xref: /netbsd-src/external/bsd/ntp/dist/ntpd/refclock_irig.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: refclock_irig.c,v 1.8 2016/01/08 21:35:39 christos Exp $	*/
2 
3 /*
4  * refclock_irig - audio IRIG-B/E demodulator/decoder
5  */
6 #ifdef HAVE_CONFIG_H
7 #include <config.h>
8 #endif
9 
10 #if defined(REFCLOCK) && defined(CLOCK_IRIG)
11 
12 #include "ntpd.h"
13 #include "ntp_io.h"
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
17 
18 #include <stdio.h>
19 #include <ctype.h>
20 #include <math.h>
21 #ifdef HAVE_SYS_IOCTL_H
22 #include <sys/ioctl.h>
23 #endif /* HAVE_SYS_IOCTL_H */
24 
25 #include "audio.h"
26 
27 /*
28  * Audio IRIG-B/E demodulator/decoder
29  *
30  * This driver synchronizes the computer time using data encoded in
31  * IRIG-B/E signals commonly produced by GPS receivers and other timing
32  * devices. The IRIG signal is an amplitude-modulated carrier with
33  * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
34  * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
35  * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
36  & format is in use.
37  *
38  * The driver requires an audio codec or sound card with sampling rate 8
39  * kHz and mu-law companding. This is the same standard as used by the
40  * telephone industry and is supported by most hardware and operating
41  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
42  * implementation, only one audio driver and codec can be supported on a
43  * single machine.
44  *
45  * The program processes 8000-Hz mu-law companded samples using separate
46  * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
47  * detector and automatic threshold corrector. Cycle crossings relative
48  * to the corrected slice level determine the width of each pulse and
49  * its value - zero, one or position identifier.
50  *
51  * The data encode 20 BCD digits which determine the second, minute,
52  * hour and day of the year and sometimes the year and synchronization
53  * condition. The comb filter exponentially averages the corresponding
54  * samples of successive baud intervals in order to reliably identify
55  * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
56  * additional integration and interpolation to accurately determine the
57  * zero crossing of that cycle, which determines the reference
58  * timestamp. A pulse-width discriminator demodulates the data pulses,
59  * which are then encoded as the BCD digits of the timecode.
60  *
61  * The timecode and reference timestamp are updated once each second
62  * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
63  * saved for later processing. At poll intervals of 64 s, the saved
64  * samples are processed by a trimmed-mean filter and used to update the
65  * system clock.
66  *
67  * An automatic gain control feature provides protection against
68  * overdriven or underdriven input signal amplitudes. It is designed to
69  * maintain adequate demodulator signal amplitude while avoiding
70  * occasional noise spikes. In order to assure reliable capture, the
71  * decompanded input signal amplitude must be greater than 100 units and
72  * the codec sample frequency error less than 250 PPM (.025 percent).
73  *
74  * Monitor Data
75  *
76  * The timecode format used for debugging and data recording includes
77  * data helpful in diagnosing problems with the IRIG signal and codec
78  * connections. The driver produces one line for each timecode in the
79  * following format:
80  *
81  * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
82  *
83  * If clockstats is enabled, the most recent line is written to the
84  * clockstats file every 64 s. If verbose recording is enabled (fudge
85  * flag 4) each line is written as generated.
86  *
87  * The first field containes the error flags in hex, where the hex bits
88  * are interpreted as below. This is followed by the year of century,
89  * day of year and time of day. Note that the time of day is for the
90  * previous minute, not the current time. The status indicator and year
91  * are not produced by some IRIG devices and appear as zeros. Following
92  * these fields are the carrier amplitude (0-3000), codec gain (0-255),
93  * modulation index (0-1), time constant (4-10), carrier phase error
94  * +-.5) and carrier frequency error (PPM). The last field is the on-
95  * time timestamp in NTP format.
96  *
97  * The error flags are defined as follows in hex:
98  *
99  * x01	Low signal. The carrier amplitude is less than 100 units. This
100  *	is usually the result of no signal or wrong input port.
101  * x02	Frequency error. The codec frequency error is greater than 250
102  *	PPM. This may be due to wrong signal format or (rarely)
103  *	defective codec.
104  * x04	Modulation error. The IRIG modulation index is less than 0.5.
105  *	This is usually the result of an overdriven codec, wrong signal
106  *	format or wrong input port.
107  * x08	Frame synch error. The decoder frame does not match the IRIG
108  *	frame. This is usually the result of an overdriven codec, wrong
109  *	signal format or noisy IRIG signal. It may also be the result of
110  *	an IRIG signature check which indicates a failure of the IRIG
111  *	signal synchronization source.
112  * x10	Data bit error. The data bit length is out of tolerance. This is
113  *	usually the result of an overdriven codec, wrong signal format
114  *	or noisy IRIG signal.
115  * x20	Seconds numbering discrepancy. The decoder second does not match
116  *	the IRIG second. This is usually the result of an overdriven
117  *	codec, wrong signal format or noisy IRIG signal.
118  * x40	Codec error (overrun). The machine is not fast enough to keep up
119  *	with the codec.
120  * x80	Device status error (Spectracom).
121  *
122  *
123  * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
124  * within a few tens of microseconds relative to the IRIG-B signal.
125  * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
126  * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
127  * modulation.
128  *
129  * Unlike other drivers, which can have multiple instantiations, this
130  * one supports only one. It does not seem likely that more than one
131  * audio codec would be useful in a single machine. More than one would
132  * probably chew up too much CPU time anyway.
133  *
134  * Fudge factors
135  *
136  * Fudge flag4 causes the dubugging output described above to be
137  * recorded in the clockstats file. Fudge flag2 selects the audio input
138  * port, where 0 is the mike port (default) and 1 is the line-in port.
139  * It does not seem useful to select the compact disc player port. Fudge
140  * flag3 enables audio monitoring of the input signal. For this purpose,
141  * the monitor gain is set t a default value. Fudgetime2 is used as a
142  * frequency vernier for broken codec sample frequency.
143  *
144  * Alarm codes
145  *
146  * CEVNT_BADTIME	invalid date or time
147  * CEVNT_TIMEOUT	no IRIG data since last poll
148  */
149 /*
150  * Interface definitions
151  */
152 #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
153 #define	PRECISION	(-17)	/* precision assumed (about 10 us) */
154 #define	REFID		"IRIG"	/* reference ID */
155 #define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
156 #define	AUDIO_BUFSIZ	320	/* audio buffer size (40 ms) */
157 #define SECOND		8000	/* nominal sample rate (Hz) */
158 #define BAUD		80	/* samples per baud interval */
159 #define OFFSET		128	/* companded sample offset */
160 #define SIZE		256	/* decompanding table size */
161 #define CYCLE		8	/* samples per bit */
162 #define SUBFLD		10	/* bits per frame */
163 #define FIELD		100	/* bits per second */
164 #define MINTC		2	/* min PLL time constant */
165 #define MAXTC		10	/* max PLL time constant max */
166 #define	MAXAMP		3000.	/* maximum signal amplitude */
167 #define	MINAMP		2000.	/* minimum signal amplitude */
168 #define DRPOUT		100.	/* dropout signal amplitude */
169 #define MODMIN		0.5	/* minimum modulation index */
170 #define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */
171 
172 /*
173  * The on-time synchronization point is the positive-going zero crossing
174  * of the first cycle of the second. The IIR baseband filter phase delay
175  * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
176  * due to the codec and other causes was determined by calibrating to a
177  * PPS signal from a GPS receiver.
178  *
179  * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
180  * within .02 ms short-term with .02 ms jitter. The processor load due
181  * to the driver is 0.51 percent.
182  */
183 #define IRIG_B	((1.03 + 2.68) / 1000)	/* IRIG-B system delay (s) */
184 #define IRIG_E	((3.47 + 2.68) / 1000)	/* IRIG-E system delay (s) */
185 
186 /*
187  * Data bit definitions
188  */
189 #define BIT0		0	/* zero */
190 #define BIT1		1	/* one */
191 #define BITP		2	/* position identifier */
192 
193 /*
194  * Error flags
195  */
196 #define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
197 #define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
198 #define IRIG_ERR_MOD	0x04	/* low modulation index */
199 #define IRIG_ERR_SYNCH	0x08	/* frame synch error */
200 #define IRIG_ERR_DECODE	0x10	/* frame decoding error */
201 #define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
202 #define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
203 #define IRIG_ERR_SIGERR	0x80	/* IRIG status error (Spectracom) */
204 
205 static	char	hexchar[] = "0123456789abcdef";
206 
207 /*
208  * IRIG unit control structure
209  */
210 struct irigunit {
211 	u_char	timecode[2 * SUBFLD + 1]; /* timecode string */
212 	l_fp	timestamp;	/* audio sample timestamp */
213 	l_fp	tick;		/* audio sample increment */
214 	l_fp	refstamp;	/* reference timestamp */
215 	l_fp	chrstamp;	/* baud timestamp */
216 	l_fp	prvstamp;	/* previous baud timestamp */
217 	double	integ[BAUD];	/* baud integrator */
218 	double	phase, freq;	/* logical clock phase and frequency */
219 	double	zxing;		/* phase detector integrator */
220 	double	yxing;		/* cycle phase */
221 	double	exing;		/* envelope phase */
222 	double	modndx;		/* modulation index */
223 	double	irig_b;		/* IRIG-B signal amplitude */
224 	double	irig_e;		/* IRIG-E signal amplitude */
225 	int	errflg;		/* error flags */
226 	/*
227 	 * Audio codec variables
228 	 */
229 	double	comp[SIZE];	/* decompanding table */
230 	double	signal;		/* peak signal for AGC */
231 	int	port;		/* codec port */
232 	int	gain;		/* codec gain */
233 	int	mongain;	/* codec monitor gain */
234 	int	seccnt;		/* second interval counter */
235 
236 	/*
237 	 * RF variables
238 	 */
239 	double	bpf[9];		/* IRIG-B filter shift register */
240 	double	lpf[5];		/* IRIG-E filter shift register */
241 	double	envmin, envmax;	/* envelope min and max */
242 	double	slice;		/* envelope slice level */
243 	double	intmin, intmax;	/* integrated envelope min and max */
244 	double	maxsignal;	/* integrated peak amplitude */
245 	double	noise;		/* integrated noise amplitude */
246 	double	lastenv[CYCLE];	/* last cycle amplitudes */
247 	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
248 	double	lastsig;	/* last carrier sample */
249 	double	fdelay;		/* filter delay */
250 	int	decim;		/* sample decimation factor */
251 	int	envphase;	/* envelope phase */
252 	int	envptr;		/* envelope phase pointer */
253 	int	envsw;		/* envelope state */
254 	int	envxing;	/* envelope slice crossing */
255 	int	tc;		/* time constant */
256 	int	tcount;		/* time constant counter */
257 	int	badcnt;		/* decimation interval counter */
258 
259 	/*
260 	 * Decoder variables
261 	 */
262 	int	pulse;		/* cycle counter */
263 	int	cycles;		/* carrier cycles */
264 	int	dcycles;	/* data cycles */
265 	int	lastbit;	/* last code element */
266 	int	second;		/* previous second */
267 	int	bitcnt;		/* bit count in frame */
268 	int	frmcnt;		/* bit count in second */
269 	int	xptr;		/* timecode pointer */
270 	int	bits;		/* demodulated bits */
271 };
272 
273 /*
274  * Function prototypes
275  */
276 static	int	irig_start	(int, struct peer *);
277 static	void	irig_shutdown	(int, struct peer *);
278 static	void	irig_receive	(struct recvbuf *);
279 static	void	irig_poll	(int, struct peer *);
280 
281 /*
282  * More function prototypes
283  */
284 static	void	irig_base	(struct peer *, double);
285 static	void	irig_rf		(struct peer *, double);
286 static	void	irig_baud	(struct peer *, int);
287 static	void	irig_decode	(struct peer *, int);
288 static	void	irig_gain	(struct peer *);
289 
290 /*
291  * Transfer vector
292  */
293 struct	refclock refclock_irig = {
294 	irig_start,		/* start up driver */
295 	irig_shutdown,		/* shut down driver */
296 	irig_poll,		/* transmit poll message */
297 	noentry,		/* not used (old irig_control) */
298 	noentry,		/* initialize driver (not used) */
299 	noentry,		/* not used (old irig_buginfo) */
300 	NOFLAGS			/* not used */
301 };
302 
303 
304 /*
305  * irig_start - open the devices and initialize data for processing
306  */
307 static int
308 irig_start(
309 	int	unit,		/* instance number (used for PCM) */
310 	struct peer *peer	/* peer structure pointer */
311 	)
312 {
313 	struct refclockproc *pp;
314 	struct irigunit *up;
315 
316 	/*
317 	 * Local variables
318 	 */
319 	int	fd;		/* file descriptor */
320 	int	i;		/* index */
321 	double	step;		/* codec adjustment */
322 
323 	/*
324 	 * Open audio device
325 	 */
326 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
327 	if (fd < 0)
328 		return (0);
329 #ifdef DEBUG
330 	if (debug)
331 		audio_show();
332 #endif
333 
334 	/*
335 	 * Allocate and initialize unit structure
336 	 */
337 	up = emalloc_zero(sizeof(*up));
338 	pp = peer->procptr;
339 	pp->io.clock_recv = irig_receive;
340 	pp->io.srcclock = peer;
341 	pp->io.datalen = 0;
342 	pp->io.fd = fd;
343 	if (!io_addclock(&pp->io)) {
344 		close(fd);
345 		pp->io.fd = -1;
346 		free(up);
347 		return (0);
348 	}
349 	pp->unitptr = up;
350 
351 	/*
352 	 * Initialize miscellaneous variables
353 	 */
354 	peer->precision = PRECISION;
355 	pp->clockdesc = DESCRIPTION;
356 	memcpy((char *)&pp->refid, REFID, 4);
357 	up->tc = MINTC;
358 	up->decim = 1;
359 	up->gain = 127;
360 
361 	/*
362 	 * The companded samples are encoded sign-magnitude. The table
363 	 * contains all the 256 values in the interest of speed.
364 	 */
365 	up->comp[0] = up->comp[OFFSET] = 0.;
366 	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
367 	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
368 	step = 2.;
369 	for (i = 3; i < OFFSET; i++) {
370 		up->comp[i] = up->comp[i - 1] + step;
371 		up->comp[OFFSET + i] = -up->comp[i];
372 		if (i % 16 == 0)
373 			step *= 2.;
374 	}
375 	DTOLFP(1. / SECOND, &up->tick);
376 	return (1);
377 }
378 
379 
380 /*
381  * irig_shutdown - shut down the clock
382  */
383 static void
384 irig_shutdown(
385 	int	unit,		/* instance number (not used) */
386 	struct peer *peer	/* peer structure pointer */
387 	)
388 {
389 	struct refclockproc *pp;
390 	struct irigunit *up;
391 
392 	pp = peer->procptr;
393 	up = pp->unitptr;
394 	if (-1 != pp->io.fd)
395 		io_closeclock(&pp->io);
396 	if (NULL != up)
397 		free(up);
398 }
399 
400 
401 /*
402  * irig_receive - receive data from the audio device
403  *
404  * This routine reads input samples and adjusts the logical clock to
405  * track the irig clock by dropping or duplicating codec samples.
406  */
407 static void
408 irig_receive(
409 	struct recvbuf *rbufp	/* receive buffer structure pointer */
410 	)
411 {
412 	struct peer *peer;
413 	struct refclockproc *pp;
414 	struct irigunit *up;
415 
416 	/*
417 	 * Local variables
418 	 */
419 	double	sample;		/* codec sample */
420 	u_char	*dpt;		/* buffer pointer */
421 	int	bufcnt;		/* buffer counter */
422 	l_fp	ltemp;		/* l_fp temp */
423 
424 	peer = rbufp->recv_peer;
425 	pp = peer->procptr;
426 	up = pp->unitptr;
427 
428 	/*
429 	 * Main loop - read until there ain't no more. Note codec
430 	 * samples are bit-inverted.
431 	 */
432 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
433 	L_SUB(&rbufp->recv_time, &ltemp);
434 	up->timestamp = rbufp->recv_time;
435 	dpt = rbufp->recv_buffer;
436 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
437 		sample = up->comp[~*dpt++ & 0xff];
438 
439 		/*
440 		 * Variable frequency oscillator. The codec oscillator
441 		 * runs at the nominal rate of 8000 samples per second,
442 		 * or 125 us per sample. A frequency change of one unit
443 		 * results in either duplicating or deleting one sample
444 		 * per second, which results in a frequency change of
445 		 * 125 PPM.
446 		 */
447 		up->phase += (up->freq + clock_codec) / SECOND;
448 		up->phase += pp->fudgetime2 / 1e6;
449 		if (up->phase >= .5) {
450 			up->phase -= 1.;
451 		} else if (up->phase < -.5) {
452 			up->phase += 1.;
453 			irig_rf(peer, sample);
454 			irig_rf(peer, sample);
455 		} else {
456 			irig_rf(peer, sample);
457 		}
458 		L_ADD(&up->timestamp, &up->tick);
459 		sample = fabs(sample);
460 		if (sample > up->signal)
461 			up->signal = sample;
462 		up->signal += (sample - up->signal) /
463 		    1000;
464 
465 		/*
466 		 * Once each second, determine the IRIG format and gain.
467 		 */
468 		up->seccnt = (up->seccnt + 1) % SECOND;
469 		if (up->seccnt == 0) {
470 			if (up->irig_b > up->irig_e) {
471 				up->decim = 1;
472 				up->fdelay = IRIG_B;
473 			} else {
474 				up->decim = 10;
475 				up->fdelay = IRIG_E;
476 			}
477 			up->irig_b = up->irig_e = 0;
478 			irig_gain(peer);
479 
480 		}
481 	}
482 
483 	/*
484 	 * Set the input port and monitor gain for the next buffer.
485 	 */
486 	if (pp->sloppyclockflag & CLK_FLAG2)
487 		up->port = 2;
488 	else
489 		up->port = 1;
490 	if (pp->sloppyclockflag & CLK_FLAG3)
491 		up->mongain = MONGAIN;
492 	else
493 		up->mongain = 0;
494 }
495 
496 
497 /*
498  * irig_rf - RF processing
499  *
500  * This routine filters the RF signal using a bandass filter for IRIG-B
501  * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
502  * decimated by a factor of ten. Note that the codec filters function as
503  * roofing filters to attenuate both the high and low ends of the
504  * passband. IIR filter coefficients were determined using Matlab Signal
505  * Processing Toolkit.
506  */
507 static void
508 irig_rf(
509 	struct peer *peer,	/* peer structure pointer */
510 	double	sample		/* current signal sample */
511 	)
512 {
513 	struct refclockproc *pp;
514 	struct irigunit *up;
515 
516 	/*
517 	 * Local variables
518 	 */
519 	double	irig_b, irig_e;	/* irig filter outputs */
520 
521 	pp = peer->procptr;
522 	up = pp->unitptr;
523 
524 	/*
525 	 * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
526 	 * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
527 	 * phase delay 1.03 ms.
528 	 */
529 	irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
530 	irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
531 	irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
532 	irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
533 	irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
534 	irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
535 	irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
536 	irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
537 	up->bpf[0] = sample - irig_b;
538 	irig_b = up->bpf[0] * 4.952157e-003
539 	    + up->bpf[1] * -2.055878e-002
540 	    + up->bpf[2] * 4.401413e-002
541 	    + up->bpf[3] * -6.558851e-002
542 	    + up->bpf[4] * 7.462108e-002
543 	    + up->bpf[5] * -6.558851e-002
544 	    + up->bpf[6] * 4.401413e-002
545 	    + up->bpf[7] * -2.055878e-002
546 	    + up->bpf[8] * 4.952157e-003;
547 	up->irig_b += irig_b * irig_b;
548 
549 	/*
550 	 * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
551 	 * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
552 	 * 3.47 ms.
553 	 */
554 	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
555 	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
556 	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
557 	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
558 	up->lpf[0] = sample - irig_e;
559 	irig_e = up->lpf[0] * 3.215696e-003
560 	    + up->lpf[1] * -1.174951e-002
561 	    + up->lpf[2] * 1.712074e-002
562 	    + up->lpf[3] * -1.174951e-002
563 	    + up->lpf[4] * 3.215696e-003;
564 	up->irig_e += irig_e * irig_e;
565 
566 	/*
567 	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
568 	 */
569 	up->badcnt = (up->badcnt + 1) % up->decim;
570 	if (up->badcnt == 0) {
571 		if (up->decim == 1)
572 			irig_base(peer, irig_b);
573 		else
574 			irig_base(peer, irig_e);
575 	}
576 }
577 
578 /*
579  * irig_base - baseband processing
580  *
581  * This routine processes the baseband signal and demodulates the AM
582  * carrier using a synchronous detector. It then synchronizes to the
583  * data frame at the baud rate and decodes the width-modulated data
584  * pulses.
585  */
586 static void
587 irig_base(
588 	struct peer *peer,	/* peer structure pointer */
589 	double	sample		/* current signal sample */
590 	)
591 {
592 	struct refclockproc *pp;
593 	struct irigunit *up;
594 
595 	/*
596 	 * Local variables
597 	 */
598 	double	lope;		/* integrator output */
599 	double	env;		/* envelope detector output */
600 	double	dtemp;
601 	int	carphase;	/* carrier phase */
602 
603 	pp = peer->procptr;
604 	up = pp->unitptr;
605 
606 	/*
607 	 * Synchronous baud integrator. Corresponding samples of current
608 	 * and past baud intervals are integrated to refine the envelope
609 	 * amplitude and phase estimate. We keep one cycle (1 ms) of the
610 	 * raw data and one baud (10 ms) of the integrated data.
611 	 */
612 	up->envphase = (up->envphase + 1) % BAUD;
613 	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
614 	    (5 * up->tc);
615 	lope = up->integ[up->envphase];
616 	carphase = up->envphase % CYCLE;
617 	up->lastenv[carphase] = sample;
618 	up->lastint[carphase] = lope;
619 
620 	/*
621 	 * Phase detector. Find the negative-going zero crossing
622 	 * relative to sample 4 in the 8-sample sycle. A phase change of
623 	 * 360 degrees produces an output change of one unit.
624 	 */
625 	if (up->lastsig > 0 && lope <= 0)
626 		up->zxing += (double)(carphase - 4) / CYCLE;
627 	up->lastsig = lope;
628 
629 	/*
630 	 * End of the baud. Update signal/noise estimates and PLL
631 	 * phase, frequency and time constant.
632 	 */
633 	if (up->envphase == 0) {
634 		up->maxsignal = up->intmax; up->noise = up->intmin;
635 		up->intmin = 1e6; up->intmax = -1e6;
636 		if (up->maxsignal < DRPOUT)
637 			up->errflg |= IRIG_ERR_AMP;
638 		if (up->maxsignal > 0)
639 			up->modndx = (up->maxsignal - up->noise) /
640 			    up->maxsignal;
641  		else
642 			up->modndx = 0;
643 		if (up->modndx < MODMIN)
644 			up->errflg |= IRIG_ERR_MOD;
645 		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
646 		   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
647 			up->tc = MINTC;
648 			up->tcount = 0;
649 		}
650 
651 		/*
652 		 * Update PLL phase and frequency. The PLL time constant
653 		 * is set initially to stabilize the frequency within a
654 		 * minute or two, then increases to the maximum. The
655 		 * frequency is clamped so that the PLL capture range
656 		 * cannot be exceeded.
657 		 */
658 		dtemp = up->zxing * up->decim / BAUD;
659 		up->yxing = dtemp;
660 		up->zxing = 0.;
661 		up->phase += dtemp / up->tc;
662 		up->freq += dtemp / (4. * up->tc * up->tc);
663 		if (up->freq > MAXFREQ) {
664 			up->freq = MAXFREQ;
665 			up->errflg |= IRIG_ERR_FREQ;
666 		} else if (up->freq < -MAXFREQ) {
667 			up->freq = -MAXFREQ;
668 			up->errflg |= IRIG_ERR_FREQ;
669 		}
670 	}
671 
672 	/*
673 	 * Synchronous demodulator. There are eight samples in the cycle
674 	 * and ten cycles in the baud. Since the PLL has aligned the
675 	 * negative-going zero crossing at sample 4, the maximum
676 	 * amplitude is at sample 2 and minimum at sample 6. The
677 	 * beginning of the data pulse is determined from the integrated
678 	 * samples, while the end of the pulse is determined from the
679 	 * raw samples. The raw data bits are demodulated relative to
680 	 * the slice level and left-shifted in the decoding register.
681 	 */
682 	if (carphase != 7)
683 		return;
684 
685 	lope = (up->lastint[2] - up->lastint[6]) / 2.;
686 	if (lope > up->intmax)
687 		up->intmax = lope;
688 	if (lope < up->intmin)
689 		up->intmin = lope;
690 
691 	/*
692 	 * Pulse code demodulator and reference timestamp. The decoder
693 	 * looks for a sequence of ten bits; the first two bits must be
694 	 * one, the last two bits must be zero. Frame synch is asserted
695 	 * when three correct frames have been found.
696 	 */
697 	up->pulse = (up->pulse + 1) % 10;
698 	up->cycles <<= 1;
699 	if (lope >= (up->maxsignal + up->noise) / 2.)
700 		up->cycles |= 1;
701 	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
702 		if (up->pulse != 0)
703 			up->errflg |= IRIG_ERR_SYNCH;
704 		up->pulse = 0;
705 	}
706 
707 	/*
708 	 * Assemble the baud and max/min to get the slice level for the
709 	 * next baud. The slice level is based on the maximum over the
710 	 * first two bits and the minimum over the last two bits, with
711 	 * the slice level halfway between the maximum and minimum.
712 	 */
713 	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
714 	up->dcycles <<= 1;
715 	if (env >= up->slice)
716 		up->dcycles |= 1;
717 	switch(up->pulse) {
718 
719 	case 0:
720 		irig_baud(peer, up->dcycles);
721 		if (env < up->envmin)
722 			up->envmin = env;
723 		up->slice = (up->envmax + up->envmin) / 2;
724 		up->envmin = 1e6; up->envmax = -1e6;
725 		break;
726 
727 	case 1:
728 		up->envmax = env;
729 		break;
730 
731 	case 2:
732 		if (env > up->envmax)
733 			up->envmax = env;
734 		break;
735 
736 	case 9:
737 		up->envmin = env;
738 		break;
739 	}
740 }
741 
742 /*
743  * irig_baud - update the PLL and decode the pulse-width signal
744  */
745 static void
746 irig_baud(
747 	struct peer *peer,	/* peer structure pointer */
748 	int	bits		/* decoded bits */
749 	)
750 {
751 	struct refclockproc *pp;
752 	struct irigunit *up;
753 	double	dtemp;
754 	l_fp	ltemp;
755 
756         pp = peer->procptr;
757 	up = pp->unitptr;
758 
759 	/*
760 	 * The PLL time constant starts out small, in order to
761 	 * sustain a frequency tolerance of 250 PPM. It
762 	 * gradually increases as the loop settles down. Note
763 	 * that small wiggles are not believed, unless they
764 	 * persist for lots of samples.
765 	 */
766 	up->exing = -up->yxing;
767 	if (abs(up->envxing - up->envphase) <= 1) {
768 		up->tcount++;
769 		if (up->tcount > 20 * up->tc) {
770 			up->tc++;
771 			if (up->tc > MAXTC)
772 				up->tc = MAXTC;
773 			up->tcount = 0;
774 			up->envxing = up->envphase;
775 		} else {
776 			up->exing -= up->envxing - up->envphase;
777 		}
778 	} else {
779 		up->tcount = 0;
780 		up->envxing = up->envphase;
781 	}
782 
783 	/*
784 	 * Strike the baud timestamp as the positive zero crossing of
785 	 * the first bit, accounting for the codec delay and filter
786 	 * delay.
787 	 */
788 	up->prvstamp = up->chrstamp;
789 	dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
790 	DTOLFP(dtemp, &ltemp);
791 	up->chrstamp = up->timestamp;
792 	L_SUB(&up->chrstamp, &ltemp);
793 
794 	/*
795 	 * The data bits are collected in ten-bit bauds. The first two
796 	 * bits are not used. The resulting patterns represent runs of
797 	 * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
798 	 * 8-bit run represents a soft error and is treated as 0.
799 	 */
800 	switch (up->dcycles & 0xff) {
801 
802 	case 0x00:		/* 0-1 bits (0) */
803 	case 0x80:
804 		irig_decode(peer, BIT0);
805 		break;
806 
807 	case 0xc0:		/* 2-4 bits (1) */
808 	case 0xe0:
809 	case 0xf0:
810 		irig_decode(peer, BIT1);
811 		break;
812 
813 	case 0xf8:		/* (5-7 bits (PI) */
814 	case 0xfc:
815 	case 0xfe:
816 		irig_decode(peer, BITP);
817 		break;
818 
819 	default:		/* 8 bits (error) */
820 		irig_decode(peer, BIT0);
821 		up->errflg |= IRIG_ERR_DECODE;
822 	}
823 }
824 
825 
826 /*
827  * irig_decode - decode the data
828  *
829  * This routine assembles bauds into digits, digits into frames and
830  * frames into the timecode fields. Bits can have values of zero, one
831  * or position identifier. There are four bits per digit, ten digits per
832  * frame and ten frames per second.
833  */
834 static void
835 irig_decode(
836 	struct	peer *peer,	/* peer structure pointer */
837 	int	bit		/* data bit (0, 1 or 2) */
838 	)
839 {
840 	struct refclockproc *pp;
841 	struct irigunit *up;
842 
843 	/*
844 	 * Local variables
845 	 */
846 	int	syncdig;	/* sync digit (Spectracom) */
847 	char	sbs[6 + 1];	/* binary seconds since 0h */
848 	char	spare[2 + 1];	/* mulligan digits */
849 	int	temp;
850 
851 	syncdig = 0;
852 	pp = peer->procptr;
853 	up = pp->unitptr;
854 
855 	/*
856 	 * Assemble frame bits.
857 	 */
858 	up->bits >>= 1;
859 	if (bit == BIT1) {
860 		up->bits |= 0x200;
861 	} else if (bit == BITP && up->lastbit == BITP) {
862 
863 		/*
864 		 * Frame sync - two adjacent position identifiers, which
865 		 * mark the beginning of the second. The reference time
866 		 * is the beginning of the second position identifier,
867 		 * so copy the character timestamp to the reference
868 		 * timestamp.
869 		 */
870 		if (up->frmcnt != 1)
871 			up->errflg |= IRIG_ERR_SYNCH;
872 		up->frmcnt = 1;
873 		up->refstamp = up->prvstamp;
874 	}
875 	up->lastbit = bit;
876 	if (up->frmcnt % SUBFLD == 0) {
877 
878 		/*
879 		 * End of frame. Encode two hexadecimal digits in
880 		 * little-endian timecode field. Note frame 1 is shifted
881 		 * right one bit to account for the marker PI.
882 		 */
883 		temp = up->bits;
884 		if (up->frmcnt == 10)
885 			temp >>= 1;
886 		if (up->xptr >= 2) {
887 			up->timecode[--up->xptr] = hexchar[temp & 0xf];
888 			up->timecode[--up->xptr] = hexchar[(temp >> 5) &
889 			    0xf];
890 		}
891 		if (up->frmcnt == 0) {
892 
893 			/*
894 			 * End of second. Decode the timecode and wind
895 			 * the clock. Not all IRIG generators have the
896 			 * year; if so, it is nonzero after year 2000.
897 			 * Not all have the hardware status bit; if so,
898 			 * it is lit when the source is okay and dim
899 			 * when bad. We watch this only if the year is
900 			 * nonzero. Not all are configured for signature
901 			 * control. If so, all BCD digits are set to
902 			 * zero if the source is bad. In this case the
903 			 * refclock_process() will reject the timecode
904 			 * as invalid.
905 			 */
906 			up->xptr = 2 * SUBFLD;
907 			if (sscanf((char *)up->timecode,
908 			   "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
909 			    &syncdig, spare, &pp->day, &pp->hour,
910 			    &pp->minute, &pp->second) != 8)
911 				pp->leap = LEAP_NOTINSYNC;
912 			else
913 				pp->leap = LEAP_NOWARNING;
914 			up->second = (up->second + up->decim) % 60;
915 
916 			/*
917 			 * Raise an alarm if the day field is zero,
918 			 * which happens when signature control is
919 			 * enabled and the device has lost
920 			 * synchronization. Raise an alarm if the year
921 			 * field is nonzero and the sync indicator is
922 			 * zero, which happens when a Spectracom radio
923 			 * has lost synchronization. Raise an alarm if
924 			 * the expected second does not agree with the
925 			 * decoded second, which happens with a garbled
926 			 * IRIG signal. We are very particular.
927 			 */
928 			if (pp->day == 0 || (pp->year != 0 && syncdig ==
929 			    0))
930 				up->errflg |= IRIG_ERR_SIGERR;
931 			if (pp->second != up->second)
932 				up->errflg |= IRIG_ERR_CHECK;
933 			up->second = pp->second;
934 
935 			/*
936 			 * Wind the clock only if there are no errors
937 			 * and the time constant has reached the
938 			 * maximum.
939 			 */
940 			if (up->errflg == 0 && up->tc == MAXTC) {
941 				pp->lastref = pp->lastrec;
942 				pp->lastrec = up->refstamp;
943 				if (!refclock_process(pp))
944 					refclock_report(peer,
945 					    CEVNT_BADTIME);
946 			}
947 			snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
948 			    "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
949 			    up->errflg, pp->year, pp->day,
950 			    pp->hour, pp->minute, pp->second,
951 			    up->maxsignal, up->gain, up->modndx,
952 			    up->tc, up->exing * 1e6 / SECOND, up->freq *
953 			    1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
954 			pp->lencode = strlen(pp->a_lastcode);
955 			up->errflg = 0;
956 			if (pp->sloppyclockflag & CLK_FLAG4) {
957 				record_clock_stats(&peer->srcadr,
958 				    pp->a_lastcode);
959 #ifdef DEBUG
960 				if (debug)
961 					printf("irig %s\n",
962 					    pp->a_lastcode);
963 #endif /* DEBUG */
964 			}
965 		}
966 	}
967 	up->frmcnt = (up->frmcnt + 1) % FIELD;
968 }
969 
970 
971 /*
972  * irig_poll - called by the transmit procedure
973  *
974  * This routine sweeps up the timecode updates since the last poll. For
975  * IRIG-B there should be at least 60 updates; for IRIG-E there should
976  * be at least 6. If nothing is heard, a timeout event is declared.
977  */
978 static void
979 irig_poll(
980 	int	unit,		/* instance number (not used) */
981 	struct peer *peer	/* peer structure pointer */
982 	)
983 {
984 	struct refclockproc *pp;
985 
986 	pp = peer->procptr;
987 
988 	if (pp->coderecv == pp->codeproc) {
989 		refclock_report(peer, CEVNT_TIMEOUT);
990 		return;
991 
992 	}
993 	refclock_receive(peer);
994 	if (!(pp->sloppyclockflag & CLK_FLAG4)) {
995 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
996 #ifdef DEBUG
997 		if (debug)
998 			printf("irig %s\n", pp->a_lastcode);
999 #endif /* DEBUG */
1000 	}
1001 	pp->polls++;
1002 
1003 }
1004 
1005 
1006 /*
1007  * irig_gain - adjust codec gain
1008  *
1009  * This routine is called at the end of each second. It uses the AGC to
1010  * bradket the maximum signal level between MINAMP and MAXAMP to avoid
1011  * hunting. The routine also jiggles the input port and selectively
1012  * mutes the monitor.
1013  */
1014 static void
1015 irig_gain(
1016 	struct peer *peer	/* peer structure pointer */
1017 	)
1018 {
1019 	struct refclockproc *pp;
1020 	struct irigunit *up;
1021 
1022 	pp = peer->procptr;
1023 	up = pp->unitptr;
1024 
1025 	/*
1026 	 * Apparently, the codec uses only the high order bits of the
1027 	 * gain control field. Thus, it may take awhile for changes to
1028 	 * wiggle the hardware bits.
1029 	 */
1030 	if (up->maxsignal < MINAMP) {
1031 		up->gain += 4;
1032 		if (up->gain > MAXGAIN)
1033 			up->gain = MAXGAIN;
1034 	} else if (up->maxsignal > MAXAMP) {
1035 		up->gain -= 4;
1036 		if (up->gain < 0)
1037 			up->gain = 0;
1038 	}
1039 	audio_gain(up->gain, up->mongain, up->port);
1040 }
1041 
1042 
1043 #else
1044 int refclock_irig_bs;
1045 #endif /* REFCLOCK */
1046