xref: /netbsd-src/external/bsd/ntp/dist/parseutil/dcfd.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: dcfd.c,v 1.1.1.1 2009/12/13 16:56:35 kardel Exp $	*/
2 
3 /*
4  * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
5  *
6  * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
7  *
8  * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
9  *
10  * Features:
11  *  DCF77 decoding
12  *  simple NTP loopfilter logic for local clock
13  *  interactive display for debugging
14  *
15  * Lacks:
16  *  Leap second handling (at that level you should switch to NTP Version 4 - really!)
17  *
18  * Copyright (c) 1995-2005 by Frank Kardel <kardel <AT> ntp.org>
19  * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany
20  *
21  * Redistribution and use in source and binary forms, with or without
22  * modification, are permitted provided that the following conditions
23  * are met:
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  * 3. Neither the name of the author nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  */
46 
47 #ifdef HAVE_CONFIG_H
48 # include <config.h>
49 #endif
50 
51 #include <sys/ioctl.h>
52 #include <unistd.h>
53 #include <stdio.h>
54 #include <fcntl.h>
55 #include <sys/types.h>
56 #include <sys/time.h>
57 #include <signal.h>
58 #include <syslog.h>
59 #include <time.h>
60 
61 /*
62  * NTP compilation environment
63  */
64 #include "ntp_stdlib.h"
65 #include "ntpd.h"   /* indirectly include ntp.h to get YEAR_PIVOT   Y2KFixes */
66 
67 /*
68  * select which terminal handling to use (currently only SysV variants)
69  */
70 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
71 #include <termios.h>
72 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
73 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
74 #else  /* not HAVE_TERMIOS_H || STREAM */
75 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
76 #  include <termio.h>
77 #  define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
78 #  define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
79 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
80 #endif /* not HAVE_TERMIOS_H || STREAM */
81 
82 
83 #ifndef TTY_GETATTR
84 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
85 #endif
86 
87 #ifndef days_per_year
88 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
89 #endif
90 
91 #define timernormalize(_a_) \
92 	if ((_a_)->tv_usec >= 1000000) \
93 	{ \
94 		(_a_)->tv_sec  += (_a_)->tv_usec / 1000000; \
95 		(_a_)->tv_usec  = (_a_)->tv_usec % 1000000; \
96 	} \
97 	if ((_a_)->tv_usec < 0) \
98 	{ \
99 		(_a_)->tv_sec  -= 1 + (-(_a_)->tv_usec / 1000000); \
100 		(_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
101 	}
102 
103 #ifdef timeradd
104 #undef timeradd
105 #endif
106 #define timeradd(_a_, _b_) \
107 	(_a_)->tv_sec  += (_b_)->tv_sec; \
108 	(_a_)->tv_usec += (_b_)->tv_usec; \
109 	timernormalize((_a_))
110 
111 #ifdef timersub
112 #undef timersub
113 #endif
114 #define timersub(_a_, _b_) \
115 	(_a_)->tv_sec  -= (_b_)->tv_sec; \
116 	(_a_)->tv_usec -= (_b_)->tv_usec; \
117 	timernormalize((_a_))
118 
119 /*
120  * debug macros
121  */
122 #define PRINTF if (interactive) printf
123 #define LPRINTF if (interactive && loop_filter_debug) printf
124 
125 #ifdef DEBUG
126 #define dprintf(_x_) LPRINTF _x_
127 #else
128 #define dprintf(_x_)
129 #endif
130 
131 #ifdef DECL_ERRNO
132      extern int errno;
133 #endif
134 
135 static char *revision = "4.18";
136 
137 /*
138  * display received data (avoids also detaching from tty)
139  */
140 static int interactive = 0;
141 
142 /*
143  * display loopfilter (clock control) variables
144  */
145 static int loop_filter_debug = 0;
146 
147 /*
148  * do not set/adjust system time
149  */
150 static int no_set = 0;
151 
152 /*
153  * time that passes between start of DCF impulse and time stamping (fine
154  * adjustment) in microseconds (receiver/OS dependent)
155  */
156 #define DEFAULT_DELAY	230000	/* rough estimate */
157 
158 /*
159  * The two states we can be in - eithe we receive nothing
160  * usable or we have the correct time
161  */
162 #define NO_SYNC		0x01
163 #define SYNC		0x02
164 
165 static int    sync_state = NO_SYNC;
166 static time_t last_sync;
167 
168 static unsigned long ticks = 0;
169 
170 static char pat[] = "-\\|/";
171 
172 #define LINES		(24-2)	/* error lines after which the two headlines are repeated */
173 
174 #define MAX_UNSYNC	(10*60)	/* allow synchronisation loss for 10 minutes */
175 #define NOTICE_INTERVAL (20*60)	/* mention missing synchronisation every 20 minutes */
176 
177 /*
178  * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
179  */
180 
181 #define USECSCALE	10
182 #define TIMECONSTANT	2
183 #define ADJINTERVAL	0
184 #define FREQ_WEIGHT	18
185 #define PHASE_WEIGHT	7
186 #define MAX_DRIFT	0x3FFFFFFF
187 
188 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
189 
190 static long max_adj_offset_usec = 128000;
191 
192 static long clock_adjust = 0;	/* current adjustment value (usec * 2^USECSCALE) */
193 static long accum_drift   = 0;	/* accumulated drift value  (usec / ADJINTERVAL) */
194 static long adjustments  = 0;
195 static char skip_adjust  = 1;	/* discard first adjustment (bad samples) */
196 
197 /*
198  * DCF77 state flags
199  */
200 #define DCFB_ANNOUNCE		0x0001 /* switch time zone warning (DST switch) */
201 #define DCFB_DST		0x0002 /* DST in effect */
202 #define DCFB_LEAP		0x0004 /* LEAP warning (1 hour prior to occurrence) */
203 #define DCFB_ALTERNATE		0x0008 /* alternate antenna used */
204 
205 struct clocktime		/* clock time broken up from time code */
206 {
207 	long wday;		/* Day of week: 1: Monday - 7: Sunday */
208 	long day;
209 	long month;
210 	long year;
211 	long hour;
212 	long minute;
213 	long second;
214 	long usecond;
215 	long utcoffset;	/* in minutes */
216 	long flags;		/* current clock status  (DCF77 state flags) */
217 };
218 
219 typedef struct clocktime clocktime_t;
220 
221 /*
222  * (usually) quick constant multiplications
223  */
224 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1))	/* *8 + *2 */
225 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3))      /* *16 + *8 */
226 #define TIMES60(_X_) ((((_X_) << 4)  - (_X_)) << 2)     /* *(16 - 1) *4 */
227 /*
228  * generic l_abs() function
229  */
230 #define l_abs(_x_)     (((_x_) < 0) ? -(_x_) : (_x_))
231 
232 /*
233  * conversion related return/error codes
234  */
235 #define CVT_MASK	0x0000000F /* conversion exit code */
236 #define   CVT_NONE	0x00000001 /* format not applicable */
237 #define   CVT_FAIL	0x00000002 /* conversion failed - error code returned */
238 #define   CVT_OK	0x00000004 /* conversion succeeded */
239 #define CVT_BADFMT	0x00000010 /* general format error - (unparsable) */
240 #define CVT_BADDATE	0x00000020 /* invalid date */
241 #define CVT_BADTIME	0x00000040 /* invalid time */
242 
243 /*
244  * DCF77 raw time code
245  *
246  * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
247  * und Berlin, Maerz 1989
248  *
249  * Timecode transmission:
250  * AM:
251  *	time marks are send every second except for the second before the
252  *	next minute mark
253  *	time marks consist of a reduction of transmitter power to 25%
254  *	of the nominal level
255  *	the falling edge is the time indication (on time)
256  *	time marks of a 100ms duration constitute a logical 0
257  *	time marks of a 200ms duration constitute a logical 1
258  * FM:
259  *	see the spec. (basically a (non-)inverted psuedo random phase shift)
260  *
261  * Encoding:
262  * Second	Contents
263  * 0  - 10	AM: free, FM: 0
264  * 11 - 14	free
265  * 15		R     - alternate antenna
266  * 16		A1    - expect zone change (1 hour before)
267  * 17 - 18	Z1,Z2 - time zone
268  *		 0  0 illegal
269  *		 0  1 MEZ  (MET)
270  *		 1  0 MESZ (MED, MET DST)
271  *		 1  1 illegal
272  * 19		A2    - expect leap insertion/deletion (1 hour before)
273  * 20		S     - start of time code (1)
274  * 21 - 24	M1    - BCD (lsb first) Minutes
275  * 25 - 27	M10   - BCD (lsb first) 10 Minutes
276  * 28		P1    - Minute Parity (even)
277  * 29 - 32	H1    - BCD (lsb first) Hours
278  * 33 - 34      H10   - BCD (lsb first) 10 Hours
279  * 35		P2    - Hour Parity (even)
280  * 36 - 39	D1    - BCD (lsb first) Days
281  * 40 - 41	D10   - BCD (lsb first) 10 Days
282  * 42 - 44	DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
283  * 45 - 49	MO    - BCD (lsb first) Month
284  * 50           MO0   - 10 Months
285  * 51 - 53	Y1    - BCD (lsb first) Years
286  * 54 - 57	Y10   - BCD (lsb first) 10 Years
287  * 58 		P3    - Date Parity (even)
288  * 59		      - usually missing (minute indication), except for leap insertion
289  */
290 
291 /*-----------------------------------------------------------------------
292  * conversion table to map DCF77 bit stream into data fields.
293  * Encoding:
294  *   Each field of the DCF77 code is described with two adjacent entries in
295  *   this table. The first entry specifies the offset into the DCF77 data stream
296  *   while the length is given as the difference between the start index and
297  *   the start index of the following field.
298  */
299 static struct rawdcfcode
300 {
301 	char offset;			/* start bit */
302 } rawdcfcode[] =
303 {
304 	{  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
305 	{ 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
306 };
307 
308 /*-----------------------------------------------------------------------
309  * symbolic names for the fields of DCF77 describes in "rawdcfcode".
310  * see comment above for the structure of the DCF77 data
311  */
312 #define DCF_M	0
313 #define DCF_R	1
314 #define DCF_A1	2
315 #define DCF_Z	3
316 #define DCF_A2	4
317 #define DCF_S	5
318 #define DCF_M1	6
319 #define DCF_M10	7
320 #define DCF_P1	8
321 #define DCF_H1	9
322 #define DCF_H10	10
323 #define DCF_P2	11
324 #define DCF_D1	12
325 #define DCF_D10	13
326 #define DCF_DW	14
327 #define DCF_MO	15
328 #define DCF_MO0	16
329 #define DCF_Y1	17
330 #define DCF_Y10	18
331 #define DCF_P3	19
332 
333 /*-----------------------------------------------------------------------
334  * parity field table (same encoding as rawdcfcode)
335  * This table describes the sections of the DCF77 code that are
336  * parity protected
337  */
338 static struct partab
339 {
340 	char offset;			/* start bit of parity field */
341 } partab[] =
342 {
343 	{ 21 }, { 29 }, { 36 }, { 59 }
344 };
345 
346 /*-----------------------------------------------------------------------
347  * offsets for parity field descriptions
348  */
349 #define DCF_P_P1	0
350 #define DCF_P_P2	1
351 #define DCF_P_P3	2
352 
353 /*-----------------------------------------------------------------------
354  * legal values for time zone information
355  */
356 #define DCF_Z_MET 0x2
357 #define DCF_Z_MED 0x1
358 
359 /*-----------------------------------------------------------------------
360  * symbolic representation if the DCF77 data stream
361  */
362 static struct dcfparam
363 {
364 	unsigned char onebits[60];
365 	unsigned char zerobits[60];
366 } dcfparam =
367 {
368 	"###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
369 	"--------------------s-------p------p----------------------p"  /* 'ZERO' representation */
370 };
371 
372 /*-----------------------------------------------------------------------
373  * extract a bitfield from DCF77 datastream
374  * All numeric fields are LSB first.
375  * buf holds a pointer to a DCF77 data buffer in symbolic
376  *     representation
377  * idx holds the index to the field description in rawdcfcode
378  */
379 static unsigned long
380 ext_bf(
381 	register unsigned char *buf,
382 	register int   idx
383 	)
384 {
385 	register unsigned long sum = 0;
386 	register int i, first;
387 
388 	first = rawdcfcode[idx].offset;
389 
390 	for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
391 	{
392 		sum <<= 1;
393 		sum |= (buf[i] != dcfparam.zerobits[i]);
394 	}
395 	return sum;
396 }
397 
398 /*-----------------------------------------------------------------------
399  * check even parity integrity for a bitfield
400  *
401  * buf holds a pointer to a DCF77 data buffer in symbolic
402  *     representation
403  * idx holds the index to the field description in partab
404  */
405 static unsigned
406 pcheck(
407 	register unsigned char *buf,
408 	register int   idx
409 	)
410 {
411 	register int i,last;
412 	register unsigned psum = 1;
413 
414 	last = partab[idx+1].offset;
415 
416 	for (i = partab[idx].offset; i < last; i++)
417 	    psum ^= (buf[i] != dcfparam.zerobits[i]);
418 
419 	return psum;
420 }
421 
422 /*-----------------------------------------------------------------------
423  * convert a DCF77 data buffer into wall clock time + flags
424  *
425  * buffer holds a pointer to a DCF77 data buffer in symbolic
426  *        representation
427  * size   describes the length of DCF77 information in bits (represented
428  *        as chars in symbolic notation
429  * clock  points to a wall clock time description of the DCF77 data (result)
430  */
431 static unsigned long
432 convert_rawdcf(
433 	       unsigned char   *buffer,
434 	       int              size,
435 	       clocktime_t     *clock_time
436 	       )
437 {
438 	if (size < 57)
439 	{
440 		PRINTF("%-30s", "*** INCOMPLETE");
441 		return CVT_NONE;
442 	}
443 
444 	/*
445 	 * check Start and Parity bits
446 	 */
447 	if ((ext_bf(buffer, DCF_S) == 1) &&
448 	    pcheck(buffer, DCF_P_P1) &&
449 	    pcheck(buffer, DCF_P_P2) &&
450 	    pcheck(buffer, DCF_P_P3))
451 	{
452 		/*
453 		 * buffer OK - extract all fields and build wall clock time from them
454 		 */
455 
456 		clock_time->flags  = 0;
457 		clock_time->usecond= 0;
458 		clock_time->second = 0;
459 		clock_time->minute = ext_bf(buffer, DCF_M10);
460 		clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
461 		clock_time->hour   = ext_bf(buffer, DCF_H10);
462 		clock_time->hour   = TIMES10(clock_time->hour)   + ext_bf(buffer, DCF_H1);
463 		clock_time->day    = ext_bf(buffer, DCF_D10);
464 		clock_time->day    = TIMES10(clock_time->day)    + ext_bf(buffer, DCF_D1);
465 		clock_time->month  = ext_bf(buffer, DCF_MO0);
466 		clock_time->month  = TIMES10(clock_time->month)  + ext_bf(buffer, DCF_MO);
467 		clock_time->year   = ext_bf(buffer, DCF_Y10);
468 		clock_time->year   = TIMES10(clock_time->year)   + ext_bf(buffer, DCF_Y1);
469 		clock_time->wday   = ext_bf(buffer, DCF_DW);
470 
471 		/*
472 		 * determine offset to UTC by examining the time zone
473 		 */
474 		switch (ext_bf(buffer, DCF_Z))
475 		{
476 		    case DCF_Z_MET:
477 			clock_time->utcoffset = -60;
478 			break;
479 
480 		    case DCF_Z_MED:
481 			clock_time->flags     |= DCFB_DST;
482 			clock_time->utcoffset  = -120;
483 			break;
484 
485 		    default:
486 			PRINTF("%-30s", "*** BAD TIME ZONE");
487 			return CVT_FAIL|CVT_BADFMT;
488 		}
489 
490 		/*
491 		 * extract various warnings from DCF77
492 		 */
493 		if (ext_bf(buffer, DCF_A1))
494 		    clock_time->flags |= DCFB_ANNOUNCE;
495 
496 		if (ext_bf(buffer, DCF_A2))
497 		    clock_time->flags |= DCFB_LEAP;
498 
499 		if (ext_bf(buffer, DCF_R))
500 		    clock_time->flags |= DCFB_ALTERNATE;
501 
502 		return CVT_OK;
503 	}
504 	else
505 	{
506 		/*
507 		 * bad format - not for us
508 		 */
509 		PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
510 		return CVT_FAIL|CVT_BADFMT;
511 	}
512 }
513 
514 /*-----------------------------------------------------------------------
515  * raw dcf input routine - fix up 50 baud
516  * characters for 1/0 decision
517  */
518 static unsigned long
519 cvt_rawdcf(
520 	   unsigned char   *buffer,
521 	   int              size,
522 	   clocktime_t     *clock_time
523 	   )
524 {
525 	register unsigned char *s = buffer;
526 	register unsigned char *e = buffer + size;
527 	register unsigned char *b = dcfparam.onebits;
528 	register unsigned char *c = dcfparam.zerobits;
529 	register unsigned rtc = CVT_NONE;
530 	register unsigned int i, lowmax, highmax, cutoff, span;
531 #define BITS 9
532 	unsigned char     histbuf[BITS];
533 	/*
534 	 * the input buffer contains characters with runs of consecutive
535 	 * bits set. These set bits are an indication of the DCF77 pulse
536 	 * length. We assume that we receive the pulse at 50 Baud. Thus
537 	 * a 100ms pulse would generate a 4 bit train (20ms per bit and
538 	 * start bit)
539 	 * a 200ms pulse would create all zeroes (and probably a frame error)
540 	 *
541 	 * The basic idea is that on corret reception we must have two
542 	 * maxima in the pulse length distribution histogram. (one for
543 	 * the zero representing pulses and one for the one representing
544 	 * pulses)
545 	 * There will always be ones in the datastream, thus we have to see
546 	 * two maxima.
547 	 * The best point to cut for a 1/0 decision is the minimum between those
548 	 * between the maxima. The following code tries to find this cutoff point.
549 	 */
550 
551 	/*
552 	 * clear histogram buffer
553 	 */
554 	for (i = 0; i < BITS; i++)
555 	{
556 		histbuf[i] = 0;
557 	}
558 
559 	cutoff = 0;
560 	lowmax = 0;
561 
562 	/*
563 	 * convert sequences of set bits into bits counts updating
564 	 * the histogram alongway
565 	 */
566 	while (s < e)
567 	{
568 		register unsigned int ch = *s ^ 0xFF;
569 		/*
570 		 * check integrity and update histogramm
571 		 */
572 		if (!((ch+1) & ch) || !*s)
573 		{
574 			/*
575 			 * character ok
576 			 */
577 			for (i = 0; ch; i++)
578 			{
579 				ch >>= 1;
580 			}
581 
582 			*s = i;
583 			histbuf[i]++;
584 			cutoff += i;
585 			lowmax++;
586 		}
587 		else
588 		{
589 			/*
590 			 * invalid character (no consecutive bit sequence)
591 			 */
592 			dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer));
593 			*s = (unsigned char)~0;
594 			rtc = CVT_FAIL|CVT_BADFMT;
595 		}
596 		s++;
597 	}
598 
599 	/*
600 	 * first cutoff estimate (average bit count - must be between both
601 	 * maxima)
602 	 */
603 	if (lowmax)
604 	{
605 		cutoff /= lowmax;
606 	}
607 	else
608 	{
609 		cutoff = 4;	/* doesn't really matter - it'll fail anyway, but gives error output */
610 	}
611 
612 	dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
613 
614 	lowmax = 0;  /* weighted sum */
615 	highmax = 0; /* bitcount */
616 
617 	/*
618 	 * collect weighted sum of lower bits (left of initial guess)
619 	 */
620 	dprintf(("parse: cvt_rawdcf: histogram:"));
621 	for (i = 0; i <= cutoff; i++)
622 	{
623 		lowmax  += histbuf[i] * i;
624 		highmax += histbuf[i];
625 		dprintf((" %d", histbuf[i]));
626 	}
627 	dprintf((" <M>"));
628 
629 	/*
630 	 * round up
631 	 */
632 	lowmax += highmax / 2;
633 
634 	/*
635 	 * calculate lower bit maximum (weighted sum / bit count)
636 	 *
637 	 * avoid divide by zero
638 	 */
639 	if (highmax)
640 	{
641 		lowmax /= highmax;
642 	}
643 	else
644 	{
645 		lowmax = 0;
646 	}
647 
648 	highmax = 0; /* weighted sum of upper bits counts */
649 	cutoff = 0;  /* bitcount */
650 
651 	/*
652 	 * collect weighted sum of lower bits (right of initial guess)
653 	 */
654 	for (; i < BITS; i++)
655 	{
656 		highmax+=histbuf[i] * i;
657 		cutoff +=histbuf[i];
658 		dprintf((" %d", histbuf[i]));
659 	}
660 	dprintf(("\n"));
661 
662 	/*
663 	 * determine upper maximum (weighted sum / bit count)
664 	 */
665 	if (cutoff)
666 	{
667 		highmax /= cutoff;
668 	}
669 	else
670 	{
671 		highmax = BITS-1;
672 	}
673 
674 	/*
675 	 * following now holds:
676 	 * lowmax <= cutoff(initial guess) <= highmax
677 	 * best cutoff is the minimum nearest to higher bits
678 	 */
679 
680 	/*
681 	 * find the minimum between lowmax and highmax (detecting
682 	 * possibly a minimum span)
683 	 */
684 	span = cutoff = lowmax;
685 	for (i = lowmax; i <= highmax; i++)
686 	{
687 		if (histbuf[cutoff] > histbuf[i])
688 		{
689 			/*
690 			 * got a new minimum move beginning of minimum (cutoff) and
691 			 * end of minimum (span) there
692 			 */
693 			cutoff = span = i;
694 		}
695 		else
696 		    if (histbuf[cutoff] == histbuf[i])
697 		    {
698 			    /*
699 			     * minimum not better yet - but it spans more than
700 			     * one bit value - follow it
701 			     */
702 			    span = i;
703 		    }
704 	}
705 
706 	/*
707 	 * cutoff point for 1/0 decision is the middle of the minimum section
708 	 * in the histogram
709 	 */
710 	cutoff = (cutoff + span) / 2;
711 
712 	dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
713 
714 	/*
715 	 * convert the bit counts to symbolic 1/0 information for data conversion
716 	 */
717 	s = buffer;
718 	while ((s < e) && *c && *b)
719 	{
720 		if (*s == (unsigned char)~0)
721 		{
722 			/*
723 			 * invalid character
724 			 */
725 			*s = '?';
726 		}
727 		else
728 		{
729 			/*
730 			 * symbolic 1/0 representation
731 			 */
732 			*s = (*s >= cutoff) ? *b : *c;
733 		}
734 		s++;
735 		b++;
736 		c++;
737 	}
738 
739 	/*
740 	 * if everything went well so far return the result of the symbolic
741 	 * conversion routine else just the accumulated errors
742 	 */
743 	if (rtc != CVT_NONE)
744 	{
745 		PRINTF("%-30s", "*** BAD DATA");
746 	}
747 
748 	return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
749 }
750 
751 /*-----------------------------------------------------------------------
752  * convert a wall clock time description of DCF77 to a Unix time (seconds
753  * since 1.1. 1970 UTC)
754  */
755 static time_t
756 dcf_to_unixtime(
757 		clocktime_t   *clock_time,
758 		unsigned *cvtrtc
759 		)
760 {
761 #define SETRTC(_X_)	{ if (cvtrtc) *cvtrtc = (_X_); }
762 	static int days_of_month[] =
763 	{
764 		0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
765 	};
766 	register int i;
767 	time_t t;
768 
769 	/*
770 	 * map 2 digit years to 19xx (DCF77 is a 20th century item)
771 	 */
772 	if ( clock_time->year < YEAR_PIVOT ) 	/* in case of	   Y2KFixes [ */
773 		clock_time->year += 100;	/* *year%100, make tm_year */
774 						/* *(do we need this?) */
775 	if ( clock_time->year < YEAR_BREAK )	/* (failsafe if) */
776 	    clock_time->year += 1900;				/* Y2KFixes ] */
777 
778 	/*
779 	 * must have been a really bad year code - drop it
780 	 */
781 	if (clock_time->year < (YEAR_PIVOT + 1900) )		/* Y2KFixes */
782 	{
783 		SETRTC(CVT_FAIL|CVT_BADDATE);
784 		return -1;
785 	}
786 	/*
787 	 * sorry, slow section here - but it's not time critical anyway
788 	 */
789 
790 	/*
791 	 * calculate days since 1970 (watching leap years)
792 	 */
793 	t = julian0( clock_time->year ) - julian0( 1970 );
794 
795   				/* month */
796 	if (clock_time->month <= 0 || clock_time->month > 12)
797 	{
798 		SETRTC(CVT_FAIL|CVT_BADDATE);
799 		return -1;		/* bad month */
800 	}
801 				/* adjust current leap year */
802 #if 0
803 	if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
804 	    t--;
805 #endif
806 
807 	/*
808 	 * collect days from months excluding the current one
809 	 */
810 	for (i = 1; i < clock_time->month; i++)
811 	{
812 		t += days_of_month[i];
813 	}
814 				/* day */
815 	if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
816 			       clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
817 	{
818 		SETRTC(CVT_FAIL|CVT_BADDATE);
819 		return -1;		/* bad day */
820 	}
821 
822 	/*
823 	 * collect days from date excluding the current one
824 	 */
825 	t += clock_time->day - 1;
826 
827 				/* hour */
828 	if (clock_time->hour < 0 || clock_time->hour >= 24)
829 	{
830 		SETRTC(CVT_FAIL|CVT_BADTIME);
831 		return -1;		/* bad hour */
832 	}
833 
834 	/*
835 	 * calculate hours from 1. 1. 1970
836 	 */
837 	t = TIMES24(t) + clock_time->hour;
838 
839   				/* min */
840 	if (clock_time->minute < 0 || clock_time->minute > 59)
841 	{
842 		SETRTC(CVT_FAIL|CVT_BADTIME);
843 		return -1;		/* bad min */
844 	}
845 
846 	/*
847 	 * calculate minutes from 1. 1. 1970
848 	 */
849 	t = TIMES60(t) + clock_time->minute;
850 				/* sec */
851 
852 	/*
853 	 * calculate UTC in minutes
854 	 */
855 	t += clock_time->utcoffset;
856 
857 	if (clock_time->second < 0 || clock_time->second > 60)	/* allow for LEAPs */
858 	{
859 		SETRTC(CVT_FAIL|CVT_BADTIME);
860 		return -1;		/* bad sec */
861 	}
862 
863 	/*
864 	 * calculate UTC in seconds - phew !
865 	 */
866 	t  = TIMES60(t) + clock_time->second;
867 				/* done */
868 	return t;
869 }
870 
871 /*-----------------------------------------------------------------------
872  * cheap half baked 1/0 decision - for interactive operation only
873  */
874 static char
875 type(
876      unsigned int c
877      )
878 {
879 	c ^= 0xFF;
880 	return (c > 0xF);
881 }
882 
883 /*-----------------------------------------------------------------------
884  * week day representation
885  */
886 static const char *wday[8] =
887 {
888 	"??",
889 	"Mo",
890 	"Tu",
891 	"We",
892 	"Th",
893 	"Fr",
894 	"Sa",
895 	"Su"
896 };
897 
898 /*-----------------------------------------------------------------------
899  * generate a string representation for a timeval
900  */
901 static char *
902 pr_timeval(
903 	   struct timeval *val
904 	   )
905 {
906 	static char buf[20];
907 
908 	if (val->tv_sec == 0)
909 	    sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec));
910 	else
911 	    sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec));
912 	return buf;
913 }
914 
915 /*-----------------------------------------------------------------------
916  * correct the current time by an offset by setting the time rigorously
917  */
918 static void
919 set_time(
920 	 struct timeval *offset
921 	 )
922 {
923 	struct timeval the_time;
924 
925 	if (no_set)
926 	    return;
927 
928 	LPRINTF("set_time: %s ", pr_timeval(offset));
929 	syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
930 
931 	if (gettimeofday(&the_time, 0L) == -1)
932 	{
933 		perror("gettimeofday()");
934 	}
935 	else
936 	{
937 		timeradd(&the_time, offset);
938 		if (settimeofday(&the_time, 0L) == -1)
939 		{
940 			perror("settimeofday()");
941 		}
942 	}
943 }
944 
945 /*-----------------------------------------------------------------------
946  * slew the time by a given offset
947  */
948 static void
949 adj_time(
950 	 long offset
951 	 )
952 {
953 	struct timeval time_offset;
954 
955 	if (no_set)
956 	    return;
957 
958 	time_offset.tv_sec  = offset / 1000000;
959 	time_offset.tv_usec = offset % 1000000;
960 
961 	LPRINTF("adj_time: %ld us ", (long int)offset);
962 	if (adjtime(&time_offset, 0L) == -1)
963 	    perror("adjtime()");
964 }
965 
966 /*-----------------------------------------------------------------------
967  * read in a possibly previously written drift value
968  */
969 static void
970 read_drift(
971 	   const char *drift_file
972 	   )
973 {
974 	FILE *df;
975 
976 	df = fopen(drift_file, "r");
977 	if (df != NULL)
978 	{
979 		int idrift = 0, fdrift = 0;
980 
981 		fscanf(df, "%4d.%03d", &idrift, &fdrift);
982 		fclose(df);
983 		LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
984 
985 		accum_drift = idrift << USECSCALE;
986 		fdrift     = (fdrift << USECSCALE) / 1000;
987 		accum_drift += fdrift & (1<<USECSCALE);
988 		LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
989 	}
990 }
991 
992 /*-----------------------------------------------------------------------
993  * write out the current drift value
994  */
995 static void
996 update_drift(
997 	     const char *drift_file,
998 	     long offset,
999 	     time_t reftime
1000 	     )
1001 {
1002 	FILE *df;
1003 
1004 	df = fopen(drift_file, "w");
1005 	if (df != NULL)
1006 	{
1007 		int idrift = R_SHIFT(accum_drift, USECSCALE);
1008 		int fdrift = accum_drift & ((1<<USECSCALE)-1);
1009 
1010 		LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
1011 		fdrift = (fdrift * 1000) / (1<<USECSCALE);
1012 		fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
1013 			(offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
1014 			(long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
1015 		fclose(df);
1016 		LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
1017 	}
1018 }
1019 
1020 /*-----------------------------------------------------------------------
1021  * process adjustments derived from the DCF77 observation
1022  * (controls clock PLL)
1023  */
1024 static void
1025 adjust_clock(
1026 	     struct timeval *offset,
1027 	     const char *drift_file,
1028 	     time_t reftime
1029 	     )
1030 {
1031 	struct timeval toffset;
1032 	register long usecoffset;
1033 	int tmp;
1034 
1035 	if (no_set)
1036 	    return;
1037 
1038 	if (skip_adjust)
1039 	{
1040 		skip_adjust = 0;
1041 		return;
1042 	}
1043 
1044 	toffset = *offset;
1045 	toffset.tv_sec  = l_abs(toffset.tv_sec);
1046 	toffset.tv_usec = l_abs(toffset.tv_usec);
1047 	if (toffset.tv_sec ||
1048 	    (!toffset.tv_sec && toffset.tv_usec > max_adj_offset_usec))
1049 	{
1050 		/*
1051 		 * hopeless - set the clock - and clear the timing
1052 		 */
1053 		set_time(offset);
1054 		clock_adjust = 0;
1055 		skip_adjust  = 1;
1056 		return;
1057 	}
1058 
1059 	usecoffset   = offset->tv_sec * 1000000 + offset->tv_usec;
1060 
1061 	clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT);	/* adjustment to make for next period */
1062 
1063 	tmp = 0;
1064 	while (adjustments > (1 << tmp))
1065 	    tmp++;
1066 	adjustments = 0;
1067 	if (tmp > FREQ_WEIGHT)
1068 	    tmp = FREQ_WEIGHT;
1069 
1070 	accum_drift  += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1071 
1072 	if (accum_drift > MAX_DRIFT)		/* clamp into interval */
1073 	    accum_drift = MAX_DRIFT;
1074 	else
1075 	    if (accum_drift < -MAX_DRIFT)
1076 		accum_drift = -MAX_DRIFT;
1077 
1078 	update_drift(drift_file, usecoffset, reftime);
1079 	LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1080 		pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1081 		(long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1082 }
1083 
1084 /*-----------------------------------------------------------------------
1085  * adjust the clock by a small mount to simulate frequency correction
1086  */
1087 static void
1088 periodic_adjust(
1089 		void
1090 		)
1091 {
1092 	register long adjustment;
1093 
1094 	adjustments++;
1095 
1096 	adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1097 
1098 	clock_adjust -= adjustment;
1099 
1100 	adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1101 
1102 	adj_time(adjustment);
1103 }
1104 
1105 /*-----------------------------------------------------------------------
1106  * control synchronisation status (warnings) and do periodic adjusts
1107  * (frequency control simulation)
1108  */
1109 static void
1110 tick(
1111      int signum
1112      )
1113 {
1114 	static unsigned long last_notice = 0;
1115 
1116 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1117 	(void)signal(SIGALRM, tick);
1118 #endif
1119 
1120 	periodic_adjust();
1121 
1122 	ticks += 1<<ADJINTERVAL;
1123 
1124 	if ((ticks - last_sync) > MAX_UNSYNC)
1125 	{
1126 		/*
1127 		 * not getting time for a while
1128 		 */
1129 		if (sync_state == SYNC)
1130 		{
1131 			/*
1132 			 * completely lost information
1133 			 */
1134 			sync_state = NO_SYNC;
1135 			syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1136 			last_notice = ticks;
1137 		}
1138 		else
1139 		    /*
1140 		     * in NO_SYNC state - look whether its time to speak up again
1141 		     */
1142 		    if ((ticks - last_notice) > NOTICE_INTERVAL)
1143 		    {
1144 			    syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1145 			    last_notice = ticks;
1146 		    }
1147 	}
1148 
1149 #ifndef ITIMER_REAL
1150 	(void) alarm(1<<ADJINTERVAL);
1151 #endif
1152 }
1153 
1154 /*-----------------------------------------------------------------------
1155  * break association from terminal to avoid catching terminal
1156  * or process group related signals (-> daemon operation)
1157  */
1158 static void
1159 detach(
1160        void
1161        )
1162 {
1163 #   ifdef HAVE_DAEMON
1164 	daemon(0, 0);
1165 #   else /* not HAVE_DAEMON */
1166 	if (fork())
1167 	    exit(0);
1168 
1169 	{
1170 		u_long s;
1171 		int max_fd;
1172 
1173 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1174 		max_fd = sysconf(_SC_OPEN_MAX);
1175 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1176 		max_fd = getdtablesize();
1177 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1178 		for (s = 0; s < max_fd; s++)
1179 		    (void) close((int)s);
1180 		(void) open("/", 0);
1181 		(void) dup2(0, 1);
1182 		(void) dup2(0, 2);
1183 #ifdef SYS_DOMAINOS
1184 		{
1185 			uid_$t puid;
1186 			status_$t st;
1187 
1188 			proc2_$who_am_i(&puid);
1189 			proc2_$make_server(&puid, &st);
1190 		}
1191 #endif /* SYS_DOMAINOS */
1192 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1193 # ifdef HAVE_SETSID
1194 		if (setsid() == (pid_t)-1)
1195 		    syslog(LOG_ERR, "dcfd: setsid(): %m");
1196 # else
1197 		if (setpgid(0, 0) == -1)
1198 		    syslog(LOG_ERR, "dcfd: setpgid(): %m");
1199 # endif
1200 #else /* HAVE_SETPGID || HAVE_SETSID */
1201 		{
1202 			int fid;
1203 
1204 			fid = open("/dev/tty", 2);
1205 			if (fid >= 0)
1206 			{
1207 				(void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1208 				(void) close(fid);
1209 			}
1210 # ifdef HAVE_SETPGRP_0
1211 			(void) setpgrp();
1212 # else /* HAVE_SETPGRP_0 */
1213 			(void) setpgrp(0, getpid());
1214 # endif /* HAVE_SETPGRP_0 */
1215 		}
1216 #endif /* HAVE_SETPGID || HAVE_SETSID */
1217 	}
1218 #endif /* not HAVE_DAEMON */
1219 }
1220 
1221 /*-----------------------------------------------------------------------
1222  * list possible arguments and options
1223  */
1224 static void
1225 usage(
1226       char *program
1227       )
1228 {
1229   fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1230 	fprintf(stderr, "\t-n              do not change time\n");
1231 	fprintf(stderr, "\t-i              interactive\n");
1232 	fprintf(stderr, "\t-t              trace (print all datagrams)\n");
1233 	fprintf(stderr, "\t-f              print all databits (includes PTB private data)\n");
1234 	fprintf(stderr, "\t-l              print loop filter debug information\n");
1235 	fprintf(stderr, "\t-o              print offet average for current minute\n");
1236 	fprintf(stderr, "\t-Y              make internal Y2K checks then exit\n");	/* Y2KFixes */
1237 	fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1238 	fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1239 }
1240 
1241 /*-----------------------------------------------------------------------
1242  * check_y2k() - internal check of Y2K logic
1243  *	(a lot of this logic lifted from ../ntpd/check_y2k.c)
1244  */
1245 static int
1246 check_y2k( void )
1247 {
1248     int  year;			/* current working year */
1249     int  year0 = 1900;		/* sarting year for NTP time */
1250     int  yearend;		/* ending year we test for NTP time.
1251 				    * 32-bit systems: through 2036, the
1252 				      **year in which NTP time overflows.
1253 				    * 64-bit systems: a reasonable upper
1254 				      **limit (well, maybe somewhat beyond
1255 				      **reasonable, but well before the
1256 				      **max time, by which time the earth
1257 				      **will be dead.) */
1258     time_t Time;
1259     struct tm LocalTime;
1260 
1261     int Fatals, Warnings;
1262 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1263 	Warnings++; else Fatals++
1264 
1265     Fatals = Warnings = 0;
1266 
1267     Time = time( (time_t *)NULL );
1268     LocalTime = *localtime( &Time );
1269 
1270     year = ( sizeof( u_long ) > 4 ) 	/* save max span using year as temp */
1271 		? ( 400 * 3 ) 		/* three greater gregorian cycles */
1272 		: ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1273 			/* NOTE: will automacially expand test years on
1274 			 * 64 bit machines.... this may cause some of the
1275 			 * existing ntp logic to fail for years beyond
1276 			 * 2036 (the current 32-bit limit). If all checks
1277 			 * fail ONLY beyond year 2036 you may ignore such
1278 			 * errors, at least for a decade or so. */
1279     yearend = year0 + year;
1280 
1281     year = 1900+YEAR_PIVOT;
1282     printf( "  starting year %04d\n", (int) year );
1283     printf( "  ending year   %04d\n", (int) yearend );
1284 
1285     for ( ; year < yearend; year++ )
1286     {
1287 	clocktime_t  ct;
1288 	time_t	     Observed;
1289 	time_t	     Expected;
1290 	unsigned     Flag;
1291 	unsigned long t;
1292 
1293 	ct.day = 1;
1294 	ct.month = 1;
1295 	ct.year = year;
1296 	ct.hour = ct.minute = ct.second = ct.usecond = 0;
1297 	ct.utcoffset = 0;
1298 	ct.flags = 0;
1299 
1300 	Flag = 0;
1301  	Observed = dcf_to_unixtime( &ct, &Flag );
1302 		/* seems to be a clone of parse_to_unixtime() with
1303 		 * *a minor difference to arg2 type */
1304 	if ( ct.year != year )
1305 	{
1306 	    fprintf( stdout,
1307 	       "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1308 	       (int)year, (int)Flag, (int)ct.year );
1309 	    Error(year);
1310 	    break;
1311 	}
1312 	t = julian0(year) - julian0(1970);	/* Julian day from 1970 */
1313 	Expected = t * 24 * 60 * 60;
1314 	if ( Observed != Expected  ||  Flag )
1315 	{   /* time difference */
1316 	    fprintf( stdout,
1317 	       "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1318 	       year, (int)Flag,
1319 	       (unsigned long)Observed, (unsigned long)Expected,
1320 	       ((long)Observed - (long)Expected) );
1321 	    Error(year);
1322 	    break;
1323 	}
1324 
1325 	if ( year >= YEAR_PIVOT+1900 )
1326 	{
1327 	    /* check year % 100 code we put into dcf_to_unixtime() */
1328 	    ct.year = year % 100;
1329 	    Flag = 0;
1330 
1331 	    Observed = dcf_to_unixtime( &ct, &Flag );
1332 
1333 	    if ( Observed != Expected  ||  Flag )
1334 	    {   /* time difference */
1335 		fprintf( stdout,
1336 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1337 		   year, (int)ct.year, (int)Flag,
1338 		   (unsigned long)Observed, (unsigned long)Expected,
1339 		   ((long)Observed - (long)Expected) );
1340 		Error(year);
1341 		break;
1342 	    }
1343 
1344 	    /* check year - 1900 code we put into dcf_to_unixtime() */
1345 	    ct.year = year - 1900;
1346 	    Flag = 0;
1347 
1348 	    Observed = dcf_to_unixtime( &ct, &Flag );
1349 
1350 	    if ( Observed != Expected  ||  Flag ) {   /* time difference */
1351 		    fprintf( stdout,
1352 			     "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1353 			     year, (int)ct.year, (int)Flag,
1354 			     (unsigned long)Observed, (unsigned long)Expected,
1355 			     ((long)Observed - (long)Expected) );
1356 		    Error(year);
1357 		break;
1358 	    }
1359 
1360 
1361 	}
1362     }
1363 
1364     return ( Fatals );
1365 }
1366 
1367 /*--------------------------------------------------
1368  * rawdcf_init - set up modem lines for RAWDCF receivers
1369  */
1370 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1371 static void
1372 rawdcf_init(
1373 	int fd
1374 	)
1375 {
1376 	/*
1377 	 * You can use the RS232 to supply the power for a DCF77 receiver.
1378 	 * Here a voltage between the DTR and the RTS line is used. Unfortunately
1379 	 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1380 	 */
1381 
1382 #ifdef TIOCM_DTR
1383 	int sl232 = TIOCM_DTR;	/* turn on DTR for power supply */
1384 #else
1385 	int sl232 = CIOCM_DTR;	/* turn on DTR for power supply */
1386 #endif
1387 
1388 	if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1389 	{
1390 		syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1391 	}
1392 }
1393 #else
1394 static void
1395 rawdcf_init(
1396 	    int fd
1397 	)
1398 {
1399 	syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1400 }
1401 #endif  /* DTR initialisation type */
1402 
1403 /*-----------------------------------------------------------------------
1404  * main loop - argument interpreter / setup / main loop
1405  */
1406 int
1407 main(
1408      int argc,
1409      char **argv
1410      )
1411 {
1412 	unsigned char c;
1413 	char **a = argv;
1414 	int  ac = argc;
1415 	char *file = NULL;
1416 	const char *drift_file = "/etc/dcfd.drift";
1417 	int fd;
1418 	int offset = 15;
1419 	int offsets = 0;
1420 	int delay = DEFAULT_DELAY;	/* average delay from input edge to time stamping */
1421 	int trace = 0;
1422 	int errs = 0;
1423 
1424 	/*
1425 	 * process arguments
1426 	 */
1427 	while (--ac)
1428 	{
1429 		char *arg = *++a;
1430 		if (*arg == '-')
1431 		    while ((c = *++arg))
1432 			switch (c)
1433 			{
1434 			    case 't':
1435 				trace = 1;
1436 				interactive = 1;
1437 				break;
1438 
1439 			    case 'f':
1440 				offset = 0;
1441 				interactive = 1;
1442 				break;
1443 
1444 			    case 'l':
1445 				loop_filter_debug = 1;
1446 				offsets = 1;
1447 				interactive = 1;
1448 				break;
1449 
1450 			    case 'n':
1451 				no_set = 1;
1452 				break;
1453 
1454 			    case 'o':
1455 				offsets = 1;
1456 				interactive = 1;
1457 				break;
1458 
1459 			    case 'i':
1460 				interactive = 1;
1461 				break;
1462 
1463 			    case 'D':
1464 				if (ac > 1)
1465 				{
1466 					delay = atoi(*++a);
1467 					ac--;
1468 				}
1469 				else
1470 				{
1471 					fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1472 					errs=1;
1473 				}
1474 				break;
1475 
1476 			    case 'd':
1477 				if (ac > 1)
1478 				{
1479 					drift_file = *++a;
1480 					ac--;
1481 				}
1482 				else
1483 				{
1484 					fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1485 					errs=1;
1486 				}
1487 				break;
1488 
1489 			    case 'Y':
1490 				errs=check_y2k();
1491 				exit( errs ? 1 : 0 );
1492 
1493 			    default:
1494 				fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1495 				errs=1;
1496 				break;
1497 			}
1498 		else
1499 		    if (file == NULL)
1500 			file = arg;
1501 		    else
1502 		    {
1503 			    fprintf(stderr, "%s: device specified twice\n", argv[0]);
1504 			    errs=1;
1505 		    }
1506 	}
1507 
1508 	if (errs)
1509 	{
1510 		usage(argv[0]);
1511 		exit(1);
1512 	}
1513 	else
1514 	    if (file == NULL)
1515 	    {
1516 		    fprintf(stderr, "%s: device not specified\n", argv[0]);
1517 		    usage(argv[0]);
1518 		    exit(1);
1519 	    }
1520 
1521 	errs = LINES+1;
1522 
1523 	/*
1524 	 * get access to DCF77 tty port
1525 	 */
1526 	fd = open(file, O_RDONLY);
1527 	if (fd == -1)
1528 	{
1529 		perror(file);
1530 		exit(1);
1531 	}
1532 	else
1533 	{
1534 		int i, rrc;
1535 		struct timeval t, tt, tlast;
1536 		struct timeval timeout;
1537 		struct timeval phase;
1538 		struct timeval time_offset;
1539 		char pbuf[61];		/* printable version */
1540 		char buf[61];		/* raw data */
1541 		clocktime_t clock_time;	/* wall clock time */
1542 		time_t utc_time = 0;
1543 		time_t last_utc_time = 0;
1544 		long usecerror = 0;
1545 		long lasterror = 0;
1546 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
1547 		struct termios term;
1548 #else  /* not HAVE_TERMIOS_H || STREAM */
1549 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1550 		struct termio term;
1551 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1552 #endif /* not HAVE_TERMIOS_H || STREAM */
1553 		unsigned int rtc = CVT_NONE;
1554 
1555 		rawdcf_init(fd);
1556 
1557 		timeout.tv_sec  = 1;
1558 		timeout.tv_usec = 500000;
1559 
1560 		phase.tv_sec    = 0;
1561 		phase.tv_usec   = delay;
1562 
1563 		/*
1564 		 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1565 		 */
1566 		if (TTY_GETATTR(fd,  &term) == -1)
1567 		{
1568 			perror("tcgetattr");
1569 			exit(1);
1570 		}
1571 
1572 		memset(term.c_cc, 0, sizeof(term.c_cc));
1573 		term.c_cc[VMIN] = 1;
1574 #ifdef NO_PARENB_IGNPAR
1575 		term.c_cflag = CS8|CREAD|CLOCAL;
1576 #else
1577 		term.c_cflag = CS8|CREAD|CLOCAL|PARENB;
1578 #endif
1579 		term.c_iflag = IGNPAR;
1580 		term.c_oflag = 0;
1581 		term.c_lflag = 0;
1582 
1583 		cfsetispeed(&term, B50);
1584 		cfsetospeed(&term, B50);
1585 
1586 		if (TTY_SETATTR(fd, &term) == -1)
1587 		{
1588 			perror("tcsetattr");
1589 			exit(1);
1590 		}
1591 
1592 		/*
1593 		 * lose terminal if in daemon operation
1594 		 */
1595 		if (!interactive)
1596 		    detach();
1597 
1598 		/*
1599 		 * get syslog() initialized
1600 		 */
1601 #ifdef LOG_DAEMON
1602 		openlog("dcfd", LOG_PID, LOG_DAEMON);
1603 #else
1604 		openlog("dcfd", LOG_PID);
1605 #endif
1606 
1607 		/*
1608 		 * setup periodic operations (state control / frequency control)
1609 		 */
1610 #ifdef HAVE_SIGACTION
1611 		{
1612 			struct sigaction act;
1613 
1614 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1615 			act.sa_sigaction = (void (*) (int, siginfo_t *, void *))0;
1616 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1617 			act.sa_handler   = tick;
1618 			sigemptyset(&act.sa_mask);
1619 			act.sa_flags     = 0;
1620 
1621 			if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1622 			{
1623 				syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1624 				exit(1);
1625 			}
1626 		}
1627 #else
1628 #ifdef HAVE_SIGVEC
1629 		{
1630 			struct sigvec vec;
1631 
1632 			vec.sv_handler   = tick;
1633 			vec.sv_mask      = 0;
1634 			vec.sv_flags     = 0;
1635 
1636 			if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1637 			{
1638 				syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1639 				exit(1);
1640 			}
1641 		}
1642 #else
1643 		(void) signal(SIGALRM, tick);
1644 #endif
1645 #endif
1646 
1647 #ifdef ITIMER_REAL
1648 		{
1649 			struct itimerval it;
1650 
1651 			it.it_interval.tv_sec  = 1<<ADJINTERVAL;
1652 			it.it_interval.tv_usec = 0;
1653 			it.it_value.tv_sec     = 1<<ADJINTERVAL;
1654 			it.it_value.tv_usec    = 0;
1655 
1656 			if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1657 			{
1658 				syslog(LOG_ERR, "setitimer: %m");
1659 				exit(1);
1660 			}
1661 		}
1662 #else
1663 		(void) alarm(1<<ADJINTERVAL);
1664 #endif
1665 
1666 		PRINTF("  DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision);
1667 
1668 		pbuf[60] = '\0';
1669 		for ( i = 0; i < 60; i++)
1670 		    pbuf[i] = '.';
1671 
1672 		read_drift(drift_file);
1673 
1674 		/*
1675 		 * what time is it now (for interval measurement)
1676 		 */
1677 		gettimeofday(&tlast, 0L);
1678 		i = 0;
1679 		/*
1680 		 * loop until input trouble ...
1681 		 */
1682 		do
1683 		{
1684 			/*
1685 			 * get an impulse
1686 			 */
1687 			while ((rrc = read(fd, &c, 1)) == 1)
1688 			{
1689 				gettimeofday(&t, 0L);
1690 				tt = t;
1691 				timersub(&t, &tlast);
1692 
1693 				if (errs > LINES)
1694 				{
1695 					PRINTF("  %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1696 					PRINTF("  %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1697 					errs = 0;
1698 				}
1699 
1700 				/*
1701 				 * timeout -> possible minute mark -> interpretation
1702 				 */
1703 				if (timercmp(&t, &timeout, >))
1704 				{
1705 					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1706 
1707 					if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1708 					{
1709 						/*
1710 						 * this data was bad - well - forget synchronisation for now
1711 						 */
1712 						PRINTF("\n");
1713 						if (sync_state == SYNC)
1714 						{
1715 							sync_state = NO_SYNC;
1716 							syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1717 						}
1718 						errs++;
1719 					}
1720 					else
1721 					    if (trace)
1722 					    {
1723 						    PRINTF("\r  %.*s ", 59 - offset, &buf[offset]);
1724 					    }
1725 
1726 
1727 					buf[0] = c;
1728 
1729 					/*
1730 					 * collect first character
1731 					 */
1732 					if (((c^0xFF)+1) & (c^0xFF))
1733 					    pbuf[0] = '?';
1734 					else
1735 					    pbuf[0] = type(c) ? '#' : '-';
1736 
1737 					for ( i = 1; i < 60; i++)
1738 					    pbuf[i] = '.';
1739 
1740 					i = 0;
1741 				}
1742 				else
1743 				{
1744 					/*
1745 					 * collect character
1746 					 */
1747 					buf[i] = c;
1748 
1749 					/*
1750 					 * initial guess (usually correct)
1751 					 */
1752 					if (((c^0xFF)+1) & (c^0xFF))
1753 					    pbuf[i] = '?';
1754 					else
1755 					    pbuf[i] = type(c) ? '#' : '-';
1756 
1757 					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1758 				}
1759 
1760 				if (i == 0 && rtc == CVT_OK)
1761 				{
1762 					/*
1763 					 * we got a good time code here - try to convert it to
1764 					 * UTC
1765 					 */
1766 					if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1767 					{
1768 						PRINTF("*** BAD CONVERSION\n");
1769 					}
1770 
1771 					if (utc_time != (last_utc_time + 60))
1772 					{
1773 						/*
1774 						 * well, two successive sucessful telegrams are not 60 seconds
1775 						 * apart
1776 						 */
1777 						PRINTF("*** NO MINUTE INC\n");
1778 						if (sync_state == SYNC)
1779 						{
1780 							sync_state = NO_SYNC;
1781 							syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1782 						}
1783 						errs++;
1784 						rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1785 					}
1786 					else
1787 					    usecerror = 0;
1788 
1789 					last_utc_time = utc_time;
1790 				}
1791 
1792 				if (rtc == CVT_OK)
1793 				{
1794 					if (i == 0)
1795 					{
1796 						/*
1797 						 * valid time code - determine offset and
1798 						 * note regained reception
1799 						 */
1800 						last_sync = ticks;
1801 						if (sync_state == NO_SYNC)
1802 						{
1803 							syslog(LOG_INFO, "receiving DCF77");
1804 						}
1805 						else
1806 						{
1807 							/*
1808 							 * we had at least one minute SYNC - thus
1809 							 * last error is valid
1810 							 */
1811 							time_offset.tv_sec  = lasterror / 1000000;
1812 							time_offset.tv_usec = lasterror % 1000000;
1813 							adjust_clock(&time_offset, drift_file, utc_time);
1814 						}
1815 						sync_state = SYNC;
1816 					}
1817 
1818 					time_offset.tv_sec  = utc_time + i;
1819 					time_offset.tv_usec = 0;
1820 
1821 					timeradd(&time_offset, &phase);
1822 
1823 					usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1824 						-tt.tv_usec;
1825 
1826 					/*
1827 					 * output interpreted DCF77 data
1828 					 */
1829 					PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" :
1830 					       "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>",
1831 					       wday[clock_time.wday],
1832 					       clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1833 					       clock_time.year,
1834 					       (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_",
1835 					       (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1836 					       (clock_time.flags & DCFB_DST) ? "D" : "_",
1837 					       (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1838 					       (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1839 					       );
1840 
1841 					if (trace && (i == 0))
1842 					{
1843 						PRINTF("\n");
1844 						errs++;
1845 					}
1846 					lasterror = usecerror / (i+1);
1847 				}
1848 				else
1849 				{
1850 					lasterror = 0; /* we cannot calculate phase errors on bad reception */
1851 				}
1852 
1853 				PRINTF("\r");
1854 
1855 				if (i < 60)
1856 				{
1857 					i++;
1858 				}
1859 
1860 				tlast = tt;
1861 
1862 				if (interactive)
1863 				    fflush(stdout);
1864 			}
1865 		} while ((rrc == -1) && (errno == EINTR));
1866 
1867 		/*
1868 		 * lost IO - sorry guys
1869 		 */
1870 		syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1871 
1872 		(void)close(fd);
1873 	}
1874 
1875 	closelog();
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * History:
1882  *
1883  * dcfd.c,v
1884  * Revision 4.18  2005/10/07 22:08:18  kardel
1885  * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix)
1886  *
1887  * Revision 4.17.2.1  2005/10/03 19:15:16  kardel
1888  * work around configure not detecting a missing sigvec compatibility
1889  * interface on NetBSD 3.99.9 and above
1890  *
1891  * Revision 4.17  2005/08/10 10:09:44  kardel
1892  * output revision information
1893  *
1894  * Revision 4.16  2005/08/10 06:33:25  kardel
1895  * cleanup warnings
1896  *
1897  * Revision 4.15  2005/08/10 06:28:45  kardel
1898  * fix setting of baud rate
1899  *
1900  * Revision 4.14  2005/04/16 17:32:10  kardel
1901  * update copyright
1902  *
1903  * Revision 4.13  2004/11/14 15:29:41  kardel
1904  * support PPSAPI, upgrade Copyright to Berkeley style
1905  *
1906  */
1907