1 /* $NetBSD: refclock_msfees.c,v 1.4 2016/01/08 21:35:39 christos Exp $ */ 2 3 /* refclock_ees - clock driver for the EES M201 receiver */ 4 5 #ifdef HAVE_CONFIG_H 6 #include <config.h> 7 #endif 8 9 #include "ntp_types.h" 10 11 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS) 12 13 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes 14 * were removed as the code was overly hairy, they weren't in use 15 * (hence probably didn't work). Still in RCS file at cl.cam.ac.uk 16 */ 17 18 #include "ntpd.h" 19 #include "ntp_io.h" 20 #include "ntp_refclock.h" 21 #include "timevalops.h" 22 23 #include <ctype.h> 24 #if defined(HAVE_BSD_TTYS) 25 #include <sgtty.h> 26 #endif /* HAVE_BSD_TTYS */ 27 #if defined(HAVE_SYSV_TTYS) 28 #include <termio.h> 29 #endif /* HAVE_SYSV_TTYS */ 30 #if defined(HAVE_TERMIOS) 31 #include <termios.h> 32 #endif 33 #if defined(STREAM) 34 #include <stropts.h> 35 #endif 36 37 #ifdef HAVE_SYS_TERMIOS_H 38 # include <sys/termios.h> 39 #endif 40 #ifdef HAVE_SYS_PPSCLOCK_H 41 # include <sys/ppsclock.h> 42 #endif 43 44 #include "ntp_stdlib.h" 45 46 int dbg = 0; 47 /* 48 fudgefactor = fudgetime1; 49 os_delay = fudgetime2; 50 offset_fudge = os_delay + fudgefactor + inherent_delay; 51 stratumtouse = fudgeval1 & 0xf 52 dbg = fudgeval2; 53 sloppyclockflag = flags & CLK_FLAG1; 54 1 log smoothing summary when processing sample 55 4 dump the buffer from the clock 56 8 EIOGETKD the last n uS time stamps 57 if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0; 58 ees->dump_vals = flags & CLK_FLAG3; 59 ees->usealldata = flags & CLK_FLAG4; 60 61 62 bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0; 63 bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0; 64 bug->values[2] = (u_long)ees->status; 65 bug->values[3] = (u_long)ees->lastevent; 66 bug->values[4] = (u_long)ees->reason; 67 bug->values[5] = (u_long)ees->nsamples; 68 bug->values[6] = (u_long)ees->codestate; 69 bug->values[7] = (u_long)ees->day; 70 bug->values[8] = (u_long)ees->hour; 71 bug->values[9] = (u_long)ees->minute; 72 bug->values[10] = (u_long)ees->second; 73 bug->values[11] = (u_long)ees->tz; 74 bug->values[12] = ees->yearstart; 75 bug->values[13] = (ees->leaphold > current_time) ? 76 ees->leaphold - current_time : 0; 77 bug->values[14] = inherent_delay[unit].l_uf; 78 bug->values[15] = offset_fudge[unit].l_uf; 79 80 bug->times[0] = ees->reftime; 81 bug->times[1] = ees->arrvtime; 82 bug->times[2] = ees->lastsampletime; 83 bug->times[3] = ees->offset; 84 bug->times[4] = ees->lowoffset; 85 bug->times[5] = ees->highoffset; 86 bug->times[6] = inherent_delay[unit]; 87 bug->times[8] = os_delay[unit]; 88 bug->times[7] = fudgefactor[unit]; 89 bug->times[9] = offset_fudge[unit]; 90 bug->times[10]= ees->yearstart, 0; 91 */ 92 93 /* This should support the use of an EES M201 receiver with RS232 94 * output (modified to transmit time once per second). 95 * 96 * For the format of the message sent by the clock, see the EESM_ 97 * definitions below. 98 * 99 * It appears to run free for an integral number of minutes, until the error 100 * reaches 4mS, at which point it steps at second = 01. 101 * It appears that sometimes it steps 4mS (say at 7 min interval), 102 * then the next minute it decides that it was an error, so steps back. 103 * On the next minute it steps forward again :-( 104 * This is typically 16.5uS/S then 3975uS at the 4min re-sync, 105 * or 9.5uS/S then 3990.5uS at a 7min re-sync, 106 * at which point it may lose the "00" second time stamp. 107 * I assume that the most accurate time is just AFTER the re-sync. 108 * Hence remember the last cycle interval, 109 * 110 * Can run in any one of: 111 * 112 * PPSCD PPS signal sets CD which interupts, and grabs the current TOD 113 * (sun) *in the interupt code*, so as to avoid problems with 114 * the STREAMS scheduling. 115 * 116 * It appears that it goes 16.5 uS slow each second, then every 4 mins it 117 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7) 118 */ 119 120 /* Definitions */ 121 #ifndef MAXUNITS 122 #define MAXUNITS 4 /* maximum number of EES units permitted */ 123 #endif 124 125 #ifndef EES232 126 #define EES232 "/dev/ees%d" /* Device to open to read the data */ 127 #endif 128 129 /* Other constant stuff */ 130 #ifndef EESPRECISION 131 #define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */ 132 #endif 133 #ifndef EESREFID 134 #define EESREFID "MSF\0" /* String to identify the clock */ 135 #endif 136 #ifndef EESHSREFID 137 #define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */ 138 #endif 139 140 /* Description of clock */ 141 #define EESDESCRIPTION "EES M201 MSF Receiver" 142 143 /* Speed we run the clock port at. If this is changed the UARTDELAY 144 * value should be recomputed to suit. 145 */ 146 #ifndef SPEED232 147 #define SPEED232 B9600 /* 9600 baud */ 148 #endif 149 150 /* What is the inherent delay for this mode of working, i.e. when is the 151 * data time stamped. 152 */ 153 #define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */ 154 #define BITS_TO_L_FP(bits, baud) \ 155 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT) 156 #define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600) 157 #define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600) 158 159 #ifndef STREAM_PP1 160 #define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->" 161 #endif 162 #ifndef STREAM_PP2 163 #define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->" 164 #endif 165 166 /* Offsets of the bytes of the serial line code. The clock gives 167 * local time with a GMT/BST indication. The EESM_ definitions 168 * give offsets into ees->lastcode. 169 */ 170 #define EESM_CSEC 0 /* centiseconds - always zero in our clock */ 171 #define EESM_SEC 1 /* seconds in BCD */ 172 #define EESM_MIN 2 /* minutes in BCD */ 173 #define EESM_HOUR 3 /* hours in BCD */ 174 #define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */ 175 #define EESM_DAY 5 /* day of month in BCD */ 176 #define EESM_MON 6 /* month in BCD */ 177 #define EESM_YEAR 7 /* year MOD 100 in BCD */ 178 #define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */ 179 #define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */ 180 #define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */ 181 /* followed by a frame alignment byte (0xff) / 182 / which is not put into the lastcode buffer*/ 183 184 /* Length of the serial time code, in characters. The first length 185 * is less the frame alignment byte. 186 */ 187 #define LENEESPRT (EESM_MSFOK+1) 188 #define LENEESCODE (LENEESPRT+1) 189 190 /* Code state. */ 191 #define EESCS_WAIT 0 /* waiting for start of timecode */ 192 #define EESCS_GOTSOME 1 /* have an incomplete time code buffered */ 193 194 /* Default fudge factor and character to receive */ 195 #define DEFFUDGETIME 0 /* Default user supplied fudge factor */ 196 #ifndef DEFOSTIME 197 #define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */ 198 #endif 199 #define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/ 200 201 /* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median 202 * elimination. If we're running with an accurate clock, chose the BESTSAMPLE 203 * as the estimated offset, otherwise average the remainder. 204 */ 205 #define FULLSHIFT 6 /* NCODES root 2 */ 206 #define NCODES (1<< FULLSHIFT) /* 64 */ 207 #define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */ 208 209 /* Towards the high ( Why ?) end of half */ 210 #define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */ 211 212 /* Leap hold time. After a leap second the clock will no longer be 213 * reliable until it resynchronizes. Hope 40 minutes is enough. */ 214 #define EESLEAPHOLD (40 * 60) 215 216 #define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */ 217 #define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/ 218 #define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */ 219 #define EES_STEP_NOTES 50 /* Only do a limited number */ 220 #define MAX_STEP 16 /* Max number of steps to remember */ 221 222 /* debug is a bit mask of debugging that is wanted */ 223 #define DB_SYSLOG_SMPLI 0x0001 224 #define DB_SYSLOG_SMPLE 0x0002 225 #define DB_SYSLOG_SMTHI 0x0004 226 #define DB_SYSLOG_NSMTHE 0x0008 227 #define DB_SYSLOG_NSMTHI 0x0010 228 #define DB_SYSLOG_SMTHE 0x0020 229 #define DB_PRINT_EV 0x0040 230 #define DB_PRINT_CDT 0x0080 231 #define DB_PRINT_CDTC 0x0100 232 #define DB_SYSLOG_KEEPD 0x0800 233 #define DB_SYSLOG_KEEPE 0x1000 234 #define DB_LOG_DELTAS 0x2000 235 #define DB_PRINT_DELTAS 0x4000 236 #define DB_LOG_AWAITMORE 0x8000 237 #define DB_LOG_SAMPLES 0x10000 238 #define DB_NO_PPS 0x20000 239 #define DB_INC_PPS 0x40000 240 #define DB_DUMP_DELTAS 0x80000 241 242 struct eesunit { /* EES unit control structure. */ 243 struct peer *peer; /* associated peer structure */ 244 struct refclockio io; /* given to the I/O handler */ 245 l_fp reftime; /* reference time */ 246 l_fp lastsampletime; /* time as in txt from last EES msg */ 247 l_fp arrvtime; /* Time at which pkt arrived */ 248 l_fp codeoffsets[NCODES]; /* the time of arrival of 232 codes */ 249 l_fp offset; /* chosen offset (for clkbug) */ 250 l_fp lowoffset; /* lowest sample offset (for clkbug) */ 251 l_fp highoffset; /* highest " " (for clkbug) */ 252 char lastcode[LENEESCODE+6]; /* last time code we received */ 253 u_long lasttime; /* last time clock heard from */ 254 u_long clocklastgood; /* last time good radio seen */ 255 u_char lencode; /* length of code in buffer */ 256 u_char nsamples; /* number of samples we've collected */ 257 u_char codestate; /* state of 232 code reception */ 258 u_char unit; /* unit number for this guy */ 259 u_char status; /* clock status */ 260 u_char lastevent; /* last clock event */ 261 u_char reason; /* reason for last abort */ 262 u_char hour; /* hour of day */ 263 u_char minute; /* minute of hour */ 264 u_char second; /* seconds of minute */ 265 char tz; /* timezone from clock */ 266 u_char ttytype; /* method used */ 267 u_char dump_vals; /* Should clock values be dumped */ 268 u_char usealldata; /* Use ALL samples */ 269 u_short day; /* day of year from last code */ 270 u_long yearstart; /* start of current year */ 271 u_long leaphold; /* time of leap hold expiry */ 272 u_long badformat; /* number of bad format codes */ 273 u_long baddata; /* number of invalid time codes */ 274 u_long timestarted; /* time we started this */ 275 long last_pps_no; /* The serial # of the last PPS */ 276 char fix_pending; /* Is a "sync to time" pending ? */ 277 /* Fine tuning - compensate for 4 mS ramping .... */ 278 l_fp last_l; /* last time stamp */ 279 u_char last_steps[MAX_STEP]; /* Most recent n steps */ 280 int best_av_step; /* Best guess at average step */ 281 char best_av_step_count; /* # of steps over used above */ 282 char this_step; /* Current pos in buffer */ 283 int last_step_late; /* How late the last step was (0-59) */ 284 long jump_fsecs; /* # of fractions of a sec last jump */ 285 u_long last_step; /* time of last step */ 286 int last_step_secs; /* Number of seconds in last step */ 287 int using_ramp; /* 1 -> noemal, -1 -> over stepped */ 288 }; 289 #define last_sec last_l.l_ui 290 #define last_sfsec last_l.l_f 291 #define this_uisec ((ees->arrvtime).l_ui) 292 #define this_sfsec ((ees->arrvtime).l_f) 293 #define msec(x) ((x) / (1<<22)) 294 #define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0]) 295 #define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5))) 296 297 /* Bitmask for what methods to try to use -- currently only PPS enabled */ 298 #define T_CBREAK 1 299 #define T_PPS 8 300 /* macros to test above */ 301 #define is_cbreak(x) ((x)->ttytype & T_CBREAK) 302 #define is_pps(x) ((x)->ttytype & T_PPS) 303 #define is_any(x) ((x)->ttytype) 304 305 #define CODEREASON 20 /* reason codes */ 306 307 /* Data space for the unit structures. Note that we allocate these on 308 * the fly, but never give them back. */ 309 static struct eesunit *eesunits[MAXUNITS]; 310 static u_char unitinuse[MAXUNITS]; 311 312 /* Keep the fudge factors separately so they can be set even 313 * when no clock is configured. */ 314 static l_fp inherent_delay[MAXUNITS]; /* when time stamp is taken */ 315 static l_fp fudgefactor[MAXUNITS]; /* fudgetime1 */ 316 static l_fp os_delay[MAXUNITS]; /* fudgetime2 */ 317 static l_fp offset_fudge[MAXUNITS]; /* Sum of above */ 318 static u_char stratumtouse[MAXUNITS]; 319 static u_char sloppyclockflag[MAXUNITS]; 320 321 static int deltas[60]; 322 323 static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */ 324 static l_fp onesec; /* = { 1, 0 }; */ 325 326 #ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */ 327 #define DUMP_BUF_SIZE 10112 328 #endif 329 330 /* ees_reset - reset the count back to zero */ 331 #define ees_reset(ees) (ees)->nsamples = 0; \ 332 (ees)->codestate = EESCS_WAIT 333 334 /* ees_event - record and report an event */ 335 #define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \ 336 ees_report_event((ees), (evcode)) 337 338 /* Find the precision of the system clock by reading it */ 339 #define USECS 1000000 340 #define MINSTEP 5 /* some systems increment uS on each call */ 341 #define MAXLOOPS (USECS/9) 342 343 /* 344 * Function prototypes 345 */ 346 347 static int msfees_start P((int unit, struct peer *peer)); 348 static void msfees_shutdown P((int unit, struct peer *peer)); 349 static void msfees_poll P((int unit, struct peer *peer)); 350 static void msfees_init P((void)); 351 static void dump_buf P((l_fp *coffs, int from, int to, char *text)); 352 static void ees_report_event P((struct eesunit *ees, int code)); 353 static void ees_receive P((struct recvbuf *rbufp)); 354 static void ees_process P((struct eesunit *ees)); 355 static int offcompare P((const void *va, const void *vb)); 356 357 358 /* 359 * Transfer vector 360 */ 361 struct refclock refclock_msfees = { 362 msfees_start, /* start up driver */ 363 msfees_shutdown, /* shut down driver */ 364 msfees_poll, /* transmit poll message */ 365 noentry, /* not used */ 366 msfees_init, /* initialize driver */ 367 noentry, /* not used */ 368 NOFLAGS /* not used */ 369 }; 370 371 372 static void 373 dump_buf( 374 l_fp *coffs, 375 int from, 376 int to, 377 char *text 378 ) 379 { 380 char buff[DUMP_BUF_SIZE + 80]; 381 int i; 382 register char *ptr = buff; 383 384 snprintf(buff, sizeof(buff), text); 385 for (i = from; i < to; i++) { 386 ptr += strlen(ptr); 387 if ((ptr - buff) > DUMP_BUF_SIZE) { 388 msyslog(LOG_DEBUG, "D: %s", buff); 389 ptr = buff; 390 } 391 snprintf(ptr, sizeof(buff) - (ptr - buff), 392 " %06d", ((int)coffs[i].l_f) / 4295); 393 } 394 msyslog(LOG_DEBUG, "D: %s", buff); 395 } 396 397 /* msfees_init - initialize internal ees driver data */ 398 static void 399 msfees_init(void) 400 { 401 register int i; 402 /* Just zero the data arrays */ 403 memset((char *)eesunits, 0, sizeof eesunits); 404 memset((char *)unitinuse, 0, sizeof unitinuse); 405 406 acceptable_slop.l_ui = 0; 407 acceptable_slop.l_uf = 1 << (FRACTION_PREC -2); 408 409 onesec.l_ui = 1; 410 onesec.l_uf = 0; 411 412 /* Initialize fudge factors to default. */ 413 for (i = 0; i < MAXUNITS; i++) { 414 fudgefactor[i].l_ui = 0; 415 fudgefactor[i].l_uf = DEFFUDGETIME; 416 os_delay[i].l_ui = 0; 417 os_delay[i].l_uf = DEFOSTIME; 418 inherent_delay[i].l_ui = 0; 419 inherent_delay[i].l_uf = DEFINHTIME; 420 offset_fudge[i] = os_delay[i]; 421 L_ADD(&offset_fudge[i], &fudgefactor[i]); 422 L_ADD(&offset_fudge[i], &inherent_delay[i]); 423 stratumtouse[i] = 0; 424 sloppyclockflag[i] = 0; 425 } 426 } 427 428 429 /* msfees_start - open the EES devices and initialize data for processing */ 430 static int 431 msfees_start( 432 int unit, 433 struct peer *peer 434 ) 435 { 436 register struct eesunit *ees; 437 register int i; 438 int fd232 = -1; 439 char eesdev[20]; 440 struct termios ttyb, *ttyp; 441 struct refclockproc *pp; 442 pp = peer->procptr; 443 444 if (unit >= MAXUNITS) { 445 msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)", 446 unit, MAXUNITS-1); 447 return 0; 448 } 449 if (unitinuse[unit]) { 450 msyslog(LOG_ERR, "ees clock: unit number %d in use", unit); 451 return 0; 452 } 453 454 /* Unit okay, attempt to open the devices. We do them both at 455 * once to make sure we can */ 456 snprintf(eesdev, sizeof(eesdev), EES232, unit); 457 458 fd232 = open(eesdev, O_RDWR, 0777); 459 if (fd232 == -1) { 460 msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev); 461 return 0; 462 } 463 464 #ifdef TIOCEXCL 465 /* Set for exclusive use */ 466 if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) { 467 msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev); 468 goto screwed; 469 } 470 #endif 471 472 /* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */ 473 474 /* Set port characteristics. If we don't have a STREAMS module or 475 * a clock line discipline, cooked mode is just usable, even though it 476 * strips the top bit. The only EES byte which uses the top 477 * bit is the year, and we don't use that anyway. If we do 478 * have the line discipline, we choose raw mode, and the 479 * line discipline code will block up the messages. 480 */ 481 482 /* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */ 483 484 ttyp = &ttyb; 485 if (tcgetattr(fd232, ttyp) < 0) { 486 msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev); 487 goto screwed; 488 } 489 490 ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL; 491 ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD; 492 ttyp->c_oflag = 0; 493 ttyp->c_lflag = ICANON; 494 ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0'; 495 if (tcsetattr(fd232, TCSANOW, ttyp) < 0) { 496 msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev); 497 goto screwed; 498 } 499 500 if (tcflush(fd232, TCIOFLUSH) < 0) { 501 msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev); 502 goto screwed; 503 } 504 505 inherent_delay[unit].l_uf = INH_DELAY_PPS; 506 507 /* offset fudge (how *late* the timestamp is) = fudge + os delays */ 508 offset_fudge[unit] = os_delay[unit]; 509 L_ADD(&offset_fudge[unit], &fudgefactor[unit]); 510 L_ADD(&offset_fudge[unit], &inherent_delay[unit]); 511 512 /* Looks like this might succeed. Find memory for the structure. 513 * Look to see if there are any unused ones, if not we malloc() one. 514 */ 515 if (eesunits[unit] != 0) /* The one we want is okay */ 516 ees = eesunits[unit]; 517 else { 518 /* Look for an unused, but allocated struct */ 519 for (i = 0; i < MAXUNITS; i++) { 520 if (!unitinuse[i] && eesunits[i] != 0) 521 break; 522 } 523 524 if (i < MAXUNITS) { /* Reclaim this one */ 525 ees = eesunits[i]; 526 eesunits[i] = 0; 527 } /* no spare -- make a new one */ 528 else ees = (struct eesunit *) emalloc(sizeof(struct eesunit)); 529 } 530 memset((char *)ees, 0, sizeof(struct eesunit)); 531 eesunits[unit] = ees; 532 533 /* Set up the structures */ 534 ees->peer = peer; 535 ees->unit = (u_char)unit; 536 ees->timestarted= current_time; 537 ees->ttytype = 0; 538 ees->io.clock_recv= ees_receive; 539 ees->io.srcclock= peer; 540 ees->io.datalen = 0; 541 ees->io.fd = fd232; 542 543 /* Okay. Push one of the two (linked into the kernel, or dynamically 544 * loaded) STREAMS module, and give it to the I/O code to start 545 * receiving stuff. 546 */ 547 548 #ifdef STREAM 549 { 550 int rc1; 551 /* Pop any existing onews first ... */ 552 while (ioctl(fd232, I_POP, 0 ) >= 0) ; 553 554 /* Now try pushing either of the possible modules */ 555 if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 && 556 ioctl(fd232, I_PUSH, STREAM_PP2) < 0) { 557 msyslog(LOG_ERR, 558 "ees clock: Push of `%s' and `%s' to %s failed %m", 559 STREAM_PP1, STREAM_PP2, eesdev); 560 goto screwed; 561 } 562 else { 563 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 564 msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s", 565 (rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev); 566 ees->ttytype |= T_PPS; 567 } 568 } 569 #endif /* STREAM */ 570 571 /* Add the clock */ 572 if (!io_addclock(&ees->io)) { 573 /* Oh shit. Just close and return. */ 574 msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev); 575 goto screwed; 576 } 577 578 579 /* All done. Initialize a few random peer variables, then 580 * return success. */ 581 peer->precision = sys_precision; 582 peer->stratum = stratumtouse[unit]; 583 if (stratumtouse[unit] <= 1) { 584 memcpy((char *)&pp->refid, EESREFID, 4); 585 if (unit > 0 && unit < 10) 586 ((char *)&pp->refid)[3] = '0' + unit; 587 } else { 588 peer->refid = htonl(EESHSREFID); 589 } 590 unitinuse[unit] = 1; 591 pp->unitptr = &eesunits[unit]; 592 pp->clockdesc = EESDESCRIPTION; 593 msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit); 594 return (1); 595 596 screwed: 597 if (fd232 != -1) 598 (void) close(fd232); 599 return (0); 600 } 601 602 603 /* msfees_shutdown - shut down a EES clock */ 604 static void 605 msfees_shutdown( 606 int unit, 607 struct peer *peer 608 ) 609 { 610 register struct eesunit *ees; 611 612 if (unit >= MAXUNITS) { 613 msyslog(LOG_ERR, 614 "ees clock: INTERNAL ERROR, unit number %d invalid (max %d)", 615 unit, MAXUNITS); 616 return; 617 } 618 if (!unitinuse[unit]) { 619 msyslog(LOG_ERR, 620 "ees clock: INTERNAL ERROR, unit number %d not in use", unit); 621 return; 622 } 623 624 /* Tell the I/O module to turn us off. We're history. */ 625 ees = eesunits[unit]; 626 io_closeclock(&ees->io); 627 unitinuse[unit] = 0; 628 } 629 630 631 /* ees_report_event - note the occurance of an event */ 632 static void 633 ees_report_event( 634 struct eesunit *ees, 635 int code 636 ) 637 { 638 if (ees->status != (u_char)code) { 639 ees->status = (u_char)code; 640 if (code != CEVNT_NOMINAL) 641 ees->lastevent = (u_char)code; 642 /* Should report event to trap handler in here. 643 * Soon... 644 */ 645 } 646 } 647 648 649 /* ees_receive - receive data from the serial interface on an EES clock */ 650 static void 651 ees_receive( 652 struct recvbuf *rbufp 653 ) 654 { 655 register int n_sample; 656 register int day; 657 register struct eesunit *ees; 658 register u_char *dpt; /* Data PoinTeR: move along ... */ 659 register u_char *dpend; /* Points just *after* last data char */ 660 register char *cp; 661 l_fp tmp; 662 int call_pps_sample = 0; 663 l_fp pps_arrvstamp; 664 int sincelast; 665 int pps_step = 0; 666 int suspect_4ms_step = 0; 667 struct ppsclockev ppsclockev; 668 long *ptr = (long *) &ppsclockev; 669 int rc; 670 int request; 671 #ifdef HAVE_CIOGETEV 672 request = CIOGETEV; 673 #endif 674 #ifdef HAVE_TIOCGPPSEV 675 request = TIOCGPPSEV; 676 #endif 677 678 /* Get the clock this applies to and a pointer to the data */ 679 ees = (struct eesunit *)rbufp->recv_peer->procptr->unitptr; 680 dpt = (u_char *)&rbufp->recv_space; 681 dpend = dpt + rbufp->recv_length; 682 if ((dbg & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE)) 683 printf("[%d] ", rbufp->recv_length); 684 685 /* Check out our state and process appropriately */ 686 switch (ees->codestate) { 687 case EESCS_WAIT: 688 /* Set an initial guess at the timestamp as the recv time. 689 * If just running in CBREAK mode, we can't improve this. 690 * If we have the CLOCK Line Discipline, PPSCD, or sime such, 691 * then we will do better later .... 692 */ 693 ees->arrvtime = rbufp->recv_time; 694 ees->codestate = EESCS_GOTSOME; 695 ees->lencode = 0; 696 /*FALLSTHROUGH*/ 697 698 case EESCS_GOTSOME: 699 cp = &(ees->lastcode[ees->lencode]); 700 701 /* Gobble the bytes until the final (possibly stripped) 0xff */ 702 while (dpt < dpend && (*dpt & 0x7f) != 0x7f) { 703 *cp++ = (char)*dpt++; 704 ees->lencode++; 705 /* Oh dear -- too many bytes .. */ 706 if (ees->lencode > LENEESPRT) { 707 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 708 msyslog(LOG_INFO, 709 "I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]", 710 ees->lencode, dpend - dpt, LENEESPRT, 711 #define D(x) (ees->lastcode[x]) 712 D(0), D(1), D(2), D(3), D(4), D(5), D(6), 713 D(7), D(8), D(9), D(10), D(11), D(12)); 714 #undef D 715 ees->badformat++; 716 ees->reason = CODEREASON + 1; 717 ees_event(ees, CEVNT_BADREPLY); 718 ees_reset(ees); 719 return; 720 } 721 } 722 /* Gave up because it was end of the buffer, rather than ff */ 723 if (dpt == dpend) { 724 /* Incomplete. Wait for more. */ 725 if (dbg & DB_LOG_AWAITMORE) 726 msyslog(LOG_INFO, 727 "I: ees clock %d: %p == %p: await more", 728 ees->unit, dpt, dpend); 729 return; 730 } 731 732 /* This shouldn't happen ... ! */ 733 if ((*dpt & 0x7f) != 0x7f) { 734 msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt); 735 ees->badformat++; 736 ees->reason = CODEREASON + 2; 737 ees_event(ees, CEVNT_BADREPLY); 738 ees_reset(ees); 739 return; 740 } 741 742 /* Skip the 0xff */ 743 dpt++; 744 745 /* Finally, got a complete buffer. Mainline code will 746 * continue on. */ 747 cp = ees->lastcode; 748 break; 749 750 default: 751 msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d", 752 ees->unit, ees->codestate); 753 ees->reason = CODEREASON + 5; 754 ees_event(ees, CEVNT_FAULT); 755 ees_reset(ees); 756 return; 757 } 758 759 /* Boy! After all that crap, the lastcode buffer now contains 760 * something we hope will be a valid time code. Do length 761 * checks and sanity checks on constant data. 762 */ 763 ees->codestate = EESCS_WAIT; 764 ees->lasttime = current_time; 765 if (ees->lencode != LENEESPRT) { 766 ees->badformat++; 767 ees->reason = CODEREASON + 6; 768 ees_event(ees, CEVNT_BADREPLY); 769 ees_reset(ees); 770 return; 771 } 772 773 cp = ees->lastcode; 774 775 /* Check that centisecond is zero */ 776 if (cp[EESM_CSEC] != 0) { 777 ees->baddata++; 778 ees->reason = CODEREASON + 7; 779 ees_event(ees, CEVNT_BADREPLY); 780 ees_reset(ees); 781 return; 782 } 783 784 /* Check flag formats */ 785 if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) { 786 ees->badformat++; 787 ees->reason = CODEREASON + 8; 788 ees_event(ees, CEVNT_BADREPLY); 789 ees_reset(ees); 790 return; 791 } 792 793 if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) { 794 ees->badformat++; 795 ees->reason = CODEREASON + 9; 796 ees_event(ees, CEVNT_BADREPLY); 797 ees_reset(ees); 798 return; 799 } 800 801 if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) { 802 ees->badformat++; 803 ees->reason = CODEREASON + 10; 804 ees_event(ees, CEVNT_BADREPLY); 805 ees_reset(ees); 806 return; 807 } 808 809 /* So far, so good. Compute day, hours, minutes, seconds, 810 * time zone. Do range checks on these. 811 */ 812 813 #define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) ) 814 #define istrue(x) ((x)?1:0) 815 816 ees->second = bcdunpack(cp[EESM_SEC]); /* second */ 817 ees->minute = bcdunpack(cp[EESM_MIN]); /* minute */ 818 ees->hour = bcdunpack(cp[EESM_HOUR]); /* hour */ 819 820 day = bcdunpack(cp[EESM_DAY]); /* day of month */ 821 822 switch (bcdunpack(cp[EESM_MON])) { /* month */ 823 824 /* Add in lengths of all previous months. Add one more 825 if it is a leap year and after February. 826 */ 827 case 12: day += NOV; /*FALLSTHROUGH*/ 828 case 11: day += OCT; /*FALLSTHROUGH*/ 829 case 10: day += SEP; /*FALLSTHROUGH*/ 830 case 9: day += AUG; /*FALLSTHROUGH*/ 831 case 8: day += JUL; /*FALLSTHROUGH*/ 832 case 7: day += JUN; /*FALLSTHROUGH*/ 833 case 6: day += MAY; /*FALLSTHROUGH*/ 834 case 5: day += APR; /*FALLSTHROUGH*/ 835 case 4: day += MAR; /*FALLSTHROUGH*/ 836 case 3: day += FEB; 837 if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/ 838 case 2: day += JAN; /*FALLSTHROUGH*/ 839 case 1: break; 840 default: ees->baddata++; 841 ees->reason = CODEREASON + 11; 842 ees_event(ees, CEVNT_BADDATE); 843 ees_reset(ees); 844 return; 845 } 846 847 ees->day = day; 848 849 /* Get timezone. The clocktime routine wants the number 850 * of hours to add to the delivered time to get UT. 851 * Currently -1 if BST flag set, 0 otherwise. This 852 * is the place to tweak things if double summer time 853 * ever happens. 854 */ 855 ees->tz = istrue(cp[EESM_BST]) ? -1 : 0; 856 857 if (ees->day > 366 || ees->day < 1 || 858 ees->hour > 23 || ees->minute > 59 || ees->second > 59) { 859 ees->baddata++; 860 ees->reason = CODEREASON + 12; 861 ees_event(ees, CEVNT_BADDATE); 862 ees_reset(ees); 863 return; 864 } 865 866 n_sample = ees->nsamples; 867 868 /* Now, compute the reference time value: text -> tmp.l_ui */ 869 if (!clocktime(ees->day, ees->hour, ees->minute, ees->second, 870 ees->tz, rbufp->recv_time.l_ui, &ees->yearstart, 871 &tmp.l_ui)) { 872 ees->baddata++; 873 ees->reason = CODEREASON + 13; 874 ees_event(ees, CEVNT_BADDATE); 875 ees_reset(ees); 876 return; 877 } 878 tmp.l_uf = 0; 879 880 /* DON'T use ees->arrvtime -- it may be < reftime */ 881 ees->lastsampletime = tmp; 882 883 /* If we are synchronised to the radio, update the reference time. 884 * Also keep a note of when clock was last good. 885 */ 886 if (istrue(cp[EESM_MSFOK])) { 887 ees->reftime = tmp; 888 ees->clocklastgood = current_time; 889 } 890 891 892 /* Compute the offset. For the fractional part of the 893 * offset we use the expected delay for the message. 894 */ 895 ees->codeoffsets[n_sample].l_ui = tmp.l_ui; 896 ees->codeoffsets[n_sample].l_uf = 0; 897 898 /* Number of seconds since the last step */ 899 sincelast = this_uisec - ees->last_step; 900 901 memset((char *) &ppsclockev, 0, sizeof ppsclockev); 902 903 rc = ioctl(ees->io.fd, request, (char *) &ppsclockev); 904 if (dbg & DB_PRINT_EV) fprintf(stderr, 905 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n", 906 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees), 907 rc, errno, ptr[0], ptr[1], ptr[2]); 908 909 /* If we managed to get the time of arrival, process the info */ 910 if (rc >= 0) { 911 int conv = -1; 912 pps_step = ppsclockev.serial - ees->last_pps_no; 913 914 /* Possible that PPS triggered, but text message didn't */ 915 if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second); 916 if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1; 917 if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4; 918 919 /* allow for single loss of PPS only */ 920 if (pps_step != 1 && pps_step != 2) 921 fprintf(stderr, "PPS step: %d too far off %ld (%d)\n", 922 ppsclockev.serial, ees->last_pps_no, pps_step); 923 else { 924 pps_arrvstamp = tval_stamp_to_lfp(ppsclockev.tv); 925 /* if ((ABS(time difference) - 0.25) < 0) 926 * then believe it ... 927 */ 928 l_fp diff; 929 diff = pps_arrvstamp; 930 conv = 0; 931 L_SUB(&diff, &ees->arrvtime); 932 if (dbg & DB_PRINT_CDT) 933 printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s", 934 DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf, 935 (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf, 936 (long)diff.l_ui, (long)diff.l_uf, 937 ctime(&(ppsclockev.tv.tv_sec))); 938 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); 939 L_SUB(&diff, &acceptable_slop); 940 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ 941 ees->arrvtime = pps_arrvstamp; 942 conv++; 943 call_pps_sample++; 944 } 945 /* Some loss of some signals around sec = 1 */ 946 else if (ees->second == 1) { 947 diff = pps_arrvstamp; 948 L_ADD(&diff, &onesec); 949 L_SUB(&diff, &ees->arrvtime); 950 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); 951 L_SUB(&diff, &acceptable_slop); 952 msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s", 953 pps_arrvstamp.l_ui - ees->arrvtime.l_ui, 954 pps_arrvstamp.l_uf, 955 ees->arrvtime.l_uf, 956 diff.l_ui, diff.l_uf, 957 (int)ppsclockev.tv.tv_usec, 958 ctime(&(ppsclockev.tv.tv_sec))); 959 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ 960 suspect_4ms_step |= 2; 961 ees->arrvtime = pps_arrvstamp; 962 L_ADD(&ees->arrvtime, &onesec); 963 conv++; 964 call_pps_sample++; 965 } 966 } 967 } 968 ees->last_pps_no = ppsclockev.serial; 969 if (dbg & DB_PRINT_CDTC) 970 printf( 971 "[%x] %08lx %08lx %d u%d (%d %d)\n", 972 DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui, 973 (long)pps_arrvstamp.l_uf, conv, ees->unit, 974 call_pps_sample, pps_step); 975 } 976 977 /* See if there has been a 4ms jump at a minute boundry */ 978 { l_fp delta; 979 #define delta_isec delta.l_ui 980 #define delta_ssec delta.l_i 981 #define delta_sfsec delta.l_f 982 long delta_f_abs; 983 984 delta.l_i = ees->arrvtime.l_i; 985 delta.l_f = ees->arrvtime.l_f; 986 987 L_SUB(&delta, &ees->last_l); 988 delta_f_abs = delta_sfsec; 989 if (delta_f_abs < 0) delta_f_abs = -delta_f_abs; 990 991 /* Dump the deltas each minute */ 992 if (dbg & DB_DUMP_DELTAS) 993 { 994 if (/*0 <= ees->second && */ 995 ees->second < COUNTOF(deltas)) 996 deltas[ees->second] = delta_sfsec; 997 /* Dump on second 1, as second 0 sometimes missed */ 998 if (ees->second == 1) { 999 char text[16 * COUNTOF(deltas)]; 1000 char *cptr=text; 1001 int i; 1002 for (i = 0; i < COUNTOF(deltas); i++) { 1003 snprintf(cptr, sizeof(text) / COUNTOF(deltas), 1004 " %d.%04d", msec(deltas[i]), 1005 subms(deltas[i])); 1006 cptr += strlen(cptr); 1007 } 1008 msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s", 1009 msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE), 1010 msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE), 1011 text+1); 1012 for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0; 1013 } 1014 } 1015 1016 /* Lets see if we have a 4 mS step at a minute boundaary */ 1017 if ( ((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) && 1018 (delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) && 1019 (ees->second == 0 || ees->second == 1 || ees->second == 2) && 1020 (sincelast < 0 || sincelast > 122) 1021 ) { /* 4ms jump at min boundry */ 1022 int old_sincelast; 1023 int count=0; 1024 int sum = 0; 1025 /* Yes -- so compute the ramp time */ 1026 if (ees->last_step == 0) sincelast = 0; 1027 old_sincelast = sincelast; 1028 1029 /* First time in, just set "ees->last_step" */ 1030 if(ees->last_step) { 1031 int other_step = 0; 1032 int third_step = 0; 1033 int this_step = (sincelast + (60 /2)) / 60; 1034 int p_step = ees->this_step; 1035 int p; 1036 ees->last_steps[p_step] = this_step; 1037 p= p_step; 1038 p_step++; 1039 if (p_step >= LAST_STEPS) p_step = 0; 1040 ees->this_step = p_step; 1041 /* Find the "average" interval */ 1042 while (p != p_step) { 1043 int this = ees->last_steps[p]; 1044 if (this == 0) break; 1045 if (this != this_step) { 1046 if (other_step == 0 && ( 1047 this== (this_step +2) || 1048 this== (this_step -2) || 1049 this== (this_step +1) || 1050 this== (this_step -1))) 1051 other_step = this; 1052 if (other_step != this) { 1053 int idelta = (this_step - other_step); 1054 if (idelta < 0) idelta = - idelta; 1055 if (third_step == 0 && ( 1056 (idelta == 1) ? ( 1057 this == (other_step +1) || 1058 this == (other_step -1) || 1059 this == (this_step +1) || 1060 this == (this_step -1)) 1061 : 1062 ( 1063 this == (this_step + other_step)/2 1064 ) 1065 )) third_step = this; 1066 if (third_step != this) break; 1067 } 1068 } 1069 sum += this; 1070 p--; 1071 if (p < 0) p += LAST_STEPS; 1072 count++; 1073 } 1074 msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step); 1075 if (count != 0) sum = ((sum * 60) + (count /2)) / count; 1076 #define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS]) 1077 msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d", 1078 ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), 1079 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); 1080 printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n", 1081 ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), 1082 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); 1083 #undef SV 1084 ees->jump_fsecs = delta_sfsec; 1085 ees->using_ramp = 1; 1086 if (sincelast > 170) 1087 ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs); 1088 else ees->last_step_late = 30; 1089 if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30; 1090 if (ees->last_step_late < 0) ees->last_step_late = 0; 1091 if (ees->last_step_late >= 60) ees->last_step_late = 59; 1092 sincelast = 0; 1093 } 1094 else { /* First time in -- just save info */ 1095 ees->last_step_late = 30; 1096 ees->jump_fsecs = delta_sfsec; 1097 ees->using_ramp = 1; 1098 sum = 4 * 60; 1099 } 1100 ees->last_step = this_uisec; 1101 printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n", 1102 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), 1103 ees->second, old_sincelast, ees->last_step_late, count, sum, 1104 ees->last_step_secs); 1105 msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d", 1106 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, 1107 old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs); 1108 if (sum) ees->last_step_secs = sum; 1109 } 1110 /* OK, so not a 4ms step at a minute boundry */ 1111 else { 1112 if (suspect_4ms_step) msyslog(LOG_ERR, 1113 "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]", 1114 ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec), 1115 msec(EES_STEP_F - EES_STEP_F_GRACE), 1116 subms(EES_STEP_F - EES_STEP_F_GRACE), 1117 (int)msec(delta_f_abs), 1118 (int)subms(delta_f_abs), 1119 msec(EES_STEP_F + EES_STEP_F_GRACE), 1120 subms(EES_STEP_F + EES_STEP_F_GRACE), 1121 ees->second, 1122 sincelast); 1123 if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) { 1124 static int ees_step_notes = EES_STEP_NOTES; 1125 if (ees_step_notes > 0) { 1126 ees_step_notes--; 1127 printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n", 1128 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), 1129 ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !"); 1130 msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s", 1131 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !"); 1132 } 1133 } 1134 } 1135 } 1136 ees->last_l = ees->arrvtime; 1137 1138 /* IF we have found that it's ramping 1139 * && it's within twice the expected ramp period 1140 * && there is a non zero step size (avoid /0 !) 1141 * THEN we twiddle things 1142 */ 1143 if (ees->using_ramp && 1144 sincelast < (ees->last_step_secs)*2 && 1145 ees->last_step_secs) 1146 { long sec_of_ramp = sincelast + ees->last_step_late; 1147 long fsecs; 1148 l_fp inc; 1149 1150 /* Ramp time may vary, so may ramp for longer than last time */ 1151 if (sec_of_ramp > (ees->last_step_secs + 120)) 1152 sec_of_ramp = ees->last_step_secs; 1153 1154 /* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */ 1155 fsecs = sec_of_ramp * (ees->jump_fsecs / ees->last_step_secs); 1156 1157 if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR, 1158 "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)", 1159 DB_LOG_DELTAS, 1160 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, 1161 pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); 1162 if (dbg & DB_PRINT_DELTAS) printf( 1163 "MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n", 1164 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, 1165 (long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); 1166 1167 /* Must sign extend the result */ 1168 inc.l_i = (fsecs < 0) ? -1 : 0; 1169 inc.l_f = fsecs; 1170 if (dbg & DB_INC_PPS) 1171 { L_SUB(&pps_arrvstamp, &inc); 1172 L_SUB(&ees->arrvtime, &inc); 1173 } 1174 else 1175 { L_ADD(&pps_arrvstamp, &inc); 1176 L_ADD(&ees->arrvtime, &inc); 1177 } 1178 } 1179 else { 1180 if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR, 1181 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x", 1182 DB_LOG_DELTAS, 1183 ees->unit, ees->using_ramp, 1184 sincelast, 1185 (ees->last_step_secs)*2, 1186 ees->last_step_secs); 1187 if (dbg & DB_PRINT_DELTAS) printf( 1188 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n", 1189 DB_LOG_DELTAS, 1190 ees->unit, ees->using_ramp, 1191 sincelast, 1192 (ees->last_step_secs)*2, 1193 ees->last_step_secs); 1194 } 1195 1196 L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]); 1197 L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]); 1198 1199 if (call_pps_sample && !(dbg & DB_NO_PPS)) { 1200 /* Sigh -- it expects its args negated */ 1201 L_NEG(&pps_arrvstamp); 1202 /* 1203 * I had to disable this here, since it appears there is no pointer to the 1204 * peer structure. 1205 * 1206 (void) pps_sample(peer, &pps_arrvstamp); 1207 */ 1208 } 1209 1210 /* Subtract off the local clock time stamp */ 1211 L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime); 1212 if (dbg & DB_LOG_SAMPLES) msyslog(LOG_ERR, 1213 "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s", 1214 ees->unit, DB_LOG_DELTAS, n_sample, 1215 ees->codeoffsets[n_sample].l_f, 1216 ees->codeoffsets[n_sample].l_f / 4295, 1217 pps_arrvstamp.l_f, 1218 pps_arrvstamp.l_f /4295, 1219 (dbg & DB_NO_PPS) ? " [no PPS]" : ""); 1220 1221 if (ees->nsamples++ == NCODES-1) ees_process(ees); 1222 1223 /* Done! */ 1224 } 1225 1226 1227 /* offcompare - auxiliary comparison routine for offset sort */ 1228 1229 static int 1230 offcompare( 1231 const void *va, 1232 const void *vb 1233 ) 1234 { 1235 const l_fp *a = (const l_fp *)va; 1236 const l_fp *b = (const l_fp *)vb; 1237 return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1); 1238 } 1239 1240 1241 /* ees_process - process a pile of samples from the clock */ 1242 static void 1243 ees_process( 1244 struct eesunit *ees 1245 ) 1246 { 1247 static int last_samples = -1; 1248 register int i, j; 1249 register int noff; 1250 register l_fp *coffs = ees->codeoffsets; 1251 l_fp offset, tmp; 1252 double dispersion; /* ++++ */ 1253 int lostsync, isinsync; 1254 int samples = ees->nsamples; 1255 int samplelog = 0; /* keep "gcc -Wall" happy ! */ 1256 int samplereduce = (samples + 1) / 2; 1257 double doffset; 1258 1259 /* Reset things to zero so we don't have to worry later */ 1260 ees_reset(ees); 1261 1262 if (sloppyclockflag[ees->unit]) { 1263 samplelog = (samples < 2) ? 0 : 1264 (samples < 5) ? 1 : 1265 (samples < 9) ? 2 : 1266 (samples < 17) ? 3 : 1267 (samples < 33) ? 4 : 5; 1268 samplereduce = (1 << samplelog); 1269 } 1270 1271 if (samples != last_samples && 1272 ((samples != (last_samples-1)) || samples < 3)) { 1273 msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....", 1274 samples, last_samples, samplereduce); 1275 last_samples = samples; 1276 } 1277 if (samples < 1) return; 1278 1279 /* If requested, dump the raw data we have in the buffer */ 1280 if (ees->dump_vals) 1281 dump_buf(coffs, 0, samples, "Raw data is:"); 1282 1283 /* Sort the offsets, trim off the extremes, then choose one. */ 1284 qsort(coffs, (size_t)samples, sizeof(coffs[0]), offcompare); 1285 1286 noff = samples; 1287 i = 0; 1288 while ((noff - i) > samplereduce) { 1289 /* Trim off the sample which is further away 1290 * from the median. We work this out by doubling 1291 * the median, subtracting off the end samples, and 1292 * looking at the sign of the answer, using the 1293 * identity (c-b)-(b-a) == 2*b-a-c 1294 */ 1295 tmp = coffs[(noff + i)/2]; 1296 L_ADD(&tmp, &tmp); 1297 L_SUB(&tmp, &coffs[i]); 1298 L_SUB(&tmp, &coffs[noff-1]); 1299 if (L_ISNEG(&tmp)) noff--; else i++; 1300 } 1301 1302 /* If requested, dump the reduce data we have in the buffer */ 1303 if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced to:"); 1304 1305 /* What we do next depends on the setting of the sloppy clock flag. 1306 * If it is on, average the remainder to derive our estimate. 1307 * Otherwise, just pick a representative value from the remaining stuff 1308 */ 1309 if (sloppyclockflag[ees->unit]) { 1310 offset.l_ui = offset.l_uf = 0; 1311 for (j = i; j < noff; j++) 1312 L_ADD(&offset, &coffs[j]); 1313 for (j = samplelog; j > 0; j--) 1314 L_RSHIFTU(&offset); 1315 } 1316 else offset = coffs[i+BESTSAMPLE]; 1317 1318 /* Compute the dispersion as the difference between the 1319 * lowest and highest offsets that remain in the 1320 * consideration list. 1321 * 1322 * It looks like MOST clocks have MOD (max error), so halve it ! 1323 */ 1324 tmp = coffs[noff-1]; 1325 L_SUB(&tmp, &coffs[i]); 1326 #define FRACT_SEC(n) ((1 << 30) / (n/2)) 1327 dispersion = LFPTOFP(&tmp) / 2; /* ++++ */ 1328 if (dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog( 1329 (dbg & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO, 1330 "I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d", 1331 dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE), 1332 offset.l_f / 4295, offset.l_f, 1333 (dispersion * 1526) / 100, 1334 (sloppyclockflag[ees->unit]) ? " by averaging" : "", 1335 FRACT_SEC(10) / 4295, 1336 (coffs[0].l_f) / 4295, 1337 i, 1338 (coffs[i].l_f) / 4295, 1339 (coffs[samples/2].l_f) / 4295, 1340 (coffs[i+BESTSAMPLE].l_f) / 4295, 1341 noff-1, 1342 (coffs[noff-1].l_f) / 4295, 1343 (coffs[samples-1].l_f) / 4295); 1344 1345 /* Are we playing silly wotsits ? 1346 * If we are using all data, see if there is a "small" delta, 1347 * and if so, blurr this with 3/4 of the delta from the last value 1348 */ 1349 if (ees->usealldata && ees->offset.l_uf) { 1350 long diff = (long) (ees->offset.l_uf - offset.l_uf); 1351 1352 /* is the delta small enough ? */ 1353 if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) { 1354 int samd = (64 * 4) / samples; 1355 long new; 1356 if (samd < 2) samd = 2; 1357 new = offset.l_uf + ((diff * (samd -1)) / samd); 1358 1359 /* Sign change -> need to fix up int part */ 1360 if ((new & 0x80000000) != 1361 (((long) offset.l_uf) & 0x80000000)) 1362 { NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 1363 msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d", 1364 new & 0x80000000, 1365 ((long) offset.l_uf) & 0x80000000, 1366 new, (long) offset.l_uf, 1367 (new < 0) ? -1 : 1); 1368 offset.l_ui += (new < 0) ? -1 : 1; 1369 } 1370 dispersion /= 4; 1371 if (dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog( 1372 (dbg & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO, 1373 "I: [%x] Smooth data: %ld -> %ld, dispersion now %f", 1374 dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE), 1375 ((long) offset.l_uf) / 4295, new / 4295, 1376 (dispersion * 1526) / 100); 1377 offset.l_uf = (unsigned long) new; 1378 } 1379 else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( 1380 (dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, 1381 "[%x] No smooth as delta not %d < %ld < %d", 1382 dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), 1383 - FRACT_SEC(100), diff, FRACT_SEC(100)); 1384 } 1385 else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( 1386 (dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, 1387 "I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)", 1388 dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), 1389 ees->usealldata, ees->offset.l_f, ees->offset.l_uf, 1390 offset.l_f, ees->offset.l_f - offset.l_f); 1391 1392 /* Collect offset info for debugging info */ 1393 ees->offset = offset; 1394 ees->lowoffset = coffs[i]; 1395 ees->highoffset = coffs[noff-1]; 1396 1397 /* Determine synchronization status. Can be unsync'd either 1398 * by a report from the clock or by a leap hold. 1399 * 1400 * Loss of the radio signal for a short time does not cause 1401 * us to go unsynchronised, since the receiver keeps quite 1402 * good time on its own. The spec says 20ms in 4 hours; the 1403 * observed drift in our clock (Cambridge) is about a second 1404 * a day, but even that keeps us within the inherent tolerance 1405 * of the clock for about 15 minutes. Observation shows that 1406 * the typical "short" outage is 3 minutes, so to allow us 1407 * to ride out those, we will give it 5 minutes. 1408 */ 1409 lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0; 1410 isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1; 1411 1412 /* Done. Use time of last good, synchronised code as the 1413 * reference time, and lastsampletime as the receive time. 1414 */ 1415 if (ees->fix_pending) { 1416 msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x", 1417 ees->fix_pending, ees->unit, offset.l_i, offset.l_f); 1418 ees->fix_pending = 0; 1419 } 1420 LFPTOD(&offset, doffset); 1421 refclock_receive(ees->peer); 1422 ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL); 1423 } 1424 1425 /* msfees_poll - called by the transmit procedure */ 1426 static void 1427 msfees_poll( 1428 int unit, 1429 struct peer *peer 1430 ) 1431 { 1432 if (unit >= MAXUNITS) { 1433 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid", 1434 unit); 1435 return; 1436 } 1437 if (!unitinuse[unit]) { 1438 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused", 1439 unit); 1440 return; 1441 } 1442 1443 ees_process(eesunits[unit]); 1444 1445 if ((current_time - eesunits[unit]->lasttime) > 150) 1446 ees_event(eesunits[unit], CEVNT_FAULT); 1447 } 1448 1449 1450 #else 1451 NONEMPTY_TRANSLATION_UNIT 1452 #endif /* REFCLOCK */ 1453