xref: /netbsd-src/external/bsd/ntp/dist/ntpd/refclock_jupiter.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: refclock_jupiter.c,v 1.2 2010/12/04 23:08:35 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 2003
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Lawrence Berkeley Laboratory.
19  * 4. The name of the University may not be used to endorse or promote
20  *    products derived from this software without specific prior
21  *    written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #ifdef HAVE_CONFIG_H
37 # include <config.h>
38 #endif
39 
40 #if defined(REFCLOCK) && defined(CLOCK_JUPITER) && defined(HAVE_PPSAPI)
41 
42 #include "ntpd.h"
43 #include "ntp_io.h"
44 #include "ntp_refclock.h"
45 #include "ntp_unixtime.h"
46 #include "ntp_stdlib.h"
47 
48 #include <stdio.h>
49 #include <ctype.h>
50 
51 #include "jupiter.h"
52 
53 #ifdef HAVE_PPSAPI
54 # include "ppsapi_timepps.h"
55 #endif
56 
57 #ifdef XNTP_BIG_ENDIAN
58 #define getshort(s) ((((s) & 0xff) << 8) | (((s) >> 8) & 0xff))
59 #define putshort(s) ((((s) & 0xff) << 8) | (((s) >> 8) & 0xff))
60 #else
61 #define getshort(s) (s)
62 #define putshort(s) (s)
63 #endif
64 
65 /* XXX */
66 #ifdef sun
67 char *strerror(int);
68 #endif
69 
70 /*
71  * This driver supports the Rockwell Jupiter GPS Receiver board
72  * adapted to precision timing applications.  It requires the
73  * ppsclock line discipline or streams module described in the
74  * Line Disciplines and Streams Drivers page. It also requires a
75  * gadget box and 1-PPS level converter, such as described in the
76  * Pulse-per-second (PPS) Signal Interfacing page.
77  *
78  * It may work (with minor modifications) with other Rockwell GPS
79  * receivers such as the CityTracker.
80  */
81 
82 /*
83  * GPS Definitions
84  */
85 #define	DEVICE		"/dev/gps%d"	/* device name and unit */
86 #define	SPEED232	B9600		/* baud */
87 
88 /*
89  * Radio interface parameters
90  */
91 #define	PRECISION	(-18)	/* precision assumed (about 4 us) */
92 #define	REFID	"GPS\0"		/* reference id */
93 #define	DESCRIPTION	"Rockwell Jupiter GPS Receiver" /* who we are */
94 #define	DEFFUDGETIME	0	/* default fudge time (ms) */
95 
96 /* Unix timestamp for the GPS epoch: January 6, 1980 */
97 #define GPS_EPOCH 315964800
98 
99 /* Double short to unsigned int */
100 #define DS2UI(p) ((getshort((p)[1]) << 16) | getshort((p)[0]))
101 
102 /* Double short to signed int */
103 #define DS2I(p) ((getshort((p)[1]) << 16) | getshort((p)[0]))
104 
105 /* One week's worth of seconds */
106 #define WEEKSECS (7 * 24 * 60 * 60)
107 
108 /*
109  * Jupiter unit control structure.
110  */
111 struct instance {
112 	struct peer *peer;		/* peer */
113 	u_int  pollcnt;			/* poll message counter */
114 	u_int  polled;			/* Hand in a time sample? */
115 #ifdef HAVE_PPSAPI
116 	pps_params_t pps_params;	/* pps parameters */
117 	pps_info_t pps_info;		/* last pps data */
118 	pps_handle_t pps_handle;	/* pps handle */
119 	u_int assert;			/* pps edge to use */
120 	u_int hardpps;			/* enable kernel mode */
121 	struct timespec ts;		/* last timestamp */
122 #endif
123 	l_fp limit;
124 	u_int gpos_gweek;		/* Current GPOS GPS week number */
125 	u_int gpos_sweek;		/* Current GPOS GPS seconds into week */
126 	u_int gweek;			/* current GPS week number */
127 	u_int32 lastsweek;		/* last seconds into GPS week */
128 	time_t timecode;		/* current ntp timecode */
129 	u_int32 stime;			/* used to detect firmware bug */
130 	int wantid;			/* don't reconfig on channel id msg */
131 	u_int  moving;			/* mobile platform? */
132 	u_char sloppyclockflag;		/* fudge flags */
133 	u_short sbuf[512];		/* local input buffer */
134 	int ssize;			/* space used in sbuf */
135 };
136 
137 /*
138  * Function prototypes
139  */
140 static	void	jupiter_canmsg	(struct instance *, u_int);
141 static	u_short	jupiter_cksum	(u_short *, u_int);
142 static	int	jupiter_config	(struct instance *);
143 static	void	jupiter_debug	(struct peer *, const char *, const char *, ...)
144     __attribute__ ((format (printf, 3, 4)));
145 static	const char *jupiter_parse_t	(struct instance *, u_short *);
146 static	const char *jupiter_parse_gpos	(struct instance *, u_short *);
147 static	void	jupiter_platform	(struct instance *, u_int);
148 static	void	jupiter_poll	(int, struct peer *);
149 static	void	jupiter_control	(int, struct refclockstat *, struct
150 				    refclockstat *, struct peer *);
151 #ifdef HAVE_PPSAPI
152 static	int	jupiter_ppsapi	(struct instance *);
153 static	int	jupiter_pps	(struct instance *);
154 #endif /* HAVE_PPSAPI */
155 static	int	jupiter_recv	(struct instance *);
156 static	void	jupiter_receive (struct recvbuf *rbufp);
157 static	void	jupiter_reqmsg	(struct instance *, u_int, u_int);
158 static	void	jupiter_reqonemsg	(struct instance *, u_int);
159 static	char *	jupiter_send	(struct instance *, struct jheader *);
160 static	void	jupiter_shutdown	(int, struct peer *);
161 static	int	jupiter_start	(int, struct peer *);
162 
163 /*
164  * Transfer vector
165  */
166 struct	refclock refclock_jupiter = {
167 	jupiter_start,		/* start up driver */
168 	jupiter_shutdown,	/* shut down driver */
169 	jupiter_poll,		/* transmit poll message */
170 	jupiter_control,	/* (clock control) */
171 	noentry,		/* (clock init) */
172 	noentry,		/* (clock buginfo) */
173 	NOFLAGS			/* not used */
174 };
175 
176 /*
177  * jupiter_start - open the devices and initialize data for processing
178  */
179 static int
180 jupiter_start(
181 	int unit,
182 	struct peer *peer
183 	)
184 {
185 	struct refclockproc *pp;
186 	struct instance *instance;
187 	int fd = -1;
188 	char gpsdev[20];
189 
190 	/*
191 	 * Open serial port
192 	 */
193 	(void)sprintf(gpsdev, DEVICE, unit);
194 	fd = refclock_open(gpsdev, SPEED232, LDISC_RAW);
195 	if (fd == 0) {
196 		jupiter_debug(peer, __func__, "open %s: %s",
197 		    gpsdev, strerror(errno));
198 		return (0);
199 	}
200 
201 	/* Allocate unit structure */
202 	if ((instance = (struct instance *)
203 	    emalloc(sizeof(struct instance))) == NULL) {
204 		(void) close(fd);
205 		return (0);
206 	}
207 	memset((char *)instance, 0, sizeof(struct instance));
208 	instance->peer = peer;
209 	pp = peer->procptr;
210 	pp->io.clock_recv = jupiter_receive;
211 	pp->io.srcclock = (caddr_t)peer;
212 	pp->io.datalen = 0;
213 	pp->io.fd = fd;
214 	if (!io_addclock(&pp->io)) {
215 		(void) close(fd);
216 		free(instance);
217 		return (0);
218 	}
219 	pp->unitptr = (caddr_t)instance;
220 
221 	/*
222 	 * Initialize miscellaneous variables
223 	 */
224 	peer->precision = PRECISION;
225 	pp->clockdesc = DESCRIPTION;
226 	memcpy((char *)&pp->refid, REFID, 4);
227 
228 #ifdef HAVE_PPSAPI
229 	instance->assert = 1;
230 	instance->hardpps = 0;
231 	/*
232 	 * Start the PPSAPI interface if it is there. Default to use
233 	 * the assert edge and do not enable the kernel hardpps.
234 	 */
235 	if (time_pps_create(fd, &instance->pps_handle) < 0) {
236 		instance->pps_handle = 0;
237 		msyslog(LOG_ERR,
238 			"refclock_jupiter: time_pps_create failed: %m");
239 	}
240 	else if (!jupiter_ppsapi(instance))
241 		goto clean_up;
242 #endif /* HAVE_PPSAPI */
243 
244 	/* Ensure the receiver is properly configured */
245 	if (!jupiter_config(instance))
246 		goto clean_up;
247 
248 	return (1);
249 
250 clean_up:
251 	jupiter_shutdown(unit, peer);
252 	pp->unitptr = 0;
253 	return (0);
254 }
255 
256 /*
257  * jupiter_shutdown - shut down the clock
258  */
259 static void
260 jupiter_shutdown(int unit, struct peer *peer)
261 {
262 	struct instance *instance;
263 	struct refclockproc *pp;
264 
265 	pp = peer->procptr;
266 	instance = (struct instance *)pp->unitptr;
267 	if (!instance)
268 		return;
269 
270 #ifdef HAVE_PPSAPI
271 	if (instance->pps_handle) {
272 		time_pps_destroy(instance->pps_handle);
273 		instance->pps_handle = 0;
274 	}
275 #endif /* HAVE_PPSAPI */
276 
277 	io_closeclock(&pp->io);
278 	free(instance);
279 }
280 
281 /*
282  * jupiter_config - Configure the receiver
283  */
284 static int
285 jupiter_config(struct instance *instance)
286 {
287 	jupiter_debug(instance->peer, __func__, "init receiver");
288 
289 	/*
290 	 * Initialize the unit variables
291 	 */
292 	instance->sloppyclockflag = instance->peer->procptr->sloppyclockflag;
293 	instance->moving = !!(instance->sloppyclockflag & CLK_FLAG2);
294 	if (instance->moving)
295 		jupiter_debug(instance->peer, __func__, "mobile platform");
296 
297 	instance->pollcnt     = 2;
298 	instance->polled      = 0;
299 	instance->gpos_gweek = 0;
300 	instance->gpos_sweek = 0;
301 	instance->gweek = 0;
302 	instance->lastsweek = 2 * WEEKSECS;
303 	instance->timecode = 0;
304 	instance->stime = 0;
305 	instance->ssize = 0;
306 
307 	/* Stop outputting all messages */
308 	jupiter_canmsg(instance, JUPITER_ALL);
309 
310 	/* Request the receiver id so we can syslog the firmware version */
311 	jupiter_reqonemsg(instance, JUPITER_O_ID);
312 
313 	/* Flag that this the id was requested (so we don't get called again) */
314 	instance->wantid = 1;
315 
316 	/* Request perodic time mark pulse messages */
317 	jupiter_reqmsg(instance, JUPITER_O_PULSE, 1);
318 
319 	/* Request perodic geodetic position status */
320 	jupiter_reqmsg(instance, JUPITER_O_GPOS, 1);
321 
322 	/* Set application platform type */
323 	if (instance->moving)
324 		jupiter_platform(instance, JUPITER_I_PLAT_MED);
325 	else
326 		jupiter_platform(instance, JUPITER_I_PLAT_LOW);
327 
328 	return (1);
329 }
330 
331 #ifdef HAVE_PPSAPI
332 /*
333  * Initialize PPSAPI
334  */
335 int
336 jupiter_ppsapi(
337 	struct instance *instance	/* unit structure pointer */
338 	)
339 {
340 	int capability;
341 
342 	if (time_pps_getcap(instance->pps_handle, &capability) < 0) {
343 		msyslog(LOG_ERR,
344 		    "refclock_jupiter: time_pps_getcap failed: %m");
345 		return (0);
346 	}
347 	memset(&instance->pps_params, 0, sizeof(pps_params_t));
348 	if (!instance->assert)
349 		instance->pps_params.mode = capability & PPS_CAPTURECLEAR;
350 	else
351 		instance->pps_params.mode = capability & PPS_CAPTUREASSERT;
352 	if (!(instance->pps_params.mode & (PPS_CAPTUREASSERT | PPS_CAPTURECLEAR))) {
353 		msyslog(LOG_ERR,
354 		    "refclock_jupiter: invalid capture edge %d",
355 		    instance->assert);
356 		return (0);
357 	}
358 	instance->pps_params.mode |= PPS_TSFMT_TSPEC;
359 	if (time_pps_setparams(instance->pps_handle, &instance->pps_params) < 0) {
360 		msyslog(LOG_ERR,
361 		    "refclock_jupiter: time_pps_setparams failed: %m");
362 		return (0);
363 	}
364 	if (instance->hardpps) {
365 		if (time_pps_kcbind(instance->pps_handle, PPS_KC_HARDPPS,
366 				    instance->pps_params.mode & ~PPS_TSFMT_TSPEC,
367 				    PPS_TSFMT_TSPEC) < 0) {
368 			msyslog(LOG_ERR,
369 			    "refclock_jupiter: time_pps_kcbind failed: %m");
370 			return (0);
371 		}
372 		pps_enable = 1;
373 	}
374 /*	instance->peer->precision = PPS_PRECISION; */
375 
376 #if DEBUG
377 	if (debug) {
378 		time_pps_getparams(instance->pps_handle, &instance->pps_params);
379 		jupiter_debug(instance->peer, __func__,
380 			"pps capability 0x%x version %d mode 0x%x kern %d",
381 			capability, instance->pps_params.api_version,
382 			instance->pps_params.mode, instance->hardpps);
383 	}
384 #endif
385 
386 	return (1);
387 }
388 
389 /*
390  * Get PPSAPI timestamps.
391  *
392  * Return 0 on failure and 1 on success.
393  */
394 static int
395 jupiter_pps(struct instance *instance)
396 {
397 	pps_info_t pps_info;
398 	struct timespec timeout, ts;
399 	double dtemp;
400 	l_fp tstmp;
401 
402 	/*
403 	 * Convert the timespec nanoseconds field to ntp l_fp units.
404 	 */
405 	if (instance->pps_handle == 0)
406 		return 1;
407 	timeout.tv_sec = 0;
408 	timeout.tv_nsec = 0;
409 	memcpy(&pps_info, &instance->pps_info, sizeof(pps_info_t));
410 	if (time_pps_fetch(instance->pps_handle, PPS_TSFMT_TSPEC, &instance->pps_info,
411 	    &timeout) < 0)
412 		return 1;
413 	if (instance->pps_params.mode & PPS_CAPTUREASSERT) {
414 		if (pps_info.assert_sequence ==
415 		    instance->pps_info.assert_sequence)
416 			return 1;
417 		ts = instance->pps_info.assert_timestamp;
418 	} else if (instance->pps_params.mode & PPS_CAPTURECLEAR) {
419 		if (pps_info.clear_sequence ==
420 		    instance->pps_info.clear_sequence)
421 			return 1;
422 		ts = instance->pps_info.clear_timestamp;
423 	} else {
424 		return 1;
425 	}
426 	if ((instance->ts.tv_sec == ts.tv_sec) && (instance->ts.tv_nsec == ts.tv_nsec))
427 		return 1;
428 	instance->ts = ts;
429 
430 	tstmp.l_ui = ts.tv_sec + JAN_1970;
431 	dtemp = ts.tv_nsec * FRAC / 1e9;
432 	tstmp.l_uf = (u_int32)dtemp;
433 	instance->peer->procptr->lastrec = tstmp;
434 	return 0;
435 }
436 #endif /* HAVE_PPSAPI */
437 
438 /*
439  * jupiter_poll - jupiter watchdog routine
440  */
441 static void
442 jupiter_poll(int unit, struct peer *peer)
443 {
444 	struct instance *instance;
445 	struct refclockproc *pp;
446 
447 	pp = peer->procptr;
448 	instance = (struct instance *)pp->unitptr;
449 
450 	/*
451 	 * You don't need to poll this clock.  It puts out timecodes
452 	 * once per second.  If asked for a timestamp, take note.
453 	 * The next time a timecode comes in, it will be fed back.
454 	 */
455 
456 	/*
457 	 * If we haven't had a response in a while, reset the receiver.
458 	 */
459 	if (instance->pollcnt > 0) {
460 		instance->pollcnt--;
461 	} else {
462 		refclock_report(peer, CEVNT_TIMEOUT);
463 
464 		/* Request the receiver id to trigger a reconfig */
465 		jupiter_reqonemsg(instance, JUPITER_O_ID);
466 		instance->wantid = 0;
467 	}
468 
469 	/*
470 	 * polled every 64 seconds. Ask jupiter_receive to hand in
471 	 * a timestamp.
472 	 */
473 	instance->polled = 1;
474 	pp->polls++;
475 }
476 
477 /*
478  * jupiter_control - fudge control
479  */
480 static void
481 jupiter_control(
482 	int unit,		/* unit (not used) */
483 	struct refclockstat *in, /* input parameters (not used) */
484 	struct refclockstat *out, /* output parameters (not used) */
485 	struct peer *peer	/* peer structure pointer */
486 	)
487 {
488 	struct refclockproc *pp;
489 	struct instance *instance;
490 	u_char sloppyclockflag;
491 
492 	pp = peer->procptr;
493 	instance = (struct instance *)pp->unitptr;
494 
495 	DTOLFP(pp->fudgetime2, &instance->limit);
496 	/* Force positive value. */
497 	if (L_ISNEG(&instance->limit))
498 		L_NEG(&instance->limit);
499 
500 #ifdef HAVE_PPSAPI
501 	instance->assert = !(pp->sloppyclockflag & CLK_FLAG3);
502 	jupiter_ppsapi(instance);
503 #endif /* HAVE_PPSAPI */
504 
505 	sloppyclockflag = instance->sloppyclockflag;
506 	instance->sloppyclockflag = pp->sloppyclockflag;
507 	if ((instance->sloppyclockflag & CLK_FLAG2) !=
508 	    (sloppyclockflag & CLK_FLAG2)) {
509 		jupiter_debug(peer, __func__,
510 		    "mode switch: reset receiver");
511 		jupiter_config(instance);
512 		return;
513 	}
514 }
515 
516 /*
517  * jupiter_receive - receive gps data
518  * Gag me!
519  */
520 static void
521 jupiter_receive(struct recvbuf *rbufp)
522 {
523 	size_t bpcnt;
524 	int cc, size, ppsret;
525 	time_t last_timecode;
526 	u_int32 laststime;
527 	const char *cp;
528 	u_char *bp;
529 	u_short *sp;
530 	struct jid *ip;
531 	struct jheader *hp;
532 	struct peer *peer;
533 	struct refclockproc *pp;
534 	struct instance *instance;
535 	l_fp tstamp;
536 
537 	/* Initialize pointers and read the timecode and timestamp */
538 	peer = (struct peer *)rbufp->recv_srcclock;
539 	pp = peer->procptr;
540 	instance = (struct instance *)pp->unitptr;
541 
542 	bp = (u_char *)rbufp->recv_buffer;
543 	bpcnt = rbufp->recv_length;
544 
545 	/* This shouldn't happen */
546 	if (bpcnt > sizeof(instance->sbuf) - instance->ssize)
547 		bpcnt = sizeof(instance->sbuf) - instance->ssize;
548 
549 	/* Append to input buffer */
550 	memcpy((u_char *)instance->sbuf + instance->ssize, bp, bpcnt);
551 	instance->ssize += bpcnt;
552 
553 	/* While there's at least a header and we parse an intact message */
554 	while (instance->ssize > (int)sizeof(*hp) && (cc = jupiter_recv(instance)) > 0) {
555 		instance->pollcnt = 2;
556 
557 		tstamp = rbufp->recv_time;
558 		hp = (struct jheader *)instance->sbuf;
559 		sp = (u_short *)(hp + 1);
560 		size = cc - sizeof(*hp);
561 		switch (getshort(hp->id)) {
562 
563 		case JUPITER_O_PULSE:
564 			if (size != sizeof(struct jpulse)) {
565 				jupiter_debug(peer, __func__,
566 				    "pulse: len %d != %u",
567 				    size, (int)sizeof(struct jpulse));
568 				refclock_report(peer, CEVNT_BADREPLY);
569 				break;
570 			}
571 
572 			/*
573 			 * There appears to be a firmware bug related
574 			 * to the pulse message; in addition to the one
575 			 * per second messages, we get an extra pulse
576 			 * message once an hour (on the anniversary of
577 			 * the cold start). It seems to come 200 ms
578 			 * after the one requested. So if we've seen a
579 			 * pulse message in the last 210 ms, we skip
580 			 * this one.
581 			 */
582 			laststime = instance->stime;
583 			instance->stime = DS2UI(((struct jpulse *)sp)->stime);
584 			if (laststime != 0 && instance->stime - laststime <= 21) {
585 				jupiter_debug(peer, __func__,
586 				"avoided firmware bug (stime %.2f, laststime %.2f)",
587 				(double)instance->stime * 0.01, (double)laststime * 0.01);
588 				break;
589 			}
590 
591 			/* Retrieve pps timestamp */
592 			ppsret = jupiter_pps(instance);
593 
594 			/*
595 			 * Add one second if msg received early
596 			 * (i.e. before limit, a.k.a. fudgetime2) in
597 			 * the second.
598 			 */
599 			L_SUB(&tstamp, &pp->lastrec);
600 			if (!L_ISGEQ(&tstamp, &instance->limit))
601 				++pp->lastrec.l_ui;
602 
603 			/* Parse timecode (even when there's no pps) */
604 			last_timecode = instance->timecode;
605 			if ((cp = jupiter_parse_t(instance, sp)) != NULL) {
606 				jupiter_debug(peer, __func__,
607 				    "pulse: %s", cp);
608 				break;
609 			}
610 
611 			/* Bail if we didn't get a pps timestamp */
612 			if (ppsret)
613 				break;
614 
615 			/* Bail if we don't have the last timecode yet */
616 			if (last_timecode == 0)
617 				break;
618 
619 			/* Add the new sample to a median filter */
620 			tstamp.l_ui = JAN_1970 + last_timecode;
621 			tstamp.l_uf = 0;
622 
623 			refclock_process_offset(pp, tstamp, pp->lastrec, pp->fudgetime1);
624 
625 			/*
626 			 * The clock will blurt a timecode every second
627 			 * but we only want one when polled.  If we
628 			 * havn't been polled, bail out.
629 			 */
630 			if (!instance->polled)
631 				break;
632 			instance->polled = 0;
633 
634 			/*
635 			 * It's a live one!  Remember this time.
636 			 */
637 
638 			pp->lastref = pp->lastrec;
639 			refclock_receive(peer);
640 
641 			/*
642 			 * If we get here - what we got from the clock is
643 			 * OK, so say so
644 			 */
645 			refclock_report(peer, CEVNT_NOMINAL);
646 
647 			/*
648 			 * We have succeeded in answering the poll.
649 			 * Turn off the flag and return
650 			 */
651 			instance->polled = 0;
652 			break;
653 
654 		case JUPITER_O_GPOS:
655 			if (size != sizeof(struct jgpos)) {
656 				jupiter_debug(peer, __func__,
657 				    "gpos: len %d != %u",
658 				    size, (int)sizeof(struct jgpos));
659 				refclock_report(peer, CEVNT_BADREPLY);
660 				break;
661 			}
662 
663 			if ((cp = jupiter_parse_gpos(instance, sp)) != NULL) {
664 				jupiter_debug(peer, __func__,
665 				    "gpos: %s", cp);
666 				break;
667 			}
668 			break;
669 
670 		case JUPITER_O_ID:
671 			if (size != sizeof(struct jid)) {
672 				jupiter_debug(peer, __func__,
673 				    "id: len %d != %u",
674 				    size, (int)sizeof(struct jid));
675 				refclock_report(peer, CEVNT_BADREPLY);
676 				break;
677 			}
678 			/*
679 			 * If we got this message because the Jupiter
680 			 * just powered instance, it needs to be reconfigured.
681 			 */
682 			ip = (struct jid *)sp;
683 			jupiter_debug(peer, __func__,
684 			    "%s chan ver %s, %s (%s)",
685 			    ip->chans, ip->vers, ip->date, ip->opts);
686 			msyslog(LOG_DEBUG,
687 			    "jupiter_receive: %s chan ver %s, %s (%s)",
688 			    ip->chans, ip->vers, ip->date, ip->opts);
689 			if (instance->wantid)
690 				instance->wantid = 0;
691 			else {
692 				jupiter_debug(peer, __func__, "reset receiver");
693 				jupiter_config(instance);
694 				/*
695 				 * Restore since jupiter_config() just
696 				 * zeroed it
697 				 */
698 				instance->ssize = cc;
699 			}
700 			break;
701 
702 		default:
703 			jupiter_debug(peer, __func__, "unknown message id %d",
704 			    getshort(hp->id));
705 			break;
706 		}
707 		instance->ssize -= cc;
708 		if (instance->ssize < 0) {
709 			fprintf(stderr, "jupiter_recv: negative ssize!\n");
710 			abort();
711 		} else if (instance->ssize > 0)
712 			memcpy(instance->sbuf, (u_char *)instance->sbuf + cc, instance->ssize);
713 	}
714 }
715 
716 static const char *
717 jupiter_parse_t(struct instance *instance, u_short *sp)
718 {
719 	struct tm *tm;
720 	char *cp;
721 	struct jpulse *jp;
722 	u_int32 sweek;
723 	time_t last_timecode;
724 	u_short flags;
725 
726 	jp = (struct jpulse *)sp;
727 
728 	/* The timecode is presented as seconds into the current GPS week */
729 	sweek = DS2UI(jp->sweek) % WEEKSECS;
730 
731 	/*
732 	 * If we don't know the current GPS week, calculate it from the
733 	 * current time. (It's too bad they didn't include this
734 	 * important value in the pulse message). We'd like to pick it
735 	 * up from one of the other messages like gpos or chan but they
736 	 * don't appear to be synchronous with time keeping and changes
737 	 * too soon (something like 10 seconds before the new GPS
738 	 * week).
739 	 *
740 	 * If we already know the current GPS week, increment it when
741 	 * we wrap into a new week.
742 	 */
743 	if (instance->gweek == 0) {
744 		if (!instance->gpos_gweek) {
745 			return ("jupiter_parse_t: Unknown gweek");
746 		}
747 
748 		instance->gweek = instance->gpos_gweek;
749 
750 		/*
751 		 * Fix warps. GPOS has GPS time and PULSE has UTC.
752 		 * Plus, GPOS need not be completely in synch with
753 		 * the PPS signal.
754 		 */
755 		if (instance->gpos_sweek >= sweek) {
756 			if ((instance->gpos_sweek - sweek) > WEEKSECS / 2)
757 				++instance->gweek;
758 		}
759 		else {
760 			if ((sweek - instance->gpos_sweek) > WEEKSECS / 2)
761 				--instance->gweek;
762 		}
763 	}
764 	else if (sweek == 0 && instance->lastsweek == WEEKSECS - 1) {
765 		++instance->gweek;
766 		jupiter_debug(instance->peer, __func__,
767 		    "NEW gps week %u", instance->gweek);
768 	}
769 
770 	/*
771 	 * See if the sweek stayed the same (this happens when there is
772 	 * no pps pulse).
773 	 *
774 	 * Otherwise, look for time warps:
775 	 *
776 	 *   - we have stored at least one lastsweek and
777 	 *   - the sweek didn't increase by one and
778 	 *   - we didn't wrap to a new GPS week
779 	 *
780 	 * Then we warped.
781 	 */
782 	if (instance->lastsweek == sweek)
783 		jupiter_debug(instance->peer, __func__,
784 		    "gps sweek not incrementing (%d)",
785 		    sweek);
786 	else if (instance->lastsweek != 2 * WEEKSECS &&
787 	    instance->lastsweek + 1 != sweek &&
788 	    !(sweek == 0 && instance->lastsweek == WEEKSECS - 1))
789 		jupiter_debug(instance->peer, __func__,
790 		    "gps sweek jumped (was %d, now %d)",
791 		    instance->lastsweek, sweek);
792 	instance->lastsweek = sweek;
793 
794 	/* This timecode describes next pulse */
795 	last_timecode = instance->timecode;
796 	instance->timecode =
797 	    GPS_EPOCH + (instance->gweek * WEEKSECS) + sweek;
798 
799 	if (last_timecode == 0)
800 		/* XXX debugging */
801 		jupiter_debug(instance->peer, __func__,
802 		    "UTC <none> (gweek/sweek %u/%u)",
803 		    instance->gweek, sweek);
804 	else {
805 		/* XXX debugging */
806 		tm = gmtime(&last_timecode);
807 		cp = asctime(tm);
808 
809 		jupiter_debug(instance->peer, __func__,
810 		    "UTC %.24s (gweek/sweek %u/%u)",
811 		    cp, instance->gweek, sweek);
812 
813 		/* Billboard last_timecode (which is now the current time) */
814 		instance->peer->procptr->year   = tm->tm_year + 1900;
815 		instance->peer->procptr->day    = tm->tm_yday + 1;
816 		instance->peer->procptr->hour   = tm->tm_hour;
817 		instance->peer->procptr->minute = tm->tm_min;
818 		instance->peer->procptr->second = tm->tm_sec;
819 	}
820 
821 	flags = getshort(jp->flags);
822 
823 	/* Toss if not designated "valid" by the gps */
824 	if ((flags & JUPITER_O_PULSE_VALID) == 0) {
825 		refclock_report(instance->peer, CEVNT_BADTIME);
826 		return ("time mark not valid");
827 	}
828 
829 	/* We better be sync'ed to UTC... */
830 	if ((flags & JUPITER_O_PULSE_UTC) == 0) {
831 		refclock_report(instance->peer, CEVNT_BADTIME);
832 		return ("time mark not sync'ed to UTC");
833 	}
834 
835 	return (NULL);
836 }
837 
838 static const char *
839 jupiter_parse_gpos(struct instance *instance, u_short *sp)
840 {
841 	struct jgpos *jg;
842 	time_t t;
843 	struct tm *tm;
844 	char *cp;
845 
846 	jg = (struct jgpos *)sp;
847 
848 	if (jg->navval != 0) {
849 		/*
850 		 * Solution not valid. Use caution and refuse
851 		 * to determine GPS week from this message.
852 		 */
853 		instance->gpos_gweek = 0;
854 		instance->gpos_sweek = 0;
855 		return ("Navigation solution not valid");
856 	}
857 
858 	instance->gpos_gweek = jg->gweek;
859 	instance->gpos_sweek = DS2UI(jg->sweek);
860 	while(instance->gpos_sweek >= WEEKSECS) {
861 		instance->gpos_sweek -= WEEKSECS;
862 		++instance->gpos_gweek;
863 	}
864 	instance->gweek = 0;
865 
866 	t = GPS_EPOCH + (instance->gpos_gweek * WEEKSECS) + instance->gpos_sweek;
867 	tm = gmtime(&t);
868 	cp = asctime(tm);
869 
870 	jupiter_debug(instance->peer, __func__,
871 		"GPS %.24s (gweek/sweek %u/%u)",
872 		cp, instance->gpos_gweek, instance->gpos_sweek);
873 	return (NULL);
874 }
875 
876 /*
877  * jupiter_debug - print debug messages
878  */
879 #if defined(__STDC__) || defined(SYS_WINNT)
880 static void
881 jupiter_debug(struct peer *peer, const char *function, const char *fmt, ...)
882 #else
883 static void
884 jupiter_debug(peer, function, fmt, va_alist)
885 	struct peer *peer;
886 	char *function;
887 	char *fmt;
888 #endif /* __STDC__ */
889 {
890 	char buffer[200];
891 	va_list ap;
892 
893 #if defined(__STDC__) || defined(SYS_WINNT)
894 	va_start(ap, fmt);
895 #else
896 	va_start(ap);
897 #endif /* __STDC__ */
898 	/*
899 	 * Print debug message to stdout
900 	 * In the future, we may want to get get more creative...
901 	 */
902 	vsnprintf(buffer, sizeof(buffer), fmt, ap);
903 	record_clock_stats(&(peer->srcadr), buffer);
904 #ifdef DEBUG
905 	if (debug) {
906 		fprintf(stdout, "%s: ", function);
907 		fprintf(stdout, buffer);
908 		fprintf(stdout, "\n");
909 		fflush(stdout);
910 	}
911 #endif
912 
913 	va_end(ap);
914 }
915 
916 /* Checksum and transmit a message to the Jupiter */
917 static char *
918 jupiter_send(struct instance *instance, struct jheader *hp)
919 {
920 	u_int len, size;
921 	ssize_t cc;
922 	u_short *sp;
923 	static char errstr[132];
924 
925 	size = sizeof(*hp);
926 	hp->hsum = putshort(jupiter_cksum((u_short *)hp,
927 	    (size / sizeof(u_short)) - 1));
928 	len = getshort(hp->len);
929 	if (len > 0) {
930 		sp = (u_short *)(hp + 1);
931 		sp[len] = putshort(jupiter_cksum(sp, len));
932 		size += (len + 1) * sizeof(u_short);
933 	}
934 
935 	if ((cc = write(instance->peer->procptr->io.fd, (char *)hp, size)) < 0) {
936 		(void)sprintf(errstr, "write: %s", strerror(errno));
937 		return (errstr);
938 	} else if (cc != (ssize_t)size) {
939 		(void)sprintf(errstr, "short write (%zd != %u)", cc, size);
940 		return (errstr);
941 	}
942 	return (NULL);
943 }
944 
945 /* Request periodic message output */
946 static struct {
947 	struct jheader jheader;
948 	struct jrequest jrequest;
949 } reqmsg = {
950 	{ putshort(JUPITER_SYNC), 0,
951 	    putshort((sizeof(struct jrequest) / sizeof(u_short)) - 1),
952 	    0, JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK |
953 	    JUPITER_FLAG_CONN | JUPITER_FLAG_LOG, 0 },
954 	{ 0, 0, 0, 0 }
955 };
956 
957 /* An interval of zero means to output on trigger */
958 static void
959 jupiter_reqmsg(struct instance *instance, u_int id,
960     u_int interval)
961 {
962 	struct jheader *hp;
963 	struct jrequest *rp;
964 	char *cp;
965 
966 	hp = &reqmsg.jheader;
967 	hp->id = putshort(id);
968 	rp = &reqmsg.jrequest;
969 	rp->trigger = putshort(interval == 0);
970 	rp->interval = putshort(interval);
971 	if ((cp = jupiter_send(instance, hp)) != NULL)
972 		jupiter_debug(instance->peer, __func__, "%u: %s", id, cp);
973 }
974 
975 /* Cancel periodic message output */
976 static struct jheader canmsg = {
977 	putshort(JUPITER_SYNC), 0, 0, 0,
978 	JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK | JUPITER_FLAG_DISC,
979 	0
980 };
981 
982 static void
983 jupiter_canmsg(struct instance *instance, u_int id)
984 {
985 	struct jheader *hp;
986 	char *cp;
987 
988 	hp = &canmsg;
989 	hp->id = putshort(id);
990 	if ((cp = jupiter_send(instance, hp)) != NULL)
991 		jupiter_debug(instance->peer, __func__, "%u: %s", id, cp);
992 }
993 
994 /* Request a single message output */
995 static struct jheader reqonemsg = {
996 	putshort(JUPITER_SYNC), 0, 0, 0,
997 	JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK | JUPITER_FLAG_QUERY,
998 	0
999 };
1000 
1001 static void
1002 jupiter_reqonemsg(struct instance *instance, u_int id)
1003 {
1004 	struct jheader *hp;
1005 	char *cp;
1006 
1007 	hp = &reqonemsg;
1008 	hp->id = putshort(id);
1009 	if ((cp = jupiter_send(instance, hp)) != NULL)
1010 		jupiter_debug(instance->peer, __func__, "%u: %s", id, cp);
1011 }
1012 
1013 /* Set the platform dynamics */
1014 static struct {
1015 	struct jheader jheader;
1016 	struct jplat jplat;
1017 } platmsg = {
1018 	{ putshort(JUPITER_SYNC), putshort(JUPITER_I_PLAT),
1019 	    putshort((sizeof(struct jplat) / sizeof(u_short)) - 1), 0,
1020 	    JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK, 0 },
1021 	{ 0, 0, 0 }
1022 };
1023 
1024 static void
1025 jupiter_platform(struct instance *instance, u_int platform)
1026 {
1027 	struct jheader *hp;
1028 	struct jplat *pp;
1029 	char *cp;
1030 
1031 	hp = &platmsg.jheader;
1032 	pp = &platmsg.jplat;
1033 	pp->platform = putshort(platform);
1034 	if ((cp = jupiter_send(instance, hp)) != NULL)
1035 		jupiter_debug(instance->peer, __func__, "%u: %s", platform, cp);
1036 }
1037 
1038 /* Checksum "len" shorts */
1039 static u_short
1040 jupiter_cksum(u_short *sp, u_int len)
1041 {
1042 	u_short sum, x;
1043 
1044 	sum = 0;
1045 	while (len-- > 0) {
1046 		x = *sp++;
1047 		sum += getshort(x);
1048 	}
1049 	return (~sum + 1);
1050 }
1051 
1052 /* Return the size of the next message (or zero if we don't have it all yet) */
1053 static int
1054 jupiter_recv(struct instance *instance)
1055 {
1056 	int n, len, size, cc;
1057 	struct jheader *hp;
1058 	u_char *bp;
1059 	u_short *sp;
1060 
1061 	/* Must have at least a header's worth */
1062 	cc = sizeof(*hp);
1063 	size = instance->ssize;
1064 	if (size < cc)
1065 		return (0);
1066 
1067 	/* Search for the sync short if missing */
1068 	sp = instance->sbuf;
1069 	hp = (struct jheader *)sp;
1070 	if (getshort(hp->sync) != JUPITER_SYNC) {
1071 		/* Wasn't at the front, sync up */
1072 		jupiter_debug(instance->peer, __func__, "syncing");
1073 		bp = (u_char *)sp;
1074 		n = size;
1075 		while (n >= 2) {
1076 			if (bp[0] != (JUPITER_SYNC & 0xff)) {
1077 				/*
1078 				jupiter_debug(instance->peer, __func__,
1079 				    "{0x%x}", bp[0]);
1080 				*/
1081 				++bp;
1082 				--n;
1083 				continue;
1084 			}
1085 			if (bp[1] == ((JUPITER_SYNC >> 8) & 0xff))
1086 				break;
1087 			/*
1088 			jupiter_debug(instance->peer, __func__,
1089 			    "{0x%x 0x%x}", bp[0], bp[1]);
1090 			*/
1091 			bp += 2;
1092 			n -= 2;
1093 		}
1094 		/*
1095 		jupiter_debug(instance->peer, __func__, "\n");
1096 		*/
1097 		/* Shuffle data to front of input buffer */
1098 		if (n > 0)
1099 			memcpy(sp, bp, n);
1100 		size = n;
1101 		instance->ssize = size;
1102 		if (size < cc || hp->sync != JUPITER_SYNC)
1103 			return (0);
1104 	}
1105 
1106 	if (jupiter_cksum(sp, (cc / sizeof(u_short) - 1)) !=
1107 	    getshort(hp->hsum)) {
1108 	    jupiter_debug(instance->peer, __func__, "bad header checksum!");
1109 		/* This is drastic but checksum errors should be rare */
1110 		instance->ssize = 0;
1111 		return (0);
1112 	}
1113 
1114 	/* Check for a payload */
1115 	len = getshort(hp->len);
1116 	if (len > 0) {
1117 		n = (len + 1) * sizeof(u_short);
1118 		/* Not enough data yet */
1119 		if (size < cc + n)
1120 			return (0);
1121 
1122 		/* Check payload checksum */
1123 		sp = (u_short *)(hp + 1);
1124 		if (jupiter_cksum(sp, len) != getshort(sp[len])) {
1125 			jupiter_debug(instance->peer,
1126 			    __func__, "bad payload checksum!");
1127 			/* This is drastic but checksum errors should be rare */
1128 			instance->ssize = 0;
1129 			return (0);
1130 		}
1131 		cc += n;
1132 	}
1133 	return (cc);
1134 }
1135 
1136 #else /* not (REFCLOCK && CLOCK_JUPITER && HAVE_PPSAPI) */
1137 int refclock_jupiter_bs;
1138 #endif /* not (REFCLOCK && CLOCK_JUPITER && HAVE_PPSAPI) */
1139