1 /* $NetBSD: regress_util.c,v 1.1.1.1 2013/12/27 23:31:29 christos Exp $ */ 2 3 /* 4 * Copyright (c) 2009-2012 Nick Mathewson and Niels Provos 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 #include "../util-internal.h" 29 30 #ifdef _WIN32 31 #include <winsock2.h> 32 #include <windows.h> 33 #include <ws2tcpip.h> 34 #endif 35 36 #include "event2/event-config.h" 37 38 #include <sys/types.h> 39 40 #ifndef _WIN32 41 #include <sys/socket.h> 42 #include <netinet/in.h> 43 #include <arpa/inet.h> 44 #include <unistd.h> 45 #endif 46 #ifdef EVENT__HAVE_NETINET_IN6_H 47 #include <netinet/in6.h> 48 #endif 49 #ifdef EVENT__HAVE_SYS_WAIT_H 50 #include <sys/wait.h> 51 #endif 52 #include <signal.h> 53 #include <stdio.h> 54 #include <stdlib.h> 55 #include <string.h> 56 57 #include "event2/event.h" 58 #include "event2/util.h" 59 #include "../ipv6-internal.h" 60 #include "../log-internal.h" 61 #include "../strlcpy-internal.h" 62 #include "../mm-internal.h" 63 #include "../time-internal.h" 64 65 #include "regress.h" 66 67 enum entry_status { NORMAL, CANONICAL, BAD }; 68 69 /* This is a big table of results we expect from generating and parsing */ 70 static struct ipv4_entry { 71 const char *addr; 72 ev_uint32_t res; 73 enum entry_status status; 74 } ipv4_entries[] = { 75 { "1.2.3.4", 0x01020304u, CANONICAL }, 76 { "255.255.255.255", 0xffffffffu, CANONICAL }, 77 { "256.0.0.0", 0, BAD }, 78 { "ABC", 0, BAD }, 79 { "1.2.3.4.5", 0, BAD }, 80 { "176.192.208.244", 0xb0c0d0f4, CANONICAL }, 81 { NULL, 0, BAD }, 82 }; 83 84 static struct ipv6_entry { 85 const char *addr; 86 ev_uint32_t res[4]; 87 enum entry_status status; 88 } ipv6_entries[] = { 89 { "::", { 0, 0, 0, 0, }, CANONICAL }, 90 { "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL }, 91 { "::1", { 0, 0, 0, 1, }, CANONICAL }, 92 { "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL }, 93 { "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL }, 94 { "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL }, 95 { "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL }, 96 { "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL }, 97 { "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL }, 98 { "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL }, 99 { "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL }, 100 { "foobar.", { 0, 0, 0, 0 }, BAD }, 101 { "foobar", { 0, 0, 0, 0 }, BAD }, 102 { "fo:obar", { 0, 0, 0, 0 }, BAD }, 103 { "ffff", { 0, 0, 0, 0 }, BAD }, 104 { "fffff::", { 0, 0, 0, 0 }, BAD }, 105 { "fffff::", { 0, 0, 0, 0 }, BAD }, 106 { "::1.0.1.1000", { 0, 0, 0, 0 }, BAD }, 107 { "1:2:33333:4::", { 0, 0, 0, 0 }, BAD }, 108 { "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD }, 109 { "1::2::3", { 0, 0, 0, 0 }, BAD }, 110 { ":::1", { 0, 0, 0, 0 }, BAD }, 111 { NULL, { 0, 0, 0, 0, }, BAD }, 112 }; 113 114 static void 115 regress_ipv4_parse(void *ptr) 116 { 117 int i; 118 for (i = 0; ipv4_entries[i].addr; ++i) { 119 char written[128]; 120 struct ipv4_entry *ent = &ipv4_entries[i]; 121 struct in_addr in; 122 int r; 123 r = evutil_inet_pton(AF_INET, ent->addr, &in); 124 if (r == 0) { 125 if (ent->status != BAD) { 126 TT_FAIL(("%s did not parse, but it's a good address!", 127 ent->addr)); 128 } 129 continue; 130 } 131 if (ent->status == BAD) { 132 TT_FAIL(("%s parsed, but we expected an error", ent->addr)); 133 continue; 134 } 135 if (ntohl(in.s_addr) != ent->res) { 136 TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr, 137 (unsigned long)ntohl(in.s_addr), 138 (unsigned long)ent->res)); 139 continue; 140 } 141 if (ent->status == CANONICAL) { 142 const char *w = evutil_inet_ntop(AF_INET, &in, written, 143 sizeof(written)); 144 if (!w) { 145 TT_FAIL(("Tried to write out %s; got NULL.", ent->addr)); 146 continue; 147 } 148 if (strcmp(written, ent->addr)) { 149 TT_FAIL(("Tried to write out %s; got %s", 150 ent->addr, written)); 151 continue; 152 } 153 } 154 155 } 156 157 } 158 159 static void 160 regress_ipv6_parse(void *ptr) 161 { 162 #ifdef AF_INET6 163 int i, j; 164 165 for (i = 0; ipv6_entries[i].addr; ++i) { 166 char written[128]; 167 struct ipv6_entry *ent = &ipv6_entries[i]; 168 struct in6_addr in6; 169 int r; 170 r = evutil_inet_pton(AF_INET6, ent->addr, &in6); 171 if (r == 0) { 172 if (ent->status != BAD) 173 TT_FAIL(("%s did not parse, but it's a good address!", 174 ent->addr)); 175 continue; 176 } 177 if (ent->status == BAD) { 178 TT_FAIL(("%s parsed, but we expected an error", ent->addr)); 179 continue; 180 } 181 for (j = 0; j < 4; ++j) { 182 /* Can't use s6_addr32 here; some don't have it. */ 183 ev_uint32_t u = 184 (in6.s6_addr[j*4 ] << 24) | 185 (in6.s6_addr[j*4+1] << 16) | 186 (in6.s6_addr[j*4+2] << 8) | 187 (in6.s6_addr[j*4+3]); 188 if (u != ent->res[j]) { 189 TT_FAIL(("%s did not parse as expected.", ent->addr)); 190 continue; 191 } 192 } 193 if (ent->status == CANONICAL) { 194 const char *w = evutil_inet_ntop(AF_INET6, &in6, written, 195 sizeof(written)); 196 if (!w) { 197 TT_FAIL(("Tried to write out %s; got NULL.", ent->addr)); 198 continue; 199 } 200 if (strcmp(written, ent->addr)) { 201 TT_FAIL(("Tried to write out %s; got %s", ent->addr, written)); 202 continue; 203 } 204 } 205 206 } 207 #else 208 TT_BLATHER(("Skipping IPv6 address parsing.")); 209 #endif 210 } 211 212 static struct sa_port_ent { 213 const char *parse; 214 int safamily; 215 const char *addr; 216 int port; 217 } sa_port_ents[] = { 218 { "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 }, 219 { "[ffff::1]", AF_INET6, "ffff::1", 0 }, 220 { "[ffff::1", 0, NULL, 0 }, 221 { "[ffff::1]:65599", 0, NULL, 0 }, 222 { "[ffff::1]:0", 0, NULL, 0 }, 223 { "[ffff::1]:-1", 0, NULL, 0 }, 224 { "::1", AF_INET6, "::1", 0 }, 225 { "1:2::1", AF_INET6, "1:2::1", 0 }, 226 { "192.168.0.1:50", AF_INET, "192.168.0.1", 50 }, 227 { "1.2.3.4", AF_INET, "1.2.3.4", 0 }, 228 { NULL, 0, NULL, 0 }, 229 }; 230 231 static void 232 regress_sockaddr_port_parse(void *ptr) 233 { 234 struct sockaddr_storage ss; 235 int i, r; 236 237 for (i = 0; sa_port_ents[i].parse; ++i) { 238 struct sa_port_ent *ent = &sa_port_ents[i]; 239 int len = sizeof(ss); 240 memset(&ss, 0, sizeof(ss)); 241 r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len); 242 if (r < 0) { 243 if (ent->safamily) 244 TT_FAIL(("Couldn't parse %s!", ent->parse)); 245 continue; 246 } else if (! ent->safamily) { 247 TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse)); 248 continue; 249 } 250 if (ent->safamily == AF_INET) { 251 struct sockaddr_in sin; 252 memset(&sin, 0, sizeof(sin)); 253 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN 254 sin.sin_len = sizeof(sin); 255 #endif 256 sin.sin_family = AF_INET; 257 sin.sin_port = htons(ent->port); 258 r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr); 259 if (1 != r) { 260 TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr)); 261 } else if (memcmp(&sin, &ss, sizeof(sin))) { 262 TT_FAIL(("Parse for %s was not as expected.", ent->parse)); 263 } else if (len != sizeof(sin)) { 264 TT_FAIL(("Length for %s not as expected.",ent->parse)); 265 } 266 } else { 267 struct sockaddr_in6 sin6; 268 memset(&sin6, 0, sizeof(sin6)); 269 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN 270 sin6.sin6_len = sizeof(sin6); 271 #endif 272 sin6.sin6_family = AF_INET6; 273 sin6.sin6_port = htons(ent->port); 274 r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr); 275 if (1 != r) { 276 TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr)); 277 } else if (memcmp(&sin6, &ss, sizeof(sin6))) { 278 TT_FAIL(("Parse for %s was not as expected.", ent->parse)); 279 } else if (len != sizeof(sin6)) { 280 TT_FAIL(("Length for %s not as expected.",ent->parse)); 281 } 282 } 283 } 284 } 285 286 287 static void 288 regress_sockaddr_port_format(void *ptr) 289 { 290 struct sockaddr_storage ss; 291 int len; 292 const char *cp; 293 char cbuf[128]; 294 int r; 295 296 len = sizeof(ss); 297 r = evutil_parse_sockaddr_port("192.168.1.1:80", 298 (struct sockaddr*)&ss, &len); 299 tt_int_op(r,==,0); 300 cp = evutil_format_sockaddr_port_( 301 (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); 302 tt_ptr_op(cp,==,cbuf); 303 tt_str_op(cp,==,"192.168.1.1:80"); 304 305 len = sizeof(ss); 306 r = evutil_parse_sockaddr_port("[ff00::8010]:999", 307 (struct sockaddr*)&ss, &len); 308 tt_int_op(r,==,0); 309 cp = evutil_format_sockaddr_port_( 310 (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); 311 tt_ptr_op(cp,==,cbuf); 312 tt_str_op(cp,==,"[ff00::8010]:999"); 313 314 ss.ss_family=99; 315 cp = evutil_format_sockaddr_port_( 316 (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); 317 tt_ptr_op(cp,==,cbuf); 318 tt_str_op(cp,==,"<addr with socktype 99>"); 319 end: 320 ; 321 } 322 323 static struct sa_pred_ent { 324 const char *parse; 325 326 int is_loopback; 327 } sa_pred_entries[] = { 328 { "127.0.0.1", 1 }, 329 { "127.0.3.2", 1 }, 330 { "128.1.2.3", 0 }, 331 { "18.0.0.1", 0 }, 332 { "129.168.1.1", 0 }, 333 334 { "::1", 1 }, 335 { "::0", 0 }, 336 { "f::1", 0 }, 337 { "::501", 0 }, 338 { NULL, 0 }, 339 340 }; 341 342 static void 343 test_evutil_sockaddr_predicates(void *ptr) 344 { 345 struct sockaddr_storage ss; 346 int r, i; 347 348 for (i=0; sa_pred_entries[i].parse; ++i) { 349 struct sa_pred_ent *ent = &sa_pred_entries[i]; 350 int len = sizeof(ss); 351 352 r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len); 353 354 if (r<0) { 355 TT_FAIL(("Couldn't parse %s!", ent->parse)); 356 continue; 357 } 358 359 /* sockaddr_is_loopback */ 360 if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) { 361 TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected", 362 ent->parse)); 363 } 364 } 365 } 366 367 static void 368 test_evutil_strtoll(void *ptr) 369 { 370 const char *s; 371 char *endptr; 372 373 tt_want(evutil_strtoll("5000000000", NULL, 10) == 374 ((ev_int64_t)5000000)*1000); 375 tt_want(evutil_strtoll("-5000000000", NULL, 10) == 376 ((ev_int64_t)5000000)*-1000); 377 s = " 99999stuff"; 378 tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999); 379 tt_want(endptr == s+6); 380 tt_want(evutil_strtoll("foo", NULL, 10) == 0); 381 } 382 383 static void 384 test_evutil_snprintf(void *ptr) 385 { 386 char buf[16]; 387 int r; 388 ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200; 389 ev_int64_t i64 = -1 * (ev_int64_t) u64; 390 size_t size = 8000; 391 ev_ssize_t ssize = -9000; 392 393 r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100); 394 tt_str_op(buf, ==, "50 100"); 395 tt_int_op(r, ==, 6); 396 397 r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890); 398 tt_str_op(buf, ==, "longish 1234567"); 399 tt_int_op(r, ==, 18); 400 401 r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64)); 402 tt_str_op(buf, ==, "200000000000"); 403 tt_int_op(r, ==, 12); 404 405 r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64)); 406 tt_str_op(buf, ==, "-200000000000"); 407 tt_int_op(r, ==, 13); 408 409 r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT, 410 EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize)); 411 tt_str_op(buf, ==, "8000 -9000"); 412 tt_int_op(r, ==, 10); 413 414 end: 415 ; 416 } 417 418 static void 419 test_evutil_casecmp(void *ptr) 420 { 421 tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0); 422 tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0); 423 tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0); 424 tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0); 425 tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0); 426 427 tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0); 428 tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0); 429 tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0); 430 tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0); 431 tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0); 432 tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0); 433 tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0); 434 tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0); 435 end: 436 ; 437 } 438 439 static void 440 test_evutil_rtrim(void *ptr) 441 { 442 #define TEST_TRIM(s, result) \ 443 do { \ 444 if (cp) mm_free(cp); \ 445 cp = mm_strdup(s); \ 446 evutil_rtrim_lws_(cp); \ 447 tt_str_op(cp, ==, result); \ 448 } while(0) 449 450 char *cp = NULL; 451 (void) ptr; 452 453 TEST_TRIM("", ""); 454 TEST_TRIM("a", "a"); 455 TEST_TRIM("abcdef ghi", "abcdef ghi"); 456 457 TEST_TRIM(" ", ""); 458 TEST_TRIM(" ", ""); 459 TEST_TRIM("a ", "a"); 460 TEST_TRIM("abcdef gH ", "abcdef gH"); 461 462 TEST_TRIM("\t\t", ""); 463 TEST_TRIM(" \t", ""); 464 TEST_TRIM("\t", ""); 465 TEST_TRIM("a \t", "a"); 466 TEST_TRIM("a\t ", "a"); 467 TEST_TRIM("a\t", "a"); 468 TEST_TRIM("abcdef gH \t ", "abcdef gH"); 469 470 end: 471 if (cp) 472 mm_free(cp); 473 } 474 475 static int logsev = 0; 476 static char *logmsg = NULL; 477 478 static void 479 logfn(int severity, const char *msg) 480 { 481 logsev = severity; 482 tt_want(msg); 483 if (msg) { 484 if (logmsg) 485 free(logmsg); 486 logmsg = strdup(msg); 487 } 488 } 489 490 static int fatal_want_severity = 0; 491 static const char *fatal_want_message = NULL; 492 static void 493 fatalfn(int exitcode) 494 { 495 if (logsev != fatal_want_severity || 496 !logmsg || 497 strcmp(logmsg, fatal_want_message)) 498 exit(0); 499 else 500 exit(exitcode); 501 } 502 503 #ifndef _WIN32 504 #define CAN_CHECK_ERR 505 static void 506 check_error_logging(void (*fn)(void), int wantexitcode, 507 int wantseverity, const char *wantmsg) 508 { 509 pid_t pid; 510 int status = 0, exitcode; 511 fatal_want_severity = wantseverity; 512 fatal_want_message = wantmsg; 513 if ((pid = regress_fork()) == 0) { 514 /* child process */ 515 fn(); 516 exit(0); /* should be unreachable. */ 517 } else { 518 wait(&status); 519 exitcode = WEXITSTATUS(status); 520 tt_int_op(wantexitcode, ==, exitcode); 521 } 522 end: 523 ; 524 } 525 526 static void 527 errx_fn(void) 528 { 529 event_errx(2, "Fatal error; too many kumquats (%d)", 5); 530 } 531 532 static void 533 err_fn(void) 534 { 535 errno = ENOENT; 536 event_err(5,"Couldn't open %s", "/very/bad/file"); 537 } 538 539 static void 540 sock_err_fn(void) 541 { 542 evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0); 543 #ifdef _WIN32 544 EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK); 545 #else 546 errno = EAGAIN; 547 #endif 548 event_sock_err(20, fd, "Unhappy socket"); 549 } 550 #endif 551 552 static void 553 test_evutil_log(void *ptr) 554 { 555 evutil_socket_t fd = -1; 556 char buf[128]; 557 558 event_set_log_callback(logfn); 559 event_set_fatal_callback(fatalfn); 560 #define RESET() do { \ 561 logsev = 0; \ 562 if (logmsg) free(logmsg); \ 563 logmsg = NULL; \ 564 } while (0) 565 #define LOGEQ(sev,msg) do { \ 566 tt_int_op(logsev,==,sev); \ 567 tt_assert(logmsg != NULL); \ 568 tt_str_op(logmsg,==,msg); \ 569 } while (0) 570 571 #ifdef CAN_CHECK_ERR 572 /* We need to disable these tests for now. Previously, the logging 573 * module didn't enforce the requirement that a fatal callback 574 * actually exit. Now, it exits no matter what, so if we wan to 575 * reinstate these tests, we'll need to fork for each one. */ 576 check_error_logging(errx_fn, 2, EVENT_LOG_ERR, 577 "Fatal error; too many kumquats (5)"); 578 RESET(); 579 #endif 580 581 event_warnx("Far too many %s (%d)", "wombats", 99); 582 LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)"); 583 RESET(); 584 585 event_msgx("Connecting lime to coconut"); 586 LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut"); 587 RESET(); 588 589 event_debug(("A millisecond passed! We should log that!")); 590 #ifdef USE_DEBUG 591 LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!"); 592 #else 593 tt_int_op(logsev,==,0); 594 tt_ptr_op(logmsg,==,NULL); 595 #endif 596 RESET(); 597 598 /* Try with an errno. */ 599 errno = ENOENT; 600 event_warn("Couldn't open %s", "/bad/file"); 601 evutil_snprintf(buf, sizeof(buf), 602 "Couldn't open /bad/file: %s",strerror(ENOENT)); 603 LOGEQ(EVENT_LOG_WARN,buf); 604 RESET(); 605 606 #ifdef CAN_CHECK_ERR 607 evutil_snprintf(buf, sizeof(buf), 608 "Couldn't open /very/bad/file: %s",strerror(ENOENT)); 609 check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf); 610 RESET(); 611 #endif 612 613 /* Try with a socket errno. */ 614 fd = socket(AF_INET, SOCK_STREAM, 0); 615 #ifdef _WIN32 616 evutil_snprintf(buf, sizeof(buf), 617 "Unhappy socket: %s", 618 evutil_socket_error_to_string(WSAEWOULDBLOCK)); 619 EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK); 620 #else 621 evutil_snprintf(buf, sizeof(buf), 622 "Unhappy socket: %s", strerror(EAGAIN)); 623 errno = EAGAIN; 624 #endif 625 event_sock_warn(fd, "Unhappy socket"); 626 LOGEQ(EVENT_LOG_WARN, buf); 627 RESET(); 628 629 #ifdef CAN_CHECK_ERR 630 check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf); 631 RESET(); 632 #endif 633 634 #undef RESET 635 #undef LOGEQ 636 end: 637 if (logmsg) 638 free(logmsg); 639 if (fd >= 0) 640 evutil_closesocket(fd); 641 } 642 643 static void 644 test_evutil_strlcpy(void *arg) 645 { 646 char buf[8]; 647 648 /* Successful case. */ 649 tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf))); 650 tt_str_op(buf, ==, "Hello"); 651 652 /* Overflow by a lot. */ 653 tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf))); 654 tt_str_op(buf, ==, "pentasy"); 655 656 /* Overflow by exactly one. */ 657 tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf))); 658 tt_str_op(buf, ==, "overlon"); 659 end: 660 ; 661 } 662 663 struct example_struct { 664 const char *a; 665 const char *b; 666 long c; 667 }; 668 669 static void 670 test_evutil_upcast(void *arg) 671 { 672 struct example_struct es1; 673 const char **cp; 674 es1.a = "World"; 675 es1.b = "Hello"; 676 es1.c = -99; 677 678 tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*)); 679 680 cp = &es1.b; 681 tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1); 682 683 end: 684 ; 685 } 686 687 static void 688 test_evutil_integers(void *arg) 689 { 690 ev_int64_t i64; 691 ev_uint64_t u64; 692 ev_int32_t i32; 693 ev_uint32_t u32; 694 ev_int16_t i16; 695 ev_uint16_t u16; 696 ev_int8_t i8; 697 ev_uint8_t u8; 698 699 void *ptr; 700 ev_intptr_t iptr; 701 ev_uintptr_t uptr; 702 703 ev_ssize_t ssize; 704 705 tt_int_op(sizeof(u64), ==, 8); 706 tt_int_op(sizeof(i64), ==, 8); 707 tt_int_op(sizeof(u32), ==, 4); 708 tt_int_op(sizeof(i32), ==, 4); 709 tt_int_op(sizeof(u16), ==, 2); 710 tt_int_op(sizeof(i16), ==, 2); 711 tt_int_op(sizeof(u8), ==, 1); 712 tt_int_op(sizeof(i8), ==, 1); 713 714 tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t)); 715 tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *)); 716 tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t)); 717 718 u64 = 1000000000; 719 u64 *= 1000000000; 720 tt_assert(u64 / 1000000000 == 1000000000); 721 i64 = -1000000000; 722 i64 *= 1000000000; 723 tt_assert(i64 / 1000000000 == -1000000000); 724 725 u64 = EV_UINT64_MAX; 726 i64 = EV_INT64_MAX; 727 tt_assert(u64 > 0); 728 tt_assert(i64 > 0); 729 u64++; 730 i64++; 731 tt_assert(u64 == 0); 732 tt_assert(i64 == EV_INT64_MIN); 733 tt_assert(i64 < 0); 734 735 u32 = EV_UINT32_MAX; 736 i32 = EV_INT32_MAX; 737 tt_assert(u32 > 0); 738 tt_assert(i32 > 0); 739 u32++; 740 i32++; 741 tt_assert(u32 == 0); 742 tt_assert(i32 == EV_INT32_MIN); 743 tt_assert(i32 < 0); 744 745 u16 = EV_UINT16_MAX; 746 i16 = EV_INT16_MAX; 747 tt_assert(u16 > 0); 748 tt_assert(i16 > 0); 749 u16++; 750 i16++; 751 tt_assert(u16 == 0); 752 tt_assert(i16 == EV_INT16_MIN); 753 tt_assert(i16 < 0); 754 755 u8 = EV_UINT8_MAX; 756 i8 = EV_INT8_MAX; 757 tt_assert(u8 > 0); 758 tt_assert(i8 > 0); 759 u8++; 760 i8++; 761 tt_assert(u8 == 0); 762 tt_assert(i8 == EV_INT8_MIN); 763 tt_assert(i8 < 0); 764 765 ssize = EV_SSIZE_MAX; 766 tt_assert(ssize > 0); 767 ssize++; 768 tt_assert(ssize < 0); 769 tt_assert(ssize == EV_SSIZE_MIN); 770 771 ptr = &ssize; 772 iptr = (ev_intptr_t)ptr; 773 uptr = (ev_uintptr_t)ptr; 774 ptr = (void *)iptr; 775 tt_assert(ptr == &ssize); 776 ptr = (void *)uptr; 777 tt_assert(ptr == &ssize); 778 779 iptr = -1; 780 tt_assert(iptr < 0); 781 end: 782 ; 783 } 784 785 struct evutil_addrinfo * 786 ai_find_by_family(struct evutil_addrinfo *ai, int family) 787 { 788 while (ai) { 789 if (ai->ai_family == family) 790 return ai; 791 ai = ai->ai_next; 792 } 793 return NULL; 794 } 795 796 struct evutil_addrinfo * 797 ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol) 798 { 799 while (ai) { 800 if (ai->ai_protocol == protocol) 801 return ai; 802 ai = ai->ai_next; 803 } 804 return NULL; 805 } 806 807 808 int 809 test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port, 810 int socktype, int protocol, int line) 811 { 812 struct sockaddr_storage ss; 813 int slen = sizeof(ss); 814 int gotport; 815 char buf[128]; 816 memset(&ss, 0, sizeof(ss)); 817 if (socktype > 0) 818 tt_int_op(ai->ai_socktype, ==, socktype); 819 if (protocol > 0) 820 tt_int_op(ai->ai_protocol, ==, protocol); 821 822 if (evutil_parse_sockaddr_port( 823 sockaddr_port, (struct sockaddr*)&ss, &slen)<0) { 824 TT_FAIL(("Couldn't parse expected address %s on line %d", 825 sockaddr_port, line)); 826 return -1; 827 } 828 if (ai->ai_family != ss.ss_family) { 829 TT_FAIL(("Address family %d did not match %d on line %d", 830 ai->ai_family, ss.ss_family, line)); 831 return -1; 832 } 833 if (ai->ai_addr->sa_family == AF_INET) { 834 struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr; 835 evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf)); 836 gotport = ntohs(sin->sin_port); 837 if (ai->ai_addrlen != sizeof(struct sockaddr_in)) { 838 TT_FAIL(("Addr size mismatch on line %d", line)); 839 return -1; 840 } 841 } else { 842 struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr; 843 evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf)); 844 gotport = ntohs(sin6->sin6_port); 845 if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) { 846 TT_FAIL(("Addr size mismatch on line %d", line)); 847 return -1; 848 } 849 } 850 if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) { 851 TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port, 852 buf, gotport, line)); 853 return -1; 854 } else { 855 TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port, 856 buf, gotport, line)); 857 } 858 return 0; 859 end: 860 TT_FAIL(("Test failed on line %d", line)); 861 return -1; 862 } 863 864 static void 865 test_evutil_rand(void *arg) 866 { 867 char buf1[32]; 868 char buf2[32]; 869 int counts[256]; 870 int i, j, k, n=0; 871 struct evutil_weakrand_state seed = { 12346789U }; 872 873 memset(buf2, 0, sizeof(buf2)); 874 memset(counts, 0, sizeof(counts)); 875 876 for (k=0;k<32;++k) { 877 /* Try a few different start and end points; try to catch 878 * the various misaligned cases of arc4random_buf */ 879 int startpoint = evutil_weakrand_(&seed) % 4; 880 int endpoint = 32 - (evutil_weakrand_(&seed) % 4); 881 882 memset(buf2, 0, sizeof(buf2)); 883 884 /* Do 6 runs over buf1, or-ing the result into buf2 each 885 * time, to make sure we're setting each byte that we mean 886 * to set. */ 887 for (i=0;i<8;++i) { 888 memset(buf1, 0, sizeof(buf1)); 889 evutil_secure_rng_get_bytes(buf1 + startpoint, 890 endpoint-startpoint); 891 n += endpoint - startpoint; 892 for (j=0; j<32; ++j) { 893 if (j >= startpoint && j < endpoint) { 894 buf2[j] |= buf1[j]; 895 ++counts[(unsigned char)buf1[j]]; 896 } else { 897 tt_assert(buf1[j] == 0); 898 tt_int_op(buf1[j], ==, 0); 899 900 } 901 } 902 } 903 904 /* This will give a false positive with P=(256**8)==(2**64) 905 * for each character. */ 906 for (j=startpoint;j<endpoint;++j) { 907 tt_int_op(buf2[j], !=, 0); 908 } 909 } 910 911 evutil_weakrand_seed_(&seed, 0); 912 for (i = 0; i < 10000; ++i) { 913 ev_int32_t r = evutil_weakrand_range_(&seed, 9999); 914 tt_int_op(0, <=, r); 915 tt_int_op(r, <, 9999); 916 } 917 918 /* for (i=0;i<256;++i) { printf("%3d %2d\n", i, counts[i]); } */ 919 end: 920 ; 921 } 922 923 static void 924 test_evutil_getaddrinfo(void *arg) 925 { 926 struct evutil_addrinfo *ai = NULL, *a; 927 struct evutil_addrinfo hints; 928 int r; 929 930 /* Try using it as a pton. */ 931 memset(&hints, 0, sizeof(hints)); 932 hints.ai_family = PF_UNSPEC; 933 hints.ai_socktype = SOCK_STREAM; 934 r = evutil_getaddrinfo("1.2.3.4", "8080", &hints, &ai); 935 tt_int_op(r, ==, 0); 936 tt_assert(ai); 937 tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */ 938 test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP); 939 evutil_freeaddrinfo(ai); 940 ai = NULL; 941 942 memset(&hints, 0, sizeof(hints)); 943 hints.ai_family = PF_UNSPEC; 944 hints.ai_protocol = IPPROTO_UDP; 945 r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai); 946 tt_int_op(r, ==, 0); 947 tt_assert(ai); 948 tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */ 949 test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP); 950 evutil_freeaddrinfo(ai); 951 ai = NULL; 952 953 /* Try out the behavior of nodename=NULL */ 954 memset(&hints, 0, sizeof(hints)); 955 hints.ai_family = PF_INET; 956 hints.ai_protocol = IPPROTO_TCP; 957 hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */ 958 r = evutil_getaddrinfo(NULL, "9999", &hints, &ai); 959 tt_int_op(r,==,0); 960 tt_assert(ai); 961 tt_ptr_op(ai->ai_next, ==, NULL); 962 test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP); 963 evutil_freeaddrinfo(ai); 964 ai = NULL; 965 hints.ai_flags = 0; /* as if for connect */ 966 r = evutil_getaddrinfo(NULL, "9998", &hints, &ai); 967 tt_assert(ai); 968 tt_int_op(r,==,0); 969 test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP); 970 tt_ptr_op(ai->ai_next, ==, NULL); 971 evutil_freeaddrinfo(ai); 972 ai = NULL; 973 974 hints.ai_flags = 0; /* as if for connect */ 975 hints.ai_family = PF_INET6; 976 r = evutil_getaddrinfo(NULL, "9997", &hints, &ai); 977 tt_assert(ai); 978 tt_int_op(r,==,0); 979 tt_ptr_op(ai->ai_next, ==, NULL); 980 test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP); 981 evutil_freeaddrinfo(ai); 982 ai = NULL; 983 984 hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */ 985 hints.ai_family = PF_INET6; 986 r = evutil_getaddrinfo(NULL, "9996", &hints, &ai); 987 tt_assert(ai); 988 tt_int_op(r,==,0); 989 tt_ptr_op(ai->ai_next, ==, NULL); 990 test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP); 991 evutil_freeaddrinfo(ai); 992 ai = NULL; 993 994 /* Now try an unspec one. We should get a v6 and a v4. */ 995 hints.ai_family = PF_UNSPEC; 996 r = evutil_getaddrinfo(NULL, "9996", &hints, &ai); 997 tt_assert(ai); 998 tt_int_op(r,==,0); 999 a = ai_find_by_family(ai, PF_INET6); 1000 tt_assert(a); 1001 test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP); 1002 a = ai_find_by_family(ai, PF_INET); 1003 tt_assert(a); 1004 test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP); 1005 evutil_freeaddrinfo(ai); 1006 ai = NULL; 1007 1008 /* Try out AI_NUMERICHOST: successful case. Also try 1009 * multiprotocol. */ 1010 memset(&hints, 0, sizeof(hints)); 1011 hints.ai_family = PF_UNSPEC; 1012 hints.ai_flags = EVUTIL_AI_NUMERICHOST; 1013 r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai); 1014 tt_int_op(r, ==, 0); 1015 a = ai_find_by_protocol(ai, IPPROTO_TCP); 1016 tt_assert(a); 1017 test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP); 1018 a = ai_find_by_protocol(ai, IPPROTO_UDP); 1019 tt_assert(a); 1020 test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP); 1021 evutil_freeaddrinfo(ai); 1022 ai = NULL; 1023 1024 /* Try the failing case of AI_NUMERICHOST */ 1025 memset(&hints, 0, sizeof(hints)); 1026 hints.ai_family = PF_UNSPEC; 1027 hints.ai_flags = EVUTIL_AI_NUMERICHOST; 1028 r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai); 1029 tt_int_op(r, ==, EVUTIL_EAI_NONAME); 1030 tt_ptr_op(ai, ==, NULL); 1031 1032 /* Try symbolic service names wit AI_NUMERICSERV */ 1033 memset(&hints, 0, sizeof(hints)); 1034 hints.ai_family = PF_UNSPEC; 1035 hints.ai_socktype = SOCK_STREAM; 1036 hints.ai_flags = EVUTIL_AI_NUMERICSERV; 1037 r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai); 1038 tt_int_op(r,==,EVUTIL_EAI_NONAME); 1039 1040 /* Try symbolic service names */ 1041 memset(&hints, 0, sizeof(hints)); 1042 hints.ai_family = PF_UNSPEC; 1043 hints.ai_socktype = SOCK_STREAM; 1044 r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai); 1045 if (r!=0) { 1046 TT_DECLARE("SKIP", ("Symbolic service names seem broken.")); 1047 } else { 1048 tt_assert(ai); 1049 test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP); 1050 evutil_freeaddrinfo(ai); 1051 ai = NULL; 1052 } 1053 1054 end: 1055 if (ai) 1056 evutil_freeaddrinfo(ai); 1057 } 1058 1059 static void 1060 test_evutil_getaddrinfo_live(void *arg) 1061 { 1062 struct evutil_addrinfo *ai = NULL; 1063 struct evutil_addrinfo hints; 1064 1065 struct sockaddr_in6 *sin6; 1066 struct sockaddr_in *sin; 1067 char buf[128]; 1068 const char *cp; 1069 int r; 1070 1071 /* Now do some actual lookups. */ 1072 memset(&hints, 0, sizeof(hints)); 1073 hints.ai_family = PF_INET; 1074 hints.ai_protocol = IPPROTO_TCP; 1075 hints.ai_socktype = SOCK_STREAM; 1076 r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai); 1077 if (r != 0) { 1078 TT_DECLARE("SKIP", ("Couldn't resolve www.google.com")); 1079 } else { 1080 tt_assert(ai); 1081 tt_int_op(ai->ai_family, ==, PF_INET); 1082 tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP); 1083 tt_int_op(ai->ai_socktype, ==, SOCK_STREAM); 1084 tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in)); 1085 sin = (struct sockaddr_in*)ai->ai_addr; 1086 tt_int_op(sin->sin_family, ==, AF_INET); 1087 tt_int_op(sin->sin_port, ==, htons(80)); 1088 tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff); 1089 1090 cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf)); 1091 TT_BLATHER(("www.google.com resolved to %s", 1092 cp?cp:"<unwriteable>")); 1093 evutil_freeaddrinfo(ai); 1094 ai = NULL; 1095 } 1096 1097 hints.ai_family = PF_INET6; 1098 r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai); 1099 if (r != 0) { 1100 TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com")); 1101 } else { 1102 tt_assert(ai); 1103 tt_int_op(ai->ai_family, ==, PF_INET6); 1104 tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6)); 1105 sin6 = (struct sockaddr_in6*)ai->ai_addr; 1106 tt_int_op(sin6->sin6_port, ==, htons(80)); 1107 1108 cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, 1109 sizeof(buf)); 1110 TT_BLATHER(("ipv6.google.com resolved to %s", 1111 cp?cp:"<unwriteable>")); 1112 } 1113 1114 end: 1115 if (ai) 1116 evutil_freeaddrinfo(ai); 1117 } 1118 1119 #ifdef _WIN32 1120 static void 1121 test_evutil_loadsyslib(void *arg) 1122 { 1123 HANDLE h=NULL; 1124 1125 h = evutil_load_windows_system_library_(TEXT("kernel32.dll")); 1126 tt_assert(h); 1127 1128 end: 1129 if (h) 1130 CloseHandle(h); 1131 1132 } 1133 #endif 1134 1135 /** Test mm_malloc(). */ 1136 static void 1137 test_event_malloc(void *arg) 1138 { 1139 void *p = NULL; 1140 (void)arg; 1141 1142 /* mm_malloc(0) should simply return NULL. */ 1143 #ifndef EVENT__DISABLE_MM_REPLACEMENT 1144 errno = 0; 1145 p = mm_malloc(0); 1146 tt_assert(p == NULL); 1147 tt_int_op(errno, ==, 0); 1148 #endif 1149 1150 /* Trivial case. */ 1151 errno = 0; 1152 p = mm_malloc(8); 1153 tt_assert(p != NULL); 1154 tt_int_op(errno, ==, 0); 1155 mm_free(p); 1156 1157 end: 1158 errno = 0; 1159 return; 1160 } 1161 1162 static void 1163 test_event_calloc(void *arg) 1164 { 1165 void *p = NULL; 1166 (void)arg; 1167 1168 #ifndef EVENT__DISABLE_MM_REPLACEMENT 1169 /* mm_calloc() should simply return NULL 1170 * if either argument is zero. */ 1171 errno = 0; 1172 p = mm_calloc(0, 0); 1173 tt_assert(p == NULL); 1174 tt_int_op(errno, ==, 0); 1175 errno = 0; 1176 p = mm_calloc(0, 1); 1177 tt_assert(p == NULL); 1178 tt_int_op(errno, ==, 0); 1179 errno = 0; 1180 p = mm_calloc(1, 0); 1181 tt_assert(p == NULL); 1182 tt_int_op(errno, ==, 0); 1183 #endif 1184 1185 /* Trivial case. */ 1186 errno = 0; 1187 p = mm_calloc(8, 8); 1188 tt_assert(p != NULL); 1189 tt_int_op(errno, ==, 0); 1190 mm_free(p); 1191 p = NULL; 1192 1193 /* mm_calloc() should set errno = ENOMEM and return NULL 1194 * in case of potential overflow. */ 1195 errno = 0; 1196 p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8); 1197 tt_assert(p == NULL); 1198 tt_int_op(errno, ==, ENOMEM); 1199 1200 end: 1201 errno = 0; 1202 if (p) 1203 mm_free(p); 1204 1205 return; 1206 } 1207 1208 static void 1209 test_event_strdup(void *arg) 1210 { 1211 void *p = NULL; 1212 (void)arg; 1213 1214 #ifndef EVENT__DISABLE_MM_REPLACEMENT 1215 /* mm_strdup(NULL) should set errno = EINVAL and return NULL. */ 1216 errno = 0; 1217 p = mm_strdup(NULL); 1218 tt_assert(p == NULL); 1219 tt_int_op(errno, ==, EINVAL); 1220 #endif 1221 1222 /* Trivial cases. */ 1223 1224 errno = 0; 1225 p = mm_strdup(""); 1226 tt_assert(p != NULL); 1227 tt_int_op(errno, ==, 0); 1228 tt_str_op(p, ==, ""); 1229 mm_free(p); 1230 1231 errno = 0; 1232 p = mm_strdup("foo"); 1233 tt_assert(p != NULL); 1234 tt_int_op(errno, ==, 0); 1235 tt_str_op(p, ==, "foo"); 1236 mm_free(p); 1237 1238 /* XXX 1239 * mm_strdup(str) where str is a string of length EV_SIZE_MAX 1240 * should set errno = ENOMEM and return NULL. */ 1241 1242 end: 1243 errno = 0; 1244 return; 1245 } 1246 1247 static void 1248 test_evutil_usleep(void *arg) 1249 { 1250 struct timeval tv1, tv2, tv3, diff1, diff2; 1251 const struct timeval quarter_sec = {0, 250*1000}; 1252 const struct timeval tenth_sec = {0, 100*1000}; 1253 long usec1, usec2; 1254 1255 evutil_gettimeofday(&tv1, NULL); 1256 evutil_usleep_(&quarter_sec); 1257 evutil_gettimeofday(&tv2, NULL); 1258 evutil_usleep_(&tenth_sec); 1259 evutil_gettimeofday(&tv3, NULL); 1260 1261 evutil_timersub(&tv2, &tv1, &diff1); 1262 evutil_timersub(&tv3, &tv2, &diff2); 1263 usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec; 1264 usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec; 1265 1266 tt_int_op(usec1, >, 200000); 1267 tt_int_op(usec1, <, 300000); 1268 tt_int_op(usec2, >, 80000); 1269 tt_int_op(usec2, <, 120000); 1270 1271 end: 1272 ; 1273 } 1274 1275 static void 1276 test_evutil_monotonic_res(void *data_) 1277 { 1278 /* Basic santity-test for monotonic timers. What we'd really like 1279 * to do is make sure that they can't go backwards even when the 1280 * system clock goes backwards. But we haven't got a good way to 1281 * move the system clock backwards. 1282 */ 1283 struct basic_test_data *data = data_; 1284 struct evutil_monotonic_timer timer; 1285 const int precise = strstr(data->setup_data, "precise") != NULL; 1286 const int fallback = strstr(data->setup_data, "fallback") != NULL; 1287 struct timeval tv[10], delay; 1288 int total_diff = 0; 1289 1290 int flags = 0, wantres, acceptdiff, i; 1291 if (precise) 1292 flags |= EV_MONOT_PRECISE; 1293 if (fallback) 1294 flags |= EV_MONOT_FALLBACK; 1295 if (precise || fallback) { 1296 #ifdef _WIN32 1297 wantres = 10*1000; 1298 acceptdiff = 1000; 1299 #else 1300 wantres = 1000; 1301 acceptdiff = 300; 1302 #endif 1303 } else { 1304 wantres = 40*1000; 1305 acceptdiff = 20*1000; 1306 } 1307 1308 TT_BLATHER(("Precise = %d", precise)); 1309 TT_BLATHER(("Fallback = %d", fallback)); 1310 1311 /* First, make sure we match up with usleep. */ 1312 1313 delay.tv_sec = 0; 1314 delay.tv_usec = wantres; 1315 1316 tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0); 1317 1318 for (i = 0; i < 10; ++i) { 1319 evutil_gettime_monotonic_(&timer, &tv[i]); 1320 evutil_usleep_(&delay); 1321 } 1322 1323 for (i = 0; i < 9; ++i) { 1324 struct timeval diff; 1325 tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <)); 1326 evutil_timersub(&tv[i+1], &tv[i], &diff); 1327 tt_int_op(diff.tv_sec, ==, 0); 1328 total_diff += diff.tv_usec; 1329 TT_BLATHER(("Difference = %d", (int)diff.tv_usec)); 1330 } 1331 tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff); 1332 1333 end: 1334 ; 1335 } 1336 1337 static void 1338 test_evutil_monotonic_prc(void *data_) 1339 { 1340 struct basic_test_data *data = data_; 1341 struct evutil_monotonic_timer timer; 1342 const int precise = strstr(data->setup_data, "precise") != NULL; 1343 const int fallback = strstr(data->setup_data, "fallback") != NULL; 1344 struct timeval tv[10]; 1345 int total_diff = 0; 1346 int i, maxstep = 25*1000,flags=0; 1347 if (precise) 1348 maxstep = 500; 1349 if (precise) 1350 flags |= EV_MONOT_PRECISE; 1351 if (fallback) 1352 flags |= EV_MONOT_FALLBACK; 1353 tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0); 1354 1355 /* find out what precision we actually see. */ 1356 1357 evutil_gettime_monotonic_(&timer, &tv[0]); 1358 for (i = 1; i < 10; ++i) { 1359 do { 1360 evutil_gettime_monotonic_(&timer, &tv[i]); 1361 } while (evutil_timercmp(&tv[i-1], &tv[i], ==)); 1362 } 1363 1364 total_diff = 0; 1365 for (i = 0; i < 9; ++i) { 1366 struct timeval diff; 1367 tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <)); 1368 evutil_timersub(&tv[i+1], &tv[i], &diff); 1369 tt_int_op(diff.tv_sec, ==, 0); 1370 total_diff += diff.tv_usec; 1371 TT_BLATHER(("Step difference = %d", (int)diff.tv_usec)); 1372 } 1373 TT_BLATHER(("Average step difference = %d", total_diff / 9)); 1374 tt_int_op(total_diff/9, <, maxstep); 1375 1376 end: 1377 ; 1378 } 1379 1380 struct testcase_t util_testcases[] = { 1381 { "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL }, 1382 { "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL }, 1383 { "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL }, 1384 { "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL }, 1385 { "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL }, 1386 { "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL }, 1387 { "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL }, 1388 { "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL }, 1389 { "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL }, 1390 { "strlcpy", test_evutil_strlcpy, 0, NULL, NULL }, 1391 { "log", test_evutil_log, TT_FORK, NULL, NULL }, 1392 { "upcast", test_evutil_upcast, 0, NULL, NULL }, 1393 { "integers", test_evutil_integers, 0, NULL, NULL }, 1394 { "rand", test_evutil_rand, TT_FORK, NULL, NULL }, 1395 { "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL }, 1396 { "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL }, 1397 #ifdef _WIN32 1398 { "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL }, 1399 #endif 1400 { "mm_malloc", test_event_malloc, 0, NULL, NULL }, 1401 { "mm_calloc", test_event_calloc, 0, NULL, NULL }, 1402 { "mm_strdup", test_event_strdup, 0, NULL, NULL }, 1403 { "usleep", test_evutil_usleep, 0, NULL, NULL }, 1404 { "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, (void*)"" }, 1405 { "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"precise" }, 1406 { "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"fallback" }, 1407 { "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"" }, 1408 { "monotonic_prc_precise", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"precise" }, 1409 { "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"fallback" }, 1410 END_OF_TESTCASES, 1411 }; 1412 1413