xref: /netbsd-src/external/bsd/ntp/dist/sntp/libevent/test/regress.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /*	$NetBSD: regress.c,v 1.1.1.1 2013/12/27 23:31:29 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
5  * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 #include "util-internal.h"
30 
31 #ifdef _WIN32
32 #include <winsock2.h>
33 #include <windows.h>
34 #endif
35 
36 #include "event2/event-config.h"
37 
38 #include <sys/types.h>
39 #include <sys/stat.h>
40 #ifdef EVENT__HAVE_SYS_TIME_H
41 #include <sys/time.h>
42 #endif
43 #include <sys/queue.h>
44 #ifndef _WIN32
45 #include <sys/socket.h>
46 #include <sys/wait.h>
47 #include <signal.h>
48 #include <unistd.h>
49 #include <netdb.h>
50 #endif
51 #include <fcntl.h>
52 #include <signal.h>
53 #include <stdlib.h>
54 #include <stdio.h>
55 #include <string.h>
56 #include <errno.h>
57 #include <assert.h>
58 #include <ctype.h>
59 
60 #include "event2/event.h"
61 #include "event2/event_struct.h"
62 #include "event2/event_compat.h"
63 #include "event2/tag.h"
64 #include "event2/buffer.h"
65 #include "event2/buffer_compat.h"
66 #include "event2/util.h"
67 #include "event-internal.h"
68 #include "evthread-internal.h"
69 #include "log-internal.h"
70 #include "time-internal.h"
71 
72 #include "regress.h"
73 
74 #ifndef _WIN32
75 #include "regress.gen.h"
76 #endif
77 
78 evutil_socket_t pair[2];
79 int test_ok;
80 int called;
81 struct event_base *global_base;
82 
83 static char wbuf[4096];
84 static char rbuf[4096];
85 static int woff;
86 static int roff;
87 static int usepersist;
88 static struct timeval tset;
89 static struct timeval tcalled;
90 
91 
92 #define TEST1	"this is a test"
93 
94 #ifndef SHUT_WR
95 #define SHUT_WR 1
96 #endif
97 
98 #ifdef _WIN32
99 #define write(fd,buf,len) send((fd),(buf),(int)(len),0)
100 #define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
101 #endif
102 
103 struct basic_cb_args
104 {
105 	struct event_base *eb;
106 	struct event *ev;
107 	unsigned int callcount;
108 };
109 
110 static void
111 simple_read_cb(evutil_socket_t fd, short event, void *arg)
112 {
113 	char buf[256];
114 	int len;
115 
116 	len = read(fd, buf, sizeof(buf));
117 
118 	if (len) {
119 		if (!called) {
120 			if (event_add(arg, NULL) == -1)
121 				exit(1);
122 		}
123 	} else if (called == 1)
124 		test_ok = 1;
125 
126 	called++;
127 }
128 
129 static void
130 basic_read_cb(evutil_socket_t fd, short event, void *data)
131 {
132 	char buf[256];
133 	int len;
134 	struct basic_cb_args *arg = data;
135 
136 	len = read(fd, buf, sizeof(buf));
137 
138 	if (len < 0) {
139 		tt_fail_perror("read (callback)");
140 	} else {
141 		switch (arg->callcount++) {
142 		case 0:	 /* first call: expect to read data; cycle */
143 			if (len > 0)
144 				return;
145 
146 			tt_fail_msg("EOF before data read");
147 			break;
148 
149 		case 1:	 /* second call: expect EOF; stop */
150 			if (len > 0)
151 				tt_fail_msg("not all data read on first cycle");
152 			break;
153 
154 		default:  /* third call: should not happen */
155 			tt_fail_msg("too many cycles");
156 		}
157 	}
158 
159 	event_del(arg->ev);
160 	event_base_loopexit(arg->eb, NULL);
161 }
162 
163 static void
164 dummy_read_cb(evutil_socket_t fd, short event, void *arg)
165 {
166 }
167 
168 static void
169 simple_write_cb(evutil_socket_t fd, short event, void *arg)
170 {
171 	int len;
172 
173 	len = write(fd, TEST1, strlen(TEST1) + 1);
174 	if (len == -1)
175 		test_ok = 0;
176 	else
177 		test_ok = 1;
178 }
179 
180 static void
181 multiple_write_cb(evutil_socket_t fd, short event, void *arg)
182 {
183 	struct event *ev = arg;
184 	int len;
185 
186 	len = 128;
187 	if (woff + len >= (int)sizeof(wbuf))
188 		len = sizeof(wbuf) - woff;
189 
190 	len = write(fd, wbuf + woff, len);
191 	if (len == -1) {
192 		fprintf(stderr, "%s: write\n", __func__);
193 		if (usepersist)
194 			event_del(ev);
195 		return;
196 	}
197 
198 	woff += len;
199 
200 	if (woff >= (int)sizeof(wbuf)) {
201 		shutdown(fd, SHUT_WR);
202 		if (usepersist)
203 			event_del(ev);
204 		return;
205 	}
206 
207 	if (!usepersist) {
208 		if (event_add(ev, NULL) == -1)
209 			exit(1);
210 	}
211 }
212 
213 static void
214 multiple_read_cb(evutil_socket_t fd, short event, void *arg)
215 {
216 	struct event *ev = arg;
217 	int len;
218 
219 	len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
220 	if (len == -1)
221 		fprintf(stderr, "%s: read\n", __func__);
222 	if (len <= 0) {
223 		if (usepersist)
224 			event_del(ev);
225 		return;
226 	}
227 
228 	roff += len;
229 	if (!usepersist) {
230 		if (event_add(ev, NULL) == -1)
231 			exit(1);
232 	}
233 }
234 
235 static void
236 timeout_cb(evutil_socket_t fd, short event, void *arg)
237 {
238 	evutil_gettimeofday(&tcalled, NULL);
239 }
240 
241 struct both {
242 	struct event ev;
243 	int nread;
244 };
245 
246 static void
247 combined_read_cb(evutil_socket_t fd, short event, void *arg)
248 {
249 	struct both *both = arg;
250 	char buf[128];
251 	int len;
252 
253 	len = read(fd, buf, sizeof(buf));
254 	if (len == -1)
255 		fprintf(stderr, "%s: read\n", __func__);
256 	if (len <= 0)
257 		return;
258 
259 	both->nread += len;
260 	if (event_add(&both->ev, NULL) == -1)
261 		exit(1);
262 }
263 
264 static void
265 combined_write_cb(evutil_socket_t fd, short event, void *arg)
266 {
267 	struct both *both = arg;
268 	char buf[128];
269 	int len;
270 
271 	len = sizeof(buf);
272 	if (len > both->nread)
273 		len = both->nread;
274 
275 	memset(buf, 'q', len);
276 
277 	len = write(fd, buf, len);
278 	if (len == -1)
279 		fprintf(stderr, "%s: write\n", __func__);
280 	if (len <= 0) {
281 		shutdown(fd, SHUT_WR);
282 		return;
283 	}
284 
285 	both->nread -= len;
286 	if (event_add(&both->ev, NULL) == -1)
287 		exit(1);
288 }
289 
290 /* These macros used to replicate the work of the legacy test wrapper code */
291 #define setup_test(x) do {						\
292 	if (!in_legacy_test_wrapper) {					\
293 		TT_FAIL(("Legacy test %s not wrapped properly", x));	\
294 		return;							\
295 	}								\
296 	} while (0)
297 #define cleanup_test() setup_test("cleanup")
298 
299 static void
300 test_simpleread(void)
301 {
302 	struct event ev;
303 
304 	/* Very simple read test */
305 	setup_test("Simple read: ");
306 
307 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
308 		tt_fail_perror("write");
309 	}
310 
311 	shutdown(pair[0], SHUT_WR);
312 
313 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
314 	if (event_add(&ev, NULL) == -1)
315 		exit(1);
316 	event_dispatch();
317 
318 	cleanup_test();
319 }
320 
321 static void
322 test_simplewrite(void)
323 {
324 	struct event ev;
325 
326 	/* Very simple write test */
327 	setup_test("Simple write: ");
328 
329 	event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
330 	if (event_add(&ev, NULL) == -1)
331 		exit(1);
332 	event_dispatch();
333 
334 	cleanup_test();
335 }
336 
337 static void
338 simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
339 {
340 	if (++called == 2)
341 		test_ok = 1;
342 }
343 
344 static void
345 test_simpleread_multiple(void)
346 {
347 	struct event one, two;
348 
349 	/* Very simple read test */
350 	setup_test("Simple read to multiple evens: ");
351 
352 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
353 		tt_fail_perror("write");
354 	}
355 
356 	shutdown(pair[0], SHUT_WR);
357 
358 	event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
359 	if (event_add(&one, NULL) == -1)
360 		exit(1);
361 	event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
362 	if (event_add(&two, NULL) == -1)
363 		exit(1);
364 	event_dispatch();
365 
366 	cleanup_test();
367 }
368 
369 static int have_closed = 0;
370 static int premature_event = 0;
371 static void
372 simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
373 {
374 	evutil_socket_t **fds = ptr;
375 	TT_BLATHER(("Closing"));
376 	evutil_closesocket(*fds[0]);
377 	evutil_closesocket(*fds[1]);
378 	*fds[0] = -1;
379 	*fds[1] = -1;
380 	have_closed = 1;
381 }
382 
383 static void
384 record_event_cb(evutil_socket_t s, short what, void *ptr)
385 {
386 	short *whatp = ptr;
387 	if (!have_closed)
388 		premature_event = 1;
389 	*whatp = what;
390 	TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
391 }
392 
393 static void
394 test_simpleclose(void *ptr)
395 {
396 	/* Test that a close of FD is detected as a read and as a write. */
397 	struct event_base *base = event_base_new();
398 	evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
399 	evutil_socket_t *to_close[2];
400 	struct event *rev=NULL, *wev=NULL, *closeev=NULL;
401 	struct timeval tv;
402 	short got_read_on_close = 0, got_write_on_close = 0;
403 	char buf[1024];
404 	memset(buf, 99, sizeof(buf));
405 #ifdef _WIN32
406 #define LOCAL_SOCKETPAIR_AF AF_INET
407 #else
408 #define LOCAL_SOCKETPAIR_AF AF_UNIX
409 #endif
410 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
411 		TT_DIE(("socketpair: %s", strerror(errno)));
412 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
413 		TT_DIE(("socketpair: %s", strerror(errno)));
414 	if (evutil_make_socket_nonblocking(pair1[1]) < 0)
415 		TT_DIE(("make_socket_nonblocking"));
416 	if (evutil_make_socket_nonblocking(pair2[1]) < 0)
417 		TT_DIE(("make_socket_nonblocking"));
418 
419 	/** Stuff pair2[1] full of data, until write fails */
420 	while (1) {
421 		int r = write(pair2[1], buf, sizeof(buf));
422 		if (r<0) {
423 			int err = evutil_socket_geterror(pair2[1]);
424 			if (! EVUTIL_ERR_RW_RETRIABLE(err))
425 				TT_DIE(("write failed strangely: %s",
426 					evutil_socket_error_to_string(err)));
427 			break;
428 		}
429 	}
430 	to_close[0] = &pair1[0];
431 	to_close[1] = &pair2[0];
432 
433 	closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
434 	    to_close);
435 	rev = event_new(base, pair1[1], EV_READ, record_event_cb,
436 	    &got_read_on_close);
437 	TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
438 	wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
439 	    &got_write_on_close);
440 	TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
441 	tv.tv_sec = 0;
442 	tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
443 			       * sure we get a read event. */
444 	event_add(closeev, &tv);
445 	event_add(rev, NULL);
446 	event_add(wev, NULL);
447 	/* Don't let the test go on too long. */
448 	tv.tv_sec = 0;
449 	tv.tv_usec = 200*1000;
450 	event_base_loopexit(base, &tv);
451 	event_base_loop(base, 0);
452 
453 	tt_int_op(got_read_on_close, ==, EV_READ);
454 	tt_int_op(got_write_on_close, ==, EV_WRITE);
455 	tt_int_op(premature_event, ==, 0);
456 
457 end:
458 	if (pair1[0] >= 0)
459 		evutil_closesocket(pair1[0]);
460 	if (pair1[1] >= 0)
461 		evutil_closesocket(pair1[1]);
462 	if (pair2[0] >= 0)
463 		evutil_closesocket(pair2[0]);
464 	if (pair2[1] >= 0)
465 		evutil_closesocket(pair2[1]);
466 	if (rev)
467 		event_free(rev);
468 	if (wev)
469 		event_free(wev);
470 	if (closeev)
471 		event_free(closeev);
472 	if (base)
473 		event_base_free(base);
474 }
475 
476 
477 static void
478 test_multiple(void)
479 {
480 	struct event ev, ev2;
481 	int i;
482 
483 	/* Multiple read and write test */
484 	setup_test("Multiple read/write: ");
485 	memset(rbuf, 0, sizeof(rbuf));
486 	for (i = 0; i < (int)sizeof(wbuf); i++)
487 		wbuf[i] = i;
488 
489 	roff = woff = 0;
490 	usepersist = 0;
491 
492 	event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
493 	if (event_add(&ev, NULL) == -1)
494 		exit(1);
495 	event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
496 	if (event_add(&ev2, NULL) == -1)
497 		exit(1);
498 	event_dispatch();
499 
500 	if (roff == woff)
501 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
502 
503 	cleanup_test();
504 }
505 
506 static void
507 test_persistent(void)
508 {
509 	struct event ev, ev2;
510 	int i;
511 
512 	/* Multiple read and write test with persist */
513 	setup_test("Persist read/write: ");
514 	memset(rbuf, 0, sizeof(rbuf));
515 	for (i = 0; i < (int)sizeof(wbuf); i++)
516 		wbuf[i] = i;
517 
518 	roff = woff = 0;
519 	usepersist = 1;
520 
521 	event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
522 	if (event_add(&ev, NULL) == -1)
523 		exit(1);
524 	event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
525 	if (event_add(&ev2, NULL) == -1)
526 		exit(1);
527 	event_dispatch();
528 
529 	if (roff == woff)
530 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
531 
532 	cleanup_test();
533 }
534 
535 static void
536 test_combined(void)
537 {
538 	struct both r1, r2, w1, w2;
539 
540 	setup_test("Combined read/write: ");
541 	memset(&r1, 0, sizeof(r1));
542 	memset(&r2, 0, sizeof(r2));
543 	memset(&w1, 0, sizeof(w1));
544 	memset(&w2, 0, sizeof(w2));
545 
546 	w1.nread = 4096;
547 	w2.nread = 8192;
548 
549 	event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
550 	event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
551 	event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
552 	event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
553 	tt_assert(event_add(&r1.ev, NULL) != -1);
554 	tt_assert(!event_add(&w1.ev, NULL));
555 	tt_assert(!event_add(&r2.ev, NULL));
556 	tt_assert(!event_add(&w2.ev, NULL));
557 	event_dispatch();
558 
559 	if (r1.nread == 8192 && r2.nread == 4096)
560 		test_ok = 1;
561 
562 end:
563 	cleanup_test();
564 }
565 
566 static void
567 test_simpletimeout(void)
568 {
569 	struct timeval tv;
570 	struct event ev;
571 
572 	setup_test("Simple timeout: ");
573 
574 	tv.tv_usec = 200*1000;
575 	tv.tv_sec = 0;
576 	evutil_timerclear(&tcalled);
577 	evtimer_set(&ev, timeout_cb, NULL);
578 	evtimer_add(&ev, &tv);
579 
580 	evutil_gettimeofday(&tset, NULL);
581 	event_dispatch();
582 	test_timeval_diff_eq(&tset, &tcalled, 200);
583 
584 	test_ok = 1;
585 end:
586 	cleanup_test();
587 }
588 
589 static void
590 periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
591 {
592 	int *count = arg;
593 
594 	(*count)++;
595 	if (*count == 6) {
596 		/* call loopexit only once - on slow machines(?), it is
597 		 * apparently possible for this to get called twice. */
598 		test_ok = 1;
599 		event_base_loopexit(global_base, NULL);
600 	}
601 }
602 
603 static void
604 test_persistent_timeout(void)
605 {
606 	struct timeval tv;
607 	struct event ev;
608 	int count = 0;
609 
610 	evutil_timerclear(&tv);
611 	tv.tv_usec = 10000;
612 
613 	event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
614 	    periodic_timeout_cb, &count);
615 	event_add(&ev, &tv);
616 
617 	event_dispatch();
618 
619 	event_del(&ev);
620 }
621 
622 static void
623 test_persistent_timeout_jump(void *ptr)
624 {
625 	struct basic_test_data *data = ptr;
626 	struct event ev;
627 	int count = 0;
628 	struct timeval msec100 = { 0, 100 * 1000 };
629 	struct timeval msec50 = { 0, 50 * 1000 };
630 	struct timeval msec300 = { 0, 300 * 1000 };
631 
632 	event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
633 	event_add(&ev, &msec100);
634 	/* Wait for a bit */
635 	evutil_usleep_(&msec300);
636 	event_base_loopexit(data->base, &msec50);
637 	event_base_dispatch(data->base);
638 	tt_int_op(count, ==, 1);
639 
640 end:
641 	event_del(&ev);
642 }
643 
644 struct persist_active_timeout_called {
645 	int n;
646 	short events[16];
647 	struct timeval tvs[16];
648 };
649 
650 static void
651 activate_cb(evutil_socket_t fd, short event, void *arg)
652 {
653 	struct event *ev = arg;
654 	event_active(ev, EV_READ, 1);
655 }
656 
657 static void
658 persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
659 {
660 	struct persist_active_timeout_called *c = arg;
661 	if (c->n < 15) {
662 		c->events[c->n] = event;
663 		evutil_gettimeofday(&c->tvs[c->n], NULL);
664 		++c->n;
665 	}
666 }
667 
668 static void
669 test_persistent_active_timeout(void *ptr)
670 {
671 	struct timeval tv, tv2, tv_exit, start;
672 	struct event ev;
673 	struct persist_active_timeout_called res;
674 
675 	struct basic_test_data *data = ptr;
676 	struct event_base *base = data->base;
677 
678 	memset(&res, 0, sizeof(res));
679 
680 	tv.tv_sec = 0;
681 	tv.tv_usec = 200 * 1000;
682 	event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
683 	    persist_active_timeout_cb, &res);
684 	event_add(&ev, &tv);
685 
686 	tv2.tv_sec = 0;
687 	tv2.tv_usec = 100 * 1000;
688 	event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
689 
690 	tv_exit.tv_sec = 0;
691 	tv_exit.tv_usec = 600 * 1000;
692 	event_base_loopexit(base, &tv_exit);
693 
694 	event_base_assert_ok_(base);
695 	evutil_gettimeofday(&start, NULL);
696 
697 	event_base_dispatch(base);
698 	event_base_assert_ok_(base);
699 
700 	tt_int_op(res.n, ==, 3);
701 	tt_int_op(res.events[0], ==, EV_READ);
702 	tt_int_op(res.events[1], ==, EV_TIMEOUT);
703 	tt_int_op(res.events[2], ==, EV_TIMEOUT);
704 	test_timeval_diff_eq(&start, &res.tvs[0], 100);
705 	test_timeval_diff_eq(&start, &res.tvs[1], 300);
706 	test_timeval_diff_eq(&start, &res.tvs[2], 500);
707 end:
708 	event_del(&ev);
709 }
710 
711 struct common_timeout_info {
712 	struct event ev;
713 	struct timeval called_at;
714 	int which;
715 	int count;
716 };
717 
718 static void
719 common_timeout_cb(evutil_socket_t fd, short event, void *arg)
720 {
721 	struct common_timeout_info *ti = arg;
722 	++ti->count;
723 	evutil_gettimeofday(&ti->called_at, NULL);
724 	if (ti->count >= 4)
725 		event_del(&ti->ev);
726 }
727 
728 static void
729 test_common_timeout(void *ptr)
730 {
731 	struct basic_test_data *data = ptr;
732 
733 	struct event_base *base = data->base;
734 	int i;
735 	struct common_timeout_info info[100];
736 
737 	struct timeval start;
738 	struct timeval tmp_100_ms = { 0, 100*1000 };
739 	struct timeval tmp_200_ms = { 0, 200*1000 };
740 
741 	const struct timeval *ms_100, *ms_200;
742 
743 	ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
744 	ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
745 	tt_assert(ms_100);
746 	tt_assert(ms_200);
747 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
748 	    ==, ms_200);
749 	tt_int_op(ms_100->tv_sec, ==, 0);
750 	tt_int_op(ms_200->tv_sec, ==, 0);
751 	tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
752 	tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
753 
754 	memset(info, 0, sizeof(info));
755 
756 	for (i=0; i<100; ++i) {
757 		info[i].which = i;
758 		event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
759 		    common_timeout_cb, &info[i]);
760 		if (i % 2) {
761 			if ((i%20)==1) {
762 				/* Glass-box test: Make sure we survive the
763 				 * transition to non-common timeouts. It's
764 				 * a little tricky. */
765 				event_add(&info[i].ev, ms_200);
766 				event_add(&info[i].ev, &tmp_100_ms);
767 			} else if ((i%20)==3) {
768 				/* Check heap-to-common too. */
769 				event_add(&info[i].ev, &tmp_200_ms);
770 				event_add(&info[i].ev, ms_100);
771 			} else if ((i%20)==5) {
772 				/* Also check common-to-common. */
773 				event_add(&info[i].ev, ms_200);
774 				event_add(&info[i].ev, ms_100);
775 			} else {
776 				event_add(&info[i].ev, ms_100);
777 			}
778 		} else {
779 			event_add(&info[i].ev, ms_200);
780 		}
781 	}
782 
783 	event_base_assert_ok_(base);
784 	evutil_gettimeofday(&start, NULL);
785 	event_base_dispatch(base);
786 
787 	event_base_assert_ok_(base);
788 
789 	for (i=0; i<10; ++i) {
790 		tt_int_op(info[i].count, ==, 4);
791 		if (i % 2) {
792 			test_timeval_diff_eq(&start, &info[i].called_at, 400);
793 		} else {
794 			test_timeval_diff_eq(&start, &info[i].called_at, 800);
795 		}
796 	}
797 
798 	/* Make sure we can free the base with some events in. */
799 	for (i=0; i<100; ++i) {
800 		if (i % 2) {
801 			event_add(&info[i].ev, ms_100);
802 		} else {
803 			event_add(&info[i].ev, ms_200);
804 		}
805 	}
806 
807 end:
808 	event_base_free(data->base); /* need to do this here before info is
809 				      * out-of-scope */
810 	data->base = NULL;
811 }
812 
813 #ifndef _WIN32
814 static void signal_cb(evutil_socket_t fd, short event, void *arg);
815 
816 #define current_base event_global_current_base_
817 extern struct event_base *current_base;
818 
819 static void
820 child_signal_cb(evutil_socket_t fd, short event, void *arg)
821 {
822 	struct timeval tv;
823 	int *pint = arg;
824 
825 	*pint = 1;
826 
827 	tv.tv_usec = 500000;
828 	tv.tv_sec = 0;
829 	event_loopexit(&tv);
830 }
831 
832 static void
833 test_fork(void)
834 {
835 	int status, got_sigchld = 0;
836 	struct event ev, sig_ev;
837 	pid_t pid;
838 
839 	setup_test("After fork: ");
840 
841 	tt_assert(current_base);
842 	evthread_make_base_notifiable(current_base);
843 
844 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
845 		tt_fail_perror("write");
846 	}
847 
848 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
849 	if (event_add(&ev, NULL) == -1)
850 		exit(1);
851 
852 	evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
853 	evsignal_add(&sig_ev, NULL);
854 
855 	event_base_assert_ok_(current_base);
856 	TT_BLATHER(("Before fork"));
857 	if ((pid = regress_fork()) == 0) {
858 		/* in the child */
859 		TT_BLATHER(("In child, before reinit"));
860 		event_base_assert_ok_(current_base);
861 		if (event_reinit(current_base) == -1) {
862 			fprintf(stdout, "FAILED (reinit)\n");
863 			exit(1);
864 		}
865 		TT_BLATHER(("After reinit"));
866 		event_base_assert_ok_(current_base);
867 		TT_BLATHER(("After assert-ok"));
868 
869 		evsignal_del(&sig_ev);
870 
871 		called = 0;
872 
873 		event_dispatch();
874 
875 		event_base_free(current_base);
876 
877 		/* we do not send an EOF; simple_read_cb requires an EOF
878 		 * to set test_ok.  we just verify that the callback was
879 		 * called. */
880 		exit(test_ok != 0 || called != 2 ? -2 : 76);
881 	}
882 
883 	/* wait for the child to read the data */
884 	{
885 		const struct timeval tv = { 0, 100000 };
886 		evutil_usleep_(&tv);
887 	}
888 
889 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
890 		tt_fail_perror("write");
891 	}
892 
893 	TT_BLATHER(("Before waitpid"));
894 	if (waitpid(pid, &status, 0) == -1) {
895 		fprintf(stdout, "FAILED (fork)\n");
896 		exit(1);
897 	}
898 	TT_BLATHER(("After waitpid"));
899 
900 	if (WEXITSTATUS(status) != 76) {
901 		fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
902 		exit(1);
903 	}
904 
905 	/* test that the current event loop still works */
906 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
907 		fprintf(stderr, "%s: write\n", __func__);
908 	}
909 
910 	shutdown(pair[0], SHUT_WR);
911 
912 	event_dispatch();
913 
914 	if (!got_sigchld) {
915 		fprintf(stdout, "FAILED (sigchld)\n");
916 		exit(1);
917 	}
918 
919 	evsignal_del(&sig_ev);
920 
921 	end:
922 	cleanup_test();
923 }
924 
925 static void
926 signal_cb_sa(int sig)
927 {
928 	test_ok = 2;
929 }
930 
931 static void
932 signal_cb(evutil_socket_t fd, short event, void *arg)
933 {
934 	struct event *ev = arg;
935 
936 	evsignal_del(ev);
937 	test_ok = 1;
938 }
939 
940 static void
941 test_simplesignal(void)
942 {
943 	struct event ev;
944 	struct itimerval itv;
945 
946 	setup_test("Simple signal: ");
947 	evsignal_set(&ev, SIGALRM, signal_cb, &ev);
948 	evsignal_add(&ev, NULL);
949 	/* find bugs in which operations are re-ordered */
950 	evsignal_del(&ev);
951 	evsignal_add(&ev, NULL);
952 
953 	memset(&itv, 0, sizeof(itv));
954 	itv.it_value.tv_sec = 0;
955 	itv.it_value.tv_usec = 100000;
956 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
957 		goto skip_simplesignal;
958 
959 	event_dispatch();
960  skip_simplesignal:
961 	if (evsignal_del(&ev) == -1)
962 		test_ok = 0;
963 
964 	cleanup_test();
965 }
966 
967 static void
968 test_multiplesignal(void)
969 {
970 	struct event ev_one, ev_two;
971 	struct itimerval itv;
972 
973 	setup_test("Multiple signal: ");
974 
975 	evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
976 	evsignal_add(&ev_one, NULL);
977 
978 	evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
979 	evsignal_add(&ev_two, NULL);
980 
981 	memset(&itv, 0, sizeof(itv));
982 	itv.it_value.tv_sec = 0;
983 	itv.it_value.tv_usec = 100000;
984 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
985 		goto skip_simplesignal;
986 
987 	event_dispatch();
988 
989  skip_simplesignal:
990 	if (evsignal_del(&ev_one) == -1)
991 		test_ok = 0;
992 	if (evsignal_del(&ev_two) == -1)
993 		test_ok = 0;
994 
995 	cleanup_test();
996 }
997 
998 static void
999 test_immediatesignal(void)
1000 {
1001 	struct event ev;
1002 
1003 	test_ok = 0;
1004 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1005 	evsignal_add(&ev, NULL);
1006 	raise(SIGUSR1);
1007 	event_loop(EVLOOP_NONBLOCK);
1008 	evsignal_del(&ev);
1009 	cleanup_test();
1010 }
1011 
1012 static void
1013 test_signal_dealloc(void)
1014 {
1015 	/* make sure that evsignal_event is event_del'ed and pipe closed */
1016 	struct event ev;
1017 	struct event_base *base = event_init();
1018 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1019 	evsignal_add(&ev, NULL);
1020 	evsignal_del(&ev);
1021 	event_base_free(base);
1022 	/* If we got here without asserting, we're fine. */
1023 	test_ok = 1;
1024 	cleanup_test();
1025 }
1026 
1027 static void
1028 test_signal_pipeloss(void)
1029 {
1030 	/* make sure that the base1 pipe is closed correctly. */
1031 	struct event_base *base1, *base2;
1032 	int pipe1;
1033 	test_ok = 0;
1034 	base1 = event_init();
1035 	pipe1 = base1->sig.ev_signal_pair[0];
1036 	base2 = event_init();
1037 	event_base_free(base2);
1038 	event_base_free(base1);
1039 	if (close(pipe1) != -1 || errno!=EBADF) {
1040 		/* fd must be closed, so second close gives -1, EBADF */
1041 		printf("signal pipe not closed. ");
1042 		test_ok = 0;
1043 	} else {
1044 		test_ok = 1;
1045 	}
1046 	cleanup_test();
1047 }
1048 
1049 /*
1050  * make two bases to catch signals, use both of them.  this only works
1051  * for event mechanisms that use our signal pipe trick.	 kqueue handles
1052  * signals internally, and all interested kqueues get all the signals.
1053  */
1054 static void
1055 test_signal_switchbase(void)
1056 {
1057 	struct event ev1, ev2;
1058 	struct event_base *base1, *base2;
1059 	int is_kqueue;
1060 	test_ok = 0;
1061 	base1 = event_init();
1062 	base2 = event_init();
1063 	is_kqueue = !strcmp(event_get_method(),"kqueue");
1064 	evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
1065 	evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
1066 	if (event_base_set(base1, &ev1) ||
1067 	    event_base_set(base2, &ev2) ||
1068 	    event_add(&ev1, NULL) ||
1069 	    event_add(&ev2, NULL)) {
1070 		fprintf(stderr, "%s: cannot set base, add\n", __func__);
1071 		exit(1);
1072 	}
1073 
1074 	tt_ptr_op(event_get_base(&ev1), ==, base1);
1075 	tt_ptr_op(event_get_base(&ev2), ==, base2);
1076 
1077 	test_ok = 0;
1078 	/* can handle signal before loop is called */
1079 	raise(SIGUSR1);
1080 	event_base_loop(base2, EVLOOP_NONBLOCK);
1081 	if (is_kqueue) {
1082 		if (!test_ok)
1083 			goto end;
1084 		test_ok = 0;
1085 	}
1086 	event_base_loop(base1, EVLOOP_NONBLOCK);
1087 	if (test_ok && !is_kqueue) {
1088 		test_ok = 0;
1089 
1090 		/* set base1 to handle signals */
1091 		event_base_loop(base1, EVLOOP_NONBLOCK);
1092 		raise(SIGUSR1);
1093 		event_base_loop(base1, EVLOOP_NONBLOCK);
1094 		event_base_loop(base2, EVLOOP_NONBLOCK);
1095 	}
1096 end:
1097 	event_base_free(base1);
1098 	event_base_free(base2);
1099 	cleanup_test();
1100 }
1101 
1102 /*
1103  * assert that a signal event removed from the event queue really is
1104  * removed - with no possibility of it's parent handler being fired.
1105  */
1106 static void
1107 test_signal_assert(void)
1108 {
1109 	struct event ev;
1110 	struct event_base *base = event_init();
1111 	test_ok = 0;
1112 	/* use SIGCONT so we don't kill ourselves when we signal to nowhere */
1113 	evsignal_set(&ev, SIGCONT, signal_cb, &ev);
1114 	evsignal_add(&ev, NULL);
1115 	/*
1116 	 * if evsignal_del() fails to reset the handler, it's current handler
1117 	 * will still point to evsig_handler().
1118 	 */
1119 	evsignal_del(&ev);
1120 
1121 	raise(SIGCONT);
1122 #if 0
1123 	/* only way to verify we were in evsig_handler() */
1124 	/* XXXX Now there's no longer a good way. */
1125 	if (base->sig.evsig_caught)
1126 		test_ok = 0;
1127 	else
1128 		test_ok = 1;
1129 #else
1130 	test_ok = 1;
1131 #endif
1132 
1133 	event_base_free(base);
1134 	cleanup_test();
1135 	return;
1136 }
1137 
1138 /*
1139  * assert that we restore our previous signal handler properly.
1140  */
1141 static void
1142 test_signal_restore(void)
1143 {
1144 	struct event ev;
1145 	struct event_base *base = event_init();
1146 #ifdef EVENT__HAVE_SIGACTION
1147 	struct sigaction sa;
1148 #endif
1149 
1150 	test_ok = 0;
1151 #ifdef EVENT__HAVE_SIGACTION
1152 	sa.sa_handler = signal_cb_sa;
1153 	sa.sa_flags = 0x0;
1154 	sigemptyset(&sa.sa_mask);
1155 	if (sigaction(SIGUSR1, &sa, NULL) == -1)
1156 		goto out;
1157 #else
1158 	if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
1159 		goto out;
1160 #endif
1161 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1162 	evsignal_add(&ev, NULL);
1163 	evsignal_del(&ev);
1164 
1165 	raise(SIGUSR1);
1166 	/* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
1167 	if (test_ok != 2)
1168 		test_ok = 0;
1169 out:
1170 	event_base_free(base);
1171 	cleanup_test();
1172 	return;
1173 }
1174 
1175 static void
1176 signal_cb_swp(int sig, short event, void *arg)
1177 {
1178 	called++;
1179 	if (called < 5)
1180 		raise(sig);
1181 	else
1182 		event_loopexit(NULL);
1183 }
1184 static void
1185 timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
1186 {
1187 	if (called == -1) {
1188 		struct timeval tv = {5, 0};
1189 
1190 		called = 0;
1191 		evtimer_add((struct event *)arg, &tv);
1192 		raise(SIGUSR1);
1193 		return;
1194 	}
1195 	test_ok = 0;
1196 	event_loopexit(NULL);
1197 }
1198 
1199 static void
1200 test_signal_while_processing(void)
1201 {
1202 	struct event_base *base = event_init();
1203 	struct event ev, ev_timer;
1204 	struct timeval tv = {0, 0};
1205 
1206 	setup_test("Receiving a signal while processing other signal: ");
1207 
1208 	called = -1;
1209 	test_ok = 1;
1210 	signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
1211 	signal_add(&ev, NULL);
1212 	evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
1213 	evtimer_add(&ev_timer, &tv);
1214 	event_dispatch();
1215 
1216 	event_base_free(base);
1217 	cleanup_test();
1218 	return;
1219 }
1220 #endif
1221 
1222 static void
1223 test_free_active_base(void *ptr)
1224 {
1225 	struct basic_test_data *data = ptr;
1226 	struct event_base *base1;
1227 	struct event ev1;
1228 
1229 	base1 = event_init();
1230 	if (base1) {
1231 		event_assign(&ev1, base1, data->pair[1], EV_READ,
1232 			     dummy_read_cb, NULL);
1233 		event_add(&ev1, NULL);
1234 		event_base_free(base1);	 /* should not crash */
1235 	} else {
1236 		tt_fail_msg("failed to create event_base for test");
1237 	}
1238 
1239 	base1 = event_init();
1240 	tt_assert(base1);
1241 	event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
1242 	event_active(&ev1, EV_READ, 1);
1243 	event_base_free(base1);
1244 end:
1245 	;
1246 }
1247 
1248 static void
1249 test_manipulate_active_events(void *ptr)
1250 {
1251 	struct basic_test_data *data = ptr;
1252 	struct event_base *base = data->base;
1253 	struct event ev1;
1254 
1255 	event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
1256 
1257 	/* Make sure an active event is pending. */
1258 	event_active(&ev1, EV_READ, 1);
1259 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1260 	    ==, EV_READ);
1261 
1262 	/* Make sure that activating an event twice works. */
1263 	event_active(&ev1, EV_WRITE, 1);
1264 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1265 	    ==, EV_READ|EV_WRITE);
1266 
1267 end:
1268 	event_del(&ev1);
1269 }
1270 
1271 static void
1272 event_selfarg_cb(evutil_socket_t fd, short event, void *arg)
1273 {
1274 	struct event *ev = arg;
1275 	struct event_base *base = event_get_base(ev);
1276 	event_base_assert_ok_(base);
1277 	event_base_loopexit(base, NULL);
1278 	tt_want(ev == event_base_get_running_event(base));
1279 }
1280 
1281 static void
1282 test_event_new_selfarg(void *ptr)
1283 {
1284 	struct basic_test_data *data = ptr;
1285 	struct event_base *base = data->base;
1286 	struct event *ev = event_new(base, -1, EV_READ, event_selfarg_cb,
1287                                      event_self_cbarg());
1288 
1289 	event_active(ev, EV_READ, 1);
1290 	event_base_dispatch(base);
1291 
1292 	event_free(ev);
1293 }
1294 
1295 static void
1296 test_event_assign_selfarg(void *ptr)
1297 {
1298 	struct basic_test_data *data = ptr;
1299 	struct event_base *base = data->base;
1300 	struct event ev;
1301 
1302 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1303                      event_self_cbarg());
1304 	event_active(&ev, EV_READ, 1);
1305 	event_base_dispatch(base);
1306 }
1307 
1308 static void
1309 test_bad_assign(void *ptr)
1310 {
1311 	struct event ev;
1312 	int r;
1313 	/* READ|SIGNAL is not allowed */
1314 	r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
1315 	tt_int_op(r,==,-1);
1316 
1317 end:
1318 	;
1319 }
1320 
1321 static int reentrant_cb_run = 0;
1322 
1323 static void
1324 bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
1325 {
1326 	struct event_base *base = ptr;
1327 	int r;
1328 	reentrant_cb_run = 1;
1329 	/* This reentrant call to event_base_loop should be detected and
1330 	 * should fail */
1331 	r = event_base_loop(base, 0);
1332 	tt_int_op(r, ==, -1);
1333 end:
1334 	;
1335 }
1336 
1337 static void
1338 test_bad_reentrant(void *ptr)
1339 {
1340 	struct basic_test_data *data = ptr;
1341 	struct event_base *base = data->base;
1342 	struct event ev;
1343 	int r;
1344 	event_assign(&ev, base, -1,
1345 	    0, bad_reentrant_run_loop_cb, base);
1346 
1347 	event_active(&ev, EV_WRITE, 1);
1348 	r = event_base_loop(base, 0);
1349 	tt_int_op(r, ==, 1);
1350 	tt_int_op(reentrant_cb_run, ==, 1);
1351 end:
1352 	;
1353 }
1354 
1355 static int n_write_a_byte_cb=0;
1356 static int n_read_and_drain_cb=0;
1357 static int n_activate_other_event_cb=0;
1358 static void
1359 write_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1360 {
1361 	char buf[] = "x";
1362 	if (write(fd, buf, 1) == 1)
1363 		++n_write_a_byte_cb;
1364 }
1365 static void
1366 read_and_drain_cb(evutil_socket_t fd, short what, void *arg)
1367 {
1368 	char buf[128];
1369 	int n;
1370 	++n_read_and_drain_cb;
1371 	while ((n = read(fd, buf, sizeof(buf))) > 0)
1372 		;
1373 }
1374 
1375 static void
1376 activate_other_event_cb(evutil_socket_t fd, short what, void *other_)
1377 {
1378 	struct event *ev_activate = other_;
1379 	++n_activate_other_event_cb;
1380 	event_active_later_(ev_activate, EV_READ);
1381 }
1382 
1383 static void
1384 test_active_later(void *ptr)
1385 {
1386 	struct basic_test_data *data = ptr;
1387 	struct event *ev1, *ev2;
1388 	struct event ev3, ev4;
1389 	struct timeval qsec = {0, 100000};
1390 	ev1 = event_new(data->base, data->pair[0], EV_READ|EV_PERSIST, read_and_drain_cb, NULL);
1391 	ev2 = event_new(data->base, data->pair[1], EV_WRITE|EV_PERSIST, write_a_byte_cb, NULL);
1392 	event_assign(&ev3, data->base, -1, 0, activate_other_event_cb, &ev4);
1393 	event_assign(&ev4, data->base, -1, 0, activate_other_event_cb, &ev3);
1394 	event_add(ev1, NULL);
1395 	event_add(ev2, NULL);
1396 	event_active_later_(&ev3, EV_READ);
1397 
1398 	event_base_loopexit(data->base, &qsec);
1399 
1400 	event_base_loop(data->base, 0);
1401 
1402 	TT_BLATHER(("%d write calls, %d read calls, %d activate-other calls.",
1403 		n_write_a_byte_cb, n_read_and_drain_cb, n_activate_other_event_cb));
1404 	event_del(&ev3);
1405 	event_del(&ev4);
1406 
1407 	tt_int_op(n_write_a_byte_cb, ==, n_activate_other_event_cb);
1408 	tt_int_op(n_write_a_byte_cb, >, 100);
1409 	tt_int_op(n_read_and_drain_cb, >, 100);
1410 	tt_int_op(n_activate_other_event_cb, >, 100);
1411 end:
1412 	;
1413 }
1414 
1415 
1416 static void incr_arg_cb(evutil_socket_t fd, short what, void *arg)
1417 {
1418 	int *intptr = arg;
1419 	(void) fd; (void) what;
1420 	++*intptr;
1421 }
1422 static void remove_timers_cb(evutil_socket_t fd, short what, void *arg)
1423 {
1424 	struct event **ep = arg;
1425 	(void) fd; (void) what;
1426 	event_remove_timer(ep[0]);
1427 	event_remove_timer(ep[1]);
1428 }
1429 static void send_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1430 {
1431 	evutil_socket_t *sockp = arg;
1432 	(void) fd; (void) what;
1433 	write(*sockp, "A", 1);
1434 }
1435 struct read_not_timeout_param
1436 {
1437 	struct event **ev;
1438 	int events;
1439 	int count;
1440 };
1441 static void read_not_timeout_cb(evutil_socket_t fd, short what, void *arg)
1442 {
1443 	struct read_not_timeout_param *rntp = arg;
1444 	char c;
1445 	(void) fd; (void) what;
1446 	read(fd, &c, 1);
1447 	rntp->events |= what;
1448 	++rntp->count;
1449 	if(2 == rntp->count) event_del(rntp->ev[0]);
1450 }
1451 
1452 static void
1453 test_event_remove_timeout(void *ptr)
1454 {
1455 	struct basic_test_data *data = ptr;
1456 	struct event_base *base = data->base;
1457 	struct event *ev[5];
1458 	int ev1_fired=0;
1459 	struct timeval ms25 = { 0, 25*1000 },
1460 		ms40 = { 0, 40*1000 },
1461 		ms75 = { 0, 75*1000 },
1462 		ms125 = { 0, 125*1000 };
1463 	struct read_not_timeout_param rntp = { ev, 0, 0 };
1464 
1465 	event_base_assert_ok_(base);
1466 
1467 	ev[0] = event_new(base, data->pair[0], EV_READ|EV_PERSIST,
1468 	    read_not_timeout_cb, &rntp);
1469 	ev[1] = evtimer_new(base, incr_arg_cb, &ev1_fired);
1470 	ev[2] = evtimer_new(base, remove_timers_cb, ev);
1471 	ev[3] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1472 	ev[4] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1473 	tt_assert(base);
1474 	event_add(ev[2], &ms25); /* remove timers */
1475 	event_add(ev[4], &ms40); /* write to test if timer re-activates */
1476 	event_add(ev[0], &ms75); /* read */
1477 	event_add(ev[1], &ms75); /* timer */
1478 	event_add(ev[3], &ms125); /* timeout. */
1479 	event_base_assert_ok_(base);
1480 
1481 	event_base_dispatch(base);
1482 
1483 	tt_int_op(ev1_fired, ==, 0);
1484 	tt_int_op(rntp.events, ==, EV_READ);
1485 
1486 	event_base_assert_ok_(base);
1487 end:
1488 	event_free(ev[0]);
1489 	event_free(ev[1]);
1490 	event_free(ev[2]);
1491 	event_free(ev[3]);
1492 	event_free(ev[4]);
1493 }
1494 
1495 static void
1496 test_event_base_new(void *ptr)
1497 {
1498 	struct basic_test_data *data = ptr;
1499 	struct event_base *base = 0;
1500 	struct event ev1;
1501 	struct basic_cb_args args;
1502 
1503 	int towrite = (int)strlen(TEST1)+1;
1504 	int len = write(data->pair[0], TEST1, towrite);
1505 
1506 	if (len < 0)
1507 		tt_abort_perror("initial write");
1508 	else if (len != towrite)
1509 		tt_abort_printf(("initial write fell short (%d of %d bytes)",
1510 				 len, towrite));
1511 
1512 	if (shutdown(data->pair[0], SHUT_WR))
1513 		tt_abort_perror("initial write shutdown");
1514 
1515 	base = event_base_new();
1516 	if (!base)
1517 		tt_abort_msg("failed to create event base");
1518 
1519 	args.eb = base;
1520 	args.ev = &ev1;
1521 	args.callcount = 0;
1522 	event_assign(&ev1, base, data->pair[1],
1523 		     EV_READ|EV_PERSIST, basic_read_cb, &args);
1524 
1525 	if (event_add(&ev1, NULL))
1526 		tt_abort_perror("initial event_add");
1527 
1528 	if (event_base_loop(base, 0))
1529 		tt_abort_msg("unsuccessful exit from event loop");
1530 
1531 end:
1532 	if (base)
1533 		event_base_free(base);
1534 }
1535 
1536 static void
1537 test_loopexit(void)
1538 {
1539 	struct timeval tv, tv_start, tv_end;
1540 	struct event ev;
1541 
1542 	setup_test("Loop exit: ");
1543 
1544 	tv.tv_usec = 0;
1545 	tv.tv_sec = 60*60*24;
1546 	evtimer_set(&ev, timeout_cb, NULL);
1547 	evtimer_add(&ev, &tv);
1548 
1549 	tv.tv_usec = 300*1000;
1550 	tv.tv_sec = 0;
1551 	event_loopexit(&tv);
1552 
1553 	evutil_gettimeofday(&tv_start, NULL);
1554 	event_dispatch();
1555 	evutil_gettimeofday(&tv_end, NULL);
1556 
1557 	evtimer_del(&ev);
1558 
1559 	tt_assert(event_base_got_exit(global_base));
1560 	tt_assert(!event_base_got_break(global_base));
1561 
1562 	test_timeval_diff_eq(&tv_start, &tv_end, 300);
1563 
1564 	test_ok = 1;
1565 end:
1566 	cleanup_test();
1567 }
1568 
1569 static void
1570 test_loopexit_multiple(void)
1571 {
1572 	struct timeval tv, tv_start, tv_end;
1573 	struct event_base *base;
1574 
1575 	setup_test("Loop Multiple exit: ");
1576 
1577 	base = event_base_new();
1578 
1579 	tv.tv_usec = 200*1000;
1580 	tv.tv_sec = 0;
1581 	event_base_loopexit(base, &tv);
1582 
1583 	tv.tv_usec = 0;
1584 	tv.tv_sec = 3;
1585 	event_base_loopexit(base, &tv);
1586 
1587 	evutil_gettimeofday(&tv_start, NULL);
1588 	event_base_dispatch(base);
1589 	evutil_gettimeofday(&tv_end, NULL);
1590 
1591 	tt_assert(event_base_got_exit(base));
1592 	tt_assert(!event_base_got_break(base));
1593 
1594 	event_base_free(base);
1595 
1596 	test_timeval_diff_eq(&tv_start, &tv_end, 200);
1597 
1598 	test_ok = 1;
1599 
1600 end:
1601 	cleanup_test();
1602 }
1603 
1604 static void
1605 break_cb(evutil_socket_t fd, short events, void *arg)
1606 {
1607 	test_ok = 1;
1608 	event_loopbreak();
1609 }
1610 
1611 static void
1612 fail_cb(evutil_socket_t fd, short events, void *arg)
1613 {
1614 	test_ok = 0;
1615 }
1616 
1617 static void
1618 test_loopbreak(void)
1619 {
1620 	struct event ev1, ev2;
1621 	struct timeval tv;
1622 
1623 	setup_test("Loop break: ");
1624 
1625 	tv.tv_sec = 0;
1626 	tv.tv_usec = 0;
1627 	evtimer_set(&ev1, break_cb, NULL);
1628 	evtimer_add(&ev1, &tv);
1629 	evtimer_set(&ev2, fail_cb, NULL);
1630 	evtimer_add(&ev2, &tv);
1631 
1632 	event_dispatch();
1633 
1634 	tt_assert(!event_base_got_exit(global_base));
1635 	tt_assert(event_base_got_break(global_base));
1636 
1637 	evtimer_del(&ev1);
1638 	evtimer_del(&ev2);
1639 
1640 end:
1641 	cleanup_test();
1642 }
1643 
1644 static struct event *readd_test_event_last_added = NULL;
1645 static void
1646 re_add_read_cb(evutil_socket_t fd, short event, void *arg)
1647 {
1648 	char buf[256];
1649 	struct event *ev_other = arg;
1650 	readd_test_event_last_added = ev_other;
1651 
1652 	if (read(fd, buf, sizeof(buf)) < 0) {
1653 		tt_fail_perror("read");
1654 	}
1655 
1656 	event_add(ev_other, NULL);
1657 	++test_ok;
1658 }
1659 
1660 static void
1661 test_nonpersist_readd(void)
1662 {
1663 	struct event ev1, ev2;
1664 
1665 	setup_test("Re-add nonpersistent events: ");
1666 	event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
1667 	event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
1668 
1669 	if (write(pair[0], "Hello", 5) < 0) {
1670 		tt_fail_perror("write(pair[0])");
1671 	}
1672 
1673 	if (write(pair[1], "Hello", 5) < 0) {
1674 		tt_fail_perror("write(pair[1])\n");
1675 	}
1676 
1677 	if (event_add(&ev1, NULL) == -1 ||
1678 	    event_add(&ev2, NULL) == -1) {
1679 		test_ok = 0;
1680 	}
1681 	if (test_ok != 0)
1682 		exit(1);
1683 	event_loop(EVLOOP_ONCE);
1684 	if (test_ok != 2)
1685 		exit(1);
1686 	/* At this point, we executed both callbacks.  Whichever one got
1687 	 * called first added the second, but the second then immediately got
1688 	 * deleted before its callback was called.  At this point, though, it
1689 	 * re-added the first.
1690 	 */
1691 	if (!readd_test_event_last_added) {
1692 		test_ok = 0;
1693 	} else if (readd_test_event_last_added == &ev1) {
1694 		if (!event_pending(&ev1, EV_READ, NULL) ||
1695 		    event_pending(&ev2, EV_READ, NULL))
1696 			test_ok = 0;
1697 	} else {
1698 		if (event_pending(&ev1, EV_READ, NULL) ||
1699 		    !event_pending(&ev2, EV_READ, NULL))
1700 			test_ok = 0;
1701 	}
1702 
1703 	event_del(&ev1);
1704 	event_del(&ev2);
1705 
1706 	cleanup_test();
1707 }
1708 
1709 struct test_pri_event {
1710 	struct event ev;
1711 	int count;
1712 };
1713 
1714 static void
1715 test_priorities_cb(evutil_socket_t fd, short what, void *arg)
1716 {
1717 	struct test_pri_event *pri = arg;
1718 	struct timeval tv;
1719 
1720 	if (pri->count == 3) {
1721 		event_loopexit(NULL);
1722 		return;
1723 	}
1724 
1725 	pri->count++;
1726 
1727 	evutil_timerclear(&tv);
1728 	event_add(&pri->ev, &tv);
1729 }
1730 
1731 static void
1732 test_priorities_impl(int npriorities)
1733 {
1734 	struct test_pri_event one, two;
1735 	struct timeval tv;
1736 
1737 	TT_BLATHER(("Testing Priorities %d: ", npriorities));
1738 
1739 	event_base_priority_init(global_base, npriorities);
1740 
1741 	memset(&one, 0, sizeof(one));
1742 	memset(&two, 0, sizeof(two));
1743 
1744 	timeout_set(&one.ev, test_priorities_cb, &one);
1745 	if (event_priority_set(&one.ev, 0) == -1) {
1746 		fprintf(stderr, "%s: failed to set priority", __func__);
1747 		exit(1);
1748 	}
1749 
1750 	timeout_set(&two.ev, test_priorities_cb, &two);
1751 	if (event_priority_set(&two.ev, npriorities - 1) == -1) {
1752 		fprintf(stderr, "%s: failed to set priority", __func__);
1753 		exit(1);
1754 	}
1755 
1756 	evutil_timerclear(&tv);
1757 
1758 	if (event_add(&one.ev, &tv) == -1)
1759 		exit(1);
1760 	if (event_add(&two.ev, &tv) == -1)
1761 		exit(1);
1762 
1763 	event_dispatch();
1764 
1765 	event_del(&one.ev);
1766 	event_del(&two.ev);
1767 
1768 	if (npriorities == 1) {
1769 		if (one.count == 3 && two.count == 3)
1770 			test_ok = 1;
1771 	} else if (npriorities == 2) {
1772 		/* Two is called once because event_loopexit is priority 1 */
1773 		if (one.count == 3 && two.count == 1)
1774 			test_ok = 1;
1775 	} else {
1776 		if (one.count == 3 && two.count == 0)
1777 			test_ok = 1;
1778 	}
1779 }
1780 
1781 static void
1782 test_priorities(void)
1783 {
1784 	test_priorities_impl(1);
1785 	if (test_ok)
1786 		test_priorities_impl(2);
1787 	if (test_ok)
1788 		test_priorities_impl(3);
1789 }
1790 
1791 /* priority-active-inversion: activate a higher-priority event, and make sure
1792  * it keeps us from running a lower-priority event first. */
1793 static int n_pai_calls = 0;
1794 static struct event pai_events[3];
1795 
1796 static void
1797 prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
1798 {
1799 	int *call_order = arg;
1800 	*call_order = n_pai_calls++;
1801 	if (n_pai_calls == 1) {
1802 		/* This should activate later, even though it shares a
1803 		   priority with us. */
1804 		event_active(&pai_events[1], EV_READ, 1);
1805 		/* This should activate next, since its priority is higher,
1806 		   even though we activated it second. */
1807 		event_active(&pai_events[2], EV_TIMEOUT, 1);
1808 	}
1809 }
1810 
1811 static void
1812 test_priority_active_inversion(void *data_)
1813 {
1814 	struct basic_test_data *data = data_;
1815 	struct event_base *base = data->base;
1816 	int call_order[3];
1817 	int i;
1818 	tt_int_op(event_base_priority_init(base, 8), ==, 0);
1819 
1820 	n_pai_calls = 0;
1821 	memset(call_order, 0, sizeof(call_order));
1822 
1823 	for (i=0;i<3;++i) {
1824 		event_assign(&pai_events[i], data->base, -1, 0,
1825 		    prio_active_inversion_cb, &call_order[i]);
1826 	}
1827 
1828 	event_priority_set(&pai_events[0], 4);
1829 	event_priority_set(&pai_events[1], 4);
1830 	event_priority_set(&pai_events[2], 0);
1831 
1832 	event_active(&pai_events[0], EV_WRITE, 1);
1833 
1834 	event_base_dispatch(base);
1835 	tt_int_op(n_pai_calls, ==, 3);
1836 	tt_int_op(call_order[0], ==, 0);
1837 	tt_int_op(call_order[1], ==, 2);
1838 	tt_int_op(call_order[2], ==, 1);
1839 end:
1840 	;
1841 }
1842 
1843 
1844 static void
1845 test_multiple_cb(evutil_socket_t fd, short event, void *arg)
1846 {
1847 	if (event & EV_READ)
1848 		test_ok |= 1;
1849 	else if (event & EV_WRITE)
1850 		test_ok |= 2;
1851 }
1852 
1853 static void
1854 test_multiple_events_for_same_fd(void)
1855 {
1856    struct event e1, e2;
1857 
1858    setup_test("Multiple events for same fd: ");
1859 
1860    event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
1861    event_add(&e1, NULL);
1862    event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
1863    event_add(&e2, NULL);
1864    event_loop(EVLOOP_ONCE);
1865    event_del(&e2);
1866 
1867    if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
1868 	   tt_fail_perror("write");
1869    }
1870 
1871    event_loop(EVLOOP_ONCE);
1872    event_del(&e1);
1873 
1874    if (test_ok != 3)
1875 	   test_ok = 0;
1876 
1877    cleanup_test();
1878 }
1879 
1880 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
1881 int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
1882 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
1883 int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
1884 
1885 static void
1886 read_once_cb(evutil_socket_t fd, short event, void *arg)
1887 {
1888 	char buf[256];
1889 	int len;
1890 
1891 	len = read(fd, buf, sizeof(buf));
1892 
1893 	if (called) {
1894 		test_ok = 0;
1895 	} else if (len) {
1896 		/* Assumes global pair[0] can be used for writing */
1897 		if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
1898 			tt_fail_perror("write");
1899 			test_ok = 0;
1900 		} else {
1901 			test_ok = 1;
1902 		}
1903 	}
1904 
1905 	called++;
1906 }
1907 
1908 static void
1909 test_want_only_once(void)
1910 {
1911 	struct event ev;
1912 	struct timeval tv;
1913 
1914 	/* Very simple read test */
1915 	setup_test("Want read only once: ");
1916 
1917 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
1918 		tt_fail_perror("write");
1919 	}
1920 
1921 	/* Setup the loop termination */
1922 	evutil_timerclear(&tv);
1923 	tv.tv_usec = 300*1000;
1924 	event_loopexit(&tv);
1925 
1926 	event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
1927 	if (event_add(&ev, NULL) == -1)
1928 		exit(1);
1929 	event_dispatch();
1930 
1931 	cleanup_test();
1932 }
1933 
1934 #define TEST_MAX_INT	6
1935 
1936 static void
1937 evtag_int_test(void *ptr)
1938 {
1939 	struct evbuffer *tmp = evbuffer_new();
1940 	ev_uint32_t integers[TEST_MAX_INT] = {
1941 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
1942 	};
1943 	ev_uint32_t integer;
1944 	ev_uint64_t big_int;
1945 	int i;
1946 
1947 	evtag_init();
1948 
1949 	for (i = 0; i < TEST_MAX_INT; i++) {
1950 		int oldlen, newlen;
1951 		oldlen = (int)EVBUFFER_LENGTH(tmp);
1952 		evtag_encode_int(tmp, integers[i]);
1953 		newlen = (int)EVBUFFER_LENGTH(tmp);
1954 		TT_BLATHER(("encoded 0x%08x with %d bytes",
1955 			(unsigned)integers[i], newlen - oldlen));
1956 		big_int = integers[i];
1957 		big_int *= 1000000000; /* 1 billion */
1958 		evtag_encode_int64(tmp, big_int);
1959 	}
1960 
1961 	for (i = 0; i < TEST_MAX_INT; i++) {
1962 		tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
1963 		tt_uint_op(integer, ==, integers[i]);
1964 		tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
1965 		tt_assert((big_int / 1000000000) == integers[i]);
1966 	}
1967 
1968 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
1969 end:
1970 	evbuffer_free(tmp);
1971 }
1972 
1973 static void
1974 evtag_fuzz(void *ptr)
1975 {
1976 	u_char buffer[4096];
1977 	struct evbuffer *tmp = evbuffer_new();
1978 	struct timeval tv;
1979 	int i, j;
1980 
1981 	int not_failed = 0;
1982 
1983 	evtag_init();
1984 
1985 	for (j = 0; j < 100; j++) {
1986 		for (i = 0; i < (int)sizeof(buffer); i++)
1987 			buffer[i] = rand();
1988 		evbuffer_drain(tmp, -1);
1989 		evbuffer_add(tmp, buffer, sizeof(buffer));
1990 
1991 		if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
1992 			not_failed++;
1993 	}
1994 
1995 	/* The majority of decodes should fail */
1996 	tt_int_op(not_failed, <, 10);
1997 
1998 	/* Now insert some corruption into the tag length field */
1999 	evbuffer_drain(tmp, -1);
2000 	evutil_timerclear(&tv);
2001 	tv.tv_sec = 1;
2002 	evtag_marshal_timeval(tmp, 0, &tv);
2003 	evbuffer_add(tmp, buffer, sizeof(buffer));
2004 
2005 	((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
2006 	if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
2007 		tt_abort_msg("evtag_unmarshal_timeval should have failed");
2008 	}
2009 
2010 end:
2011 	evbuffer_free(tmp);
2012 }
2013 
2014 static void
2015 evtag_tag_encoding(void *ptr)
2016 {
2017 	struct evbuffer *tmp = evbuffer_new();
2018 	ev_uint32_t integers[TEST_MAX_INT] = {
2019 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2020 	};
2021 	ev_uint32_t integer;
2022 	int i;
2023 
2024 	evtag_init();
2025 
2026 	for (i = 0; i < TEST_MAX_INT; i++) {
2027 		int oldlen, newlen;
2028 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2029 		evtag_encode_tag(tmp, integers[i]);
2030 		newlen = (int)EVBUFFER_LENGTH(tmp);
2031 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2032 			(unsigned)integers[i], newlen - oldlen));
2033 	}
2034 
2035 	for (i = 0; i < TEST_MAX_INT; i++) {
2036 		tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
2037 		tt_uint_op(integer, ==, integers[i]);
2038 	}
2039 
2040 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2041 
2042 end:
2043 	evbuffer_free(tmp);
2044 }
2045 
2046 static void
2047 evtag_test_peek(void *ptr)
2048 {
2049 	struct evbuffer *tmp = evbuffer_new();
2050 	ev_uint32_t u32;
2051 
2052 	evtag_marshal_int(tmp, 30, 0);
2053 	evtag_marshal_string(tmp, 40, "Hello world");
2054 
2055 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2056 	tt_int_op(u32, ==, 30);
2057 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2058 	tt_int_op(u32, ==, 1+1+1);
2059 	tt_int_op(evtag_consume(tmp), ==, 0);
2060 
2061 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2062 	tt_int_op(u32, ==, 40);
2063 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2064 	tt_int_op(u32, ==, 1+1+11);
2065 	tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
2066 	tt_int_op(u32, ==, 11);
2067 
2068 end:
2069 	evbuffer_free(tmp);
2070 }
2071 
2072 
2073 static void
2074 test_methods(void *ptr)
2075 {
2076 	const char **methods = event_get_supported_methods();
2077 	struct event_config *cfg = NULL;
2078 	struct event_base *base = NULL;
2079 	const char *backend;
2080 	int n_methods = 0;
2081 
2082 	tt_assert(methods);
2083 
2084 	backend = methods[0];
2085 	while (*methods != NULL) {
2086 		TT_BLATHER(("Support method: %s", *methods));
2087 		++methods;
2088 		++n_methods;
2089 	}
2090 
2091 	cfg = event_config_new();
2092 	assert(cfg != NULL);
2093 
2094 	tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
2095 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2096 
2097 	base = event_base_new_with_config(cfg);
2098 	if (n_methods > 1) {
2099 		tt_assert(base);
2100 		tt_str_op(backend, !=, event_base_get_method(base));
2101 	} else {
2102 		tt_assert(base == NULL);
2103 	}
2104 
2105 end:
2106 	if (base)
2107 		event_base_free(base);
2108 	if (cfg)
2109 		event_config_free(cfg);
2110 }
2111 
2112 static void
2113 test_version(void *arg)
2114 {
2115 	const char *vstr;
2116 	ev_uint32_t vint;
2117 	int major, minor, patch, n;
2118 
2119 	vstr = event_get_version();
2120 	vint = event_get_version_number();
2121 
2122 	tt_assert(vstr);
2123 	tt_assert(vint);
2124 
2125 	tt_str_op(vstr, ==, LIBEVENT_VERSION);
2126 	tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
2127 
2128 	n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
2129 	tt_assert(3 == n);
2130 	tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
2131 end:
2132 	;
2133 }
2134 
2135 static void
2136 test_base_features(void *arg)
2137 {
2138 	struct event_base *base = NULL;
2139 	struct event_config *cfg = NULL;
2140 
2141 	cfg = event_config_new();
2142 
2143 	tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
2144 
2145 	base = event_base_new_with_config(cfg);
2146 	if (base) {
2147 		tt_int_op(EV_FEATURE_ET, ==,
2148 		    event_base_get_features(base) & EV_FEATURE_ET);
2149 	} else {
2150 		base = event_base_new();
2151 		tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
2152 	}
2153 
2154 end:
2155 	if (base)
2156 		event_base_free(base);
2157 	if (cfg)
2158 		event_config_free(cfg);
2159 }
2160 
2161 #ifdef EVENT__HAVE_SETENV
2162 #define SETENV_OK
2163 #elif !defined(EVENT__HAVE_SETENV) && defined(EVENT__HAVE_PUTENV)
2164 static void setenv(const char *k, const char *v, int o_)
2165 {
2166 	char b[256];
2167 	evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
2168 	putenv(b);
2169 }
2170 #define SETENV_OK
2171 #endif
2172 
2173 #ifdef EVENT__HAVE_UNSETENV
2174 #define UNSETENV_OK
2175 #elif !defined(EVENT__HAVE_UNSETENV) && defined(EVENT__HAVE_PUTENV)
2176 static void unsetenv(const char *k)
2177 {
2178 	char b[256];
2179 	evutil_snprintf(b, sizeof(b), "%s=",k);
2180 	putenv(b);
2181 }
2182 #define UNSETENV_OK
2183 #endif
2184 
2185 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2186 static void
2187 methodname_to_envvar(const char *mname, char *buf, size_t buflen)
2188 {
2189 	char *cp;
2190 	evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
2191 	for (cp = buf; *cp; ++cp) {
2192 		*cp = EVUTIL_TOUPPER_(*cp);
2193 	}
2194 }
2195 #endif
2196 
2197 static void
2198 test_base_environ(void *arg)
2199 {
2200 	struct event_base *base = NULL;
2201 	struct event_config *cfg = NULL;
2202 
2203 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2204 	const char **basenames;
2205 	int i, n_methods=0;
2206 	char varbuf[128];
2207 	const char *defaultname, *ignoreenvname;
2208 
2209 	/* See if unsetenv works before we rely on it. */
2210 	setenv("EVENT_NOWAFFLES", "1", 1);
2211 	unsetenv("EVENT_NOWAFFLES");
2212 	if (getenv("EVENT_NOWAFFLES") != NULL) {
2213 #ifndef EVENT__HAVE_UNSETENV
2214 		TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
2215 #else
2216 		TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
2217 #endif
2218 		tt_skip();
2219 	}
2220 
2221 	basenames = event_get_supported_methods();
2222 	for (i = 0; basenames[i]; ++i) {
2223 		methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
2224 		unsetenv(varbuf);
2225 		++n_methods;
2226 	}
2227 
2228 	base = event_base_new();
2229 	tt_assert(base);
2230 
2231 	defaultname = event_base_get_method(base);
2232 	TT_BLATHER(("default is <%s>", defaultname));
2233 	event_base_free(base);
2234 	base = NULL;
2235 
2236 	/* Can we disable the method with EVENT_NOfoo ? */
2237 	if (!strcmp(defaultname, "epoll (with changelist)")) {
2238  		setenv("EVENT_NOEPOLL", "1", 1);
2239 		ignoreenvname = "epoll";
2240 	} else {
2241 		methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
2242 		setenv(varbuf, "1", 1);
2243 		ignoreenvname = defaultname;
2244 	}
2245 
2246 	/* Use an empty cfg rather than NULL so a failure doesn't exit() */
2247 	cfg = event_config_new();
2248 	base = event_base_new_with_config(cfg);
2249 	event_config_free(cfg);
2250 	cfg = NULL;
2251 	if (n_methods == 1) {
2252 		tt_assert(!base);
2253 	} else {
2254 		tt_assert(base);
2255 		tt_str_op(defaultname, !=, event_base_get_method(base));
2256 		event_base_free(base);
2257 		base = NULL;
2258 	}
2259 
2260 	/* Can we disable looking at the environment with IGNORE_ENV ? */
2261 	cfg = event_config_new();
2262 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2263 	base = event_base_new_with_config(cfg);
2264 	tt_assert(base);
2265 	tt_str_op(ignoreenvname, ==, event_base_get_method(base));
2266 #else
2267 	tt_skip();
2268 #endif
2269 
2270 end:
2271 	if (base)
2272 		event_base_free(base);
2273 	if (cfg)
2274 		event_config_free(cfg);
2275 }
2276 
2277 static void
2278 read_called_once_cb(evutil_socket_t fd, short event, void *arg)
2279 {
2280 	tt_int_op(event, ==, EV_READ);
2281 	called += 1;
2282 end:
2283 	;
2284 }
2285 
2286 static void
2287 timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
2288 {
2289 	tt_int_op(event, ==, EV_TIMEOUT);
2290 	called += 100;
2291 end:
2292 	;
2293 }
2294 
2295 static void
2296 immediate_called_twice_cb(evutil_socket_t fd, short event, void *arg)
2297 {
2298 	tt_int_op(event, ==, EV_TIMEOUT);
2299 	called += 1000;
2300 end:
2301 	;
2302 }
2303 
2304 static void
2305 test_event_once(void *ptr)
2306 {
2307 	struct basic_test_data *data = ptr;
2308 	struct timeval tv;
2309 	int r;
2310 
2311 	tv.tv_sec = 0;
2312 	tv.tv_usec = 50*1000;
2313 	called = 0;
2314 	r = event_base_once(data->base, data->pair[0], EV_READ,
2315 	    read_called_once_cb, NULL, NULL);
2316 	tt_int_op(r, ==, 0);
2317 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2318 	    timeout_called_once_cb, NULL, &tv);
2319 	tt_int_op(r, ==, 0);
2320 	r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
2321 	tt_int_op(r, <, 0);
2322 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2323 	    immediate_called_twice_cb, NULL, NULL);
2324 	tt_int_op(r, ==, 0);
2325 	tv.tv_sec = 0;
2326 	tv.tv_usec = 0;
2327 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2328 	    immediate_called_twice_cb, NULL, &tv);
2329 	tt_int_op(r, ==, 0);
2330 
2331 	if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
2332 		tt_fail_perror("write");
2333 	}
2334 
2335 	shutdown(data->pair[1], SHUT_WR);
2336 
2337 	event_base_dispatch(data->base);
2338 
2339 	tt_int_op(called, ==, 2101);
2340 end:
2341 	;
2342 }
2343 
2344 static void
2345 test_event_once_never(void *ptr)
2346 {
2347 	struct basic_test_data *data = ptr;
2348 	struct timeval tv;
2349 
2350 	/* Have one trigger in 10 seconds (don't worry, because) */
2351 	tv.tv_sec = 10;
2352 	tv.tv_usec = 0;
2353 	called = 0;
2354 	event_base_once(data->base, -1, EV_TIMEOUT,
2355 	    timeout_called_once_cb, NULL, &tv);
2356 
2357 	/* But shut down the base in 75 msec. */
2358 	tv.tv_sec = 0;
2359 	tv.tv_usec = 75*1000;
2360 	event_base_loopexit(data->base, &tv);
2361 
2362 	event_base_dispatch(data->base);
2363 
2364 	tt_int_op(called, ==, 0);
2365 end:
2366 	;
2367 }
2368 
2369 static void
2370 test_event_pending(void *ptr)
2371 {
2372 	struct basic_test_data *data = ptr;
2373 	struct event *r=NULL, *w=NULL, *t=NULL;
2374 	struct timeval tv, now, tv2;
2375 
2376 	tv.tv_sec = 0;
2377 	tv.tv_usec = 500 * 1000;
2378 	r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
2379 	    NULL);
2380 	w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
2381 	    NULL);
2382 	t = evtimer_new(data->base, timeout_cb, NULL);
2383 
2384 	tt_assert(r);
2385 	tt_assert(w);
2386 	tt_assert(t);
2387 
2388 	evutil_gettimeofday(&now, NULL);
2389 	event_add(r, NULL);
2390 	event_add(t, &tv);
2391 
2392 	tt_assert( event_pending(r, EV_READ, NULL));
2393 	tt_assert(!event_pending(w, EV_WRITE, NULL));
2394 	tt_assert(!event_pending(r, EV_WRITE, NULL));
2395 	tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
2396 	tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
2397 	tt_assert( event_pending(t, EV_TIMEOUT, NULL));
2398 	tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
2399 
2400 	tt_assert(evutil_timercmp(&tv2, &now, >));
2401 
2402 	test_timeval_diff_eq(&now, &tv2, 500);
2403 
2404 end:
2405 	if (r) {
2406 		event_del(r);
2407 		event_free(r);
2408 	}
2409 	if (w) {
2410 		event_del(w);
2411 		event_free(w);
2412 	}
2413 	if (t) {
2414 		event_del(t);
2415 		event_free(t);
2416 	}
2417 }
2418 
2419 #ifndef _WIN32
2420 /* You can't do this test on windows, since dup2 doesn't work on sockets */
2421 
2422 static void
2423 dfd_cb(evutil_socket_t fd, short e, void *data)
2424 {
2425 	*(int*)data = (int)e;
2426 }
2427 
2428 /* Regression test for our workaround for a fun epoll/linux related bug
2429  * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
2430  * will get you an EEXIST */
2431 static void
2432 test_dup_fd(void *arg)
2433 {
2434 	struct basic_test_data *data = arg;
2435 	struct event_base *base = data->base;
2436 	struct event *ev1=NULL, *ev2=NULL;
2437 	int fd, dfd=-1;
2438 	int ev1_got, ev2_got;
2439 
2440 	tt_int_op(write(data->pair[0], "Hello world",
2441 		strlen("Hello world")), >, 0);
2442 	fd = data->pair[1];
2443 
2444 	dfd = dup(fd);
2445 	tt_int_op(dfd, >=, 0);
2446 
2447 	ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
2448 	ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
2449 	ev1_got = ev2_got = 0;
2450 	event_add(ev1, NULL);
2451 	event_add(ev2, NULL);
2452 	event_base_loop(base, EVLOOP_ONCE);
2453 	tt_int_op(ev1_got, ==, EV_READ);
2454 	tt_int_op(ev2_got, ==, EV_READ);
2455 
2456 	/* Now close and delete dfd then dispatch.  We need to do the
2457 	 * dispatch here so that when we add it later, we think there
2458 	 * was an intermediate delete. */
2459 	close(dfd);
2460 	event_del(ev2);
2461 	ev1_got = ev2_got = 0;
2462 	event_base_loop(base, EVLOOP_ONCE);
2463 	tt_want_int_op(ev1_got, ==, EV_READ);
2464 	tt_int_op(ev2_got, ==, 0);
2465 
2466 	/* Re-duplicate the fd.  We need to get the same duplicated
2467 	 * value that we closed to provoke the epoll quirk.  Also, we
2468 	 * need to change the events to write, or else the old lingering
2469 	 * read event will make the test pass whether the change was
2470 	 * successful or not. */
2471 	tt_int_op(dup2(fd, dfd), ==, dfd);
2472 	event_free(ev2);
2473 	ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
2474 	event_add(ev2, NULL);
2475 	ev1_got = ev2_got = 0;
2476 	event_base_loop(base, EVLOOP_ONCE);
2477 	tt_want_int_op(ev1_got, ==, EV_READ);
2478 	tt_int_op(ev2_got, ==, EV_WRITE);
2479 
2480 end:
2481 	if (ev1)
2482 		event_free(ev1);
2483 	if (ev2)
2484 		event_free(ev2);
2485 	if (dfd >= 0)
2486 		close(dfd);
2487 }
2488 #endif
2489 
2490 #ifdef EVENT__DISABLE_MM_REPLACEMENT
2491 static void
2492 test_mm_functions(void *arg)
2493 {
2494 	tinytest_set_test_skipped_();
2495 }
2496 #else
2497 static int
2498 check_dummy_mem_ok(void *mem_)
2499 {
2500 	char *mem = mem_;
2501 	mem -= 16;
2502 	return !memcmp(mem, "{[<guardedram>]}", 16);
2503 }
2504 
2505 static void *
2506 dummy_malloc(size_t len)
2507 {
2508 	char *mem = malloc(len+16);
2509 	memcpy(mem, "{[<guardedram>]}", 16);
2510 	return mem+16;
2511 }
2512 
2513 static void *
2514 dummy_realloc(void *mem_, size_t len)
2515 {
2516 	char *mem = mem_;
2517 	if (!mem)
2518 		return dummy_malloc(len);
2519 	tt_want(check_dummy_mem_ok(mem_));
2520 	mem -= 16;
2521 	mem = realloc(mem, len+16);
2522 	return mem+16;
2523 }
2524 
2525 static void
2526 dummy_free(void *mem_)
2527 {
2528 	char *mem = mem_;
2529 	tt_want(check_dummy_mem_ok(mem_));
2530 	mem -= 16;
2531 	free(mem);
2532 }
2533 
2534 static void
2535 test_mm_functions(void *arg)
2536 {
2537 	struct event_base *b = NULL;
2538 	struct event_config *cfg = NULL;
2539 	event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
2540 	cfg = event_config_new();
2541 	event_config_avoid_method(cfg, "Nonesuch");
2542 	b = event_base_new_with_config(cfg);
2543 	tt_assert(b);
2544 	tt_assert(check_dummy_mem_ok(b));
2545 end:
2546 	if (cfg)
2547 		event_config_free(cfg);
2548 	if (b)
2549 		event_base_free(b);
2550 }
2551 #endif
2552 
2553 static void
2554 many_event_cb(evutil_socket_t fd, short event, void *arg)
2555 {
2556 	int *calledp = arg;
2557 	*calledp += 1;
2558 }
2559 
2560 static void
2561 test_many_events(void *arg)
2562 {
2563 	/* Try 70 events that should all be ready at once.  This will
2564 	 * exercise the "resize" code on most of the backends, and will make
2565 	 * sure that we can get past the 64-handle limit of some windows
2566 	 * functions. */
2567 #define MANY 70
2568 
2569 	struct basic_test_data *data = arg;
2570 	struct event_base *base = data->base;
2571 	int one_at_a_time = data->setup_data != NULL;
2572 	evutil_socket_t sock[MANY];
2573 	struct event *ev[MANY];
2574 	int called[MANY];
2575 	int i;
2576 	int loopflags = EVLOOP_NONBLOCK, evflags=0;
2577 	if (one_at_a_time) {
2578 		loopflags |= EVLOOP_ONCE;
2579 		evflags = EV_PERSIST;
2580 	}
2581 
2582 	memset(sock, 0xff, sizeof(sock));
2583 	memset(ev, 0, sizeof(ev));
2584 	memset(called, 0, sizeof(called));
2585 
2586 	for (i = 0; i < MANY; ++i) {
2587 		/* We need an event that will hit the backend, and that will
2588 		 * be ready immediately.  "Send a datagram" is an easy
2589 		 * instance of that. */
2590 		sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
2591 		tt_assert(sock[i] >= 0);
2592 		called[i] = 0;
2593 		ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
2594 		    many_event_cb, &called[i]);
2595 		event_add(ev[i], NULL);
2596 		if (one_at_a_time)
2597 			event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
2598 	}
2599 
2600 	event_base_loop(base, loopflags);
2601 
2602 	for (i = 0; i < MANY; ++i) {
2603 		if (one_at_a_time)
2604 			tt_int_op(called[i], ==, MANY - i + 1);
2605 		else
2606 			tt_int_op(called[i], ==, 1);
2607 	}
2608 
2609 end:
2610 	for (i = 0; i < MANY; ++i) {
2611 		if (ev[i])
2612 			event_free(ev[i]);
2613 		if (sock[i] >= 0)
2614 			evutil_closesocket(sock[i]);
2615 	}
2616 #undef MANY
2617 }
2618 
2619 static void
2620 test_struct_event_size(void *arg)
2621 {
2622 	tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
2623 end:
2624 	;
2625 }
2626 
2627 struct testcase_t main_testcases[] = {
2628 	/* Some converted-over tests */
2629 	{ "methods", test_methods, TT_FORK, NULL, NULL },
2630 	{ "version", test_version, 0, NULL, NULL },
2631 	BASIC(base_features, TT_FORK|TT_NO_LOGS),
2632 	{ "base_environ", test_base_environ, TT_FORK, NULL, NULL },
2633 
2634 	BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
2635 	BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
2636 
2637 	BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
2638 	BASIC(event_new_selfarg, TT_FORK|TT_NEED_BASE),
2639 	BASIC(event_assign_selfarg, TT_FORK|TT_NEED_BASE),
2640 
2641 	BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
2642 	BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
2643 	BASIC(active_later, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
2644 	BASIC(event_remove_timeout, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
2645 
2646 	/* These are still using the old API */
2647 	LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
2648 	{ "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
2649 	{ "persistent_active_timeout", test_persistent_active_timeout,
2650 	  TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
2651 	LEGACY(priorities, TT_FORK|TT_NEED_BASE),
2652 	BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
2653 	{ "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
2654 	  &basic_setup, NULL },
2655 
2656 	/* These legacy tests may not all need all of these flags. */
2657 	LEGACY(simpleread, TT_ISOLATED),
2658 	LEGACY(simpleread_multiple, TT_ISOLATED),
2659 	LEGACY(simplewrite, TT_ISOLATED),
2660 	{ "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
2661 	  NULL },
2662 	LEGACY(multiple, TT_ISOLATED),
2663 	LEGACY(persistent, TT_ISOLATED),
2664 	LEGACY(combined, TT_ISOLATED),
2665 	LEGACY(simpletimeout, TT_ISOLATED),
2666 	LEGACY(loopbreak, TT_ISOLATED),
2667 	LEGACY(loopexit, TT_ISOLATED),
2668 	LEGACY(loopexit_multiple, TT_ISOLATED),
2669 	LEGACY(nonpersist_readd, TT_ISOLATED),
2670 	LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
2671 	LEGACY(want_only_once, TT_ISOLATED),
2672 	{ "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
2673 	{ "event_once_never", test_event_once_never, TT_ISOLATED, &basic_setup, NULL },
2674 	{ "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
2675 	  NULL },
2676 #ifndef _WIN32
2677 	{ "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
2678 #endif
2679 	{ "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
2680 	{ "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
2681 	{ "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
2682 
2683 	{ "struct_event_size", test_struct_event_size, 0, NULL, NULL },
2684 
2685 #ifndef _WIN32
2686 	LEGACY(fork, TT_ISOLATED),
2687 #endif
2688 	END_OF_TESTCASES
2689 };
2690 
2691 struct testcase_t evtag_testcases[] = {
2692 	{ "int", evtag_int_test, TT_FORK, NULL, NULL },
2693 	{ "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
2694 	{ "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
2695 	{ "peek", evtag_test_peek, 0, NULL, NULL },
2696 
2697 	END_OF_TESTCASES
2698 };
2699 
2700 struct testcase_t signal_testcases[] = {
2701 #ifndef _WIN32
2702 	LEGACY(simplesignal, TT_ISOLATED),
2703 	LEGACY(multiplesignal, TT_ISOLATED),
2704 	LEGACY(immediatesignal, TT_ISOLATED),
2705 	LEGACY(signal_dealloc, TT_ISOLATED),
2706 	LEGACY(signal_pipeloss, TT_ISOLATED),
2707 	LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
2708 	LEGACY(signal_restore, TT_ISOLATED),
2709 	LEGACY(signal_assert, TT_ISOLATED),
2710 	LEGACY(signal_while_processing, TT_ISOLATED),
2711 #endif
2712 	END_OF_TESTCASES
2713 };
2714 
2715