xref: /netbsd-src/external/bsd/ntp/dist/sntp/libevent/test/regress.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /*	$NetBSD: regress.c,v 1.7 2020/05/25 20:47:34 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
5  * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 #include "util-internal.h"
30 
31 #ifdef _WIN32
32 #include <winsock2.h>
33 #include <windows.h>
34 #endif
35 
36 #include "event2/event-config.h"
37 
38 #include <sys/types.h>
39 #include <sys/stat.h>
40 #ifdef EVENT__HAVE_SYS_TIME_H
41 #include <sys/time.h>
42 #endif
43 #include <sys/queue.h>
44 #ifndef _WIN32
45 #include <sys/socket.h>
46 #include <sys/wait.h>
47 #include <signal.h>
48 #include <unistd.h>
49 #include <netdb.h>
50 #endif
51 #include <fcntl.h>
52 #include <signal.h>
53 #include <stdlib.h>
54 #include <stdio.h>
55 #include <string.h>
56 #include <errno.h>
57 #include <assert.h>
58 #include <ctype.h>
59 
60 #include "event2/event.h"
61 #include "event2/event_struct.h"
62 #include "event2/event_compat.h"
63 #include "event2/tag.h"
64 #include "event2/buffer.h"
65 #include "event2/buffer_compat.h"
66 #include "event2/util.h"
67 #include "event-internal.h"
68 #include "evthread-internal.h"
69 #include "log-internal.h"
70 #include "time-internal.h"
71 
72 #include "regress.h"
73 
74 #ifndef _WIN32
75 #include "regress.gen.h"
76 #endif
77 
78 evutil_socket_t pair[2];
79 int test_ok;
80 int called;
81 struct event_base *global_base;
82 
83 static char wbuf[4096];
84 static char rbuf[4096];
85 static int woff;
86 static int roff;
87 static int usepersist;
88 static struct timeval tset;
89 static struct timeval tcalled;
90 
91 
92 #define TEST1	"this is a test"
93 
94 #ifndef SHUT_WR
95 #define SHUT_WR 1
96 #endif
97 
98 #ifdef _WIN32
99 #define write(fd,buf,len) send((fd),(buf),(int)(len),0)
100 #define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
101 #endif
102 
103 struct basic_cb_args
104 {
105 	struct event_base *eb;
106 	struct event *ev;
107 	unsigned int callcount;
108 };
109 
110 static void
111 simple_read_cb(evutil_socket_t fd, short event, void *arg)
112 {
113 	char buf[256];
114 	int len;
115 
116 	len = read(fd, buf, sizeof(buf));
117 
118 	if (len) {
119 		if (!called) {
120 			if (event_add(arg, NULL) == -1)
121 				exit(1);
122 		}
123 	} else if (called == 1)
124 		test_ok = 1;
125 
126 	called++;
127 }
128 
129 static void
130 basic_read_cb(evutil_socket_t fd, short event, void *data)
131 {
132 	char buf[256];
133 	int len;
134 	struct basic_cb_args *arg = data;
135 
136 	len = read(fd, buf, sizeof(buf));
137 
138 	if (len < 0) {
139 		tt_fail_perror("read (callback)");
140 	} else {
141 		switch (arg->callcount++) {
142 		case 0:	 /* first call: expect to read data; cycle */
143 			if (len > 0)
144 				return;
145 
146 			tt_fail_msg("EOF before data read");
147 			break;
148 
149 		case 1:	 /* second call: expect EOF; stop */
150 			if (len > 0)
151 				tt_fail_msg("not all data read on first cycle");
152 			break;
153 
154 		default:  /* third call: should not happen */
155 			tt_fail_msg("too many cycles");
156 		}
157 	}
158 
159 	event_del(arg->ev);
160 	event_base_loopexit(arg->eb, NULL);
161 }
162 
163 static void
164 dummy_read_cb(evutil_socket_t fd, short event, void *arg)
165 {
166 }
167 
168 static void
169 simple_write_cb(evutil_socket_t fd, short event, void *arg)
170 {
171 	int len;
172 
173 	len = write(fd, TEST1, strlen(TEST1) + 1);
174 	if (len == -1)
175 		test_ok = 0;
176 	else
177 		test_ok = 1;
178 }
179 
180 static void
181 multiple_write_cb(evutil_socket_t fd, short event, void *arg)
182 {
183 	struct event *ev = arg;
184 	int len;
185 
186 	len = 128;
187 	if (woff + len >= (int)sizeof(wbuf))
188 		len = sizeof(wbuf) - woff;
189 
190 	len = write(fd, wbuf + woff, len);
191 	if (len == -1) {
192 		fprintf(stderr, "%s: write\n", __func__);
193 		if (usepersist)
194 			event_del(ev);
195 		return;
196 	}
197 
198 	woff += len;
199 
200 	if (woff >= (int)sizeof(wbuf)) {
201 		shutdown(fd, SHUT_WR);
202 		if (usepersist)
203 			event_del(ev);
204 		return;
205 	}
206 
207 	if (!usepersist) {
208 		if (event_add(ev, NULL) == -1)
209 			exit(1);
210 	}
211 }
212 
213 static void
214 multiple_read_cb(evutil_socket_t fd, short event, void *arg)
215 {
216 	struct event *ev = arg;
217 	int len;
218 
219 	len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
220 	if (len == -1)
221 		fprintf(stderr, "%s: read\n", __func__);
222 	if (len <= 0) {
223 		if (usepersist)
224 			event_del(ev);
225 		return;
226 	}
227 
228 	roff += len;
229 	if (!usepersist) {
230 		if (event_add(ev, NULL) == -1)
231 			exit(1);
232 	}
233 }
234 
235 static void
236 timeout_cb(evutil_socket_t fd, short event, void *arg)
237 {
238 	evutil_gettimeofday(&tcalled, NULL);
239 }
240 
241 struct both {
242 	struct event ev;
243 	int nread;
244 };
245 
246 static void
247 combined_read_cb(evutil_socket_t fd, short event, void *arg)
248 {
249 	struct both *both = arg;
250 	char buf[128];
251 	int len;
252 
253 	len = read(fd, buf, sizeof(buf));
254 	if (len == -1)
255 		fprintf(stderr, "%s: read\n", __func__);
256 	if (len <= 0)
257 		return;
258 
259 	both->nread += len;
260 	if (event_add(&both->ev, NULL) == -1)
261 		exit(1);
262 }
263 
264 static void
265 combined_write_cb(evutil_socket_t fd, short event, void *arg)
266 {
267 	struct both *both = arg;
268 	char buf[128];
269 	int len;
270 
271 	len = sizeof(buf);
272 	if (len > both->nread)
273 		len = both->nread;
274 
275 	memset(buf, 'q', len);
276 
277 	len = write(fd, buf, len);
278 	if (len == -1)
279 		fprintf(stderr, "%s: write\n", __func__);
280 	if (len <= 0) {
281 		shutdown(fd, SHUT_WR);
282 		return;
283 	}
284 
285 	both->nread -= len;
286 	if (event_add(&both->ev, NULL) == -1)
287 		exit(1);
288 }
289 
290 /* These macros used to replicate the work of the legacy test wrapper code */
291 #define setup_test(x) do {						\
292 	if (!in_legacy_test_wrapper) {					\
293 		TT_FAIL(("Legacy test %s not wrapped properly", x));	\
294 		return;							\
295 	}								\
296 	} while (0)
297 #define cleanup_test() setup_test("cleanup")
298 
299 static void
300 test_simpleread(void)
301 {
302 	struct event ev;
303 
304 	/* Very simple read test */
305 	setup_test("Simple read: ");
306 
307 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
308 		tt_fail_perror("write");
309 	}
310 
311 	shutdown(pair[0], SHUT_WR);
312 
313 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
314 	if (event_add(&ev, NULL) == -1)
315 		exit(1);
316 	event_dispatch();
317 
318 	cleanup_test();
319 }
320 
321 static void
322 test_simplewrite(void)
323 {
324 	struct event ev;
325 
326 	/* Very simple write test */
327 	setup_test("Simple write: ");
328 
329 	event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
330 	if (event_add(&ev, NULL) == -1)
331 		exit(1);
332 	event_dispatch();
333 
334 	cleanup_test();
335 }
336 
337 static void
338 simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
339 {
340 	if (++called == 2)
341 		test_ok = 1;
342 }
343 
344 static void
345 test_simpleread_multiple(void)
346 {
347 	struct event one, two;
348 
349 	/* Very simple read test */
350 	setup_test("Simple read to multiple evens: ");
351 
352 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
353 		tt_fail_perror("write");
354 	}
355 
356 	shutdown(pair[0], SHUT_WR);
357 
358 	event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
359 	if (event_add(&one, NULL) == -1)
360 		exit(1);
361 	event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
362 	if (event_add(&two, NULL) == -1)
363 		exit(1);
364 	event_dispatch();
365 
366 	cleanup_test();
367 }
368 
369 static int have_closed = 0;
370 static int premature_event = 0;
371 static void
372 simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
373 {
374 	evutil_socket_t **fds = ptr;
375 	TT_BLATHER(("Closing"));
376 	evutil_closesocket(*fds[0]);
377 	evutil_closesocket(*fds[1]);
378 	*fds[0] = -1;
379 	*fds[1] = -1;
380 	have_closed = 1;
381 }
382 
383 static void
384 record_event_cb(evutil_socket_t s, short what, void *ptr)
385 {
386 	short *whatp = ptr;
387 	if (!have_closed)
388 		premature_event = 1;
389 	*whatp = what;
390 	TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
391 }
392 
393 static void
394 test_simpleclose(void *ptr)
395 {
396 	/* Test that a close of FD is detected as a read and as a write. */
397 	struct event_base *base = event_base_new();
398 	evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
399 	evutil_socket_t *to_close[2];
400 	struct event *rev=NULL, *wev=NULL, *closeev=NULL;
401 	struct timeval tv;
402 	short got_read_on_close = 0, got_write_on_close = 0;
403 	char buf[1024];
404 	memset(buf, 99, sizeof(buf));
405 #ifdef _WIN32
406 #define LOCAL_SOCKETPAIR_AF AF_INET
407 #else
408 #define LOCAL_SOCKETPAIR_AF AF_UNIX
409 #endif
410 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
411 		TT_DIE(("socketpair: %s", strerror(errno)));
412 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
413 		TT_DIE(("socketpair: %s", strerror(errno)));
414 	if (evutil_make_socket_nonblocking(pair1[1]) < 0)
415 		TT_DIE(("make_socket_nonblocking"));
416 	if (evutil_make_socket_nonblocking(pair2[1]) < 0)
417 		TT_DIE(("make_socket_nonblocking"));
418 
419 	/** Stuff pair2[1] full of data, until write fails */
420 	while (1) {
421 		int r = write(pair2[1], buf, sizeof(buf));
422 		if (r<0) {
423 			int err = evutil_socket_geterror(pair2[1]);
424 			if (! EVUTIL_ERR_RW_RETRIABLE(err))
425 				TT_DIE(("write failed strangely: %s",
426 					evutil_socket_error_to_string(err)));
427 			break;
428 		}
429 	}
430 	to_close[0] = &pair1[0];
431 	to_close[1] = &pair2[0];
432 
433 	closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
434 	    to_close);
435 	rev = event_new(base, pair1[1], EV_READ, record_event_cb,
436 	    &got_read_on_close);
437 	TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
438 	wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
439 	    &got_write_on_close);
440 	TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
441 	tv.tv_sec = 0;
442 	tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
443 			       * sure we get a read event. */
444 	event_add(closeev, &tv);
445 	event_add(rev, NULL);
446 	event_add(wev, NULL);
447 	/* Don't let the test go on too long. */
448 	tv.tv_sec = 0;
449 	tv.tv_usec = 200*1000;
450 	event_base_loopexit(base, &tv);
451 	event_base_loop(base, 0);
452 
453 	tt_int_op(got_read_on_close, ==, EV_READ);
454 	tt_int_op(got_write_on_close, ==, EV_WRITE);
455 	tt_int_op(premature_event, ==, 0);
456 
457 end:
458 	if (pair1[0] >= 0)
459 		evutil_closesocket(pair1[0]);
460 	if (pair1[1] >= 0)
461 		evutil_closesocket(pair1[1]);
462 	if (pair2[0] >= 0)
463 		evutil_closesocket(pair2[0]);
464 	if (pair2[1] >= 0)
465 		evutil_closesocket(pair2[1]);
466 	if (rev)
467 		event_free(rev);
468 	if (wev)
469 		event_free(wev);
470 	if (closeev)
471 		event_free(closeev);
472 	if (base)
473 		event_base_free(base);
474 }
475 
476 
477 static void
478 test_multiple(void)
479 {
480 	struct event ev, ev2;
481 	int i;
482 
483 	/* Multiple read and write test */
484 	setup_test("Multiple read/write: ");
485 	memset(rbuf, 0, sizeof(rbuf));
486 	for (i = 0; i < (int)sizeof(wbuf); i++)
487 		wbuf[i] = i;
488 
489 	roff = woff = 0;
490 	usepersist = 0;
491 
492 	event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
493 	if (event_add(&ev, NULL) == -1)
494 		exit(1);
495 	event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
496 	if (event_add(&ev2, NULL) == -1)
497 		exit(1);
498 	event_dispatch();
499 
500 	if (roff == woff)
501 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
502 
503 	cleanup_test();
504 }
505 
506 static void
507 test_persistent(void)
508 {
509 	struct event ev, ev2;
510 	int i;
511 
512 	/* Multiple read and write test with persist */
513 	setup_test("Persist read/write: ");
514 	memset(rbuf, 0, sizeof(rbuf));
515 	for (i = 0; i < (int)sizeof(wbuf); i++)
516 		wbuf[i] = i;
517 
518 	roff = woff = 0;
519 	usepersist = 1;
520 
521 	event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
522 	if (event_add(&ev, NULL) == -1)
523 		exit(1);
524 	event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
525 	if (event_add(&ev2, NULL) == -1)
526 		exit(1);
527 	event_dispatch();
528 
529 	if (roff == woff)
530 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
531 
532 	cleanup_test();
533 }
534 
535 static void
536 test_combined(void)
537 {
538 	struct both r1, r2, w1, w2;
539 
540 	setup_test("Combined read/write: ");
541 	memset(&r1, 0, sizeof(r1));
542 	memset(&r2, 0, sizeof(r2));
543 	memset(&w1, 0, sizeof(w1));
544 	memset(&w2, 0, sizeof(w2));
545 
546 	w1.nread = 4096;
547 	w2.nread = 8192;
548 
549 	event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
550 	event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
551 	event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
552 	event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
553 	tt_assert(event_add(&r1.ev, NULL) != -1);
554 	tt_assert(!event_add(&w1.ev, NULL));
555 	tt_assert(!event_add(&r2.ev, NULL));
556 	tt_assert(!event_add(&w2.ev, NULL));
557 	event_dispatch();
558 
559 	if (r1.nread == 8192 && r2.nread == 4096)
560 		test_ok = 1;
561 
562 end:
563 	cleanup_test();
564 }
565 
566 static void
567 test_simpletimeout(void)
568 {
569 	struct timeval tv;
570 	struct event ev;
571 
572 	setup_test("Simple timeout: ");
573 
574 	tv.tv_usec = 200*1000;
575 	tv.tv_sec = 0;
576 	evutil_timerclear(&tcalled);
577 	evtimer_set(&ev, timeout_cb, NULL);
578 	evtimer_add(&ev, &tv);
579 
580 	evutil_gettimeofday(&tset, NULL);
581 	event_dispatch();
582 	test_timeval_diff_eq(&tset, &tcalled, 200);
583 
584 	test_ok = 1;
585 end:
586 	cleanup_test();
587 }
588 
589 static void
590 periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
591 {
592 	int *count = arg;
593 
594 	(*count)++;
595 	if (*count == 6) {
596 		/* call loopexit only once - on slow machines(?), it is
597 		 * apparently possible for this to get called twice. */
598 		test_ok = 1;
599 		event_base_loopexit(global_base, NULL);
600 	}
601 }
602 
603 static void
604 test_persistent_timeout(void)
605 {
606 	struct timeval tv;
607 	struct event ev;
608 	int count = 0;
609 
610 	evutil_timerclear(&tv);
611 	tv.tv_usec = 10000;
612 
613 	event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
614 	    periodic_timeout_cb, &count);
615 	event_add(&ev, &tv);
616 
617 	event_dispatch();
618 
619 	event_del(&ev);
620 }
621 
622 static void
623 test_persistent_timeout_jump(void *ptr)
624 {
625 	struct basic_test_data *data = ptr;
626 	struct event ev;
627 	int count = 0;
628 	struct timeval msec100 = { 0, 100 * 1000 };
629 	struct timeval msec50 = { 0, 50 * 1000 };
630 	struct timeval msec300 = { 0, 300 * 1000 };
631 
632 	event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
633 	event_add(&ev, &msec100);
634 	/* Wait for a bit */
635 	evutil_usleep_(&msec300);
636 	event_base_loopexit(data->base, &msec50);
637 	event_base_dispatch(data->base);
638 	tt_int_op(count, ==, 1);
639 
640 end:
641 	event_del(&ev);
642 }
643 
644 struct persist_active_timeout_called {
645 	int n;
646 	short events[16];
647 	struct timeval tvs[16];
648 };
649 
650 static void
651 activate_cb(evutil_socket_t fd, short event, void *arg)
652 {
653 	struct event *ev = arg;
654 	event_active(ev, EV_READ, 1);
655 }
656 
657 static void
658 persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
659 {
660 	struct persist_active_timeout_called *c = arg;
661 	if (c->n < 15) {
662 		c->events[c->n] = event;
663 		evutil_gettimeofday(&c->tvs[c->n], NULL);
664 		++c->n;
665 	}
666 }
667 
668 static void
669 test_persistent_active_timeout(void *ptr)
670 {
671 	struct timeval tv, tv2, tv_exit, start;
672 	struct event ev;
673 	struct persist_active_timeout_called res;
674 
675 	struct basic_test_data *data = ptr;
676 	struct event_base *base = data->base;
677 
678 	memset(&res, 0, sizeof(res));
679 
680 	tv.tv_sec = 0;
681 	tv.tv_usec = 200 * 1000;
682 	event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
683 	    persist_active_timeout_cb, &res);
684 	event_add(&ev, &tv);
685 
686 	tv2.tv_sec = 0;
687 	tv2.tv_usec = 100 * 1000;
688 	event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
689 
690 	tv_exit.tv_sec = 0;
691 	tv_exit.tv_usec = 600 * 1000;
692 	event_base_loopexit(base, &tv_exit);
693 
694 	event_base_assert_ok_(base);
695 	evutil_gettimeofday(&start, NULL);
696 
697 	event_base_dispatch(base);
698 	event_base_assert_ok_(base);
699 
700 	tt_int_op(res.n, ==, 3);
701 	tt_int_op(res.events[0], ==, EV_READ);
702 	tt_int_op(res.events[1], ==, EV_TIMEOUT);
703 	tt_int_op(res.events[2], ==, EV_TIMEOUT);
704 	test_timeval_diff_eq(&start, &res.tvs[0], 100);
705 	test_timeval_diff_eq(&start, &res.tvs[1], 300);
706 	test_timeval_diff_eq(&start, &res.tvs[2], 500);
707 end:
708 	event_del(&ev);
709 }
710 
711 struct common_timeout_info {
712 	struct event ev;
713 	struct timeval called_at;
714 	int which;
715 	int count;
716 };
717 
718 static void
719 common_timeout_cb(evutil_socket_t fd, short event, void *arg)
720 {
721 	struct common_timeout_info *ti = arg;
722 	++ti->count;
723 	evutil_gettimeofday(&ti->called_at, NULL);
724 	if (ti->count >= 4)
725 		event_del(&ti->ev);
726 }
727 
728 static void
729 test_common_timeout(void *ptr)
730 {
731 	struct basic_test_data *data = ptr;
732 
733 	struct event_base *base = data->base;
734 	int i;
735 	struct common_timeout_info info[100];
736 
737 	struct timeval start;
738 	struct timeval tmp_100_ms = { 0, 100*1000 };
739 	struct timeval tmp_200_ms = { 0, 200*1000 };
740 	struct timeval tmp_5_sec = { 5, 0 };
741 	struct timeval tmp_5M_usec = { 0, 5*1000*1000 };
742 
743 	const struct timeval *ms_100, *ms_200, *sec_5;
744 
745 	ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
746 	ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
747 	sec_5 = event_base_init_common_timeout(base, &tmp_5_sec);
748 	tt_assert(ms_100);
749 	tt_assert(ms_200);
750 	tt_assert(sec_5);
751 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
752 	    ==, ms_200);
753 	tt_ptr_op(event_base_init_common_timeout(base, ms_200), ==, ms_200);
754 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_5M_usec), ==, sec_5);
755 	tt_int_op(ms_100->tv_sec, ==, 0);
756 	tt_int_op(ms_200->tv_sec, ==, 0);
757 	tt_int_op(sec_5->tv_sec, ==, 5);
758 	tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
759 	tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
760 	tt_int_op(sec_5->tv_usec, ==, 0|0x50200000);
761 
762 	memset(info, 0, sizeof(info));
763 
764 	for (i=0; i<100; ++i) {
765 		info[i].which = i;
766 		event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
767 		    common_timeout_cb, &info[i]);
768 		if (i % 2) {
769 			if ((i%20)==1) {
770 				/* Glass-box test: Make sure we survive the
771 				 * transition to non-common timeouts. It's
772 				 * a little tricky. */
773 				event_add(&info[i].ev, ms_200);
774 				event_add(&info[i].ev, &tmp_100_ms);
775 			} else if ((i%20)==3) {
776 				/* Check heap-to-common too. */
777 				event_add(&info[i].ev, &tmp_200_ms);
778 				event_add(&info[i].ev, ms_100);
779 			} else if ((i%20)==5) {
780 				/* Also check common-to-common. */
781 				event_add(&info[i].ev, ms_200);
782 				event_add(&info[i].ev, ms_100);
783 			} else {
784 				event_add(&info[i].ev, ms_100);
785 			}
786 		} else {
787 			event_add(&info[i].ev, ms_200);
788 		}
789 	}
790 
791 	event_base_assert_ok_(base);
792 	evutil_gettimeofday(&start, NULL);
793 	event_base_dispatch(base);
794 
795 	event_base_assert_ok_(base);
796 
797 	for (i=0; i<10; ++i) {
798 		tt_int_op(info[i].count, ==, 4);
799 		if (i % 2) {
800 			test_timeval_diff_eq(&start, &info[i].called_at, 400);
801 		} else {
802 			test_timeval_diff_eq(&start, &info[i].called_at, 800);
803 		}
804 	}
805 
806 	/* Make sure we can free the base with some events in. */
807 	for (i=0; i<100; ++i) {
808 		if (i % 2) {
809 			event_add(&info[i].ev, ms_100);
810 		} else {
811 			event_add(&info[i].ev, ms_200);
812 		}
813 	}
814 
815 end:
816 	event_base_free(data->base); /* need to do this here before info is
817 				      * out-of-scope */
818 	data->base = NULL;
819 }
820 
821 #ifndef _WIN32
822 static void signal_cb(evutil_socket_t fd, short event, void *arg);
823 
824 #define current_base event_global_current_base_
825 extern struct event_base *current_base;
826 
827 static void
828 child_signal_cb(evutil_socket_t fd, short event, void *arg)
829 {
830 	struct timeval tv;
831 	int *pint = arg;
832 
833 	*pint = 1;
834 
835 	tv.tv_usec = 500000;
836 	tv.tv_sec = 0;
837 	event_loopexit(&tv);
838 }
839 
840 static void
841 test_fork(void)
842 {
843 	int status, got_sigchld = 0;
844 	struct event ev, sig_ev;
845 	pid_t pid;
846 
847 	setup_test("After fork: ");
848 
849 	tt_assert(current_base);
850 	evthread_make_base_notifiable(current_base);
851 
852 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
853 		tt_fail_perror("write");
854 	}
855 
856 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
857 	if (event_add(&ev, NULL) == -1)
858 		exit(1);
859 
860 	evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
861 	evsignal_add(&sig_ev, NULL);
862 
863 	event_base_assert_ok_(current_base);
864 	TT_BLATHER(("Before fork"));
865 	if ((pid = regress_fork()) == 0) {
866 		/* in the child */
867 		TT_BLATHER(("In child, before reinit"));
868 		event_base_assert_ok_(current_base);
869 		if (event_reinit(current_base) == -1) {
870 			fprintf(stdout, "FAILED (reinit)\n");
871 			exit(1);
872 		}
873 		TT_BLATHER(("After reinit"));
874 		event_base_assert_ok_(current_base);
875 		TT_BLATHER(("After assert-ok"));
876 
877 		evsignal_del(&sig_ev);
878 
879 		called = 0;
880 
881 		event_dispatch();
882 
883 		event_base_free(current_base);
884 
885 		/* we do not send an EOF; simple_read_cb requires an EOF
886 		 * to set test_ok.  we just verify that the callback was
887 		 * called. */
888 		exit(test_ok != 0 || called != 2 ? -2 : 76);
889 	}
890 
891 	/* wait for the child to read the data */
892 	{
893 		const struct timeval tv = { 0, 100000 };
894 		evutil_usleep_(&tv);
895 	}
896 
897 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
898 		tt_fail_perror("write");
899 	}
900 
901 	TT_BLATHER(("Before waitpid"));
902 	if (waitpid(pid, &status, 0) == -1) {
903 		fprintf(stdout, "FAILED (fork)\n");
904 		exit(1);
905 	}
906 	TT_BLATHER(("After waitpid"));
907 
908 	if (WEXITSTATUS(status) != 76) {
909 		fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
910 		exit(1);
911 	}
912 
913 	/* test that the current event loop still works */
914 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
915 		fprintf(stderr, "%s: write\n", __func__);
916 	}
917 
918 	shutdown(pair[0], SHUT_WR);
919 
920 	event_dispatch();
921 
922 	if (!got_sigchld) {
923 		fprintf(stdout, "FAILED (sigchld)\n");
924 		exit(1);
925 	}
926 
927 	evsignal_del(&sig_ev);
928 
929 	end:
930 	cleanup_test();
931 }
932 
933 static void
934 signal_cb_sa(int sig)
935 {
936 	test_ok = 2;
937 }
938 
939 static void
940 signal_cb(evutil_socket_t fd, short event, void *arg)
941 {
942 	struct event *ev = arg;
943 
944 	evsignal_del(ev);
945 	test_ok = 1;
946 }
947 
948 static void
949 test_simplesignal_impl(int find_reorder)
950 {
951 	struct event ev;
952 	struct itimerval itv;
953 
954 	evsignal_set(&ev, SIGALRM, signal_cb, &ev);
955 	evsignal_add(&ev, NULL);
956 	/* find bugs in which operations are re-ordered */
957 	if (find_reorder) {
958 		evsignal_del(&ev);
959 		evsignal_add(&ev, NULL);
960 	}
961 
962 	memset(&itv, 0, sizeof(itv));
963 	itv.it_value.tv_sec = 0;
964 	itv.it_value.tv_usec = 100000;
965 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
966 		goto skip_simplesignal;
967 
968 	event_dispatch();
969  skip_simplesignal:
970 	if (evsignal_del(&ev) == -1)
971 		test_ok = 0;
972 
973 	cleanup_test();
974 }
975 
976 static void
977 test_simplestsignal(void)
978 {
979 	setup_test("Simplest one signal: ");
980 	test_simplesignal_impl(0);
981 }
982 
983 static void
984 test_simplesignal(void)
985 {
986 	setup_test("Simple signal: ");
987 	test_simplesignal_impl(1);
988 }
989 
990 static void
991 test_multiplesignal(void)
992 {
993 	struct event ev_one, ev_two;
994 	struct itimerval itv;
995 
996 	setup_test("Multiple signal: ");
997 
998 	evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
999 	evsignal_add(&ev_one, NULL);
1000 
1001 	evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
1002 	evsignal_add(&ev_two, NULL);
1003 
1004 	memset(&itv, 0, sizeof(itv));
1005 	itv.it_value.tv_sec = 0;
1006 	itv.it_value.tv_usec = 100000;
1007 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
1008 		goto skip_simplesignal;
1009 
1010 	event_dispatch();
1011 
1012  skip_simplesignal:
1013 	if (evsignal_del(&ev_one) == -1)
1014 		test_ok = 0;
1015 	if (evsignal_del(&ev_two) == -1)
1016 		test_ok = 0;
1017 
1018 	cleanup_test();
1019 }
1020 
1021 static void
1022 test_immediatesignal(void)
1023 {
1024 	struct event ev;
1025 
1026 	test_ok = 0;
1027 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1028 	evsignal_add(&ev, NULL);
1029 	raise(SIGUSR1);
1030 	event_loop(EVLOOP_NONBLOCK);
1031 	evsignal_del(&ev);
1032 	cleanup_test();
1033 }
1034 
1035 static void
1036 test_signal_dealloc(void)
1037 {
1038 	/* make sure that evsignal_event is event_del'ed and pipe closed */
1039 	struct event ev;
1040 	struct event_base *base = event_init();
1041 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1042 	evsignal_add(&ev, NULL);
1043 	evsignal_del(&ev);
1044 	event_base_free(base);
1045 	/* If we got here without asserting, we're fine. */
1046 	test_ok = 1;
1047 	cleanup_test();
1048 }
1049 
1050 static void
1051 test_signal_pipeloss(void)
1052 {
1053 	/* make sure that the base1 pipe is closed correctly. */
1054 	struct event_base *base1, *base2;
1055 	int pipe1;
1056 	test_ok = 0;
1057 	base1 = event_init();
1058 	pipe1 = base1->sig.ev_signal_pair[0];
1059 	base2 = event_init();
1060 	event_base_free(base2);
1061 	event_base_free(base1);
1062 	if (close(pipe1) != -1 || errno!=EBADF) {
1063 		/* fd must be closed, so second close gives -1, EBADF */
1064 		printf("signal pipe not closed. ");
1065 		test_ok = 0;
1066 	} else {
1067 		test_ok = 1;
1068 	}
1069 	cleanup_test();
1070 }
1071 
1072 /*
1073  * make two bases to catch signals, use both of them.  this only works
1074  * for event mechanisms that use our signal pipe trick.	 kqueue handles
1075  * signals internally, and all interested kqueues get all the signals.
1076  */
1077 static void
1078 test_signal_switchbase(void)
1079 {
1080 	struct event ev1, ev2;
1081 	struct event_base *base1, *base2;
1082 	int is_kqueue;
1083 	test_ok = 0;
1084 	base1 = event_init();
1085 	base2 = event_init();
1086 	is_kqueue = !strcmp(event_get_method(),"kqueue");
1087 	evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
1088 	evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
1089 	if (event_base_set(base1, &ev1) ||
1090 	    event_base_set(base2, &ev2) ||
1091 	    event_add(&ev1, NULL) ||
1092 	    event_add(&ev2, NULL)) {
1093 		fprintf(stderr, "%s: cannot set base, add\n", __func__);
1094 		exit(1);
1095 	}
1096 
1097 	tt_ptr_op(event_get_base(&ev1), ==, base1);
1098 	tt_ptr_op(event_get_base(&ev2), ==, base2);
1099 
1100 	test_ok = 0;
1101 	/* can handle signal before loop is called */
1102 	raise(SIGUSR1);
1103 	event_base_loop(base2, EVLOOP_NONBLOCK);
1104 	if (is_kqueue) {
1105 		if (!test_ok)
1106 			goto end;
1107 		test_ok = 0;
1108 	}
1109 	event_base_loop(base1, EVLOOP_NONBLOCK);
1110 	if (test_ok && !is_kqueue) {
1111 		test_ok = 0;
1112 
1113 		/* set base1 to handle signals */
1114 		event_base_loop(base1, EVLOOP_NONBLOCK);
1115 		raise(SIGUSR1);
1116 		event_base_loop(base1, EVLOOP_NONBLOCK);
1117 		event_base_loop(base2, EVLOOP_NONBLOCK);
1118 	}
1119 end:
1120 	event_base_free(base1);
1121 	event_base_free(base2);
1122 	cleanup_test();
1123 }
1124 
1125 /*
1126  * assert that a signal event removed from the event queue really is
1127  * removed - with no possibility of it's parent handler being fired.
1128  */
1129 static void
1130 test_signal_assert(void)
1131 {
1132 	struct event ev;
1133 	struct event_base *base = event_init();
1134 	test_ok = 0;
1135 	/* use SIGCONT so we don't kill ourselves when we signal to nowhere */
1136 	evsignal_set(&ev, SIGCONT, signal_cb, &ev);
1137 	evsignal_add(&ev, NULL);
1138 	/*
1139 	 * if evsignal_del() fails to reset the handler, it's current handler
1140 	 * will still point to evsig_handler().
1141 	 */
1142 	evsignal_del(&ev);
1143 
1144 	raise(SIGCONT);
1145 #if 0
1146 	/* only way to verify we were in evsig_handler() */
1147 	/* XXXX Now there's no longer a good way. */
1148 	if (base->sig.evsig_caught)
1149 		test_ok = 0;
1150 	else
1151 		test_ok = 1;
1152 #else
1153 	test_ok = 1;
1154 #endif
1155 
1156 	event_base_free(base);
1157 	cleanup_test();
1158 	return;
1159 }
1160 
1161 /*
1162  * assert that we restore our previous signal handler properly.
1163  */
1164 static void
1165 test_signal_restore(void)
1166 {
1167 	struct event ev;
1168 	struct event_base *base = event_init();
1169 #ifdef EVENT__HAVE_SIGACTION
1170 	struct sigaction sa;
1171 #endif
1172 
1173 	test_ok = 0;
1174 #ifdef EVENT__HAVE_SIGACTION
1175 	sa.sa_handler = signal_cb_sa;
1176 	sa.sa_flags = 0x0;
1177 	sigemptyset(&sa.sa_mask);
1178 	if (sigaction(SIGUSR1, &sa, NULL) == -1)
1179 		goto out;
1180 #else
1181 	if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
1182 		goto out;
1183 #endif
1184 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1185 	evsignal_add(&ev, NULL);
1186 	evsignal_del(&ev);
1187 
1188 	raise(SIGUSR1);
1189 	/* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
1190 	if (test_ok != 2)
1191 		test_ok = 0;
1192 out:
1193 	event_base_free(base);
1194 	cleanup_test();
1195 	return;
1196 }
1197 
1198 static void
1199 signal_cb_swp(int sig, short event, void *arg)
1200 {
1201 	called++;
1202 	if (called < 5)
1203 		raise(sig);
1204 	else
1205 		event_loopexit(NULL);
1206 }
1207 static void
1208 timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
1209 {
1210 	if (called == -1) {
1211 		struct timeval tv = {5, 0};
1212 
1213 		called = 0;
1214 		evtimer_add((struct event *)arg, &tv);
1215 		raise(SIGUSR1);
1216 		return;
1217 	}
1218 	test_ok = 0;
1219 	event_loopexit(NULL);
1220 }
1221 
1222 static void
1223 test_signal_while_processing(void)
1224 {
1225 	struct event_base *base = event_init();
1226 	struct event ev, ev_timer;
1227 	struct timeval tv = {0, 0};
1228 
1229 	setup_test("Receiving a signal while processing other signal: ");
1230 
1231 	called = -1;
1232 	test_ok = 1;
1233 	signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
1234 	signal_add(&ev, NULL);
1235 	evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
1236 	evtimer_add(&ev_timer, &tv);
1237 	event_dispatch();
1238 
1239 	event_base_free(base);
1240 	cleanup_test();
1241 	return;
1242 }
1243 #endif
1244 
1245 static void
1246 test_free_active_base(void *ptr)
1247 {
1248 	struct basic_test_data *data = ptr;
1249 	struct event_base *base1;
1250 	struct event ev1;
1251 
1252 	base1 = event_init();
1253 	if (base1) {
1254 		event_assign(&ev1, base1, data->pair[1], EV_READ,
1255 			     dummy_read_cb, NULL);
1256 		event_add(&ev1, NULL);
1257 		event_base_free(base1);	 /* should not crash */
1258 	} else {
1259 		tt_fail_msg("failed to create event_base for test");
1260 	}
1261 
1262 	base1 = event_init();
1263 	tt_assert(base1);
1264 	event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
1265 	event_active(&ev1, EV_READ, 1);
1266 	event_base_free(base1);
1267 end:
1268 	;
1269 }
1270 
1271 static void
1272 test_manipulate_active_events(void *ptr)
1273 {
1274 	struct basic_test_data *data = ptr;
1275 	struct event_base *base = data->base;
1276 	struct event ev1;
1277 
1278 	event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
1279 
1280 	/* Make sure an active event is pending. */
1281 	event_active(&ev1, EV_READ, 1);
1282 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1283 	    ==, EV_READ);
1284 
1285 	/* Make sure that activating an event twice works. */
1286 	event_active(&ev1, EV_WRITE, 1);
1287 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1288 	    ==, EV_READ|EV_WRITE);
1289 
1290 end:
1291 	event_del(&ev1);
1292 }
1293 
1294 static void
1295 event_selfarg_cb(evutil_socket_t fd, short event, void *arg)
1296 {
1297 	struct event *ev = arg;
1298 	struct event_base *base = event_get_base(ev);
1299 	event_base_assert_ok_(base);
1300 	event_base_loopexit(base, NULL);
1301 	tt_want(ev == event_base_get_running_event(base));
1302 }
1303 
1304 static void
1305 test_event_new_selfarg(void *ptr)
1306 {
1307 	struct basic_test_data *data = ptr;
1308 	struct event_base *base = data->base;
1309 	struct event *ev = event_new(base, -1, EV_READ, event_selfarg_cb,
1310                                      event_self_cbarg());
1311 
1312 	event_active(ev, EV_READ, 1);
1313 	event_base_dispatch(base);
1314 
1315 	event_free(ev);
1316 }
1317 
1318 static void
1319 test_event_assign_selfarg(void *ptr)
1320 {
1321 	struct basic_test_data *data = ptr;
1322 	struct event_base *base = data->base;
1323 	struct event ev;
1324 
1325 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1326                      event_self_cbarg());
1327 	event_active(&ev, EV_READ, 1);
1328 	event_base_dispatch(base);
1329 }
1330 
1331 static void
1332 test_event_base_get_num_events(void *ptr)
1333 {
1334 	struct basic_test_data *data = ptr;
1335 	struct event_base *base = data->base;
1336 	struct event ev;
1337 	int event_count_active;
1338 	int event_count_virtual;
1339 	int event_count_added;
1340 	int event_count_active_virtual;
1341 	int event_count_active_added;
1342 	int event_count_virtual_added;
1343 	int event_count_active_added_virtual;
1344 
1345 	struct timeval qsec = {0, 100000};
1346 
1347 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1348 	    event_self_cbarg());
1349 
1350 	event_add(&ev, &qsec);
1351 	event_count_active = event_base_get_num_events(base,
1352 	    EVENT_BASE_COUNT_ACTIVE);
1353 	event_count_virtual = event_base_get_num_events(base,
1354 	    EVENT_BASE_COUNT_VIRTUAL);
1355 	event_count_added = event_base_get_num_events(base,
1356 	    EVENT_BASE_COUNT_ADDED);
1357 	event_count_active_virtual = event_base_get_num_events(base,
1358 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1359 	event_count_active_added = event_base_get_num_events(base,
1360 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1361 	event_count_virtual_added = event_base_get_num_events(base,
1362 	    EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1363 	event_count_active_added_virtual = event_base_get_num_events(base,
1364 	    EVENT_BASE_COUNT_ACTIVE|
1365 	    EVENT_BASE_COUNT_ADDED|
1366 	    EVENT_BASE_COUNT_VIRTUAL);
1367 	tt_int_op(event_count_active, ==, 0);
1368 	tt_int_op(event_count_virtual, ==, 0);
1369 	/* libevent itself adds a timeout event, so the event_count is 2 here */
1370 	tt_int_op(event_count_added, ==, 2);
1371 	tt_int_op(event_count_active_virtual, ==, 0);
1372 	tt_int_op(event_count_active_added, ==, 2);
1373 	tt_int_op(event_count_virtual_added, ==, 2);
1374 	tt_int_op(event_count_active_added_virtual, ==, 2);
1375 
1376 	event_active(&ev, EV_READ, 1);
1377 	event_count_active = event_base_get_num_events(base,
1378 	    EVENT_BASE_COUNT_ACTIVE);
1379 	event_count_virtual = event_base_get_num_events(base,
1380 	    EVENT_BASE_COUNT_VIRTUAL);
1381 	event_count_added = event_base_get_num_events(base,
1382 	    EVENT_BASE_COUNT_ADDED);
1383 	event_count_active_virtual = event_base_get_num_events(base,
1384 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1385 	event_count_active_added = event_base_get_num_events(base,
1386 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1387 	event_count_virtual_added = event_base_get_num_events(base,
1388 	    EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1389 	event_count_active_added_virtual = event_base_get_num_events(base,
1390 	    EVENT_BASE_COUNT_ACTIVE|
1391 	    EVENT_BASE_COUNT_ADDED|
1392 	    EVENT_BASE_COUNT_VIRTUAL);
1393 	tt_int_op(event_count_active, ==, 1);
1394 	tt_int_op(event_count_virtual, ==, 0);
1395 	tt_int_op(event_count_added, ==, 3);
1396 	tt_int_op(event_count_active_virtual, ==, 1);
1397 	tt_int_op(event_count_active_added, ==, 4);
1398 	tt_int_op(event_count_virtual_added, ==, 3);
1399 	tt_int_op(event_count_active_added_virtual, ==, 4);
1400 
1401        event_base_loop(base, 0);
1402        event_count_active = event_base_get_num_events(base,
1403 	   EVENT_BASE_COUNT_ACTIVE);
1404        event_count_virtual = event_base_get_num_events(base,
1405 	   EVENT_BASE_COUNT_VIRTUAL);
1406        event_count_added = event_base_get_num_events(base,
1407 	   EVENT_BASE_COUNT_ADDED);
1408        event_count_active_virtual = event_base_get_num_events(base,
1409 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1410        event_count_active_added = event_base_get_num_events(base,
1411 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1412        event_count_virtual_added = event_base_get_num_events(base,
1413 	   EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1414        event_count_active_added_virtual = event_base_get_num_events(base,
1415 	   EVENT_BASE_COUNT_ACTIVE|
1416 	   EVENT_BASE_COUNT_ADDED|
1417 	   EVENT_BASE_COUNT_VIRTUAL);
1418        tt_int_op(event_count_active, ==, 0);
1419        tt_int_op(event_count_virtual, ==, 0);
1420        tt_int_op(event_count_added, ==, 0);
1421        tt_int_op(event_count_active_virtual, ==, 0);
1422        tt_int_op(event_count_active_added, ==, 0);
1423        tt_int_op(event_count_virtual_added, ==, 0);
1424        tt_int_op(event_count_active_added_virtual, ==, 0);
1425 
1426        event_base_add_virtual_(base);
1427        event_count_active = event_base_get_num_events(base,
1428 	   EVENT_BASE_COUNT_ACTIVE);
1429        event_count_virtual = event_base_get_num_events(base,
1430 	   EVENT_BASE_COUNT_VIRTUAL);
1431        event_count_added = event_base_get_num_events(base,
1432 	   EVENT_BASE_COUNT_ADDED);
1433        event_count_active_virtual = event_base_get_num_events(base,
1434 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1435        event_count_active_added = event_base_get_num_events(base,
1436 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1437        event_count_virtual_added = event_base_get_num_events(base,
1438 	   EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1439        event_count_active_added_virtual = event_base_get_num_events(base,
1440 	   EVENT_BASE_COUNT_ACTIVE|
1441 	   EVENT_BASE_COUNT_ADDED|
1442 	   EVENT_BASE_COUNT_VIRTUAL);
1443        tt_int_op(event_count_active, ==, 0);
1444        tt_int_op(event_count_virtual, ==, 1);
1445        tt_int_op(event_count_added, ==, 0);
1446        tt_int_op(event_count_active_virtual, ==, 1);
1447        tt_int_op(event_count_active_added, ==, 0);
1448        tt_int_op(event_count_virtual_added, ==, 1);
1449        tt_int_op(event_count_active_added_virtual, ==, 1);
1450 
1451 end:
1452        ;
1453 }
1454 
1455 static void
1456 test_event_base_get_max_events(void *ptr)
1457 {
1458 	struct basic_test_data *data = ptr;
1459 	struct event_base *base = data->base;
1460 	struct event ev;
1461 	struct event ev2;
1462 	int event_count_active;
1463 	int event_count_virtual;
1464 	int event_count_added;
1465 	int event_count_active_virtual;
1466 	int event_count_active_added;
1467 	int event_count_virtual_added;
1468 	int event_count_active_added_virtual;
1469 
1470 	struct timeval qsec = {0, 100000};
1471 
1472 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1473 	    event_self_cbarg());
1474 	event_assign(&ev2, base, -1, EV_READ, event_selfarg_cb,
1475 	    event_self_cbarg());
1476 
1477 	event_add(&ev, &qsec);
1478 	event_add(&ev2, &qsec);
1479 	event_del(&ev2);
1480 
1481 	event_count_active = event_base_get_max_events(base,
1482 	    EVENT_BASE_COUNT_ACTIVE, 0);
1483 	event_count_virtual = event_base_get_max_events(base,
1484 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1485 	event_count_added = event_base_get_max_events(base,
1486 	    EVENT_BASE_COUNT_ADDED, 0);
1487 	event_count_active_virtual = event_base_get_max_events(base,
1488 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1489 	event_count_active_added = event_base_get_max_events(base,
1490 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1491 	event_count_virtual_added = event_base_get_max_events(base,
1492 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1493 	event_count_active_added_virtual = event_base_get_max_events(base,
1494 	    EVENT_BASE_COUNT_ACTIVE |
1495 	    EVENT_BASE_COUNT_ADDED |
1496 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1497 
1498 	tt_int_op(event_count_active, ==, 0);
1499 	tt_int_op(event_count_virtual, ==, 0);
1500 	/* libevent itself adds a timeout event, so the event_count is 4 here */
1501 	tt_int_op(event_count_added, ==, 4);
1502 	tt_int_op(event_count_active_virtual, ==, 0);
1503 	tt_int_op(event_count_active_added, ==, 4);
1504 	tt_int_op(event_count_virtual_added, ==, 4);
1505 	tt_int_op(event_count_active_added_virtual, ==, 4);
1506 
1507 	event_active(&ev, EV_READ, 1);
1508 	event_count_active = event_base_get_max_events(base,
1509 	    EVENT_BASE_COUNT_ACTIVE, 0);
1510 	event_count_virtual = event_base_get_max_events(base,
1511 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1512 	event_count_added = event_base_get_max_events(base,
1513 	    EVENT_BASE_COUNT_ADDED, 0);
1514 	event_count_active_virtual = event_base_get_max_events(base,
1515 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1516 	event_count_active_added = event_base_get_max_events(base,
1517 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1518 	event_count_virtual_added = event_base_get_max_events(base,
1519 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1520 	event_count_active_added_virtual = event_base_get_max_events(base,
1521 	    EVENT_BASE_COUNT_ACTIVE |
1522 	    EVENT_BASE_COUNT_ADDED |
1523 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1524 
1525 	tt_int_op(event_count_active, ==, 1);
1526 	tt_int_op(event_count_virtual, ==, 0);
1527 	tt_int_op(event_count_added, ==, 4);
1528 	tt_int_op(event_count_active_virtual, ==, 1);
1529 	tt_int_op(event_count_active_added, ==, 5);
1530 	tt_int_op(event_count_virtual_added, ==, 4);
1531 	tt_int_op(event_count_active_added_virtual, ==, 5);
1532 
1533 	event_base_loop(base, 0);
1534 	event_count_active = event_base_get_max_events(base,
1535 	    EVENT_BASE_COUNT_ACTIVE, 1);
1536 	event_count_virtual = event_base_get_max_events(base,
1537 	    EVENT_BASE_COUNT_VIRTUAL, 1);
1538 	event_count_added = event_base_get_max_events(base,
1539 	    EVENT_BASE_COUNT_ADDED, 1);
1540 	event_count_active_virtual = event_base_get_max_events(base,
1541 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1542 	event_count_active_added = event_base_get_max_events(base,
1543 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1544 	event_count_virtual_added = event_base_get_max_events(base,
1545 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1546 	event_count_active_added_virtual = event_base_get_max_events(base,
1547 	    EVENT_BASE_COUNT_ACTIVE |
1548 	    EVENT_BASE_COUNT_ADDED |
1549 	    EVENT_BASE_COUNT_VIRTUAL, 1);
1550 
1551 	tt_int_op(event_count_active, ==, 1);
1552 	tt_int_op(event_count_virtual, ==, 0);
1553 	tt_int_op(event_count_added, ==, 4);
1554 	tt_int_op(event_count_active_virtual, ==, 0);
1555 	tt_int_op(event_count_active_added, ==, 0);
1556 	tt_int_op(event_count_virtual_added, ==, 0);
1557 	tt_int_op(event_count_active_added_virtual, ==, 0);
1558 
1559 	event_count_active = event_base_get_max_events(base,
1560 	    EVENT_BASE_COUNT_ACTIVE, 0);
1561 	event_count_virtual = event_base_get_max_events(base,
1562 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1563 	event_count_added = event_base_get_max_events(base,
1564 	    EVENT_BASE_COUNT_ADDED, 0);
1565 	tt_int_op(event_count_active, ==, 0);
1566 	tt_int_op(event_count_virtual, ==, 0);
1567 	tt_int_op(event_count_added, ==, 0);
1568 
1569 	event_base_add_virtual_(base);
1570 	event_count_active = event_base_get_max_events(base,
1571 	    EVENT_BASE_COUNT_ACTIVE, 0);
1572 	event_count_virtual = event_base_get_max_events(base,
1573 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1574 	event_count_added = event_base_get_max_events(base,
1575 	    EVENT_BASE_COUNT_ADDED, 0);
1576 	event_count_active_virtual = event_base_get_max_events(base,
1577 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1578 	event_count_active_added = event_base_get_max_events(base,
1579 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1580 	event_count_virtual_added = event_base_get_max_events(base,
1581 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1582 	event_count_active_added_virtual = event_base_get_max_events(base,
1583 	    EVENT_BASE_COUNT_ACTIVE |
1584 	    EVENT_BASE_COUNT_ADDED |
1585 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1586 
1587 	tt_int_op(event_count_active, ==, 0);
1588 	tt_int_op(event_count_virtual, ==, 1);
1589 	tt_int_op(event_count_added, ==, 0);
1590 	tt_int_op(event_count_active_virtual, ==, 1);
1591 	tt_int_op(event_count_active_added, ==, 0);
1592 	tt_int_op(event_count_virtual_added, ==, 1);
1593 	tt_int_op(event_count_active_added_virtual, ==, 1);
1594 
1595 end:
1596        ;
1597 }
1598 
1599 static void
1600 test_bad_assign(void *ptr)
1601 {
1602 	struct event ev;
1603 	int r;
1604 	/* READ|SIGNAL is not allowed */
1605 	r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
1606 	tt_int_op(r,==,-1);
1607 
1608 end:
1609 	;
1610 }
1611 
1612 static int reentrant_cb_run = 0;
1613 
1614 static void
1615 bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
1616 {
1617 	struct event_base *base = ptr;
1618 	int r;
1619 	reentrant_cb_run = 1;
1620 	/* This reentrant call to event_base_loop should be detected and
1621 	 * should fail */
1622 	r = event_base_loop(base, 0);
1623 	tt_int_op(r, ==, -1);
1624 end:
1625 	;
1626 }
1627 
1628 static void
1629 test_bad_reentrant(void *ptr)
1630 {
1631 	struct basic_test_data *data = ptr;
1632 	struct event_base *base = data->base;
1633 	struct event ev;
1634 	int r;
1635 	event_assign(&ev, base, -1,
1636 	    0, bad_reentrant_run_loop_cb, base);
1637 
1638 	event_active(&ev, EV_WRITE, 1);
1639 	r = event_base_loop(base, 0);
1640 	tt_int_op(r, ==, 1);
1641 	tt_int_op(reentrant_cb_run, ==, 1);
1642 end:
1643 	;
1644 }
1645 
1646 static int n_write_a_byte_cb=0;
1647 static int n_read_and_drain_cb=0;
1648 static int n_activate_other_event_cb=0;
1649 static void
1650 write_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1651 {
1652 	char buf[] = "x";
1653 	if (write(fd, buf, 1) == 1)
1654 		++n_write_a_byte_cb;
1655 }
1656 static void
1657 read_and_drain_cb(evutil_socket_t fd, short what, void *arg)
1658 {
1659 	char buf[128];
1660 	int n;
1661 	++n_read_and_drain_cb;
1662 	while ((n = read(fd, buf, sizeof(buf))) > 0)
1663 		;
1664 }
1665 
1666 static void
1667 activate_other_event_cb(evutil_socket_t fd, short what, void *other_)
1668 {
1669 	struct event *ev_activate = other_;
1670 	++n_activate_other_event_cb;
1671 	event_active_later_(ev_activate, EV_READ);
1672 }
1673 
1674 static void
1675 test_active_later(void *ptr)
1676 {
1677 	struct basic_test_data *data = ptr;
1678 	struct event *ev1 = NULL, *ev2 = NULL;
1679 	struct event ev3, ev4;
1680 	struct timeval qsec = {0, 100000};
1681 	ev1 = event_new(data->base, data->pair[0], EV_READ|EV_PERSIST, read_and_drain_cb, NULL);
1682 	ev2 = event_new(data->base, data->pair[1], EV_WRITE|EV_PERSIST, write_a_byte_cb, NULL);
1683 	event_assign(&ev3, data->base, -1, 0, activate_other_event_cb, &ev4);
1684 	event_assign(&ev4, data->base, -1, 0, activate_other_event_cb, &ev3);
1685 	event_add(ev1, NULL);
1686 	event_add(ev2, NULL);
1687 	event_active_later_(&ev3, EV_READ);
1688 
1689 	event_base_loopexit(data->base, &qsec);
1690 
1691 	event_base_loop(data->base, 0);
1692 
1693 	TT_BLATHER(("%d write calls, %d read calls, %d activate-other calls.",
1694 		n_write_a_byte_cb, n_read_and_drain_cb, n_activate_other_event_cb));
1695 	event_del(&ev3);
1696 	event_del(&ev4);
1697 
1698 	tt_int_op(n_write_a_byte_cb, ==, n_activate_other_event_cb);
1699 	tt_int_op(n_write_a_byte_cb, >, 100);
1700 	tt_int_op(n_read_and_drain_cb, >, 100);
1701 	tt_int_op(n_activate_other_event_cb, >, 100);
1702 
1703 	event_active_later_(&ev4, EV_READ);
1704 	event_active(&ev4, EV_READ, 1); /* This should make the event
1705 					   active immediately. */
1706 	tt_assert((ev4.ev_flags & EVLIST_ACTIVE) != 0);
1707 	tt_assert((ev4.ev_flags & EVLIST_ACTIVE_LATER) == 0);
1708 
1709 	/* Now leave this one around, so that event_free sees it and removes
1710 	 * it. */
1711 	event_active_later_(&ev3, EV_READ);
1712 	event_base_assert_ok_(data->base);
1713 
1714 end:
1715 	if (ev1)
1716 		event_free(ev1);
1717 	if (ev2)
1718 		event_free(ev2);
1719 
1720 	event_base_free(data->base);
1721 	data->base = NULL;
1722 }
1723 
1724 
1725 static void incr_arg_cb(evutil_socket_t fd, short what, void *arg)
1726 {
1727 	int *intptr = arg;
1728 	(void) fd; (void) what;
1729 	++*intptr;
1730 }
1731 static void remove_timers_cb(evutil_socket_t fd, short what, void *arg)
1732 {
1733 	struct event **ep = arg;
1734 	(void) fd; (void) what;
1735 	event_remove_timer(ep[0]);
1736 	event_remove_timer(ep[1]);
1737 }
1738 static void send_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1739 {
1740 	evutil_socket_t *sockp = arg;
1741 	(void) fd; (void) what;
1742 	(void) write(*sockp, "A", 1);
1743 }
1744 struct read_not_timeout_param
1745 {
1746 	struct event **ev;
1747 	int events;
1748 	int count;
1749 };
1750 static void read_not_timeout_cb(evutil_socket_t fd, short what, void *arg)
1751 {
1752 	struct read_not_timeout_param *rntp = arg;
1753 	char c;
1754 	ev_ssize_t n;
1755 	(void) fd; (void) what;
1756 	n = read(fd, &c, 1);
1757 	tt_int_op(n, ==, 1);
1758 	rntp->events |= what;
1759 	++rntp->count;
1760 	if(2 == rntp->count) event_del(rntp->ev[0]);
1761 end:
1762 	;
1763 }
1764 
1765 static void
1766 test_event_remove_timeout(void *ptr)
1767 {
1768 	struct basic_test_data *data = ptr;
1769 	struct event_base *base = data->base;
1770 	struct event *ev[5];
1771 	int ev1_fired=0;
1772 	struct timeval ms25 = { 0, 25*1000 },
1773 		ms40 = { 0, 40*1000 },
1774 		ms75 = { 0, 75*1000 },
1775 		ms125 = { 0, 125*1000 };
1776 	struct read_not_timeout_param rntp = { ev, 0, 0 };
1777 
1778 	event_base_assert_ok_(base);
1779 
1780 	ev[0] = event_new(base, data->pair[0], EV_READ|EV_PERSIST,
1781 	    read_not_timeout_cb, &rntp);
1782 	ev[1] = evtimer_new(base, incr_arg_cb, &ev1_fired);
1783 	ev[2] = evtimer_new(base, remove_timers_cb, ev);
1784 	ev[3] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1785 	ev[4] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1786 	tt_assert(base);
1787 	event_add(ev[2], &ms25); /* remove timers */
1788 	event_add(ev[4], &ms40); /* write to test if timer re-activates */
1789 	event_add(ev[0], &ms75); /* read */
1790 	event_add(ev[1], &ms75); /* timer */
1791 	event_add(ev[3], &ms125); /* timeout. */
1792 	event_base_assert_ok_(base);
1793 
1794 	event_base_dispatch(base);
1795 
1796 	tt_int_op(ev1_fired, ==, 0);
1797 	tt_int_op(rntp.events, ==, EV_READ);
1798 
1799 	event_base_assert_ok_(base);
1800 end:
1801 	event_free(ev[0]);
1802 	event_free(ev[1]);
1803 	event_free(ev[2]);
1804 	event_free(ev[3]);
1805 	event_free(ev[4]);
1806 }
1807 
1808 static void
1809 test_event_base_new(void *ptr)
1810 {
1811 	struct basic_test_data *data = ptr;
1812 	struct event_base *base = 0;
1813 	struct event ev1;
1814 	struct basic_cb_args args;
1815 
1816 	int towrite = (int)strlen(TEST1)+1;
1817 	int len = write(data->pair[0], TEST1, towrite);
1818 
1819 	if (len < 0)
1820 		tt_abort_perror("initial write");
1821 	else if (len != towrite)
1822 		tt_abort_printf(("initial write fell short (%d of %d bytes)",
1823 				 len, towrite));
1824 
1825 	if (shutdown(data->pair[0], SHUT_WR))
1826 		tt_abort_perror("initial write shutdown");
1827 
1828 	base = event_base_new();
1829 	if (!base)
1830 		tt_abort_msg("failed to create event base");
1831 
1832 	args.eb = base;
1833 	args.ev = &ev1;
1834 	args.callcount = 0;
1835 	event_assign(&ev1, base, data->pair[1],
1836 		     EV_READ|EV_PERSIST, basic_read_cb, &args);
1837 
1838 	if (event_add(&ev1, NULL))
1839 		tt_abort_perror("initial event_add");
1840 
1841 	if (event_base_loop(base, 0))
1842 		tt_abort_msg("unsuccessful exit from event loop");
1843 
1844 end:
1845 	if (base)
1846 		event_base_free(base);
1847 }
1848 
1849 static void
1850 test_loopexit(void)
1851 {
1852 	struct timeval tv, tv_start, tv_end;
1853 	struct event ev;
1854 
1855 	setup_test("Loop exit: ");
1856 
1857 	tv.tv_usec = 0;
1858 	tv.tv_sec = 60*60*24;
1859 	evtimer_set(&ev, timeout_cb, NULL);
1860 	evtimer_add(&ev, &tv);
1861 
1862 	tv.tv_usec = 300*1000;
1863 	tv.tv_sec = 0;
1864 	event_loopexit(&tv);
1865 
1866 	evutil_gettimeofday(&tv_start, NULL);
1867 	event_dispatch();
1868 	evutil_gettimeofday(&tv_end, NULL);
1869 
1870 	evtimer_del(&ev);
1871 
1872 	tt_assert(event_base_got_exit(global_base));
1873 	tt_assert(!event_base_got_break(global_base));
1874 
1875 	test_timeval_diff_eq(&tv_start, &tv_end, 300);
1876 
1877 	test_ok = 1;
1878 end:
1879 	cleanup_test();
1880 }
1881 
1882 static void
1883 test_loopexit_multiple(void)
1884 {
1885 	struct timeval tv, tv_start, tv_end;
1886 	struct event_base *base;
1887 
1888 	setup_test("Loop Multiple exit: ");
1889 
1890 	base = event_base_new();
1891 
1892 	tv.tv_usec = 200*1000;
1893 	tv.tv_sec = 0;
1894 	event_base_loopexit(base, &tv);
1895 
1896 	tv.tv_usec = 0;
1897 	tv.tv_sec = 3;
1898 	event_base_loopexit(base, &tv);
1899 
1900 	evutil_gettimeofday(&tv_start, NULL);
1901 	event_base_dispatch(base);
1902 	evutil_gettimeofday(&tv_end, NULL);
1903 
1904 	tt_assert(event_base_got_exit(base));
1905 	tt_assert(!event_base_got_break(base));
1906 
1907 	event_base_free(base);
1908 
1909 	test_timeval_diff_eq(&tv_start, &tv_end, 200);
1910 
1911 	test_ok = 1;
1912 
1913 end:
1914 	cleanup_test();
1915 }
1916 
1917 static void
1918 break_cb(evutil_socket_t fd, short events, void *arg)
1919 {
1920 	test_ok = 1;
1921 	event_loopbreak();
1922 }
1923 
1924 static void
1925 fail_cb(evutil_socket_t fd, short events, void *arg)
1926 {
1927 	test_ok = 0;
1928 }
1929 
1930 static void
1931 test_loopbreak(void)
1932 {
1933 	struct event ev1, ev2;
1934 	struct timeval tv;
1935 
1936 	setup_test("Loop break: ");
1937 
1938 	tv.tv_sec = 0;
1939 	tv.tv_usec = 0;
1940 	evtimer_set(&ev1, break_cb, NULL);
1941 	evtimer_add(&ev1, &tv);
1942 	evtimer_set(&ev2, fail_cb, NULL);
1943 	evtimer_add(&ev2, &tv);
1944 
1945 	event_dispatch();
1946 
1947 	tt_assert(!event_base_got_exit(global_base));
1948 	tt_assert(event_base_got_break(global_base));
1949 
1950 	evtimer_del(&ev1);
1951 	evtimer_del(&ev2);
1952 
1953 end:
1954 	cleanup_test();
1955 }
1956 
1957 static struct event *readd_test_event_last_added = NULL;
1958 static void
1959 re_add_read_cb(evutil_socket_t fd, short event, void *arg)
1960 {
1961 	char buf[256];
1962 	struct event *ev_other = arg;
1963 	ev_ssize_t n_read;
1964 
1965 	readd_test_event_last_added = ev_other;
1966 
1967 	n_read = read(fd, buf, sizeof(buf));
1968 
1969 	if (n_read < 0) {
1970 		tt_fail_perror("read");
1971 		event_base_loopbreak(event_get_base(ev_other));
1972 		return;
1973 	} else {
1974 		event_add(ev_other, NULL);
1975 		++test_ok;
1976 	}
1977 }
1978 
1979 static void
1980 test_nonpersist_readd(void)
1981 {
1982 	struct event ev1, ev2;
1983 
1984 	setup_test("Re-add nonpersistent events: ");
1985 	event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
1986 	event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
1987 
1988 	if (write(pair[0], "Hello", 5) < 0) {
1989 		tt_fail_perror("write(pair[0])");
1990 	}
1991 
1992 	if (write(pair[1], "Hello", 5) < 0) {
1993 		tt_fail_perror("write(pair[1])\n");
1994 	}
1995 
1996 	if (event_add(&ev1, NULL) == -1 ||
1997 	    event_add(&ev2, NULL) == -1) {
1998 		test_ok = 0;
1999 	}
2000 	if (test_ok != 0)
2001 		exit(1);
2002 	event_loop(EVLOOP_ONCE);
2003 	if (test_ok != 2)
2004 		exit(1);
2005 	/* At this point, we executed both callbacks.  Whichever one got
2006 	 * called first added the second, but the second then immediately got
2007 	 * deleted before its callback was called.  At this point, though, it
2008 	 * re-added the first.
2009 	 */
2010 	if (!readd_test_event_last_added) {
2011 		test_ok = 0;
2012 	} else if (readd_test_event_last_added == &ev1) {
2013 		if (!event_pending(&ev1, EV_READ, NULL) ||
2014 		    event_pending(&ev2, EV_READ, NULL))
2015 			test_ok = 0;
2016 	} else {
2017 		if (event_pending(&ev1, EV_READ, NULL) ||
2018 		    !event_pending(&ev2, EV_READ, NULL))
2019 			test_ok = 0;
2020 	}
2021 
2022 	event_del(&ev1);
2023 	event_del(&ev2);
2024 
2025 	cleanup_test();
2026 }
2027 
2028 struct test_pri_event {
2029 	struct event ev;
2030 	int count;
2031 };
2032 
2033 static void
2034 test_priorities_cb(evutil_socket_t fd, short what, void *arg)
2035 {
2036 	struct test_pri_event *pri = arg;
2037 	struct timeval tv;
2038 
2039 	if (pri->count == 3) {
2040 		event_loopexit(NULL);
2041 		return;
2042 	}
2043 
2044 	pri->count++;
2045 
2046 	evutil_timerclear(&tv);
2047 	event_add(&pri->ev, &tv);
2048 }
2049 
2050 static void
2051 test_priorities_impl(int npriorities)
2052 {
2053 	struct test_pri_event one, two;
2054 	struct timeval tv;
2055 
2056 	TT_BLATHER(("Testing Priorities %d: ", npriorities));
2057 
2058 	event_base_priority_init(global_base, npriorities);
2059 
2060 	memset(&one, 0, sizeof(one));
2061 	memset(&two, 0, sizeof(two));
2062 
2063 	timeout_set(&one.ev, test_priorities_cb, &one);
2064 	if (event_priority_set(&one.ev, 0) == -1) {
2065 		fprintf(stderr, "%s: failed to set priority", __func__);
2066 		exit(1);
2067 	}
2068 
2069 	timeout_set(&two.ev, test_priorities_cb, &two);
2070 	if (event_priority_set(&two.ev, npriorities - 1) == -1) {
2071 		fprintf(stderr, "%s: failed to set priority", __func__);
2072 		exit(1);
2073 	}
2074 
2075 	evutil_timerclear(&tv);
2076 
2077 	if (event_add(&one.ev, &tv) == -1)
2078 		exit(1);
2079 	if (event_add(&two.ev, &tv) == -1)
2080 		exit(1);
2081 
2082 	event_dispatch();
2083 
2084 	event_del(&one.ev);
2085 	event_del(&two.ev);
2086 
2087 	if (npriorities == 1) {
2088 		if (one.count == 3 && two.count == 3)
2089 			test_ok = 1;
2090 	} else if (npriorities == 2) {
2091 		/* Two is called once because event_loopexit is priority 1 */
2092 		if (one.count == 3 && two.count == 1)
2093 			test_ok = 1;
2094 	} else {
2095 		if (one.count == 3 && two.count == 0)
2096 			test_ok = 1;
2097 	}
2098 }
2099 
2100 static void
2101 test_priorities(void)
2102 {
2103 	test_priorities_impl(1);
2104 	if (test_ok)
2105 		test_priorities_impl(2);
2106 	if (test_ok)
2107 		test_priorities_impl(3);
2108 }
2109 
2110 /* priority-active-inversion: activate a higher-priority event, and make sure
2111  * it keeps us from running a lower-priority event first. */
2112 static int n_pai_calls = 0;
2113 static struct event pai_events[3];
2114 
2115 static void
2116 prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
2117 {
2118 	int *call_order = arg;
2119 	*call_order = n_pai_calls++;
2120 	if (n_pai_calls == 1) {
2121 		/* This should activate later, even though it shares a
2122 		   priority with us. */
2123 		event_active(&pai_events[1], EV_READ, 1);
2124 		/* This should activate next, since its priority is higher,
2125 		   even though we activated it second. */
2126 		event_active(&pai_events[2], EV_TIMEOUT, 1);
2127 	}
2128 }
2129 
2130 static void
2131 test_priority_active_inversion(void *data_)
2132 {
2133 	struct basic_test_data *data = data_;
2134 	struct event_base *base = data->base;
2135 	int call_order[3];
2136 	int i;
2137 	tt_int_op(event_base_priority_init(base, 8), ==, 0);
2138 
2139 	n_pai_calls = 0;
2140 	memset(call_order, 0, sizeof(call_order));
2141 
2142 	for (i=0;i<3;++i) {
2143 		event_assign(&pai_events[i], data->base, -1, 0,
2144 		    prio_active_inversion_cb, &call_order[i]);
2145 	}
2146 
2147 	event_priority_set(&pai_events[0], 4);
2148 	event_priority_set(&pai_events[1], 4);
2149 	event_priority_set(&pai_events[2], 0);
2150 
2151 	event_active(&pai_events[0], EV_WRITE, 1);
2152 
2153 	event_base_dispatch(base);
2154 	tt_int_op(n_pai_calls, ==, 3);
2155 	tt_int_op(call_order[0], ==, 0);
2156 	tt_int_op(call_order[1], ==, 2);
2157 	tt_int_op(call_order[2], ==, 1);
2158 end:
2159 	;
2160 }
2161 
2162 
2163 static void
2164 test_multiple_cb(evutil_socket_t fd, short event, void *arg)
2165 {
2166 	if (event & EV_READ)
2167 		test_ok |= 1;
2168 	else if (event & EV_WRITE)
2169 		test_ok |= 2;
2170 }
2171 
2172 static void
2173 test_multiple_events_for_same_fd(void)
2174 {
2175    struct event e1, e2;
2176 
2177    setup_test("Multiple events for same fd: ");
2178 
2179    event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
2180    event_add(&e1, NULL);
2181    event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
2182    event_add(&e2, NULL);
2183    event_loop(EVLOOP_ONCE);
2184    event_del(&e2);
2185 
2186    if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
2187 	   tt_fail_perror("write");
2188    }
2189 
2190    event_loop(EVLOOP_ONCE);
2191    event_del(&e1);
2192 
2193    if (test_ok != 3)
2194 	   test_ok = 0;
2195 
2196    cleanup_test();
2197 }
2198 
2199 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
2200 int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
2201 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
2202 int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
2203 
2204 static void
2205 read_once_cb(evutil_socket_t fd, short event, void *arg)
2206 {
2207 	char buf[256];
2208 	int len;
2209 
2210 	len = read(fd, buf, sizeof(buf));
2211 
2212 	if (called) {
2213 		test_ok = 0;
2214 	} else if (len) {
2215 		/* Assumes global pair[0] can be used for writing */
2216 		if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
2217 			tt_fail_perror("write");
2218 			test_ok = 0;
2219 		} else {
2220 			test_ok = 1;
2221 		}
2222 	}
2223 
2224 	called++;
2225 }
2226 
2227 static void
2228 test_want_only_once(void)
2229 {
2230 	struct event ev;
2231 	struct timeval tv;
2232 
2233 	/* Very simple read test */
2234 	setup_test("Want read only once: ");
2235 
2236 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
2237 		tt_fail_perror("write");
2238 	}
2239 
2240 	/* Setup the loop termination */
2241 	evutil_timerclear(&tv);
2242 	tv.tv_usec = 300*1000;
2243 	event_loopexit(&tv);
2244 
2245 	event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
2246 	if (event_add(&ev, NULL) == -1)
2247 		exit(1);
2248 	event_dispatch();
2249 
2250 	cleanup_test();
2251 }
2252 
2253 #define TEST_MAX_INT	6
2254 
2255 static void
2256 evtag_int_test(void *ptr)
2257 {
2258 	struct evbuffer *tmp = evbuffer_new();
2259 	ev_uint32_t integers[TEST_MAX_INT] = {
2260 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2261 	};
2262 	ev_uint32_t integer;
2263 	ev_uint64_t big_int;
2264 	int i;
2265 
2266 	evtag_init();
2267 
2268 	for (i = 0; i < TEST_MAX_INT; i++) {
2269 		int oldlen, newlen;
2270 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2271 		evtag_encode_int(tmp, integers[i]);
2272 		newlen = (int)EVBUFFER_LENGTH(tmp);
2273 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2274 			(unsigned)integers[i], newlen - oldlen));
2275 		big_int = integers[i];
2276 		big_int *= 1000000000; /* 1 billion */
2277 		evtag_encode_int64(tmp, big_int);
2278 	}
2279 
2280 	for (i = 0; i < TEST_MAX_INT; i++) {
2281 		tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
2282 		tt_uint_op(integer, ==, integers[i]);
2283 		tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
2284 		tt_assert((big_int / 1000000000) == integers[i]);
2285 	}
2286 
2287 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2288 end:
2289 	evbuffer_free(tmp);
2290 }
2291 
2292 static void
2293 evtag_fuzz(void *ptr)
2294 {
2295 	u_char buffer[4096];
2296 	struct evbuffer *tmp = evbuffer_new();
2297 	struct timeval tv;
2298 	int i, j;
2299 
2300 	int not_failed = 0;
2301 
2302 	evtag_init();
2303 
2304 	for (j = 0; j < 100; j++) {
2305 		for (i = 0; i < (int)sizeof(buffer); i++)
2306 			buffer[i] = test_weakrand();
2307 		evbuffer_drain(tmp, -1);
2308 		evbuffer_add(tmp, buffer, sizeof(buffer));
2309 
2310 		if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
2311 			not_failed++;
2312 	}
2313 
2314 	/* The majority of decodes should fail */
2315 	tt_int_op(not_failed, <, 10);
2316 
2317 	/* Now insert some corruption into the tag length field */
2318 	evbuffer_drain(tmp, -1);
2319 	evutil_timerclear(&tv);
2320 	tv.tv_sec = 1;
2321 	evtag_marshal_timeval(tmp, 0, &tv);
2322 	evbuffer_add(tmp, buffer, sizeof(buffer));
2323 
2324 	((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
2325 	if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
2326 		tt_abort_msg("evtag_unmarshal_timeval should have failed");
2327 	}
2328 
2329 end:
2330 	evbuffer_free(tmp);
2331 }
2332 
2333 static void
2334 evtag_tag_encoding(void *ptr)
2335 {
2336 	struct evbuffer *tmp = evbuffer_new();
2337 	ev_uint32_t integers[TEST_MAX_INT] = {
2338 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2339 	};
2340 	ev_uint32_t integer;
2341 	int i;
2342 
2343 	evtag_init();
2344 
2345 	for (i = 0; i < TEST_MAX_INT; i++) {
2346 		int oldlen, newlen;
2347 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2348 		evtag_encode_tag(tmp, integers[i]);
2349 		newlen = (int)EVBUFFER_LENGTH(tmp);
2350 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2351 			(unsigned)integers[i], newlen - oldlen));
2352 	}
2353 
2354 	for (i = 0; i < TEST_MAX_INT; i++) {
2355 		tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
2356 		tt_uint_op(integer, ==, integers[i]);
2357 	}
2358 
2359 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2360 
2361 end:
2362 	evbuffer_free(tmp);
2363 }
2364 
2365 static void
2366 evtag_test_peek(void *ptr)
2367 {
2368 	struct evbuffer *tmp = evbuffer_new();
2369 	ev_uint32_t u32;
2370 
2371 	evtag_marshal_int(tmp, 30, 0);
2372 	evtag_marshal_string(tmp, 40, "Hello world");
2373 
2374 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2375 	tt_int_op(u32, ==, 30);
2376 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2377 	tt_int_op(u32, ==, 1+1+1);
2378 	tt_int_op(evtag_consume(tmp), ==, 0);
2379 
2380 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2381 	tt_int_op(u32, ==, 40);
2382 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2383 	tt_int_op(u32, ==, 1+1+11);
2384 	tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
2385 	tt_int_op(u32, ==, 11);
2386 
2387 end:
2388 	evbuffer_free(tmp);
2389 }
2390 
2391 
2392 static void
2393 test_methods(void *ptr)
2394 {
2395 	const char **methods = event_get_supported_methods();
2396 	struct event_config *cfg = NULL;
2397 	struct event_base *base = NULL;
2398 	const char *backend;
2399 	int n_methods = 0;
2400 
2401 	tt_assert(methods);
2402 
2403 	backend = methods[0];
2404 	while (*methods != NULL) {
2405 		TT_BLATHER(("Support method: %s", *methods));
2406 		++methods;
2407 		++n_methods;
2408 	}
2409 
2410 	cfg = event_config_new();
2411 	assert(cfg != NULL);
2412 
2413 	tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
2414 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2415 
2416 	base = event_base_new_with_config(cfg);
2417 	if (n_methods > 1) {
2418 		tt_assert(base);
2419 		tt_str_op(backend, !=, event_base_get_method(base));
2420 	} else {
2421 		tt_assert(base == NULL);
2422 	}
2423 
2424 end:
2425 	if (base)
2426 		event_base_free(base);
2427 	if (cfg)
2428 		event_config_free(cfg);
2429 }
2430 
2431 static void
2432 test_version(void *arg)
2433 {
2434 	const char *vstr;
2435 	ev_uint32_t vint;
2436 	int major, minor, patch, n;
2437 
2438 	vstr = event_get_version();
2439 	vint = event_get_version_number();
2440 
2441 	tt_assert(vstr);
2442 	tt_assert(vint);
2443 
2444 	tt_str_op(vstr, ==, LIBEVENT_VERSION);
2445 	tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
2446 
2447 	n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
2448 	tt_assert(3 == n);
2449 	tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
2450 end:
2451 	;
2452 }
2453 
2454 static void
2455 test_base_features(void *arg)
2456 {
2457 	struct event_base *base = NULL;
2458 	struct event_config *cfg = NULL;
2459 
2460 	cfg = event_config_new();
2461 
2462 	tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
2463 
2464 	base = event_base_new_with_config(cfg);
2465 	if (base) {
2466 		tt_int_op(EV_FEATURE_ET, ==,
2467 		    event_base_get_features(base) & EV_FEATURE_ET);
2468 	} else {
2469 		base = event_base_new();
2470 		tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
2471 	}
2472 
2473 end:
2474 	if (base)
2475 		event_base_free(base);
2476 	if (cfg)
2477 		event_config_free(cfg);
2478 }
2479 
2480 #ifdef EVENT__HAVE_SETENV
2481 #define SETENV_OK
2482 #elif !defined(EVENT__HAVE_SETENV) && defined(EVENT__HAVE_PUTENV)
2483 static void setenv(const char *k, const char *v, int o_)
2484 {
2485 	char b[256];
2486 	evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
2487 	putenv(b);
2488 }
2489 #define SETENV_OK
2490 #endif
2491 
2492 #ifdef EVENT__HAVE_UNSETENV
2493 #define UNSETENV_OK
2494 #elif !defined(EVENT__HAVE_UNSETENV) && defined(EVENT__HAVE_PUTENV)
2495 static void unsetenv(const char *k)
2496 {
2497 	char b[256];
2498 	evutil_snprintf(b, sizeof(b), "%s=",k);
2499 	putenv(b);
2500 }
2501 #define UNSETENV_OK
2502 #endif
2503 
2504 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2505 static void
2506 methodname_to_envvar(const char *mname, char *buf, size_t buflen)
2507 {
2508 	char *cp;
2509 	evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
2510 	for (cp = buf; *cp; ++cp) {
2511 		*cp = EVUTIL_TOUPPER_(*cp);
2512 	}
2513 }
2514 #endif
2515 
2516 static void
2517 test_base_environ(void *arg)
2518 {
2519 	struct event_base *base = NULL;
2520 	struct event_config *cfg = NULL;
2521 
2522 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2523 	const char **basenames;
2524 	int i, n_methods=0;
2525 	char varbuf[128];
2526 	const char *defaultname, *ignoreenvname;
2527 
2528 	/* See if unsetenv works before we rely on it. */
2529 	setenv("EVENT_NOWAFFLES", "1", 1);
2530 	unsetenv("EVENT_NOWAFFLES");
2531 	if (getenv("EVENT_NOWAFFLES") != NULL) {
2532 #ifndef EVENT__HAVE_UNSETENV
2533 		TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
2534 #else
2535 		TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
2536 #endif
2537 		tt_skip();
2538 	}
2539 
2540 	basenames = event_get_supported_methods();
2541 	for (i = 0; basenames[i]; ++i) {
2542 		methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
2543 		unsetenv(varbuf);
2544 		++n_methods;
2545 	}
2546 
2547 	base = event_base_new();
2548 	tt_assert(base);
2549 
2550 	defaultname = event_base_get_method(base);
2551 	TT_BLATHER(("default is <%s>", defaultname));
2552 	event_base_free(base);
2553 	base = NULL;
2554 
2555 	/* Can we disable the method with EVENT_NOfoo ? */
2556 	if (!strcmp(defaultname, "epoll (with changelist)")) {
2557  		setenv("EVENT_NOEPOLL", "1", 1);
2558 		ignoreenvname = "epoll";
2559 	} else {
2560 		methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
2561 		setenv(varbuf, "1", 1);
2562 		ignoreenvname = defaultname;
2563 	}
2564 
2565 	/* Use an empty cfg rather than NULL so a failure doesn't exit() */
2566 	cfg = event_config_new();
2567 	base = event_base_new_with_config(cfg);
2568 	event_config_free(cfg);
2569 	cfg = NULL;
2570 	if (n_methods == 1) {
2571 		tt_assert(!base);
2572 	} else {
2573 		tt_assert(base);
2574 		tt_str_op(defaultname, !=, event_base_get_method(base));
2575 		event_base_free(base);
2576 		base = NULL;
2577 	}
2578 
2579 	/* Can we disable looking at the environment with IGNORE_ENV ? */
2580 	cfg = event_config_new();
2581 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2582 	base = event_base_new_with_config(cfg);
2583 	tt_assert(base);
2584 	tt_str_op(ignoreenvname, ==, event_base_get_method(base));
2585 #else
2586 	tt_skip();
2587 #endif
2588 
2589 end:
2590 	if (base)
2591 		event_base_free(base);
2592 	if (cfg)
2593 		event_config_free(cfg);
2594 }
2595 
2596 static void
2597 read_called_once_cb(evutil_socket_t fd, short event, void *arg)
2598 {
2599 	tt_int_op(event, ==, EV_READ);
2600 	called += 1;
2601 end:
2602 	;
2603 }
2604 
2605 static void
2606 timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
2607 {
2608 	tt_int_op(event, ==, EV_TIMEOUT);
2609 	called += 100;
2610 end:
2611 	;
2612 }
2613 
2614 static void
2615 immediate_called_twice_cb(evutil_socket_t fd, short event, void *arg)
2616 {
2617 	tt_int_op(event, ==, EV_TIMEOUT);
2618 	called += 1000;
2619 end:
2620 	;
2621 }
2622 
2623 static void
2624 test_event_once(void *ptr)
2625 {
2626 	struct basic_test_data *data = ptr;
2627 	struct timeval tv;
2628 	int r;
2629 
2630 	tv.tv_sec = 0;
2631 	tv.tv_usec = 50*1000;
2632 	called = 0;
2633 	r = event_base_once(data->base, data->pair[0], EV_READ,
2634 	    read_called_once_cb, NULL, NULL);
2635 	tt_int_op(r, ==, 0);
2636 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2637 	    timeout_called_once_cb, NULL, &tv);
2638 	tt_int_op(r, ==, 0);
2639 	r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
2640 	tt_int_op(r, <, 0);
2641 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2642 	    immediate_called_twice_cb, NULL, NULL);
2643 	tt_int_op(r, ==, 0);
2644 	tv.tv_sec = 0;
2645 	tv.tv_usec = 0;
2646 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2647 	    immediate_called_twice_cb, NULL, &tv);
2648 	tt_int_op(r, ==, 0);
2649 
2650 	if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
2651 		tt_fail_perror("write");
2652 	}
2653 
2654 	shutdown(data->pair[1], SHUT_WR);
2655 
2656 	event_base_dispatch(data->base);
2657 
2658 	tt_int_op(called, ==, 2101);
2659 end:
2660 	;
2661 }
2662 
2663 static void
2664 test_event_once_never(void *ptr)
2665 {
2666 	struct basic_test_data *data = ptr;
2667 	struct timeval tv;
2668 
2669 	/* Have one trigger in 10 seconds (don't worry, because) */
2670 	tv.tv_sec = 10;
2671 	tv.tv_usec = 0;
2672 	called = 0;
2673 	event_base_once(data->base, -1, EV_TIMEOUT,
2674 	    timeout_called_once_cb, NULL, &tv);
2675 
2676 	/* But shut down the base in 75 msec. */
2677 	tv.tv_sec = 0;
2678 	tv.tv_usec = 75*1000;
2679 	event_base_loopexit(data->base, &tv);
2680 
2681 	event_base_dispatch(data->base);
2682 
2683 	tt_int_op(called, ==, 0);
2684 end:
2685 	;
2686 }
2687 
2688 static void
2689 test_event_pending(void *ptr)
2690 {
2691 	struct basic_test_data *data = ptr;
2692 	struct event *r=NULL, *w=NULL, *t=NULL;
2693 	struct timeval tv, now, tv2;
2694 
2695 	tv.tv_sec = 0;
2696 	tv.tv_usec = 500 * 1000;
2697 	r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
2698 	    NULL);
2699 	w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
2700 	    NULL);
2701 	t = evtimer_new(data->base, timeout_cb, NULL);
2702 
2703 	tt_assert(r);
2704 	tt_assert(w);
2705 	tt_assert(t);
2706 
2707 	evutil_gettimeofday(&now, NULL);
2708 	event_add(r, NULL);
2709 	event_add(t, &tv);
2710 
2711 	tt_assert( event_pending(r, EV_READ, NULL));
2712 	tt_assert(!event_pending(w, EV_WRITE, NULL));
2713 	tt_assert(!event_pending(r, EV_WRITE, NULL));
2714 	tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
2715 	tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
2716 	tt_assert( event_pending(t, EV_TIMEOUT, NULL));
2717 	tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
2718 
2719 	tt_assert(evutil_timercmp(&tv2, &now, >));
2720 
2721 	test_timeval_diff_eq(&now, &tv2, 500);
2722 
2723 end:
2724 	if (r) {
2725 		event_del(r);
2726 		event_free(r);
2727 	}
2728 	if (w) {
2729 		event_del(w);
2730 		event_free(w);
2731 	}
2732 	if (t) {
2733 		event_del(t);
2734 		event_free(t);
2735 	}
2736 }
2737 
2738 #ifndef _WIN32
2739 /* You can't do this test on windows, since dup2 doesn't work on sockets */
2740 
2741 static void
2742 dfd_cb(evutil_socket_t fd, short e, void *data)
2743 {
2744 	*(int*)data = (int)e;
2745 }
2746 
2747 /* Regression test for our workaround for a fun epoll/linux related bug
2748  * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
2749  * will get you an EEXIST */
2750 static void
2751 test_dup_fd(void *arg)
2752 {
2753 	struct basic_test_data *data = arg;
2754 	struct event_base *base = data->base;
2755 	struct event *ev1=NULL, *ev2=NULL;
2756 	int fd, dfd=-1;
2757 	int ev1_got, ev2_got;
2758 
2759 	tt_int_op(write(data->pair[0], "Hello world",
2760 		strlen("Hello world")), >, 0);
2761 	fd = data->pair[1];
2762 
2763 	dfd = dup(fd);
2764 	tt_int_op(dfd, >=, 0);
2765 
2766 	ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
2767 	ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
2768 	ev1_got = ev2_got = 0;
2769 	event_add(ev1, NULL);
2770 	event_add(ev2, NULL);
2771 	event_base_loop(base, EVLOOP_ONCE);
2772 	tt_int_op(ev1_got, ==, EV_READ);
2773 	tt_int_op(ev2_got, ==, EV_READ);
2774 
2775 	/* Now close and delete dfd then dispatch.  We need to do the
2776 	 * dispatch here so that when we add it later, we think there
2777 	 * was an intermediate delete. */
2778 	close(dfd);
2779 	event_del(ev2);
2780 	ev1_got = ev2_got = 0;
2781 	event_base_loop(base, EVLOOP_ONCE);
2782 	tt_want_int_op(ev1_got, ==, EV_READ);
2783 	tt_int_op(ev2_got, ==, 0);
2784 
2785 	/* Re-duplicate the fd.  We need to get the same duplicated
2786 	 * value that we closed to provoke the epoll quirk.  Also, we
2787 	 * need to change the events to write, or else the old lingering
2788 	 * read event will make the test pass whether the change was
2789 	 * successful or not. */
2790 	tt_int_op(dup2(fd, dfd), ==, dfd);
2791 	event_free(ev2);
2792 	ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
2793 	event_add(ev2, NULL);
2794 	ev1_got = ev2_got = 0;
2795 	event_base_loop(base, EVLOOP_ONCE);
2796 	tt_want_int_op(ev1_got, ==, EV_READ);
2797 	tt_int_op(ev2_got, ==, EV_WRITE);
2798 
2799 end:
2800 	if (ev1)
2801 		event_free(ev1);
2802 	if (ev2)
2803 		event_free(ev2);
2804 	if (dfd >= 0)
2805 		close(dfd);
2806 }
2807 #endif
2808 
2809 #ifdef EVENT__DISABLE_MM_REPLACEMENT
2810 static void
2811 test_mm_functions(void *arg)
2812 {
2813 	tinytest_set_test_skipped_();
2814 }
2815 #else
2816 static int
2817 check_dummy_mem_ok(void *mem_)
2818 {
2819 	char *mem = mem_;
2820 	mem -= 16;
2821 	return !memcmp(mem, "{[<guardedram>]}", 16);
2822 }
2823 
2824 static void *
2825 dummy_malloc(size_t len)
2826 {
2827 	char *mem = malloc(len+16);
2828 	if (mem == NULL) {
2829 		fprintf(stderr, "Unable to allocate memory in dummy_malloc()\n");
2830 		return NULL;
2831 	}
2832 	memcpy(mem, "{[<guardedram>]}", 16);
2833 	return mem+16;
2834 }
2835 
2836 static void *
2837 dummy_realloc(void *mem_, size_t len)
2838 {
2839 	char *mem = mem_;
2840 	if (!mem)
2841 		return dummy_malloc(len);
2842 	tt_want(check_dummy_mem_ok(mem_));
2843 	mem -= 16;
2844 	mem = realloc(mem, len+16);
2845 	return mem+16;
2846 }
2847 
2848 static void
2849 dummy_free(void *mem_)
2850 {
2851 	char *mem = mem_;
2852 	tt_want(check_dummy_mem_ok(mem_));
2853 	mem -= 16;
2854 	free(mem);
2855 }
2856 
2857 static void
2858 test_mm_functions(void *arg)
2859 {
2860 	struct event_base *b = NULL;
2861 	struct event_config *cfg = NULL;
2862 	event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
2863 	cfg = event_config_new();
2864 	event_config_avoid_method(cfg, "Nonesuch");
2865 	b = event_base_new_with_config(cfg);
2866 	tt_assert(b);
2867 	tt_assert(check_dummy_mem_ok(b));
2868 end:
2869 	if (cfg)
2870 		event_config_free(cfg);
2871 	if (b)
2872 		event_base_free(b);
2873 }
2874 #endif
2875 
2876 static void
2877 many_event_cb(evutil_socket_t fd, short event, void *arg)
2878 {
2879 	int *calledp = arg;
2880 	*calledp += 1;
2881 }
2882 
2883 static void
2884 test_many_events(void *arg)
2885 {
2886 	/* Try 70 events that should all be ready at once.  This will
2887 	 * exercise the "resize" code on most of the backends, and will make
2888 	 * sure that we can get past the 64-handle limit of some windows
2889 	 * functions. */
2890 #define MANY 70
2891 
2892 	struct basic_test_data *data = arg;
2893 	struct event_base *base = data->base;
2894 	int one_at_a_time = data->setup_data != NULL;
2895 	evutil_socket_t sock[MANY];
2896 	struct event *ev[MANY];
2897 	int called[MANY];
2898 	int i;
2899 	int loopflags = EVLOOP_NONBLOCK, evflags=0;
2900 	if (one_at_a_time) {
2901 		loopflags |= EVLOOP_ONCE;
2902 		evflags = EV_PERSIST;
2903 	}
2904 
2905 	memset(sock, 0xff, sizeof(sock));
2906 	memset(ev, 0, sizeof(ev));
2907 	memset(called, 0, sizeof(called));
2908 
2909 	for (i = 0; i < MANY; ++i) {
2910 		/* We need an event that will hit the backend, and that will
2911 		 * be ready immediately.  "Send a datagram" is an easy
2912 		 * instance of that. */
2913 		sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
2914 		tt_assert(sock[i] >= 0);
2915 		called[i] = 0;
2916 		ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
2917 		    many_event_cb, &called[i]);
2918 		event_add(ev[i], NULL);
2919 		if (one_at_a_time)
2920 			event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
2921 	}
2922 
2923 	event_base_loop(base, loopflags);
2924 
2925 	for (i = 0; i < MANY; ++i) {
2926 		if (one_at_a_time)
2927 			tt_int_op(called[i], ==, MANY - i + 1);
2928 		else
2929 			tt_int_op(called[i], ==, 1);
2930 	}
2931 
2932 end:
2933 	for (i = 0; i < MANY; ++i) {
2934 		if (ev[i])
2935 			event_free(ev[i]);
2936 		if (sock[i] >= 0)
2937 			evutil_closesocket(sock[i]);
2938 	}
2939 #undef MANY
2940 }
2941 
2942 static void
2943 test_struct_event_size(void *arg)
2944 {
2945 	tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
2946 end:
2947 	;
2948 }
2949 
2950 static void
2951 test_get_assignment(void *arg)
2952 {
2953 	struct basic_test_data *data = arg;
2954 	struct event_base *base = data->base;
2955 	struct event *ev1 = NULL;
2956 	const char *str = "foo";
2957 
2958 	struct event_base *b;
2959 	evutil_socket_t s;
2960 	short what;
2961 	event_callback_fn cb;
2962 	void *cb_arg;
2963 
2964 	ev1 = event_new(base, data->pair[1], EV_READ, dummy_read_cb, (void*)str);
2965 	event_get_assignment(ev1, &b, &s, &what, &cb, &cb_arg);
2966 
2967 	tt_ptr_op(b, ==, base);
2968 	tt_int_op(s, ==, data->pair[1]);
2969 	tt_int_op(what, ==, EV_READ);
2970 	tt_ptr_op(cb, ==, dummy_read_cb);
2971 	tt_ptr_op(cb_arg, ==, str);
2972 
2973 	/* Now make sure this doesn't crash. */
2974 	event_get_assignment(ev1, NULL, NULL, NULL, NULL, NULL);
2975 
2976 end:
2977 	if (ev1)
2978 		event_free(ev1);
2979 }
2980 
2981 struct foreach_helper {
2982 	int count;
2983 	const struct event *ev;
2984 };
2985 
2986 static int
2987 foreach_count_cb(const struct event_base *base, const struct event *ev, void *arg)
2988 {
2989 	struct foreach_helper *h = event_get_callback_arg(ev);
2990 	struct timeval *tv = arg;
2991 	if (event_get_callback(ev) != timeout_cb)
2992 		return 0;
2993 	tt_ptr_op(event_get_base(ev), ==, base);
2994 	tt_int_op(tv->tv_sec, ==, 10);
2995 	h->ev = ev;
2996 	h->count++;
2997 	return 0;
2998 end:
2999 	return -1;
3000 }
3001 
3002 static int
3003 foreach_find_cb(const struct event_base *base, const struct event *ev, void *arg)
3004 {
3005 	const struct event **ev_out = arg;
3006 	struct foreach_helper *h = event_get_callback_arg(ev);
3007 	if (event_get_callback(ev) != timeout_cb)
3008 		return 0;
3009 	if (h->count == 99) {
3010 		*ev_out = ev;
3011 		return 101;
3012 	}
3013 	return 0;
3014 }
3015 
3016 static void
3017 test_event_foreach(void *arg)
3018 {
3019 	struct basic_test_data *data = arg;
3020 	struct event_base *base = data->base;
3021 	struct event *ev[5];
3022 	struct foreach_helper visited[5];
3023 	int i;
3024 	struct timeval ten_sec = {10,0};
3025 	const struct event *ev_found = NULL;
3026 
3027 	for (i = 0; i < 5; ++i) {
3028 		visited[i].count = 0;
3029 		visited[i].ev = NULL;
3030 		ev[i] = event_new(base, -1, 0, timeout_cb, &visited[i]);
3031 	}
3032 
3033 	tt_int_op(-1, ==, event_base_foreach_event(NULL, foreach_count_cb, NULL));
3034 	tt_int_op(-1, ==, event_base_foreach_event(base, NULL, NULL));
3035 
3036 	event_add(ev[0], &ten_sec);
3037 	event_add(ev[1], &ten_sec);
3038 	event_active(ev[1], EV_TIMEOUT, 1);
3039 	event_active(ev[2], EV_TIMEOUT, 1);
3040 	event_add(ev[3], &ten_sec);
3041 	/* Don't touch ev[4]. */
3042 
3043 	tt_int_op(0, ==, event_base_foreach_event(base, foreach_count_cb,
3044 		&ten_sec));
3045 	tt_int_op(1, ==, visited[0].count);
3046 	tt_int_op(1, ==, visited[1].count);
3047 	tt_int_op(1, ==, visited[2].count);
3048 	tt_int_op(1, ==, visited[3].count);
3049 	tt_ptr_op(ev[0], ==, visited[0].ev);
3050 	tt_ptr_op(ev[1], ==, visited[1].ev);
3051 	tt_ptr_op(ev[2], ==, visited[2].ev);
3052 	tt_ptr_op(ev[3], ==, visited[3].ev);
3053 
3054 	visited[2].count = 99;
3055 	tt_int_op(101, ==, event_base_foreach_event(base, foreach_find_cb,
3056 		&ev_found));
3057 	tt_ptr_op(ev_found, ==, ev[2]);
3058 
3059 end:
3060 	for (i=0; i<5; ++i) {
3061 		event_free(ev[i]);
3062 	}
3063 }
3064 
3065 static struct event_base *cached_time_base = NULL;
3066 static int cached_time_reset = 0;
3067 static int cached_time_sleep = 0;
3068 static void
3069 cache_time_cb(evutil_socket_t fd, short what, void *arg)
3070 {
3071 	struct timeval *tv = arg;
3072 	tt_int_op(0, ==, event_base_gettimeofday_cached(cached_time_base, tv));
3073 	if (cached_time_sleep) {
3074 		struct timeval delay = { 0, 30*1000 };
3075 		evutil_usleep_(&delay);
3076 	}
3077 	if (cached_time_reset) {
3078 		event_base_update_cache_time(cached_time_base);
3079 	}
3080 end:
3081 	;
3082 }
3083 
3084 static void
3085 test_gettimeofday_cached(void *arg)
3086 {
3087 	struct basic_test_data *data = arg;
3088 	struct event_config *cfg = NULL;
3089 	struct event_base *base = NULL;
3090 	struct timeval tv1, tv2, tv3, now;
3091 	struct event *ev1=NULL, *ev2=NULL, *ev3=NULL;
3092 	int cached_time_disable = strstr(data->setup_data, "disable") != NULL;
3093 
3094 	cfg = event_config_new();
3095 	if (cached_time_disable) {
3096 		event_config_set_flag(cfg, EVENT_BASE_FLAG_NO_CACHE_TIME);
3097 	}
3098 	cached_time_base = base = event_base_new_with_config(cfg);
3099 	tt_assert(base);
3100 
3101 	/* Try gettimeofday_cached outside of an event loop. */
3102 	evutil_gettimeofday(&now, NULL);
3103 	tt_int_op(0, ==, event_base_gettimeofday_cached(NULL, &tv1));
3104 	tt_int_op(0, ==, event_base_gettimeofday_cached(base, &tv2));
3105 	tt_int_op(timeval_msec_diff(&tv1, &tv2), <, 10);
3106 	tt_int_op(timeval_msec_diff(&tv1, &now), <, 10);
3107 
3108 	cached_time_reset = strstr(data->setup_data, "reset") != NULL;
3109 	cached_time_sleep = strstr(data->setup_data, "sleep") != NULL;
3110 
3111 	ev1 = event_new(base, -1, 0, cache_time_cb, &tv1);
3112 	ev2 = event_new(base, -1, 0, cache_time_cb, &tv2);
3113 	ev3 = event_new(base, -1, 0, cache_time_cb, &tv3);
3114 
3115 	event_active(ev1, EV_TIMEOUT, 1);
3116 	event_active(ev2, EV_TIMEOUT, 1);
3117 	event_active(ev3, EV_TIMEOUT, 1);
3118 
3119 	event_base_dispatch(base);
3120 
3121 	if (cached_time_reset && cached_time_sleep) {
3122 		tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
3123 		tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
3124 	} else if (cached_time_disable && cached_time_sleep) {
3125 		tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
3126 		tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
3127 	} else if (! cached_time_disable) {
3128 		tt_assert(evutil_timercmp(&tv1, &tv2, ==));
3129 		tt_assert(evutil_timercmp(&tv2, &tv3, ==));
3130 	}
3131 
3132 end:
3133 	if (ev1)
3134 		event_free(ev1);
3135 	if (ev2)
3136 		event_free(ev2);
3137 	if (ev3)
3138 		event_free(ev3);
3139 	if (base)
3140 		event_base_free(base);
3141 	if (cfg)
3142 		event_config_free(cfg);
3143 }
3144 
3145 static void
3146 tabf_cb(evutil_socket_t fd, short what, void *arg)
3147 {
3148 	int *ptr = arg;
3149 	*ptr = what;
3150 	*ptr += 0x10000;
3151 }
3152 
3153 static void
3154 test_active_by_fd(void *arg)
3155 {
3156 	struct basic_test_data *data = arg;
3157 	struct event_base *base = data->base;
3158 	struct event *ev1 = NULL, *ev2 = NULL, *ev3 = NULL, *ev4 = NULL;
3159 	int e1,e2,e3,e4;
3160 #ifndef _WIN32
3161 	struct event *evsig = NULL;
3162 	int es;
3163 #endif
3164 	struct timeval tenmin = { 600, 0 };
3165 
3166 	/* Ensure no crash on nonexistent FD. */
3167 	event_base_active_by_fd(base, 1000, EV_READ);
3168 
3169 	/* Ensure no crash on bogus FD. */
3170 	event_base_active_by_fd(base, -1, EV_READ);
3171 
3172 	/* Ensure no crash on nonexistent/bogus signal. */
3173 	event_base_active_by_signal(base, 1000);
3174 	event_base_active_by_signal(base, -1);
3175 
3176 	event_base_assert_ok_(base);
3177 
3178 	e1 = e2 = e3 = e4 = 0;
3179 	ev1 = event_new(base, data->pair[0], EV_READ, tabf_cb, &e1);
3180 	ev2 = event_new(base, data->pair[0], EV_WRITE, tabf_cb, &e2);
3181 	ev3 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e3);
3182 	ev4 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e4);
3183 	tt_assert(ev1);
3184 	tt_assert(ev2);
3185 	tt_assert(ev3);
3186 	tt_assert(ev4);
3187 #ifndef _WIN32
3188 	evsig = event_new(base, SIGHUP, EV_SIGNAL, tabf_cb, &es);
3189 	tt_assert(evsig);
3190 	event_add(evsig, &tenmin);
3191 #endif
3192 
3193 	event_add(ev1, &tenmin);
3194 	event_add(ev2, NULL);
3195 	event_add(ev3, NULL);
3196 	event_add(ev4, &tenmin);
3197 
3198 
3199 	event_base_assert_ok_(base);
3200 
3201 	/* Trigger 2, 3, 4 */
3202 	event_base_active_by_fd(base, data->pair[0], EV_WRITE);
3203 	event_base_active_by_fd(base, data->pair[1], EV_READ);
3204 #ifndef _WIN32
3205 	event_base_active_by_signal(base, SIGHUP);
3206 #endif
3207 
3208 	event_base_assert_ok_(base);
3209 
3210 	event_base_loop(base, EVLOOP_ONCE);
3211 
3212 	tt_int_op(e1, ==, 0);
3213 	tt_int_op(e2, ==, EV_WRITE | 0x10000);
3214 	tt_int_op(e3, ==, EV_READ | 0x10000);
3215 	/* Mask out EV_WRITE here, since it could be genuinely writeable. */
3216 	tt_int_op((e4 & ~EV_WRITE), ==, EV_READ | 0x10000);
3217 #ifndef _WIN32
3218 	tt_int_op(es, ==, EV_SIGNAL | 0x10000);
3219 #endif
3220 
3221 end:
3222 	if (ev1)
3223 		event_free(ev1);
3224 	if (ev2)
3225 		event_free(ev2);
3226 	if (ev3)
3227 		event_free(ev3);
3228 	if (ev4)
3229 		event_free(ev4);
3230 #ifndef _WIN32
3231 	if (evsig)
3232 		event_free(evsig);
3233 #endif
3234 }
3235 
3236 struct testcase_t main_testcases[] = {
3237 	/* Some converted-over tests */
3238 	{ "methods", test_methods, TT_FORK, NULL, NULL },
3239 	{ "version", test_version, 0, NULL, NULL },
3240 	BASIC(base_features, TT_FORK|TT_NO_LOGS),
3241 	{ "base_environ", test_base_environ, TT_FORK, NULL, NULL },
3242 
3243 	BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
3244 	BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
3245 
3246 	BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
3247 	BASIC(event_new_selfarg, TT_FORK|TT_NEED_BASE),
3248 	BASIC(event_assign_selfarg, TT_FORK|TT_NEED_BASE),
3249 	BASIC(event_base_get_num_events, TT_FORK|TT_NEED_BASE),
3250 	BASIC(event_base_get_max_events, TT_FORK|TT_NEED_BASE),
3251 
3252 	BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
3253 	BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
3254 	BASIC(active_later, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3255 	BASIC(event_remove_timeout, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3256 
3257 	/* These are still using the old API */
3258 	LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
3259 	{ "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
3260 	{ "persistent_active_timeout", test_persistent_active_timeout,
3261 	  TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
3262 	LEGACY(priorities, TT_FORK|TT_NEED_BASE),
3263 	BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
3264 	{ "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
3265 	  &basic_setup, NULL },
3266 
3267 	/* These legacy tests may not all need all of these flags. */
3268 	LEGACY(simpleread, TT_ISOLATED),
3269 	LEGACY(simpleread_multiple, TT_ISOLATED),
3270 	LEGACY(simplewrite, TT_ISOLATED),
3271 	{ "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
3272 	  NULL },
3273 	LEGACY(multiple, TT_ISOLATED),
3274 	LEGACY(persistent, TT_ISOLATED),
3275 	LEGACY(combined, TT_ISOLATED),
3276 	LEGACY(simpletimeout, TT_ISOLATED),
3277 	LEGACY(loopbreak, TT_ISOLATED),
3278 	LEGACY(loopexit, TT_ISOLATED),
3279 	LEGACY(loopexit_multiple, TT_ISOLATED),
3280 	LEGACY(nonpersist_readd, TT_ISOLATED),
3281 	LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
3282 	LEGACY(want_only_once, TT_ISOLATED),
3283 	{ "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
3284 	{ "event_once_never", test_event_once_never, TT_ISOLATED, &basic_setup, NULL },
3285 	{ "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
3286 	  NULL },
3287 #ifndef _WIN32
3288 	{ "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
3289 #endif
3290 	{ "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
3291 	{ "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
3292 	{ "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
3293 
3294 	{ "struct_event_size", test_struct_event_size, 0, NULL, NULL },
3295 	BASIC(get_assignment, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3296 
3297 	BASIC(event_foreach, TT_FORK|TT_NEED_BASE),
3298 	{ "gettimeofday_cached", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"" },
3299 	{ "gettimeofday_cached_sleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep" },
3300 	{ "gettimeofday_cached_reset", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep reset" },
3301 	{ "gettimeofday_cached_disabled", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep disable" },
3302 	{ "gettimeofday_cached_disabled_nosleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"disable" },
3303 
3304 	BASIC(active_by_fd, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3305 
3306 #ifndef _WIN32
3307 	LEGACY(fork, TT_ISOLATED),
3308 #endif
3309 	END_OF_TESTCASES
3310 };
3311 
3312 struct testcase_t evtag_testcases[] = {
3313 	{ "int", evtag_int_test, TT_FORK, NULL, NULL },
3314 	{ "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
3315 	{ "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
3316 	{ "peek", evtag_test_peek, 0, NULL, NULL },
3317 
3318 	END_OF_TESTCASES
3319 };
3320 
3321 struct testcase_t signal_testcases[] = {
3322 #ifndef _WIN32
3323 	LEGACY(simplestsignal, TT_ISOLATED),
3324 	LEGACY(simplesignal, TT_ISOLATED),
3325 	LEGACY(multiplesignal, TT_ISOLATED),
3326 	LEGACY(immediatesignal, TT_ISOLATED),
3327 	LEGACY(signal_dealloc, TT_ISOLATED),
3328 	LEGACY(signal_pipeloss, TT_ISOLATED),
3329 	LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
3330 	LEGACY(signal_restore, TT_ISOLATED),
3331 	LEGACY(signal_assert, TT_ISOLATED),
3332 	LEGACY(signal_while_processing, TT_ISOLATED),
3333 #endif
3334 	END_OF_TESTCASES
3335 };
3336 
3337