1 /* $NetBSD: ntp_proto.c,v 1.18 2020/05/25 20:47:25 christos Exp $ */ 2 3 /* 4 * ntp_proto.c - NTP version 4 protocol machinery 5 * 6 * ATTENTION: Get approval from Harlan on all changes to this file! 7 * (Harlan will be discussing these changes with Dave Mills.) 8 * 9 */ 10 #ifdef HAVE_CONFIG_H 11 #include <config.h> 12 #endif 13 14 #include "ntpd.h" 15 #include "ntp_stdlib.h" 16 #include "ntp_unixtime.h" 17 #include "ntp_control.h" 18 #include "ntp_string.h" 19 #include "ntp_leapsec.h" 20 #include "ntp_psl.h" 21 #include "refidsmear.h" 22 #include "lib_strbuf.h" 23 24 #include <stdio.h> 25 #ifdef HAVE_LIBSCF_H 26 #include <libscf.h> 27 #endif 28 #ifdef HAVE_UNISTD_H 29 #include <unistd.h> 30 #endif 31 32 /* [Bug 3031] define automatic broadcastdelay cutoff preset */ 33 #ifndef BDELAY_DEFAULT 34 # define BDELAY_DEFAULT (-0.050) 35 #endif 36 37 #define SRVFUZ_SHIFT 6 /* 64 seconds */ 38 #define SRVRSP_FUZZ(x) \ 39 do { \ 40 x.l_uf &= 0; \ 41 x.l_ui &= ~((1 << SRVFUZ_SHIFT) - 1U); \ 42 } while(0) 43 44 /* 45 * This macro defines the authentication state. If x is 1 authentication 46 * is required; otherwise it is optional. 47 */ 48 #define AUTH(x, y) ((x) ? (y) == AUTH_OK \ 49 : (y) == AUTH_OK || (y) == AUTH_NONE) 50 51 typedef enum 52 auth_state { 53 AUTH_UNKNOWN = -1, /* Unknown */ 54 AUTH_NONE, /* authentication not required */ 55 AUTH_OK, /* authentication OK */ 56 AUTH_ERROR, /* authentication error */ 57 AUTH_CRYPTO /* crypto_NAK */ 58 } auth_code; 59 60 /* 61 * Set up Kiss Code values 62 */ 63 64 typedef enum 65 kiss_codes { 66 NOKISS, /* No Kiss Code */ 67 RATEKISS, /* Rate limit Kiss Code */ 68 DENYKISS, /* Deny Kiss */ 69 RSTRKISS, /* Restricted Kiss */ 70 XKISS /* Experimental Kiss */ 71 } kiss_code; 72 73 typedef enum 74 nak_error_codes { 75 NONAK, /* No NAK seen */ 76 INVALIDNAK, /* NAK cannot be used */ 77 VALIDNAK /* NAK is valid */ 78 } nak_code; 79 80 /* 81 * traffic shaping parameters 82 */ 83 #define NTP_IBURST 6 /* packets in iburst */ 84 #define RESP_DELAY 1 /* refclock burst delay (s) */ 85 86 /* 87 * pool soliciting restriction duration (s) 88 */ 89 #define POOL_SOLICIT_WINDOW 8 90 91 /* 92 * flag bits propagated from pool to individual peers 93 */ 94 #define POOL_FLAG_PMASK (FLAG_IBURST | FLAG_NOSELECT) 95 96 /* 97 * peer_select groups statistics for a peer used by clock_select() and 98 * clock_cluster(). 99 */ 100 typedef struct peer_select_tag { 101 struct peer * peer; 102 double synch; /* sync distance */ 103 double error; /* jitter */ 104 double seljit; /* selection jitter */ 105 } peer_select; 106 107 /* 108 * System variables are declared here. Unless specified otherwise, all 109 * times are in seconds. 110 */ 111 u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */ 112 u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */ 113 u_char sys_stratum; /* system stratum */ 114 s_char sys_precision; /* local clock precision (log2 s) */ 115 double sys_rootdelay; /* roundtrip delay to root (primary source) */ 116 double sys_rootdisp; /* dispersion to root (primary source) */ 117 double prev_rootdisp; /* previous root dispersion */ 118 double p2_rootdisp; /* previous previous root dispersion */ 119 u_int32 sys_refid; /* reference id (network byte order) */ 120 l_fp sys_reftime; /* last update time */ 121 l_fp prev_reftime; /* previous sys_reftime */ 122 l_fp p2_reftime; /* previous previous sys_reftime */ 123 u_long prev_time; /* "current_time" when saved prev_time */ 124 u_long p2_time; /* previous prev_time */ 125 struct peer *sys_peer; /* current peer */ 126 127 #ifdef LEAP_SMEAR 128 struct leap_smear_info leap_smear; 129 #endif 130 int leap_sec_in_progress; 131 132 /* 133 * Rate controls. Leaky buckets are used to throttle the packet 134 * transmission rates in order to protect busy servers such as at NIST 135 * and USNO. There is a counter for each association and another for KoD 136 * packets. The association counter decrements each second, but not 137 * below zero. Each time a packet is sent the counter is incremented by 138 * a configurable value representing the average interval between 139 * packets. A packet is delayed as long as the counter is greater than 140 * zero. Note this does not affect the time value computations. 141 */ 142 /* 143 * Nonspecified system state variables 144 */ 145 int sys_bclient; /* broadcast client enable */ 146 double sys_bdelay; /* broadcast client default delay */ 147 int sys_authenticate; /* requre authentication for config */ 148 l_fp sys_authdelay; /* authentication delay */ 149 double sys_offset; /* current local clock offset */ 150 double sys_mindisp = MINDISPERSE; /* minimum distance (s) */ 151 double sys_maxdist = MAXDISTANCE; /* selection threshold */ 152 double sys_jitter; /* system jitter */ 153 u_long sys_epoch; /* last clock update time */ 154 static double sys_clockhop; /* clockhop threshold */ 155 static int leap_vote_ins; /* leap consensus for insert */ 156 static int leap_vote_del; /* leap consensus for delete */ 157 keyid_t sys_private; /* private value for session seed */ 158 int sys_manycastserver; /* respond to manycast client pkts */ 159 int ntp_mode7; /* respond to ntpdc (mode7) */ 160 int peer_ntpdate; /* active peers in ntpdate mode */ 161 int sys_survivors; /* truest of the truechimers */ 162 char *sys_ident = NULL; /* identity scheme */ 163 164 /* 165 * TOS and multicast mapping stuff 166 */ 167 int sys_floor = 0; /* cluster stratum floor */ 168 u_char sys_bcpollbstep = 0; /* Broadcast Poll backstep gate */ 169 int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */ 170 int sys_minsane = 1; /* minimum candidates */ 171 int sys_minclock = NTP_MINCLOCK; /* minimum candidates */ 172 int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */ 173 int sys_cohort = 0; /* cohort switch */ 174 int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */ 175 int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */ 176 int sys_beacon = BEACON; /* manycast beacon interval */ 177 u_int sys_ttlmax; /* max ttl mapping vector index */ 178 u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */ 179 180 /* 181 * Statistics counters - first the good, then the bad 182 */ 183 u_long sys_stattime; /* elapsed time */ 184 u_long sys_received; /* packets received */ 185 u_long sys_processed; /* packets for this host */ 186 u_long sys_newversion; /* current version */ 187 u_long sys_oldversion; /* old version */ 188 u_long sys_restricted; /* access denied */ 189 u_long sys_badlength; /* bad length or format */ 190 u_long sys_badauth; /* bad authentication */ 191 u_long sys_declined; /* declined */ 192 u_long sys_limitrejected; /* rate exceeded */ 193 u_long sys_kodsent; /* KoD sent */ 194 195 /* 196 * Mechanism knobs: how soon do we peer_clear() or unpeer()? 197 * 198 * The default way is "on-receipt". If this was a packet from a 199 * well-behaved source, on-receipt will offer the fastest recovery. 200 * If this was from a DoS attack, the default way makes it easier 201 * for a bad-guy to DoS us. So look and see what bites you harder 202 * and choose according to your environment. 203 */ 204 int peer_clear_digest_early = 1; /* bad digest (TEST5) and Autokey */ 205 int unpeer_crypto_early = 1; /* bad crypto (TEST9) */ 206 int unpeer_crypto_nak_early = 1; /* crypto_NAK (TEST5) */ 207 int unpeer_digest_early = 1; /* bad digest (TEST5) */ 208 209 int dynamic_interleave = DYNAMIC_INTERLEAVE; /* Bug 2978 mitigation */ 210 211 int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid); 212 nak_code valid_NAK (struct peer *peer, struct recvbuf *rbufp, u_char hismode); 213 static double root_distance (struct peer *); 214 static void clock_combine (peer_select *, int, int); 215 static void peer_xmit (struct peer *); 216 static void fast_xmit (struct recvbuf *, int, keyid_t, int); 217 static void pool_xmit (struct peer *); 218 static void clock_update (struct peer *); 219 static void measure_precision(void); 220 static double measure_tick_fuzz(void); 221 static int local_refid (struct peer *); 222 static int peer_unfit (struct peer *); 223 #ifdef AUTOKEY 224 static int group_test (char *, char *); 225 #endif /* AUTOKEY */ 226 #ifdef WORKER 227 void pool_name_resolved (int, int, void *, const char *, 228 const char *, const struct addrinfo *, 229 const struct addrinfo *); 230 #endif /* WORKER */ 231 232 const char * amtoa (int am); 233 234 235 void 236 set_sys_leap( 237 u_char new_sys_leap 238 ) 239 { 240 sys_leap = new_sys_leap; 241 xmt_leap = sys_leap; 242 243 /* 244 * Under certain conditions we send faked leap bits to clients, so 245 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC. 246 */ 247 if (xmt_leap != LEAP_NOTINSYNC) { 248 if (leap_sec_in_progress) { 249 /* always send "not sync" */ 250 xmt_leap = LEAP_NOTINSYNC; 251 } 252 #ifdef LEAP_SMEAR 253 else { 254 /* 255 * If leap smear is enabled in general we must 256 * never send a leap second warning to clients, 257 * so make sure we only send "in sync". 258 */ 259 if (leap_smear.enabled) 260 xmt_leap = LEAP_NOWARNING; 261 } 262 #endif /* LEAP_SMEAR */ 263 } 264 } 265 266 267 /* 268 * Kiss Code check 269 */ 270 int 271 kiss_code_check( 272 u_char hisleap, 273 u_char hisstratum, 274 u_char hismode, 275 u_int32 refid 276 ) 277 { 278 279 if ( hismode == MODE_SERVER 280 && hisleap == LEAP_NOTINSYNC 281 && hisstratum == STRATUM_UNSPEC) { 282 if(memcmp(&refid,"RATE", 4) == 0) { 283 return (RATEKISS); 284 } else if(memcmp(&refid,"DENY", 4) == 0) { 285 return (DENYKISS); 286 } else if(memcmp(&refid,"RSTR", 4) == 0) { 287 return (RSTRKISS); 288 } else if(memcmp(&refid,"X", 1) == 0) { 289 return (XKISS); 290 } 291 } 292 return (NOKISS); 293 } 294 295 296 /* 297 * Check that NAK is valid 298 */ 299 nak_code 300 valid_NAK( 301 struct peer *peer, 302 struct recvbuf *rbufp, 303 u_char hismode 304 ) 305 { 306 int base_packet_length = MIN_V4_PKT_LEN; 307 int remainder_size; 308 struct pkt * rpkt; 309 int keyid; 310 l_fp p_org; /* origin timestamp */ 311 const l_fp * myorg; /* selected peer origin */ 312 313 /* 314 * Check to see if there is something beyond the basic packet 315 */ 316 if (rbufp->recv_length == base_packet_length) { 317 return NONAK; 318 } 319 320 remainder_size = rbufp->recv_length - base_packet_length; 321 /* 322 * Is this a potential NAK? 323 */ 324 if (remainder_size != 4) { 325 return NONAK; 326 } 327 328 /* 329 * Only server responses can contain NAK's 330 */ 331 332 if (hismode != MODE_SERVER && 333 hismode != MODE_ACTIVE && 334 hismode != MODE_PASSIVE 335 ) { 336 return INVALIDNAK; 337 } 338 339 /* 340 * Make sure that the extra field in the packet is all zeros 341 */ 342 rpkt = &rbufp->recv_pkt; 343 keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]); 344 if (keyid != 0) { 345 return INVALIDNAK; 346 } 347 348 /* 349 * During the first few packets of the autokey dance there will 350 * not (yet) be a keyid, but in this case FLAG_SKEY is set. 351 * So the NAK is invalid if either there's no peer, or 352 * if the keyid is 0 and FLAG_SKEY is not set. 353 */ 354 if (!peer || (!peer->keyid && !(peer->flags & FLAG_SKEY))) { 355 return INVALIDNAK; 356 } 357 358 /* 359 * The ORIGIN must match, or this cannot be a valid NAK, either. 360 */ 361 362 if (FLAG_LOOPNONCE & peer->flags) { 363 myorg = &peer->nonce; 364 } else { 365 if (peer->flip > 0) { 366 myorg = &peer->borg; 367 } else { 368 myorg = &peer->aorg; 369 } 370 } 371 372 NTOHL_FP(&rpkt->org, &p_org); 373 374 if (L_ISZERO(&p_org) || 375 L_ISZERO( myorg) || 376 !L_ISEQU(&p_org, myorg)) { 377 return INVALIDNAK; 378 } 379 380 /* If we ever passed all that checks, we should be safe. Well, 381 * as safe as we can ever be with an unauthenticated crypto-nak. 382 */ 383 return VALIDNAK; 384 } 385 386 387 /* 388 * transmit - transmit procedure called by poll timeout 389 */ 390 void 391 transmit( 392 struct peer *peer /* peer structure pointer */ 393 ) 394 { 395 u_char hpoll; 396 397 /* 398 * The polling state machine. There are two kinds of machines, 399 * those that never expect a reply (broadcast and manycast 400 * server modes) and those that do (all other modes). The dance 401 * is intricate... 402 */ 403 hpoll = peer->hpoll; 404 405 /* 406 * If we haven't received anything (even if unsync) since last 407 * send, reset ppoll. 408 */ 409 if (peer->outdate > peer->timelastrec && !peer->reach) 410 peer->ppoll = peer->maxpoll; 411 412 /* 413 * In broadcast mode the poll interval is never changed from 414 * minpoll. 415 */ 416 if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) { 417 peer->outdate = current_time; 418 poll_update(peer, hpoll, 0); 419 if (sys_leap != LEAP_NOTINSYNC) 420 peer_xmit(peer); 421 return; 422 } 423 424 /* 425 * In manycast mode we start with unity ttl. The ttl is 426 * increased by one for each poll until either sys_maxclock 427 * servers have been found or the maximum ttl is reached. When 428 * sys_maxclock servers are found we stop polling until one or 429 * more servers have timed out or until less than sys_minclock 430 * associations turn up. In this case additional better servers 431 * are dragged in and preempt the existing ones. Once every 432 * sys_beacon seconds we are to transmit unconditionally, but 433 * this code is not quite right -- peer->unreach counts polls 434 * and is being compared with sys_beacon, so the beacons happen 435 * every sys_beacon polls. 436 */ 437 if (peer->cast_flags & MDF_ACAST) { 438 peer->outdate = current_time; 439 poll_update(peer, hpoll, 0); 440 if (peer->unreach > sys_beacon) { 441 peer->unreach = 0; 442 peer->ttl = 0; 443 peer_xmit(peer); 444 } else if ( sys_survivors < sys_minclock 445 || peer_associations < sys_maxclock) { 446 if (peer->ttl < sys_ttlmax) 447 peer->ttl++; 448 peer_xmit(peer); 449 } 450 peer->unreach++; 451 return; 452 } 453 454 /* 455 * Pool associations transmit unicast solicitations when there 456 * are less than a hard limit of 2 * sys_maxclock associations, 457 * and either less than sys_minclock survivors or less than 458 * sys_maxclock associations. The hard limit prevents unbounded 459 * growth in associations if the system clock or network quality 460 * result in survivor count dipping below sys_minclock often. 461 * This was observed testing with pool, where sys_maxclock == 12 462 * resulted in 60 associations without the hard limit. A 463 * similar hard limit on manycastclient ephemeral associations 464 * may be appropriate. 465 */ 466 if (peer->cast_flags & MDF_POOL) { 467 peer->outdate = current_time; 468 poll_update(peer, hpoll, 0); 469 if ( (peer_associations <= 2 * sys_maxclock) 470 && ( peer_associations < sys_maxclock 471 || sys_survivors < sys_minclock)) 472 pool_xmit(peer); 473 return; 474 } 475 476 /* 477 * In unicast modes the dance is much more intricate. It is 478 * designed to back off whenever possible to minimize network 479 * traffic. 480 */ 481 if (peer->burst == 0) { 482 u_char oreach; 483 484 /* 485 * Update the reachability status. If not heard for 486 * three consecutive polls, stuff infinity in the clock 487 * filter. 488 */ 489 oreach = peer->reach; 490 peer->outdate = current_time; 491 peer->unreach++; 492 peer->reach <<= 1; 493 if (!peer->reach) { 494 495 /* 496 * Here the peer is unreachable. If it was 497 * previously reachable raise a trap. Send a 498 * burst if enabled. 499 */ 500 clock_filter(peer, 0., 0., MAXDISPERSE); 501 if (oreach) { 502 peer_unfit(peer); 503 report_event(PEVNT_UNREACH, peer, NULL); 504 } 505 if ( (peer->flags & FLAG_IBURST) 506 && peer->retry == 0) 507 peer->retry = NTP_RETRY; 508 } else { 509 510 /* 511 * Here the peer is reachable. Send a burst if 512 * enabled and the peer is fit. Reset unreach 513 * for persistent and ephemeral associations. 514 * Unreach is also reset for survivors in 515 * clock_select(). 516 */ 517 hpoll = sys_poll; 518 if (!(peer->flags & FLAG_PREEMPT)) 519 peer->unreach = 0; 520 if ( (peer->flags & FLAG_BURST) 521 && peer->retry == 0 522 && !peer_unfit(peer)) 523 peer->retry = NTP_RETRY; 524 } 525 526 /* 527 * Watch for timeout. If ephemeral, toss the rascal; 528 * otherwise, bump the poll interval. Note the 529 * poll_update() routine will clamp it to maxpoll. 530 * If preemptible and we have more peers than maxclock, 531 * and this peer has the minimum score of preemptibles, 532 * demobilize. 533 */ 534 if (peer->unreach >= NTP_UNREACH) { 535 hpoll++; 536 /* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */ 537 if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) { 538 report_event(PEVNT_RESTART, peer, "timeout"); 539 peer_clear(peer, "TIME"); 540 unpeer(peer); 541 return; 542 } 543 if ( (peer->flags & FLAG_PREEMPT) 544 && (peer_associations > sys_maxclock) 545 && score_all(peer)) { 546 report_event(PEVNT_RESTART, peer, "timeout"); 547 peer_clear(peer, "TIME"); 548 unpeer(peer); 549 return; 550 } 551 } 552 } else { 553 peer->burst--; 554 if (peer->burst == 0) { 555 556 /* 557 * If ntpdate mode and the clock has not been 558 * set and all peers have completed the burst, 559 * we declare a successful failure. 560 */ 561 if (mode_ntpdate) { 562 peer_ntpdate--; 563 if (peer_ntpdate == 0) { 564 msyslog(LOG_NOTICE, 565 "ntpd: no servers found"); 566 if (!msyslog_term) 567 printf( 568 "ntpd: no servers found\n"); 569 exit (0); 570 } 571 } 572 } 573 } 574 if (peer->retry > 0) 575 peer->retry--; 576 577 /* 578 * Do not transmit if in broadcast client mode. 579 */ 580 poll_update(peer, hpoll, (peer->hmode == MODE_CLIENT)); 581 if (peer->hmode != MODE_BCLIENT) 582 peer_xmit(peer); 583 584 return; 585 } 586 587 588 const char * 589 amtoa( 590 int am 591 ) 592 { 593 char *bp; 594 595 switch(am) { 596 case AM_ERR: return "AM_ERR"; 597 case AM_NOMATCH: return "AM_NOMATCH"; 598 case AM_PROCPKT: return "AM_PROCPKT"; 599 case AM_BCST: return "AM_BCST"; 600 case AM_FXMIT: return "AM_FXMIT"; 601 case AM_MANYCAST: return "AM_MANYCAST"; 602 case AM_NEWPASS: return "AM_NEWPASS"; 603 case AM_NEWBCL: return "AM_NEWBCL"; 604 case AM_POSSBCL: return "AM_POSSBCL"; 605 default: 606 LIB_GETBUF(bp); 607 snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am); 608 return bp; 609 } 610 } 611 612 613 /* 614 * receive - receive procedure called for each packet received 615 */ 616 void 617 receive( 618 struct recvbuf *rbufp 619 ) 620 { 621 register struct peer *peer; /* peer structure pointer */ 622 register struct pkt *pkt; /* receive packet pointer */ 623 u_char hisversion; /* packet version */ 624 u_char hisleap; /* packet leap indicator */ 625 u_char hismode; /* packet mode */ 626 u_char hisstratum; /* packet stratum */ 627 r4addr r4a; /* address restrictions */ 628 u_short restrict_mask; /* restrict bits */ 629 const char *hm_str; /* hismode string */ 630 const char *am_str; /* association match string */ 631 int kissCode = NOKISS; /* Kiss Code */ 632 int has_mac; /* length of MAC field */ 633 int authlen; /* offset of MAC field */ 634 auth_code is_authentic = AUTH_UNKNOWN; /* Was AUTH_NONE */ 635 nak_code crypto_nak_test; /* result of crypto-NAK check */ 636 int retcode = AM_NOMATCH; /* match code */ 637 keyid_t skeyid = 0; /* key IDs */ 638 u_int32 opcode = 0; /* extension field opcode */ 639 sockaddr_u *dstadr_sin; /* active runway */ 640 struct peer *peer2; /* aux peer structure pointer */ 641 endpt *match_ep; /* newpeer() local address */ 642 l_fp p_org; /* origin timestamp */ 643 l_fp p_rec; /* receive timestamp */ 644 l_fp p_xmt; /* transmit timestamp */ 645 #ifdef AUTOKEY 646 char hostname[NTP_MAXSTRLEN + 1]; 647 char *groupname = NULL; 648 struct autokey *ap; /* autokey structure pointer */ 649 int rval; /* cookie snatcher */ 650 keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */ 651 #endif /* AUTOKEY */ 652 #ifdef HAVE_NTP_SIGND 653 static unsigned char zero_key[16]; 654 #endif /* HAVE_NTP_SIGND */ 655 656 /* 657 * Note that there are many places we do not call record_raw_stats(). 658 * 659 * We only want to call it *after* we've sent a response, or perhaps 660 * when we've decided to drop a packet. 661 */ 662 663 /* 664 * Monitor the packet and get restrictions. Note that the packet 665 * length for control and private mode packets must be checked 666 * by the service routines. Some restrictions have to be handled 667 * later in order to generate a kiss-o'-death packet. 668 */ 669 /* 670 * Bogus port check is before anything, since it probably 671 * reveals a clogging attack. Likewise the mimimum packet size 672 * of 2 bytes (for mode 6/7) must be checked first. 673 */ 674 sys_received++; 675 if (0 == SRCPORT(&rbufp->recv_srcadr) || rbufp->recv_length < 2) { 676 sys_badlength++; 677 return; /* bogus port / length */ 678 } 679 restrictions(&rbufp->recv_srcadr, &r4a); 680 restrict_mask = r4a.rflags; 681 682 pkt = &rbufp->recv_pkt; 683 hisversion = PKT_VERSION(pkt->li_vn_mode); 684 hismode = (int)PKT_MODE(pkt->li_vn_mode); 685 686 if (restrict_mask & RES_IGNORE) { 687 DPRINTF(2, ("receive: drop: RES_IGNORE\n")); 688 sys_restricted++; 689 return; /* ignore everything */ 690 } 691 if (hismode == MODE_PRIVATE) { 692 if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) { 693 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 694 sys_restricted++; 695 return; /* no query private */ 696 } 697 process_private(rbufp, ((restrict_mask & 698 RES_NOMODIFY) == 0)); 699 return; 700 } 701 if (hismode == MODE_CONTROL) { 702 if (restrict_mask & RES_NOQUERY) { 703 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 704 sys_restricted++; 705 return; /* no query control */ 706 } 707 process_control(rbufp, restrict_mask); 708 return; 709 } 710 if (restrict_mask & RES_DONTSERVE) { 711 DPRINTF(2, ("receive: drop: RES_DONTSERVE\n")); 712 sys_restricted++; 713 return; /* no time serve */ 714 } 715 716 717 /* If we arrive here, we should have a standard NTP packet. We 718 * check that the minimum size is available and fetch some more 719 * items from the packet once we can be sure they are indeed 720 * there. 721 */ 722 if ((size_t)rbufp->recv_length < LEN_PKT_NOMAC) { 723 sys_badlength++; 724 return; /* bogus length */ 725 } 726 727 hisleap = PKT_LEAP(pkt->li_vn_mode); 728 hisstratum = PKT_TO_STRATUM(pkt->stratum); 729 INSIST(0 != hisstratum); /* paranoia check PKT_TO_STRATUM result */ 730 731 DPRINTF(1, ("receive: at %ld %s<-%s ippeerlimit %d mode %d iflags %s " 732 "restrict %s org %#010x.%08x xmt %#010x.%08x\n", 733 current_time, stoa(&rbufp->dstadr->sin), 734 stoa(&rbufp->recv_srcadr), r4a.ippeerlimit, hismode, 735 build_iflags(rbufp->dstadr->flags), 736 build_rflags(restrict_mask), 737 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 738 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 739 740 /* 741 * This is for testing. If restricted drop ten percent of 742 * surviving packets. 743 */ 744 if (restrict_mask & RES_FLAKE) { 745 if ((double)ntp_random() / 0x7fffffff < .1) { 746 DPRINTF(2, ("receive: drop: RES_FLAKE\n")); 747 sys_restricted++; 748 return; /* no flakeway */ 749 } 750 } 751 752 /* 753 ** Format Layer Checks 754 ** 755 ** Validate the packet format. The packet size, packet header, 756 ** and any extension field lengths are checked. We identify 757 ** the beginning of the MAC, to identify the upper limit of 758 ** of the hash computation. 759 ** 760 ** In case of a format layer check violation, the packet is 761 ** discarded with no further processing. 762 */ 763 764 /* 765 * Version check must be after the query packets, since they 766 * intentionally use an early version. 767 */ 768 if (hisversion == NTP_VERSION) { 769 sys_newversion++; /* new version */ 770 } else if ( !(restrict_mask & RES_VERSION) 771 && hisversion >= NTP_OLDVERSION) { 772 sys_oldversion++; /* previous version */ 773 } else { 774 DPRINTF(2, ("receive: drop: RES_VERSION\n")); 775 sys_badlength++; 776 return; /* old version */ 777 } 778 779 /* 780 * Figure out his mode and validate the packet. This has some 781 * legacy raunch that probably should be removed. In very early 782 * NTP versions mode 0 was equivalent to what later versions 783 * would interpret as client mode. 784 */ 785 if (hismode == MODE_UNSPEC) { 786 if (hisversion == NTP_OLDVERSION) { 787 hismode = MODE_CLIENT; 788 } else { 789 DPRINTF(2, ("receive: drop: MODE_UNSPEC\n")); 790 sys_badlength++; 791 return; /* invalid mode */ 792 } 793 } 794 795 /* 796 * Parse the extension field if present. We figure out whether 797 * an extension field is present by measuring the MAC size. If 798 * the number of words following the packet header is 0, no MAC 799 * is present and the packet is not authenticated. If 1, the 800 * packet is a crypto-NAK; if 3, the packet is authenticated 801 * with DES; if 5, the packet is authenticated with MD5; if 6, 802 * the packet is authenticated with SHA. If 2 or * 4, the packet 803 * is a runt and discarded forthwith. If greater than 6, an 804 * extension field is present, so we subtract the length of the 805 * field and go around again. 806 * 807 * Note the above description is lame. We should/could also check 808 * the two bytes that make up the EF type and subtype, and then 809 * check the two bytes that tell us the EF length. A legacy MAC 810 * has a 4 byte keyID, and for conforming symmetric keys its value 811 * must be <= 64k, meaning the top two bytes will always be zero. 812 * Since the EF Type of 0 is reserved/unused, there's no way a 813 * conforming legacy MAC could ever be misinterpreted as an EF. 814 * 815 * There is more, but this isn't the place to document it. 816 */ 817 818 authlen = LEN_PKT_NOMAC; 819 has_mac = rbufp->recv_length - authlen; 820 while (has_mac > 0) { 821 u_int32 len; 822 #ifdef AUTOKEY 823 u_int32 hostlen; 824 struct exten *ep; 825 #endif /*AUTOKEY */ 826 827 if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) { 828 DPRINTF(2, ("receive: drop: bad post-packet length\n")); 829 sys_badlength++; 830 return; /* bad length */ 831 } 832 /* 833 * This next test is clearly wrong - it needlessly 834 * prohibits short EFs (which don't yet exist) 835 */ 836 if (has_mac <= (int)MAX_MAC_LEN) { 837 skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]); 838 break; 839 840 } else { 841 opcode = ntohl(((u_int32 *)pkt)[authlen / 4]); 842 len = opcode & 0xffff; 843 if ( len % 4 != 0 844 || len < 4 845 || (int)len + authlen > rbufp->recv_length) { 846 DPRINTF(2, ("receive: drop: bad EF length\n")); 847 sys_badlength++; 848 return; /* bad length */ 849 } 850 #ifdef AUTOKEY 851 /* 852 * Extract calling group name for later. If 853 * sys_groupname is non-NULL, there must be 854 * a group name provided to elicit a response. 855 */ 856 if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC 857 && sys_groupname != NULL) { 858 ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4]; 859 hostlen = ntohl(ep->vallen); 860 if ( hostlen >= sizeof(hostname) 861 || hostlen > len - 862 offsetof(struct exten, pkt)) { 863 DPRINTF(2, ("receive: drop: bad autokey hostname length\n")); 864 sys_badlength++; 865 return; /* bad length */ 866 } 867 memcpy(hostname, &ep->pkt, hostlen); 868 hostname[hostlen] = '\0'; 869 groupname = strchr(hostname, '@'); 870 if (groupname == NULL) { 871 DPRINTF(2, ("receive: drop: empty autokey groupname\n")); 872 sys_declined++; 873 return; 874 } 875 groupname++; 876 } 877 #endif /* AUTOKEY */ 878 authlen += len; 879 has_mac -= len; 880 } 881 } 882 883 /* 884 * If has_mac is < 0 we had a malformed packet. 885 */ 886 if (has_mac < 0) { 887 DPRINTF(2, ("receive: drop: post-packet under-read\n")); 888 sys_badlength++; 889 return; /* bad length */ 890 } 891 892 /* 893 ** Packet Data Verification Layer 894 ** 895 ** This layer verifies the packet data content. If 896 ** authentication is required, a MAC must be present. 897 ** If a MAC is present, it must validate. 898 ** Crypto-NAK? Look - a shiny thing! 899 ** 900 ** If authentication fails, we're done. 901 */ 902 903 /* 904 * If authentication is explicitly required, a MAC must be present. 905 */ 906 if (restrict_mask & RES_DONTTRUST && has_mac == 0) { 907 DPRINTF(2, ("receive: drop: RES_DONTTRUST\n")); 908 sys_restricted++; 909 return; /* access denied */ 910 } 911 912 /* 913 * Update the MRU list and finger the cloggers. It can be a 914 * little expensive, so turn it off for production use. 915 * RES_LIMITED and RES_KOD will be cleared in the returned 916 * restrict_mask unless one or both actions are warranted. 917 */ 918 restrict_mask = ntp_monitor(rbufp, restrict_mask); 919 if (restrict_mask & RES_LIMITED) { 920 sys_limitrejected++; 921 if ( !(restrict_mask & RES_KOD) 922 || MODE_BROADCAST == hismode 923 || MODE_SERVER == hismode) { 924 if (MODE_SERVER == hismode) { 925 DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n", 926 stoa(&rbufp->recv_srcadr))); 927 } else { 928 DPRINTF(2, ("receive: drop: RES_KOD\n")); 929 } 930 return; /* rate exceeded */ 931 } 932 if (hismode == MODE_CLIENT) { 933 fast_xmit(rbufp, MODE_SERVER, skeyid, 934 restrict_mask); 935 } else { 936 fast_xmit(rbufp, MODE_ACTIVE, skeyid, 937 restrict_mask); 938 } 939 return; /* rate exceeded */ 940 } 941 restrict_mask &= ~RES_KOD; 942 943 /* 944 * We have tossed out as many buggy packets as possible early in 945 * the game to reduce the exposure to a clogging attack. Now we 946 * have to burn some cycles to find the association and 947 * authenticate the packet if required. Note that we burn only 948 * digest cycles, again to reduce exposure. There may be no 949 * matching association and that's okay. 950 * 951 * More on the autokey mambo. Normally the local interface is 952 * found when the association was mobilized with respect to a 953 * designated remote address. We assume packets arriving from 954 * the remote address arrive via this interface and the local 955 * address used to construct the autokey is the unicast address 956 * of the interface. However, if the sender is a broadcaster, 957 * the interface broadcast address is used instead. 958 * Notwithstanding this technobabble, if the sender is a 959 * multicaster, the broadcast address is null, so we use the 960 * unicast address anyway. Don't ask. 961 */ 962 963 peer = findpeer(rbufp, hismode, &retcode); 964 dstadr_sin = &rbufp->dstadr->sin; 965 NTOHL_FP(&pkt->org, &p_org); 966 NTOHL_FP(&pkt->rec, &p_rec); 967 NTOHL_FP(&pkt->xmt, &p_xmt); 968 hm_str = modetoa(hismode); 969 am_str = amtoa(retcode); 970 971 /* 972 * Authentication is conditioned by three switches: 973 * 974 * NOPEER (RES_NOPEER) do not mobilize an association unless 975 * authenticated 976 * NOTRUST (RES_DONTTRUST) do not allow access unless 977 * authenticated (implies NOPEER) 978 * enable (sys_authenticate) master NOPEER switch, by default 979 * on 980 * 981 * The NOPEER and NOTRUST can be specified on a per-client basis 982 * using the restrict command. The enable switch if on implies 983 * NOPEER for all clients. There are four outcomes: 984 * 985 * NONE The packet has no MAC. 986 * OK the packet has a MAC and authentication succeeds 987 * ERROR the packet has a MAC and authentication fails 988 * CRYPTO crypto-NAK. The MAC has four octets only. 989 * 990 * Note: The AUTH(x, y) macro is used to filter outcomes. If x 991 * is zero, acceptable outcomes of y are NONE and OK. If x is 992 * one, the only acceptable outcome of y is OK. 993 */ 994 crypto_nak_test = valid_NAK(peer, rbufp, hismode); 995 996 /* 997 * Drop any invalid crypto-NAKs 998 */ 999 if (crypto_nak_test == INVALIDNAK) { 1000 report_event(PEVNT_AUTH, peer, "Invalid_NAK"); 1001 if (0 != peer) { 1002 peer->badNAK++; 1003 } 1004 msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s", 1005 current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr)); 1006 return; 1007 } 1008 1009 if (has_mac == 0) { 1010 restrict_mask &= ~RES_MSSNTP; 1011 is_authentic = AUTH_NONE; /* not required */ 1012 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n", 1013 current_time, stoa(dstadr_sin), 1014 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1015 authlen, 1016 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1017 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1018 } else if (crypto_nak_test == VALIDNAK) { 1019 restrict_mask &= ~RES_MSSNTP; 1020 is_authentic = AUTH_CRYPTO; /* crypto-NAK */ 1021 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x CRYPTONAK\n", 1022 current_time, stoa(dstadr_sin), 1023 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1024 skeyid, authlen + has_mac, is_authentic, 1025 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1026 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1027 1028 #ifdef HAVE_NTP_SIGND 1029 /* 1030 * If the signature is 20 bytes long, the last 16 of 1031 * which are zero, then this is a Microsoft client 1032 * wanting AD-style authentication of the server's 1033 * reply. 1034 * 1035 * This is described in Microsoft's WSPP docs, in MS-SNTP: 1036 * http://msdn.microsoft.com/en-us/library/cc212930.aspx 1037 */ 1038 } else if ( has_mac == MAX_MD5_LEN 1039 && (restrict_mask & RES_MSSNTP) 1040 && (retcode == AM_FXMIT || retcode == AM_NEWPASS) 1041 && (memcmp(zero_key, (char *)pkt + authlen + 4, 1042 MAX_MD5_LEN - 4) == 0)) { 1043 is_authentic = AUTH_NONE; 1044 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x SIGND\n", 1045 current_time, stoa(dstadr_sin), 1046 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1047 authlen, 1048 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1049 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1050 #endif /* HAVE_NTP_SIGND */ 1051 1052 } else { 1053 /* 1054 * has_mac is not 0 1055 * Not a VALID_NAK 1056 * Not an MS-SNTP SIGND packet 1057 * 1058 * So there is a MAC here. 1059 */ 1060 1061 restrict_mask &= ~RES_MSSNTP; 1062 #ifdef AUTOKEY 1063 /* 1064 * For autokey modes, generate the session key 1065 * and install in the key cache. Use the socket 1066 * broadcast or unicast address as appropriate. 1067 */ 1068 if (crypto_flags && skeyid > NTP_MAXKEY) { 1069 1070 /* 1071 * More on the autokey dance (AKD). A cookie is 1072 * constructed from public and private values. 1073 * For broadcast packets, the cookie is public 1074 * (zero). For packets that match no 1075 * association, the cookie is hashed from the 1076 * addresses and private value. For server 1077 * packets, the cookie was previously obtained 1078 * from the server. For symmetric modes, the 1079 * cookie was previously constructed using an 1080 * agreement protocol; however, should PKI be 1081 * unavailable, we construct a fake agreement as 1082 * the EXOR of the peer and host cookies. 1083 * 1084 * hismode ephemeral persistent 1085 * ======================================= 1086 * active 0 cookie# 1087 * passive 0% cookie# 1088 * client sys cookie 0% 1089 * server 0% sys cookie 1090 * broadcast 0 0 1091 * 1092 * # if unsync, 0 1093 * % can't happen 1094 */ 1095 if (has_mac < (int)MAX_MD5_LEN) { 1096 DPRINTF(2, ("receive: drop: MD5 digest too short\n")); 1097 sys_badauth++; 1098 return; 1099 } 1100 if (hismode == MODE_BROADCAST) { 1101 1102 /* 1103 * For broadcaster, use the interface 1104 * broadcast address when available; 1105 * otherwise, use the unicast address 1106 * found when the association was 1107 * mobilized. However, if this is from 1108 * the wildcard interface, game over. 1109 */ 1110 if ( crypto_flags 1111 && rbufp->dstadr == 1112 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) { 1113 DPRINTF(2, ("receive: drop: BCAST from wildcard\n")); 1114 sys_restricted++; 1115 return; /* no wildcard */ 1116 } 1117 pkeyid = 0; 1118 if (!SOCK_UNSPEC(&rbufp->dstadr->bcast)) 1119 dstadr_sin = 1120 &rbufp->dstadr->bcast; 1121 } else if (peer == NULL) { 1122 pkeyid = session_key( 1123 &rbufp->recv_srcadr, dstadr_sin, 0, 1124 sys_private, 0); 1125 } else { 1126 pkeyid = peer->pcookie; 1127 } 1128 1129 /* 1130 * The session key includes both the public 1131 * values and cookie. In case of an extension 1132 * field, the cookie used for authentication 1133 * purposes is zero. Note the hash is saved for 1134 * use later in the autokey mambo. 1135 */ 1136 if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) { 1137 session_key(&rbufp->recv_srcadr, 1138 dstadr_sin, skeyid, 0, 2); 1139 tkeyid = session_key( 1140 &rbufp->recv_srcadr, dstadr_sin, 1141 skeyid, pkeyid, 0); 1142 } else { 1143 tkeyid = session_key( 1144 &rbufp->recv_srcadr, dstadr_sin, 1145 skeyid, pkeyid, 2); 1146 } 1147 1148 } 1149 #endif /* AUTOKEY */ 1150 1151 /* 1152 * Compute the cryptosum. Note a clogging attack may 1153 * succeed in bloating the key cache. If an autokey, 1154 * purge it immediately, since we won't be needing it 1155 * again. If the packet is authentic, it can mobilize an 1156 * association. Note that there is no key zero. 1157 */ 1158 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1159 has_mac)) 1160 is_authentic = AUTH_ERROR; 1161 else 1162 is_authentic = AUTH_OK; 1163 #ifdef AUTOKEY 1164 if (crypto_flags && skeyid > NTP_MAXKEY) 1165 authtrust(skeyid, 0); 1166 #endif /* AUTOKEY */ 1167 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC\n", 1168 current_time, stoa(dstadr_sin), 1169 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1170 skeyid, authlen + has_mac, is_authentic, 1171 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1172 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1173 } 1174 1175 1176 /* 1177 * Bug 3454: 1178 * 1179 * Now come at this from a different perspective: 1180 * - If we expect a MAC and it's not there, we drop it. 1181 * - If we expect one keyID and get another, we drop it. 1182 * - If we have a MAC ahd it hasn't been validated yet, try. 1183 * - if the provided MAC doesn't validate, we drop it. 1184 * 1185 * There might be more to this. 1186 */ 1187 if (0 != peer && 0 != peer->keyid) { 1188 /* Should we msyslog() any of these? */ 1189 1190 /* 1191 * This should catch: 1192 * - no keyID where one is expected, 1193 * - different keyID than what we expect. 1194 */ 1195 if (peer->keyid != skeyid) { 1196 DPRINTF(2, ("receive: drop: Wanted keyID %d, got %d from %s\n", 1197 peer->keyid, skeyid, 1198 stoa(&rbufp->recv_srcadr))); 1199 sys_restricted++; 1200 return; /* drop: access denied */ 1201 } 1202 1203 /* 1204 * if has_mac != 0 ... 1205 * - If it has not yet been validated, do so. 1206 * (under what circumstances might that happen?) 1207 * - if missing or bad MAC, log and drop. 1208 */ 1209 if (0 != has_mac) { 1210 if (is_authentic == AUTH_UNKNOWN) { 1211 /* How can this happen? */ 1212 DPRINTF(2, ("receive: 3454 check: AUTH_UNKNOWN from %s\n", 1213 stoa(&rbufp->recv_srcadr))); 1214 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1215 has_mac)) { 1216 /* MAC invalid or not found */ 1217 is_authentic = AUTH_ERROR; 1218 } else { 1219 is_authentic = AUTH_OK; 1220 } 1221 } 1222 if (is_authentic != AUTH_OK) { 1223 DPRINTF(2, ("receive: drop: missing or bad MAC from %s\n", 1224 stoa(&rbufp->recv_srcadr))); 1225 sys_restricted++; 1226 return; /* drop: access denied */ 1227 } 1228 } 1229 } 1230 /**/ 1231 1232 /* 1233 ** On-Wire Protocol Layer 1234 ** 1235 ** Verify protocol operations consistent with the on-wire protocol. 1236 ** The protocol discards bogus and duplicate packets as well as 1237 ** minimizes disruptions doe to protocol restarts and dropped 1238 ** packets. The operations are controlled by two timestamps: 1239 ** the transmit timestamp saved in the client state variables, 1240 ** and the origin timestamp in the server packet header. The 1241 ** comparison of these two timestamps is called the loopback test. 1242 ** The transmit timestamp functions as a nonce to verify that the 1243 ** response corresponds to the original request. The transmit 1244 ** timestamp also serves to discard replays of the most recent 1245 ** packet. Upon failure of either test, the packet is discarded 1246 ** with no further action. 1247 */ 1248 1249 /* 1250 * The association matching rules are implemented by a set of 1251 * routines and an association table. A packet matching an 1252 * association is processed by the peer process for that 1253 * association. If there are no errors, an ephemeral association 1254 * is mobilized: a broadcast packet mobilizes a broadcast client 1255 * aassociation; a manycast server packet mobilizes a manycast 1256 * client association; a symmetric active packet mobilizes a 1257 * symmetric passive association. 1258 */ 1259 DPRINTF(1, ("receive: MATCH_ASSOC dispatch: mode %d/%s:%s \n", 1260 hismode, hm_str, am_str)); 1261 switch (retcode) { 1262 1263 /* 1264 * This is a client mode packet not matching any association. If 1265 * an ordinary client, simply toss a server mode packet back 1266 * over the fence. If a manycast client, we have to work a 1267 * little harder. 1268 * 1269 * There are cases here where we do not call record_raw_stats(). 1270 */ 1271 case AM_FXMIT: 1272 1273 /* 1274 * If authentication OK, send a server reply; otherwise, 1275 * send a crypto-NAK. 1276 */ 1277 if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) { 1278 /* HMS: would be nice to log FAST_XMIT|BADAUTH|RESTRICTED */ 1279 record_raw_stats(&rbufp->recv_srcadr, 1280 &rbufp->dstadr->sin, 1281 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1282 PKT_LEAP(pkt->li_vn_mode), 1283 PKT_VERSION(pkt->li_vn_mode), 1284 PKT_MODE(pkt->li_vn_mode), 1285 PKT_TO_STRATUM(pkt->stratum), 1286 pkt->ppoll, 1287 pkt->precision, 1288 FPTOD(NTOHS_FP(pkt->rootdelay)), 1289 FPTOD(NTOHS_FP(pkt->rootdisp)), 1290 pkt->refid, 1291 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1292 1293 if (AUTH(restrict_mask & RES_DONTTRUST, 1294 is_authentic)) { 1295 /* Bug 3596: Do we want to fuzz the reftime? */ 1296 fast_xmit(rbufp, MODE_SERVER, skeyid, 1297 restrict_mask); 1298 } else if (is_authentic == AUTH_ERROR) { 1299 /* Bug 3596: Do we want to fuzz the reftime? */ 1300 fast_xmit(rbufp, MODE_SERVER, 0, 1301 restrict_mask); 1302 sys_badauth++; 1303 } else { 1304 DPRINTF(2, ("receive: AM_FXMIT drop: !mcast restricted\n")); 1305 sys_restricted++; 1306 } 1307 1308 return; /* hooray */ 1309 } 1310 1311 /* 1312 * This must be manycast. Do not respond if not 1313 * configured as a manycast server. 1314 */ 1315 if (!sys_manycastserver) { 1316 DPRINTF(2, ("receive: AM_FXMIT drop: Not manycastserver\n")); 1317 sys_restricted++; 1318 return; /* not enabled */ 1319 } 1320 1321 #ifdef AUTOKEY 1322 /* 1323 * Do not respond if not the same group. 1324 */ 1325 if (group_test(groupname, NULL)) { 1326 DPRINTF(2, ("receive: AM_FXMIT drop: empty groupname\n")); 1327 sys_declined++; 1328 return; 1329 } 1330 #endif /* AUTOKEY */ 1331 1332 /* 1333 * Do not respond if we are not synchronized or our 1334 * stratum is greater than the manycaster or the 1335 * manycaster has already synchronized to us. 1336 */ 1337 if ( sys_leap == LEAP_NOTINSYNC 1338 || sys_stratum >= hisstratum 1339 || (!sys_cohort && sys_stratum == hisstratum + 1) 1340 || rbufp->dstadr->addr_refid == pkt->refid) { 1341 DPRINTF(2, ("receive: AM_FXMIT drop: LEAP_NOTINSYNC || stratum || loop\n")); 1342 sys_declined++; 1343 return; /* no help */ 1344 } 1345 1346 /* 1347 * Respond only if authentication succeeds. Don't do a 1348 * crypto-NAK, as that would not be useful. 1349 */ 1350 if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) { 1351 record_raw_stats(&rbufp->recv_srcadr, 1352 &rbufp->dstadr->sin, 1353 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1354 PKT_LEAP(pkt->li_vn_mode), 1355 PKT_VERSION(pkt->li_vn_mode), 1356 PKT_MODE(pkt->li_vn_mode), 1357 PKT_TO_STRATUM(pkt->stratum), 1358 pkt->ppoll, 1359 pkt->precision, 1360 FPTOD(NTOHS_FP(pkt->rootdelay)), 1361 FPTOD(NTOHS_FP(pkt->rootdisp)), 1362 pkt->refid, 1363 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1364 1365 /* Bug 3596: Do we want to fuzz the reftime? */ 1366 fast_xmit(rbufp, MODE_SERVER, skeyid, 1367 restrict_mask); 1368 } 1369 return; /* hooray */ 1370 1371 /* 1372 * This is a server mode packet returned in response to a client 1373 * mode packet sent to a multicast group address (for 1374 * manycastclient) or to a unicast address (for pool). The 1375 * origin timestamp is a good nonce to reliably associate the 1376 * reply with what was sent. If there is no match, that's 1377 * curious and could be an intruder attempting to clog, so we 1378 * just ignore it. 1379 * 1380 * If the packet is authentic and the manycastclient or pool 1381 * association is found, we mobilize a client association and 1382 * copy pertinent variables from the manycastclient or pool 1383 * association to the new client association. If not, just 1384 * ignore the packet. 1385 * 1386 * There is an implosion hazard at the manycast client, since 1387 * the manycast servers send the server packet immediately. If 1388 * the guy is already here, don't fire up a duplicate. 1389 * 1390 * There are cases here where we do not call record_raw_stats(). 1391 */ 1392 case AM_MANYCAST: 1393 1394 #ifdef AUTOKEY 1395 /* 1396 * Do not respond if not the same group. 1397 */ 1398 if (group_test(groupname, NULL)) { 1399 DPRINTF(2, ("receive: AM_MANYCAST drop: empty groupname\n")); 1400 sys_declined++; 1401 return; 1402 } 1403 #endif /* AUTOKEY */ 1404 if ((peer2 = findmanycastpeer(rbufp)) == NULL) { 1405 DPRINTF(2, ("receive: AM_MANYCAST drop: No manycast peer\n")); 1406 sys_restricted++; 1407 return; /* not enabled */ 1408 } 1409 if (!AUTH( (!(peer2->cast_flags & MDF_POOL) 1410 && sys_authenticate) 1411 || (restrict_mask & (RES_NOPEER | 1412 RES_DONTTRUST)), is_authentic) 1413 /* MC: RES_NOEPEER? */ 1414 ) { 1415 DPRINTF(2, ("receive: AM_MANYCAST drop: bad auth || (NOPEER|DONTTRUST)\n")); 1416 sys_restricted++; 1417 return; /* access denied */ 1418 } 1419 1420 /* 1421 * Do not respond if unsynchronized or stratum is below 1422 * the floor or at or above the ceiling. 1423 */ 1424 if ( hisleap == LEAP_NOTINSYNC 1425 || hisstratum < sys_floor 1426 || hisstratum >= sys_ceiling) { 1427 DPRINTF(2, ("receive: AM_MANYCAST drop: unsync/stratum\n")); 1428 sys_declined++; 1429 return; /* no help */ 1430 } 1431 peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1432 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1433 peer2->minpoll, peer2->maxpoll, 1434 (FLAG_PREEMPT | (POOL_FLAG_PMASK & peer2->flags)), 1435 (MDF_UCAST | MDF_UCLNT), 0, skeyid, sys_ident); 1436 if (NULL == peer) { 1437 DPRINTF(2, ("receive: AM_MANYCAST drop: duplicate\n")); 1438 sys_declined++; 1439 return; /* ignore duplicate */ 1440 } 1441 1442 /* 1443 * After each ephemeral pool association is spun, 1444 * accelerate the next poll for the pool solicitor so 1445 * the pool will fill promptly. 1446 */ 1447 if (peer2->cast_flags & MDF_POOL) 1448 peer2->nextdate = current_time + 1; 1449 1450 /* 1451 * Further processing of the solicitation response would 1452 * simply detect its origin timestamp as bogus for the 1453 * brand-new association (it matches the prototype 1454 * association) and tinker with peer->nextdate delaying 1455 * first sync. 1456 */ 1457 return; /* solicitation response handled */ 1458 1459 /* 1460 * This is the first packet received from a broadcast server. If 1461 * the packet is authentic and we are enabled as broadcast 1462 * client, mobilize a broadcast client association. We don't 1463 * kiss any frogs here. 1464 * 1465 * There are cases here where we do not call record_raw_stats(). 1466 */ 1467 case AM_NEWBCL: 1468 1469 #ifdef AUTOKEY 1470 /* 1471 * Do not respond if not the same group. 1472 */ 1473 if (group_test(groupname, sys_ident)) { 1474 DPRINTF(2, ("receive: AM_NEWBCL drop: groupname mismatch\n")); 1475 sys_declined++; 1476 return; 1477 } 1478 #endif /* AUTOKEY */ 1479 if (sys_bclient == 0) { 1480 DPRINTF(2, ("receive: AM_NEWBCL drop: not a bclient\n")); 1481 sys_restricted++; 1482 return; /* not enabled */ 1483 } 1484 if (!AUTH(sys_authenticate | (restrict_mask & 1485 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1486 /* NEWBCL: RES_NOEPEER? */ 1487 ) { 1488 DPRINTF(2, ("receive: AM_NEWBCL drop: AUTH failed\n")); 1489 sys_restricted++; 1490 return; /* access denied */ 1491 } 1492 1493 /* 1494 * Do not respond if unsynchronized or stratum is below 1495 * the floor or at or above the ceiling. 1496 */ 1497 if ( hisleap == LEAP_NOTINSYNC 1498 || hisstratum < sys_floor 1499 || hisstratum >= sys_ceiling) { 1500 DPRINTF(2, ("receive: AM_NEWBCL drop: Unsync or bad stratum\n")); 1501 sys_declined++; 1502 return; /* no help */ 1503 } 1504 1505 #ifdef AUTOKEY 1506 /* 1507 * Do not respond if Autokey and the opcode is not a 1508 * CRYPTO_ASSOC response with association ID. 1509 */ 1510 if ( crypto_flags && skeyid > NTP_MAXKEY 1511 && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) { 1512 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not CRYPTO_ASSOC\n")); 1513 sys_declined++; 1514 return; /* protocol error */ 1515 } 1516 #endif /* AUTOKEY */ 1517 1518 /* 1519 * Broadcasts received via a multicast address may 1520 * arrive after a unicast volley has begun 1521 * with the same remote address. newpeer() will not 1522 * find duplicate associations on other local endpoints 1523 * if a non-NULL endpoint is supplied. multicastclient 1524 * ephemeral associations are unique across all local 1525 * endpoints. 1526 */ 1527 if (!(INT_MCASTOPEN & rbufp->dstadr->flags)) 1528 match_ep = rbufp->dstadr; 1529 else 1530 match_ep = NULL; 1531 1532 /* 1533 * Determine whether to execute the initial volley. 1534 */ 1535 if (sys_bdelay > 0.0) { 1536 #ifdef AUTOKEY 1537 /* 1538 * If a two-way exchange is not possible, 1539 * neither is Autokey. 1540 */ 1541 if (crypto_flags && skeyid > NTP_MAXKEY) { 1542 sys_restricted++; 1543 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not 2-way\n")); 1544 return; /* no autokey */ 1545 } 1546 #endif /* AUTOKEY */ 1547 1548 /* 1549 * Do not execute the volley. Start out in 1550 * broadcast client mode. 1551 */ 1552 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1553 r4a.ippeerlimit, MODE_BCLIENT, hisversion, 1554 pkt->ppoll, pkt->ppoll, 1555 FLAG_PREEMPT, MDF_BCLNT, 0, skeyid, sys_ident); 1556 if (NULL == peer) { 1557 DPRINTF(2, ("receive: AM_NEWBCL drop: duplicate\n")); 1558 sys_restricted++; 1559 return; /* ignore duplicate */ 1560 1561 } else { 1562 peer->delay = sys_bdelay; 1563 peer->bxmt = p_xmt; 1564 } 1565 break; 1566 } 1567 1568 /* 1569 * Execute the initial volley in order to calibrate the 1570 * propagation delay and run the Autokey protocol. 1571 * 1572 * Note that the minpoll is taken from the broadcast 1573 * packet, normally 6 (64 s) and that the poll interval 1574 * is fixed at this value. 1575 */ 1576 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1577 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1578 pkt->ppoll, pkt->ppoll, 1579 FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT, 1580 0, skeyid, sys_ident); 1581 if (NULL == peer) { 1582 DPRINTF(2, ("receive: AM_NEWBCL drop: empty newpeer() failed\n")); 1583 sys_restricted++; 1584 return; /* ignore duplicate */ 1585 } 1586 peer->bxmt = p_xmt; 1587 #ifdef AUTOKEY 1588 if (skeyid > NTP_MAXKEY) 1589 crypto_recv(peer, rbufp); 1590 #endif /* AUTOKEY */ 1591 1592 return; /* hooray */ 1593 1594 /* 1595 * This is the first packet received from a potential ephemeral 1596 * symmetric active peer. First, deal with broken Windows clients. 1597 * Then, if NOEPEER is enabled, drop it. If the packet meets our 1598 * authenticty requirements and is the first he sent, mobilize 1599 * a passive association. 1600 * Otherwise, kiss the frog. 1601 * 1602 * There are cases here where we do not call record_raw_stats(). 1603 */ 1604 case AM_NEWPASS: 1605 1606 DEBUG_REQUIRE(MODE_ACTIVE == hismode); 1607 1608 #ifdef AUTOKEY 1609 /* 1610 * Do not respond if not the same group. 1611 */ 1612 if (group_test(groupname, sys_ident)) { 1613 DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n")); 1614 sys_declined++; 1615 return; 1616 } 1617 #endif /* AUTOKEY */ 1618 if (!AUTH(sys_authenticate | (restrict_mask & 1619 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1620 ) { 1621 /* 1622 * If authenticated but cannot mobilize an 1623 * association, send a symmetric passive 1624 * response without mobilizing an association. 1625 * This is for drat broken Windows clients. See 1626 * Microsoft KB 875424 for preferred workaround. 1627 */ 1628 if (AUTH(restrict_mask & RES_DONTTRUST, 1629 is_authentic)) { 1630 fast_xmit(rbufp, MODE_PASSIVE, skeyid, 1631 restrict_mask); 1632 return; /* hooray */ 1633 } 1634 /* HMS: Why is this next set of lines a feature? */ 1635 if (is_authentic == AUTH_ERROR) { 1636 fast_xmit(rbufp, MODE_PASSIVE, 0, 1637 restrict_mask); 1638 sys_restricted++; 1639 return; 1640 } 1641 1642 if (restrict_mask & RES_NOEPEER) { 1643 DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n")); 1644 sys_declined++; 1645 return; 1646 } 1647 1648 /* [Bug 2941] 1649 * If we got here, the packet isn't part of an 1650 * existing association, either isn't correctly 1651 * authenticated or it is but we are refusing 1652 * ephemeral peer requests, and it didn't meet 1653 * either of the previous two special cases so we 1654 * should just drop it on the floor. For example, 1655 * crypto-NAKs (is_authentic == AUTH_CRYPTO) 1656 * will make it this far. This is just 1657 * debug-printed and not logged to avoid log 1658 * flooding. 1659 */ 1660 DPRINTF(2, ("receive: at %ld refusing to mobilize passive association" 1661 " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n", 1662 current_time, stoa(&rbufp->recv_srcadr), 1663 hismode, hm_str, am_str, skeyid, 1664 (authlen + has_mac), is_authentic)); 1665 sys_declined++; 1666 return; 1667 } 1668 1669 if (restrict_mask & RES_NOEPEER) { 1670 DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n")); 1671 sys_declined++; 1672 return; 1673 } 1674 1675 /* 1676 * Do not respond if synchronized and if stratum is 1677 * below the floor or at or above the ceiling. Note, 1678 * this allows an unsynchronized peer to synchronize to 1679 * us. It would be very strange if he did and then was 1680 * nipped, but that could only happen if we were 1681 * operating at the top end of the range. It also means 1682 * we will spin an ephemeral association in response to 1683 * MODE_ACTIVE KoDs, which will time out eventually. 1684 */ 1685 if ( hisleap != LEAP_NOTINSYNC 1686 && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) { 1687 DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n")); 1688 sys_declined++; 1689 return; /* no help */ 1690 } 1691 1692 /* 1693 * The message is correctly authenticated and allowed. 1694 * Mobilize a symmetric passive association, if we won't 1695 * exceed the ippeerlimit. 1696 */ 1697 if ((peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1698 r4a.ippeerlimit, MODE_PASSIVE, hisversion, 1699 pkt->ppoll, NTP_MAXDPOLL, 0, MDF_UCAST, 0, 1700 skeyid, sys_ident)) == NULL) { 1701 DPRINTF(2, ("receive: AM_NEWPASS drop: newpeer() failed\n")); 1702 sys_declined++; 1703 return; /* ignore duplicate */ 1704 } 1705 break; 1706 1707 1708 /* 1709 * Process regular packet. Nothing special. 1710 * 1711 * There are cases here where we do not call record_raw_stats(). 1712 */ 1713 case AM_PROCPKT: 1714 1715 #ifdef AUTOKEY 1716 /* 1717 * Do not respond if not the same group. 1718 */ 1719 if (group_test(groupname, peer->ident)) { 1720 DPRINTF(2, ("receive: AM_PROCPKT drop: Autokey group mismatch\n")); 1721 sys_declined++; 1722 return; 1723 } 1724 #endif /* AUTOKEY */ 1725 1726 if (MODE_BROADCAST == hismode) { 1727 int bail = 0; 1728 l_fp tdiff; 1729 u_long deadband; 1730 1731 DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n", 1732 (current_time - peer->timelastrec), 1733 peer->ppoll, (1 << peer->ppoll) 1734 )); 1735 /* Things we can check: 1736 * 1737 * Did the poll interval change? 1738 * Is the poll interval in the packet in-range? 1739 * Did this packet arrive too soon? 1740 * Is the timestamp in this packet monotonic 1741 * with respect to the previous packet? 1742 */ 1743 1744 /* This is noteworthy, not error-worthy */ 1745 if (pkt->ppoll != peer->ppoll) { 1746 msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %u to %u", 1747 stoa(&rbufp->recv_srcadr), 1748 peer->ppoll, pkt->ppoll); 1749 } 1750 1751 /* This is error-worthy */ 1752 if ( pkt->ppoll < peer->minpoll 1753 || pkt->ppoll > peer->maxpoll) { 1754 msyslog(LOG_INFO, "receive: broadcast poll of %u from %s is out-of-range (%d to %d)!", 1755 pkt->ppoll, stoa(&rbufp->recv_srcadr), 1756 peer->minpoll, peer->maxpoll); 1757 ++bail; 1758 } 1759 1760 /* too early? worth an error, too! 1761 * 1762 * [Bug 3113] Ensure that at least one poll 1763 * interval has elapsed since the last **clean** 1764 * packet was received. We limit the check to 1765 * **clean** packets to prevent replayed packets 1766 * and incorrectly authenticated packets, which 1767 * we'll discard, from being used to create a 1768 * denial of service condition. 1769 */ 1770 deadband = (1u << pkt->ppoll); 1771 if (FLAG_BC_VOL & peer->flags) 1772 deadband -= 3; /* allow greater fuzz after volley */ 1773 if ((current_time - peer->timereceived) < deadband) { 1774 msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!", 1775 stoa(&rbufp->recv_srcadr), 1776 (current_time - peer->timereceived), 1777 deadband); 1778 ++bail; 1779 } 1780 1781 /* Alert if time from the server is non-monotonic. 1782 * 1783 * [Bug 3114] is about Broadcast mode replay DoS. 1784 * 1785 * Broadcast mode *assumes* a trusted network. 1786 * Even so, it's nice to be robust in the face 1787 * of attacks. 1788 * 1789 * If we get an authenticated broadcast packet 1790 * with an "earlier" timestamp, it means one of 1791 * two things: 1792 * 1793 * - the broadcast server had a backward step. 1794 * 1795 * - somebody is trying a replay attack. 1796 * 1797 * deadband: By default, we assume the broadcast 1798 * network is trustable, so we take our accepted 1799 * broadcast packets as we receive them. But 1800 * some folks might want to take additional poll 1801 * delays before believing a backward step. 1802 */ 1803 if (sys_bcpollbstep) { 1804 /* pkt->ppoll or peer->ppoll ? */ 1805 deadband = (1u << pkt->ppoll) 1806 * sys_bcpollbstep + 2; 1807 } else { 1808 deadband = 0; 1809 } 1810 1811 if (L_ISZERO(&peer->bxmt)) { 1812 tdiff.l_ui = tdiff.l_uf = 0; 1813 } else { 1814 tdiff = p_xmt; 1815 L_SUB(&tdiff, &peer->bxmt); 1816 } 1817 if ( tdiff.l_i < 0 1818 && (current_time - peer->timereceived) < deadband) 1819 { 1820 msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x", 1821 stoa(&rbufp->recv_srcadr), 1822 peer->bxmt.l_ui, peer->bxmt.l_uf, 1823 p_xmt.l_ui, p_xmt.l_uf 1824 ); 1825 ++bail; 1826 } 1827 1828 if (bail) { 1829 DPRINTF(2, ("receive: AM_PROCPKT drop: bail\n")); 1830 peer->timelastrec = current_time; 1831 sys_declined++; 1832 return; 1833 } 1834 } 1835 1836 break; 1837 1838 /* 1839 * A passive packet matches a passive association. This is 1840 * usually the result of reconfiguring a client on the fly. As 1841 * this association might be legitimate and this packet an 1842 * attempt to deny service, just ignore it. 1843 */ 1844 case AM_ERR: 1845 DPRINTF(2, ("receive: AM_ERR drop.\n")); 1846 sys_declined++; 1847 return; 1848 1849 /* 1850 * For everything else there is the bit bucket. 1851 */ 1852 default: 1853 DPRINTF(2, ("receive: default drop.\n")); 1854 sys_declined++; 1855 return; 1856 } 1857 1858 #ifdef AUTOKEY 1859 /* 1860 * If the association is configured for Autokey, the packet must 1861 * have a public key ID; if not, the packet must have a 1862 * symmetric key ID. 1863 */ 1864 if ( is_authentic != AUTH_CRYPTO 1865 && ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY) 1866 || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) { 1867 DPRINTF(2, ("receive: drop: Autokey but wrong/bad auth\n")); 1868 sys_badauth++; 1869 return; 1870 } 1871 #endif /* AUTOKEY */ 1872 1873 peer->received++; 1874 peer->flash &= ~PKT_TEST_MASK; 1875 if (peer->flags & FLAG_XBOGUS) { 1876 peer->flags &= ~FLAG_XBOGUS; 1877 peer->flash |= TEST3; 1878 } 1879 1880 /* 1881 * Next comes a rigorous schedule of timestamp checking. If the 1882 * transmit timestamp is zero, the server has not initialized in 1883 * interleaved modes or is horribly broken. 1884 * 1885 * A KoD packet we pay attention to cannot have a 0 transmit 1886 * timestamp. 1887 */ 1888 1889 kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid); 1890 1891 if (L_ISZERO(&p_xmt)) { 1892 peer->flash |= TEST3; /* unsynch */ 1893 if (kissCode != NOKISS) { /* KoD packet */ 1894 peer->bogusorg++; /* for TEST2 or TEST3 */ 1895 msyslog(LOG_INFO, 1896 "receive: Unexpected zero transmit timestamp in KoD from %s", 1897 ntoa(&peer->srcadr)); 1898 return; 1899 } 1900 1901 /* 1902 * If the transmit timestamp duplicates our previous one, the 1903 * packet is a replay. This prevents the bad guys from replaying 1904 * the most recent packet, authenticated or not. 1905 */ 1906 } else if ( ((FLAG_LOOPNONCE & peer->flags) && L_ISEQU(&peer->nonce, &p_xmt)) 1907 || (!(FLAG_LOOPNONCE & peer->flags) && L_ISEQU(&peer->xmt, &p_xmt)) 1908 ) { 1909 DPRINTF(2, ("receive: drop: Duplicate xmit\n")); 1910 peer->flash |= TEST1; /* duplicate */ 1911 peer->oldpkt++; 1912 return; 1913 1914 /* 1915 * If this is a broadcast mode packet, make sure hisstratum 1916 * is appropriate. Don't do anything else here - we wait to 1917 * see if this is an interleave broadcast packet until after 1918 * we've validated the MAC that SHOULD be provided. 1919 * 1920 * hisstratum cannot be 0 - see assertion above. 1921 * If hisstratum is 15, then we'll advertise as UNSPEC but 1922 * at least we'll be able to sync with the broadcast server. 1923 */ 1924 } else if (hismode == MODE_BROADCAST) { 1925 /* 0 is unexpected too, and impossible */ 1926 if (STRATUM_UNSPEC <= hisstratum) { 1927 /* Is this a ++sys_declined or ??? */ 1928 msyslog(LOG_INFO, 1929 "receive: Unexpected stratum (%d) in broadcast from %s", 1930 hisstratum, ntoa(&peer->srcadr)); 1931 return; 1932 } 1933 1934 /* 1935 * Basic KoD validation checking: 1936 * 1937 * KoD packets are a mixed-blessing. Forged KoD packets 1938 * are DoS attacks. There are rare situations where we might 1939 * get a valid KoD response, though. Since KoD packets are 1940 * a special case that complicate the checks we do next, we 1941 * handle the basic KoD checks here. 1942 * 1943 * Note that we expect the incoming KoD packet to have its 1944 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp 1945 * that we have previously sent out. Watch interleave mode. 1946 */ 1947 } else if (kissCode != NOKISS) { 1948 DEBUG_INSIST(!L_ISZERO(&p_xmt)); 1949 if ( L_ISZERO(&p_org) /* We checked p_xmt above */ 1950 || L_ISZERO(&p_rec)) { 1951 peer->bogusorg++; 1952 msyslog(LOG_INFO, 1953 "receive: KoD packet from %s has a zero org or rec timestamp. Ignoring.", 1954 ntoa(&peer->srcadr)); 1955 return; 1956 } 1957 1958 if ( !L_ISEQU(&p_xmt, &p_org) 1959 || !L_ISEQU(&p_xmt, &p_rec)) { 1960 peer->bogusorg++; 1961 msyslog(LOG_INFO, 1962 "receive: KoD packet from %s has inconsistent xmt/org/rec timestamps. Ignoring.", 1963 ntoa(&peer->srcadr)); 1964 return; 1965 } 1966 1967 /* Be conservative */ 1968 if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) { 1969 peer->bogusorg++; 1970 msyslog(LOG_INFO, 1971 "receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.", 1972 p_org.l_ui, p_org.l_uf, 1973 ntoa(&peer->srcadr), 1974 peer->aorg.l_ui, peer->aorg.l_uf); 1975 return; 1976 } else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) { 1977 peer->bogusorg++; 1978 msyslog(LOG_INFO, 1979 "receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.", 1980 p_org.l_ui, p_org.l_uf, 1981 ntoa(&peer->srcadr), 1982 peer->borg.l_ui, peer->borg.l_uf); 1983 return; 1984 } 1985 1986 /* 1987 * Basic mode checks: 1988 * 1989 * If there is no origin timestamp, it's either an initial packet 1990 * or we've already received a response to our query. Of course, 1991 * should 'aorg' be all-zero because this really was the original 1992 * transmit timestamp, we'll ignore this reply. There is a window 1993 * of one nanosecond once every 136 years' time where this is 1994 * possible. We currently ignore this situation, as a completely 1995 * zero timestamp is (quietly?) disallowed. 1996 * 1997 * Otherwise, check for bogus packet in basic mode. 1998 * If it is bogus, switch to interleaved mode and resynchronize, 1999 * but only after confirming the packet is not bogus in 2000 * symmetric interleaved mode. 2001 * 2002 * This could also mean somebody is forging packets claiming to 2003 * be from us, attempting to cause our server to KoD us. 2004 * 2005 * We have earlier asserted that hisstratum cannot be 0. 2006 * If hisstratum is STRATUM_UNSPEC, it means he's not sync'd. 2007 */ 2008 2009 /* XXX: FLAG_LOOPNONCE */ 2010 DEBUG_INSIST(0 == (FLAG_LOOPNONCE & peer->flags)); 2011 2012 } else if (peer->flip == 0) { 2013 if (0) { 2014 } else if (L_ISZERO(&p_org)) { 2015 const char *action; 2016 2017 #ifdef BUG3361 2018 msyslog(LOG_INFO, 2019 "receive: BUG 3361: Clearing peer->aorg "); 2020 L_CLR(&peer->aorg); 2021 /* Clear peer->nonce, too? */ 2022 #endif 2023 /**/ 2024 switch (hismode) { 2025 /* We allow 0org for: */ 2026 case UCHAR_MAX: 2027 action = "Allow"; 2028 break; 2029 /* We disallow 0org for: */ 2030 case MODE_UNSPEC: 2031 case MODE_ACTIVE: 2032 case MODE_PASSIVE: 2033 case MODE_CLIENT: 2034 case MODE_SERVER: 2035 case MODE_BROADCAST: 2036 action = "Drop"; 2037 peer->bogusorg++; 2038 peer->flash |= TEST2; /* bogus */ 2039 break; 2040 default: 2041 action = ""; /* for cranky compilers / MSVC */ 2042 INSIST(!"receive(): impossible hismode"); 2043 break; 2044 } 2045 /**/ 2046 msyslog(LOG_INFO, 2047 "receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x", 2048 action, hm_str, ntoa(&peer->srcadr), 2049 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 2050 } else if (!L_ISEQU(&p_org, &peer->aorg)) { 2051 /* are there cases here where we should bail? */ 2052 /* Should we set TEST2 if we decide to try xleave? */ 2053 peer->bogusorg++; 2054 peer->flash |= TEST2; /* bogus */ 2055 msyslog(LOG_INFO, 2056 "receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x", 2057 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 2058 peer->aorg.l_ui, peer->aorg.l_uf, 2059 hm_str, ntoa(&peer->srcadr), 2060 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 2061 if ( !L_ISZERO(&peer->dst) 2062 && L_ISEQU(&p_org, &peer->dst)) { 2063 /* Might be the start of an interleave */ 2064 if (dynamic_interleave) { 2065 peer->flip = 1; 2066 report_event(PEVNT_XLEAVE, peer, NULL); 2067 } else { 2068 msyslog(LOG_INFO, 2069 "receive: Dynamic interleave from %s@%s denied", 2070 hm_str, ntoa(&peer->srcadr)); 2071 } 2072 } 2073 } else { 2074 L_CLR(&peer->aorg); 2075 /* XXX: FLAG_LOOPNONCE */ 2076 } 2077 2078 /* 2079 * Check for valid nonzero timestamp fields. 2080 */ 2081 } else if ( L_ISZERO(&p_org) 2082 || L_ISZERO(&p_rec) 2083 || L_ISZERO(&peer->dst)) { 2084 peer->flash |= TEST3; /* unsynch */ 2085 2086 /* 2087 * Check for bogus packet in interleaved symmetric mode. This 2088 * can happen if a packet is lost, duplicated or crossed. If 2089 * found, flip and resynchronize. 2090 */ 2091 } else if ( !L_ISZERO(&peer->dst) 2092 && !L_ISEQU(&p_org, &peer->dst)) { 2093 DPRINTF(2, ("receive: drop: Bogus packet in interleaved symmetric mode\n")); 2094 peer->bogusorg++; 2095 peer->flags |= FLAG_XBOGUS; 2096 peer->flash |= TEST2; /* bogus */ 2097 #ifdef BUG3453 2098 return; /* Bogus packet, we are done */ 2099 #endif 2100 } 2101 2102 /**/ 2103 2104 /* 2105 * If this is a crypto_NAK, the server cannot authenticate a 2106 * client packet. The server might have just changed keys. Clear 2107 * the association and restart the protocol. 2108 */ 2109 if (crypto_nak_test == VALIDNAK) { 2110 report_event(PEVNT_AUTH, peer, "crypto_NAK"); 2111 peer->flash |= TEST5; /* bad auth */ 2112 peer->badauth++; 2113 if (peer->flags & FLAG_PREEMPT) { 2114 if (unpeer_crypto_nak_early) { 2115 unpeer(peer); 2116 } 2117 DPRINTF(2, ("receive: drop: PREEMPT crypto_NAK\n")); 2118 return; 2119 } 2120 #ifdef AUTOKEY 2121 if (peer->crypto) { 2122 peer_clear(peer, "AUTH"); 2123 } 2124 #endif /* AUTOKEY */ 2125 DPRINTF(2, ("receive: drop: crypto_NAK\n")); 2126 return; 2127 2128 /* 2129 * If the digest fails or it's missing for authenticated 2130 * associations, the client cannot authenticate a server 2131 * reply to a client packet previously sent. The loopback check 2132 * is designed to avoid a bait-and-switch attack, which was 2133 * possible in past versions. If symmetric modes, return a 2134 * crypto-NAK. The peer should restart the protocol. 2135 */ 2136 } else if (!AUTH(peer->keyid || has_mac || 2137 (restrict_mask & RES_DONTTRUST), is_authentic)) { 2138 2139 if (peer->flash & PKT_TEST_MASK) { 2140 msyslog(LOG_INFO, 2141 "receive: Bad auth in packet with bad timestamps from %s denied - spoof?", 2142 ntoa(&peer->srcadr)); 2143 return; 2144 } 2145 2146 report_event(PEVNT_AUTH, peer, "digest"); 2147 peer->flash |= TEST5; /* bad auth */ 2148 peer->badauth++; 2149 if ( has_mac 2150 && ( hismode == MODE_ACTIVE 2151 || hismode == MODE_PASSIVE)) 2152 fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask); 2153 if (peer->flags & FLAG_PREEMPT) { 2154 if (unpeer_digest_early) { 2155 unpeer(peer); 2156 } 2157 } 2158 #ifdef AUTOKEY 2159 else if (peer_clear_digest_early && peer->crypto) { 2160 peer_clear(peer, "AUTH"); 2161 } 2162 #endif /* AUTOKEY */ 2163 DPRINTF(2, ("receive: drop: Bad or missing AUTH\n")); 2164 return; 2165 } 2166 2167 /* 2168 * For broadcast packets: 2169 * 2170 * HMS: This next line never made much sense to me, even 2171 * when it was up higher: 2172 * If an initial volley, bail out now and let the 2173 * client do its stuff. 2174 * 2175 * If the packet has not failed authentication, then 2176 * - if the origin timestamp is nonzero this is an 2177 * interleaved broadcast, so restart the protocol. 2178 * - else, this is not an interleaved broadcast packet. 2179 */ 2180 if (hismode == MODE_BROADCAST) { 2181 if ( is_authentic == AUTH_OK 2182 || is_authentic == AUTH_NONE) { 2183 if (!L_ISZERO(&p_org)) { 2184 if (!(peer->flags & FLAG_XB)) { 2185 msyslog(LOG_INFO, 2186 "receive: Broadcast server at %s is in interleave mode", 2187 ntoa(&peer->srcadr)); 2188 peer->flags |= FLAG_XB; 2189 peer->aorg = p_xmt; 2190 peer->borg = rbufp->recv_time; 2191 report_event(PEVNT_XLEAVE, peer, NULL); 2192 return; 2193 } 2194 } else if (peer->flags & FLAG_XB) { 2195 msyslog(LOG_INFO, 2196 "receive: Broadcast server at %s is no longer in interleave mode", 2197 ntoa(&peer->srcadr)); 2198 peer->flags &= ~FLAG_XB; 2199 } 2200 } else { 2201 msyslog(LOG_INFO, 2202 "receive: Bad broadcast auth (%d) from %s", 2203 is_authentic, ntoa(&peer->srcadr)); 2204 } 2205 2206 /* 2207 * Now that we know the packet is correctly authenticated, 2208 * update peer->bxmt. 2209 */ 2210 peer->bxmt = p_xmt; 2211 } 2212 2213 2214 /* 2215 ** Update the state variables. 2216 */ 2217 if (peer->flip == 0) { 2218 if (hismode != MODE_BROADCAST) 2219 peer->rec = p_xmt; 2220 peer->dst = rbufp->recv_time; 2221 } 2222 peer->xmt = p_xmt; 2223 2224 /* 2225 * Set the peer ppoll to the maximum of the packet ppoll and the 2226 * peer minpoll. If a kiss-o'-death, set the peer minpoll to 2227 * this maximum and advance the headway to give the sender some 2228 * headroom. Very intricate. 2229 */ 2230 2231 /* 2232 * Check for any kiss codes. Note this is only used when a server 2233 * responds to a packet request. 2234 */ 2235 2236 /* 2237 * Check to see if this is a RATE Kiss Code 2238 * Currently this kiss code will accept whatever poll 2239 * rate that the server sends 2240 */ 2241 peer->ppoll = max(peer->minpoll, pkt->ppoll); 2242 if (kissCode == RATEKISS) { 2243 peer->selbroken++; /* Increment the KoD count */ 2244 report_event(PEVNT_RATE, peer, NULL); 2245 if (pkt->ppoll > peer->minpoll) 2246 peer->minpoll = peer->ppoll; 2247 peer->burst = peer->retry = 0; 2248 peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll); 2249 poll_update(peer, pkt->ppoll, 0); 2250 return; /* kiss-o'-death */ 2251 } 2252 if (kissCode != NOKISS) { 2253 peer->selbroken++; /* Increment the KoD count */ 2254 return; /* Drop any other kiss code packets */ 2255 } 2256 2257 2258 /* 2259 * XXX 2260 */ 2261 2262 2263 /* 2264 * If: 2265 * - this is a *cast (uni-, broad-, or m-) server packet 2266 * - and it's symmetric-key authenticated 2267 * then see if the sender's IP is trusted for this keyid. 2268 * If it is, great - nothing special to do here. 2269 * Otherwise, we should report and bail. 2270 * 2271 * Autokey-authenticated packets are accepted. 2272 */ 2273 2274 switch (hismode) { 2275 case MODE_SERVER: /* server mode */ 2276 case MODE_BROADCAST: /* broadcast mode */ 2277 case MODE_ACTIVE: /* symmetric active mode */ 2278 case MODE_PASSIVE: /* symmetric passive mode */ 2279 if ( is_authentic == AUTH_OK 2280 && skeyid 2281 && skeyid <= NTP_MAXKEY 2282 && !authistrustedip(skeyid, &peer->srcadr)) { 2283 report_event(PEVNT_AUTH, peer, "authIP"); 2284 peer->badauth++; 2285 return; 2286 } 2287 break; 2288 2289 case MODE_CLIENT: /* client mode */ 2290 #if 0 /* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */ 2291 case MODE_CONTROL: /* control mode */ 2292 #endif 2293 case MODE_PRIVATE: /* private mode */ 2294 case MODE_BCLIENT: /* broadcast client mode */ 2295 break; 2296 2297 case MODE_UNSPEC: /* unspecified (old version) */ 2298 default: 2299 msyslog(LOG_INFO, 2300 "receive: Unexpected mode (%d) in packet from %s", 2301 hismode, ntoa(&peer->srcadr)); 2302 break; 2303 } 2304 2305 2306 /* 2307 * That was hard and I am sweaty, but the packet is squeaky 2308 * clean. Get on with real work. 2309 */ 2310 peer->timereceived = current_time; 2311 peer->timelastrec = current_time; 2312 if (is_authentic == AUTH_OK) 2313 peer->flags |= FLAG_AUTHENTIC; 2314 else 2315 peer->flags &= ~FLAG_AUTHENTIC; 2316 2317 #ifdef AUTOKEY 2318 /* 2319 * More autokey dance. The rules of the cha-cha are as follows: 2320 * 2321 * 1. If there is no key or the key is not auto, do nothing. 2322 * 2323 * 2. If this packet is in response to the one just previously 2324 * sent or from a broadcast server, do the extension fields. 2325 * Otherwise, assume bogosity and bail out. 2326 * 2327 * 3. If an extension field contains a verified signature, it is 2328 * self-authenticated and we sit the dance. 2329 * 2330 * 4. If this is a server reply, check only to see that the 2331 * transmitted key ID matches the received key ID. 2332 * 2333 * 5. Check to see that one or more hashes of the current key ID 2334 * matches the previous key ID or ultimate original key ID 2335 * obtained from the broadcaster or symmetric peer. If no 2336 * match, sit the dance and call for new autokey values. 2337 * 2338 * In case of crypto error, fire the orchestra, stop dancing and 2339 * restart the protocol. 2340 */ 2341 if (peer->flags & FLAG_SKEY) { 2342 /* 2343 * Decrement remaining autokey hashes. This isn't 2344 * perfect if a packet is lost, but results in no harm. 2345 */ 2346 ap = (struct autokey *)peer->recval.ptr; 2347 if (ap != NULL) { 2348 if (ap->seq > 0) 2349 ap->seq--; 2350 } 2351 peer->flash |= TEST8; 2352 rval = crypto_recv(peer, rbufp); 2353 if (rval == XEVNT_OK) { 2354 peer->unreach = 0; 2355 } else { 2356 if (rval == XEVNT_ERR) { 2357 report_event(PEVNT_RESTART, peer, 2358 "crypto error"); 2359 peer_clear(peer, "CRYP"); 2360 peer->flash |= TEST9; /* bad crypt */ 2361 if (peer->flags & FLAG_PREEMPT) { 2362 if (unpeer_crypto_early) { 2363 unpeer(peer); 2364 } 2365 } 2366 } 2367 return; 2368 } 2369 2370 /* 2371 * If server mode, verify the receive key ID matches 2372 * the transmit key ID. 2373 */ 2374 if (hismode == MODE_SERVER) { 2375 if (skeyid == peer->keyid) 2376 peer->flash &= ~TEST8; 2377 2378 /* 2379 * If an extension field is present, verify only that it 2380 * has been correctly signed. We don't need a sequence 2381 * check here, but the sequence continues. 2382 */ 2383 } else if (!(peer->flash & TEST8)) { 2384 peer->pkeyid = skeyid; 2385 2386 /* 2387 * Now the fun part. Here, skeyid is the current ID in 2388 * the packet, pkeyid is the ID in the last packet and 2389 * tkeyid is the hash of skeyid. If the autokey values 2390 * have not been received, this is an automatic error. 2391 * If so, check that the tkeyid matches pkeyid. If not, 2392 * hash tkeyid and try again. If the number of hashes 2393 * exceeds the number remaining in the sequence, declare 2394 * a successful failure and refresh the autokey values. 2395 */ 2396 } else if (ap != NULL) { 2397 int i; 2398 2399 for (i = 0; ; i++) { 2400 if ( tkeyid == peer->pkeyid 2401 || tkeyid == ap->key) { 2402 peer->flash &= ~TEST8; 2403 peer->pkeyid = skeyid; 2404 ap->seq -= i; 2405 break; 2406 } 2407 if (i > ap->seq) { 2408 peer->crypto &= 2409 ~CRYPTO_FLAG_AUTO; 2410 break; 2411 } 2412 tkeyid = session_key( 2413 &rbufp->recv_srcadr, dstadr_sin, 2414 tkeyid, pkeyid, 0); 2415 } 2416 if (peer->flash & TEST8) 2417 report_event(PEVNT_AUTH, peer, "keylist"); 2418 } 2419 if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */ 2420 peer->flash |= TEST8; /* bad autokey */ 2421 2422 /* 2423 * The maximum lifetime of the protocol is about one 2424 * week before restarting the Autokey protocol to 2425 * refresh certificates and leapseconds values. 2426 */ 2427 if (current_time > peer->refresh) { 2428 report_event(PEVNT_RESTART, peer, 2429 "crypto refresh"); 2430 peer_clear(peer, "TIME"); 2431 return; 2432 } 2433 } 2434 #endif /* AUTOKEY */ 2435 2436 /* 2437 * The dance is complete and the flash bits have been lit. Toss 2438 * the packet over the fence for processing, which may light up 2439 * more flashers. Leave if the packet is not good. 2440 */ 2441 process_packet(peer, pkt, rbufp->recv_length); 2442 if (peer->flash & PKT_TEST_MASK) 2443 return; 2444 2445 /* [bug 3592] Update poll. Ideally this should not happen in a 2446 * receive branch, but too much is going on here... at least we 2447 * do it only if the packet was good! 2448 */ 2449 poll_update(peer, peer->hpoll, (peer->hmode == MODE_CLIENT)); 2450 2451 /* 2452 * In interleaved mode update the state variables. Also adjust the 2453 * transmit phase to avoid crossover. 2454 */ 2455 if (peer->flip != 0) { 2456 peer->rec = p_rec; 2457 peer->dst = rbufp->recv_time; 2458 if (peer->nextdate - current_time < (1U << min(peer->ppoll, 2459 peer->hpoll)) / 2) 2460 peer->nextdate++; 2461 else 2462 peer->nextdate--; 2463 } 2464 } 2465 2466 2467 /* 2468 * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305 2469 * Or almost, at least. If we're in here we have a reasonable 2470 * expectation that we will be having a long term 2471 * relationship with this host. 2472 */ 2473 void 2474 process_packet( 2475 register struct peer *peer, 2476 register struct pkt *pkt, 2477 u_int len 2478 ) 2479 { 2480 double t34, t21; 2481 double p_offset, p_del, p_disp; 2482 l_fp p_rec, p_xmt, p_org, p_reftime, ci; 2483 u_char pmode, pleap, pversion, pstratum; 2484 char statstr[NTP_MAXSTRLEN]; 2485 #ifdef ASSYM 2486 int itemp; 2487 double etemp, ftemp, td; 2488 #endif /* ASSYM */ 2489 2490 #if 0 2491 sys_processed++; 2492 peer->processed++; 2493 #endif 2494 p_del = FPTOD(NTOHS_FP(pkt->rootdelay)); 2495 p_offset = 0; 2496 p_disp = FPTOD(NTOHS_FP(pkt->rootdisp)); 2497 NTOHL_FP(&pkt->reftime, &p_reftime); 2498 NTOHL_FP(&pkt->org, &p_org); 2499 NTOHL_FP(&pkt->rec, &p_rec); 2500 NTOHL_FP(&pkt->xmt, &p_xmt); 2501 pmode = PKT_MODE(pkt->li_vn_mode); 2502 pleap = PKT_LEAP(pkt->li_vn_mode); 2503 pversion = PKT_VERSION(pkt->li_vn_mode); 2504 pstratum = PKT_TO_STRATUM(pkt->stratum); 2505 2506 /**/ 2507 2508 /**/ 2509 2510 /* 2511 * Verify the server is synchronized; that is, the leap bits, 2512 * stratum and root distance are valid. 2513 */ 2514 if ( pleap == LEAP_NOTINSYNC /* test 6 */ 2515 || pstratum < sys_floor || pstratum >= sys_ceiling) 2516 peer->flash |= TEST6; /* bad synch or strat */ 2517 if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */ 2518 peer->flash |= TEST7; /* bad header */ 2519 2520 /* 2521 * If any tests fail at this point, the packet is discarded. 2522 * Note that some flashers may have already been set in the 2523 * receive() routine. 2524 */ 2525 if (peer->flash & PKT_TEST_MASK) { 2526 peer->seldisptoolarge++; 2527 DPRINTF(1, ("packet: flash header %04x\n", 2528 peer->flash)); 2529 2530 /* ppoll updated? */ 2531 /* XXX: Fuzz the poll? */ 2532 poll_update(peer, peer->hpoll, (peer->hmode == MODE_CLIENT)); 2533 return; 2534 } 2535 2536 /**/ 2537 2538 #if 1 2539 sys_processed++; 2540 peer->processed++; 2541 #endif 2542 2543 /* 2544 * Capture the header values in the client/peer association.. 2545 */ 2546 record_raw_stats(&peer->srcadr, 2547 peer->dstadr ? &peer->dstadr->sin : NULL, 2548 &p_org, &p_rec, &p_xmt, &peer->dst, 2549 pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision, 2550 p_del, p_disp, pkt->refid, 2551 len - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 2552 peer->leap = pleap; 2553 peer->stratum = min(pstratum, STRATUM_UNSPEC); 2554 peer->pmode = pmode; 2555 peer->precision = pkt->precision; 2556 peer->rootdelay = p_del; 2557 peer->rootdisp = p_disp; 2558 peer->refid = pkt->refid; /* network byte order */ 2559 peer->reftime = p_reftime; 2560 2561 /* 2562 * First, if either burst mode is armed, enable the burst. 2563 * Compute the headway for the next packet and delay if 2564 * necessary to avoid exceeding the threshold. 2565 */ 2566 if (peer->retry > 0) { 2567 peer->retry = 0; 2568 if (peer->reach) 2569 peer->burst = min(1 << (peer->hpoll - 2570 peer->minpoll), NTP_SHIFT) - 1; 2571 else 2572 peer->burst = NTP_IBURST - 1; 2573 if (peer->burst > 0) 2574 peer->nextdate = current_time; 2575 } 2576 poll_update(peer, peer->hpoll, (peer->hmode == MODE_CLIENT)); 2577 2578 /**/ 2579 2580 /* 2581 * If the peer was previously unreachable, raise a trap. In any 2582 * case, mark it reachable. 2583 */ 2584 if (!peer->reach) { 2585 report_event(PEVNT_REACH, peer, NULL); 2586 peer->timereachable = current_time; 2587 } 2588 peer->reach |= 1; 2589 2590 /* 2591 * For a client/server association, calculate the clock offset, 2592 * roundtrip delay and dispersion. The equations are reordered 2593 * from the spec for more efficient use of temporaries. For a 2594 * broadcast association, offset the last measurement by the 2595 * computed delay during the client/server volley. Note the 2596 * computation of dispersion includes the system precision plus 2597 * that due to the frequency error since the origin time. 2598 * 2599 * It is very important to respect the hazards of overflow. The 2600 * only permitted operation on raw timestamps is subtraction, 2601 * where the result is a signed quantity spanning from 68 years 2602 * in the past to 68 years in the future. To avoid loss of 2603 * precision, these calculations are done using 64-bit integer 2604 * arithmetic. However, the offset and delay calculations are 2605 * sums and differences of these first-order differences, which 2606 * if done using 64-bit integer arithmetic, would be valid over 2607 * only half that span. Since the typical first-order 2608 * differences are usually very small, they are converted to 64- 2609 * bit doubles and all remaining calculations done in floating- 2610 * double arithmetic. This preserves the accuracy while 2611 * retaining the 68-year span. 2612 * 2613 * There are three interleaving schemes, basic, interleaved 2614 * symmetric and interleaved broadcast. The timestamps are 2615 * idioscyncratically different. See the onwire briefing/white 2616 * paper at www.eecis.udel.edu/~mills for details. 2617 * 2618 * Interleaved symmetric mode 2619 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt, 2620 * t4 = peer->dst 2621 */ 2622 if (peer->flip != 0) { 2623 ci = p_xmt; /* t3 - t4 */ 2624 L_SUB(&ci, &peer->dst); 2625 LFPTOD(&ci, t34); 2626 ci = p_rec; /* t2 - t1 */ 2627 if (peer->flip > 0) 2628 L_SUB(&ci, &peer->borg); 2629 else 2630 L_SUB(&ci, &peer->aorg); 2631 LFPTOD(&ci, t21); 2632 p_del = t21 - t34; 2633 p_offset = (t21 + t34) / 2.; 2634 if (p_del < 0 || p_del > 1.) { 2635 snprintf(statstr, sizeof(statstr), 2636 "t21 %.6f t34 %.6f", t21, t34); 2637 report_event(PEVNT_XERR, peer, statstr); 2638 return; 2639 } 2640 2641 /* 2642 * Broadcast modes 2643 */ 2644 } else if (peer->pmode == MODE_BROADCAST) { 2645 2646 /* 2647 * Interleaved broadcast mode. Use interleaved timestamps. 2648 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg 2649 */ 2650 if (peer->flags & FLAG_XB) { 2651 ci = p_org; /* delay */ 2652 L_SUB(&ci, &peer->aorg); 2653 LFPTOD(&ci, t34); 2654 ci = p_org; /* t2 - t1 */ 2655 L_SUB(&ci, &peer->borg); 2656 LFPTOD(&ci, t21); 2657 peer->aorg = p_xmt; 2658 peer->borg = peer->dst; 2659 if (t34 < 0 || t34 > 1.) { 2660 /* drop all if in the initial volley */ 2661 if (FLAG_BC_VOL & peer->flags) 2662 goto bcc_init_volley_fail; 2663 snprintf(statstr, sizeof(statstr), 2664 "offset %.6f delay %.6f", t21, t34); 2665 report_event(PEVNT_XERR, peer, statstr); 2666 return; 2667 } 2668 p_offset = t21; 2669 peer->xleave = t34; 2670 2671 /* 2672 * Basic broadcast - use direct timestamps. 2673 * t3 = p_xmt, t4 = peer->dst 2674 */ 2675 } else { 2676 ci = p_xmt; /* t3 - t4 */ 2677 L_SUB(&ci, &peer->dst); 2678 LFPTOD(&ci, t34); 2679 p_offset = t34; 2680 } 2681 2682 /* 2683 * When calibration is complete and the clock is 2684 * synchronized, the bias is calculated as the difference 2685 * between the unicast timestamp and the broadcast 2686 * timestamp. This works for both basic and interleaved 2687 * modes. 2688 * [Bug 3031] Don't keep this peer when the delay 2689 * calculation gives reason to suspect clock steps. 2690 * This is assumed for delays > 50ms. 2691 */ 2692 if (FLAG_BC_VOL & peer->flags) { 2693 peer->flags &= ~FLAG_BC_VOL; 2694 peer->delay = fabs(peer->offset - p_offset) * 2; 2695 DPRINTF(2, ("broadcast volley: initial delay=%.6f\n", 2696 peer->delay)); 2697 if (peer->delay > fabs(sys_bdelay)) { 2698 bcc_init_volley_fail: 2699 DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n")); 2700 unpeer(peer); 2701 return; 2702 } 2703 } 2704 peer->nextdate = current_time + (1u << peer->ppoll) - 2u; 2705 p_del = peer->delay; 2706 p_offset += p_del / 2; 2707 2708 2709 /* 2710 * Basic mode, otherwise known as the old fashioned way. 2711 * 2712 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst 2713 */ 2714 } else { 2715 ci = p_xmt; /* t3 - t4 */ 2716 L_SUB(&ci, &peer->dst); 2717 LFPTOD(&ci, t34); 2718 ci = p_rec; /* t2 - t1 */ 2719 L_SUB(&ci, &p_org); 2720 LFPTOD(&ci, t21); 2721 p_del = fabs(t21 - t34); 2722 p_offset = (t21 + t34) / 2.; 2723 } 2724 p_del = max(p_del, LOGTOD(sys_precision)); 2725 p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) + 2726 clock_phi * p_del; 2727 2728 #if ASSYM 2729 /* 2730 * This code calculates the outbound and inbound data rates by 2731 * measuring the differences between timestamps at different 2732 * packet lengths. This is helpful in cases of large asymmetric 2733 * delays commonly experienced on deep space communication 2734 * links. 2735 */ 2736 if (peer->t21_last > 0 && peer->t34_bytes > 0) { 2737 itemp = peer->t21_bytes - peer->t21_last; 2738 if (itemp > 25) { 2739 etemp = t21 - peer->t21; 2740 if (fabs(etemp) > 1e-6) { 2741 ftemp = itemp / etemp; 2742 if (ftemp > 1000.) 2743 peer->r21 = ftemp; 2744 } 2745 } 2746 itemp = len - peer->t34_bytes; 2747 if (itemp > 25) { 2748 etemp = -t34 - peer->t34; 2749 if (fabs(etemp) > 1e-6) { 2750 ftemp = itemp / etemp; 2751 if (ftemp > 1000.) 2752 peer->r34 = ftemp; 2753 } 2754 } 2755 } 2756 2757 /* 2758 * The following section compensates for different data rates on 2759 * the outbound (d21) and inbound (t34) directions. To do this, 2760 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is 2761 * the roundtrip delay. Then it calculates the correction as a 2762 * fraction of d. 2763 */ 2764 peer->t21 = t21; 2765 peer->t21_last = peer->t21_bytes; 2766 peer->t34 = -t34; 2767 peer->t34_bytes = len; 2768 DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21, 2769 peer->t21_bytes, peer->t34, peer->t34_bytes)); 2770 if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) { 2771 if (peer->pmode != MODE_BROADCAST) 2772 td = (peer->r34 / (peer->r21 + peer->r34) - 2773 .5) * p_del; 2774 else 2775 td = 0; 2776 2777 /* 2778 * Unfortunately, in many cases the errors are 2779 * unacceptable, so for the present the rates are not 2780 * used. In future, we might find conditions where the 2781 * calculations are useful, so this should be considered 2782 * a work in progress. 2783 */ 2784 t21 -= td; 2785 t34 -= td; 2786 DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n", 2787 p_del, peer->r21 / 1e3, peer->r34 / 1e3, 2788 td)); 2789 } 2790 #endif /* ASSYM */ 2791 2792 /* 2793 * That was awesome. Now hand off to the clock filter. 2794 */ 2795 clock_filter(peer, p_offset + peer->bias, p_del, p_disp); 2796 2797 /* 2798 * If we are in broadcast calibrate mode, return to broadcast 2799 * client mode when the client is fit and the autokey dance is 2800 * complete. 2801 */ 2802 if ( (FLAG_BC_VOL & peer->flags) 2803 && MODE_CLIENT == peer->hmode 2804 && !(TEST11 & peer_unfit(peer))) { /* distance exceeded */ 2805 #ifdef AUTOKEY 2806 if (peer->flags & FLAG_SKEY) { 2807 if (!(~peer->crypto & CRYPTO_FLAG_ALL)) 2808 peer->hmode = MODE_BCLIENT; 2809 } else { 2810 peer->hmode = MODE_BCLIENT; 2811 } 2812 #else /* !AUTOKEY follows */ 2813 peer->hmode = MODE_BCLIENT; 2814 #endif /* !AUTOKEY */ 2815 } 2816 } 2817 2818 2819 /* 2820 * clock_update - Called at system process update intervals. 2821 */ 2822 static void 2823 clock_update( 2824 struct peer *peer /* peer structure pointer */ 2825 ) 2826 { 2827 double dtemp; 2828 l_fp now; 2829 #ifdef HAVE_LIBSCF_H 2830 char *fmri; 2831 #endif /* HAVE_LIBSCF_H */ 2832 2833 /* 2834 * Update the system state variables. We do this very carefully, 2835 * as the poll interval might need to be clamped differently. 2836 */ 2837 sys_peer = peer; 2838 sys_epoch = peer->epoch; 2839 if (sys_poll < peer->minpoll) 2840 sys_poll = peer->minpoll; 2841 if (sys_poll > peer->maxpoll) 2842 sys_poll = peer->maxpoll; 2843 poll_update(peer, sys_poll, 0); 2844 sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC); 2845 if ( peer->stratum == STRATUM_REFCLOCK 2846 || peer->stratum == STRATUM_UNSPEC) 2847 sys_refid = peer->refid; 2848 else 2849 sys_refid = addr2refid(&peer->srcadr); 2850 /* 2851 * Root Dispersion (E) is defined (in RFC 5905) as: 2852 * 2853 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA| 2854 * 2855 * where: 2856 * p.epsilon_r is the PollProc's root dispersion 2857 * p.epsilon is the PollProc's dispersion 2858 * p.psi is the PollProc's jitter 2859 * THETA is the combined offset 2860 * 2861 * NB: Think Hard about where these numbers come from and 2862 * what they mean. When did peer->update happen? Has anything 2863 * interesting happened since then? What values are the most 2864 * defensible? Why? 2865 * 2866 * DLM thinks this equation is probably the best of all worse choices. 2867 */ 2868 dtemp = peer->rootdisp 2869 + peer->disp 2870 + sys_jitter 2871 + clock_phi * (current_time - peer->update) 2872 + fabs(sys_offset); 2873 2874 p2_rootdisp = prev_rootdisp; 2875 prev_rootdisp = sys_rootdisp; 2876 if (dtemp > sys_mindisp) 2877 sys_rootdisp = dtemp; 2878 else 2879 sys_rootdisp = sys_mindisp; 2880 2881 sys_rootdelay = peer->delay + peer->rootdelay; 2882 2883 p2_reftime = prev_reftime; 2884 p2_time = prev_time; 2885 2886 prev_reftime = sys_reftime; 2887 prev_time = current_time + 64 + (rand() & 0x3f); /* 64-127 s */ 2888 2889 sys_reftime = peer->dst; 2890 2891 DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n", 2892 current_time, peer->epoch, peer->associd)); 2893 2894 /* 2895 * Comes now the moment of truth. Crank the clock discipline and 2896 * see what comes out. 2897 */ 2898 switch (local_clock(peer, sys_offset)) { 2899 2900 /* 2901 * Clock exceeds panic threshold. Life as we know it ends. 2902 */ 2903 case -1: 2904 #ifdef HAVE_LIBSCF_H 2905 /* 2906 * For Solaris enter the maintenance mode. 2907 */ 2908 if ((fmri = getenv("SMF_FMRI")) != NULL) { 2909 if (smf_maintain_instance(fmri, 0) < 0) { 2910 printf("smf_maintain_instance: %s\n", 2911 scf_strerror(scf_error())); 2912 exit(1); 2913 } 2914 /* 2915 * Sleep until SMF kills us. 2916 */ 2917 for (;;) 2918 pause(); 2919 } 2920 #endif /* HAVE_LIBSCF_H */ 2921 exit (-1); 2922 /* not reached */ 2923 2924 /* 2925 * Clock was stepped. Flush all time values of all peers. 2926 */ 2927 case 2: 2928 clear_all(); 2929 set_sys_leap(LEAP_NOTINSYNC); 2930 sys_stratum = STRATUM_UNSPEC; 2931 memcpy(&sys_refid, "STEP", 4); 2932 sys_rootdelay = 0; 2933 p2_rootdisp = 0; 2934 prev_rootdisp = 0; 2935 sys_rootdisp = 0; 2936 L_CLR(&p2_reftime); /* Should we clear p2_reftime? */ 2937 L_CLR(&prev_reftime); /* Should we clear prev_reftime? */ 2938 L_CLR(&sys_reftime); 2939 sys_jitter = LOGTOD(sys_precision); 2940 leapsec_reset_frame(); 2941 break; 2942 2943 /* 2944 * Clock was slewed. Handle the leapsecond stuff. 2945 */ 2946 case 1: 2947 2948 /* 2949 * If this is the first time the clock is set, reset the 2950 * leap bits. If crypto, the timer will goose the setup 2951 * process. 2952 */ 2953 if (sys_leap == LEAP_NOTINSYNC) { 2954 set_sys_leap(LEAP_NOWARNING); 2955 #ifdef AUTOKEY 2956 if (crypto_flags) 2957 crypto_update(); 2958 #endif /* AUTOKEY */ 2959 /* 2960 * If our parent process is waiting for the 2961 * first clock sync, send them home satisfied. 2962 */ 2963 #ifdef HAVE_WORKING_FORK 2964 if (daemon_pipe[1] != -1) { 2965 write(daemon_pipe[1], "S\n", 2); 2966 close(daemon_pipe[1]); 2967 daemon_pipe[1] = -1; 2968 DPRINTF(1, ("notified parent --wait-sync is done\n")); 2969 } 2970 #endif /* HAVE_WORKING_FORK */ 2971 2972 } 2973 2974 /* 2975 * If there is no leap second pending and the number of 2976 * survivor leap bits is greater than half the number of 2977 * survivors, try to schedule a leap for the end of the 2978 * current month. (This only works if no leap second for 2979 * that range is in the table, so doing this more than 2980 * once is mostly harmless.) 2981 */ 2982 if (leapsec == LSPROX_NOWARN) { 2983 if ( leap_vote_ins > leap_vote_del 2984 && leap_vote_ins > sys_survivors / 2) { 2985 get_systime(&now); 2986 leapsec_add_dyn(TRUE, now.l_ui, NULL); 2987 } 2988 if ( leap_vote_del > leap_vote_ins 2989 && leap_vote_del > sys_survivors / 2) { 2990 get_systime(&now); 2991 leapsec_add_dyn(FALSE, now.l_ui, NULL); 2992 } 2993 } 2994 break; 2995 2996 /* 2997 * Popcorn spike or step threshold exceeded. Pretend it never 2998 * happened. 2999 */ 3000 default: 3001 break; 3002 } 3003 } 3004 3005 3006 /* 3007 * poll_update - update peer poll interval 3008 */ 3009 void 3010 poll_update( 3011 struct peer *peer, /* peer structure pointer */ 3012 u_char mpoll, 3013 u_char skewpoll 3014 ) 3015 { 3016 u_long next, utemp, limit; 3017 u_char hpoll; 3018 3019 /* 3020 * This routine figures out when the next poll should be sent. 3021 * That turns out to be wickedly complicated. One problem is 3022 * that sometimes the time for the next poll is in the past when 3023 * the poll interval is reduced. We watch out for races here 3024 * between the receive process and the poll process. 3025 * 3026 * Clamp the poll interval between minpoll and maxpoll. 3027 */ 3028 hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll); 3029 3030 #ifdef AUTOKEY 3031 /* 3032 * If during the crypto protocol the poll interval has changed, 3033 * the lifetimes in the key list are probably bogus. Purge the 3034 * the key list and regenerate it later. 3035 */ 3036 if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll) 3037 key_expire(peer); 3038 #endif /* AUTOKEY */ 3039 peer->hpoll = hpoll; 3040 3041 /* 3042 * There are three variables important for poll scheduling, the 3043 * current time (current_time), next scheduled time (nextdate) 3044 * and the earliest time (utemp). The earliest time is 2 s 3045 * seconds, but could be more due to rate management. When 3046 * sending in a burst, use the earliest time. When not in a 3047 * burst but with a reply pending, send at the earliest time 3048 * unless the next scheduled time has not advanced. This can 3049 * only happen if multiple replies are pending in the same 3050 * response interval. Otherwise, send at the later of the next 3051 * scheduled time and the earliest time. 3052 * 3053 * Now we figure out if there is an override. If a burst is in 3054 * progress and we get called from the receive process, just 3055 * slink away. If called from the poll process, delay 1 s for a 3056 * reference clock, otherwise 2 s. 3057 */ 3058 utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) * 3059 (1 << peer->minpoll), ntp_minpkt); 3060 3061 /*[Bug 3592] avoid unlimited postpone of next poll */ 3062 limit = (2u << hpoll); 3063 if (limit > 64) 3064 limit -= (limit >> 2); 3065 limit += peer->outdate; 3066 if (limit < current_time) 3067 limit = current_time; 3068 3069 if (peer->burst > 0) { 3070 if (peer->nextdate > current_time) 3071 return; 3072 #ifdef REFCLOCK 3073 else if (peer->flags & FLAG_REFCLOCK) 3074 peer->nextdate = current_time + RESP_DELAY; 3075 #endif /* REFCLOCK */ 3076 else 3077 peer->nextdate = utemp; 3078 3079 #ifdef AUTOKEY 3080 /* 3081 * If a burst is not in progress and a crypto response message 3082 * is pending, delay 2 s, but only if this is a new interval. 3083 */ 3084 } else if (peer->cmmd != NULL) { 3085 if (peer->nextdate > current_time) { 3086 if (peer->nextdate + ntp_minpkt != utemp) 3087 peer->nextdate = utemp; 3088 } else { 3089 peer->nextdate = utemp; 3090 } 3091 #endif /* AUTOKEY */ 3092 3093 /* 3094 * The ordinary case. If a retry, use minpoll; if unreachable, 3095 * use host poll; otherwise, use the minimum of host and peer 3096 * polls; In other words, oversampling is okay but 3097 * understampling is evil. Use the maximum of this value and the 3098 * headway. If the average headway is greater than the headway 3099 * threshold, increase the headway by the minimum interval. 3100 */ 3101 } else { 3102 if (peer->retry > 0) 3103 hpoll = peer->minpoll; 3104 else 3105 hpoll = min(peer->ppoll, peer->hpoll); 3106 #ifdef REFCLOCK 3107 if (peer->flags & FLAG_REFCLOCK) 3108 next = 1 << hpoll; 3109 else 3110 #endif /* REFCLOCK */ 3111 next = ((0x1000UL | (ntp_random() & 0x0ff)) << 3112 hpoll) >> 12; 3113 next += peer->outdate; 3114 /* XXX: bug3596: Deal with poll skew list? */ 3115 if (skewpoll) { 3116 psl_item psi; 3117 3118 if (0 == get_pollskew(hpoll, &psi)) { 3119 int sub = psi.sub; 3120 int qty = psi.qty; 3121 int msk = psi.msk; 3122 int val; 3123 3124 if ( 0 != sub 3125 || 0 != qty) { 3126 do { 3127 val = ntp_random() & msk; 3128 } while (val > qty); 3129 3130 next -= sub; 3131 next += val; 3132 } 3133 } else { 3134 /* get_pollskew() already logged this */ 3135 } 3136 } 3137 if (next > utemp) 3138 peer->nextdate = next; 3139 else 3140 peer->nextdate = utemp; 3141 if (peer->throttle > (1 << peer->minpoll)) 3142 peer->nextdate += ntp_minpkt; 3143 } 3144 3145 /*[Bug 3592] avoid unlimited postpone of next poll */ 3146 if (peer->nextdate > limit) { 3147 DPRINTF(1, ("poll_update: clamp reached; limit %lu next %lu\n", 3148 limit, peer->nextdate)); 3149 peer->nextdate = limit; 3150 } 3151 DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n", 3152 current_time, ntoa(&peer->srcadr), peer->hpoll, 3153 peer->burst, peer->retry, peer->throttle, 3154 utemp - current_time, peer->nextdate - 3155 current_time)); 3156 } 3157 3158 3159 /* 3160 * peer_clear - clear peer filter registers. See Section 3.4.8 of the 3161 * spec. 3162 */ 3163 void 3164 peer_clear( 3165 struct peer *peer, /* peer structure */ 3166 const char *ident /* tally lights */ 3167 ) 3168 { 3169 u_char u; 3170 l_fp bxmt = peer->bxmt; /* bcast clients retain this! */ 3171 3172 #ifdef AUTOKEY 3173 /* 3174 * If cryptographic credentials have been acquired, toss them to 3175 * Valhalla. Note that autokeys are ephemeral, in that they are 3176 * tossed immediately upon use. Therefore, the keylist can be 3177 * purged anytime without needing to preserve random keys. Note 3178 * that, if the peer is purged, the cryptographic variables are 3179 * purged, too. This makes it much harder to sneak in some 3180 * unauthenticated data in the clock filter. 3181 */ 3182 key_expire(peer); 3183 if (peer->iffval != NULL) 3184 BN_free(peer->iffval); 3185 value_free(&peer->cookval); 3186 value_free(&peer->recval); 3187 value_free(&peer->encrypt); 3188 value_free(&peer->sndval); 3189 if (peer->cmmd != NULL) 3190 free(peer->cmmd); 3191 if (peer->subject != NULL) 3192 free(peer->subject); 3193 if (peer->issuer != NULL) 3194 free(peer->issuer); 3195 #endif /* AUTOKEY */ 3196 3197 /* 3198 * Clear all values, including the optional crypto values above. 3199 */ 3200 memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer)); 3201 peer->ppoll = peer->maxpoll; 3202 peer->hpoll = peer->minpoll; 3203 peer->disp = MAXDISPERSE; 3204 peer->flash = peer_unfit(peer); 3205 peer->jitter = LOGTOD(sys_precision); 3206 3207 /* Don't throw away our broadcast replay protection */ 3208 if (peer->hmode == MODE_BCLIENT) 3209 peer->bxmt = bxmt; 3210 3211 /* 3212 * If interleave mode, initialize the alternate origin switch. 3213 */ 3214 if (peer->flags & FLAG_XLEAVE) 3215 peer->flip = 1; 3216 for (u = 0; u < NTP_SHIFT; u++) { 3217 peer->filter_order[u] = u; 3218 peer->filter_disp[u] = MAXDISPERSE; 3219 } 3220 #ifdef REFCLOCK 3221 if (!(peer->flags & FLAG_REFCLOCK)) { 3222 #endif 3223 peer->leap = LEAP_NOTINSYNC; 3224 peer->stratum = STRATUM_UNSPEC; 3225 memcpy(&peer->refid, ident, 4); 3226 #ifdef REFCLOCK 3227 } else { 3228 /* Clear refclock sample filter */ 3229 peer->procptr->codeproc = 0; 3230 peer->procptr->coderecv = 0; 3231 } 3232 #endif 3233 3234 /* 3235 * During initialization use the association count to spread out 3236 * the polls at one-second intervals. Passive associations' 3237 * first poll is delayed by the "discard minimum" to avoid rate 3238 * limiting. Other post-startup new or cleared associations 3239 * randomize the first poll over the minimum poll interval to 3240 * avoid implosion. 3241 */ 3242 peer->nextdate = peer->update = peer->outdate = current_time; 3243 if (initializing) { 3244 peer->nextdate += peer_associations; 3245 } else if (MODE_PASSIVE == peer->hmode) { 3246 peer->nextdate += ntp_minpkt; 3247 } else { 3248 peer->nextdate += ntp_random() % peer->minpoll; 3249 } 3250 #ifdef AUTOKEY 3251 peer->refresh = current_time + (1 << NTP_REFRESH); 3252 #endif /* AUTOKEY */ 3253 DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n", 3254 current_time, peer->nextdate, peer->associd, 3255 ident)); 3256 } 3257 3258 3259 /* 3260 * clock_filter - add incoming clock sample to filter register and run 3261 * the filter procedure to find the best sample. 3262 */ 3263 void 3264 clock_filter( 3265 struct peer *peer, /* peer structure pointer */ 3266 double sample_offset, /* clock offset */ 3267 double sample_delay, /* roundtrip delay */ 3268 double sample_disp /* dispersion */ 3269 ) 3270 { 3271 double dst[NTP_SHIFT]; /* distance vector */ 3272 int ord[NTP_SHIFT]; /* index vector */ 3273 int i, j, k, m; 3274 double dtemp, etemp; 3275 char tbuf[80]; 3276 3277 /* 3278 * A sample consists of the offset, delay, dispersion and epoch 3279 * of arrival. The offset and delay are determined by the on- 3280 * wire protocol. The dispersion grows from the last outbound 3281 * packet to the arrival of this one increased by the sum of the 3282 * peer precision and the system precision as required by the 3283 * error budget. First, shift the new arrival into the shift 3284 * register discarding the oldest one. 3285 */ 3286 j = peer->filter_nextpt; 3287 peer->filter_offset[j] = sample_offset; 3288 peer->filter_delay[j] = sample_delay; 3289 peer->filter_disp[j] = sample_disp; 3290 peer->filter_epoch[j] = current_time; 3291 j = (j + 1) % NTP_SHIFT; 3292 peer->filter_nextpt = j; 3293 3294 /* 3295 * Update dispersions since the last update and at the same 3296 * time initialize the distance and index lists. Since samples 3297 * become increasingly uncorrelated beyond the Allan intercept, 3298 * only under exceptional cases will an older sample be used. 3299 * Therefore, the distance list uses a compound metric. If the 3300 * dispersion is greater than the maximum dispersion, clamp the 3301 * distance at that value. If the time since the last update is 3302 * less than the Allan intercept use the delay; otherwise, use 3303 * the sum of the delay and dispersion. 3304 */ 3305 dtemp = clock_phi * (current_time - peer->update); 3306 peer->update = current_time; 3307 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3308 if (i != 0) 3309 peer->filter_disp[j] += dtemp; 3310 if (peer->filter_disp[j] >= MAXDISPERSE) { 3311 peer->filter_disp[j] = MAXDISPERSE; 3312 dst[i] = MAXDISPERSE; 3313 } else if (peer->update - peer->filter_epoch[j] > 3314 (u_long)ULOGTOD(allan_xpt)) { 3315 dst[i] = peer->filter_delay[j] + 3316 peer->filter_disp[j]; 3317 } else { 3318 dst[i] = peer->filter_delay[j]; 3319 } 3320 ord[i] = j; 3321 j = (j + 1) % NTP_SHIFT; 3322 } 3323 3324 /* 3325 * If the clock has stabilized, sort the samples by distance. 3326 */ 3327 if (freq_cnt == 0) { 3328 for (i = 1; i < NTP_SHIFT; i++) { 3329 for (j = 0; j < i; j++) { 3330 if (dst[j] > dst[i]) { 3331 k = ord[j]; 3332 ord[j] = ord[i]; 3333 ord[i] = k; 3334 etemp = dst[j]; 3335 dst[j] = dst[i]; 3336 dst[i] = etemp; 3337 } 3338 } 3339 } 3340 } 3341 3342 /* 3343 * Copy the index list to the association structure so ntpq 3344 * can see it later. Prune the distance list to leave only 3345 * samples less than the maximum dispersion, which disfavors 3346 * uncorrelated samples older than the Allan intercept. To 3347 * further improve the jitter estimate, of the remainder leave 3348 * only samples less than the maximum distance, but keep at 3349 * least two samples for jitter calculation. 3350 */ 3351 m = 0; 3352 for (i = 0; i < NTP_SHIFT; i++) { 3353 peer->filter_order[i] = (u_char) ord[i]; 3354 if ( dst[i] >= MAXDISPERSE 3355 || (m >= 2 && dst[i] >= sys_maxdist)) 3356 continue; 3357 m++; 3358 } 3359 3360 /* 3361 * Compute the dispersion and jitter. The dispersion is weighted 3362 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close 3363 * to 1.0. The jitter is the RMS differences relative to the 3364 * lowest delay sample. 3365 */ 3366 peer->disp = peer->jitter = 0; 3367 k = ord[0]; 3368 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3369 j = ord[i]; 3370 peer->disp = NTP_FWEIGHT * (peer->disp + 3371 peer->filter_disp[j]); 3372 if (i < m) 3373 peer->jitter += DIFF(peer->filter_offset[j], 3374 peer->filter_offset[k]); 3375 } 3376 3377 /* 3378 * If no acceptable samples remain in the shift register, 3379 * quietly tiptoe home leaving only the dispersion. Otherwise, 3380 * save the offset, delay and jitter. Note the jitter must not 3381 * be less than the precision. 3382 */ 3383 if (m == 0) { 3384 clock_select(); 3385 return; 3386 } 3387 etemp = fabs(peer->offset - peer->filter_offset[k]); 3388 peer->offset = peer->filter_offset[k]; 3389 peer->delay = peer->filter_delay[k]; 3390 if (m > 1) 3391 peer->jitter /= m - 1; 3392 peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision)); 3393 3394 /* 3395 * If the the new sample and the current sample are both valid 3396 * and the difference between their offsets exceeds CLOCK_SGATE 3397 * (3) times the jitter and the interval between them is less 3398 * than twice the host poll interval, consider the new sample 3399 * a popcorn spike and ignore it. 3400 */ 3401 if ( peer->disp < sys_maxdist 3402 && peer->filter_disp[k] < sys_maxdist 3403 && etemp > CLOCK_SGATE * peer->jitter 3404 && peer->filter_epoch[k] - peer->epoch 3405 < 2. * ULOGTOD(peer->hpoll)) { 3406 snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp); 3407 report_event(PEVNT_POPCORN, peer, tbuf); 3408 return; 3409 } 3410 3411 /* 3412 * A new minimum sample is useful only if it is later than the 3413 * last one used. In this design the maximum lifetime of any 3414 * sample is not greater than eight times the poll interval, so 3415 * the maximum interval between minimum samples is eight 3416 * packets. 3417 */ 3418 if (peer->filter_epoch[k] <= peer->epoch) { 3419 DPRINTF(2, ("clock_filter: old sample %lu\n", current_time - 3420 peer->filter_epoch[k])); 3421 return; 3422 } 3423 peer->epoch = peer->filter_epoch[k]; 3424 3425 /* 3426 * The mitigated sample statistics are saved for later 3427 * processing. If not synchronized or not in a burst, tickle the 3428 * clock select algorithm. 3429 */ 3430 record_peer_stats(&peer->srcadr, ctlpeerstatus(peer), 3431 peer->offset, peer->delay, peer->disp, peer->jitter); 3432 DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n", 3433 m, peer->offset, peer->delay, peer->disp, 3434 peer->jitter)); 3435 if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC) 3436 clock_select(); 3437 } 3438 3439 3440 /* 3441 * clock_select - find the pick-of-the-litter clock 3442 * 3443 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always 3444 * be enabled, even if declared falseticker, (2) only the prefer peer 3445 * can be selected as the system peer, (3) if the external source is 3446 * down, the system leap bits are set to 11 and the stratum set to 3447 * infinity. 3448 */ 3449 void 3450 clock_select(void) 3451 { 3452 struct peer *peer; 3453 int i, j, k, n; 3454 int nlist, nl2; 3455 int allow; 3456 int speer; 3457 double d, e, f, g; 3458 double high, low; 3459 double speermet; 3460 double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */ 3461 struct endpoint endp; 3462 struct peer *osys_peer; 3463 struct peer *sys_prefer = NULL; /* prefer peer */ 3464 struct peer *typesystem = NULL; 3465 struct peer *typeorphan = NULL; 3466 #ifdef REFCLOCK 3467 struct peer *typeacts = NULL; 3468 struct peer *typelocal = NULL; 3469 struct peer *typepps = NULL; 3470 #endif /* REFCLOCK */ 3471 static struct endpoint *endpoint = NULL; 3472 static int *indx = NULL; 3473 static peer_select *peers = NULL; 3474 static u_int endpoint_size = 0; 3475 static u_int peers_size = 0; 3476 static u_int indx_size = 0; 3477 size_t octets; 3478 3479 /* 3480 * Initialize and create endpoint, index and peer lists big 3481 * enough to handle all associations. 3482 */ 3483 osys_peer = sys_peer; 3484 sys_survivors = 0; 3485 #ifdef LOCKCLOCK 3486 set_sys_leap(LEAP_NOTINSYNC); 3487 sys_stratum = STRATUM_UNSPEC; 3488 memcpy(&sys_refid, "DOWN", 4); 3489 #endif /* LOCKCLOCK */ 3490 3491 /* 3492 * Allocate dynamic space depending on the number of 3493 * associations. 3494 */ 3495 nlist = 1; 3496 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3497 nlist++; 3498 endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint)); 3499 peers_size = ALIGNED_SIZE(nlist * sizeof(*peers)); 3500 indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx)); 3501 octets = endpoint_size + peers_size + indx_size; 3502 endpoint = erealloc(endpoint, octets); 3503 peers = INC_ALIGNED_PTR(endpoint, endpoint_size); 3504 indx = INC_ALIGNED_PTR(peers, peers_size); 3505 3506 /* 3507 * Initially, we populate the island with all the rifraff peers 3508 * that happen to be lying around. Those with seriously 3509 * defective clocks are immediately booted off the island. Then, 3510 * the falsetickers are culled and put to sea. The truechimers 3511 * remaining are subject to repeated rounds where the most 3512 * unpopular at each round is kicked off. When the population 3513 * has dwindled to sys_minclock, the survivors split a million 3514 * bucks and collectively crank the chimes. 3515 */ 3516 nlist = nl2 = 0; /* none yet */ 3517 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3518 peer->new_status = CTL_PST_SEL_REJECT; 3519 3520 /* 3521 * Leave the island immediately if the peer is 3522 * unfit to synchronize. 3523 */ 3524 if (peer_unfit(peer)) { 3525 continue; 3526 } 3527 3528 /* 3529 * If this peer is an orphan parent, elect the 3530 * one with the lowest metric defined as the 3531 * IPv4 address or the first 64 bits of the 3532 * hashed IPv6 address. To ensure convergence 3533 * on the same selected orphan, consider as 3534 * well that this system may have the lowest 3535 * metric and be the orphan parent. If this 3536 * system wins, sys_peer will be NULL to trigger 3537 * orphan mode in timer(). 3538 */ 3539 if (peer->stratum == sys_orphan) { 3540 u_int32 localmet; 3541 u_int32 peermet; 3542 3543 if (peer->dstadr != NULL) 3544 localmet = ntohl(peer->dstadr->addr_refid); 3545 else 3546 localmet = U_INT32_MAX; 3547 peermet = ntohl(addr2refid(&peer->srcadr)); 3548 if (peermet < localmet && peermet < orphmet) { 3549 typeorphan = peer; 3550 orphmet = peermet; 3551 } 3552 continue; 3553 } 3554 3555 /* 3556 * If this peer could have the orphan parent 3557 * as a synchronization ancestor, exclude it 3558 * from selection to avoid forming a 3559 * synchronization loop within the orphan mesh, 3560 * triggering stratum climb to infinity 3561 * instability. Peers at stratum higher than 3562 * the orphan stratum could have the orphan 3563 * parent in ancestry so are excluded. 3564 * See http://bugs.ntp.org/2050 3565 */ 3566 if (peer->stratum > sys_orphan) { 3567 continue; 3568 } 3569 #ifdef REFCLOCK 3570 /* 3571 * The following are special cases. We deal 3572 * with them later. 3573 */ 3574 if (!(peer->flags & FLAG_PREFER)) { 3575 switch (peer->refclktype) { 3576 case REFCLK_LOCALCLOCK: 3577 if ( current_time > orphwait 3578 && typelocal == NULL) 3579 typelocal = peer; 3580 continue; 3581 3582 case REFCLK_ACTS: 3583 if ( current_time > orphwait 3584 && typeacts == NULL) 3585 typeacts = peer; 3586 continue; 3587 } 3588 } 3589 #endif /* REFCLOCK */ 3590 3591 /* 3592 * If we get this far, the peer can stay on the 3593 * island, but does not yet have the immunity 3594 * idol. 3595 */ 3596 peer->new_status = CTL_PST_SEL_SANE; 3597 f = root_distance(peer); 3598 peers[nlist].peer = peer; 3599 peers[nlist].error = peer->jitter; 3600 peers[nlist].synch = f; 3601 nlist++; 3602 3603 /* 3604 * Insert each interval endpoint on the unsorted 3605 * endpoint[] list. 3606 */ 3607 e = peer->offset; 3608 endpoint[nl2].type = -1; /* lower end */ 3609 endpoint[nl2].val = e - f; 3610 nl2++; 3611 endpoint[nl2].type = 1; /* upper end */ 3612 endpoint[nl2].val = e + f; 3613 nl2++; 3614 } 3615 /* 3616 * Construct sorted indx[] of endpoint[] indexes ordered by 3617 * offset. 3618 */ 3619 for (i = 0; i < nl2; i++) 3620 indx[i] = i; 3621 for (i = 0; i < nl2; i++) { 3622 endp = endpoint[indx[i]]; 3623 e = endp.val; 3624 k = i; 3625 for (j = i + 1; j < nl2; j++) { 3626 endp = endpoint[indx[j]]; 3627 if (endp.val < e) { 3628 e = endp.val; 3629 k = j; 3630 } 3631 } 3632 if (k != i) { 3633 j = indx[k]; 3634 indx[k] = indx[i]; 3635 indx[i] = j; 3636 } 3637 } 3638 for (i = 0; i < nl2; i++) 3639 DPRINTF(3, ("select: endpoint %2d %.6f\n", 3640 endpoint[indx[i]].type, endpoint[indx[i]].val)); 3641 3642 /* 3643 * This is the actual algorithm that cleaves the truechimers 3644 * from the falsetickers. The original algorithm was described 3645 * in Keith Marzullo's dissertation, but has been modified for 3646 * better accuracy. 3647 * 3648 * Briefly put, we first assume there are no falsetickers, then 3649 * scan the candidate list first from the low end upwards and 3650 * then from the high end downwards. The scans stop when the 3651 * number of intersections equals the number of candidates less 3652 * the number of falsetickers. If this doesn't happen for a 3653 * given number of falsetickers, we bump the number of 3654 * falsetickers and try again. If the number of falsetickers 3655 * becomes equal to or greater than half the number of 3656 * candidates, the Albanians have won the Byzantine wars and 3657 * correct synchronization is not possible. 3658 * 3659 * Here, nlist is the number of candidates and allow is the 3660 * number of falsetickers. Upon exit, the truechimers are the 3661 * survivors with offsets not less than low and not greater than 3662 * high. There may be none of them. 3663 */ 3664 low = 1e9; 3665 high = -1e9; 3666 for (allow = 0; 2 * allow < nlist; allow++) { 3667 3668 /* 3669 * Bound the interval (low, high) as the smallest 3670 * interval containing points from the most sources. 3671 */ 3672 n = 0; 3673 for (i = 0; i < nl2; i++) { 3674 low = endpoint[indx[i]].val; 3675 n -= endpoint[indx[i]].type; 3676 if (n >= nlist - allow) 3677 break; 3678 } 3679 n = 0; 3680 for (j = nl2 - 1; j >= 0; j--) { 3681 high = endpoint[indx[j]].val; 3682 n += endpoint[indx[j]].type; 3683 if (n >= nlist - allow) 3684 break; 3685 } 3686 3687 /* 3688 * If an interval containing truechimers is found, stop. 3689 * If not, increase the number of falsetickers and go 3690 * around again. 3691 */ 3692 if (high > low) 3693 break; 3694 } 3695 3696 /* 3697 * Clustering algorithm. Whittle candidate list of falsetickers, 3698 * who leave the island immediately. The TRUE peer is always a 3699 * truechimer. We must leave at least one peer to collect the 3700 * million bucks. 3701 * 3702 * We assert the correct time is contained in the interval, but 3703 * the best offset estimate for the interval might not be 3704 * contained in the interval. For this purpose, a truechimer is 3705 * defined as the midpoint of an interval that overlaps the 3706 * intersection interval. 3707 */ 3708 j = 0; 3709 for (i = 0; i < nlist; i++) { 3710 double h; 3711 3712 peer = peers[i].peer; 3713 h = peers[i].synch; 3714 if (( high <= low 3715 || peer->offset + h < low 3716 || peer->offset - h > high 3717 ) && !(peer->flags & FLAG_TRUE)) 3718 continue; 3719 3720 #ifdef REFCLOCK 3721 /* 3722 * Eligible PPS peers must survive the intersection 3723 * algorithm. Use the first one found, but don't 3724 * include any of them in the cluster population. 3725 */ 3726 if (peer->flags & FLAG_PPS) { 3727 if (typepps == NULL) 3728 typepps = peer; 3729 if (!(peer->flags & FLAG_TSTAMP_PPS)) 3730 continue; 3731 } 3732 #endif /* REFCLOCK */ 3733 3734 if (j != i) 3735 peers[j] = peers[i]; 3736 j++; 3737 } 3738 nlist = j; 3739 3740 /* 3741 * If no survivors remain at this point, check if the modem 3742 * driver, local driver or orphan parent in that order. If so, 3743 * nominate the first one found as the only survivor. 3744 * Otherwise, give up and leave the island to the rats. 3745 */ 3746 if (nlist == 0) { 3747 peers[0].error = 0; 3748 peers[0].synch = sys_mindisp; 3749 #ifdef REFCLOCK 3750 if (typeacts != NULL) { 3751 peers[0].peer = typeacts; 3752 nlist = 1; 3753 } else if (typelocal != NULL) { 3754 peers[0].peer = typelocal; 3755 nlist = 1; 3756 } else 3757 #endif /* REFCLOCK */ 3758 if (typeorphan != NULL) { 3759 peers[0].peer = typeorphan; 3760 nlist = 1; 3761 } 3762 } 3763 3764 /* 3765 * Mark the candidates at this point as truechimers. 3766 */ 3767 for (i = 0; i < nlist; i++) { 3768 peers[i].peer->new_status = CTL_PST_SEL_SELCAND; 3769 DPRINTF(2, ("select: survivor %s %f\n", 3770 stoa(&peers[i].peer->srcadr), peers[i].synch)); 3771 } 3772 3773 /* 3774 * Now, vote outliers off the island by select jitter weighted 3775 * by root distance. Continue voting as long as there are more 3776 * than sys_minclock survivors and the select jitter of the peer 3777 * with the worst metric is greater than the minimum peer 3778 * jitter. Stop if we are about to discard a TRUE or PREFER 3779 * peer, who of course have the immunity idol. 3780 */ 3781 while (1) { 3782 d = 1e9; 3783 e = -1e9; 3784 g = 0; 3785 k = 0; 3786 for (i = 0; i < nlist; i++) { 3787 if (peers[i].error < d) 3788 d = peers[i].error; 3789 peers[i].seljit = 0; 3790 if (nlist > 1) { 3791 f = 0; 3792 for (j = 0; j < nlist; j++) 3793 f += DIFF(peers[j].peer->offset, 3794 peers[i].peer->offset); 3795 peers[i].seljit = SQRT(f / (nlist - 1)); 3796 } 3797 if (peers[i].seljit * peers[i].synch > e) { 3798 g = peers[i].seljit; 3799 e = peers[i].seljit * peers[i].synch; 3800 k = i; 3801 } 3802 } 3803 g = max(g, LOGTOD(sys_precision)); 3804 if ( nlist <= max(1, sys_minclock) 3805 || g <= d 3806 || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags)) 3807 break; 3808 3809 DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n", 3810 ntoa(&peers[k].peer->srcadr), g, d)); 3811 if (nlist > sys_maxclock) 3812 peers[k].peer->new_status = CTL_PST_SEL_EXCESS; 3813 for (j = k + 1; j < nlist; j++) 3814 peers[j - 1] = peers[j]; 3815 nlist--; 3816 } 3817 3818 /* 3819 * What remains is a list usually not greater than sys_minclock 3820 * peers. Note that unsynchronized peers cannot survive this 3821 * far. Count and mark these survivors. 3822 * 3823 * While at it, count the number of leap warning bits found. 3824 * This will be used later to vote the system leap warning bit. 3825 * If a leap warning bit is found on a reference clock, the vote 3826 * is always won. 3827 * 3828 * Choose the system peer using a hybrid metric composed of the 3829 * selection jitter scaled by the root distance augmented by 3830 * stratum scaled by sys_mindisp (.001 by default). The goal of 3831 * the small stratum factor is to avoid clockhop between a 3832 * reference clock and a network peer which has a refclock and 3833 * is using an older ntpd, which does not floor sys_rootdisp at 3834 * sys_mindisp. 3835 * 3836 * In contrast, ntpd 4.2.6 and earlier used stratum primarily 3837 * in selecting the system peer, using a weight of 1 second of 3838 * additional root distance per stratum. This heavy bias is no 3839 * longer appropriate, as the scaled root distance provides a 3840 * more rational metric carrying the cumulative error budget. 3841 */ 3842 e = 1e9; 3843 speer = 0; 3844 leap_vote_ins = 0; 3845 leap_vote_del = 0; 3846 for (i = 0; i < nlist; i++) { 3847 peer = peers[i].peer; 3848 peer->unreach = 0; 3849 peer->new_status = CTL_PST_SEL_SYNCCAND; 3850 sys_survivors++; 3851 if (peer->leap == LEAP_ADDSECOND) { 3852 if (peer->flags & FLAG_REFCLOCK) 3853 leap_vote_ins = nlist; 3854 else if (leap_vote_ins < nlist) 3855 leap_vote_ins++; 3856 } 3857 if (peer->leap == LEAP_DELSECOND) { 3858 if (peer->flags & FLAG_REFCLOCK) 3859 leap_vote_del = nlist; 3860 else if (leap_vote_del < nlist) 3861 leap_vote_del++; 3862 } 3863 if (peer->flags & FLAG_PREFER) 3864 sys_prefer = peer; 3865 speermet = peers[i].seljit * peers[i].synch + 3866 peer->stratum * sys_mindisp; 3867 if (speermet < e) { 3868 e = speermet; 3869 speer = i; 3870 } 3871 } 3872 3873 /* 3874 * Unless there are at least sys_misane survivors, leave the 3875 * building dark. Otherwise, do a clockhop dance. Ordinarily, 3876 * use the selected survivor speer. However, if the current 3877 * system peer is not speer, stay with the current system peer 3878 * as long as it doesn't get too old or too ugly. 3879 */ 3880 if (nlist > 0 && nlist >= sys_minsane) { 3881 double x; 3882 3883 typesystem = peers[speer].peer; 3884 if (osys_peer == NULL || osys_peer == typesystem) { 3885 sys_clockhop = 0; 3886 } else if ((x = fabs(typesystem->offset - 3887 osys_peer->offset)) < sys_mindisp) { 3888 if (sys_clockhop == 0) 3889 sys_clockhop = sys_mindisp; 3890 else 3891 sys_clockhop *= .5; 3892 DPRINTF(1, ("select: clockhop %d %.6f %.6f\n", 3893 j, x, sys_clockhop)); 3894 if (fabs(x) < sys_clockhop) 3895 typesystem = osys_peer; 3896 else 3897 sys_clockhop = 0; 3898 } else { 3899 sys_clockhop = 0; 3900 } 3901 } 3902 3903 /* 3904 * Mitigation rules of the game. We have the pick of the 3905 * litter in typesystem if any survivors are left. If 3906 * there is a prefer peer, use its offset and jitter. 3907 * Otherwise, use the combined offset and jitter of all kitters. 3908 */ 3909 if (typesystem != NULL) { 3910 if (sys_prefer == NULL) { 3911 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3912 clock_combine(peers, sys_survivors, speer); 3913 } else { 3914 typesystem = sys_prefer; 3915 sys_clockhop = 0; 3916 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3917 sys_offset = typesystem->offset; 3918 sys_jitter = typesystem->jitter; 3919 } 3920 DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n", 3921 sys_offset, sys_jitter)); 3922 } 3923 #ifdef REFCLOCK 3924 /* 3925 * If a PPS driver is lit and the combined offset is less than 3926 * 0.4 s, select the driver as the PPS peer and use its offset 3927 * and jitter. However, if this is the atom driver, use it only 3928 * if there is a prefer peer or there are no survivors and none 3929 * are required. 3930 */ 3931 if ( typepps != NULL 3932 && fabs(sys_offset) < 0.4 3933 && ( typepps->refclktype != REFCLK_ATOM_PPS 3934 || ( typepps->refclktype == REFCLK_ATOM_PPS 3935 && ( sys_prefer != NULL 3936 || (typesystem == NULL && sys_minsane == 0))))) { 3937 typesystem = typepps; 3938 sys_clockhop = 0; 3939 typesystem->new_status = CTL_PST_SEL_PPS; 3940 sys_offset = typesystem->offset; 3941 sys_jitter = typesystem->jitter; 3942 DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n", 3943 sys_offset, sys_jitter)); 3944 } 3945 #endif /* REFCLOCK */ 3946 3947 /* 3948 * If there are no survivors at this point, there is no 3949 * system peer. If so and this is an old update, keep the 3950 * current statistics, but do not update the clock. 3951 */ 3952 if (typesystem == NULL) { 3953 if (osys_peer != NULL) { 3954 if (sys_orphwait > 0) 3955 orphwait = current_time + sys_orphwait; 3956 report_event(EVNT_NOPEER, NULL, NULL); 3957 } 3958 sys_peer = NULL; 3959 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3960 peer->status = peer->new_status; 3961 return; 3962 } 3963 3964 /* 3965 * Do not use old data, as this may mess up the clock discipline 3966 * stability. 3967 */ 3968 if (typesystem->epoch <= sys_epoch) 3969 return; 3970 3971 /* 3972 * We have found the alpha male. Wind the clock. 3973 */ 3974 if (osys_peer != typesystem) 3975 report_event(PEVNT_NEWPEER, typesystem, NULL); 3976 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3977 peer->status = peer->new_status; 3978 clock_update(typesystem); 3979 } 3980 3981 3982 static void 3983 clock_combine( 3984 peer_select * peers, /* survivor list */ 3985 int npeers, /* number of survivors */ 3986 int syspeer /* index of sys.peer */ 3987 ) 3988 { 3989 int i; 3990 double x, y, z, w; 3991 3992 y = z = w = 0; 3993 for (i = 0; i < npeers; i++) { 3994 x = 1. / peers[i].synch; 3995 y += x; 3996 z += x * peers[i].peer->offset; 3997 w += x * DIFF(peers[i].peer->offset, 3998 peers[syspeer].peer->offset); 3999 } 4000 sys_offset = z / y; 4001 sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit)); 4002 } 4003 4004 4005 /* 4006 * root_distance - compute synchronization distance from peer to root 4007 */ 4008 static double 4009 root_distance( 4010 struct peer *peer /* peer structure pointer */ 4011 ) 4012 { 4013 double dtemp; 4014 4015 /* 4016 * Root Distance (LAMBDA) is defined as: 4017 * (delta + DELTA)/2 + epsilon + EPSILON + D 4018 * 4019 * where: 4020 * delta is the round-trip delay 4021 * DELTA is the root delay 4022 * epsilon is the peer dispersion 4023 * + (15 usec each second) 4024 * EPSILON is the root dispersion 4025 * D is sys_jitter 4026 * 4027 * NB: Think hard about why we are using these values, and what 4028 * the alternatives are, and the various pros/cons. 4029 * 4030 * DLM thinks these are probably the best choices from any of the 4031 * other worse choices. 4032 */ 4033 dtemp = (peer->delay + peer->rootdelay) / 2 4034 + peer->disp 4035 + clock_phi * (current_time - peer->update) 4036 + peer->rootdisp 4037 + peer->jitter; 4038 /* 4039 * Careful squeak here. The value returned must be greater than 4040 * the minimum root dispersion in order to avoid clockhop with 4041 * highly precise reference clocks. Note that the root distance 4042 * cannot exceed the sys_maxdist, as this is the cutoff by the 4043 * selection algorithm. 4044 */ 4045 if (dtemp < sys_mindisp) 4046 dtemp = sys_mindisp; 4047 return (dtemp); 4048 } 4049 4050 4051 /* 4052 * peer_xmit - send packet for persistent association. 4053 */ 4054 static void 4055 peer_xmit( 4056 struct peer *peer /* peer structure pointer */ 4057 ) 4058 { 4059 struct pkt xpkt; /* transmit packet */ 4060 size_t sendlen, authlen; 4061 keyid_t xkeyid = 0; /* transmit key ID */ 4062 l_fp xmt_tx, xmt_ty; 4063 4064 if (!peer->dstadr) /* drop peers without interface */ 4065 return; 4066 4067 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version, 4068 peer->hmode); 4069 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4070 xpkt.ppoll = peer->hpoll; 4071 xpkt.precision = sys_precision; 4072 xpkt.refid = sys_refid; 4073 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4074 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4075 /* Use sys_reftime for peer exchanges */ 4076 HTONL_FP(&sys_reftime, &xpkt.reftime); 4077 HTONL_FP(&peer->rec, &xpkt.org); 4078 HTONL_FP(&peer->dst, &xpkt.rec); 4079 4080 /* 4081 * If the received packet contains a MAC, the transmitted packet 4082 * is authenticated and contains a MAC. If not, the transmitted 4083 * packet is not authenticated. 4084 * 4085 * It is most important when autokey is in use that the local 4086 * interface IP address be known before the first packet is 4087 * sent. Otherwise, it is not possible to compute a correct MAC 4088 * the recipient will accept. Thus, the I/O semantics have to do 4089 * a little more work. In particular, the wildcard interface 4090 * might not be usable. 4091 */ 4092 sendlen = LEN_PKT_NOMAC; 4093 if ( 4094 #ifdef AUTOKEY 4095 !(peer->flags & FLAG_SKEY) && 4096 #endif /* !AUTOKEY */ 4097 peer->keyid == 0) { 4098 4099 /* 4100 * Transmit a-priori timestamps 4101 */ 4102 get_systime(&xmt_tx); 4103 if (peer->flip == 0) { /* basic mode */ 4104 peer->aorg = xmt_tx; 4105 HTONL_FP(&xmt_tx, &xpkt.xmt); 4106 } else { /* interleaved modes */ 4107 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4108 HTONL_FP(&xmt_tx, &xpkt.xmt); 4109 if (peer->flip > 0) 4110 HTONL_FP(&peer->borg, 4111 &xpkt.org); 4112 else 4113 HTONL_FP(&peer->aorg, 4114 &xpkt.org); 4115 } else { /* symmetric */ 4116 if (peer->flip > 0) 4117 HTONL_FP(&peer->borg, 4118 &xpkt.xmt); 4119 else 4120 HTONL_FP(&peer->aorg, 4121 &xpkt.xmt); 4122 } 4123 } 4124 peer->t21_bytes = sendlen; 4125 sendpkt(&peer->srcadr, peer->dstadr, 4126 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4127 &xpkt, sendlen); 4128 peer->sent++; 4129 peer->throttle += (1 << peer->minpoll) - 2; 4130 4131 /* 4132 * Capture a-posteriori timestamps 4133 */ 4134 get_systime(&xmt_ty); 4135 if (peer->flip != 0) { /* interleaved modes */ 4136 if (peer->flip > 0) 4137 peer->aorg = xmt_ty; 4138 else 4139 peer->borg = xmt_ty; 4140 peer->flip = -peer->flip; 4141 } 4142 L_SUB(&xmt_ty, &xmt_tx); 4143 LFPTOD(&xmt_ty, peer->xleave); 4144 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n", 4145 current_time, 4146 peer->dstadr ? stoa(&peer->dstadr->sin) : "-", 4147 stoa(&peer->srcadr), peer->hmode, sendlen, 4148 xmt_tx.l_ui, xmt_tx.l_uf)); 4149 return; 4150 } 4151 4152 /* 4153 * Authentication is enabled, so the transmitted packet must be 4154 * authenticated. If autokey is enabled, fuss with the various 4155 * modes; otherwise, symmetric key cryptography is used. 4156 */ 4157 #ifdef AUTOKEY 4158 if (peer->flags & FLAG_SKEY) { 4159 struct exten *exten; /* extension field */ 4160 4161 /* 4162 * The Public Key Dance (PKD): Cryptographic credentials 4163 * are contained in extension fields, each including a 4164 * 4-octet length/code word followed by a 4-octet 4165 * association ID and optional additional data. Optional 4166 * data includes a 4-octet data length field followed by 4167 * the data itself. Request messages are sent from a 4168 * configured association; response messages can be sent 4169 * from a configured association or can take the fast 4170 * path without ever matching an association. Response 4171 * messages have the same code as the request, but have 4172 * a response bit and possibly an error bit set. In this 4173 * implementation, a message may contain no more than 4174 * one command and one or more responses. 4175 * 4176 * Cryptographic session keys include both a public and 4177 * a private componet. Request and response messages 4178 * using extension fields are always sent with the 4179 * private component set to zero. Packets without 4180 * extension fields indlude the private component when 4181 * the session key is generated. 4182 */ 4183 while (1) { 4184 4185 /* 4186 * Allocate and initialize a keylist if not 4187 * already done. Then, use the list in inverse 4188 * order, discarding keys once used. Keep the 4189 * latest key around until the next one, so 4190 * clients can use client/server packets to 4191 * compute propagation delay. 4192 * 4193 * Note that once a key is used from the list, 4194 * it is retained in the key cache until the 4195 * next key is used. This is to allow a client 4196 * to retrieve the encrypted session key 4197 * identifier to verify authenticity. 4198 * 4199 * If for some reason a key is no longer in the 4200 * key cache, a birthday has happened or the key 4201 * has expired, so the pseudo-random sequence is 4202 * broken. In that case, purge the keylist and 4203 * regenerate it. 4204 */ 4205 if (peer->keynumber == 0) 4206 make_keylist(peer, peer->dstadr); 4207 else 4208 peer->keynumber--; 4209 xkeyid = peer->keylist[peer->keynumber]; 4210 if (authistrusted(xkeyid)) 4211 break; 4212 else 4213 key_expire(peer); 4214 } 4215 peer->keyid = xkeyid; 4216 exten = NULL; 4217 switch (peer->hmode) { 4218 4219 /* 4220 * In broadcast server mode the autokey values are 4221 * required by the broadcast clients. Push them when a 4222 * new keylist is generated; otherwise, push the 4223 * association message so the client can request them at 4224 * other times. 4225 */ 4226 case MODE_BROADCAST: 4227 if (peer->flags & FLAG_ASSOC) 4228 exten = crypto_args(peer, CRYPTO_AUTO | 4229 CRYPTO_RESP, peer->associd, NULL); 4230 else 4231 exten = crypto_args(peer, CRYPTO_ASSOC | 4232 CRYPTO_RESP, peer->associd, NULL); 4233 break; 4234 4235 /* 4236 * In symmetric modes the parameter, certificate, 4237 * identity, cookie and autokey exchanges are 4238 * required. The leapsecond exchange is optional. But, a 4239 * peer will not believe the other peer until the other 4240 * peer has synchronized, so the certificate exchange 4241 * might loop until then. If a peer finds a broken 4242 * autokey sequence, it uses the autokey exchange to 4243 * retrieve the autokey values. In any case, if a new 4244 * keylist is generated, the autokey values are pushed. 4245 */ 4246 case MODE_ACTIVE: 4247 case MODE_PASSIVE: 4248 4249 /* 4250 * Parameter, certificate and identity. 4251 */ 4252 if (!peer->crypto) 4253 exten = crypto_args(peer, CRYPTO_ASSOC, 4254 peer->associd, hostval.ptr); 4255 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4256 exten = crypto_args(peer, CRYPTO_CERT, 4257 peer->associd, peer->issuer); 4258 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4259 exten = crypto_args(peer, 4260 crypto_ident(peer), peer->associd, 4261 NULL); 4262 4263 /* 4264 * Cookie and autokey. We request the cookie 4265 * only when the this peer and the other peer 4266 * are synchronized. But, this peer needs the 4267 * autokey values when the cookie is zero. Any 4268 * time we regenerate the key list, we offer the 4269 * autokey values without being asked. If for 4270 * some reason either peer finds a broken 4271 * autokey sequence, the autokey exchange is 4272 * used to retrieve the autokey values. 4273 */ 4274 else if ( sys_leap != LEAP_NOTINSYNC 4275 && peer->leap != LEAP_NOTINSYNC 4276 && !(peer->crypto & CRYPTO_FLAG_COOK)) 4277 exten = crypto_args(peer, CRYPTO_COOK, 4278 peer->associd, NULL); 4279 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4280 exten = crypto_args(peer, CRYPTO_AUTO, 4281 peer->associd, NULL); 4282 else if ( peer->flags & FLAG_ASSOC 4283 && peer->crypto & CRYPTO_FLAG_SIGN) 4284 exten = crypto_args(peer, CRYPTO_AUTO | 4285 CRYPTO_RESP, peer->assoc, NULL); 4286 4287 /* 4288 * Wait for clock sync, then sign the 4289 * certificate and retrieve the leapsecond 4290 * values. 4291 */ 4292 else if (sys_leap == LEAP_NOTINSYNC) 4293 break; 4294 4295 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4296 exten = crypto_args(peer, CRYPTO_SIGN, 4297 peer->associd, hostval.ptr); 4298 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4299 exten = crypto_args(peer, CRYPTO_LEAP, 4300 peer->associd, NULL); 4301 break; 4302 4303 /* 4304 * In client mode the parameter, certificate, identity, 4305 * cookie and sign exchanges are required. The 4306 * leapsecond exchange is optional. If broadcast client 4307 * mode the same exchanges are required, except that the 4308 * autokey exchange is substitutes for the cookie 4309 * exchange, since the cookie is always zero. If the 4310 * broadcast client finds a broken autokey sequence, it 4311 * uses the autokey exchange to retrieve the autokey 4312 * values. 4313 */ 4314 case MODE_CLIENT: 4315 4316 /* 4317 * Parameter, certificate and identity. 4318 */ 4319 if (!peer->crypto) 4320 exten = crypto_args(peer, CRYPTO_ASSOC, 4321 peer->associd, hostval.ptr); 4322 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4323 exten = crypto_args(peer, CRYPTO_CERT, 4324 peer->associd, peer->issuer); 4325 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4326 exten = crypto_args(peer, 4327 crypto_ident(peer), peer->associd, 4328 NULL); 4329 4330 /* 4331 * Cookie and autokey. These are requests, but 4332 * we use the peer association ID with autokey 4333 * rather than our own. 4334 */ 4335 else if (!(peer->crypto & CRYPTO_FLAG_COOK)) 4336 exten = crypto_args(peer, CRYPTO_COOK, 4337 peer->associd, NULL); 4338 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4339 exten = crypto_args(peer, CRYPTO_AUTO, 4340 peer->assoc, NULL); 4341 4342 /* 4343 * Wait for clock sync, then sign the 4344 * certificate and retrieve the leapsecond 4345 * values. 4346 */ 4347 else if (sys_leap == LEAP_NOTINSYNC) 4348 break; 4349 4350 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4351 exten = crypto_args(peer, CRYPTO_SIGN, 4352 peer->associd, hostval.ptr); 4353 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4354 exten = crypto_args(peer, CRYPTO_LEAP, 4355 peer->associd, NULL); 4356 break; 4357 } 4358 4359 /* 4360 * Add a queued extension field if present. This is 4361 * always a request message, so the reply ID is already 4362 * in the message. If an error occurs, the error bit is 4363 * lit in the response. 4364 */ 4365 if (peer->cmmd != NULL) { 4366 u_int32 temp32; 4367 4368 temp32 = CRYPTO_RESP; 4369 peer->cmmd->opcode |= htonl(temp32); 4370 sendlen += crypto_xmit(peer, &xpkt, NULL, 4371 sendlen, peer->cmmd, 0); 4372 free(peer->cmmd); 4373 peer->cmmd = NULL; 4374 } 4375 4376 /* 4377 * Add an extension field created above. All but the 4378 * autokey response message are request messages. 4379 */ 4380 if (exten != NULL) { 4381 if (exten->opcode != 0) 4382 sendlen += crypto_xmit(peer, &xpkt, 4383 NULL, sendlen, exten, 0); 4384 free(exten); 4385 } 4386 4387 /* 4388 * Calculate the next session key. Since extension 4389 * fields are present, the cookie value is zero. 4390 */ 4391 if (sendlen > (int)LEN_PKT_NOMAC) { 4392 session_key(&peer->dstadr->sin, &peer->srcadr, 4393 xkeyid, 0, 2); 4394 } 4395 } 4396 #endif /* AUTOKEY */ 4397 4398 /* 4399 * Transmit a-priori timestamps 4400 */ 4401 get_systime(&xmt_tx); 4402 if (peer->flip == 0) { /* basic mode */ 4403 peer->aorg = xmt_tx; 4404 HTONL_FP(&xmt_tx, &xpkt.xmt); 4405 } else { /* interleaved modes */ 4406 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4407 HTONL_FP(&xmt_tx, &xpkt.xmt); 4408 if (peer->flip > 0) 4409 HTONL_FP(&peer->borg, &xpkt.org); 4410 else 4411 HTONL_FP(&peer->aorg, &xpkt.org); 4412 } else { /* symmetric */ 4413 if (peer->flip > 0) 4414 HTONL_FP(&peer->borg, &xpkt.xmt); 4415 else 4416 HTONL_FP(&peer->aorg, &xpkt.xmt); 4417 } 4418 } 4419 xkeyid = peer->keyid; 4420 authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4421 if (authlen == 0) { 4422 report_event(PEVNT_AUTH, peer, "no key"); 4423 peer->flash |= TEST5; /* auth error */ 4424 peer->badauth++; 4425 return; 4426 } 4427 sendlen += authlen; 4428 #ifdef AUTOKEY 4429 if (xkeyid > NTP_MAXKEY) 4430 authtrust(xkeyid, 0); 4431 #endif /* AUTOKEY */ 4432 if (sendlen > sizeof(xpkt)) { 4433 msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen); 4434 exit (-1); 4435 } 4436 peer->t21_bytes = sendlen; 4437 sendpkt(&peer->srcadr, peer->dstadr, 4438 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4439 &xpkt, sendlen); 4440 peer->sent++; 4441 peer->throttle += (1 << peer->minpoll) - 2; 4442 4443 /* 4444 * Capture a-posteriori timestamps 4445 */ 4446 get_systime(&xmt_ty); 4447 if (peer->flip != 0) { /* interleaved modes */ 4448 if (peer->flip > 0) 4449 peer->aorg = xmt_ty; 4450 else 4451 peer->borg = xmt_ty; 4452 peer->flip = -peer->flip; 4453 } 4454 L_SUB(&xmt_ty, &xmt_tx); 4455 LFPTOD(&xmt_ty, peer->xleave); 4456 #ifdef AUTOKEY 4457 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n", 4458 current_time, latoa(peer->dstadr), 4459 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen, 4460 peer->keynumber)); 4461 #else /* !AUTOKEY follows */ 4462 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n", 4463 current_time, peer->dstadr ? 4464 ntoa(&peer->dstadr->sin) : "-", 4465 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen)); 4466 #endif /* !AUTOKEY */ 4467 4468 return; 4469 } 4470 4471 4472 #ifdef LEAP_SMEAR 4473 4474 static void 4475 leap_smear_add_offs( 4476 l_fp *t, 4477 l_fp *t_recv 4478 ) 4479 { 4480 4481 L_ADD(t, &leap_smear.offset); 4482 4483 /* 4484 ** XXX: Should the smear be added to the root dispersion? 4485 */ 4486 4487 return; 4488 } 4489 4490 #endif /* LEAP_SMEAR */ 4491 4492 4493 /* 4494 * fast_xmit - Send packet for nonpersistent association. Note that 4495 * neither the source or destination can be a broadcast address. 4496 */ 4497 static void 4498 fast_xmit( 4499 struct recvbuf *rbufp, /* receive packet pointer */ 4500 int xmode, /* receive mode */ /* XXX: HMS: really? */ 4501 keyid_t xkeyid, /* transmit key ID */ 4502 int flags /* restrict mask */ 4503 ) 4504 { 4505 struct pkt xpkt; /* transmit packet structure */ 4506 struct pkt *rpkt; /* receive packet structure */ 4507 l_fp xmt_tx, xmt_ty; 4508 size_t sendlen; 4509 #ifdef AUTOKEY 4510 u_int32 temp32; 4511 #endif 4512 4513 /* 4514 * Initialize transmit packet header fields from the receive 4515 * buffer provided. We leave the fields intact as received, but 4516 * set the peer poll at the maximum of the receive peer poll and 4517 * the system minimum poll (ntp_minpoll). This is for KoD rate 4518 * control and not strictly specification compliant, but doesn't 4519 * break anything. 4520 * 4521 * If the gazinta was from a multicast address, the gazoutta 4522 * must go out another way. 4523 */ 4524 rpkt = &rbufp->recv_pkt; 4525 if (rbufp->dstadr->flags & INT_MCASTOPEN) 4526 rbufp->dstadr = findinterface(&rbufp->recv_srcadr); 4527 4528 /* 4529 * If this is a kiss-o'-death (KoD) packet, show leap 4530 * unsynchronized, stratum zero, reference ID the four-character 4531 * kiss code and (???) system root delay. Note we don't reveal 4532 * the local time, so these packets can't be used for 4533 * synchronization. 4534 */ 4535 if (flags & RES_KOD) { 4536 sys_kodsent++; 4537 xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC, 4538 PKT_VERSION(rpkt->li_vn_mode), xmode); 4539 xpkt.stratum = STRATUM_PKT_UNSPEC; 4540 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4541 xpkt.precision = rpkt->precision; 4542 memcpy(&xpkt.refid, "RATE", 4); 4543 xpkt.rootdelay = rpkt->rootdelay; 4544 xpkt.rootdisp = rpkt->rootdisp; 4545 xpkt.reftime = rpkt->reftime; 4546 xpkt.org = rpkt->xmt; 4547 xpkt.rec = rpkt->xmt; 4548 xpkt.xmt = rpkt->xmt; 4549 4550 /* 4551 * This is a normal packet. Use the system variables. 4552 */ 4553 } else { 4554 double this_rootdisp; 4555 l_fp this_ref_time; 4556 4557 #ifdef LEAP_SMEAR 4558 /* 4559 * Make copies of the variables which can be affected by smearing. 4560 */ 4561 l_fp this_recv_time; 4562 #endif 4563 4564 /* 4565 * If we are inside the leap smear interval we add 4566 * the current smear offset to: 4567 * - the packet receive time, 4568 * - the packet transmit time, 4569 * - and eventually to the reftime to make sure the 4570 * reftime isn't later than the transmit/receive times. 4571 */ 4572 xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap, 4573 PKT_VERSION(rpkt->li_vn_mode), xmode); 4574 4575 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4576 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4577 xpkt.precision = sys_precision; 4578 xpkt.refid = sys_refid; 4579 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4580 4581 /* 4582 ** Server Response Fuzzing 4583 ** 4584 ** Which values do we want to use for reftime and rootdisp? 4585 */ 4586 4587 if ( MODE_SERVER == xmode 4588 && RES_SRVRSPFUZ & flags) { 4589 if (current_time < p2_time) { 4590 this_ref_time = p2_reftime; 4591 this_rootdisp = p2_rootdisp; 4592 } else if (current_time < prev_time) { 4593 this_ref_time = prev_reftime; 4594 this_rootdisp = prev_rootdisp; 4595 } else { 4596 this_ref_time = sys_reftime; 4597 this_rootdisp = sys_rootdisp; 4598 } 4599 4600 SRVRSP_FUZZ(this_ref_time); 4601 } else { 4602 this_ref_time = sys_reftime; 4603 this_rootdisp = sys_rootdisp; 4604 } 4605 4606 /* 4607 ** ROOT DISPERSION 4608 */ 4609 4610 xpkt.rootdisp = HTONS_FP(DTOUFP(this_rootdisp)); 4611 4612 /* 4613 ** REFTIME 4614 */ 4615 4616 #ifdef LEAP_SMEAR 4617 if (leap_smear.in_progress) { 4618 /* adjust the reftime by the same amount as the 4619 * leap smear, as we don't want to risk the 4620 * reftime being later than the transmit time. 4621 */ 4622 leap_smear_add_offs(&this_ref_time, NULL); 4623 } 4624 #endif 4625 4626 HTONL_FP(&this_ref_time, &xpkt.reftime); 4627 4628 /* 4629 ** REFID 4630 */ 4631 4632 #ifdef LEAP_SMEAR 4633 if (leap_smear.in_progress) { 4634 xpkt.refid = convertLFPToRefID(leap_smear.offset); 4635 DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n", 4636 ntohl(xpkt.refid), 4637 lfptoa(&leap_smear.offset, 8) 4638 )); 4639 } 4640 #endif 4641 4642 /* 4643 ** ORIGIN 4644 */ 4645 4646 xpkt.org = rpkt->xmt; 4647 4648 /* 4649 ** RECEIVE 4650 */ 4651 #ifdef LEAP_SMEAR 4652 this_recv_time = rbufp->recv_time; 4653 if (leap_smear.in_progress) 4654 leap_smear_add_offs(&this_recv_time, NULL); 4655 HTONL_FP(&this_recv_time, &xpkt.rec); 4656 #else 4657 HTONL_FP(&rbufp->recv_time, &xpkt.rec); 4658 #endif 4659 4660 /* 4661 ** TRANSMIT 4662 */ 4663 4664 get_systime(&xmt_tx); 4665 #ifdef LEAP_SMEAR 4666 if (leap_smear.in_progress) 4667 leap_smear_add_offs(&xmt_tx, &this_recv_time); 4668 #endif 4669 HTONL_FP(&xmt_tx, &xpkt.xmt); 4670 } 4671 4672 #ifdef HAVE_NTP_SIGND 4673 if (flags & RES_MSSNTP) { 4674 send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt); 4675 return; 4676 } 4677 #endif /* HAVE_NTP_SIGND */ 4678 4679 /* 4680 * If the received packet contains a MAC, the transmitted packet 4681 * is authenticated and contains a MAC. If not, the transmitted 4682 * packet is not authenticated. 4683 */ 4684 sendlen = LEN_PKT_NOMAC; 4685 if ((size_t)rbufp->recv_length == sendlen) { 4686 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, 4687 sendlen); 4688 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n", 4689 current_time, stoa(&rbufp->dstadr->sin), 4690 stoa(&rbufp->recv_srcadr), xmode, 4691 (u_long)sendlen)); 4692 return; 4693 } 4694 4695 /* 4696 * The received packet contains a MAC, so the transmitted packet 4697 * must be authenticated. For symmetric key cryptography, use 4698 * the predefined and trusted symmetric keys to generate the 4699 * cryptosum. For autokey cryptography, use the server private 4700 * value to generate the cookie, which is unique for every 4701 * source-destination-key ID combination. 4702 */ 4703 #ifdef AUTOKEY 4704 if (xkeyid > NTP_MAXKEY) { 4705 keyid_t cookie; 4706 4707 /* 4708 * The only way to get here is a reply to a legitimate 4709 * client request message, so the mode must be 4710 * MODE_SERVER. If an extension field is present, there 4711 * can be only one and that must be a command. Do what 4712 * needs, but with private value of zero so the poor 4713 * jerk can decode it. If no extension field is present, 4714 * use the cookie to generate the session key. 4715 */ 4716 cookie = session_key(&rbufp->recv_srcadr, 4717 &rbufp->dstadr->sin, 0, sys_private, 0); 4718 if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) { 4719 session_key(&rbufp->dstadr->sin, 4720 &rbufp->recv_srcadr, xkeyid, 0, 2); 4721 temp32 = CRYPTO_RESP; 4722 rpkt->exten[0] |= htonl(temp32); 4723 sendlen += crypto_xmit(NULL, &xpkt, rbufp, 4724 sendlen, (struct exten *)rpkt->exten, 4725 cookie); 4726 } else { 4727 session_key(&rbufp->dstadr->sin, 4728 &rbufp->recv_srcadr, xkeyid, cookie, 2); 4729 } 4730 } 4731 #endif /* AUTOKEY */ 4732 get_systime(&xmt_tx); 4733 sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4734 #ifdef AUTOKEY 4735 if (xkeyid > NTP_MAXKEY) 4736 authtrust(xkeyid, 0); 4737 #endif /* AUTOKEY */ 4738 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen); 4739 get_systime(&xmt_ty); 4740 L_SUB(&xmt_ty, &xmt_tx); 4741 sys_authdelay = xmt_ty; 4742 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n", 4743 current_time, ntoa(&rbufp->dstadr->sin), 4744 ntoa(&rbufp->recv_srcadr), xmode, xkeyid, 4745 (u_long)sendlen)); 4746 } 4747 4748 4749 /* 4750 * pool_xmit - resolve hostname or send unicast solicitation for pool. 4751 */ 4752 static void 4753 pool_xmit( 4754 struct peer *pool /* pool solicitor association */ 4755 ) 4756 { 4757 #ifdef WORKER 4758 struct pkt xpkt; /* transmit packet structure */ 4759 struct addrinfo hints; 4760 int rc; 4761 struct interface * lcladr; 4762 sockaddr_u * rmtadr; 4763 r4addr r4a; 4764 u_short restrict_mask; 4765 struct peer * p; 4766 l_fp xmt_tx; 4767 4768 DEBUG_REQUIRE(pool); 4769 if (NULL == pool->ai) { 4770 if (pool->addrs != NULL) { 4771 /* free() is used with copy_addrinfo_list() */ 4772 free(pool->addrs); 4773 pool->addrs = NULL; 4774 } 4775 ZERO(hints); 4776 hints.ai_family = AF(&pool->srcadr); 4777 hints.ai_socktype = SOCK_DGRAM; 4778 hints.ai_protocol = IPPROTO_UDP; 4779 /* ignore getaddrinfo_sometime() errors, we will retry */ 4780 rc = getaddrinfo_sometime( 4781 pool->hostname, 4782 "ntp", 4783 &hints, 4784 0, /* no retry */ 4785 &pool_name_resolved, 4786 (void *)(intptr_t)pool->associd); 4787 if (!rc) 4788 DPRINTF(1, ("pool DNS lookup %s started\n", 4789 pool->hostname)); 4790 else 4791 msyslog(LOG_ERR, 4792 "unable to start pool DNS %s: %m", 4793 pool->hostname); 4794 return; 4795 } 4796 4797 do { 4798 /* copy_addrinfo_list ai_addr points to a sockaddr_u */ 4799 rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr; 4800 pool->ai = pool->ai->ai_next; 4801 p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0, NULL); 4802 } while (p != NULL && pool->ai != NULL); 4803 if (p != NULL) 4804 return; /* out of addresses, re-query DNS next poll */ 4805 restrictions(rmtadr, &r4a); 4806 restrict_mask = r4a.rflags; 4807 if (RES_FLAGS & restrict_mask) 4808 restrict_source(rmtadr, 0, 4809 current_time + POOL_SOLICIT_WINDOW + 1); 4810 lcladr = findinterface(rmtadr); 4811 memset(&xpkt, 0, sizeof(xpkt)); 4812 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version, 4813 MODE_CLIENT); 4814 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4815 xpkt.ppoll = pool->hpoll; 4816 xpkt.precision = sys_precision; 4817 xpkt.refid = sys_refid; 4818 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4819 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4820 /* Bug 3596: What are the pros/cons of using sys_reftime here? */ 4821 HTONL_FP(&sys_reftime, &xpkt.reftime); 4822 4823 /* HMS: the following is better done after the ntp_random() calls */ 4824 get_systime(&xmt_tx); 4825 pool->aorg = xmt_tx; 4826 4827 if (FLAG_LOOPNONCE & pool->flags) { 4828 l_fp nonce; 4829 4830 do { 4831 nonce.l_ui = ntp_random(); 4832 } while (0 == nonce.l_ui); 4833 do { 4834 nonce.l_uf = ntp_random(); 4835 } while (0 == nonce.l_uf); 4836 pool->nonce = nonce; 4837 HTONL_FP(&nonce, &xpkt.xmt); 4838 } else { 4839 L_CLR(&pool->nonce); 4840 HTONL_FP(&xmt_tx, &xpkt.xmt); 4841 } 4842 sendpkt(rmtadr, lcladr, 4843 sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl], 4844 &xpkt, LEN_PKT_NOMAC); 4845 pool->sent++; 4846 pool->throttle += (1 << pool->minpoll) - 2; 4847 DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n", 4848 current_time, latoa(lcladr), stoa(rmtadr))); 4849 msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr)); 4850 #endif /* WORKER */ 4851 } 4852 4853 4854 #ifdef AUTOKEY 4855 /* 4856 * group_test - test if this is the same group 4857 * 4858 * host assoc return action 4859 * none none 0 mobilize * 4860 * none group 0 mobilize * 4861 * group none 0 mobilize * 4862 * group group 1 mobilize 4863 * group different 1 ignore 4864 * * ignore if notrust 4865 */ 4866 int 4867 group_test( 4868 char *grp, 4869 char *ident 4870 ) 4871 { 4872 if (grp == NULL) 4873 return (0); 4874 4875 if (strcmp(grp, sys_groupname) == 0) 4876 return (0); 4877 4878 if (ident == NULL) 4879 return (1); 4880 4881 if (strcmp(grp, ident) == 0) 4882 return (0); 4883 4884 return (1); 4885 } 4886 #endif /* AUTOKEY */ 4887 4888 4889 #ifdef WORKER 4890 void 4891 pool_name_resolved( 4892 int rescode, 4893 int gai_errno, 4894 void * context, 4895 const char * name, 4896 const char * service, 4897 const struct addrinfo * hints, 4898 const struct addrinfo * res 4899 ) 4900 { 4901 struct peer * pool; /* pool solicitor association */ 4902 associd_t assoc; 4903 4904 if (rescode) { 4905 msyslog(LOG_ERR, 4906 "error resolving pool %s: %s (%d)", 4907 name, gai_strerror(rescode), rescode); 4908 return; 4909 } 4910 4911 assoc = (associd_t)(intptr_t)context; 4912 pool = findpeerbyassoc(assoc); 4913 if (NULL == pool) { 4914 msyslog(LOG_ERR, 4915 "Could not find assoc %u for pool DNS %s", 4916 assoc, name); 4917 return; 4918 } 4919 DPRINTF(1, ("pool DNS %s completed\n", name)); 4920 pool->addrs = copy_addrinfo_list(res); 4921 pool->ai = pool->addrs; 4922 pool_xmit(pool); 4923 4924 } 4925 #endif /* WORKER */ 4926 4927 4928 #ifdef AUTOKEY 4929 /* 4930 * key_expire - purge the key list 4931 */ 4932 void 4933 key_expire( 4934 struct peer *peer /* peer structure pointer */ 4935 ) 4936 { 4937 int i; 4938 4939 if (peer->keylist != NULL) { 4940 for (i = 0; i <= peer->keynumber; i++) 4941 authtrust(peer->keylist[i], 0); 4942 free(peer->keylist); 4943 peer->keylist = NULL; 4944 } 4945 value_free(&peer->sndval); 4946 peer->keynumber = 0; 4947 peer->flags &= ~FLAG_ASSOC; 4948 DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time, 4949 peer->associd)); 4950 } 4951 #endif /* AUTOKEY */ 4952 4953 4954 /* 4955 * local_refid(peer) - check peer refid to avoid selecting peers 4956 * currently synced to this ntpd. 4957 */ 4958 static int 4959 local_refid( 4960 struct peer * p 4961 ) 4962 { 4963 endpt * unicast_ep; 4964 4965 if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags)) 4966 unicast_ep = p->dstadr; 4967 else 4968 unicast_ep = findinterface(&p->srcadr); 4969 4970 if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid) 4971 return TRUE; 4972 else 4973 return FALSE; 4974 } 4975 4976 4977 /* 4978 * Determine if the peer is unfit for synchronization 4979 * 4980 * A peer is unfit for synchronization if 4981 * > TEST10 bad leap or stratum below floor or at or above ceiling 4982 * > TEST11 root distance exceeded for remote peer 4983 * > TEST12 a direct or indirect synchronization loop would form 4984 * > TEST13 unreachable or noselect 4985 */ 4986 int /* FALSE if fit, TRUE if unfit */ 4987 peer_unfit( 4988 struct peer *peer /* peer structure pointer */ 4989 ) 4990 { 4991 int rval = 0; 4992 4993 /* 4994 * A stratum error occurs if (1) the server has never been 4995 * synchronized, (2) the server stratum is below the floor or 4996 * greater than or equal to the ceiling. 4997 */ 4998 if ( peer->leap == LEAP_NOTINSYNC 4999 || peer->stratum < sys_floor 5000 || peer->stratum >= sys_ceiling) { 5001 rval |= TEST10; /* bad synch or stratum */ 5002 } 5003 5004 /* 5005 * A distance error for a remote peer occurs if the root 5006 * distance is greater than or equal to the distance threshold 5007 * plus the increment due to one host poll interval. 5008 */ 5009 if ( !(peer->flags & FLAG_REFCLOCK) 5010 && root_distance(peer) >= sys_maxdist 5011 + clock_phi * ULOGTOD(peer->hpoll)) { 5012 rval |= TEST11; /* distance exceeded */ 5013 } 5014 5015 /* 5016 * A loop error occurs if the remote peer is synchronized to the 5017 * local peer or if the remote peer is synchronized to the same 5018 * server as the local peer but only if the remote peer is 5019 * neither a reference clock nor an orphan. 5020 */ 5021 if (peer->stratum > 1 && local_refid(peer)) { 5022 rval |= TEST12; /* synchronization loop */ 5023 } 5024 5025 /* 5026 * An unreachable error occurs if the server is unreachable or 5027 * the noselect bit is set. 5028 */ 5029 if (!peer->reach || (peer->flags & FLAG_NOSELECT)) { 5030 rval |= TEST13; /* unreachable */ 5031 } 5032 5033 peer->flash &= ~PEER_TEST_MASK; 5034 peer->flash |= rval; 5035 return (rval); 5036 } 5037 5038 5039 /* 5040 * Find the precision of this particular machine 5041 */ 5042 #define MINSTEP 20e-9 /* minimum clock increment (s) */ 5043 #define MAXSTEP 1 /* maximum clock increment (s) */ 5044 #define MINCHANGES 12 /* minimum number of step samples */ 5045 #define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */ 5046 5047 /* 5048 * This routine measures the system precision defined as the minimum of 5049 * a sequence of differences between successive readings of the system 5050 * clock. However, if a difference is less than MINSTEP, the clock has 5051 * been read more than once during a clock tick and the difference is 5052 * ignored. We set MINSTEP greater than zero in case something happens 5053 * like a cache miss, and to tolerate underlying system clocks which 5054 * ensure each reading is strictly greater than prior readings while 5055 * using an underlying stepping (not interpolated) clock. 5056 * 5057 * sys_tick and sys_precision represent the time to read the clock for 5058 * systems with high-precision clocks, and the tick interval or step 5059 * size for lower-precision stepping clocks. 5060 * 5061 * This routine also measures the time to read the clock on stepping 5062 * system clocks by counting the number of readings between changes of 5063 * the underlying clock. With either type of clock, the minimum time 5064 * to read the clock is saved as sys_fuzz, and used to ensure the 5065 * get_systime() readings always increase and are fuzzed below sys_fuzz. 5066 */ 5067 void 5068 measure_precision(void) 5069 { 5070 /* 5071 * With sys_fuzz set to zero, get_systime() fuzzing of low bits 5072 * is effectively disabled. trunc_os_clock is FALSE to disable 5073 * get_ostime() simulation of a low-precision system clock. 5074 */ 5075 set_sys_fuzz(0.); 5076 trunc_os_clock = FALSE; 5077 measured_tick = measure_tick_fuzz(); 5078 set_sys_tick_precision(measured_tick); 5079 msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)", 5080 sys_tick * 1e6, sys_precision); 5081 if (sys_fuzz < sys_tick) { 5082 msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec", 5083 sys_fuzz * 1e6); 5084 } 5085 } 5086 5087 5088 /* 5089 * measure_tick_fuzz() 5090 * 5091 * measures the minimum time to read the clock (stored in sys_fuzz) 5092 * and returns the tick, the larger of the minimum increment observed 5093 * between successive clock readings and the time to read the clock. 5094 */ 5095 double 5096 measure_tick_fuzz(void) 5097 { 5098 l_fp minstep; /* MINSTEP as l_fp */ 5099 l_fp val; /* current seconds fraction */ 5100 l_fp last; /* last seconds fraction */ 5101 l_fp ldiff; /* val - last */ 5102 double tick; /* computed tick value */ 5103 double diff; 5104 long repeats; 5105 long max_repeats; 5106 int changes; 5107 int i; /* log2 precision */ 5108 5109 tick = MAXSTEP; 5110 max_repeats = 0; 5111 repeats = 0; 5112 changes = 0; 5113 DTOLFP(MINSTEP, &minstep); 5114 get_systime(&last); 5115 for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) { 5116 get_systime(&val); 5117 ldiff = val; 5118 L_SUB(&ldiff, &last); 5119 last = val; 5120 if (L_ISGT(&ldiff, &minstep)) { 5121 max_repeats = max(repeats, max_repeats); 5122 repeats = 0; 5123 changes++; 5124 LFPTOD(&ldiff, diff); 5125 tick = min(diff, tick); 5126 } else { 5127 repeats++; 5128 } 5129 } 5130 if (changes < MINCHANGES) { 5131 msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)"); 5132 exit(1); 5133 } 5134 5135 if (0 == max_repeats) { 5136 set_sys_fuzz(tick); 5137 } else { 5138 set_sys_fuzz(tick / max_repeats); 5139 } 5140 5141 return tick; 5142 } 5143 5144 5145 void 5146 set_sys_tick_precision( 5147 double tick 5148 ) 5149 { 5150 int i; 5151 5152 if (tick > 1.) { 5153 msyslog(LOG_ERR, 5154 "unsupported tick %.3f > 1s ignored", tick); 5155 return; 5156 } 5157 if (tick < measured_tick) { 5158 msyslog(LOG_ERR, 5159 "proto: tick %.3f less than measured tick %.3f, ignored", 5160 tick, measured_tick); 5161 return; 5162 } else if (tick > measured_tick) { 5163 trunc_os_clock = TRUE; 5164 msyslog(LOG_NOTICE, 5165 "proto: truncating system clock to multiples of %.9f", 5166 tick); 5167 } 5168 sys_tick = tick; 5169 5170 /* 5171 * Find the nearest power of two. 5172 */ 5173 for (i = 0; tick <= 1; i--) 5174 tick *= 2; 5175 if (tick - 1 > 1 - tick / 2) 5176 i++; 5177 5178 sys_precision = (s_char)i; 5179 } 5180 5181 5182 /* 5183 * init_proto - initialize the protocol module's data 5184 */ 5185 void 5186 init_proto(void) 5187 { 5188 l_fp dummy; 5189 int i; 5190 5191 /* 5192 * Fill in the sys_* stuff. Default is don't listen to 5193 * broadcasting, require authentication. 5194 */ 5195 set_sys_leap(LEAP_NOTINSYNC); 5196 sys_stratum = STRATUM_UNSPEC; 5197 memcpy(&sys_refid, "INIT", 4); 5198 sys_peer = NULL; 5199 sys_rootdelay = 0; 5200 sys_rootdisp = 0; 5201 L_CLR(&sys_reftime); 5202 sys_jitter = 0; 5203 measure_precision(); 5204 get_systime(&dummy); 5205 sys_survivors = 0; 5206 sys_manycastserver = 0; 5207 sys_bclient = 0; 5208 sys_bdelay = BDELAY_DEFAULT; /*[Bug 3031] delay cutoff */ 5209 sys_authenticate = 1; 5210 sys_stattime = current_time; 5211 orphwait = current_time + sys_orphwait; 5212 proto_clr_stats(); 5213 for (i = 0; i < MAX_TTL; ++i) 5214 sys_ttl[i] = (u_char)((i * 256) / MAX_TTL); 5215 sys_ttlmax = (MAX_TTL - 1); 5216 hardpps_enable = 0; 5217 stats_control = 1; 5218 } 5219 5220 5221 /* 5222 * proto_config - configure the protocol module 5223 */ 5224 void 5225 proto_config( 5226 int item, 5227 u_long value, 5228 double dvalue, 5229 sockaddr_u *svalue 5230 ) 5231 { 5232 /* 5233 * Figure out what he wants to change, then do it 5234 */ 5235 DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n", 5236 item, value, dvalue)); 5237 5238 switch (item) { 5239 5240 /* 5241 * enable and disable commands - arguments are Boolean. 5242 */ 5243 case PROTO_AUTHENTICATE: /* authentication (auth) */ 5244 sys_authenticate = value; 5245 break; 5246 5247 case PROTO_BROADCLIENT: /* broadcast client (bclient) */ 5248 sys_bclient = (int)value; 5249 if (sys_bclient == 0) 5250 io_unsetbclient(); 5251 else 5252 io_setbclient(); 5253 break; 5254 5255 #ifdef REFCLOCK 5256 case PROTO_CAL: /* refclock calibrate (calibrate) */ 5257 cal_enable = value; 5258 break; 5259 #endif /* REFCLOCK */ 5260 5261 case PROTO_KERNEL: /* kernel discipline (kernel) */ 5262 select_loop(value); 5263 break; 5264 5265 case PROTO_MONITOR: /* monitoring (monitor) */ 5266 if (value) 5267 mon_start(MON_ON); 5268 else { 5269 mon_stop(MON_ON); 5270 if (mon_enabled) 5271 msyslog(LOG_WARNING, 5272 "restrict: 'monitor' cannot be disabled while 'limited' is enabled"); 5273 } 5274 break; 5275 5276 case PROTO_NTP: /* NTP discipline (ntp) */ 5277 ntp_enable = value; 5278 break; 5279 5280 case PROTO_MODE7: /* mode7 management (ntpdc) */ 5281 ntp_mode7 = value; 5282 break; 5283 5284 case PROTO_PPS: /* PPS discipline (pps) */ 5285 hardpps_enable = value; 5286 break; 5287 5288 case PROTO_FILEGEN: /* statistics (stats) */ 5289 stats_control = value; 5290 break; 5291 5292 /* 5293 * tos command - arguments are double, sometimes cast to int 5294 */ 5295 5296 case PROTO_BCPOLLBSTEP: /* Broadcast Poll Backstep gate (bcpollbstep) */ 5297 sys_bcpollbstep = (u_char)dvalue; 5298 break; 5299 5300 case PROTO_BEACON: /* manycast beacon (beacon) */ 5301 sys_beacon = (int)dvalue; 5302 break; 5303 5304 case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */ 5305 sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT); 5306 break; 5307 5308 case PROTO_CEILING: /* stratum ceiling (ceiling) */ 5309 sys_ceiling = (int)dvalue; 5310 break; 5311 5312 case PROTO_COHORT: /* cohort switch (cohort) */ 5313 sys_cohort = (int)dvalue; 5314 break; 5315 5316 case PROTO_FLOOR: /* stratum floor (floor) */ 5317 sys_floor = (int)dvalue; 5318 break; 5319 5320 case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */ 5321 sys_maxclock = (int)dvalue; 5322 break; 5323 5324 case PROTO_MAXDIST: /* select threshold (maxdist) */ 5325 sys_maxdist = dvalue; 5326 break; 5327 5328 case PROTO_CALLDELAY: /* modem call delay (mdelay) */ 5329 break; /* NOT USED */ 5330 5331 case PROTO_MINCLOCK: /* minimum candidates (minclock) */ 5332 sys_minclock = (int)dvalue; 5333 break; 5334 5335 case PROTO_MINDISP: /* minimum distance (mindist) */ 5336 sys_mindisp = dvalue; 5337 break; 5338 5339 case PROTO_MINSANE: /* minimum survivors (minsane) */ 5340 sys_minsane = (int)dvalue; 5341 break; 5342 5343 case PROTO_ORPHAN: /* orphan stratum (orphan) */ 5344 sys_orphan = (int)dvalue; 5345 break; 5346 5347 case PROTO_ORPHWAIT: /* orphan wait (orphwait) */ 5348 orphwait -= sys_orphwait; 5349 sys_orphwait = (int)dvalue; 5350 orphwait += sys_orphwait; 5351 break; 5352 5353 /* 5354 * Miscellaneous commands 5355 */ 5356 case PROTO_MULTICAST_ADD: /* add group address */ 5357 if (svalue != NULL) 5358 io_multicast_add(svalue); 5359 sys_bclient = 1; 5360 break; 5361 5362 case PROTO_MULTICAST_DEL: /* delete group address */ 5363 if (svalue != NULL) 5364 io_multicast_del(svalue); 5365 break; 5366 5367 /* 5368 * Peer_clear Early policy choices 5369 */ 5370 5371 case PROTO_PCEDIGEST: /* Digest */ 5372 peer_clear_digest_early = value; 5373 break; 5374 5375 /* 5376 * Unpeer Early policy choices 5377 */ 5378 5379 case PROTO_UECRYPTO: /* Crypto */ 5380 unpeer_crypto_early = value; 5381 break; 5382 5383 case PROTO_UECRYPTONAK: /* Crypto_NAK */ 5384 unpeer_crypto_nak_early = value; 5385 break; 5386 5387 case PROTO_UEDIGEST: /* Digest */ 5388 unpeer_digest_early = value; 5389 break; 5390 5391 default: 5392 msyslog(LOG_NOTICE, 5393 "proto: unsupported option %d", item); 5394 } 5395 } 5396 5397 5398 /* 5399 * proto_clr_stats - clear protocol stat counters 5400 */ 5401 void 5402 proto_clr_stats(void) 5403 { 5404 sys_stattime = current_time; 5405 sys_received = 0; 5406 sys_processed = 0; 5407 sys_newversion = 0; 5408 sys_oldversion = 0; 5409 sys_declined = 0; 5410 sys_restricted = 0; 5411 sys_badlength = 0; 5412 sys_badauth = 0; 5413 sys_limitrejected = 0; 5414 sys_kodsent = 0; 5415 sys_lamport = 0; 5416 sys_tsrounding = 0; 5417 } 5418