1 /* $NetBSD: dcfd.c,v 1.1.1.2 2013/12/27 23:31:07 christos Exp $ */ 2 3 /* 4 * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A 5 * 6 * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A 7 * 8 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line) 9 * 10 * Features: 11 * DCF77 decoding 12 * simple NTP loopfilter logic for local clock 13 * interactive display for debugging 14 * 15 * Lacks: 16 * Leap second handling (at that level you should switch to NTP Version 4 - really!) 17 * 18 * Copyright (c) 1995-2005 by Frank Kardel <kardel <AT> ntp.org> 19 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany 20 * 21 * Redistribution and use in source and binary forms, with or without 22 * modification, are permitted provided that the following conditions 23 * are met: 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 3. Neither the name of the author nor the names of its contributors 30 * may be used to endorse or promote products derived from this software 31 * without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 36 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 43 * SUCH DAMAGE. 44 * 45 */ 46 47 #ifdef HAVE_CONFIG_H 48 # include <config.h> 49 #endif 50 51 #include <sys/ioctl.h> 52 #include <unistd.h> 53 #include <stdio.h> 54 #include <fcntl.h> 55 #include <sys/types.h> 56 #include <sys/time.h> 57 #include <signal.h> 58 #include <syslog.h> 59 #include <time.h> 60 61 /* 62 * NTP compilation environment 63 */ 64 #include "ntp_stdlib.h" 65 #include "ntpd.h" /* indirectly include ntp.h to get YEAR_PIVOT Y2KFixes */ 66 67 /* 68 * select which terminal handling to use (currently only SysV variants) 69 */ 70 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 71 #include <termios.h> 72 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_)) 73 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_)) 74 #else /* not HAVE_TERMIOS_H || STREAM */ 75 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 76 # include <termio.h> 77 # define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_)) 78 # define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_)) 79 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 80 #endif /* not HAVE_TERMIOS_H || STREAM */ 81 82 83 #ifndef TTY_GETATTR 84 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'" 85 #endif 86 87 #ifndef days_per_year 88 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366)) 89 #endif 90 91 #define timernormalize(_a_) \ 92 if ((_a_)->tv_usec >= 1000000) \ 93 { \ 94 (_a_)->tv_sec += (_a_)->tv_usec / 1000000; \ 95 (_a_)->tv_usec = (_a_)->tv_usec % 1000000; \ 96 } \ 97 if ((_a_)->tv_usec < 0) \ 98 { \ 99 (_a_)->tv_sec -= 1 + (-(_a_)->tv_usec / 1000000); \ 100 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \ 101 } 102 103 #ifdef timeradd 104 #undef timeradd 105 #endif 106 #define timeradd(_a_, _b_) \ 107 (_a_)->tv_sec += (_b_)->tv_sec; \ 108 (_a_)->tv_usec += (_b_)->tv_usec; \ 109 timernormalize((_a_)) 110 111 #ifdef timersub 112 #undef timersub 113 #endif 114 #define timersub(_a_, _b_) \ 115 (_a_)->tv_sec -= (_b_)->tv_sec; \ 116 (_a_)->tv_usec -= (_b_)->tv_usec; \ 117 timernormalize((_a_)) 118 119 /* 120 * debug macros 121 */ 122 #define PRINTF if (interactive) printf 123 #define LPRINTF if (interactive && loop_filter_debug) printf 124 125 #ifdef DEBUG 126 #define dprintf(_x_) LPRINTF _x_ 127 #else 128 #define dprintf(_x_) 129 #endif 130 131 #ifdef DECL_ERRNO 132 extern int errno; 133 #endif 134 135 static char *revision = "4.18"; 136 137 /* 138 * display received data (avoids also detaching from tty) 139 */ 140 static int interactive = 0; 141 142 /* 143 * display loopfilter (clock control) variables 144 */ 145 static int loop_filter_debug = 0; 146 147 /* 148 * do not set/adjust system time 149 */ 150 static int no_set = 0; 151 152 /* 153 * time that passes between start of DCF impulse and time stamping (fine 154 * adjustment) in microseconds (receiver/OS dependent) 155 */ 156 #define DEFAULT_DELAY 230000 /* rough estimate */ 157 158 /* 159 * The two states we can be in - eithe we receive nothing 160 * usable or we have the correct time 161 */ 162 #define NO_SYNC 0x01 163 #define SYNC 0x02 164 165 static int sync_state = NO_SYNC; 166 static time_t last_sync; 167 168 static unsigned long ticks = 0; 169 170 static char pat[] = "-\\|/"; 171 172 #define LINES (24-2) /* error lines after which the two headlines are repeated */ 173 174 #define MAX_UNSYNC (10*60) /* allow synchronisation loss for 10 minutes */ 175 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */ 176 177 /* 178 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details 179 */ 180 181 #define USECSCALE 10 182 #define TIMECONSTANT 2 183 #define ADJINTERVAL 0 184 #define FREQ_WEIGHT 18 185 #define PHASE_WEIGHT 7 186 #define MAX_DRIFT 0x3FFFFFFF 187 188 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_))) 189 190 static long max_adj_offset_usec = 128000; 191 192 static long clock_adjust = 0; /* current adjustment value (usec * 2^USECSCALE) */ 193 static long accum_drift = 0; /* accumulated drift value (usec / ADJINTERVAL) */ 194 static long adjustments = 0; 195 static char skip_adjust = 1; /* discard first adjustment (bad samples) */ 196 197 /* 198 * DCF77 state flags 199 */ 200 #define DCFB_ANNOUNCE 0x0001 /* switch time zone warning (DST switch) */ 201 #define DCFB_DST 0x0002 /* DST in effect */ 202 #define DCFB_LEAP 0x0004 /* LEAP warning (1 hour prior to occurrence) */ 203 #define DCFB_ALTERNATE 0x0008 /* alternate antenna used */ 204 205 struct clocktime /* clock time broken up from time code */ 206 { 207 long wday; /* Day of week: 1: Monday - 7: Sunday */ 208 long day; 209 long month; 210 long year; 211 long hour; 212 long minute; 213 long second; 214 long usecond; 215 long utcoffset; /* in minutes */ 216 long flags; /* current clock status (DCF77 state flags) */ 217 }; 218 219 typedef struct clocktime clocktime_t; 220 221 /* 222 * (usually) quick constant multiplications 223 */ 224 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1)) /* *8 + *2 */ 225 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3)) /* *16 + *8 */ 226 #define TIMES60(_X_) ((((_X_) << 4) - (_X_)) << 2) /* *(16 - 1) *4 */ 227 /* 228 * generic l_abs() function 229 */ 230 #define l_abs(_x_) (((_x_) < 0) ? -(_x_) : (_x_)) 231 232 /* 233 * conversion related return/error codes 234 */ 235 #define CVT_MASK 0x0000000F /* conversion exit code */ 236 #define CVT_NONE 0x00000001 /* format not applicable */ 237 #define CVT_FAIL 0x00000002 /* conversion failed - error code returned */ 238 #define CVT_OK 0x00000004 /* conversion succeeded */ 239 #define CVT_BADFMT 0x00000010 /* general format error - (unparsable) */ 240 #define CVT_BADDATE 0x00000020 /* invalid date */ 241 #define CVT_BADTIME 0x00000040 /* invalid time */ 242 243 /* 244 * DCF77 raw time code 245 * 246 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 247 * und Berlin, Maerz 1989 248 * 249 * Timecode transmission: 250 * AM: 251 * time marks are send every second except for the second before the 252 * next minute mark 253 * time marks consist of a reduction of transmitter power to 25% 254 * of the nominal level 255 * the falling edge is the time indication (on time) 256 * time marks of a 100ms duration constitute a logical 0 257 * time marks of a 200ms duration constitute a logical 1 258 * FM: 259 * see the spec. (basically a (non-)inverted psuedo random phase shift) 260 * 261 * Encoding: 262 * Second Contents 263 * 0 - 10 AM: free, FM: 0 264 * 11 - 14 free 265 * 15 R - alternate antenna 266 * 16 A1 - expect zone change (1 hour before) 267 * 17 - 18 Z1,Z2 - time zone 268 * 0 0 illegal 269 * 0 1 MEZ (MET) 270 * 1 0 MESZ (MED, MET DST) 271 * 1 1 illegal 272 * 19 A2 - expect leap insertion/deletion (1 hour before) 273 * 20 S - start of time code (1) 274 * 21 - 24 M1 - BCD (lsb first) Minutes 275 * 25 - 27 M10 - BCD (lsb first) 10 Minutes 276 * 28 P1 - Minute Parity (even) 277 * 29 - 32 H1 - BCD (lsb first) Hours 278 * 33 - 34 H10 - BCD (lsb first) 10 Hours 279 * 35 P2 - Hour Parity (even) 280 * 36 - 39 D1 - BCD (lsb first) Days 281 * 40 - 41 D10 - BCD (lsb first) 10 Days 282 * 42 - 44 DW - BCD (lsb first) day of week (1: Monday -> 7: Sunday) 283 * 45 - 49 MO - BCD (lsb first) Month 284 * 50 MO0 - 10 Months 285 * 51 - 53 Y1 - BCD (lsb first) Years 286 * 54 - 57 Y10 - BCD (lsb first) 10 Years 287 * 58 P3 - Date Parity (even) 288 * 59 - usually missing (minute indication), except for leap insertion 289 */ 290 291 /*----------------------------------------------------------------------- 292 * conversion table to map DCF77 bit stream into data fields. 293 * Encoding: 294 * Each field of the DCF77 code is described with two adjacent entries in 295 * this table. The first entry specifies the offset into the DCF77 data stream 296 * while the length is given as the difference between the start index and 297 * the start index of the following field. 298 */ 299 static struct rawdcfcode 300 { 301 char offset; /* start bit */ 302 } rawdcfcode[] = 303 { 304 { 0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 }, 305 { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 } 306 }; 307 308 /*----------------------------------------------------------------------- 309 * symbolic names for the fields of DCF77 describes in "rawdcfcode". 310 * see comment above for the structure of the DCF77 data 311 */ 312 #define DCF_M 0 313 #define DCF_R 1 314 #define DCF_A1 2 315 #define DCF_Z 3 316 #define DCF_A2 4 317 #define DCF_S 5 318 #define DCF_M1 6 319 #define DCF_M10 7 320 #define DCF_P1 8 321 #define DCF_H1 9 322 #define DCF_H10 10 323 #define DCF_P2 11 324 #define DCF_D1 12 325 #define DCF_D10 13 326 #define DCF_DW 14 327 #define DCF_MO 15 328 #define DCF_MO0 16 329 #define DCF_Y1 17 330 #define DCF_Y10 18 331 #define DCF_P3 19 332 333 /*----------------------------------------------------------------------- 334 * parity field table (same encoding as rawdcfcode) 335 * This table describes the sections of the DCF77 code that are 336 * parity protected 337 */ 338 static struct partab 339 { 340 char offset; /* start bit of parity field */ 341 } partab[] = 342 { 343 { 21 }, { 29 }, { 36 }, { 59 } 344 }; 345 346 /*----------------------------------------------------------------------- 347 * offsets for parity field descriptions 348 */ 349 #define DCF_P_P1 0 350 #define DCF_P_P2 1 351 #define DCF_P_P3 2 352 353 /*----------------------------------------------------------------------- 354 * legal values for time zone information 355 */ 356 #define DCF_Z_MET 0x2 357 #define DCF_Z_MED 0x1 358 359 /*----------------------------------------------------------------------- 360 * symbolic representation if the DCF77 data stream 361 */ 362 static struct dcfparam 363 { 364 unsigned char onebits[60]; 365 unsigned char zerobits[60]; 366 } dcfparam = 367 { 368 "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */ 369 "--------------------s-------p------p----------------------p" /* 'ZERO' representation */ 370 }; 371 372 /*----------------------------------------------------------------------- 373 * extract a bitfield from DCF77 datastream 374 * All numeric fields are LSB first. 375 * buf holds a pointer to a DCF77 data buffer in symbolic 376 * representation 377 * idx holds the index to the field description in rawdcfcode 378 */ 379 static unsigned long 380 ext_bf( 381 register unsigned char *buf, 382 register int idx 383 ) 384 { 385 register unsigned long sum = 0; 386 register int i, first; 387 388 first = rawdcfcode[idx].offset; 389 390 for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--) 391 { 392 sum <<= 1; 393 sum |= (buf[i] != dcfparam.zerobits[i]); 394 } 395 return sum; 396 } 397 398 /*----------------------------------------------------------------------- 399 * check even parity integrity for a bitfield 400 * 401 * buf holds a pointer to a DCF77 data buffer in symbolic 402 * representation 403 * idx holds the index to the field description in partab 404 */ 405 static unsigned 406 pcheck( 407 register unsigned char *buf, 408 register int idx 409 ) 410 { 411 register int i,last; 412 register unsigned psum = 1; 413 414 last = partab[idx+1].offset; 415 416 for (i = partab[idx].offset; i < last; i++) 417 psum ^= (buf[i] != dcfparam.zerobits[i]); 418 419 return psum; 420 } 421 422 /*----------------------------------------------------------------------- 423 * convert a DCF77 data buffer into wall clock time + flags 424 * 425 * buffer holds a pointer to a DCF77 data buffer in symbolic 426 * representation 427 * size describes the length of DCF77 information in bits (represented 428 * as chars in symbolic notation 429 * clock points to a wall clock time description of the DCF77 data (result) 430 */ 431 static unsigned long 432 convert_rawdcf( 433 unsigned char *buffer, 434 int size, 435 clocktime_t *clock_time 436 ) 437 { 438 if (size < 57) 439 { 440 PRINTF("%-30s", "*** INCOMPLETE"); 441 return CVT_NONE; 442 } 443 444 /* 445 * check Start and Parity bits 446 */ 447 if ((ext_bf(buffer, DCF_S) == 1) && 448 pcheck(buffer, DCF_P_P1) && 449 pcheck(buffer, DCF_P_P2) && 450 pcheck(buffer, DCF_P_P3)) 451 { 452 /* 453 * buffer OK - extract all fields and build wall clock time from them 454 */ 455 456 clock_time->flags = 0; 457 clock_time->usecond= 0; 458 clock_time->second = 0; 459 clock_time->minute = ext_bf(buffer, DCF_M10); 460 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1); 461 clock_time->hour = ext_bf(buffer, DCF_H10); 462 clock_time->hour = TIMES10(clock_time->hour) + ext_bf(buffer, DCF_H1); 463 clock_time->day = ext_bf(buffer, DCF_D10); 464 clock_time->day = TIMES10(clock_time->day) + ext_bf(buffer, DCF_D1); 465 clock_time->month = ext_bf(buffer, DCF_MO0); 466 clock_time->month = TIMES10(clock_time->month) + ext_bf(buffer, DCF_MO); 467 clock_time->year = ext_bf(buffer, DCF_Y10); 468 clock_time->year = TIMES10(clock_time->year) + ext_bf(buffer, DCF_Y1); 469 clock_time->wday = ext_bf(buffer, DCF_DW); 470 471 /* 472 * determine offset to UTC by examining the time zone 473 */ 474 switch (ext_bf(buffer, DCF_Z)) 475 { 476 case DCF_Z_MET: 477 clock_time->utcoffset = -60; 478 break; 479 480 case DCF_Z_MED: 481 clock_time->flags |= DCFB_DST; 482 clock_time->utcoffset = -120; 483 break; 484 485 default: 486 PRINTF("%-30s", "*** BAD TIME ZONE"); 487 return CVT_FAIL|CVT_BADFMT; 488 } 489 490 /* 491 * extract various warnings from DCF77 492 */ 493 if (ext_bf(buffer, DCF_A1)) 494 clock_time->flags |= DCFB_ANNOUNCE; 495 496 if (ext_bf(buffer, DCF_A2)) 497 clock_time->flags |= DCFB_LEAP; 498 499 if (ext_bf(buffer, DCF_R)) 500 clock_time->flags |= DCFB_ALTERNATE; 501 502 return CVT_OK; 503 } 504 else 505 { 506 /* 507 * bad format - not for us 508 */ 509 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)"); 510 return CVT_FAIL|CVT_BADFMT; 511 } 512 } 513 514 /*----------------------------------------------------------------------- 515 * raw dcf input routine - fix up 50 baud 516 * characters for 1/0 decision 517 */ 518 static unsigned long 519 cvt_rawdcf( 520 unsigned char *buffer, 521 int size, 522 clocktime_t *clock_time 523 ) 524 { 525 register unsigned char *s = buffer; 526 register unsigned char *e = buffer + size; 527 register unsigned char *b = dcfparam.onebits; 528 register unsigned char *c = dcfparam.zerobits; 529 register unsigned rtc = CVT_NONE; 530 register unsigned int i, lowmax, highmax, cutoff, span; 531 #define BITS 9 532 unsigned char histbuf[BITS]; 533 /* 534 * the input buffer contains characters with runs of consecutive 535 * bits set. These set bits are an indication of the DCF77 pulse 536 * length. We assume that we receive the pulse at 50 Baud. Thus 537 * a 100ms pulse would generate a 4 bit train (20ms per bit and 538 * start bit) 539 * a 200ms pulse would create all zeroes (and probably a frame error) 540 * 541 * The basic idea is that on corret reception we must have two 542 * maxima in the pulse length distribution histogram. (one for 543 * the zero representing pulses and one for the one representing 544 * pulses) 545 * There will always be ones in the datastream, thus we have to see 546 * two maxima. 547 * The best point to cut for a 1/0 decision is the minimum between those 548 * between the maxima. The following code tries to find this cutoff point. 549 */ 550 551 /* 552 * clear histogram buffer 553 */ 554 for (i = 0; i < BITS; i++) 555 { 556 histbuf[i] = 0; 557 } 558 559 cutoff = 0; 560 lowmax = 0; 561 562 /* 563 * convert sequences of set bits into bits counts updating 564 * the histogram alongway 565 */ 566 while (s < e) 567 { 568 register unsigned int ch = *s ^ 0xFF; 569 /* 570 * check integrity and update histogramm 571 */ 572 if (!((ch+1) & ch) || !*s) 573 { 574 /* 575 * character ok 576 */ 577 for (i = 0; ch; i++) 578 { 579 ch >>= 1; 580 } 581 582 *s = i; 583 histbuf[i]++; 584 cutoff += i; 585 lowmax++; 586 } 587 else 588 { 589 /* 590 * invalid character (no consecutive bit sequence) 591 */ 592 dprintf(("parse: cvt_rawdcf: character check for 0x%x@%ld FAILED\n", 593 (u_int)*s, (long)(s - buffer))); 594 *s = (unsigned char)~0; 595 rtc = CVT_FAIL|CVT_BADFMT; 596 } 597 s++; 598 } 599 600 /* 601 * first cutoff estimate (average bit count - must be between both 602 * maxima) 603 */ 604 if (lowmax) 605 { 606 cutoff /= lowmax; 607 } 608 else 609 { 610 cutoff = 4; /* doesn't really matter - it'll fail anyway, but gives error output */ 611 } 612 613 dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff)); 614 615 lowmax = 0; /* weighted sum */ 616 highmax = 0; /* bitcount */ 617 618 /* 619 * collect weighted sum of lower bits (left of initial guess) 620 */ 621 dprintf(("parse: cvt_rawdcf: histogram:")); 622 for (i = 0; i <= cutoff; i++) 623 { 624 lowmax += histbuf[i] * i; 625 highmax += histbuf[i]; 626 dprintf((" %d", histbuf[i])); 627 } 628 dprintf((" <M>")); 629 630 /* 631 * round up 632 */ 633 lowmax += highmax / 2; 634 635 /* 636 * calculate lower bit maximum (weighted sum / bit count) 637 * 638 * avoid divide by zero 639 */ 640 if (highmax) 641 { 642 lowmax /= highmax; 643 } 644 else 645 { 646 lowmax = 0; 647 } 648 649 highmax = 0; /* weighted sum of upper bits counts */ 650 cutoff = 0; /* bitcount */ 651 652 /* 653 * collect weighted sum of lower bits (right of initial guess) 654 */ 655 for (; i < BITS; i++) 656 { 657 highmax+=histbuf[i] * i; 658 cutoff +=histbuf[i]; 659 dprintf((" %d", histbuf[i])); 660 } 661 dprintf(("\n")); 662 663 /* 664 * determine upper maximum (weighted sum / bit count) 665 */ 666 if (cutoff) 667 { 668 highmax /= cutoff; 669 } 670 else 671 { 672 highmax = BITS-1; 673 } 674 675 /* 676 * following now holds: 677 * lowmax <= cutoff(initial guess) <= highmax 678 * best cutoff is the minimum nearest to higher bits 679 */ 680 681 /* 682 * find the minimum between lowmax and highmax (detecting 683 * possibly a minimum span) 684 */ 685 span = cutoff = lowmax; 686 for (i = lowmax; i <= highmax; i++) 687 { 688 if (histbuf[cutoff] > histbuf[i]) 689 { 690 /* 691 * got a new minimum move beginning of minimum (cutoff) and 692 * end of minimum (span) there 693 */ 694 cutoff = span = i; 695 } 696 else 697 if (histbuf[cutoff] == histbuf[i]) 698 { 699 /* 700 * minimum not better yet - but it spans more than 701 * one bit value - follow it 702 */ 703 span = i; 704 } 705 } 706 707 /* 708 * cutoff point for 1/0 decision is the middle of the minimum section 709 * in the histogram 710 */ 711 cutoff = (cutoff + span) / 2; 712 713 dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff)); 714 715 /* 716 * convert the bit counts to symbolic 1/0 information for data conversion 717 */ 718 s = buffer; 719 while ((s < e) && *c && *b) 720 { 721 if (*s == (unsigned char)~0) 722 { 723 /* 724 * invalid character 725 */ 726 *s = '?'; 727 } 728 else 729 { 730 /* 731 * symbolic 1/0 representation 732 */ 733 *s = (*s >= cutoff) ? *b : *c; 734 } 735 s++; 736 b++; 737 c++; 738 } 739 740 /* 741 * if everything went well so far return the result of the symbolic 742 * conversion routine else just the accumulated errors 743 */ 744 if (rtc != CVT_NONE) 745 { 746 PRINTF("%-30s", "*** BAD DATA"); 747 } 748 749 return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc; 750 } 751 752 /*----------------------------------------------------------------------- 753 * convert a wall clock time description of DCF77 to a Unix time (seconds 754 * since 1.1. 1970 UTC) 755 */ 756 static time_t 757 dcf_to_unixtime( 758 clocktime_t *clock_time, 759 unsigned *cvtrtc 760 ) 761 { 762 #define SETRTC(_X_) { if (cvtrtc) *cvtrtc = (_X_); } 763 static int days_of_month[] = 764 { 765 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 766 }; 767 register int i; 768 time_t t; 769 770 /* 771 * map 2 digit years to 19xx (DCF77 is a 20th century item) 772 */ 773 if ( clock_time->year < YEAR_PIVOT ) /* in case of Y2KFixes [ */ 774 clock_time->year += 100; /* *year%100, make tm_year */ 775 /* *(do we need this?) */ 776 if ( clock_time->year < YEAR_BREAK ) /* (failsafe if) */ 777 clock_time->year += 1900; /* Y2KFixes ] */ 778 779 /* 780 * must have been a really bad year code - drop it 781 */ 782 if (clock_time->year < (YEAR_PIVOT + 1900) ) /* Y2KFixes */ 783 { 784 SETRTC(CVT_FAIL|CVT_BADDATE); 785 return -1; 786 } 787 /* 788 * sorry, slow section here - but it's not time critical anyway 789 */ 790 791 /* 792 * calculate days since 1970 (watching leap years) 793 */ 794 t = julian0( clock_time->year ) - julian0( 1970 ); 795 796 /* month */ 797 if (clock_time->month <= 0 || clock_time->month > 12) 798 { 799 SETRTC(CVT_FAIL|CVT_BADDATE); 800 return -1; /* bad month */ 801 } 802 /* adjust current leap year */ 803 #if 0 804 if (clock_time->month < 3 && days_per_year(clock_time->year) == 366) 805 t--; 806 #endif 807 808 /* 809 * collect days from months excluding the current one 810 */ 811 for (i = 1; i < clock_time->month; i++) 812 { 813 t += days_of_month[i]; 814 } 815 /* day */ 816 if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ? 817 clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month])) 818 { 819 SETRTC(CVT_FAIL|CVT_BADDATE); 820 return -1; /* bad day */ 821 } 822 823 /* 824 * collect days from date excluding the current one 825 */ 826 t += clock_time->day - 1; 827 828 /* hour */ 829 if (clock_time->hour < 0 || clock_time->hour >= 24) 830 { 831 SETRTC(CVT_FAIL|CVT_BADTIME); 832 return -1; /* bad hour */ 833 } 834 835 /* 836 * calculate hours from 1. 1. 1970 837 */ 838 t = TIMES24(t) + clock_time->hour; 839 840 /* min */ 841 if (clock_time->minute < 0 || clock_time->minute > 59) 842 { 843 SETRTC(CVT_FAIL|CVT_BADTIME); 844 return -1; /* bad min */ 845 } 846 847 /* 848 * calculate minutes from 1. 1. 1970 849 */ 850 t = TIMES60(t) + clock_time->minute; 851 /* sec */ 852 853 /* 854 * calculate UTC in minutes 855 */ 856 t += clock_time->utcoffset; 857 858 if (clock_time->second < 0 || clock_time->second > 60) /* allow for LEAPs */ 859 { 860 SETRTC(CVT_FAIL|CVT_BADTIME); 861 return -1; /* bad sec */ 862 } 863 864 /* 865 * calculate UTC in seconds - phew ! 866 */ 867 t = TIMES60(t) + clock_time->second; 868 /* done */ 869 return t; 870 } 871 872 /*----------------------------------------------------------------------- 873 * cheap half baked 1/0 decision - for interactive operation only 874 */ 875 static char 876 type( 877 unsigned int c 878 ) 879 { 880 c ^= 0xFF; 881 return (c > 0xF); 882 } 883 884 /*----------------------------------------------------------------------- 885 * week day representation 886 */ 887 static const char *wday[8] = 888 { 889 "??", 890 "Mo", 891 "Tu", 892 "We", 893 "Th", 894 "Fr", 895 "Sa", 896 "Su" 897 }; 898 899 /*----------------------------------------------------------------------- 900 * generate a string representation for a timeval 901 */ 902 static char * 903 pr_timeval( 904 struct timeval *val 905 ) 906 { 907 static char buf[20]; 908 909 if (val->tv_sec == 0) 910 snprintf(buf, sizeof(buf), "%c0.%06ld", 911 (val->tv_usec < 0) ? '-' : '+', 912 (long int)l_abs(val->tv_usec)); 913 else 914 snprintf(buf, sizeof(buf), "%ld.%06ld", 915 (long int)val->tv_sec, 916 (long int)l_abs(val->tv_usec)); 917 return buf; 918 } 919 920 /*----------------------------------------------------------------------- 921 * correct the current time by an offset by setting the time rigorously 922 */ 923 static void 924 set_time( 925 struct timeval *offset 926 ) 927 { 928 struct timeval the_time; 929 930 if (no_set) 931 return; 932 933 LPRINTF("set_time: %s ", pr_timeval(offset)); 934 syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset)); 935 936 if (gettimeofday(&the_time, 0L) == -1) 937 { 938 perror("gettimeofday()"); 939 } 940 else 941 { 942 timeradd(&the_time, offset); 943 if (settimeofday(&the_time, 0L) == -1) 944 { 945 perror("settimeofday()"); 946 } 947 } 948 } 949 950 /*----------------------------------------------------------------------- 951 * slew the time by a given offset 952 */ 953 static void 954 adj_time( 955 long offset 956 ) 957 { 958 struct timeval time_offset; 959 960 if (no_set) 961 return; 962 963 time_offset.tv_sec = offset / 1000000; 964 time_offset.tv_usec = offset % 1000000; 965 966 LPRINTF("adj_time: %ld us ", (long int)offset); 967 if (adjtime(&time_offset, 0L) == -1) 968 perror("adjtime()"); 969 } 970 971 /*----------------------------------------------------------------------- 972 * read in a possibly previously written drift value 973 */ 974 static void 975 read_drift( 976 const char *drift_file 977 ) 978 { 979 FILE *df; 980 981 df = fopen(drift_file, "r"); 982 if (df != NULL) 983 { 984 int idrift = 0, fdrift = 0; 985 986 fscanf(df, "%4d.%03d", &idrift, &fdrift); 987 fclose(df); 988 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift); 989 990 accum_drift = idrift << USECSCALE; 991 fdrift = (fdrift << USECSCALE) / 1000; 992 accum_drift += fdrift & (1<<USECSCALE); 993 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift); 994 } 995 } 996 997 /*----------------------------------------------------------------------- 998 * write out the current drift value 999 */ 1000 static void 1001 update_drift( 1002 const char *drift_file, 1003 long offset, 1004 time_t reftime 1005 ) 1006 { 1007 FILE *df; 1008 1009 df = fopen(drift_file, "w"); 1010 if (df != NULL) 1011 { 1012 int idrift = R_SHIFT(accum_drift, USECSCALE); 1013 int fdrift = accum_drift & ((1<<USECSCALE)-1); 1014 1015 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift); 1016 fdrift = (fdrift * 1000) / (1<<USECSCALE); 1017 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift, 1018 (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000), 1019 (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime))); 1020 fclose(df); 1021 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift); 1022 } 1023 } 1024 1025 /*----------------------------------------------------------------------- 1026 * process adjustments derived from the DCF77 observation 1027 * (controls clock PLL) 1028 */ 1029 static void 1030 adjust_clock( 1031 struct timeval *offset, 1032 const char *drift_file, 1033 time_t reftime 1034 ) 1035 { 1036 struct timeval toffset; 1037 register long usecoffset; 1038 int tmp; 1039 1040 if (no_set) 1041 return; 1042 1043 if (skip_adjust) 1044 { 1045 skip_adjust = 0; 1046 return; 1047 } 1048 1049 toffset = *offset; 1050 toffset.tv_sec = l_abs(toffset.tv_sec); 1051 toffset.tv_usec = l_abs(toffset.tv_usec); 1052 if (toffset.tv_sec || 1053 (!toffset.tv_sec && toffset.tv_usec > max_adj_offset_usec)) 1054 { 1055 /* 1056 * hopeless - set the clock - and clear the timing 1057 */ 1058 set_time(offset); 1059 clock_adjust = 0; 1060 skip_adjust = 1; 1061 return; 1062 } 1063 1064 usecoffset = offset->tv_sec * 1000000 + offset->tv_usec; 1065 1066 clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT); /* adjustment to make for next period */ 1067 1068 tmp = 0; 1069 while (adjustments > (1 << tmp)) 1070 tmp++; 1071 adjustments = 0; 1072 if (tmp > FREQ_WEIGHT) 1073 tmp = FREQ_WEIGHT; 1074 1075 accum_drift += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp); 1076 1077 if (accum_drift > MAX_DRIFT) /* clamp into interval */ 1078 accum_drift = MAX_DRIFT; 1079 else 1080 if (accum_drift < -MAX_DRIFT) 1081 accum_drift = -MAX_DRIFT; 1082 1083 update_drift(drift_file, usecoffset, reftime); 1084 LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ", 1085 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE), 1086 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift); 1087 } 1088 1089 /*----------------------------------------------------------------------- 1090 * adjust the clock by a small mount to simulate frequency correction 1091 */ 1092 static void 1093 periodic_adjust( 1094 void 1095 ) 1096 { 1097 register long adjustment; 1098 1099 adjustments++; 1100 1101 adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT); 1102 1103 clock_adjust -= adjustment; 1104 1105 adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL); 1106 1107 adj_time(adjustment); 1108 } 1109 1110 /*----------------------------------------------------------------------- 1111 * control synchronisation status (warnings) and do periodic adjusts 1112 * (frequency control simulation) 1113 */ 1114 static void 1115 tick( 1116 int signum 1117 ) 1118 { 1119 static unsigned long last_notice = 0; 1120 1121 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC) 1122 (void)signal(SIGALRM, tick); 1123 #endif 1124 1125 periodic_adjust(); 1126 1127 ticks += 1<<ADJINTERVAL; 1128 1129 if ((ticks - last_sync) > MAX_UNSYNC) 1130 { 1131 /* 1132 * not getting time for a while 1133 */ 1134 if (sync_state == SYNC) 1135 { 1136 /* 1137 * completely lost information 1138 */ 1139 sync_state = NO_SYNC; 1140 syslog(LOG_INFO, "DCF77 reception lost (timeout)"); 1141 last_notice = ticks; 1142 } 1143 else 1144 /* 1145 * in NO_SYNC state - look whether its time to speak up again 1146 */ 1147 if ((ticks - last_notice) > NOTICE_INTERVAL) 1148 { 1149 syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal"); 1150 last_notice = ticks; 1151 } 1152 } 1153 1154 #ifndef ITIMER_REAL 1155 (void) alarm(1<<ADJINTERVAL); 1156 #endif 1157 } 1158 1159 /*----------------------------------------------------------------------- 1160 * break association from terminal to avoid catching terminal 1161 * or process group related signals (-> daemon operation) 1162 */ 1163 static void 1164 detach( 1165 void 1166 ) 1167 { 1168 # ifdef HAVE_DAEMON 1169 daemon(0, 0); 1170 # else /* not HAVE_DAEMON */ 1171 if (fork()) 1172 exit(0); 1173 1174 { 1175 u_long s; 1176 int max_fd; 1177 1178 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX) 1179 max_fd = sysconf(_SC_OPEN_MAX); 1180 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1181 max_fd = getdtablesize(); 1182 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1183 for (s = 0; s < max_fd; s++) 1184 (void) close((int)s); 1185 (void) open("/", 0); 1186 (void) dup2(0, 1); 1187 (void) dup2(0, 2); 1188 #ifdef SYS_DOMAINOS 1189 { 1190 uid_$t puid; 1191 status_$t st; 1192 1193 proc2_$who_am_i(&puid); 1194 proc2_$make_server(&puid, &st); 1195 } 1196 #endif /* SYS_DOMAINOS */ 1197 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID) 1198 # ifdef HAVE_SETSID 1199 if (setsid() == (pid_t)-1) 1200 syslog(LOG_ERR, "dcfd: setsid(): %m"); 1201 # else 1202 if (setpgid(0, 0) == -1) 1203 syslog(LOG_ERR, "dcfd: setpgid(): %m"); 1204 # endif 1205 #else /* HAVE_SETPGID || HAVE_SETSID */ 1206 { 1207 int fid; 1208 1209 fid = open("/dev/tty", 2); 1210 if (fid >= 0) 1211 { 1212 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0); 1213 (void) close(fid); 1214 } 1215 # ifdef HAVE_SETPGRP_0 1216 (void) setpgrp(); 1217 # else /* HAVE_SETPGRP_0 */ 1218 (void) setpgrp(0, getpid()); 1219 # endif /* HAVE_SETPGRP_0 */ 1220 } 1221 #endif /* HAVE_SETPGID || HAVE_SETSID */ 1222 } 1223 #endif /* not HAVE_DAEMON */ 1224 } 1225 1226 /*----------------------------------------------------------------------- 1227 * list possible arguments and options 1228 */ 1229 static void 1230 usage( 1231 char *program 1232 ) 1233 { 1234 fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program); 1235 fprintf(stderr, "\t-n do not change time\n"); 1236 fprintf(stderr, "\t-i interactive\n"); 1237 fprintf(stderr, "\t-t trace (print all datagrams)\n"); 1238 fprintf(stderr, "\t-f print all databits (includes PTB private data)\n"); 1239 fprintf(stderr, "\t-l print loop filter debug information\n"); 1240 fprintf(stderr, "\t-o print offet average for current minute\n"); 1241 fprintf(stderr, "\t-Y make internal Y2K checks then exit\n"); /* Y2KFixes */ 1242 fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n"); 1243 fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n"); 1244 } 1245 1246 /*----------------------------------------------------------------------- 1247 * check_y2k() - internal check of Y2K logic 1248 * (a lot of this logic lifted from ../ntpd/check_y2k.c) 1249 */ 1250 static int 1251 check_y2k( void ) 1252 { 1253 int year; /* current working year */ 1254 int year0 = 1900; /* sarting year for NTP time */ 1255 int yearend; /* ending year we test for NTP time. 1256 * 32-bit systems: through 2036, the 1257 **year in which NTP time overflows. 1258 * 64-bit systems: a reasonable upper 1259 **limit (well, maybe somewhat beyond 1260 **reasonable, but well before the 1261 **max time, by which time the earth 1262 **will be dead.) */ 1263 time_t Time; 1264 struct tm LocalTime; 1265 1266 int Fatals, Warnings; 1267 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \ 1268 Warnings++; else Fatals++ 1269 1270 Fatals = Warnings = 0; 1271 1272 Time = time( (time_t *)NULL ); 1273 LocalTime = *localtime( &Time ); 1274 1275 year = ( sizeof( u_long ) > 4 ) /* save max span using year as temp */ 1276 ? ( 400 * 3 ) /* three greater gregorian cycles */ 1277 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/ 1278 /* NOTE: will automacially expand test years on 1279 * 64 bit machines.... this may cause some of the 1280 * existing ntp logic to fail for years beyond 1281 * 2036 (the current 32-bit limit). If all checks 1282 * fail ONLY beyond year 2036 you may ignore such 1283 * errors, at least for a decade or so. */ 1284 yearend = year0 + year; 1285 1286 year = 1900+YEAR_PIVOT; 1287 printf( " starting year %04d\n", (int) year ); 1288 printf( " ending year %04d\n", (int) yearend ); 1289 1290 for ( ; year < yearend; year++ ) 1291 { 1292 clocktime_t ct; 1293 time_t Observed; 1294 time_t Expected; 1295 unsigned Flag; 1296 unsigned long t; 1297 1298 ct.day = 1; 1299 ct.month = 1; 1300 ct.year = year; 1301 ct.hour = ct.minute = ct.second = ct.usecond = 0; 1302 ct.utcoffset = 0; 1303 ct.flags = 0; 1304 1305 Flag = 0; 1306 Observed = dcf_to_unixtime( &ct, &Flag ); 1307 /* seems to be a clone of parse_to_unixtime() with 1308 * *a minor difference to arg2 type */ 1309 if ( ct.year != year ) 1310 { 1311 fprintf( stdout, 1312 "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n", 1313 (int)year, (int)Flag, (int)ct.year ); 1314 Error(year); 1315 break; 1316 } 1317 t = julian0(year) - julian0(1970); /* Julian day from 1970 */ 1318 Expected = t * 24 * 60 * 60; 1319 if ( Observed != Expected || Flag ) 1320 { /* time difference */ 1321 fprintf( stdout, 1322 "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1323 year, (int)Flag, 1324 (unsigned long)Observed, (unsigned long)Expected, 1325 ((long)Observed - (long)Expected) ); 1326 Error(year); 1327 break; 1328 } 1329 1330 } 1331 1332 return ( Fatals ); 1333 } 1334 1335 /*-------------------------------------------------- 1336 * rawdcf_init - set up modem lines for RAWDCF receivers 1337 */ 1338 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR)) 1339 static void 1340 rawdcf_init( 1341 int fd 1342 ) 1343 { 1344 /* 1345 * You can use the RS232 to supply the power for a DCF77 receiver. 1346 * Here a voltage between the DTR and the RTS line is used. Unfortunately 1347 * the name has changed from CIOCM_DTR to TIOCM_DTR recently. 1348 */ 1349 1350 #ifdef TIOCM_DTR 1351 int sl232 = TIOCM_DTR; /* turn on DTR for power supply */ 1352 #else 1353 int sl232 = CIOCM_DTR; /* turn on DTR for power supply */ 1354 #endif 1355 1356 if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1) 1357 { 1358 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m"); 1359 } 1360 } 1361 #else 1362 static void 1363 rawdcf_init( 1364 int fd 1365 ) 1366 { 1367 syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules"); 1368 } 1369 #endif /* DTR initialisation type */ 1370 1371 /*----------------------------------------------------------------------- 1372 * main loop - argument interpreter / setup / main loop 1373 */ 1374 int 1375 main( 1376 int argc, 1377 char **argv 1378 ) 1379 { 1380 unsigned char c; 1381 char **a = argv; 1382 int ac = argc; 1383 char *file = NULL; 1384 const char *drift_file = "/etc/dcfd.drift"; 1385 int fd; 1386 int offset = 15; 1387 int offsets = 0; 1388 int delay = DEFAULT_DELAY; /* average delay from input edge to time stamping */ 1389 int trace = 0; 1390 int errs = 0; 1391 1392 /* 1393 * process arguments 1394 */ 1395 while (--ac) 1396 { 1397 char *arg = *++a; 1398 if (*arg == '-') 1399 while ((c = *++arg)) 1400 switch (c) 1401 { 1402 case 't': 1403 trace = 1; 1404 interactive = 1; 1405 break; 1406 1407 case 'f': 1408 offset = 0; 1409 interactive = 1; 1410 break; 1411 1412 case 'l': 1413 loop_filter_debug = 1; 1414 offsets = 1; 1415 interactive = 1; 1416 break; 1417 1418 case 'n': 1419 no_set = 1; 1420 break; 1421 1422 case 'o': 1423 offsets = 1; 1424 interactive = 1; 1425 break; 1426 1427 case 'i': 1428 interactive = 1; 1429 break; 1430 1431 case 'D': 1432 if (ac > 1) 1433 { 1434 delay = atoi(*++a); 1435 ac--; 1436 } 1437 else 1438 { 1439 fprintf(stderr, "%s: -D requires integer argument\n", argv[0]); 1440 errs=1; 1441 } 1442 break; 1443 1444 case 'd': 1445 if (ac > 1) 1446 { 1447 drift_file = *++a; 1448 ac--; 1449 } 1450 else 1451 { 1452 fprintf(stderr, "%s: -d requires file name argument\n", argv[0]); 1453 errs=1; 1454 } 1455 break; 1456 1457 case 'Y': 1458 errs=check_y2k(); 1459 exit( errs ? 1 : 0 ); 1460 1461 default: 1462 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c); 1463 errs=1; 1464 break; 1465 } 1466 else 1467 if (file == NULL) 1468 file = arg; 1469 else 1470 { 1471 fprintf(stderr, "%s: device specified twice\n", argv[0]); 1472 errs=1; 1473 } 1474 } 1475 1476 if (errs) 1477 { 1478 usage(argv[0]); 1479 exit(1); 1480 } 1481 else 1482 if (file == NULL) 1483 { 1484 fprintf(stderr, "%s: device not specified\n", argv[0]); 1485 usage(argv[0]); 1486 exit(1); 1487 } 1488 1489 errs = LINES+1; 1490 1491 /* 1492 * get access to DCF77 tty port 1493 */ 1494 fd = open(file, O_RDONLY); 1495 if (fd == -1) 1496 { 1497 perror(file); 1498 exit(1); 1499 } 1500 else 1501 { 1502 int i, rrc; 1503 struct timeval t, tt, tlast; 1504 struct timeval timeout; 1505 struct timeval phase; 1506 struct timeval time_offset; 1507 char pbuf[61]; /* printable version */ 1508 char buf[61]; /* raw data */ 1509 clocktime_t clock_time; /* wall clock time */ 1510 time_t utc_time = 0; 1511 time_t last_utc_time = 0; 1512 long usecerror = 0; 1513 long lasterror = 0; 1514 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 1515 struct termios term; 1516 #else /* not HAVE_TERMIOS_H || STREAM */ 1517 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 1518 struct termio term; 1519 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 1520 #endif /* not HAVE_TERMIOS_H || STREAM */ 1521 unsigned int rtc = CVT_NONE; 1522 1523 rawdcf_init(fd); 1524 1525 timeout.tv_sec = 1; 1526 timeout.tv_usec = 500000; 1527 1528 phase.tv_sec = 0; 1529 phase.tv_usec = delay; 1530 1531 /* 1532 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO) 1533 */ 1534 if (TTY_GETATTR(fd, &term) == -1) 1535 { 1536 perror("tcgetattr"); 1537 exit(1); 1538 } 1539 1540 memset(term.c_cc, 0, sizeof(term.c_cc)); 1541 term.c_cc[VMIN] = 1; 1542 #ifdef NO_PARENB_IGNPAR 1543 term.c_cflag = CS8|CREAD|CLOCAL; 1544 #else 1545 term.c_cflag = CS8|CREAD|CLOCAL|PARENB; 1546 #endif 1547 term.c_iflag = IGNPAR; 1548 term.c_oflag = 0; 1549 term.c_lflag = 0; 1550 1551 cfsetispeed(&term, B50); 1552 cfsetospeed(&term, B50); 1553 1554 if (TTY_SETATTR(fd, &term) == -1) 1555 { 1556 perror("tcsetattr"); 1557 exit(1); 1558 } 1559 1560 /* 1561 * lose terminal if in daemon operation 1562 */ 1563 if (!interactive) 1564 detach(); 1565 1566 /* 1567 * get syslog() initialized 1568 */ 1569 #ifdef LOG_DAEMON 1570 openlog("dcfd", LOG_PID, LOG_DAEMON); 1571 #else 1572 openlog("dcfd", LOG_PID); 1573 #endif 1574 1575 /* 1576 * setup periodic operations (state control / frequency control) 1577 */ 1578 #ifdef HAVE_SIGACTION 1579 { 1580 struct sigaction act; 1581 1582 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION 1583 act.sa_sigaction = (void (*) (int, siginfo_t *, void *))0; 1584 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */ 1585 act.sa_handler = tick; 1586 sigemptyset(&act.sa_mask); 1587 act.sa_flags = 0; 1588 1589 if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1) 1590 { 1591 syslog(LOG_ERR, "sigaction(SIGALRM): %m"); 1592 exit(1); 1593 } 1594 } 1595 #else 1596 #ifdef HAVE_SIGVEC 1597 { 1598 struct sigvec vec; 1599 1600 vec.sv_handler = tick; 1601 vec.sv_mask = 0; 1602 vec.sv_flags = 0; 1603 1604 if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1) 1605 { 1606 syslog(LOG_ERR, "sigvec(SIGALRM): %m"); 1607 exit(1); 1608 } 1609 } 1610 #else 1611 (void) signal(SIGALRM, tick); 1612 #endif 1613 #endif 1614 1615 #ifdef ITIMER_REAL 1616 { 1617 struct itimerval it; 1618 1619 it.it_interval.tv_sec = 1<<ADJINTERVAL; 1620 it.it_interval.tv_usec = 0; 1621 it.it_value.tv_sec = 1<<ADJINTERVAL; 1622 it.it_value.tv_usec = 0; 1623 1624 if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1) 1625 { 1626 syslog(LOG_ERR, "setitimer: %m"); 1627 exit(1); 1628 } 1629 } 1630 #else 1631 (void) alarm(1<<ADJINTERVAL); 1632 #endif 1633 1634 PRINTF(" DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision); 1635 1636 pbuf[60] = '\0'; 1637 for ( i = 0; i < 60; i++) 1638 pbuf[i] = '.'; 1639 1640 read_drift(drift_file); 1641 1642 /* 1643 * what time is it now (for interval measurement) 1644 */ 1645 gettimeofday(&tlast, 0L); 1646 i = 0; 1647 /* 1648 * loop until input trouble ... 1649 */ 1650 do 1651 { 1652 /* 1653 * get an impulse 1654 */ 1655 while ((rrc = read(fd, &c, 1)) == 1) 1656 { 1657 gettimeofday(&t, 0L); 1658 tt = t; 1659 timersub(&t, &tlast); 1660 1661 if (errs > LINES) 1662 { 1663 PRINTF(" %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]); 1664 PRINTF(" %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]); 1665 errs = 0; 1666 } 1667 1668 /* 1669 * timeout -> possible minute mark -> interpretation 1670 */ 1671 if (timercmp(&t, &timeout, >)) 1672 { 1673 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1674 1675 if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK) 1676 { 1677 /* 1678 * this data was bad - well - forget synchronisation for now 1679 */ 1680 PRINTF("\n"); 1681 if (sync_state == SYNC) 1682 { 1683 sync_state = NO_SYNC; 1684 syslog(LOG_INFO, "DCF77 reception lost (bad data)"); 1685 } 1686 errs++; 1687 } 1688 else 1689 if (trace) 1690 { 1691 PRINTF("\r %.*s ", 59 - offset, &buf[offset]); 1692 } 1693 1694 1695 buf[0] = c; 1696 1697 /* 1698 * collect first character 1699 */ 1700 if (((c^0xFF)+1) & (c^0xFF)) 1701 pbuf[0] = '?'; 1702 else 1703 pbuf[0] = type(c) ? '#' : '-'; 1704 1705 for ( i = 1; i < 60; i++) 1706 pbuf[i] = '.'; 1707 1708 i = 0; 1709 } 1710 else 1711 { 1712 /* 1713 * collect character 1714 */ 1715 buf[i] = c; 1716 1717 /* 1718 * initial guess (usually correct) 1719 */ 1720 if (((c^0xFF)+1) & (c^0xFF)) 1721 pbuf[i] = '?'; 1722 else 1723 pbuf[i] = type(c) ? '#' : '-'; 1724 1725 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1726 } 1727 1728 if (i == 0 && rtc == CVT_OK) 1729 { 1730 /* 1731 * we got a good time code here - try to convert it to 1732 * UTC 1733 */ 1734 if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1) 1735 { 1736 PRINTF("*** BAD CONVERSION\n"); 1737 } 1738 1739 if (utc_time != (last_utc_time + 60)) 1740 { 1741 /* 1742 * well, two successive sucessful telegrams are not 60 seconds 1743 * apart 1744 */ 1745 PRINTF("*** NO MINUTE INC\n"); 1746 if (sync_state == SYNC) 1747 { 1748 sync_state = NO_SYNC; 1749 syslog(LOG_INFO, "DCF77 reception lost (data mismatch)"); 1750 } 1751 errs++; 1752 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE; 1753 } 1754 else 1755 usecerror = 0; 1756 1757 last_utc_time = utc_time; 1758 } 1759 1760 if (rtc == CVT_OK) 1761 { 1762 if (i == 0) 1763 { 1764 /* 1765 * valid time code - determine offset and 1766 * note regained reception 1767 */ 1768 last_sync = ticks; 1769 if (sync_state == NO_SYNC) 1770 { 1771 syslog(LOG_INFO, "receiving DCF77"); 1772 } 1773 else 1774 { 1775 /* 1776 * we had at least one minute SYNC - thus 1777 * last error is valid 1778 */ 1779 time_offset.tv_sec = lasterror / 1000000; 1780 time_offset.tv_usec = lasterror % 1000000; 1781 adjust_clock(&time_offset, drift_file, utc_time); 1782 } 1783 sync_state = SYNC; 1784 } 1785 1786 time_offset.tv_sec = utc_time + i; 1787 time_offset.tv_usec = 0; 1788 1789 timeradd(&time_offset, &phase); 1790 1791 usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec 1792 -tt.tv_usec; 1793 1794 /* 1795 * output interpreted DCF77 data 1796 */ 1797 PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" : 1798 "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>", 1799 wday[clock_time.wday], 1800 clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month, 1801 clock_time.year, 1802 (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_", 1803 (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_", 1804 (clock_time.flags & DCFB_DST) ? "D" : "_", 1805 (clock_time.flags & DCFB_LEAP) ? "L" : "_", 1806 (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000 1807 ); 1808 1809 if (trace && (i == 0)) 1810 { 1811 PRINTF("\n"); 1812 errs++; 1813 } 1814 lasterror = usecerror / (i+1); 1815 } 1816 else 1817 { 1818 lasterror = 0; /* we cannot calculate phase errors on bad reception */ 1819 } 1820 1821 PRINTF("\r"); 1822 1823 if (i < 60) 1824 { 1825 i++; 1826 } 1827 1828 tlast = tt; 1829 1830 if (interactive) 1831 fflush(stdout); 1832 } 1833 } while ((rrc == -1) && (errno == EINTR)); 1834 1835 /* 1836 * lost IO - sorry guys 1837 */ 1838 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file); 1839 1840 (void)close(fd); 1841 } 1842 1843 closelog(); 1844 1845 return 0; 1846 } 1847 1848 /* 1849 * History: 1850 * 1851 * dcfd.c,v 1852 * Revision 4.18 2005/10/07 22:08:18 kardel 1853 * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix) 1854 * 1855 * Revision 4.17.2.1 2005/10/03 19:15:16 kardel 1856 * work around configure not detecting a missing sigvec compatibility 1857 * interface on NetBSD 3.99.9 and above 1858 * 1859 * Revision 4.17 2005/08/10 10:09:44 kardel 1860 * output revision information 1861 * 1862 * Revision 4.16 2005/08/10 06:33:25 kardel 1863 * cleanup warnings 1864 * 1865 * Revision 4.15 2005/08/10 06:28:45 kardel 1866 * fix setting of baud rate 1867 * 1868 * Revision 4.14 2005/04/16 17:32:10 kardel 1869 * update copyright 1870 * 1871 * Revision 4.13 2004/11/14 15:29:41 kardel 1872 * support PPSAPI, upgrade Copyright to Berkeley style 1873 * 1874 */ 1875