypted GQ client parameters to the stdout 498 * stream. The parameter file is the server key file with the 499 * private key obscured. 500 */ 501 if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) { 502 RSA *rsa; 503 504 epoch = fstamp - JAN_1970; 505 sprintf(filename, "ntpkey_gqpar_%s.%u", groupname, 506 fstamp); 507 fprintf(stderr, "Writing GQ parameters %s to stdout\n", 508 filename); 509 fprintf(stdout, "# %s\n# %s\n", filename, 510 ctime(&epoch)); 511 rsa = pkey_gqkey->pkey.rsa; 512 BN_copy(rsa->p, BN_value_one()); 513 BN_copy(rsa->q, BN_value_one()); 514 pkey = EVP_PKEY_new(); 515 EVP_PKEY_assign_RSA(pkey, rsa); 516 PEM_write_PrivateKey(stdout, pkey, NULL, NULL, 0, NULL, 517 NULL); 518 fclose(stdout); 519 if (debug) 520 RSA_print_fp(stderr, rsa, 0); 521 } 522 523 /* 524 * Write the encrypted GQ server keys to the stdout stream. 525 */ 526 if (pkey_gqkey != NULL && passwd2 != NULL) { 527 RSA *rsa; 528 529 sprintf(filename, "ntpkey_gqkey_%s.%u", groupname, 530 fstamp); 531 fprintf(stderr, "Writing GQ keys %s to stdout\n", 532 filename); 533 fprintf(stdout, "# %s\n# %s\n", filename, 534 ctime(&epoch)); 535 rsa = pkey_gqkey->pkey.rsa; 536 pkey = EVP_PKEY_new(); 537 EVP_PKEY_assign_RSA(pkey, rsa); 538 PEM_write_PrivateKey(stdout, pkey, 539 EVP_des_cbc(), NULL, 0, NULL, passwd2); 540 fclose(stdout); 541 if (debug) 542 RSA_print_fp(stderr, rsa, 0); 543 } 544 545 /* 546 * Create new encrypted IFF server keys file if requested; 547 * otherwise, look for existing file. 548 */ 549 if (iffkey) 550 pkey_iffkey = gen_iffkey("iffkey"); 551 if (pkey_iffkey == NULL) { 552 sprintf(filename, "ntpkey_iffkey_%s", groupname); 553 pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL); 554 if (pkey_iffkey != NULL) { 555 readlink(filename, filename, sizeof(filename)); 556 fprintf(stderr, "Using IFF keys %s\n", 557 filename); 558 } 559 } 560 561 /* 562 * Write the nonencrypted IFF client parameters to the stdout 563 * stream. The parameter file is the server key file with the 564 * private key obscured. 565 */ 566 if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) { 567 DSA *dsa; 568 569 epoch = fstamp - JAN_1970; 570 sprintf(filename, "ntpkey_iffpar_%s.%u", groupname, 571 fstamp); 572 fprintf(stderr, "Writing IFF parameters %s to stdout\n", 573 filename); 574 fprintf(stdout, "# %s\n# %s\n", filename, 575 ctime(&epoch)); 576 dsa = pkey_iffkey->pkey.dsa; 577 BN_copy(dsa->priv_key, BN_value_one()); 578 pkey = EVP_PKEY_new(); 579 EVP_PKEY_assign_DSA(pkey, dsa); 580 PEM_write_PrivateKey(stdout, pkey, NULL, NULL, 0, NULL, 581 NULL); 582 fclose(stdout); 583 if (debug) 584 DSA_print_fp(stderr, dsa, 0); 585 } 586 587 /* 588 * Write the encrypted IFF server keys to the stdout stream. 589 */ 590 if (pkey_iffkey != NULL && passwd2 != NULL) { 591 DSA *dsa; 592 593 epoch = fstamp - JAN_1970; 594 sprintf(filename, "ntpkey_iffkey_%s.%u", groupname, 595 fstamp); 596 fprintf(stderr, "Writing IFF keys %s to stdout\n", 597 filename); 598 fprintf(stdout, "# %s\n# %s\n", filename, 599 ctime(&epoch)); 600 dsa = pkey_iffkey->pkey.dsa; 601 pkey = EVP_PKEY_new(); 602 EVP_PKEY_assign_DSA(pkey, dsa); 603 PEM_write_PrivateKey(stdout, pkey, EVP_des_cbc(), NULL, 604 0, NULL, passwd2); 605 fclose(stdout); 606 if (debug) 607 DSA_print_fp(stderr, dsa, 0); 608 } 609 610 /* 611 * Create new encrypted MV trusted-authority keys file if 612 * requested; otherwise, look for existing keys file. 613 */ 614 if (mvkey) 615 pkey_mvkey = gen_mvkey("mv", pkey_mvpar); 616 if (pkey_mvkey == NULL) { 617 sprintf(filename, "ntpkey_mvta_%s", groupname); 618 pkey_mvkey = readkey(filename, passwd1, &fstamp, 619 pkey_mvpar); 620 if (pkey_mvkey != NULL) { 621 readlink(filename, filename, sizeof(filename)); 622 fprintf(stderr, "Using MV keys %s\n", 623 filename); 624 } 625 } 626 627 /* 628 * Write the nonencrypted MV client parameters to the stdout 629 * stream. For the moment, we always use the client parameters 630 * associated with client key 1. 631 */ 632 if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) { 633 epoch = fstamp - JAN_1970; 634 sprintf(filename, "ntpkey_mvpar_%s.%u", groupname, 635 fstamp); 636 fprintf(stderr, "Writing MV parameters %s to stdout\n", 637 filename); 638 fprintf(stdout, "# %s\n# %s\n", filename, 639 ctime(&epoch)); 640 pkey = pkey_mvpar[2]; 641 PEM_write_PrivateKey(stdout, pkey, NULL, NULL, 0, NULL, 642 NULL); 643 fclose(stdout); 644 if (debug) 645 DSA_print_fp(stderr, pkey->pkey.dsa, 0); 646 } 647 648 /* 649 * Write the encrypted MV server keys to the stdout stream. 650 */ 651 if (pkey_mvkey != NULL && passwd2 != NULL) { 652 epoch = fstamp - JAN_1970; 653 sprintf(filename, "ntpkey_mvkey_%s.%u", groupname, 654 fstamp); 655 fprintf(stderr, "Writing MV keys %s to stdout\n", 656 filename); 657 fprintf(stdout, "# %s\n# %s\n", filename, 658 ctime(&epoch)); 659 pkey = pkey_mvpar[1]; 660 PEM_write_PrivateKey(stdout, pkey, EVP_des_cbc(), NULL, 661 0, NULL, passwd2); 662 fclose(stdout); 663 if (debug) 664 DSA_print_fp(stderr, pkey->pkey.dsa, 0); 665 } 666 667 /* 668 * Don't generate a certificate if no host keys or extracting 669 * encrypted or nonencrypted keys to the standard output stream. 670 */ 671 if (pkey_host == NULL || HAVE_OPT(ID_KEY) || passwd2 != NULL) 672 exit (0); 673 674 /* 675 * Decode the digest/signature scheme. If trusted, set the 676 * subject and issuer names to the group name; if not set both 677 * to the host name. 678 */ 679 ectx = EVP_get_digestbyname(scheme); 680 if (ectx == NULL) { 681 fprintf(stderr, 682 "Invalid digest/signature combination %s\n", 683 scheme); 684 exit (-1); 685 } 686 if (exten == NULL) 687 x509(pkey_sign, ectx, grpkey, exten, hostname); 688 else 689 x509(pkey_sign, ectx, grpkey, exten, groupname); 690 #endif /* OPENSSL */ 691 exit (0); 692 } 693 694 695 /* 696 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also, 697 * if OpenSSL is around, generate random SHA1 keys compatible with 698 * symmetric key cryptography. 699 */ 700 int 701 gen_md5( 702 char *id /* file name id */ 703 ) 704 { 705 u_char md5key[MD5SIZE + 1]; /* MD5 key */ 706 FILE *str; 707 int i, j; 708 #ifdef OPENSSL 709 u_char keystr[MD5SIZE]; 710 u_char hexstr[2 * MD5SIZE + 1]; 711 u_char hex[] = "0123456789abcdef"; 712 #endif /* OPENSSL */ 713 714 str = fheader("MD5key", id, groupname); 715 ntp_srandom((u_long)epoch); 716 for (i = 1; i <= MD5KEYS; i++) { 717 for (j = 0; j < MD5SIZE; j++) { 718 int temp; 719 720 while (1) { 721 temp = ntp_random() & 0xff; 722 if (temp == '#') 723 continue; 724 725 if (temp > 0x20 && temp < 0x7f) 726 break; 727 } 728 md5key[j] = (u_char)temp; 729 } 730 md5key[j] = '\0'; 731 fprintf(str, "%2d MD5 %s # MD5 key\n", i, 732 md5key); 733 } 734 #ifdef OPENSSL 735 for (i = 1; i <= MD5KEYS; i++) { 736 RAND_bytes(keystr, 20); 737 for (j = 0; j < MD5SIZE; j++) { 738 hexstr[2 * j] = hex[keystr[j] >> 4]; 739 hexstr[2 * j + 1] = hex[keystr[j] & 0xf]; 740 } 741 hexstr[2 * MD5SIZE] = '\0'; 742 fprintf(str, "%2d SHA1 %s # SHA1 key\n", i + MD5KEYS, 743 hexstr); 744 } 745 #endif /* OPENSSL */ 746 fclose(str); 747 return (1); 748 } 749 750 751 #ifdef OPENSSL 752 /* 753 * readkey - load cryptographic parameters and keys 754 * 755 * This routine loads a PEM-encoded file of given name and password and 756 * extracts the filestamp from the file name. It returns a pointer to 757 * the first key if valid, NULL if not. 758 */ 759 EVP_PKEY * /* public/private key pair */ 760 readkey( 761 char *cp, /* file name */ 762 char *passwd, /* password */ 763 u_int *estamp, /* file stamp */ 764 EVP_PKEY **evpars /* parameter list pointer */ 765 ) 766 { 767 FILE *str; /* file handle */ 768 EVP_PKEY *pkey = NULL; /* public/private key */ 769 u_int gstamp; /* filestamp */ 770 char linkname[MAXFILENAME]; /* filestamp buffer) */ 771 EVP_PKEY *parkey; 772 char *ptr; 773 int i; 774 775 /* 776 * Open the key file. 777 */ 778 str = fopen(cp, "r"); 779 if (str == NULL) 780 return (NULL); 781 782 /* 783 * Read the filestamp, which is contained in the first line. 784 */ 785 if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) { 786 fprintf(stderr, "Empty key file %s\n", cp); 787 fclose(str); 788 return (NULL); 789 } 790 if ((ptr = strrchr(ptr, '.')) == NULL) { 791 fprintf(stderr, "No filestamp found in %s\n", cp); 792 fclose(str); 793 return (NULL); 794 } 795 if (sscanf(++ptr, "%u", &gstamp) != 1) { 796 fprintf(stderr, "Invalid filestamp found in %s\n", cp); 797 fclose(str); 798 return (NULL); 799 } 800 801 /* 802 * Read and decrypt PEM-encoded private keys. The first one 803 * found is returned. If others are expected, add them to the 804 * parameter list. 805 */ 806 for (i = 0; i <= MVMAX - 1;) { 807 parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd); 808 if (evpars != NULL) { 809 evpars[i++] = parkey; 810 evpars[i] = NULL; 811 } 812 if (parkey == NULL) 813 break; 814 815 if (pkey == NULL) 816 pkey = parkey; 817 if (debug) { 818 if (parkey->type == EVP_PKEY_DSA) 819 DSA_print_fp(stderr, parkey->pkey.dsa, 820 0); 821 else if (parkey->type == EVP_PKEY_RSA) 822 RSA_print_fp(stderr, parkey->pkey.rsa, 823 0); 824 } 825 } 826 fclose(str); 827 if (pkey == NULL) { 828 fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n", 829 cp, passwd, ERR_error_string(ERR_get_error(), 830 NULL)); 831 exit (-1); 832 } 833 *estamp = gstamp; 834 return (pkey); 835 } 836 837 838 /* 839 * Generate RSA public/private key pair 840 */ 841 EVP_PKEY * /* public/private key pair */ 842 gen_rsa( 843 char *id /* file name id */ 844 ) 845 { 846 EVP_PKEY *pkey; /* private key */ 847 RSA *rsa; /* RSA parameters and key pair */ 848 FILE *str; 849 850 fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus); 851 rsa = RSA_generate_key(modulus, 3, cb, "RSA"); 852 fprintf(stderr, "\n"); 853 if (rsa == NULL) { 854 fprintf(stderr, "RSA generate keys fails\n%s\n", 855 ERR_error_string(ERR_get_error(), NULL)); 856 return (NULL); 857 } 858 859 /* 860 * For signature encryption it is not necessary that the RSA 861 * parameters be strictly groomed and once in a while the 862 * modulus turns out to be non-prime. Just for grins, we check 863 * the primality. 864 */ 865 if (!RSA_check_key(rsa)) { 866 fprintf(stderr, "Invalid RSA key\n%s\n", 867 ERR_error_string(ERR_get_error(), NULL)); 868 RSA_free(rsa); 869 return (NULL); 870 } 871 872 /* 873 * Write the RSA parameters and keys as a RSA private key 874 * encoded in PEM. 875 */ 876 if (strcmp(id, "sign") == 0) 877 str = fheader("RSAsign", id, hostname); 878 else 879 str = fheader("RSAhost", id, hostname); 880 pkey = EVP_PKEY_new(); 881 EVP_PKEY_assign_RSA(pkey, rsa); 882 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL, 883 passwd1); 884 fclose(str); 885 if (debug) 886 RSA_print_fp(stderr, rsa, 0); 887 return (pkey); 888 } 889 890 891 /* 892 * Generate DSA public/private key pair 893 */ 894 EVP_PKEY * /* public/private key pair */ 895 gen_dsa( 896 char *id /* file name id */ 897 ) 898 { 899 EVP_PKEY *pkey; /* private key */ 900 DSA *dsa; /* DSA parameters */ 901 u_char seed[20]; /* seed for parameters */ 902 FILE *str; 903 904 /* 905 * Generate DSA parameters. 906 */ 907 fprintf(stderr, 908 "Generating DSA parameters (%d bits)...\n", modulus); 909 RAND_bytes(seed, sizeof(seed)); 910 dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL, 911 NULL, cb, "DSA"); 912 fprintf(stderr, "\n"); 913 if (dsa == NULL) { 914 fprintf(stderr, "DSA generate parameters fails\n%s\n", 915 ERR_error_string(ERR_get_error(), NULL)); 916 return (NULL); 917 } 918 919 /* 920 * Generate DSA keys. 921 */ 922 fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus); 923 if (!DSA_generate_key(dsa)) { 924 fprintf(stderr, "DSA generate keys fails\n%s\n", 925 ERR_error_string(ERR_get_error(), NULL)); 926 DSA_free(dsa); 927 return (NULL); 928 } 929 930 /* 931 * Write the DSA parameters and keys as a DSA private key 932 * encoded in PEM. 933 */ 934 str = fheader("DSAsign", id, hostname); 935 pkey = EVP_PKEY_new(); 936 EVP_PKEY_assign_DSA(pkey, dsa); 937 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL, 938 passwd1); 939 fclose(str); 940 if (debug) 941 DSA_print_fp(stderr, dsa, 0); 942 return (pkey); 943 } 944 945 946 /* 947 *********************************************************************** 948 * * 949 * The following routines implement the Schnorr (IFF) identity scheme * 950 * * 951 *********************************************************************** 952 * 953 * The Schnorr (IFF) identity scheme is intended for use when 954 * certificates are generated by some other trusted certificate 955 * authority and the certificate cannot be used to convey public 956 * parameters. There are two kinds of files: encrypted server files that 957 * contain private and public values and nonencrypted client files that 958 * contain only public values. New generations of server files must be 959 * securely transmitted to all servers of the group; client files can be 960 * distributed by any means. The scheme is self contained and 961 * independent of new generations of host keys, sign keys and 962 * certificates. 963 * 964 * The IFF values hide in a DSA cuckoo structure which uses the same 965 * parameters. The values are used by an identity scheme based on DSA 966 * cryptography and described in Stimson p. 285. The p is a 512-bit 967 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 968 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 969 * private random group key b (0 < b < q) and public key v = g^b, then 970 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 971 * Alice challenges Bob to confirm identity using the protocol described 972 * below. 973 * 974 * How it works 975 * 976 * The scheme goes like this. Both Alice and Bob have the public primes 977 * p, q and generator g. The TA gives private key b to Bob and public 978 * key v to Alice. 979 * 980 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 981 * the IFF request message. Bob rolls new random k (0 < k < q), then 982 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 983 * to Alice in the response message. Besides making the response 984 * shorter, the hash makes it effectivey impossible for an intruder to 985 * solve for b by observing a number of these messages. 986 * 987 * Alice receives the response and computes g^y v^r mod p. After a bit 988 * of algebra, this simplifies to g^k. If the hash of this result 989 * matches hash(x), Alice knows that Bob has the group key b. The signed 990 * response binds this knowledge to Bob's private key and the public key 991 * previously received in his certificate. 992 */ 993 /* 994 * Generate Schnorr (IFF) keys. 995 */ 996 EVP_PKEY * /* DSA cuckoo nest */ 997 gen_iffkey( 998 char *id /* file name id */ 999 ) 1000 { 1001 EVP_PKEY *pkey; /* private key */ 1002 DSA *dsa; /* DSA parameters */ 1003 u_char seed[20]; /* seed for parameters */ 1004 BN_CTX *ctx; /* BN working space */ 1005 BIGNUM *b, *r, *k, *u, *v, *w; /* BN temp */ 1006 FILE *str; 1007 u_int temp; 1008 1009 /* 1010 * Generate DSA parameters for use as IFF parameters. 1011 */ 1012 fprintf(stderr, "Generating IFF keys (%d bits)...\n", 1013 modulus2); 1014 RAND_bytes(seed, sizeof(seed)); 1015 dsa = DSA_generate_parameters(modulus2, seed, sizeof(seed), NULL, 1016 NULL, cb, "IFF"); 1017 fprintf(stderr, "\n"); 1018 if (dsa == NULL) { 1019 fprintf(stderr, "DSA generate parameters fails\n%s\n", 1020 ERR_error_string(ERR_get_error(), NULL)); 1021 return (NULL);; 1022 } 1023 1024 /* 1025 * Generate the private and public keys. The DSA parameters and 1026 * private key are distributed to the servers, while all except 1027 * the private key are distributed to the clients. 1028 */ 1029 b = BN_new(); r = BN_new(); k = BN_new(); 1030 u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new(); 1031 BN_rand(b, BN_num_bits(dsa->q), -1, 0); /* a */ 1032 BN_mod(b, b, dsa->q, ctx); 1033 BN_sub(v, dsa->q, b); 1034 BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^(q - b) mod p */ 1035 BN_mod_exp(u, dsa->g, b, dsa->p, ctx); /* g^b mod p */ 1036 BN_mod_mul(u, u, v, dsa->p, ctx); 1037 temp = BN_is_one(u); 1038 fprintf(stderr, 1039 "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ? 1040 "yes" : "no"); 1041 if (!temp) { 1042 BN_free(b); BN_free(r); BN_free(k); 1043 BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); 1044 return (NULL); 1045 } 1046 dsa->priv_key = BN_dup(b); /* private key */ 1047 dsa->pub_key = BN_dup(v); /* public key */ 1048 1049 /* 1050 * Here is a trial round of the protocol. First, Alice rolls 1051 * random nonce r mod q and sends it to Bob. She needs only 1052 * q from parameters. 1053 */ 1054 BN_rand(r, BN_num_bits(dsa->q), -1, 0); /* r */ 1055 BN_mod(r, r, dsa->q, ctx); 1056 1057 /* 1058 * Bob rolls random nonce k mod q, computes y = k + b r mod q 1059 * and x = g^k mod p, then sends (y, x) to Alice. He needs 1060 * p, q and b from parameters and r from Alice. 1061 */ 1062 BN_rand(k, BN_num_bits(dsa->q), -1, 0); /* k, 0 < k < q */ 1063 BN_mod(k, k, dsa->q, ctx); 1064 BN_mod_mul(v, dsa->priv_key, r, dsa->q, ctx); /* b r mod q */ 1065 BN_add(v, v, k); 1066 BN_mod(v, v, dsa->q, ctx); /* y = k + b r mod q */ 1067 BN_mod_exp(u, dsa->g, k, dsa->p, ctx); /* x = g^k mod p */ 1068 1069 /* 1070 * Alice verifies x = g^y v^r to confirm that Bob has group key 1071 * b. She needs p, q, g from parameters, (y, x) from Bob and the 1072 * original r. We omit the detail here thatt only the hash of y 1073 * is sent. 1074 */ 1075 BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^y mod p */ 1076 BN_mod_exp(w, dsa->pub_key, r, dsa->p, ctx); /* v^r */ 1077 BN_mod_mul(v, w, v, dsa->p, ctx); /* product mod p */ 1078 temp = BN_cmp(u, v); 1079 fprintf(stderr, 1080 "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp == 1081 0 ? "yes" : "no"); 1082 BN_free(b); BN_free(r); BN_free(k); 1083 BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); 1084 if (temp != 0) { 1085 DSA_free(dsa); 1086 return (NULL); 1087 } 1088 1089 /* 1090 * Write the IFF keys as an encrypted DSA private key encoded in 1091 * PEM. 1092 * 1093 * p modulus p 1094 * q modulus q 1095 * g generator g 1096 * priv_key b 1097 * public_key v 1098 * kinv not used 1099 * r not used 1100 */ 1101 str = fheader("IFFkey", id, groupname); 1102 pkey = EVP_PKEY_new(); 1103 EVP_PKEY_assign_DSA(pkey, dsa); 1104 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL, 1105 passwd1); 1106 fclose(str); 1107 if (debug) 1108 DSA_print_fp(stderr, dsa, 0); 1109 return (pkey); 1110 } 1111 1112 1113 /* 1114 *********************************************************************** 1115 * * 1116 * The following routines implement the Guillou-Quisquater (GQ) * 1117 * identity scheme * 1118 * * 1119 *********************************************************************** 1120 * 1121 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 1122 * the certificate can be used to convey public parameters. The scheme 1123 * uses a X509v3 certificate extension field do convey the public key of 1124 * a private key known only to servers. There are two kinds of files: 1125 * encrypted server files that contain private and public values and 1126 * nonencrypted client files that contain only public values. New 1127 * generations of server files must be securely transmitted to all 1128 * servers of the group; client files can be distributed by any means. 1129 * The scheme is self contained and independent of new generations of 1130 * host keys and sign keys. The scheme is self contained and independent 1131 * of new generations of host keys and sign keys. 1132 * 1133 * The GQ parameters hide in a RSA cuckoo structure which uses the same 1134 * parameters. The values are used by an identity scheme based on RSA 1135 * cryptography and described in Stimson p. 300 (with errors). The 512- 1136 * bit public modulus is n = p q, where p and q are secret large primes. 1137 * The TA rolls private random group key b as RSA exponent. These values 1138 * are known to all group members. 1139 * 1140 * When rolling new certificates, a server recomputes the private and 1141 * public keys. The private key u is a random roll, while the public key 1142 * is the inverse obscured by the group key v = (u^-1)^b. These values 1143 * replace the private and public keys normally generated by the RSA 1144 * scheme. Alice challenges Bob to confirm identity using the protocol 1145 * described below. 1146 * 1147 * How it works 1148 * 1149 * The scheme goes like this. Both Alice and Bob have the same modulus n 1150 * and some random b as the group key. These values are computed and 1151 * distributed in advance via secret means, although only the group key 1152 * b is truly secret. Each has a private random private key u and public 1153 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 1154 * can regenerate the key pair from time to time without affecting 1155 * operations. The public key is conveyed on the certificate in an 1156 * extension field; the private key is never revealed. 1157 * 1158 * Alice rolls new random challenge r and sends to Bob in the GQ 1159 * request message. Bob rolls new random k, then computes y = k u^r mod 1160 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 1161 * message. Besides making the response shorter, the hash makes it 1162 * effectivey impossible for an intruder to solve for b by observing 1163 * a number of these messages. 1164 * 1165 * Alice receives the response and computes y^b v^r mod n. After a bit 1166 * of algebra, this simplifies to k^b. If the hash of this result 1167 * matches hash(x), Alice knows that Bob has the group key b. The signed 1168 * response binds this knowledge to Bob's private key and the public key 1169 * previously received in his certificate. 1170 */ 1171 /* 1172 * Generate Guillou-Quisquater (GQ) parameters file. 1173 */ 1174 EVP_PKEY * /* RSA cuckoo nest */ 1175 gen_gqkey( 1176 char *id /* file name id */ 1177 ) 1178 { 1179 EVP_PKEY *pkey; /* private key */ 1180 RSA *rsa; /* RSA parameters */ 1181 BN_CTX *ctx; /* BN working space */ 1182 BIGNUM *u, *v, *g, *k, *r, *y; /* BN temps */ 1183 FILE *str; 1184 u_int temp; 1185 1186 /* 1187 * Generate RSA parameters for use as GQ parameters. 1188 */ 1189 fprintf(stderr, 1190 "Generating GQ parameters (%d bits)...\n", 1191 modulus2); 1192 rsa = RSA_generate_key(modulus2, 3, cb, "GQ"); 1193 fprintf(stderr, "\n"); 1194 if (rsa == NULL) { 1195 fprintf(stderr, "RSA generate keys fails\n%s\n", 1196 ERR_error_string(ERR_get_error(), NULL)); 1197 return (NULL); 1198 } 1199 ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); 1200 g = BN_new(); k = BN_new(); r = BN_new(); y = BN_new(); 1201 1202 /* 1203 * Generate the group key b, which is saved in the e member of 1204 * the RSA structure. The group key is transmitted to each group 1205 * member encrypted by the member private key. 1206 */ 1207 ctx = BN_CTX_new(); 1208 BN_rand(rsa->e, BN_num_bits(rsa->n), -1, 0); /* b */ 1209 BN_mod(rsa->e, rsa->e, rsa->n, ctx); 1210 1211 /* 1212 * When generating his certificate, Bob rolls random private key 1213 * u, then computes inverse v = u^-1. 1214 */ 1215 BN_rand(u, BN_num_bits(rsa->n), -1, 0); /* u */ 1216 BN_mod(u, u, rsa->n, ctx); 1217 BN_mod_inverse(v, u, rsa->n, ctx); /* u^-1 mod n */ 1218 BN_mod_mul(k, v, u, rsa->n, ctx); 1219 1220 /* 1221 * Bob computes public key v = (u^-1)^b, which is saved in an 1222 * extension field on his certificate. We check that u^b v = 1223 * 1 mod n. 1224 */ 1225 BN_mod_exp(v, v, rsa->e, rsa->n, ctx); 1226 BN_mod_exp(g, u, rsa->e, rsa->n, ctx); /* u^b */ 1227 BN_mod_mul(g, g, v, rsa->n, ctx); /* u^b (u^-1)^b */ 1228 temp = BN_is_one(g); 1229 fprintf(stderr, 1230 "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" : 1231 "no"); 1232 if (!temp) { 1233 BN_free(u); BN_free(v); 1234 BN_free(g); BN_free(k); BN_free(r); BN_free(y); 1235 BN_CTX_free(ctx); 1236 RSA_free(rsa); 1237 return (NULL); 1238 } 1239 BN_copy(rsa->p, u); /* private key */ 1240 BN_copy(rsa->q, v); /* public key */ 1241 1242 /* 1243 * Here is a trial run of the protocol. First, Alice rolls 1244 * random nonce r mod n and sends it to Bob. She needs only n 1245 * from parameters. 1246 */ 1247 BN_rand(r, BN_num_bits(rsa->n), -1, 0); /* r */ 1248 BN_mod(r, r, rsa->n, ctx); 1249 1250 /* 1251 * Bob rolls random nonce k mod n, computes y = k u^r mod n and 1252 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b 1253 * from parameters and r from Alice. 1254 */ 1255 BN_rand(k, BN_num_bits(rsa->n), -1, 0); /* k */ 1256 BN_mod(k, k, rsa->n, ctx); 1257 BN_mod_exp(y, rsa->p, r, rsa->n, ctx); /* u^r mod n */ 1258 BN_mod_mul(y, k, y, rsa->n, ctx); /* y = k u^r mod n */ 1259 BN_mod_exp(g, k, rsa->e, rsa->n, ctx); /* g = k^b mod n */ 1260 1261 /* 1262 * Alice verifies g = v^r y^b mod n to confirm that Bob has 1263 * private key u. She needs n, g from parameters, public key v = 1264 * (u^-1)^b from the certificate, (y, g) from Bob and the 1265 * original r. We omit the detaul here that only the hash of g 1266 * is sent. 1267 */ 1268 BN_mod_exp(v, rsa->q, r, rsa->n, ctx); /* v^r mod n */ 1269 BN_mod_exp(y, y, rsa->e, rsa->n, ctx); /* y^b mod n */ 1270 BN_mod_mul(y, v, y, rsa->n, ctx); /* v^r y^b mod n */ 1271 temp = BN_cmp(y, g); 1272 fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ? 1273 "yes" : "no"); 1274 BN_CTX_free(ctx); BN_free(u); BN_free(v); 1275 BN_free(g); BN_free(k); BN_free(r); BN_free(y); 1276 if (temp != 0) { 1277 RSA_free(rsa); 1278 return (NULL); 1279 } 1280 1281 /* 1282 * Write the GQ parameter file as an encrypted RSA private key 1283 * encoded in PEM. 1284 * 1285 * n modulus n 1286 * e group key b 1287 * d not used 1288 * p private key u 1289 * q public key (u^-1)^b 1290 * dmp1 not used 1291 * dmq1 not used 1292 * iqmp not used 1293 */ 1294 BN_copy(rsa->d, BN_value_one()); 1295 BN_copy(rsa->dmp1, BN_value_one()); 1296 BN_copy(rsa->dmq1, BN_value_one()); 1297 BN_copy(rsa->iqmp, BN_value_one()); 1298 str = fheader("GQkey", id, groupname); 1299 pkey = EVP_PKEY_new(); 1300 EVP_PKEY_assign_RSA(pkey, rsa); 1301 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL, 1302 passwd1); 1303 fclose(str); 1304 if (debug) 1305 RSA_print_fp(stderr, rsa, 0); 1306 return (pkey); 1307 } 1308 1309 1310 /* 1311 *********************************************************************** 1312 * * 1313 * The following routines implement the Mu-Varadharajan (MV) identity * 1314 * scheme * 1315 * * 1316 *********************************************************************** 1317 * 1318 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 1319 * servers broadcast messages to clients, but clients never send 1320 * messages to servers. There is one encryption key for the server and a 1321 * separate decryption key for each client. It operated something like a 1322 * pay-per-view satellite broadcasting system where the session key is 1323 * encrypted by the broadcaster and the decryption keys are held in a 1324 * tamperproof set-top box. 1325 * 1326 * The MV parameters and private encryption key hide in a DSA cuckoo 1327 * structure which uses the same parameters, but generated in a 1328 * different way. The values are used in an encryption scheme similar to 1329 * El Gamal cryptography and a polynomial formed from the expansion of 1330 * product terms (x - x[j]), as described in Mu, Y., and V. 1331 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 1332 * 223-231. The paper has significant errors and serious omissions. 1333 * 1334 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 1335 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 1336 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 1337 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 1338 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 1339 * project into Zp* as exponents of g. Sometimes we have to compute an 1340 * inverse b^-1 of random b in Zq, but for that purpose we require 1341 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 1342 * relatively small, like 30. These are the parameters of the scheme and 1343 * they are expensive to compute. 1344 * 1345 * We set up an instance of the scheme as follows. A set of random 1346 * values x[j] mod q (j = 1...n), are generated as the zeros of a 1347 * polynomial of order n. The product terms (x - x[j]) are expanded to 1348 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 1349 * used as exponents of the generator g mod p to generate the private 1350 * encryption key A. The pair (gbar, ghat) of public server keys and the 1351 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 1352 * to construct the decryption keys. The devil is in the details. 1353 * 1354 * This routine generates a private server encryption file including the 1355 * private encryption key E and partial decryption keys gbar and ghat. 1356 * It then generates public client decryption files including the public 1357 * keys xbar[j] and xhat[j] for each client j. The partial decryption 1358 * files are used to compute the inverse of E. These values are suitably 1359 * blinded so secrets are not revealed. 1360 * 1361 * The distinguishing characteristic of this scheme is the capability to 1362 * revoke keys. Included in the calculation of E, gbar and ghat is the 1363 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 1364 * subsequently removed from the product and E, gbar and ghat 1365 * recomputed, the jth client will no longer be able to compute E^-1 and 1366 * thus unable to decrypt the messageblock. 1367 * 1368 * How it works 1369 * 1370 * The scheme goes like this. Bob has the server values (p, E, q, gbar, 1371 * ghat) and Alice has the client values (p, xbar, xhat). 1372 * 1373 * Alice rolls new random nonce r mod p and sends to Bob in the MV 1374 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 1375 * mod p and sends (y, gbar^k, ghat^k) to Alice. 1376 * 1377 * Alice receives the response and computes the inverse (E^k)^-1 from 1378 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 1379 * decrypts y and verifies it matches the original r. The signed 1380 * response binds this knowledge to Bob's private key and the public key 1381 * previously received in his certificate. 1382 */ 1383 EVP_PKEY * /* DSA cuckoo nest */ 1384 gen_mvkey( 1385 char *id, /* file name id */ 1386 EVP_PKEY **evpars /* parameter list pointer */ 1387 ) 1388 { 1389 EVP_PKEY *pkey, *pkey1; /* private keys */ 1390 DSA *dsa, *dsa2, *sdsa; /* DSA parameters */ 1391 BN_CTX *ctx; /* BN working space */ 1392 BIGNUM *a[MVMAX]; /* polynomial coefficient vector */ 1393 BIGNUM *g[MVMAX]; /* public key vector */ 1394 BIGNUM *s1[MVMAX]; /* private enabling keys */ 1395 BIGNUM *x[MVMAX]; /* polynomial zeros vector */ 1396 BIGNUM *xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */ 1397 BIGNUM *b; /* group key */ 1398 BIGNUM *b1; /* inverse group key */ 1399 BIGNUM *s; /* enabling key */ 1400 BIGNUM *biga; /* master encryption key */ 1401 BIGNUM *bige; /* session encryption key */ 1402 BIGNUM *gbar, *ghat; /* public key */ 1403 BIGNUM *u, *v, *w; /* BN scratch */ 1404 int i, j, n; 1405 FILE *str; 1406 u_int temp; 1407 1408 /* 1409 * Generate MV parameters. 1410 * 1411 * The object is to generate a multiplicative group Zp* modulo a 1412 * prime p and a subset Zq mod q, where q is the product of n 1413 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We 1414 * first generate n m-bit primes, where the product n m is in 1415 * the order of 512 bits. One or more of these may have to be 1416 * replaced later. As a practical matter, it is tough to find 1417 * more than 31 distinct primes for 512 bits or 61 primes for 1418 * 1024 bits. The latter can take several hundred iterations 1419 * and several minutes on a Sun Blade 1000. 1420 */ 1421 n = nkeys; 1422 fprintf(stderr, 1423 "Generating MV parameters for %d keys (%d bits)...\n", n, 1424 modulus2 / n); 1425 ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new(); 1426 b = BN_new(); b1 = BN_new(); 1427 dsa = DSA_new(); 1428 dsa->p = BN_new(); dsa->q = BN_new(); dsa->g = BN_new(); 1429 dsa->priv_key = BN_new(); dsa->pub_key = BN_new(); 1430 temp = 0; 1431 for (j = 1; j <= n; j++) { 1432 s1[j] = BN_new(); 1433 while (1) { 1434 BN_generate_prime(s1[j], modulus2 / n, 0, NULL, 1435 NULL, NULL, NULL); 1436 for (i = 1; i < j; i++) { 1437 if (BN_cmp(s1[i], s1[j]) == 0) 1438 break; 1439 } 1440 if (i == j) 1441 break; 1442 temp++; 1443 } 1444 } 1445 fprintf(stderr, "Birthday keys regenerated %d\n", temp); 1446 1447 /* 1448 * Compute the modulus q as the product of the primes. Compute 1449 * the modulus p as 2 * q + 1 and test p for primality. If p 1450 * is composite, replace one of the primes with a new distinct 1451 * one and try again. Note that q will hardly be a secret since 1452 * we have to reveal p to servers, but not clients. However, 1453 * factoring q to find the primes should be adequately hard, as 1454 * this is the same problem considered hard in RSA. Question: is 1455 * it as hard to find n small prime factors totalling n bits as 1456 * it is to find two large prime factors totalling n bits? 1457 * Remember, the bad guy doesn't know n. 1458 */ 1459 temp = 0; 1460 while (1) { 1461 BN_one(dsa->q); 1462 for (j = 1; j <= n; j++) 1463 BN_mul(dsa->q, dsa->q, s1[j], ctx); 1464 BN_copy(dsa->p, dsa->q); 1465 BN_add(dsa->p, dsa->p, dsa->p); 1466 BN_add_word(dsa->p, 1); 1467 if (BN_is_prime(dsa->p, BN_prime_checks, NULL, ctx, 1468 NULL)) 1469 break; 1470 1471 temp++; 1472 j = temp % n + 1; 1473 while (1) { 1474 BN_generate_prime(u, modulus2 / n, 0, 0, NULL, 1475 NULL, NULL); 1476 for (i = 1; i <= n; i++) { 1477 if (BN_cmp(u, s1[i]) == 0) 1478 break; 1479 } 1480 if (i > n) 1481 break; 1482 } 1483 BN_copy(s1[j], u); 1484 } 1485 fprintf(stderr, "Defective keys regenerated %d\n", temp); 1486 1487 /* 1488 * Compute the generator g using a random roll such that 1489 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not 1490 * q. This may take several iterations. 1491 */ 1492 BN_copy(v, dsa->p); 1493 BN_sub_word(v, 1); 1494 while (1) { 1495 BN_rand(dsa->g, BN_num_bits(dsa->p) - 1, 0, 0); 1496 BN_mod(dsa->g, dsa->g, dsa->p, ctx); 1497 BN_gcd(u, dsa->g, v, ctx); 1498 if (!BN_is_one(u)) 1499 continue; 1500 1501 BN_mod_exp(u, dsa->g, dsa->q, dsa->p, ctx); 1502 if (BN_is_one(u)) 1503 break; 1504 } 1505 1506 /* 1507 * Setup is now complete. Roll random polynomial roots x[j] 1508 * (j = 1...n) for all j. While it may not be strictly 1509 * necessary, Make sure each root has no factors in common with 1510 * q. 1511 */ 1512 fprintf(stderr, 1513 "Generating polynomial coefficients for %d roots (%d bits)\n", 1514 n, BN_num_bits(dsa->q)); 1515 for (j = 1; j <= n; j++) { 1516 x[j] = BN_new(); 1517 1518 while (1) { 1519 BN_rand(x[j], BN_num_bits(dsa->q), 0, 0); 1520 BN_mod(x[j], x[j], dsa->q, ctx); 1521 BN_gcd(u, x[j], dsa->q, ctx); 1522 if (BN_is_one(u)) 1523 break; 1524 } 1525 } 1526 1527 /* 1528 * Generate polynomial coefficients a[i] (i = 0...n) from the 1529 * expansion of root products (x - x[j]) mod q for all j. The 1530 * method is a present from Charlie Boncelet. 1531 */ 1532 for (i = 0; i <= n; i++) { 1533 a[i] = BN_new(); 1534 1535 BN_one(a[i]); 1536 } 1537 for (j = 1; j <= n; j++) { 1538 BN_zero(w); 1539 for (i = 0; i < j; i++) { 1540 BN_copy(u, dsa->q); 1541 BN_mod_mul(v, a[i], x[j], dsa->q, ctx); 1542 BN_sub(u, u, v); 1543 BN_add(u, u, w); 1544 BN_copy(w, a[i]); 1545 BN_mod(a[i], u, dsa->q, ctx); 1546 } 1547 } 1548 1549 /* 1550 * Generate g[i] = g^a[i] mod p for all i and the generator g. 1551 */ 1552 for (i = 0; i <= n; i++) { 1553 g[i] = BN_new(); 1554 1555 BN_mod_exp(g[i], dsa->g, a[i], dsa->p, ctx); 1556 } 1557 1558 /* 1559 * Verify prod(g[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the 1560 * a[i] x[j]^i exponent is computed mod q, but the g[i] is 1561 * computed mod p. also note the expression given in the paper 1562 * is incorrect. 1563 */ 1564 temp = 1; 1565 for (j = 1; j <= n; j++) { 1566 BN_one(u); 1567 for (i = 0; i <= n; i++) { 1568 BN_set_word(v, i); 1569 BN_mod_exp(v, x[j], v, dsa->q, ctx); 1570 BN_mod_mul(v, v, a[i], dsa->q, ctx); 1571 BN_mod_exp(v, dsa->g, v, dsa->p, ctx); 1572 BN_mod_mul(u, u, v, dsa->p, ctx); 1573 } 1574 if (!BN_is_one(u)) 1575 temp = 0; 1576 } 1577 fprintf(stderr, 1578 "Confirm prod(g[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ? 1579 "yes" : "no"); 1580 if (!temp) { 1581 return (NULL); 1582 } 1583 1584 /* 1585 * Make private encryption key A. Keep it around for awhile, 1586 * since it is expensive to compute. 1587 */ 1588 biga = BN_new(); 1589 1590 BN_one(biga); 1591 for (j = 1; j <= n; j++) { 1592 for (i = 0; i < n; i++) { 1593 BN_set_word(v, i); 1594 BN_mod_exp(v, x[j], v, dsa->q, ctx); 1595 BN_mod_exp(v, g[i], v, dsa->p, ctx); 1596 BN_mod_mul(biga, biga, v, dsa->p, ctx); 1597 } 1598 } 1599 1600 /* 1601 * Roll private random group key b mod q (0 < b < q), where 1602 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1 1603 * mod q. If b is changed, the client keys must be recomputed. 1604 */ 1605 while (1) { 1606 BN_rand(b, BN_num_bits(dsa->q), 0, 0); 1607 BN_mod(b, b, dsa->q, ctx); 1608 BN_gcd(u, b, dsa->q, ctx); 1609 if (BN_is_one(u)) 1610 break; 1611 } 1612 BN_mod_inverse(b1, b, dsa->q, ctx); 1613 1614 /* 1615 * Make private client keys (xbar[j], xhat[j]) for all j. Note 1616 * that the keys for the jth client do not s1[j] or the product 1617 * s1[j]) (j = 1...n) which is q by construction. 1618 * 1619 * Compute the factor w such that w s1[j] = s1[j] for all j. The 1620 * easy way to do this is to compute (q + s1[j]) / s1[j]. 1621 * Exercise for the student: prove the remainder is always zero. 1622 */ 1623 for (j = 1; j <= n; j++) { 1624 xbar[j] = BN_new(); xhat[j] = BN_new(); 1625 1626 BN_add(w, dsa->q, s1[j]); 1627 BN_div(w, u, w, s1[j], ctx); 1628 BN_zero(xbar[j]); 1629 BN_set_word(v, n); 1630 for (i = 1; i <= n; i++) { 1631 if (i == j) 1632 continue; 1633 BN_mod_exp(u, x[i], v, dsa->q, ctx); 1634 BN_add(xbar[j], xbar[j], u); 1635 } 1636 BN_mod_mul(xbar[j], xbar[j], b1, dsa->q, ctx); 1637 BN_mod_exp(xhat[j], x[j], v, dsa->q, ctx); 1638 BN_mod_mul(xhat[j], xhat[j], w, dsa->q, ctx); 1639 } 1640 1641 /* 1642 * We revoke client j by dividing q by s1[j]. The quotient 1643 * becomes the enabling key s. Note we always have to revoke 1644 * one key; otherwise, the plaintext and cryptotext would be 1645 * identical. For the present there are no provisions to revoke 1646 * additional keys, so we sail on with only token revocations. 1647 */ 1648 s = BN_new(); 1649 1650 BN_copy(s, dsa->q); 1651 BN_div(s, u, s, s1[10], ctx); 1652 BN_div(s, u, s, s1[n], ctx); 1653 1654 /* 1655 * For each combination of clients to be revoked, make private 1656 * encryption key E = A^s and partial decryption keys gbar = g^s 1657 * and ghat = g^(s b), all mod p. The servers use these keys to 1658 * compute the session encryption key and partial decryption 1659 * keys. These values must be regenerated if the enabling key is 1660 * changed. 1661 */ 1662 bige = BN_new(); gbar = BN_new(); ghat = BN_new(); 1663 1664 BN_mod_exp(bige, biga, s, dsa->p, ctx); 1665 BN_mod_exp(gbar, dsa->g, s, dsa->p, ctx); 1666 BN_mod_mul(v, s, b, dsa->q, ctx); 1667 BN_mod_exp(ghat, dsa->g, v, dsa->p, ctx); 1668 1669 /* 1670 * Notes: We produce the key media in three steps. The first 1671 * step is to generate the system parameters p, q, g, b, A and 1672 * the enabling keys s1[j]. Associated with each s1[j] are 1673 * parameters xbar[j] and xhat[j]. All of these parameters are 1674 * retained in a data structure protecteted by the trusted-agent 1675 * password. The p, xbar[j] and xhat[j] paremeters are 1676 * distributed to the j clients. When the client keys are to be 1677 * activated, the enabled keys are multipied together to form 1678 * the master enabling key s. This and the other parameters are 1679 * used to compute the server encryption key E and the partial 1680 * decryption keys gbar and ghat. 1681 * 1682 * In the identity exchange the client rolls random r and sends 1683 * it to the server. The server rolls random k, which is used 1684 * only once, then computes the session key E^k and partial 1685 * decryption keys gbar^k and ghat^k. The server sends the 1686 * encrypted r along with gbar^k and ghat^k to the client. The 1687 * client completes the decryption and verifies it matches r. 1688 */ 1689 /* 1690 * Write the MV trusted-agent parameters and keys as a DSA 1691 * private key encoded in PEM. 1692 * 1693 * p modulus p 1694 * q modulus q 1695 * g generator g 1696 * priv_key A mod p 1697 * pub_key b mod q 1698 * (remaining values are not used) 1699 */ 1700 i = 0; 1701 str = fheader("MVta", "mvta", groupname); 1702 fprintf(stderr, "Generating MV trusted-authority keys\n"); 1703 BN_copy(dsa->priv_key, biga); 1704 BN_copy(dsa->pub_key, b); 1705 pkey = EVP_PKEY_new(); 1706 EVP_PKEY_assign_DSA(pkey, dsa); 1707 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL, 1708 passwd1); 1709 evpars[i++] = pkey; 1710 if (debug) 1711 DSA_print_fp(stderr, dsa, 0); 1712 1713 /* 1714 * Append the MV server parameters and keys as a DSA key encoded 1715 * in PEM. 1716 * 1717 * p modulus p 1718 * q modulus q (used only when generating k) 1719 * g bige 1720 * priv_key gbar 1721 * pub_key ghat 1722 * (remaining values are not used) 1723 */ 1724 fprintf(stderr, "Generating MV server keys\n"); 1725 dsa2 = DSA_new(); 1726 dsa2->p = BN_dup(dsa->p); 1727 dsa2->q = BN_dup(dsa->q); 1728 dsa2->g = BN_dup(bige); 1729 dsa2->priv_key = BN_dup(gbar); 1730 dsa2->pub_key = BN_dup(ghat); 1731 pkey1 = EVP_PKEY_new(); 1732 EVP_PKEY_assign_DSA(pkey1, dsa2); 1733 PEM_write_PrivateKey(str, pkey1, EVP_des_cbc(), NULL, 0, NULL, 1734 passwd1); 1735 evpars[i++] = pkey1; 1736 if (debug) 1737 DSA_print_fp(stderr, dsa2, 0); 1738 1739 /* 1740 * Append the MV client parameters for each client j as DSA keys 1741 * encoded in PEM. 1742 * 1743 * p modulus p 1744 * priv_key xbar[j] mod q 1745 * pub_key xhat[j] mod q 1746 * (remaining values are not used) 1747 */ 1748 fprintf(stderr, "Generating %d MV client keys\n", n); 1749 for (j = 1; j <= n; j++) { 1750 sdsa = DSA_new(); 1751 1752 sdsa->p = BN_dup(dsa->p); 1753 sdsa->q = BN_dup(BN_value_one()); 1754 sdsa->g = BN_dup(BN_value_one()); 1755 sdsa->priv_key = BN_dup(xbar[j]); 1756 sdsa->pub_key = BN_dup(xhat[j]); 1757 pkey1 = EVP_PKEY_new(); 1758 EVP_PKEY_set1_DSA(pkey1, sdsa); 1759 PEM_write_PrivateKey(str, pkey1, EVP_des_cbc(), NULL, 0, 1760 NULL, passwd1); 1761 evpars[i++] = pkey1; 1762 if (debug) 1763 DSA_print_fp(stderr, sdsa, 0); 1764 1765 /* 1766 * The product gbar^k)^xbar[j] (ghat^k)^xhat[j] and E 1767 * are inverses of each other. We check that the product 1768 * is one for each client except the ones that have been 1769 * revoked. 1770 */ 1771 BN_mod_exp(v, dsa2->priv_key, sdsa->pub_key, dsa->p, 1772 ctx); 1773 BN_mod_exp(u, dsa2->pub_key, sdsa->priv_key, dsa->p, 1774 ctx); 1775 BN_mod_mul(u, u, v, dsa->p, ctx); 1776 BN_mod_mul(u, u, bige, dsa->p, ctx); 1777 if (!BN_is_one(u)) { 1778 fprintf(stderr, "Revoke key %d\n", j); 1779 continue; 1780 } 1781 } 1782 evpars[i++] = NULL; 1783 fclose(str); 1784 1785 /* 1786 * Free the countries. 1787 */ 1788 for (i = 0; i <= n; i++) { 1789 BN_free(a[i]); BN_free(g[i]); 1790 } 1791 for (j = 1; j <= n; j++) { 1792 BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]); 1793 BN_free(s1[j]); 1794 } 1795 return (pkey); 1796 } 1797 1798 1799 /* 1800 * Generate X509v3 certificate. 1801 * 1802 * The certificate consists of the version number, serial number, 1803 * validity interval, issuer name, subject name and public key. For a 1804 * self-signed certificate, the issuer name is the same as the subject 1805 * name and these items are signed using the subject private key. The 1806 * validity interval extends from the current time to the same time one 1807 * year hence. For NTP purposes, it is convenient to use the NTP seconds 1808 * of the current time as the serial number. 1809 */ 1810 int 1811 x509 ( 1812 EVP_PKEY *pkey, /* generic signature algorithm */ 1813 const EVP_MD *md, /* generic digest algorithm */ 1814 char *gqpub, /* identity extension (hex string) */ 1815 char *exten, /* private cert extension */ 1816 char *name /* subject/issuer namd */ 1817 ) 1818 { 1819 X509 *cert; /* X509 certificate */ 1820 X509_NAME *subj; /* distinguished (common) name */ 1821 X509_EXTENSION *ex; /* X509v3 extension */ 1822 FILE *str; /* file handle */ 1823 ASN1_INTEGER *serial; /* serial number */ 1824 const char *id; /* digest/signature scheme name */ 1825 char pathbuf[MAXFILENAME + 1]; 1826 1827 /* 1828 * Generate X509 self-signed certificate. 1829 * 1830 * Set the certificate serial to the NTP seconds for grins. Set 1831 * the version to 3. Set the initial validity to the current 1832 * time and the finalvalidity one year hence. 1833 */ 1834 id = OBJ_nid2sn(md->pkey_type); 1835 fprintf(stderr, "Generating new certificate %s %s\n", name, id); 1836 cert = X509_new(); 1837 X509_set_version(cert, 2L); 1838 serial = ASN1_INTEGER_new(); 1839 ASN1_INTEGER_set(serial, (long)epoch + JAN_1970); 1840 X509_set_serialNumber(cert, serial); 1841 ASN1_INTEGER_free(serial); 1842 X509_time_adj(X509_get_notBefore(cert), 0L, &epoch); 1843 X509_time_adj(X509_get_notAfter(cert), YEAR, &epoch); 1844 subj = X509_get_subject_name(cert); 1845 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 1846 (unsigned char *) name, strlen(name), -1, 0); 1847 subj = X509_get_issuer_name(cert); 1848 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 1849 (unsigned char *) name, strlen(name), -1, 0); 1850 if (!X509_set_pubkey(cert, pkey)) { 1851 fprintf(stderr, "Assign key fails\n%s\n", 1852 ERR_error_string(ERR_get_error(), NULL)); 1853 X509_free(cert); 1854 return (0); 1855 } 1856 1857 /* 1858 * Add X509v3 extensions if present. These represent the minimum 1859 * set defined in RFC3280 less the certificate_policy extension, 1860 * which is seriously obfuscated in OpenSSL. 1861 */ 1862 /* 1863 * The basic_constraints extension CA:TRUE allows servers to 1864 * sign client certficitates. 1865 */ 1866 fprintf(stderr, "%s: %s\n", LN_basic_constraints, 1867 BASIC_CONSTRAINTS); 1868 ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints, 1869 BASIC_CONSTRAINTS); 1870 if (!X509_add_ext(cert, ex, -1)) { 1871 fprintf(stderr, "Add extension field fails\n%s\n", 1872 ERR_error_string(ERR_get_error(), NULL)); 1873 return (0); 1874 } 1875 X509_EXTENSION_free(ex); 1876 1877 /* 1878 * The key_usage extension designates the purposes the key can 1879 * be used for. 1880 */ 1881 fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE); 1882 ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, KEY_USAGE); 1883 if (!X509_add_ext(cert, ex, -1)) { 1884 fprintf(stderr, "Add extension field fails\n%s\n", 1885 ERR_error_string(ERR_get_error(), NULL)); 1886 return (0); 1887 } 1888 X509_EXTENSION_free(ex); 1889 /* 1890 * The subject_key_identifier is used for the GQ public key. 1891 * This should not be controversial. 1892 */ 1893 if (gqpub != NULL) { 1894 fprintf(stderr, "%s\n", LN_subject_key_identifier); 1895 ex = X509V3_EXT_conf_nid(NULL, NULL, 1896 NID_subject_key_identifier, gqpub); 1897 if (!X509_add_ext(cert, ex, -1)) { 1898 fprintf(stderr, 1899 "Add extension field fails\n%s\n", 1900 ERR_error_string(ERR_get_error(), NULL)); 1901 return (0); 1902 } 1903 X509_EXTENSION_free(ex); 1904 } 1905 1906 /* 1907 * The extended key usage extension is used for special purpose 1908 * here. The semantics probably do not conform to the designer's 1909 * intent and will likely change in future. 1910 * 1911 * "trustRoot" designates a root authority 1912 * "private" designates a private certificate 1913 */ 1914 if (exten != NULL) { 1915 fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten); 1916 ex = X509V3_EXT_conf_nid(NULL, NULL, 1917 NID_ext_key_usage, exten); 1918 if (!X509_add_ext(cert, ex, -1)) { 1919 fprintf(stderr, 1920 "Add extension field fails\n%s\n", 1921 ERR_error_string(ERR_get_error(), NULL)); 1922 return (0); 1923 } 1924 X509_EXTENSION_free(ex); 1925 } 1926 1927 /* 1928 * Sign and verify. 1929 */ 1930 X509_sign(cert, pkey, md); 1931 if (!X509_verify(cert, pkey)) { 1932 fprintf(stderr, "Verify %s certificate fails\n%s\n", id, 1933 ERR_error_string(ERR_get_error(), NULL)); 1934 X509_free(cert); 1935 return (0); 1936 } 1937 1938 /* 1939 * Write the certificate encoded in PEM. 1940 */ 1941 sprintf(pathbuf, "%scert", id); 1942 str = fheader(pathbuf, "cert", hostname); 1943 PEM_write_X509(str, cert); 1944 fclose(str); 1945 if (debug) 1946 X509_print_fp(stderr, cert); 1947 X509_free(cert); 1948 return (1); 1949 } 1950 1951 #if 0 /* asn2ntp is used only with commercial certificates */ 1952 /* 1953 * asn2ntp - convert ASN1_TIME time structure to NTP time 1954 */ 1955 u_long 1956 asn2ntp ( 1957 ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */ 1958 ) 1959 { 1960 char *v; /* pointer to ASN1_TIME string */ 1961 struct tm tm; /* time decode structure time */ 1962 1963 /* 1964 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure. 1965 * Note that the YY, MM, DD fields start with one, the HH, MM, 1966 * SS fiels start with zero and the Z character should be 'Z' 1967 * for UTC. Also note that years less than 50 map to years 1968 * greater than 100. Dontcha love ASN.1? 1969 */ 1970 if (asn1time->length > 13) 1971 return (-1); 1972 v = (char *)asn1time->data; 1973 tm.tm_year = (v[0] - '0') * 10 + v[1] - '0'; 1974 if (tm.tm_year < 50) 1975 tm.tm_year += 100; 1976 tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1; 1977 tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0'; 1978 tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0'; 1979 tm.tm_min = (v[8] - '0') * 10 + v[9] - '0'; 1980 tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0'; 1981 tm.tm_wday = 0; 1982 tm.tm_yday = 0; 1983 tm.tm_isdst = 0; 1984 return (mktime(&tm) + JAN_1970); 1985 } 1986 #endif 1987 1988 /* 1989 * Callback routine 1990 */ 1991 void 1992 cb ( 1993 int n1, /* arg 1 */ 1994 int n2, /* arg 2 */ 1995 void *chr /* arg 3 */ 1996 ) 1997 { 1998 switch (n1) { 1999 case 0: 2000 d0++; 2001 fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2, 2002 d0); 2003 break; 2004 case 1: 2005 d1++; 2006 fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1, 2007 n2, d1); 2008 break; 2009 case 2: 2010 d2++; 2011 fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr, 2012 n1, n2, d2); 2013 break; 2014 case 3: 2015 d3++; 2016 fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r", 2017 (char *)chr, n1, n2, d3); 2018 break; 2019 } 2020 } 2021 2022 2023 /* 2024 * Generate key 2025 */ 2026 EVP_PKEY * /* public/private key pair */ 2027 genkey( 2028 char *type, /* key type (RSA or DSA) */ 2029 char *id /* file name id */ 2030 ) 2031 { 2032 if (type == NULL) 2033 return (NULL); 2034 if (strcmp(type, "RSA") == 0) 2035 return (gen_rsa(id)); 2036 2037 else if (strcmp(type, "DSA") == 0) 2038 return (gen_dsa(id)); 2039 2040 fprintf(stderr, "Invalid %s key type %s\n", id, type); 2041 return (NULL); 2042 } 2043 #endif /* OPENSSL */ 2044 2045 2046 /* 2047 * Generate file header and link 2048 */ 2049 FILE * 2050 fheader ( 2051 const char *file, /* file name id */ 2052 const char *ulink, /* linkname */ 2053 const char *owner /* owner name */ 2054 ) 2055 { 2056 FILE *str; /* file handle */ 2057 char linkname[MAXFILENAME]; /* link name */ 2058 int temp; 2059 2060 sprintf(filename, "ntpkey_%s_%s.%lu", file, owner, epoch + 2061 JAN_1970); 2062 if ((str = fopen(filename, "w")) == NULL) { 2063 perror("Write"); 2064 exit (-1); 2065 } 2066 sprintf(linkname, "ntpkey_%s_%s", ulink, owner); 2067 remove(linkname); 2068 temp = symlink(filename, linkname); 2069 if (temp < 0) 2070 perror(file); 2071 fprintf(stderr, "Generating new %s file and link\n", ulink); 2072 fprintf(stderr, "%s->%s\n", linkname, filename); 2073 fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch)); 2074 return (str); 2075 } 2076