xref: /netbsd-src/external/bsd/ntp/dist/ntpd/ntp_timer.c (revision a6f3f22f245acb8ee3bbf6871d7dce989204fa97)
1 /*	$NetBSD: ntp_timer.c,v 1.4 2015/07/20 13:13:31 joerg Exp $	*/
2 
3 /*
4  * ntp_timer.c - event timer support routines
5  */
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9 
10 #include "ntp_machine.h"
11 #include "ntpd.h"
12 #include "ntp_stdlib.h"
13 #include "ntp_calendar.h"
14 #include "ntp_leapsec.h"
15 
16 #if defined(HAVE_IO_COMPLETION_PORT)
17 # include "ntp_iocompletionport.h"
18 # include "ntp_timer.h"
19 #endif
20 
21 #include <stdio.h>
22 #include <signal.h>
23 #ifdef HAVE_SYS_SIGNAL_H
24 # include <sys/signal.h>
25 #endif
26 #ifdef HAVE_UNISTD_H
27 # include <unistd.h>
28 #endif
29 
30 #ifdef KERNEL_PLL
31 #include "ntp_syscall.h"
32 #endif /* KERNEL_PLL */
33 
34 #ifdef AUTOKEY
35 #include <openssl/rand.h>
36 #endif	/* AUTOKEY */
37 
38 
39 /* TC_ERR represents the timer_create() error return value. */
40 #ifdef SYS_VXWORKS
41 #define	TC_ERR	ERROR
42 #else
43 #define	TC_ERR	(-1)
44 #endif
45 
46 
47 static void check_leapsec(u_int32, const time_t*, int/*BOOL*/);
48 
49 /*
50  * These routines provide support for the event timer.  The timer is
51  * implemented by an interrupt routine which sets a flag once every
52  * second, and a timer routine which is called when the mainline code
53  * gets around to seeing the flag.  The timer routine dispatches the
54  * clock adjustment code if its time has come, then searches the timer
55  * queue for expiries which are dispatched to the transmit procedure.
56  * Finally, we call the hourly procedure to do cleanup and print a
57  * message.
58  */
59 volatile int interface_interval;     /* init_io() sets def. 300s */
60 
61 /*
62  * Alarm flag. The mainline code imports this.
63  */
64 volatile int alarm_flag;
65 
66 /*
67  * The counters and timeouts
68  */
69 static  u_long interface_timer;	/* interface update timer */
70 static	u_long adjust_timer;	/* second timer */
71 static	u_long stats_timer;	/* stats timer */
72 static	u_long leapf_timer;	/* Report leapfile problems once/day */
73 static	u_long huffpuff_timer;	/* huff-n'-puff timer */
74 static	u_long worker_idle_timer;/* next check for idle intres */
75 u_long	leapsec;	        /* seconds to next leap (proximity class) */
76 int     leapdif;                /* TAI difference step at next leap second*/
77 u_long	orphwait; 		/* orphan wait time */
78 #ifdef AUTOKEY
79 static	u_long revoke_timer;	/* keys revoke timer */
80 static	u_long keys_timer;	/* session key timer */
81 u_long	sys_revoke = KEY_REVOKE; /* keys revoke timeout (log2 s) */
82 u_long	sys_automax = NTP_AUTOMAX; /* key list timeout (log2 s) */
83 #endif	/* AUTOKEY */
84 
85 /*
86  * Statistics counter for the interested.
87  */
88 volatile u_long alarm_overflow;
89 
90 u_long current_time;		/* seconds since startup */
91 
92 /*
93  * Stats.  Number of overflows and number of calls to transmit().
94  */
95 u_long timer_timereset;
96 u_long timer_overflows;
97 u_long timer_xmtcalls;
98 
99 #if defined(VMS)
100 static int vmstimer[2]; 	/* time for next timer AST */
101 static int vmsinc[2];		/* timer increment */
102 #endif /* VMS */
103 
104 #ifdef SYS_WINNT
105 HANDLE WaitableTimerHandle;
106 #else
107 static	RETSIGTYPE alarming (int);
108 #endif /* SYS_WINNT */
109 
110 #if !defined(VMS)
111 # if !defined SYS_WINNT || defined(SYS_CYGWIN32)
112 #  ifdef HAVE_TIMER_CREATE
113 static timer_t timer_id;
114 typedef struct itimerspec intervaltimer;
115 #   define	itv_frac	tv_nsec
116 #  else
117 typedef struct itimerval intervaltimer;
118 #   define	itv_frac	tv_usec
119 #  endif
120 intervaltimer itimer;
121 # endif
122 #endif
123 
124 #if !defined(SYS_WINNT) && !defined(VMS)
125 void	set_timer_or_die(const intervaltimer *);
126 #endif
127 
128 
129 #if !defined(SYS_WINNT) && !defined(VMS)
130 void
131 set_timer_or_die(
132 	const intervaltimer *	ptimer
133 	)
134 {
135 	const char *	setfunc;
136 	int		rc;
137 
138 # ifdef HAVE_TIMER_CREATE
139 	setfunc = "timer_settime";
140 	rc = timer_settime(timer_id, 0, &itimer, NULL);
141 # else
142 	setfunc = "setitimer";
143 	rc = setitimer(ITIMER_REAL, &itimer, NULL);
144 # endif
145 	if (-1 == rc) {
146 		msyslog(LOG_ERR, "interval timer %s failed, %m",
147 			setfunc);
148 		exit(1);
149 	}
150 }
151 #endif	/* !SYS_WINNT && !VMS */
152 
153 
154 /*
155  * reinit_timer - reinitialize interval timer after a clock step.
156  */
157 void
158 reinit_timer(void)
159 {
160 #if !defined(SYS_WINNT) && !defined(VMS)
161 	ZERO(itimer);
162 # ifdef HAVE_TIMER_CREATE
163 	timer_gettime(timer_id, &itimer);
164 # else
165 	getitimer(ITIMER_REAL, &itimer);
166 # endif
167 	if (itimer.it_value.tv_sec < 0 ||
168 	    itimer.it_value.tv_sec > (1 << EVENT_TIMEOUT))
169 		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
170 	if (itimer.it_value.itv_frac < 0)
171 		itimer.it_value.itv_frac = 0;
172 	if (0 == itimer.it_value.tv_sec &&
173 	    0 == itimer.it_value.itv_frac)
174 		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
175 	itimer.it_interval.tv_sec = (1 << EVENT_TIMEOUT);
176 	itimer.it_interval.itv_frac = 0;
177 	set_timer_or_die(&itimer);
178 # endif /* VMS */
179 }
180 
181 
182 /*
183  * init_timer - initialize the timer data structures
184  */
185 void
186 init_timer(void)
187 {
188 	/*
189 	 * Initialize...
190 	 */
191 	alarm_flag = FALSE;
192 	alarm_overflow = 0;
193 	adjust_timer = 1;
194 	stats_timer = SECSPERHR;
195 	leapf_timer = SECSPERDAY;
196 	huffpuff_timer = 0;
197 	interface_timer = 0;
198 	current_time = 0;
199 	timer_overflows = 0;
200 	timer_xmtcalls = 0;
201 	timer_timereset = 0;
202 
203 #ifndef SYS_WINNT
204 	/*
205 	 * Set up the alarm interrupt.	The first comes 2**EVENT_TIMEOUT
206 	 * seconds from now and they continue on every 2**EVENT_TIMEOUT
207 	 * seconds.
208 	 */
209 # ifndef VMS
210 #  ifdef HAVE_TIMER_CREATE
211 	if (TC_ERR == timer_create(CLOCK_REALTIME, NULL, &timer_id)) {
212 		msyslog(LOG_ERR, "timer_create failed, %m");
213 		exit(1);
214 	}
215 #  endif
216 	signal_no_reset(SIGALRM, alarming);
217 	itimer.it_interval.tv_sec =
218 		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
219 	itimer.it_interval.itv_frac = itimer.it_value.itv_frac = 0;
220 	set_timer_or_die(&itimer);
221 # else	/* VMS follows */
222 	vmsinc[0] = 10000000;		/* 1 sec */
223 	vmsinc[1] = 0;
224 	lib$emul(&(1<<EVENT_TIMEOUT), &vmsinc, &0, &vmsinc);
225 
226 	sys$gettim(&vmstimer);	/* that's "now" as abstime */
227 
228 	lib$addx(&vmsinc, &vmstimer, &vmstimer);
229 	sys$setimr(0, &vmstimer, alarming, alarming, 0);
230 # endif	/* VMS */
231 #else	/* SYS_WINNT follows */
232 	/*
233 	 * Set up timer interrupts for every 2**EVENT_TIMEOUT seconds
234 	 * Under Windows/NT,
235 	 */
236 
237 	WaitableTimerHandle = CreateWaitableTimer(NULL, FALSE, NULL);
238 	if (WaitableTimerHandle == NULL) {
239 		msyslog(LOG_ERR, "CreateWaitableTimer failed: %m");
240 		exit(1);
241 	}
242 	else {
243 		DWORD		Period;
244 		LARGE_INTEGER	DueTime;
245 		BOOL		rc;
246 
247 		Period = (1 << EVENT_TIMEOUT) * 1000;
248 		DueTime.QuadPart = Period * 10000i64;
249 		rc = SetWaitableTimer(WaitableTimerHandle, &DueTime,
250 				      Period, NULL, NULL, FALSE);
251 		if (!rc) {
252 			msyslog(LOG_ERR, "SetWaitableTimer failed: %m");
253 			exit(1);
254 		}
255 	}
256 
257 #endif	/* SYS_WINNT */
258 }
259 
260 
261 /*
262  * intres_timeout_req(s) is invoked in the parent to schedule an idle
263  * timeout to fire in s seconds, if not reset earlier by a call to
264  * intres_timeout_req(0), which clears any pending timeout.  When the
265  * timeout expires, worker_idle_timer_fired() is invoked (again, in the
266  * parent).
267  *
268  * sntp and ntpd each provide implementations adapted to their timers.
269  */
270 void
271 intres_timeout_req(
272 	u_int	seconds		/* 0 cancels */
273 	)
274 {
275 	if (0 == seconds) {
276 		worker_idle_timer = 0;
277 		return;
278 	}
279 	worker_idle_timer = current_time + seconds;
280 }
281 
282 
283 /*
284  * timer - event timer
285  */
286 void
287 timer(void)
288 {
289 	struct peer *	p;
290 	struct peer *	next_peer;
291 	l_fp		now;
292 	time_t          tnow;
293 
294 	/*
295 	 * The basic timerevent is one second.  This is used to adjust the
296 	 * system clock in time and frequency, implement the kiss-o'-death
297 	 * function and the association polling function.
298 	 */
299 	current_time++;
300 	if (adjust_timer <= current_time) {
301 		adjust_timer += 1;
302 		adj_host_clock();
303 #ifdef REFCLOCK
304 		for (p = peer_list; p != NULL; p = next_peer) {
305 			next_peer = p->p_link;
306 			if (FLAG_REFCLOCK & p->flags)
307 				refclock_timer(p);
308 		}
309 #endif /* REFCLOCK */
310 	}
311 
312 	/*
313 	 * Now dispatch any peers whose event timer has expired. Be
314 	 * careful here, since the peer structure might go away as the
315 	 * result of the call.
316 	 */
317 	for (p = peer_list; p != NULL; p = next_peer) {
318 		next_peer = p->p_link;
319 
320 		/*
321 		 * Restrain the non-burst packet rate not more
322 		 * than one packet every 16 seconds. This is
323 		 * usually tripped using iburst and minpoll of
324 		 * 128 s or less.
325 		 */
326 		if (p->throttle > 0)
327 			p->throttle--;
328 		if (p->nextdate <= current_time) {
329 #ifdef REFCLOCK
330 			if (FLAG_REFCLOCK & p->flags)
331 				refclock_transmit(p);
332 			else
333 #endif	/* REFCLOCK */
334 				transmit(p);
335 		}
336 	}
337 
338 	/*
339 	 * Orphan mode is active when enabled and when no servers less
340 	 * than the orphan stratum are available. A server with no other
341 	 * synchronization source is an orphan. It shows offset zero and
342 	 * reference ID the loopback address.
343 	 */
344 	if (sys_orphan < STRATUM_UNSPEC && sys_peer == NULL &&
345 	    current_time > orphwait) {
346 		if (sys_leap == LEAP_NOTINSYNC) {
347 			set_sys_leap(LEAP_NOWARNING);
348 #ifdef AUTOKEY
349 			if (crypto_flags)
350 				crypto_update();
351 #endif	/* AUTOKEY */
352 		}
353 		sys_stratum = (u_char)sys_orphan;
354 		if (sys_stratum > 1)
355 			sys_refid = htonl(LOOPBACKADR);
356 		else
357 			memcpy(&sys_refid, "LOOP", 4);
358 		sys_offset = 0;
359 		sys_rootdelay = 0;
360 		sys_rootdisp = 0;
361 	}
362 
363 	get_systime(&now);
364 	time(&tnow);
365 
366 	/*
367 	 * Leapseconds. Get time and defer to worker if either something
368 	 * is imminent or every 8th second.
369 	 */
370 	if (leapsec > LSPROX_NOWARN || 0 == (current_time & 7))
371 		check_leapsec(now.l_ui, &tnow,
372                                 (sys_leap == LEAP_NOTINSYNC));
373         if (sys_leap != LEAP_NOTINSYNC) {
374                 if (leapsec >= LSPROX_ANNOUNCE && leapdif) {
375 		        if (leapdif > 0)
376 			        set_sys_leap(LEAP_ADDSECOND);
377 		        else
378 			        set_sys_leap(LEAP_DELSECOND);
379                 } else {
380                         set_sys_leap(LEAP_NOWARNING);
381                 }
382 	}
383 
384 	/*
385 	 * Update huff-n'-puff filter.
386 	 */
387 	if (huffpuff_timer <= current_time) {
388 		huffpuff_timer += HUFFPUFF;
389 		huffpuff();
390 	}
391 
392 #ifdef AUTOKEY
393 	/*
394 	 * Garbage collect expired keys.
395 	 */
396 	if (keys_timer <= current_time) {
397 		keys_timer += 1 << sys_automax;
398 		auth_agekeys();
399 	}
400 
401 	/*
402 	 * Generate new private value. This causes all associations
403 	 * to regenerate cookies.
404 	 */
405 	if (revoke_timer && revoke_timer <= current_time) {
406 		revoke_timer += 1 << sys_revoke;
407 		RAND_bytes((u_char *)&sys_private, 4);
408 	}
409 #endif	/* AUTOKEY */
410 
411 	/*
412 	 * Interface update timer
413 	 */
414 	if (interface_interval && interface_timer <= current_time) {
415 		timer_interfacetimeout(current_time +
416 		    interface_interval);
417 		DPRINTF(2, ("timer: interface update\n"));
418 		interface_update(NULL, NULL);
419 	}
420 
421 	if (worker_idle_timer && worker_idle_timer <= current_time)
422 		worker_idle_timer_fired();
423 
424 	/*
425 	 * Finally, write hourly stats and do the hourly
426 	 * and daily leapfile checks.
427 	 */
428 	if (stats_timer <= current_time) {
429 		stats_timer += SECSPERHR;
430 		write_stats();
431 		if (leapf_timer <= current_time) {
432 			leapf_timer += SECSPERDAY;
433 			check_leap_file(TRUE, now.l_ui, &tnow);
434 		} else {
435 			check_leap_file(FALSE, now.l_ui, &tnow);
436 		}
437 	}
438 }
439 
440 
441 #ifndef SYS_WINNT
442 /*
443  * alarming - tell the world we've been alarmed
444  */
445 static RETSIGTYPE
446 alarming(
447 	int sig
448 	)
449 {
450 # ifdef DEBUG
451 	const char *msg = "alarming: initializing TRUE\n";
452 # endif
453 
454 	if (!initializing) {
455 		if (alarm_flag) {
456 			alarm_overflow++;
457 # ifdef DEBUG
458 			msg = "alarming: overflow\n";
459 # endif
460 		} else {
461 # ifndef VMS
462 			alarm_flag++;
463 # else
464 			/* VMS AST routine, increment is no good */
465 			alarm_flag = 1;
466 # endif
467 # ifdef DEBUG
468 			msg = "alarming: normal\n";
469 # endif
470 		}
471 	}
472 # ifdef VMS
473 	lib$addx(&vmsinc, &vmstimer, &vmstimer);
474 	sys$setimr(0, &vmstimer, alarming, alarming, 0);
475 # endif
476 # ifdef DEBUG
477 	if (debug >= 4)
478 		(void)(-1 == write(1, msg, strlen(msg)));
479 # endif
480 }
481 #endif /* SYS_WINNT */
482 
483 
484 void
485 timer_interfacetimeout(u_long timeout)
486 {
487 	interface_timer = timeout;
488 }
489 
490 
491 /*
492  * timer_clr_stats - clear timer module stat counters
493  */
494 void
495 timer_clr_stats(void)
496 {
497 	timer_overflows = 0;
498 	timer_xmtcalls = 0;
499 	timer_timereset = current_time;
500 }
501 
502 
503 static void
504 check_leap_sec_in_progress( const leap_result_t *lsdata ) {
505 	int prv_leap_sec_in_progress = leap_sec_in_progress;
506 	leap_sec_in_progress = lsdata->tai_diff && (lsdata->ddist < 3);
507 
508 	/* if changed we may have to update the leap status sent to clients */
509 	if (leap_sec_in_progress != prv_leap_sec_in_progress)
510 		set_sys_leap(sys_leap);
511 }
512 
513 
514 static void
515 check_leapsec(
516 	u_int32        now  ,
517 	const time_t * tpiv ,
518         int/*BOOL*/    reset)
519 {
520 	static const char leapmsg_p_step[] =
521 	    "Positive leap second, stepped backward.";
522 	static const char leapmsg_p_slew[] =
523 	    "Positive leap second, no step correction. "
524 	    "System clock will be inaccurate for a long time.";
525 
526 	static const char leapmsg_n_step[] =
527 	    "Negative leap second, stepped forward.";
528 	static const char leapmsg_n_slew[] =
529 	    "Negative leap second, no step correction. "
530 	    "System clock will be inaccurate for a long time.";
531 
532 	leap_result_t lsdata;
533 	u_int32       lsprox;
534 #ifdef AUTOKEY
535 	int/*BOOL*/   update_autokey = FALSE;
536 #endif
537 
538 #ifndef SYS_WINNT  /* WinNT port has its own leap second handling */
539 # ifdef KERNEL_PLL
540 	leapsec_electric(pll_control && kern_enable);
541 # else
542 	leapsec_electric(0);
543 # endif
544 #endif
545 #ifdef LEAP_SMEAR
546 	leap_smear.enabled = leap_smear_intv != 0;
547 #endif
548 	if (reset)	{
549 		lsprox = LSPROX_NOWARN;
550 		leapsec_reset_frame();
551 		memset(&lsdata, 0, sizeof(lsdata));
552 	} else {
553 	  int fired = leapsec_query(&lsdata, now, tpiv);
554 
555 	  DPRINTF(1, ("*** leapsec_query: fired %i, now %u (0x%08X), tai_diff %i, ddist %u\n",
556 		  fired, now, now, lsdata.tai_diff, lsdata.ddist));
557 
558 #ifdef LEAP_SMEAR
559 	  leap_smear.in_progress = 0;
560 	  leap_smear.doffset = 0.0;
561 
562 	  if (leap_smear.enabled) {
563 		if (lsdata.tai_diff) {
564 			if (leap_smear.interval == 0) {
565 				leap_smear.interval = leap_smear_intv;
566 				leap_smear.intv_end = lsdata.ttime.Q_s;
567 				leap_smear.intv_start = leap_smear.intv_end - leap_smear.interval;
568 				DPRINTF(1, ("*** leapsec_query: setting leap_smear interval %li, begin %.0f, end %.0f\n",
569 					leap_smear.interval, leap_smear.intv_start, leap_smear.intv_end));
570 			}
571 		}
572 		else {
573 			if (leap_smear.interval)
574 				DPRINTF(1, ("*** leapsec_query: clearing leap_smear interval\n"));
575 			leap_smear.interval = 0;
576 		}
577 
578 		if (leap_smear.interval) {
579 			double dtemp = now;
580 			if (dtemp >= leap_smear.intv_start && dtemp <= leap_smear.intv_end) {
581 				double leap_smear_time = dtemp - leap_smear.intv_start;
582 				/*
583 				 * For now we just do a linear interpolation over the smear interval
584 				 */
585 #if 0
586 				// linear interpolation
587 				leap_smear.doffset = -(leap_smear_time * lsdata.tai_diff / leap_smear.interval);
588 #else
589 				// Google approach: lie(t) = (1.0 - cos(pi * t / w)) / 2.0
590 				leap_smear.doffset = -((double) lsdata.tai_diff - cos( M_PI * leap_smear_time / leap_smear.interval)) / 2.0;
591 #endif
592 				/*
593 				 * TODO see if we're inside an inserted leap second, so we need to compute
594 				 * leap_smear.doffset = 1.0 - leap_smear.doffset
595 				 */
596 				leap_smear.in_progress = 1;
597 #if 0 && defined( DEBUG )
598 				msyslog(LOG_NOTICE, "*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
599 					leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
600 					now, leap_smear_time, leap_smear.doffset);
601 #else
602 				DPRINTF(1, ("*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
603 					leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
604 					now, leap_smear_time, leap_smear.doffset));
605 #endif
606 
607 			}
608 		}
609 	  }
610 	  else
611 		leap_smear.interval = 0;
612 
613 	  /*
614 	   * Update the current leap smear offset, eventually 0.0 if outside smear interval.
615 	   */
616 	  DTOLFP(leap_smear.doffset, &leap_smear.offset);
617 
618 #endif	/* LEAP_SMEAR */
619 
620 	  if (fired) {
621 		/* Full hit. Eventually step the clock, but always
622 		 * announce the leap event has happened.
623 		 */
624 		const char *leapmsg = NULL;
625 		if (lsdata.warped < 0) {
626 			if (clock_max_back > 0.0 &&
627 			    clock_max_back < abs(lsdata.warped)) {
628 				step_systime(lsdata.warped);
629 				leapmsg = leapmsg_p_step;
630 			} else {
631 				leapmsg = leapmsg_p_slew;
632 			}
633 		} else 	if (lsdata.warped > 0) {
634 			if (clock_max_fwd > 0.0 &&
635 			    clock_max_fwd < abs(lsdata.warped)) {
636 				step_systime(lsdata.warped);
637 				leapmsg = leapmsg_n_step;
638 			} else {
639 				leapmsg = leapmsg_n_slew;
640 			}
641 		}
642 		if (leapmsg)
643 			msyslog(LOG_NOTICE, "%s", leapmsg);
644 		report_event(EVNT_LEAP, NULL, NULL);
645 #ifdef AUTOKEY
646 		update_autokey = TRUE;
647 #endif
648 		lsprox  = LSPROX_NOWARN;
649 		leapsec = LSPROX_NOWARN;
650 		sys_tai = lsdata.tai_offs;
651 	  } else {
652 #ifdef AUTOKEY
653 		update_autokey = (sys_tai != (u_int)lsdata.tai_offs);
654 #endif
655 		lsprox  = lsdata.proximity;
656 		sys_tai = lsdata.tai_offs;
657 	  }
658 	}
659 
660 	/* We guard against panic alarming during the red alert phase.
661 	 * Strange and evil things might happen if we go from stone cold
662 	 * to piping hot in one step. If things are already that wobbly,
663 	 * we let the normal clock correction take over, even if a jump
664 	 * is involved.
665          * Also make sure the alarming events are edge-triggered, that is,
666          * ceated only when the threshold is crossed.
667          */
668 	if (  (leapsec > 0 || lsprox < LSPROX_ALERT)
669 	    && leapsec < lsprox                     ) {
670 		if (  leapsec < LSPROX_SCHEDULE
671                    && lsprox >= LSPROX_SCHEDULE) {
672 			if (lsdata.dynamic)
673 				report_event(PEVNT_ARMED, sys_peer, NULL);
674 			else
675 				report_event(EVNT_ARMED, NULL, NULL);
676 		}
677 		leapsec = lsprox;
678 	}
679 	if (leapsec > lsprox) {
680 		if (  leapsec >= LSPROX_SCHEDULE
681                    && lsprox   < LSPROX_SCHEDULE) {
682 			report_event(EVNT_DISARMED, NULL, NULL);
683 		}
684 		leapsec = lsprox;
685 	}
686 
687 	if (leapsec >= LSPROX_SCHEDULE)
688 		leapdif = lsdata.tai_diff;
689 	else
690 		leapdif = 0;
691 
692 	check_leap_sec_in_progress(&lsdata);
693 
694 #ifdef AUTOKEY
695 	if (update_autokey)
696 		crypto_update_taichange();
697 #endif
698 }
699