1 /* $NetBSD: ntp_crypto.c,v 1.8 2015/04/07 17:34:19 christos Exp $ */ 2 3 /* 4 * ntp_crypto.c - NTP version 4 public key routines 5 */ 6 #ifdef HAVE_CONFIG_H 7 #include <config.h> 8 #endif 9 10 #ifdef AUTOKEY 11 #include <stdio.h> 12 #include <stdlib.h> /* strtoul */ 13 #include <sys/types.h> 14 #include <sys/param.h> 15 #include <unistd.h> 16 #include <fcntl.h> 17 18 #include "ntpd.h" 19 #include "ntp_stdlib.h" 20 #include "ntp_unixtime.h" 21 #include "ntp_string.h" 22 #include "ntp_random.h" 23 #include "ntp_assert.h" 24 #include "ntp_calendar.h" 25 #include "ntp_leapsec.h" 26 27 #include "openssl/asn1_mac.h" 28 #include "openssl/bn.h" 29 #include "openssl/err.h" 30 #include "openssl/evp.h" 31 #include "openssl/pem.h" 32 #include "openssl/rand.h" 33 #include "openssl/x509v3.h" 34 35 #ifdef KERNEL_PLL 36 #include "ntp_syscall.h" 37 #endif /* KERNEL_PLL */ 38 39 /* 40 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp 41 * No, it's not a plotter. If you don't understand that, you're too young. 42 */ 43 static int calcomp(struct calendar *pjd1, struct calendar *pjd2) 44 { 45 int32_t diff; /* large enough to hold the signed difference between two uint16_t values */ 46 47 diff = pjd1->year - pjd2->year; 48 if (diff < 0) return -1; else if (diff > 0) return 1; 49 /* same year; compare months */ 50 diff = pjd1->month - pjd2->month; 51 if (diff < 0) return -1; else if (diff > 0) return 1; 52 /* same year and month; compare monthday */ 53 diff = pjd1->monthday - pjd2->monthday; 54 if (diff < 0) return -1; else if (diff > 0) return 1; 55 /* same year and month and monthday; compare time */ 56 diff = pjd1->hour - pjd2->hour; 57 if (diff < 0) return -1; else if (diff > 0) return 1; 58 diff = pjd1->minute - pjd2->minute; 59 if (diff < 0) return -1; else if (diff > 0) return 1; 60 diff = pjd1->second - pjd2->second; 61 if (diff < 0) return -1; else if (diff > 0) return 1; 62 /* identical */ 63 return 0; 64 } 65 66 /* 67 * Extension field message format 68 * 69 * These are always signed and saved before sending in network byte 70 * order. They must be converted to and from host byte order for 71 * processing. 72 * 73 * +-------+-------+ 74 * | op | len | <- extension pointer 75 * +-------+-------+ 76 * | associd | 77 * +---------------+ 78 * | timestamp | <- value pointer 79 * +---------------+ 80 * | filestamp | 81 * +---------------+ 82 * | value len | 83 * +---------------+ 84 * | | 85 * = value = 86 * | | 87 * +---------------+ 88 * | signature len | 89 * +---------------+ 90 * | | 91 * = signature = 92 * | | 93 * +---------------+ 94 * 95 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses. 96 * Requests carry the association ID of the receiver; responses carry 97 * the association ID of the sender. Some messages include only the 98 * operation/length and association ID words and so have length 8 99 * octets. Ohers include the value structure and associated value and 100 * signature fields. These messages include the timestamp, filestamp, 101 * value and signature words and so have length at least 24 octets. The 102 * signature and/or value fields can be empty, in which case the 103 * respective length words are zero. An empty value with nonempty 104 * signature is syntactically valid, but semantically questionable. 105 * 106 * The filestamp represents the time when a cryptographic data file such 107 * as a public/private key pair is created. It follows every reference 108 * depending on that file and serves as a means to obsolete earlier data 109 * of the same type. The timestamp represents the time when the 110 * cryptographic data of the message were last signed. Creation of a 111 * cryptographic data file or signing a message can occur only when the 112 * creator or signor is synchronized to an authoritative source and 113 * proventicated to a trusted authority. 114 * 115 * Note there are several conditions required for server trust. First, 116 * the public key on the server certificate must be verified, which can 117 * involve a hike along the certificate trail to a trusted host. Next, 118 * the server trust must be confirmed by one of several identity 119 * schemes. Valid cryptographic values are signed with attached 120 * timestamp and filestamp. Individual packet trust is confirmed 121 * relative to these values by a message digest with keys generated by a 122 * reverse-order pseudorandom hash. 123 * 124 * State decomposition. These flags are lit in the order given. They are 125 * dim only when the association is demobilized. 126 * 127 * CRYPTO_FLAG_ENAB Lit upon acceptance of a CRYPTO_ASSOC message 128 * CRYPTO_FLAG_CERT Lit when a self-digned trusted certificate is 129 * accepted. 130 * CRYPTO_FLAG_VRFY Lit when identity is confirmed. 131 * CRYPTO_FLAG_PROV Lit when the first signature is verified. 132 * CRYPTO_FLAG_COOK Lit when a valid cookie is accepted. 133 * CRYPTO_FLAG_AUTO Lit when valid autokey values are accepted. 134 * CRYPTO_FLAG_SIGN Lit when the server signed certificate is 135 * accepted. 136 * CRYPTO_FLAG_LEAP Lit when the leapsecond values are accepted. 137 */ 138 /* 139 * Cryptodefines 140 */ 141 #define TAI_1972 10 /* initial TAI offset (s) */ 142 #define MAX_LEAP 100 /* max UTC leapseconds (s) */ 143 #define VALUE_LEN (6 * 4) /* min response field length */ 144 #define MAX_VALLEN (65535 - VALUE_LEN) 145 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */ 146 147 /* 148 * Global cryptodata in host byte order 149 */ 150 u_int32 crypto_flags = 0x0; /* status word */ 151 int crypto_nid = KEY_TYPE_MD5; /* digest nid */ 152 char *sys_hostname = NULL; 153 char *sys_groupname = NULL; 154 static char *host_filename = NULL; /* host file name */ 155 static char *ident_filename = NULL; /* group file name */ 156 157 /* 158 * Global cryptodata in network byte order 159 */ 160 struct cert_info *cinfo = NULL; /* certificate info/value cache */ 161 struct cert_info *cert_host = NULL; /* host certificate */ 162 struct pkey_info *pkinfo = NULL; /* key info/value cache */ 163 struct value hostval; /* host value */ 164 struct value pubkey; /* public key */ 165 struct value tai_leap; /* leapseconds values */ 166 struct pkey_info *iffkey_info = NULL; /* IFF keys */ 167 struct pkey_info *gqkey_info = NULL; /* GQ keys */ 168 struct pkey_info *mvkey_info = NULL; /* MV keys */ 169 170 /* 171 * Private cryptodata in host byte order 172 */ 173 static char *passwd = NULL; /* private key password */ 174 static EVP_PKEY *host_pkey = NULL; /* host key */ 175 static EVP_PKEY *sign_pkey = NULL; /* sign key */ 176 static const EVP_MD *sign_digest = NULL; /* sign digest */ 177 static u_int sign_siglen; /* sign key length */ 178 static char *rand_file = NULL; /* random seed file */ 179 180 /* 181 * Cryptotypes 182 */ 183 static int crypto_verify (struct exten *, struct value *, 184 struct peer *); 185 static int crypto_encrypt (const u_char *, u_int, keyid_t *, 186 struct value *); 187 static int crypto_alice (struct peer *, struct value *); 188 static int crypto_alice2 (struct peer *, struct value *); 189 static int crypto_alice3 (struct peer *, struct value *); 190 static int crypto_bob (struct exten *, struct value *); 191 static int crypto_bob2 (struct exten *, struct value *); 192 static int crypto_bob3 (struct exten *, struct value *); 193 static int crypto_iff (struct exten *, struct peer *); 194 static int crypto_gq (struct exten *, struct peer *); 195 static int crypto_mv (struct exten *, struct peer *); 196 static int crypto_send (struct exten *, struct value *, int); 197 static tstamp_t crypto_time (void); 198 static void asn_to_calendar (ASN1_TIME *, struct calendar*); 199 static struct cert_info *cert_parse (const u_char *, long, tstamp_t); 200 static int cert_sign (struct exten *, struct value *); 201 static struct cert_info *cert_install (struct exten *, struct peer *); 202 static int cert_hike (struct peer *, struct cert_info *); 203 static void cert_free (struct cert_info *); 204 static struct pkey_info *crypto_key (char *, char *, sockaddr_u *); 205 static void bighash (BIGNUM *, BIGNUM *); 206 static struct cert_info *crypto_cert (char *); 207 208 #ifdef SYS_WINNT 209 int 210 readlink(char * link, char * file, int len) { 211 return (-1); 212 } 213 #endif 214 215 /* 216 * session_key - generate session key 217 * 218 * This routine generates a session key from the source address, 219 * destination address, key ID and private value. The value of the 220 * session key is the MD5 hash of these values, while the next key ID is 221 * the first four octets of the hash. 222 * 223 * Returns the next key ID or 0 if there is no destination address. 224 */ 225 keyid_t 226 session_key( 227 sockaddr_u *srcadr, /* source address */ 228 sockaddr_u *dstadr, /* destination address */ 229 keyid_t keyno, /* key ID */ 230 keyid_t private, /* private value */ 231 u_long lifetime /* key lifetime */ 232 ) 233 { 234 EVP_MD_CTX ctx; /* message digest context */ 235 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 236 keyid_t keyid; /* key identifer */ 237 u_int32 header[10]; /* data in network byte order */ 238 u_int hdlen, len; 239 240 if (!dstadr) 241 return 0; 242 243 /* 244 * Generate the session key and key ID. If the lifetime is 245 * greater than zero, install the key and call it trusted. 246 */ 247 hdlen = 0; 248 switch(AF(srcadr)) { 249 case AF_INET: 250 header[0] = NSRCADR(srcadr); 251 header[1] = NSRCADR(dstadr); 252 header[2] = htonl(keyno); 253 header[3] = htonl(private); 254 hdlen = 4 * sizeof(u_int32); 255 break; 256 257 case AF_INET6: 258 memcpy(&header[0], PSOCK_ADDR6(srcadr), 259 sizeof(struct in6_addr)); 260 memcpy(&header[4], PSOCK_ADDR6(dstadr), 261 sizeof(struct in6_addr)); 262 header[8] = htonl(keyno); 263 header[9] = htonl(private); 264 hdlen = 10 * sizeof(u_int32); 265 break; 266 } 267 EVP_DigestInit(&ctx, EVP_get_digestbynid(crypto_nid)); 268 EVP_DigestUpdate(&ctx, (u_char *)header, hdlen); 269 EVP_DigestFinal(&ctx, dgst, &len); 270 memcpy(&keyid, dgst, 4); 271 keyid = ntohl(keyid); 272 if (lifetime != 0) { 273 MD5auth_setkey(keyno, crypto_nid, dgst, len); 274 authtrust(keyno, lifetime); 275 } 276 DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n", 277 stoa(srcadr), stoa(dstadr), keyno, 278 private, keyid, lifetime)); 279 280 return (keyid); 281 } 282 283 284 /* 285 * make_keylist - generate key list 286 * 287 * Returns 288 * XEVNT_OK success 289 * XEVNT_ERR protocol error 290 * 291 * This routine constructs a pseudo-random sequence by repeatedly 292 * hashing the session key starting from a given source address, 293 * destination address, private value and the next key ID of the 294 * preceeding session key. The last entry on the list is saved along 295 * with its sequence number and public signature. 296 */ 297 int 298 make_keylist( 299 struct peer *peer, /* peer structure pointer */ 300 struct interface *dstadr /* interface */ 301 ) 302 { 303 EVP_MD_CTX ctx; /* signature context */ 304 tstamp_t tstamp; /* NTP timestamp */ 305 struct autokey *ap; /* autokey pointer */ 306 struct value *vp; /* value pointer */ 307 keyid_t keyid = 0; /* next key ID */ 308 keyid_t cookie; /* private value */ 309 long lifetime; 310 u_int len, mpoll; 311 int i; 312 313 if (!dstadr) 314 return XEVNT_ERR; 315 316 /* 317 * Allocate the key list if necessary. 318 */ 319 tstamp = crypto_time(); 320 if (peer->keylist == NULL) 321 peer->keylist = emalloc(sizeof(keyid_t) * 322 NTP_MAXSESSION); 323 324 /* 325 * Generate an initial key ID which is unique and greater than 326 * NTP_MAXKEY. 327 */ 328 while (1) { 329 keyid = ntp_random() & 0xffffffff; 330 if (keyid <= NTP_MAXKEY) 331 continue; 332 333 if (authhavekey(keyid)) 334 continue; 335 break; 336 } 337 338 /* 339 * Generate up to NTP_MAXSESSION session keys. Stop if the 340 * next one would not be unique or not a session key ID or if 341 * it would expire before the next poll. The private value 342 * included in the hash is zero if broadcast mode, the peer 343 * cookie if client mode or the host cookie if symmetric modes. 344 */ 345 mpoll = 1 << min(peer->ppoll, peer->hpoll); 346 lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll); 347 if (peer->hmode == MODE_BROADCAST) 348 cookie = 0; 349 else 350 cookie = peer->pcookie; 351 for (i = 0; i < NTP_MAXSESSION; i++) { 352 peer->keylist[i] = keyid; 353 peer->keynumber = i; 354 keyid = session_key(&dstadr->sin, &peer->srcadr, keyid, 355 cookie, lifetime + mpoll); 356 lifetime -= mpoll; 357 if (auth_havekey(keyid) || keyid <= NTP_MAXKEY || 358 lifetime < 0 || tstamp == 0) 359 break; 360 } 361 362 /* 363 * Save the last session key ID, sequence number and timestamp, 364 * then sign these values for later retrieval by the clients. Be 365 * careful not to use invalid key media. Use the public values 366 * timestamp as filestamp. 367 */ 368 vp = &peer->sndval; 369 if (vp->ptr == NULL) 370 vp->ptr = emalloc(sizeof(struct autokey)); 371 ap = (struct autokey *)vp->ptr; 372 ap->seq = htonl(peer->keynumber); 373 ap->key = htonl(keyid); 374 vp->tstamp = htonl(tstamp); 375 vp->fstamp = hostval.tstamp; 376 vp->vallen = htonl(sizeof(struct autokey)); 377 vp->siglen = 0; 378 if (tstamp != 0) { 379 if (vp->sig == NULL) 380 vp->sig = emalloc(sign_siglen); 381 EVP_SignInit(&ctx, sign_digest); 382 EVP_SignUpdate(&ctx, (u_char *)vp, 12); 383 EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey)); 384 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 385 vp->siglen = htonl(sign_siglen); 386 peer->flags |= FLAG_ASSOC; 387 } 388 } 389 #ifdef DEBUG 390 if (debug) 391 printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n", 392 peer->keynumber, keyid, cookie, ntohl(vp->tstamp), 393 ntohl(vp->fstamp), peer->hpoll); 394 #endif 395 return (XEVNT_OK); 396 } 397 398 399 /* 400 * crypto_recv - parse extension fields 401 * 402 * This routine is called when the packet has been matched to an 403 * association and passed sanity, format and MAC checks. We believe the 404 * extension field values only if the field has proper format and 405 * length, the timestamp and filestamp are valid and the signature has 406 * valid length and is verified. There are a few cases where some values 407 * are believed even if the signature fails, but only if the proventic 408 * bit is not set. 409 * 410 * Returns 411 * XEVNT_OK success 412 * XEVNT_ERR protocol error 413 * XEVNT_LEN bad field format or length 414 */ 415 int 416 crypto_recv( 417 struct peer *peer, /* peer structure pointer */ 418 struct recvbuf *rbufp /* packet buffer pointer */ 419 ) 420 { 421 const EVP_MD *dp; /* message digest algorithm */ 422 u_int32 *pkt; /* receive packet pointer */ 423 struct autokey *ap, *bp; /* autokey pointer */ 424 struct exten *ep, *fp; /* extension pointers */ 425 struct cert_info *xinfo; /* certificate info pointer */ 426 int has_mac; /* length of MAC field */ 427 int authlen; /* offset of MAC field */ 428 associd_t associd; /* association ID */ 429 tstamp_t fstamp = 0; /* filestamp */ 430 u_int len; /* extension field length */ 431 u_int code; /* extension field opcode */ 432 u_int vallen = 0; /* value length */ 433 X509 *cert; /* X509 certificate */ 434 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 435 keyid_t cookie; /* crumbles */ 436 int hismode; /* packet mode */ 437 int rval = XEVNT_OK; 438 const u_char *puch; 439 u_int32 temp32; 440 441 /* 442 * Initialize. Note that the packet has already been checked for 443 * valid format and extension field lengths. First extract the 444 * field length, command code and association ID in host byte 445 * order. These are used with all commands and modes. Then check 446 * the version number, which must be 2, and length, which must 447 * be at least 8 for requests and VALUE_LEN (24) for responses. 448 * Packets that fail either test sink without a trace. The 449 * association ID is saved only if nonzero. 450 */ 451 authlen = LEN_PKT_NOMAC; 452 hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode); 453 while ((has_mac = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) { 454 pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4; 455 ep = (struct exten *)pkt; 456 code = ntohl(ep->opcode) & 0xffff0000; 457 len = ntohl(ep->opcode) & 0x0000ffff; 458 // HMS: Why pkt[1] instead of ep->associd ? 459 associd = (associd_t)ntohl(pkt[1]); 460 rval = XEVNT_OK; 461 #ifdef DEBUG 462 if (debug) 463 printf( 464 "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n", 465 peer->crypto, authlen, len, code >> 16, 466 associd); 467 #endif 468 469 /* 470 * Check version number and field length. If bad, 471 * quietly ignore the packet. 472 */ 473 if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) { 474 sys_badlength++; 475 code |= CRYPTO_ERROR; 476 } 477 478 if (len >= VALUE_LEN) { 479 fstamp = ntohl(ep->fstamp); 480 vallen = ntohl(ep->vallen); 481 /* 482 * Bug 2761: I hope this isn't too early... 483 */ 484 if ( vallen == 0 485 || len - VALUE_LEN < vallen) 486 return XEVNT_LEN; 487 } 488 switch (code) { 489 490 /* 491 * Install status word, host name, signature scheme and 492 * association ID. In OpenSSL the signature algorithm is 493 * bound to the digest algorithm, so the NID completely 494 * defines the signature scheme. Note the request and 495 * response are identical, but neither is validated by 496 * signature. The request is processed here only in 497 * symmetric modes. The server name field might be 498 * useful to implement access controls in future. 499 */ 500 case CRYPTO_ASSOC: 501 502 /* 503 * If our state machine is running when this 504 * message arrives, the other fellow might have 505 * restarted. However, this could be an 506 * intruder, so just clamp the poll interval and 507 * find out for ourselves. Otherwise, pass the 508 * extension field to the transmit side. 509 */ 510 if (peer->crypto & CRYPTO_FLAG_CERT) { 511 rval = XEVNT_ERR; 512 break; 513 } 514 if (peer->cmmd) { 515 if (peer->assoc != associd) { 516 rval = XEVNT_ERR; 517 break; 518 } 519 } 520 fp = emalloc(len); 521 memcpy(fp, ep, len); 522 fp->associd = htonl(peer->associd); 523 peer->cmmd = fp; 524 /* fall through */ 525 526 case CRYPTO_ASSOC | CRYPTO_RESP: 527 528 /* 529 * Discard the message if it has already been 530 * stored or the message has been amputated. 531 */ 532 if (peer->crypto) { 533 if (peer->assoc != associd) 534 rval = XEVNT_ERR; 535 break; 536 } 537 INSIST(len >= VALUE_LEN); 538 if (vallen == 0 || vallen > MAXHOSTNAME || 539 len - VALUE_LEN < vallen) { 540 rval = XEVNT_LEN; 541 break; 542 } 543 #ifdef DEBUG 544 if (debug) 545 printf( 546 "crypto_recv: ident host 0x%x %d server 0x%x %d\n", 547 crypto_flags, peer->associd, fstamp, 548 peer->assoc); 549 #endif 550 temp32 = crypto_flags & CRYPTO_FLAG_MASK; 551 552 /* 553 * If the client scheme is PC, the server scheme 554 * must be PC. The public key and identity are 555 * presumed valid, so we skip the certificate 556 * and identity exchanges and move immediately 557 * to the cookie exchange which confirms the 558 * server signature. 559 */ 560 if (crypto_flags & CRYPTO_FLAG_PRIV) { 561 if (!(fstamp & CRYPTO_FLAG_PRIV)) { 562 rval = XEVNT_KEY; 563 break; 564 } 565 fstamp |= CRYPTO_FLAG_CERT | 566 CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN; 567 568 /* 569 * It is an error if either peer supports 570 * identity, but the other does not. 571 */ 572 } else if (hismode == MODE_ACTIVE || hismode == 573 MODE_PASSIVE) { 574 if ((temp32 && !(fstamp & 575 CRYPTO_FLAG_MASK)) || 576 (!temp32 && (fstamp & 577 CRYPTO_FLAG_MASK))) { 578 rval = XEVNT_KEY; 579 break; 580 } 581 } 582 583 /* 584 * Discard the message if the signature digest 585 * NID is not supported. 586 */ 587 temp32 = (fstamp >> 16) & 0xffff; 588 dp = 589 (const EVP_MD *)EVP_get_digestbynid(temp32); 590 if (dp == NULL) { 591 rval = XEVNT_MD; 592 break; 593 } 594 595 /* 596 * Save status word, host name and message 597 * digest/signature type. If this is from a 598 * broadcast and the association ID has changed, 599 * request the autokey values. 600 */ 601 peer->assoc = associd; 602 if (hismode == MODE_SERVER) 603 fstamp |= CRYPTO_FLAG_AUTO; 604 if (!(fstamp & CRYPTO_FLAG_TAI)) 605 fstamp |= CRYPTO_FLAG_LEAP; 606 RAND_bytes((u_char *)&peer->hcookie, 4); 607 peer->crypto = fstamp; 608 peer->digest = dp; 609 if (peer->subject != NULL) 610 free(peer->subject); 611 peer->subject = emalloc(vallen + 1); 612 memcpy(peer->subject, ep->pkt, vallen); 613 peer->subject[vallen] = '\0'; 614 if (peer->issuer != NULL) 615 free(peer->issuer); 616 peer->issuer = estrdup(peer->subject); 617 snprintf(statstr, sizeof(statstr), 618 "assoc %d %d host %s %s", peer->associd, 619 peer->assoc, peer->subject, 620 OBJ_nid2ln(temp32)); 621 record_crypto_stats(&peer->srcadr, statstr); 622 #ifdef DEBUG 623 if (debug) 624 printf("crypto_recv: %s\n", statstr); 625 #endif 626 break; 627 628 /* 629 * Decode X509 certificate in ASN.1 format and extract 630 * the data containing, among other things, subject 631 * name and public key. In the default identification 632 * scheme, the certificate trail is followed to a self 633 * signed trusted certificate. 634 */ 635 case CRYPTO_CERT | CRYPTO_RESP: 636 637 /* 638 * Discard the message if empty or invalid. 639 */ 640 if (len < VALUE_LEN) 641 break; 642 643 if ((rval = crypto_verify(ep, NULL, peer)) != 644 XEVNT_OK) 645 break; 646 647 /* 648 * Scan the certificate list to delete old 649 * versions and link the newest version first on 650 * the list. Then, verify the signature. If the 651 * certificate is bad or missing, just ignore 652 * it. 653 */ 654 if ((xinfo = cert_install(ep, peer)) == NULL) { 655 rval = XEVNT_CRT; 656 break; 657 } 658 if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK) 659 break; 660 661 /* 662 * We plug in the public key and lifetime from 663 * the first certificate received. However, note 664 * that this certificate might not be signed by 665 * the server, so we can't check the 666 * signature/digest NID. 667 */ 668 if (peer->pkey == NULL) { 669 puch = xinfo->cert.ptr; 670 cert = d2i_X509(NULL, &puch, 671 ntohl(xinfo->cert.vallen)); 672 peer->pkey = X509_get_pubkey(cert); 673 X509_free(cert); 674 } 675 peer->flash &= ~TEST8; 676 temp32 = xinfo->nid; 677 snprintf(statstr, sizeof(statstr), 678 "cert %s %s 0x%x %s (%u) fs %u", 679 xinfo->subject, xinfo->issuer, xinfo->flags, 680 OBJ_nid2ln(temp32), temp32, 681 ntohl(ep->fstamp)); 682 record_crypto_stats(&peer->srcadr, statstr); 683 #ifdef DEBUG 684 if (debug) 685 printf("crypto_recv: %s\n", statstr); 686 #endif 687 break; 688 689 /* 690 * Schnorr (IFF) identity scheme. This scheme is 691 * designed for use with shared secret server group keys 692 * and where the certificate may be generated by a third 693 * party. The client sends a challenge to the server, 694 * which performs a calculation and returns the result. 695 * A positive result is possible only if both client and 696 * server contain the same secret group key. 697 */ 698 case CRYPTO_IFF | CRYPTO_RESP: 699 700 /* 701 * Discard the message if invalid. 702 */ 703 if ((rval = crypto_verify(ep, NULL, peer)) != 704 XEVNT_OK) 705 break; 706 707 /* 708 * If the challenge matches the response, the 709 * server public key, signature and identity are 710 * all verified at the same time. The server is 711 * declared trusted, so we skip further 712 * certificate exchanges and move immediately to 713 * the cookie exchange. 714 */ 715 if ((rval = crypto_iff(ep, peer)) != XEVNT_OK) 716 break; 717 718 peer->crypto |= CRYPTO_FLAG_VRFY; 719 peer->flash &= ~TEST8; 720 snprintf(statstr, sizeof(statstr), "iff %s fs %u", 721 peer->issuer, ntohl(ep->fstamp)); 722 record_crypto_stats(&peer->srcadr, statstr); 723 #ifdef DEBUG 724 if (debug) 725 printf("crypto_recv: %s\n", statstr); 726 #endif 727 break; 728 729 /* 730 * Guillou-Quisquater (GQ) identity scheme. This scheme 731 * is designed for use with public certificates carrying 732 * the GQ public key in an extension field. The client 733 * sends a challenge to the server, which performs a 734 * calculation and returns the result. A positive result 735 * is possible only if both client and server contain 736 * the same group key and the server has the matching GQ 737 * private key. 738 */ 739 case CRYPTO_GQ | CRYPTO_RESP: 740 741 /* 742 * Discard the message if invalid 743 */ 744 if ((rval = crypto_verify(ep, NULL, peer)) != 745 XEVNT_OK) 746 break; 747 748 /* 749 * If the challenge matches the response, the 750 * server public key, signature and identity are 751 * all verified at the same time. The server is 752 * declared trusted, so we skip further 753 * certificate exchanges and move immediately to 754 * the cookie exchange. 755 */ 756 if ((rval = crypto_gq(ep, peer)) != XEVNT_OK) 757 break; 758 759 peer->crypto |= CRYPTO_FLAG_VRFY; 760 peer->flash &= ~TEST8; 761 snprintf(statstr, sizeof(statstr), "gq %s fs %u", 762 peer->issuer, ntohl(ep->fstamp)); 763 record_crypto_stats(&peer->srcadr, statstr); 764 #ifdef DEBUG 765 if (debug) 766 printf("crypto_recv: %s\n", statstr); 767 #endif 768 break; 769 770 /* 771 * Mu-Varadharajan (MV) identity scheme. This scheme is 772 * designed for use with three levels of trust, trusted 773 * host, server and client. The trusted host key is 774 * opaque to servers and clients; the server keys are 775 * opaque to clients and each client key is different. 776 * Client keys can be revoked without requiring new key 777 * generations. 778 */ 779 case CRYPTO_MV | CRYPTO_RESP: 780 781 /* 782 * Discard the message if invalid. 783 */ 784 if ((rval = crypto_verify(ep, NULL, peer)) != 785 XEVNT_OK) 786 break; 787 788 /* 789 * If the challenge matches the response, the 790 * server public key, signature and identity are 791 * all verified at the same time. The server is 792 * declared trusted, so we skip further 793 * certificate exchanges and move immediately to 794 * the cookie exchange. 795 */ 796 if ((rval = crypto_mv(ep, peer)) != XEVNT_OK) 797 break; 798 799 peer->crypto |= CRYPTO_FLAG_VRFY; 800 peer->flash &= ~TEST8; 801 snprintf(statstr, sizeof(statstr), "mv %s fs %u", 802 peer->issuer, ntohl(ep->fstamp)); 803 record_crypto_stats(&peer->srcadr, statstr); 804 #ifdef DEBUG 805 if (debug) 806 printf("crypto_recv: %s\n", statstr); 807 #endif 808 break; 809 810 811 /* 812 * Cookie response in client and symmetric modes. If the 813 * cookie bit is set, the working cookie is the EXOR of 814 * the current and new values. 815 */ 816 case CRYPTO_COOK | CRYPTO_RESP: 817 818 /* 819 * Discard the message if invalid or signature 820 * not verified with respect to the cookie 821 * values. 822 */ 823 if ((rval = crypto_verify(ep, &peer->cookval, 824 peer)) != XEVNT_OK) 825 break; 826 827 /* 828 * Decrypt the cookie, hunting all the time for 829 * errors. 830 */ 831 if (vallen == (u_int)EVP_PKEY_size(host_pkey)) { 832 u_int32 *cookiebuf = malloc( 833 RSA_size(host_pkey->pkey.rsa)); 834 if (!cookiebuf) { 835 rval = XEVNT_CKY; 836 break; 837 } 838 839 if (RSA_private_decrypt(vallen, 840 (u_char *)ep->pkt, 841 (u_char *)cookiebuf, 842 host_pkey->pkey.rsa, 843 RSA_PKCS1_OAEP_PADDING) != 4) { 844 rval = XEVNT_CKY; 845 free(cookiebuf); 846 break; 847 } else { 848 cookie = ntohl(*cookiebuf); 849 free(cookiebuf); 850 } 851 } else { 852 rval = XEVNT_CKY; 853 break; 854 } 855 856 /* 857 * Install cookie values and light the cookie 858 * bit. If this is not broadcast client mode, we 859 * are done here. 860 */ 861 key_expire(peer); 862 if (hismode == MODE_ACTIVE || hismode == 863 MODE_PASSIVE) 864 peer->pcookie = peer->hcookie ^ cookie; 865 else 866 peer->pcookie = cookie; 867 peer->crypto |= CRYPTO_FLAG_COOK; 868 peer->flash &= ~TEST8; 869 snprintf(statstr, sizeof(statstr), 870 "cook %x ts %u fs %u", peer->pcookie, 871 ntohl(ep->tstamp), ntohl(ep->fstamp)); 872 record_crypto_stats(&peer->srcadr, statstr); 873 #ifdef DEBUG 874 if (debug) 875 printf("crypto_recv: %s\n", statstr); 876 #endif 877 break; 878 879 /* 880 * Install autokey values in broadcast client and 881 * symmetric modes. We have to do this every time the 882 * sever/peer cookie changes or a new keylist is 883 * rolled. Ordinarily, this is automatic as this message 884 * is piggybacked on the first NTP packet sent upon 885 * either of these events. Note that a broadcast client 886 * or symmetric peer can receive this response without a 887 * matching request. 888 */ 889 case CRYPTO_AUTO | CRYPTO_RESP: 890 891 /* 892 * Discard the message if invalid or signature 893 * not verified with respect to the receive 894 * autokey values. 895 */ 896 if ((rval = crypto_verify(ep, &peer->recval, 897 peer)) != XEVNT_OK) 898 break; 899 900 /* 901 * Discard the message if a broadcast client and 902 * the association ID does not match. This might 903 * happen if a broacast server restarts the 904 * protocol. A protocol restart will occur at 905 * the next ASSOC message. 906 */ 907 if ((peer->cast_flags & MDF_BCLNT) && 908 peer->assoc != associd) 909 break; 910 911 /* 912 * Install autokey values and light the 913 * autokey bit. This is not hard. 914 */ 915 if (ep->tstamp == 0) 916 break; 917 918 if (peer->recval.ptr == NULL) 919 peer->recval.ptr = 920 emalloc(sizeof(struct autokey)); 921 bp = (struct autokey *)peer->recval.ptr; 922 peer->recval.tstamp = ep->tstamp; 923 peer->recval.fstamp = ep->fstamp; 924 ap = (struct autokey *)ep->pkt; 925 bp->seq = ntohl(ap->seq); 926 bp->key = ntohl(ap->key); 927 peer->pkeyid = bp->key; 928 peer->crypto |= CRYPTO_FLAG_AUTO; 929 peer->flash &= ~TEST8; 930 snprintf(statstr, sizeof(statstr), 931 "auto seq %d key %x ts %u fs %u", bp->seq, 932 bp->key, ntohl(ep->tstamp), 933 ntohl(ep->fstamp)); 934 record_crypto_stats(&peer->srcadr, statstr); 935 #ifdef DEBUG 936 if (debug) 937 printf("crypto_recv: %s\n", statstr); 938 #endif 939 break; 940 941 /* 942 * X509 certificate sign response. Validate the 943 * certificate signed by the server and install. Later 944 * this can be provided to clients of this server in 945 * lieu of the self signed certificate in order to 946 * validate the public key. 947 */ 948 case CRYPTO_SIGN | CRYPTO_RESP: 949 950 /* 951 * Discard the message if invalid. 952 */ 953 if ((rval = crypto_verify(ep, NULL, peer)) != 954 XEVNT_OK) 955 break; 956 957 /* 958 * Scan the certificate list to delete old 959 * versions and link the newest version first on 960 * the list. 961 */ 962 if ((xinfo = cert_install(ep, peer)) == NULL) { 963 rval = XEVNT_CRT; 964 break; 965 } 966 peer->crypto |= CRYPTO_FLAG_SIGN; 967 peer->flash &= ~TEST8; 968 temp32 = xinfo->nid; 969 snprintf(statstr, sizeof(statstr), 970 "sign %s %s 0x%x %s (%u) fs %u", 971 xinfo->subject, xinfo->issuer, xinfo->flags, 972 OBJ_nid2ln(temp32), temp32, 973 ntohl(ep->fstamp)); 974 record_crypto_stats(&peer->srcadr, statstr); 975 #ifdef DEBUG 976 if (debug) 977 printf("crypto_recv: %s\n", statstr); 978 #endif 979 break; 980 981 /* 982 * Install leapseconds values. While the leapsecond 983 * values epoch, TAI offset and values expiration epoch 984 * are retained, only the current TAI offset is provided 985 * via the kernel to other applications. 986 */ 987 case CRYPTO_LEAP | CRYPTO_RESP: 988 /* 989 * Discard the message if invalid. We can't 990 * compare the value timestamps here, as they 991 * can be updated by different servers. 992 */ 993 if ((rval = crypto_verify(ep, NULL, peer)) != 994 XEVNT_OK) 995 break; 996 997 /* 998 * If the packet leap values are more recent 999 * than the stored ones, install the new leap 1000 * values and recompute the signatures. 1001 */ 1002 if (leapsec_add_fix(ntohl(ep->pkt[0]), 1003 ntohl(ep->pkt[1]), 1004 ntohl(ep->pkt[2]), 1005 NULL)) 1006 { 1007 leap_signature_t lsig; 1008 1009 leapsec_getsig(&lsig); 1010 tai_leap.tstamp = ep->tstamp; 1011 tai_leap.fstamp = ep->fstamp; 1012 tai_leap.vallen = ep->vallen; 1013 crypto_update(); 1014 mprintf_event(EVNT_TAI, peer, 1015 "%d leap %s expire %s", lsig.taiof, 1016 fstostr(lsig.ttime), 1017 fstostr(lsig.etime)); 1018 } 1019 peer->crypto |= CRYPTO_FLAG_LEAP; 1020 peer->flash &= ~TEST8; 1021 snprintf(statstr, sizeof(statstr), 1022 "leap TAI offset %d at %u expire %u fs %u", 1023 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]), 1024 ntohl(ep->pkt[2]), ntohl(ep->fstamp)); 1025 record_crypto_stats(&peer->srcadr, statstr); 1026 #ifdef DEBUG 1027 if (debug) 1028 printf("crypto_recv: %s\n", statstr); 1029 #endif 1030 break; 1031 1032 /* 1033 * We come here in symmetric modes for miscellaneous 1034 * commands that have value fields but are processed on 1035 * the transmit side. All we need do here is check for 1036 * valid field length. Note that ASSOC is handled 1037 * separately. 1038 */ 1039 case CRYPTO_CERT: 1040 case CRYPTO_IFF: 1041 case CRYPTO_GQ: 1042 case CRYPTO_MV: 1043 case CRYPTO_COOK: 1044 case CRYPTO_SIGN: 1045 if (len < VALUE_LEN) { 1046 rval = XEVNT_LEN; 1047 break; 1048 } 1049 /* fall through */ 1050 1051 /* 1052 * We come here in symmetric modes for requests 1053 * requiring a response (above plus AUTO and LEAP) and 1054 * for responses. If a request, save the extension field 1055 * for later; invalid requests will be caught on the 1056 * transmit side. If an error or invalid response, 1057 * declare a protocol error. 1058 */ 1059 default: 1060 if (code & (CRYPTO_RESP | CRYPTO_ERROR)) { 1061 rval = XEVNT_ERR; 1062 } else if (peer->cmmd == NULL) { 1063 fp = emalloc(len); 1064 memcpy(fp, ep, len); 1065 peer->cmmd = fp; 1066 } 1067 } 1068 1069 /* 1070 * The first error found terminates the extension field 1071 * scan and we return the laundry to the caller. 1072 */ 1073 if (rval != XEVNT_OK) { 1074 snprintf(statstr, sizeof(statstr), 1075 "%04x %d %02x %s", htonl(ep->opcode), 1076 associd, rval, eventstr(rval)); 1077 record_crypto_stats(&peer->srcadr, statstr); 1078 #ifdef DEBUG 1079 if (debug) 1080 printf("crypto_recv: %s\n", statstr); 1081 #endif 1082 return (rval); 1083 } 1084 authlen += (len + 3) / 4 * 4; 1085 } 1086 return (rval); 1087 } 1088 1089 1090 /* 1091 * crypto_xmit - construct extension fields 1092 * 1093 * This routine is called both when an association is configured and 1094 * when one is not. The only case where this matters is to retrieve the 1095 * autokey information, in which case the caller has to provide the 1096 * association ID to match the association. 1097 * 1098 * Side effect: update the packet offset. 1099 * 1100 * Errors 1101 * XEVNT_OK success 1102 * XEVNT_CRT bad or missing certificate 1103 * XEVNT_ERR protocol error 1104 * XEVNT_LEN bad field format or length 1105 * XEVNT_PER host certificate expired 1106 */ 1107 int 1108 crypto_xmit( 1109 struct peer *peer, /* peer structure pointer */ 1110 struct pkt *xpkt, /* transmit packet pointer */ 1111 struct recvbuf *rbufp, /* receive buffer pointer */ 1112 int start, /* offset to extension field */ 1113 struct exten *ep, /* extension pointer */ 1114 keyid_t cookie /* session cookie */ 1115 ) 1116 { 1117 struct exten *fp; /* extension pointers */ 1118 struct cert_info *cp, *xp, *yp; /* cert info/value pointer */ 1119 sockaddr_u *srcadr_sin; /* source address */ 1120 u_int32 *pkt; /* packet pointer */ 1121 u_int opcode; /* extension field opcode */ 1122 char certname[MAXHOSTNAME + 1]; /* subject name buffer */ 1123 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1124 tstamp_t tstamp; 1125 struct calendar tscal; 1126 u_int vallen; 1127 struct value vtemp; 1128 associd_t associd; 1129 int rval; 1130 int len; 1131 keyid_t tcookie; 1132 1133 /* 1134 * Generate the requested extension field request code, length 1135 * and association ID. If this is a response and the host is not 1136 * synchronized, light the error bit and go home. 1137 */ 1138 pkt = (u_int32 *)xpkt + start / 4; 1139 fp = (struct exten *)pkt; 1140 opcode = ntohl(ep->opcode); 1141 if (peer != NULL) { 1142 srcadr_sin = &peer->srcadr; 1143 if (!(opcode & CRYPTO_RESP)) 1144 peer->opcode = ep->opcode; 1145 } else { 1146 srcadr_sin = &rbufp->recv_srcadr; 1147 } 1148 associd = (associd_t) ntohl(ep->associd); 1149 len = 8; 1150 fp->opcode = htonl((opcode & 0xffff0000) | len); 1151 fp->associd = ep->associd; 1152 rval = XEVNT_OK; 1153 tstamp = crypto_time(); 1154 switch (opcode & 0xffff0000) { 1155 1156 /* 1157 * Send association request and response with status word and 1158 * host name. Note, this message is not signed and the filestamp 1159 * contains only the status word. 1160 */ 1161 case CRYPTO_ASSOC: 1162 case CRYPTO_ASSOC | CRYPTO_RESP: 1163 len = crypto_send(fp, &hostval, start); 1164 fp->fstamp = htonl(crypto_flags); 1165 break; 1166 1167 /* 1168 * Send certificate request. Use the values from the extension 1169 * field. 1170 */ 1171 case CRYPTO_CERT: 1172 memset(&vtemp, 0, sizeof(vtemp)); 1173 vtemp.tstamp = ep->tstamp; 1174 vtemp.fstamp = ep->fstamp; 1175 vtemp.vallen = ep->vallen; 1176 vtemp.ptr = (u_char *)ep->pkt; 1177 len = crypto_send(fp, &vtemp, start); 1178 break; 1179 1180 /* 1181 * Send sign request. Use the host certificate, which is self- 1182 * signed and may or may not be trusted. 1183 */ 1184 case CRYPTO_SIGN: 1185 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 1186 if ((calcomp(&tscal, &(cert_host->first)) < 0) 1187 || (calcomp(&tscal, &(cert_host->last)) > 0)) 1188 rval = XEVNT_PER; 1189 else 1190 len = crypto_send(fp, &cert_host->cert, start); 1191 break; 1192 1193 /* 1194 * Send certificate response. Use the name in the extension 1195 * field to find the certificate in the cache. If the request 1196 * contains no subject name, assume the name of this host. This 1197 * is for backwards compatibility. Private certificates are 1198 * never sent. 1199 * 1200 * There may be several certificates matching the request. First 1201 * choice is a self-signed trusted certificate; second choice is 1202 * any certificate signed by another host. There is no third 1203 * choice. 1204 */ 1205 case CRYPTO_CERT | CRYPTO_RESP: 1206 vallen = ntohl(ep->vallen); /* Must be <64k */ 1207 if (vallen == 0 || vallen > MAXHOSTNAME || 1208 (u_int)(len - VALUE_LEN) < vallen) { 1209 rval = XEVNT_LEN; 1210 break; 1211 } 1212 1213 /* 1214 * Find all public valid certificates with matching 1215 * subject. If a self-signed, trusted certificate is 1216 * found, use that certificate. If not, use the last non 1217 * self-signed certificate. 1218 */ 1219 memcpy(certname, ep->pkt, vallen); 1220 certname[vallen] = '\0'; 1221 xp = yp = NULL; 1222 for (cp = cinfo; cp != NULL; cp = cp->link) { 1223 if (cp->flags & (CERT_PRIV | CERT_ERROR)) 1224 continue; 1225 1226 if (strcmp(certname, cp->subject) != 0) 1227 continue; 1228 1229 if (strcmp(certname, cp->issuer) != 0) 1230 yp = cp; 1231 else if (cp ->flags & CERT_TRUST) 1232 xp = cp; 1233 continue; 1234 } 1235 1236 /* 1237 * Be careful who you trust. If the certificate is not 1238 * found, return an empty response. Note that we dont 1239 * enforce lifetimes here. 1240 * 1241 * The timestamp and filestamp are taken from the 1242 * certificate value structure. For all certificates the 1243 * timestamp is the latest signature update time. For 1244 * host and imported certificates the filestamp is the 1245 * creation epoch. For signed certificates the filestamp 1246 * is the creation epoch of the trusted certificate at 1247 * the root of the certificate trail. In principle, this 1248 * allows strong checking for signature masquerade. 1249 */ 1250 if (xp == NULL) 1251 xp = yp; 1252 if (xp == NULL) 1253 break; 1254 1255 if (tstamp == 0) 1256 break; 1257 1258 len = crypto_send(fp, &xp->cert, start); 1259 break; 1260 1261 /* 1262 * Send challenge in Schnorr (IFF) identity scheme. 1263 */ 1264 case CRYPTO_IFF: 1265 if (peer == NULL) 1266 break; /* hack attack */ 1267 1268 if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) { 1269 len = crypto_send(fp, &vtemp, start); 1270 value_free(&vtemp); 1271 } 1272 break; 1273 1274 /* 1275 * Send response in Schnorr (IFF) identity scheme. 1276 */ 1277 case CRYPTO_IFF | CRYPTO_RESP: 1278 if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) { 1279 len = crypto_send(fp, &vtemp, start); 1280 value_free(&vtemp); 1281 } 1282 break; 1283 1284 /* 1285 * Send challenge in Guillou-Quisquater (GQ) identity scheme. 1286 */ 1287 case CRYPTO_GQ: 1288 if (peer == NULL) 1289 break; /* hack attack */ 1290 1291 if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) { 1292 len = crypto_send(fp, &vtemp, start); 1293 value_free(&vtemp); 1294 } 1295 break; 1296 1297 /* 1298 * Send response in Guillou-Quisquater (GQ) identity scheme. 1299 */ 1300 case CRYPTO_GQ | CRYPTO_RESP: 1301 if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) { 1302 len = crypto_send(fp, &vtemp, start); 1303 value_free(&vtemp); 1304 } 1305 break; 1306 1307 /* 1308 * Send challenge in MV identity scheme. 1309 */ 1310 case CRYPTO_MV: 1311 if (peer == NULL) 1312 break; /* hack attack */ 1313 1314 if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) { 1315 len = crypto_send(fp, &vtemp, start); 1316 value_free(&vtemp); 1317 } 1318 break; 1319 1320 /* 1321 * Send response in MV identity scheme. 1322 */ 1323 case CRYPTO_MV | CRYPTO_RESP: 1324 if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) { 1325 len = crypto_send(fp, &vtemp, start); 1326 value_free(&vtemp); 1327 } 1328 break; 1329 1330 /* 1331 * Send certificate sign response. The integrity of the request 1332 * certificate has already been verified on the receive side. 1333 * Sign the response using the local server key. Use the 1334 * filestamp from the request and use the timestamp as the 1335 * current time. Light the error bit if the certificate is 1336 * invalid or contains an unverified signature. 1337 */ 1338 case CRYPTO_SIGN | CRYPTO_RESP: 1339 if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) { 1340 len = crypto_send(fp, &vtemp, start); 1341 value_free(&vtemp); 1342 } 1343 break; 1344 1345 /* 1346 * Send public key and signature. Use the values from the public 1347 * key. 1348 */ 1349 case CRYPTO_COOK: 1350 len = crypto_send(fp, &pubkey, start); 1351 break; 1352 1353 /* 1354 * Encrypt and send cookie and signature. Light the error bit if 1355 * anything goes wrong. 1356 */ 1357 case CRYPTO_COOK | CRYPTO_RESP: 1358 vallen = ntohl(ep->vallen); /* Must be <64k */ 1359 if ( vallen == 0 1360 || (vallen >= MAX_VALLEN) 1361 || (opcode & 0x0000ffff) < VALUE_LEN + vallen) { 1362 rval = XEVNT_LEN; 1363 break; 1364 } 1365 if (peer == NULL) 1366 tcookie = cookie; 1367 else 1368 tcookie = peer->hcookie; 1369 if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp)) 1370 == XEVNT_OK) { 1371 len = crypto_send(fp, &vtemp, start); 1372 value_free(&vtemp); 1373 } 1374 break; 1375 1376 /* 1377 * Find peer and send autokey data and signature in broadcast 1378 * server and symmetric modes. Use the values in the autokey 1379 * structure. If no association is found, either the server has 1380 * restarted with new associations or some perp has replayed an 1381 * old message, in which case light the error bit. 1382 */ 1383 case CRYPTO_AUTO | CRYPTO_RESP: 1384 if (peer == NULL) { 1385 if ((peer = findpeerbyassoc(associd)) == NULL) { 1386 rval = XEVNT_ERR; 1387 break; 1388 } 1389 } 1390 peer->flags &= ~FLAG_ASSOC; 1391 len = crypto_send(fp, &peer->sndval, start); 1392 break; 1393 1394 /* 1395 * Send leapseconds values and signature. Use the values from 1396 * the tai structure. If no table has been loaded, just send an 1397 * empty request. 1398 */ 1399 case CRYPTO_LEAP | CRYPTO_RESP: 1400 len = crypto_send(fp, &tai_leap, start); 1401 break; 1402 1403 /* 1404 * Default - Send a valid command for unknown requests; send 1405 * an error response for unknown resonses. 1406 */ 1407 default: 1408 if (opcode & CRYPTO_RESP) 1409 rval = XEVNT_ERR; 1410 } 1411 1412 /* 1413 * In case of error, flame the log. If a request, toss the 1414 * puppy; if a response, return so the sender can flame, too. 1415 */ 1416 if (rval != XEVNT_OK) { 1417 u_int32 uint32; 1418 1419 uint32 = CRYPTO_ERROR; 1420 opcode |= uint32; 1421 fp->opcode |= htonl(uint32); 1422 snprintf(statstr, sizeof(statstr), 1423 "%04x %d %02x %s", opcode, associd, rval, 1424 eventstr(rval)); 1425 record_crypto_stats(srcadr_sin, statstr); 1426 #ifdef DEBUG 1427 if (debug) 1428 printf("crypto_xmit: %s\n", statstr); 1429 #endif 1430 if (!(opcode & CRYPTO_RESP)) 1431 return (0); 1432 } 1433 #ifdef DEBUG 1434 if (debug) 1435 printf( 1436 "crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n", 1437 crypto_flags, start, len, opcode >> 16, associd); 1438 #endif 1439 return (len); 1440 } 1441 1442 1443 /* 1444 * crypto_verify - verify the extension field value and signature 1445 * 1446 * Returns 1447 * XEVNT_OK success 1448 * XEVNT_ERR protocol error 1449 * XEVNT_FSP bad filestamp 1450 * XEVNT_LEN bad field format or length 1451 * XEVNT_PUB bad or missing public key 1452 * XEVNT_SGL bad signature length 1453 * XEVNT_SIG signature not verified 1454 * XEVNT_TSP bad timestamp 1455 */ 1456 static int 1457 crypto_verify( 1458 struct exten *ep, /* extension pointer */ 1459 struct value *vp, /* value pointer */ 1460 struct peer *peer /* peer structure pointer */ 1461 ) 1462 { 1463 EVP_PKEY *pkey; /* server public key */ 1464 EVP_MD_CTX ctx; /* signature context */ 1465 tstamp_t tstamp, tstamp1 = 0; /* timestamp */ 1466 tstamp_t fstamp, fstamp1 = 0; /* filestamp */ 1467 u_int vallen; /* value length */ 1468 u_int siglen; /* signature length */ 1469 u_int opcode, len; 1470 int i; 1471 1472 /* 1473 * We are extremely parannoyed. We require valid opcode, length, 1474 * association ID, timestamp, filestamp, public key, digest, 1475 * signature length and signature, where relevant. Note that 1476 * preliminary length checks are done in the main loop. 1477 */ 1478 len = ntohl(ep->opcode) & 0x0000ffff; 1479 opcode = ntohl(ep->opcode) & 0xffff0000; 1480 1481 /* 1482 * Check for valid value header, association ID and extension 1483 * field length. Remember, it is not an error to receive an 1484 * unsolicited response; however, the response ID must match 1485 * the association ID. 1486 */ 1487 if (opcode & CRYPTO_ERROR) 1488 return (XEVNT_ERR); 1489 1490 if (len < VALUE_LEN) 1491 return (XEVNT_LEN); 1492 1493 if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode == 1494 MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) { 1495 if (ntohl(ep->associd) != peer->assoc) 1496 return (XEVNT_ERR); 1497 } else { 1498 if (ntohl(ep->associd) != peer->associd) 1499 return (XEVNT_ERR); 1500 } 1501 1502 /* 1503 * We have a valid value header. Check for valid value and 1504 * signature field lengths. The extension field length must be 1505 * long enough to contain the value header, value and signature. 1506 * Note both the value and signature field lengths are rounded 1507 * up to the next word (4 octets). 1508 */ 1509 vallen = ntohl(ep->vallen); 1510 if ( vallen == 0 1511 || vallen > MAX_VALLEN) 1512 return (XEVNT_LEN); 1513 1514 i = (vallen + 3) / 4; 1515 siglen = ntohl(ep->pkt[i++]); 1516 if ( siglen > MAX_VALLEN 1517 || len - VALUE_LEN < ((vallen + 3) / 4) * 4 1518 || len - VALUE_LEN - ((vallen + 3) / 4) * 4 1519 < ((siglen + 3) / 4) * 4) 1520 return (XEVNT_LEN); 1521 1522 /* 1523 * Check for valid timestamp and filestamp. If the timestamp is 1524 * zero, the sender is not synchronized and signatures are 1525 * not possible. If nonzero the timestamp must not precede the 1526 * filestamp. The timestamp and filestamp must not precede the 1527 * corresponding values in the value structure, if present. 1528 */ 1529 tstamp = ntohl(ep->tstamp); 1530 fstamp = ntohl(ep->fstamp); 1531 if (tstamp == 0) 1532 return (XEVNT_TSP); 1533 1534 if (tstamp < fstamp) 1535 return (XEVNT_TSP); 1536 1537 if (vp != NULL) { 1538 tstamp1 = ntohl(vp->tstamp); 1539 fstamp1 = ntohl(vp->fstamp); 1540 if (tstamp1 != 0 && fstamp1 != 0) { 1541 if (tstamp < tstamp1) 1542 return (XEVNT_TSP); 1543 1544 if ((tstamp < fstamp1 || fstamp < fstamp1)) 1545 return (XEVNT_FSP); 1546 } 1547 } 1548 1549 /* 1550 * At the time the certificate message is validated, the public 1551 * key in the message is not available. Thus, don't try to 1552 * verify the signature. 1553 */ 1554 if (opcode == (CRYPTO_CERT | CRYPTO_RESP)) 1555 return (XEVNT_OK); 1556 1557 /* 1558 * Check for valid signature length, public key and digest 1559 * algorithm. 1560 */ 1561 if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV) 1562 pkey = sign_pkey; 1563 else 1564 pkey = peer->pkey; 1565 if (siglen == 0 || pkey == NULL || peer->digest == NULL) 1566 return (XEVNT_ERR); 1567 1568 if (siglen != (u_int)EVP_PKEY_size(pkey)) 1569 return (XEVNT_SGL); 1570 1571 /* 1572 * Darn, I thought we would never get here. Verify the 1573 * signature. If the identity exchange is verified, light the 1574 * proventic bit. What a relief. 1575 */ 1576 EVP_VerifyInit(&ctx, peer->digest); 1577 /* XXX: the "+ 12" needs to be at least documented... */ 1578 EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12); 1579 if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen, 1580 pkey) <= 0) 1581 return (XEVNT_SIG); 1582 1583 if (peer->crypto & CRYPTO_FLAG_VRFY) 1584 peer->crypto |= CRYPTO_FLAG_PROV; 1585 return (XEVNT_OK); 1586 } 1587 1588 1589 /* 1590 * crypto_encrypt - construct vp (encrypted cookie and signature) from 1591 * the public key and cookie. 1592 * 1593 * Returns: 1594 * XEVNT_OK success 1595 * XEVNT_CKY bad or missing cookie 1596 * XEVNT_PUB bad or missing public key 1597 */ 1598 static int 1599 crypto_encrypt( 1600 const u_char *ptr, /* Public Key */ 1601 u_int vallen, /* Length of Public Key */ 1602 keyid_t *cookie, /* server cookie */ 1603 struct value *vp /* value pointer */ 1604 ) 1605 { 1606 EVP_PKEY *pkey; /* public key */ 1607 EVP_MD_CTX ctx; /* signature context */ 1608 tstamp_t tstamp; /* NTP timestamp */ 1609 u_int32 temp32; 1610 u_char *puch; 1611 1612 /* 1613 * Extract the public key from the request. 1614 */ 1615 pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen); 1616 if (pkey == NULL) { 1617 msyslog(LOG_ERR, "crypto_encrypt: %s", 1618 ERR_error_string(ERR_get_error(), NULL)); 1619 return (XEVNT_PUB); 1620 } 1621 1622 /* 1623 * Encrypt the cookie, encode in ASN.1 and sign. 1624 */ 1625 memset(vp, 0, sizeof(struct value)); 1626 tstamp = crypto_time(); 1627 vp->tstamp = htonl(tstamp); 1628 vp->fstamp = hostval.tstamp; 1629 vallen = EVP_PKEY_size(pkey); 1630 vp->vallen = htonl(vallen); 1631 vp->ptr = emalloc(vallen); 1632 puch = vp->ptr; 1633 temp32 = htonl(*cookie); 1634 if (RSA_public_encrypt(4, (u_char *)&temp32, puch, 1635 pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING) <= 0) { 1636 msyslog(LOG_ERR, "crypto_encrypt: %s", 1637 ERR_error_string(ERR_get_error(), NULL)); 1638 free(vp->ptr); 1639 EVP_PKEY_free(pkey); 1640 return (XEVNT_CKY); 1641 } 1642 EVP_PKEY_free(pkey); 1643 if (tstamp == 0) 1644 return (XEVNT_OK); 1645 1646 vp->sig = emalloc(sign_siglen); 1647 EVP_SignInit(&ctx, sign_digest); 1648 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 1649 EVP_SignUpdate(&ctx, vp->ptr, vallen); 1650 if (EVP_SignFinal(&ctx, vp->sig, &vallen, sign_pkey)) 1651 vp->siglen = htonl(sign_siglen); 1652 return (XEVNT_OK); 1653 } 1654 1655 1656 /* 1657 * crypto_ident - construct extension field for identity scheme 1658 * 1659 * This routine determines which identity scheme is in use and 1660 * constructs an extension field for that scheme. 1661 * 1662 * Returns 1663 * CRYTPO_IFF IFF scheme 1664 * CRYPTO_GQ GQ scheme 1665 * CRYPTO_MV MV scheme 1666 * CRYPTO_NULL no available scheme 1667 */ 1668 u_int 1669 crypto_ident( 1670 struct peer *peer /* peer structure pointer */ 1671 ) 1672 { 1673 char filename[MAXFILENAME]; 1674 const char * scheme_name; 1675 u_int scheme_id; 1676 1677 /* 1678 * We come here after the group trusted host has been found; its 1679 * name defines the group name. Search the key cache for all 1680 * keys matching the same group name in order IFF, GQ and MV. 1681 * Use the first one available. 1682 */ 1683 scheme_name = NULL; 1684 if (peer->crypto & CRYPTO_FLAG_IFF) { 1685 scheme_name = "iff"; 1686 scheme_id = CRYPTO_IFF; 1687 } else if (peer->crypto & CRYPTO_FLAG_GQ) { 1688 scheme_name = "gq"; 1689 scheme_id = CRYPTO_GQ; 1690 } else if (peer->crypto & CRYPTO_FLAG_MV) { 1691 scheme_name = "mv"; 1692 scheme_id = CRYPTO_MV; 1693 } 1694 1695 if (scheme_name != NULL) { 1696 snprintf(filename, sizeof(filename), "ntpkey_%spar_%s", 1697 scheme_name, peer->ident); 1698 peer->ident_pkey = crypto_key(filename, NULL, 1699 &peer->srcadr); 1700 if (peer->ident_pkey != NULL) 1701 return scheme_id; 1702 } 1703 1704 msyslog(LOG_NOTICE, 1705 "crypto_ident: no identity parameters found for group %s", 1706 peer->ident); 1707 1708 return CRYPTO_NULL; 1709 } 1710 1711 1712 /* 1713 * crypto_args - construct extension field from arguments 1714 * 1715 * This routine creates an extension field with current timestamps and 1716 * specified opcode, association ID and optional string. Note that the 1717 * extension field is created here, but freed after the crypto_xmit() 1718 * call in the protocol module. 1719 * 1720 * Returns extension field pointer (no errors) 1721 * 1722 * XXX: opcode and len should really be 32-bit quantities and 1723 * we should make sure that str is not too big. 1724 */ 1725 struct exten * 1726 crypto_args( 1727 struct peer *peer, /* peer structure pointer */ 1728 u_int opcode, /* operation code */ 1729 associd_t associd, /* association ID */ 1730 char *str /* argument string */ 1731 ) 1732 { 1733 tstamp_t tstamp; /* NTP timestamp */ 1734 struct exten *ep; /* extension field pointer */ 1735 u_int len; /* extension field length */ 1736 size_t slen = 0; 1737 1738 tstamp = crypto_time(); 1739 len = sizeof(struct exten); 1740 if (str != NULL) { 1741 slen = strlen(str); 1742 INSIST(slen < MAX_VALLEN); 1743 len += slen; 1744 } 1745 ep = emalloc_zero(len); 1746 if (opcode == 0) 1747 return (ep); 1748 1749 REQUIRE(0 == (len & ~0x0000ffff)); 1750 REQUIRE(0 == (opcode & ~0xffff0000)); 1751 1752 ep->opcode = htonl(opcode + len); 1753 ep->associd = htonl(associd); 1754 ep->tstamp = htonl(tstamp); 1755 ep->fstamp = hostval.tstamp; 1756 ep->vallen = 0; 1757 if (str != NULL) { 1758 ep->vallen = htonl(slen); 1759 memcpy((char *)ep->pkt, str, slen); 1760 } 1761 return (ep); 1762 } 1763 1764 1765 /* 1766 * crypto_send - construct extension field from value components 1767 * 1768 * The value and signature fields are zero-padded to a word boundary. 1769 * Note: it is not polite to send a nonempty signature with zero 1770 * timestamp or a nonzero timestamp with an empty signature, but those 1771 * rules are not enforced here. 1772 * 1773 * XXX This code won't work on a box with 16-bit ints. 1774 */ 1775 int 1776 crypto_send( 1777 struct exten *ep, /* extension field pointer */ 1778 struct value *vp, /* value pointer */ 1779 int start /* buffer offset */ 1780 ) 1781 { 1782 u_int len, vallen, siglen, opcode; 1783 u_int i, j; 1784 1785 /* 1786 * Calculate extension field length and check for buffer 1787 * overflow. Leave room for the MAC. 1788 */ 1789 len = 16; /* XXX Document! */ 1790 vallen = ntohl(vp->vallen); 1791 INSIST(vallen <= MAX_VALLEN); 1792 len += ((vallen + 3) / 4 + 1) * 4; 1793 siglen = ntohl(vp->siglen); 1794 len += ((siglen + 3) / 4 + 1) * 4; 1795 if (start + len > sizeof(struct pkt) - MAX_MAC_LEN) 1796 return (0); 1797 1798 /* 1799 * Copy timestamps. 1800 */ 1801 ep->tstamp = vp->tstamp; 1802 ep->fstamp = vp->fstamp; 1803 ep->vallen = vp->vallen; 1804 1805 /* 1806 * Copy value. If the data field is empty or zero length, 1807 * encode an empty value with length zero. 1808 */ 1809 i = 0; 1810 if (vallen > 0 && vp->ptr != NULL) { 1811 j = vallen / 4; 1812 if (j * 4 < vallen) 1813 ep->pkt[i + j++] = 0; 1814 memcpy(&ep->pkt[i], vp->ptr, vallen); 1815 i += j; 1816 } 1817 1818 /* 1819 * Copy signature. If the signature field is empty or zero 1820 * length, encode an empty signature with length zero. 1821 */ 1822 ep->pkt[i++] = vp->siglen; 1823 if (siglen > 0 && vp->sig != NULL) { 1824 j = siglen / 4; 1825 if (j * 4 < siglen) 1826 ep->pkt[i + j++] = 0; 1827 memcpy(&ep->pkt[i], vp->sig, siglen); 1828 i += j; 1829 } 1830 opcode = ntohl(ep->opcode); 1831 ep->opcode = htonl((opcode & 0xffff0000) | len); 1832 ENSURE(len <= MAX_VALLEN); 1833 return (len); 1834 } 1835 1836 1837 /* 1838 * crypto_update - compute new public value and sign extension fields 1839 * 1840 * This routine runs periodically, like once a day, and when something 1841 * changes. It updates the timestamps on three value structures and one 1842 * value structure list, then signs all the structures: 1843 * 1844 * hostval host name (not signed) 1845 * pubkey public key 1846 * cinfo certificate info/value list 1847 * tai_leap leap values 1848 * 1849 * Filestamps are proventic data, so this routine runs only when the 1850 * host is synchronized to a proventicated source. Thus, the timestamp 1851 * is proventic and can be used to deflect clogging attacks. 1852 * 1853 * Returns void (no errors) 1854 */ 1855 void 1856 crypto_update(void) 1857 { 1858 EVP_MD_CTX ctx; /* message digest context */ 1859 struct cert_info *cp; /* certificate info/value */ 1860 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1861 u_int32 *ptr; 1862 u_int len; 1863 leap_signature_t lsig; 1864 1865 hostval.tstamp = htonl(crypto_time()); 1866 if (hostval.tstamp == 0) 1867 return; 1868 1869 /* 1870 * Sign public key and timestamps. The filestamp is derived from 1871 * the host key file extension from wherever the file was 1872 * generated. 1873 */ 1874 if (pubkey.vallen != 0) { 1875 pubkey.tstamp = hostval.tstamp; 1876 pubkey.siglen = 0; 1877 if (pubkey.sig == NULL) 1878 pubkey.sig = emalloc(sign_siglen); 1879 EVP_SignInit(&ctx, sign_digest); 1880 EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12); 1881 EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen)); 1882 if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey)) 1883 pubkey.siglen = htonl(sign_siglen); 1884 } 1885 1886 /* 1887 * Sign certificates and timestamps. The filestamp is derived 1888 * from the certificate file extension from wherever the file 1889 * was generated. Note we do not throw expired certificates 1890 * away; they may have signed younger ones. 1891 */ 1892 for (cp = cinfo; cp != NULL; cp = cp->link) { 1893 cp->cert.tstamp = hostval.tstamp; 1894 cp->cert.siglen = 0; 1895 if (cp->cert.sig == NULL) 1896 cp->cert.sig = emalloc(sign_siglen); 1897 EVP_SignInit(&ctx, sign_digest); 1898 EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12); 1899 EVP_SignUpdate(&ctx, cp->cert.ptr, 1900 ntohl(cp->cert.vallen)); 1901 if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey)) 1902 cp->cert.siglen = htonl(sign_siglen); 1903 } 1904 1905 /* 1906 * Sign leapseconds values and timestamps. Note it is not an 1907 * error to return null values. 1908 */ 1909 tai_leap.tstamp = hostval.tstamp; 1910 tai_leap.fstamp = hostval.fstamp; 1911 len = 3 * sizeof(u_int32); 1912 if (tai_leap.ptr == NULL) 1913 tai_leap.ptr = emalloc(len); 1914 tai_leap.vallen = htonl(len); 1915 ptr = (u_int32 *)tai_leap.ptr; 1916 leapsec_getsig(&lsig); 1917 ptr[0] = htonl(lsig.taiof); 1918 ptr[1] = htonl(lsig.ttime); 1919 ptr[2] = htonl(lsig.etime); 1920 if (tai_leap.sig == NULL) 1921 tai_leap.sig = emalloc(sign_siglen); 1922 EVP_SignInit(&ctx, sign_digest); 1923 EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12); 1924 EVP_SignUpdate(&ctx, tai_leap.ptr, len); 1925 if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey)) 1926 tai_leap.siglen = htonl(sign_siglen); 1927 if (lsig.ttime > 0) 1928 crypto_flags |= CRYPTO_FLAG_TAI; 1929 snprintf(statstr, sizeof(statstr), "signature update ts %u", 1930 ntohl(hostval.tstamp)); 1931 record_crypto_stats(NULL, statstr); 1932 #ifdef DEBUG 1933 if (debug) 1934 printf("crypto_update: %s\n", statstr); 1935 #endif 1936 } 1937 1938 1939 /* 1940 * value_free - free value structure components. 1941 * 1942 * Returns void (no errors) 1943 */ 1944 void 1945 value_free( 1946 struct value *vp /* value structure */ 1947 ) 1948 { 1949 if (vp->ptr != NULL) 1950 free(vp->ptr); 1951 if (vp->sig != NULL) 1952 free(vp->sig); 1953 memset(vp, 0, sizeof(struct value)); 1954 } 1955 1956 1957 /* 1958 * crypto_time - returns current NTP time. 1959 * 1960 * Returns NTP seconds if in synch, 0 otherwise 1961 */ 1962 tstamp_t 1963 crypto_time() 1964 { 1965 l_fp tstamp; /* NTP time */ 1966 1967 L_CLR(&tstamp); 1968 if (sys_leap != LEAP_NOTINSYNC) 1969 get_systime(&tstamp); 1970 return (tstamp.l_ui); 1971 } 1972 1973 1974 /* 1975 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar. 1976 * 1977 */ 1978 static 1979 void 1980 asn_to_calendar ( 1981 ASN1_TIME *asn1time, /* pointer to ASN1_TIME structure */ 1982 struct calendar *pjd /* pointer to result */ 1983 ) 1984 { 1985 size_t len; /* length of ASN1_TIME string */ 1986 char v[24]; /* writable copy of ASN1_TIME string */ 1987 unsigned long temp; /* result from strtoul */ 1988 1989 /* 1990 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure. 1991 * Or YYYYMMDDHHMMSSZ. 1992 * Note that the YY, MM, DD fields start with one, the HH, MM, 1993 * SS fields start with zero and the Z character is ignored. 1994 * Also note that two-digit years less than 50 map to years greater than 1995 * 100. Dontcha love ASN.1? Better than MIL-188. 1996 */ 1997 len = asn1time->length; 1998 NTP_REQUIRE(len < sizeof(v)); 1999 (void)strncpy(v, (char *)(asn1time->data), len); 2000 NTP_REQUIRE(len >= 13); 2001 temp = strtoul(v+len-3, NULL, 10); 2002 pjd->second = temp; 2003 v[len-3] = '\0'; 2004 2005 temp = strtoul(v+len-5, NULL, 10); 2006 pjd->minute = temp; 2007 v[len-5] = '\0'; 2008 2009 temp = strtoul(v+len-7, NULL, 10); 2010 pjd->hour = temp; 2011 v[len-7] = '\0'; 2012 2013 temp = strtoul(v+len-9, NULL, 10); 2014 pjd->monthday = temp; 2015 v[len-9] = '\0'; 2016 2017 temp = strtoul(v+len-11, NULL, 10); 2018 pjd->month = temp; 2019 v[len-11] = '\0'; 2020 2021 temp = strtoul(v, NULL, 10); 2022 /* handle two-digit years */ 2023 if (temp < 50UL) 2024 temp += 100UL; 2025 if (temp < 150UL) 2026 temp += 1900UL; 2027 pjd->year = temp; 2028 2029 pjd->yearday = pjd->weekday = 0; 2030 return; 2031 } 2032 2033 2034 /* 2035 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number. 2036 * 2037 * Returns void (no errors) 2038 */ 2039 static void 2040 bighash( 2041 BIGNUM *bn, /* BIGNUM * from */ 2042 BIGNUM *bk /* BIGNUM * to */ 2043 ) 2044 { 2045 EVP_MD_CTX ctx; /* message digest context */ 2046 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 2047 u_char *ptr; /* a BIGNUM as binary string */ 2048 u_int len; 2049 2050 len = BN_num_bytes(bn); 2051 ptr = emalloc(len); 2052 BN_bn2bin(bn, ptr); 2053 EVP_DigestInit(&ctx, EVP_md5()); 2054 EVP_DigestUpdate(&ctx, ptr, len); 2055 EVP_DigestFinal(&ctx, dgst, &len); 2056 BN_bin2bn(dgst, len, bk); 2057 free(ptr); 2058 } 2059 2060 2061 /* 2062 *********************************************************************** 2063 * * 2064 * The following routines implement the Schnorr (IFF) identity scheme * 2065 * * 2066 *********************************************************************** 2067 * 2068 * The Schnorr (IFF) identity scheme is intended for use when 2069 * certificates are generated by some other trusted certificate 2070 * authority and the certificate cannot be used to convey public 2071 * parameters. There are two kinds of files: encrypted server files that 2072 * contain private and public values and nonencrypted client files that 2073 * contain only public values. New generations of server files must be 2074 * securely transmitted to all servers of the group; client files can be 2075 * distributed by any means. The scheme is self contained and 2076 * independent of new generations of host keys, sign keys and 2077 * certificates. 2078 * 2079 * The IFF values hide in a DSA cuckoo structure which uses the same 2080 * parameters. The values are used by an identity scheme based on DSA 2081 * cryptography and described in Stimson p. 285. The p is a 512-bit 2082 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 2083 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 2084 * private random group key b (0 < b < q) and public key v = g^b, then 2085 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 2086 * Alice challenges Bob to confirm identity using the protocol described 2087 * below. 2088 * 2089 * How it works 2090 * 2091 * The scheme goes like this. Both Alice and Bob have the public primes 2092 * p, q and generator g. The TA gives private key b to Bob and public 2093 * key v to Alice. 2094 * 2095 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 2096 * the IFF request message. Bob rolls new random k (0 < k < q), then 2097 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 2098 * to Alice in the response message. Besides making the response 2099 * shorter, the hash makes it effectivey impossible for an intruder to 2100 * solve for b by observing a number of these messages. 2101 * 2102 * Alice receives the response and computes g^y v^r mod p. After a bit 2103 * of algebra, this simplifies to g^k. If the hash of this result 2104 * matches hash(x), Alice knows that Bob has the group key b. The signed 2105 * response binds this knowledge to Bob's private key and the public key 2106 * previously received in his certificate. 2107 * 2108 * crypto_alice - construct Alice's challenge in IFF scheme 2109 * 2110 * Returns 2111 * XEVNT_OK success 2112 * XEVNT_ID bad or missing group key 2113 * XEVNT_PUB bad or missing public key 2114 */ 2115 static int 2116 crypto_alice( 2117 struct peer *peer, /* peer pointer */ 2118 struct value *vp /* value pointer */ 2119 ) 2120 { 2121 DSA *dsa; /* IFF parameters */ 2122 BN_CTX *bctx; /* BIGNUM context */ 2123 EVP_MD_CTX ctx; /* signature context */ 2124 tstamp_t tstamp; 2125 u_int len; 2126 2127 /* 2128 * The identity parameters must have correct format and content. 2129 */ 2130 if (peer->ident_pkey == NULL) { 2131 msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable"); 2132 return (XEVNT_ID); 2133 } 2134 2135 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2136 msyslog(LOG_NOTICE, "crypto_alice: defective key"); 2137 return (XEVNT_PUB); 2138 } 2139 2140 /* 2141 * Roll new random r (0 < r < q). 2142 */ 2143 if (peer->iffval != NULL) 2144 BN_free(peer->iffval); 2145 peer->iffval = BN_new(); 2146 len = BN_num_bytes(dsa->q); 2147 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod q*/ 2148 bctx = BN_CTX_new(); 2149 BN_mod(peer->iffval, peer->iffval, dsa->q, bctx); 2150 BN_CTX_free(bctx); 2151 2152 /* 2153 * Sign and send to Bob. The filestamp is from the local file. 2154 */ 2155 memset(vp, 0, sizeof(struct value)); 2156 tstamp = crypto_time(); 2157 vp->tstamp = htonl(tstamp); 2158 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2159 vp->vallen = htonl(len); 2160 vp->ptr = emalloc(len); 2161 BN_bn2bin(peer->iffval, vp->ptr); 2162 if (tstamp == 0) 2163 return (XEVNT_OK); 2164 2165 vp->sig = emalloc(sign_siglen); 2166 EVP_SignInit(&ctx, sign_digest); 2167 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2168 EVP_SignUpdate(&ctx, vp->ptr, len); 2169 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2170 vp->siglen = htonl(sign_siglen); 2171 return (XEVNT_OK); 2172 } 2173 2174 2175 /* 2176 * crypto_bob - construct Bob's response to Alice's challenge 2177 * 2178 * Returns 2179 * XEVNT_OK success 2180 * XEVNT_ERR protocol error 2181 * XEVNT_ID bad or missing group key 2182 */ 2183 static int 2184 crypto_bob( 2185 struct exten *ep, /* extension pointer */ 2186 struct value *vp /* value pointer */ 2187 ) 2188 { 2189 DSA *dsa; /* IFF parameters */ 2190 DSA_SIG *sdsa; /* DSA signature context fake */ 2191 BN_CTX *bctx; /* BIGNUM context */ 2192 EVP_MD_CTX ctx; /* signature context */ 2193 tstamp_t tstamp; /* NTP timestamp */ 2194 BIGNUM *bn, *bk, *r; 2195 u_char *ptr; 2196 u_int len; /* extension field length */ 2197 u_int vallen = 0; /* value length */ 2198 2199 /* 2200 * If the IFF parameters are not valid, something awful 2201 * happened or we are being tormented. 2202 */ 2203 if (iffkey_info == NULL) { 2204 msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable"); 2205 return (XEVNT_ID); 2206 } 2207 dsa = iffkey_info->pkey->pkey.dsa; 2208 2209 /* 2210 * Extract r from the challenge. 2211 */ 2212 vallen = ntohl(ep->vallen); 2213 len = ntohl(ep->opcode) & 0x0000ffff; 2214 if (vallen == 0 || len < VALUE_LEN || len - VALUE_LEN < vallen) 2215 return XEVNT_LEN; 2216 if ((r = BN_bin2bn((u_char *)ep->pkt, vallen, NULL)) == NULL) { 2217 msyslog(LOG_ERR, "crypto_bob: %s", 2218 ERR_error_string(ERR_get_error(), NULL)); 2219 return (XEVNT_ERR); 2220 } 2221 2222 /* 2223 * Bob rolls random k (0 < k < q), computes y = k + b r mod q 2224 * and x = g^k mod p, then sends (y, hash(x)) to Alice. 2225 */ 2226 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2227 sdsa = DSA_SIG_new(); 2228 BN_rand(bk, vallen * 8, -1, 1); /* k */ 2229 BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */ 2230 BN_add(bn, bn, bk); 2231 BN_mod(bn, bn, dsa->q, bctx); /* k + b r mod q */ 2232 sdsa->r = BN_dup(bn); 2233 BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */ 2234 bighash(bk, bk); 2235 sdsa->s = BN_dup(bk); 2236 BN_CTX_free(bctx); 2237 BN_free(r); BN_free(bn); BN_free(bk); 2238 #ifdef DEBUG 2239 if (debug > 1) 2240 DSA_print_fp(stdout, dsa, 0); 2241 #endif 2242 2243 /* 2244 * Encode the values in ASN.1 and sign. The filestamp is from 2245 * the local file. 2246 */ 2247 vallen = i2d_DSA_SIG(sdsa, NULL); 2248 if (vallen == 0) { 2249 msyslog(LOG_ERR, "crypto_bob: %s", 2250 ERR_error_string(ERR_get_error(), NULL)); 2251 DSA_SIG_free(sdsa); 2252 return (XEVNT_ERR); 2253 } 2254 if (vallen > MAX_VALLEN) { 2255 msyslog(LOG_ERR, "crypto_bob: signature is too big: %d", 2256 vallen); 2257 DSA_SIG_free(sdsa); 2258 return (XEVNT_LEN); 2259 } 2260 memset(vp, 0, sizeof(struct value)); 2261 tstamp = crypto_time(); 2262 vp->tstamp = htonl(tstamp); 2263 vp->fstamp = htonl(iffkey_info->fstamp); 2264 vp->vallen = htonl(vallen); 2265 ptr = emalloc(vallen); 2266 vp->ptr = ptr; 2267 i2d_DSA_SIG(sdsa, &ptr); 2268 DSA_SIG_free(sdsa); 2269 if (tstamp == 0) 2270 return (XEVNT_OK); 2271 2272 /* XXX: more validation to make sure the sign fits... */ 2273 vp->sig = emalloc(sign_siglen); 2274 EVP_SignInit(&ctx, sign_digest); 2275 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2276 EVP_SignUpdate(&ctx, vp->ptr, vallen); 2277 if (EVP_SignFinal(&ctx, vp->sig, &vallen, sign_pkey)) 2278 vp->siglen = htonl(sign_siglen); 2279 return (XEVNT_OK); 2280 } 2281 2282 2283 /* 2284 * crypto_iff - verify Bob's response to Alice's challenge 2285 * 2286 * Returns 2287 * XEVNT_OK success 2288 * XEVNT_FSP bad filestamp 2289 * XEVNT_ID bad or missing group key 2290 * XEVNT_PUB bad or missing public key 2291 */ 2292 int 2293 crypto_iff( 2294 struct exten *ep, /* extension pointer */ 2295 struct peer *peer /* peer structure pointer */ 2296 ) 2297 { 2298 DSA *dsa; /* IFF parameters */ 2299 BN_CTX *bctx; /* BIGNUM context */ 2300 DSA_SIG *sdsa; /* DSA parameters */ 2301 BIGNUM *bn, *bk; 2302 u_int len; 2303 const u_char *ptr; 2304 int temp; 2305 2306 /* 2307 * If the IFF parameters are not valid or no challenge was sent, 2308 * something awful happened or we are being tormented. 2309 */ 2310 if (peer->ident_pkey == NULL) { 2311 msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable"); 2312 return (XEVNT_ID); 2313 } 2314 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2315 msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u", 2316 ntohl(ep->fstamp)); 2317 return (XEVNT_FSP); 2318 } 2319 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2320 msyslog(LOG_NOTICE, "crypto_iff: defective key"); 2321 return (XEVNT_PUB); 2322 } 2323 if (peer->iffval == NULL) { 2324 msyslog(LOG_NOTICE, "crypto_iff: missing challenge"); 2325 return (XEVNT_ID); 2326 } 2327 2328 /* 2329 * Extract the k + b r and g^k values from the response. 2330 */ 2331 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2332 len = ntohl(ep->vallen); 2333 ptr = (u_char *)ep->pkt; 2334 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2335 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2336 msyslog(LOG_ERR, "crypto_iff: %s", 2337 ERR_error_string(ERR_get_error(), NULL)); 2338 return (XEVNT_ERR); 2339 } 2340 2341 /* 2342 * Compute g^(k + b r) g^(q - b)r mod p. 2343 */ 2344 BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx); 2345 BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx); 2346 BN_mod_mul(bn, bn, bk, dsa->p, bctx); 2347 2348 /* 2349 * Verify the hash of the result matches hash(x). 2350 */ 2351 bighash(bn, bn); 2352 temp = BN_cmp(bn, sdsa->s); 2353 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2354 BN_free(peer->iffval); 2355 peer->iffval = NULL; 2356 DSA_SIG_free(sdsa); 2357 if (temp == 0) 2358 return (XEVNT_OK); 2359 2360 msyslog(LOG_NOTICE, "crypto_iff: identity not verified"); 2361 return (XEVNT_ID); 2362 } 2363 2364 2365 /* 2366 *********************************************************************** 2367 * * 2368 * The following routines implement the Guillou-Quisquater (GQ) * 2369 * identity scheme * 2370 * * 2371 *********************************************************************** 2372 * 2373 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 2374 * the certificate can be used to convey public parameters. The scheme 2375 * uses a X509v3 certificate extension field do convey the public key of 2376 * a private key known only to servers. There are two kinds of files: 2377 * encrypted server files that contain private and public values and 2378 * nonencrypted client files that contain only public values. New 2379 * generations of server files must be securely transmitted to all 2380 * servers of the group; client files can be distributed by any means. 2381 * The scheme is self contained and independent of new generations of 2382 * host keys and sign keys. The scheme is self contained and independent 2383 * of new generations of host keys and sign keys. 2384 * 2385 * The GQ parameters hide in a RSA cuckoo structure which uses the same 2386 * parameters. The values are used by an identity scheme based on RSA 2387 * cryptography and described in Stimson p. 300 (with errors). The 512- 2388 * bit public modulus is n = p q, where p and q are secret large primes. 2389 * The TA rolls private random group key b as RSA exponent. These values 2390 * are known to all group members. 2391 * 2392 * When rolling new certificates, a server recomputes the private and 2393 * public keys. The private key u is a random roll, while the public key 2394 * is the inverse obscured by the group key v = (u^-1)^b. These values 2395 * replace the private and public keys normally generated by the RSA 2396 * scheme. Alice challenges Bob to confirm identity using the protocol 2397 * described below. 2398 * 2399 * How it works 2400 * 2401 * The scheme goes like this. Both Alice and Bob have the same modulus n 2402 * and some random b as the group key. These values are computed and 2403 * distributed in advance via secret means, although only the group key 2404 * b is truly secret. Each has a private random private key u and public 2405 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 2406 * can regenerate the key pair from time to time without affecting 2407 * operations. The public key is conveyed on the certificate in an 2408 * extension field; the private key is never revealed. 2409 * 2410 * Alice rolls new random challenge r and sends to Bob in the GQ 2411 * request message. Bob rolls new random k, then computes y = k u^r mod 2412 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 2413 * message. Besides making the response shorter, the hash makes it 2414 * effectivey impossible for an intruder to solve for b by observing 2415 * a number of these messages. 2416 * 2417 * Alice receives the response and computes y^b v^r mod n. After a bit 2418 * of algebra, this simplifies to k^b. If the hash of this result 2419 * matches hash(x), Alice knows that Bob has the group key b. The signed 2420 * response binds this knowledge to Bob's private key and the public key 2421 * previously received in his certificate. 2422 * 2423 * crypto_alice2 - construct Alice's challenge in GQ scheme 2424 * 2425 * Returns 2426 * XEVNT_OK success 2427 * XEVNT_ID bad or missing group key 2428 * XEVNT_PUB bad or missing public key 2429 */ 2430 static int 2431 crypto_alice2( 2432 struct peer *peer, /* peer pointer */ 2433 struct value *vp /* value pointer */ 2434 ) 2435 { 2436 RSA *rsa; /* GQ parameters */ 2437 BN_CTX *bctx; /* BIGNUM context */ 2438 EVP_MD_CTX ctx; /* signature context */ 2439 tstamp_t tstamp; 2440 u_int len; 2441 2442 /* 2443 * The identity parameters must have correct format and content. 2444 */ 2445 if (peer->ident_pkey == NULL) 2446 return (XEVNT_ID); 2447 2448 if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) { 2449 msyslog(LOG_NOTICE, "crypto_alice2: defective key"); 2450 return (XEVNT_PUB); 2451 } 2452 2453 /* 2454 * Roll new random r (0 < r < n). 2455 */ 2456 if (peer->iffval != NULL) 2457 BN_free(peer->iffval); 2458 peer->iffval = BN_new(); 2459 len = BN_num_bytes(rsa->n); 2460 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */ 2461 bctx = BN_CTX_new(); 2462 BN_mod(peer->iffval, peer->iffval, rsa->n, bctx); 2463 BN_CTX_free(bctx); 2464 2465 /* 2466 * Sign and send to Bob. The filestamp is from the local file. 2467 */ 2468 memset(vp, 0, sizeof(struct value)); 2469 tstamp = crypto_time(); 2470 vp->tstamp = htonl(tstamp); 2471 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2472 vp->vallen = htonl(len); 2473 vp->ptr = emalloc(len); 2474 BN_bn2bin(peer->iffval, vp->ptr); 2475 if (tstamp == 0) 2476 return (XEVNT_OK); 2477 2478 vp->sig = emalloc(sign_siglen); 2479 EVP_SignInit(&ctx, sign_digest); 2480 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2481 EVP_SignUpdate(&ctx, vp->ptr, len); 2482 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2483 vp->siglen = htonl(sign_siglen); 2484 return (XEVNT_OK); 2485 } 2486 2487 2488 /* 2489 * crypto_bob2 - construct Bob's response to Alice's challenge 2490 * 2491 * Returns 2492 * XEVNT_OK success 2493 * XEVNT_ERR protocol error 2494 * XEVNT_ID bad or missing group key 2495 */ 2496 static int 2497 crypto_bob2( 2498 struct exten *ep, /* extension pointer */ 2499 struct value *vp /* value pointer */ 2500 ) 2501 { 2502 RSA *rsa; /* GQ parameters */ 2503 DSA_SIG *sdsa; /* DSA parameters */ 2504 BN_CTX *bctx; /* BIGNUM context */ 2505 EVP_MD_CTX ctx; /* signature context */ 2506 tstamp_t tstamp; /* NTP timestamp */ 2507 BIGNUM *r, *k, *g, *y; 2508 u_char *ptr; 2509 u_int len; 2510 int s_len; 2511 2512 /* 2513 * If the GQ parameters are not valid, something awful 2514 * happened or we are being tormented. 2515 */ 2516 if (gqkey_info == NULL) { 2517 msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable"); 2518 return (XEVNT_ID); 2519 } 2520 rsa = gqkey_info->pkey->pkey.rsa; 2521 2522 /* 2523 * Extract r from the challenge. 2524 */ 2525 len = ntohl(ep->vallen); 2526 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2527 msyslog(LOG_ERR, "crypto_bob2: %s", 2528 ERR_error_string(ERR_get_error(), NULL)); 2529 return (XEVNT_ERR); 2530 } 2531 2532 /* 2533 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and 2534 * x = k^b mod n, then sends (y, hash(x)) to Alice. 2535 */ 2536 bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new(); 2537 sdsa = DSA_SIG_new(); 2538 BN_rand(k, len * 8, -1, 1); /* k */ 2539 BN_mod(k, k, rsa->n, bctx); 2540 BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */ 2541 BN_mod_mul(y, k, y, rsa->n, bctx); /* k u^r mod n */ 2542 sdsa->r = BN_dup(y); 2543 BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */ 2544 bighash(g, g); 2545 sdsa->s = BN_dup(g); 2546 BN_CTX_free(bctx); 2547 BN_free(r); BN_free(k); BN_free(g); BN_free(y); 2548 #ifdef DEBUG 2549 if (debug > 1) 2550 RSA_print_fp(stdout, rsa, 0); 2551 #endif 2552 2553 /* 2554 * Encode the values in ASN.1 and sign. The filestamp is from 2555 * the local file. 2556 */ 2557 len = s_len = i2d_DSA_SIG(sdsa, NULL); 2558 if (s_len <= 0) { 2559 msyslog(LOG_ERR, "crypto_bob2: %s", 2560 ERR_error_string(ERR_get_error(), NULL)); 2561 DSA_SIG_free(sdsa); 2562 return (XEVNT_ERR); 2563 } 2564 memset(vp, 0, sizeof(struct value)); 2565 tstamp = crypto_time(); 2566 vp->tstamp = htonl(tstamp); 2567 vp->fstamp = htonl(gqkey_info->fstamp); 2568 vp->vallen = htonl(len); 2569 ptr = emalloc(len); 2570 vp->ptr = ptr; 2571 i2d_DSA_SIG(sdsa, &ptr); 2572 DSA_SIG_free(sdsa); 2573 if (tstamp == 0) 2574 return (XEVNT_OK); 2575 2576 vp->sig = emalloc(sign_siglen); 2577 EVP_SignInit(&ctx, sign_digest); 2578 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2579 EVP_SignUpdate(&ctx, vp->ptr, len); 2580 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2581 vp->siglen = htonl(sign_siglen); 2582 return (XEVNT_OK); 2583 } 2584 2585 2586 /* 2587 * crypto_gq - verify Bob's response to Alice's challenge 2588 * 2589 * Returns 2590 * XEVNT_OK success 2591 * XEVNT_ERR protocol error 2592 * XEVNT_FSP bad filestamp 2593 * XEVNT_ID bad or missing group keys 2594 * XEVNT_PUB bad or missing public key 2595 */ 2596 int 2597 crypto_gq( 2598 struct exten *ep, /* extension pointer */ 2599 struct peer *peer /* peer structure pointer */ 2600 ) 2601 { 2602 RSA *rsa; /* GQ parameters */ 2603 BN_CTX *bctx; /* BIGNUM context */ 2604 DSA_SIG *sdsa; /* RSA signature context fake */ 2605 BIGNUM *y, *v; 2606 const u_char *ptr; 2607 long len; 2608 u_int temp; 2609 2610 /* 2611 * If the GQ parameters are not valid or no challenge was sent, 2612 * something awful happened or we are being tormented. Note that 2613 * the filestamp on the local key file can be greater than on 2614 * the remote parameter file if the keys have been refreshed. 2615 */ 2616 if (peer->ident_pkey == NULL) { 2617 msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable"); 2618 return (XEVNT_ID); 2619 } 2620 if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) { 2621 msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u", 2622 ntohl(ep->fstamp)); 2623 return (XEVNT_FSP); 2624 } 2625 if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) { 2626 msyslog(LOG_NOTICE, "crypto_gq: defective key"); 2627 return (XEVNT_PUB); 2628 } 2629 if (peer->iffval == NULL) { 2630 msyslog(LOG_NOTICE, "crypto_gq: missing challenge"); 2631 return (XEVNT_ID); 2632 } 2633 2634 /* 2635 * Extract the y = k u^r and hash(x = k^b) values from the 2636 * response. 2637 */ 2638 bctx = BN_CTX_new(); y = BN_new(); v = BN_new(); 2639 len = ntohl(ep->vallen); 2640 ptr = (u_char *)ep->pkt; 2641 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2642 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2643 msyslog(LOG_ERR, "crypto_gq: %s", 2644 ERR_error_string(ERR_get_error(), NULL)); 2645 return (XEVNT_ERR); 2646 } 2647 2648 /* 2649 * Compute v^r y^b mod n. 2650 */ 2651 if (peer->grpkey == NULL) { 2652 msyslog(LOG_NOTICE, "crypto_gq: missing group key"); 2653 return (XEVNT_ID); 2654 } 2655 BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx); 2656 /* v^r mod n */ 2657 BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */ 2658 BN_mod_mul(y, v, y, rsa->n, bctx); /* v^r y^b mod n */ 2659 2660 /* 2661 * Verify the hash of the result matches hash(x). 2662 */ 2663 bighash(y, y); 2664 temp = BN_cmp(y, sdsa->s); 2665 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2666 BN_free(peer->iffval); 2667 peer->iffval = NULL; 2668 DSA_SIG_free(sdsa); 2669 if (temp == 0) 2670 return (XEVNT_OK); 2671 2672 msyslog(LOG_NOTICE, "crypto_gq: identity not verified"); 2673 return (XEVNT_ID); 2674 } 2675 2676 2677 /* 2678 *********************************************************************** 2679 * * 2680 * The following routines implement the Mu-Varadharajan (MV) identity * 2681 * scheme * 2682 * * 2683 *********************************************************************** 2684 * 2685 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 2686 * servers broadcast messages to clients, but clients never send 2687 * messages to servers. There is one encryption key for the server and a 2688 * separate decryption key for each client. It operated something like a 2689 * pay-per-view satellite broadcasting system where the session key is 2690 * encrypted by the broadcaster and the decryption keys are held in a 2691 * tamperproof set-top box. 2692 * 2693 * The MV parameters and private encryption key hide in a DSA cuckoo 2694 * structure which uses the same parameters, but generated in a 2695 * different way. The values are used in an encryption scheme similar to 2696 * El Gamal cryptography and a polynomial formed from the expansion of 2697 * product terms (x - x[j]), as described in Mu, Y., and V. 2698 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 2699 * 223-231. The paper has significant errors and serious omissions. 2700 * 2701 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 2702 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 2703 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 2704 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 2705 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 2706 * project into Zp* as exponents of g. Sometimes we have to compute an 2707 * inverse b^-1 of random b in Zq, but for that purpose we require 2708 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 2709 * relatively small, like 30. These are the parameters of the scheme and 2710 * they are expensive to compute. 2711 * 2712 * We set up an instance of the scheme as follows. A set of random 2713 * values x[j] mod q (j = 1...n), are generated as the zeros of a 2714 * polynomial of order n. The product terms (x - x[j]) are expanded to 2715 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 2716 * used as exponents of the generator g mod p to generate the private 2717 * encryption key A. The pair (gbar, ghat) of public server keys and the 2718 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 2719 * to construct the decryption keys. The devil is in the details. 2720 * 2721 * This routine generates a private server encryption file including the 2722 * private encryption key E and partial decryption keys gbar and ghat. 2723 * It then generates public client decryption files including the public 2724 * keys xbar[j] and xhat[j] for each client j. The partial decryption 2725 * files are used to compute the inverse of E. These values are suitably 2726 * blinded so secrets are not revealed. 2727 * 2728 * The distinguishing characteristic of this scheme is the capability to 2729 * revoke keys. Included in the calculation of E, gbar and ghat is the 2730 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 2731 * subsequently removed from the product and E, gbar and ghat 2732 * recomputed, the jth client will no longer be able to compute E^-1 and 2733 * thus unable to decrypt the messageblock. 2734 * 2735 * How it works 2736 * 2737 * The scheme goes like this. Bob has the server values (p, E, q, gbar, 2738 * ghat) and Alice has the client values (p, xbar, xhat). 2739 * 2740 * Alice rolls new random nonce r mod p and sends to Bob in the MV 2741 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 2742 * mod p and sends (y, gbar^k, ghat^k) to Alice. 2743 * 2744 * Alice receives the response and computes the inverse (E^k)^-1 from 2745 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 2746 * decrypts y and verifies it matches the original r. The signed 2747 * response binds this knowledge to Bob's private key and the public key 2748 * previously received in his certificate. 2749 * 2750 * crypto_alice3 - construct Alice's challenge in MV scheme 2751 * 2752 * Returns 2753 * XEVNT_OK success 2754 * XEVNT_ID bad or missing group key 2755 * XEVNT_PUB bad or missing public key 2756 */ 2757 static int 2758 crypto_alice3( 2759 struct peer *peer, /* peer pointer */ 2760 struct value *vp /* value pointer */ 2761 ) 2762 { 2763 DSA *dsa; /* MV parameters */ 2764 BN_CTX *bctx; /* BIGNUM context */ 2765 EVP_MD_CTX ctx; /* signature context */ 2766 tstamp_t tstamp; 2767 u_int len; 2768 2769 /* 2770 * The identity parameters must have correct format and content. 2771 */ 2772 if (peer->ident_pkey == NULL) 2773 return (XEVNT_ID); 2774 2775 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2776 msyslog(LOG_NOTICE, "crypto_alice3: defective key"); 2777 return (XEVNT_PUB); 2778 } 2779 2780 /* 2781 * Roll new random r (0 < r < q). 2782 */ 2783 if (peer->iffval != NULL) 2784 BN_free(peer->iffval); 2785 peer->iffval = BN_new(); 2786 len = BN_num_bytes(dsa->p); 2787 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod p */ 2788 bctx = BN_CTX_new(); 2789 BN_mod(peer->iffval, peer->iffval, dsa->p, bctx); 2790 BN_CTX_free(bctx); 2791 2792 /* 2793 * Sign and send to Bob. The filestamp is from the local file. 2794 */ 2795 memset(vp, 0, sizeof(struct value)); 2796 tstamp = crypto_time(); 2797 vp->tstamp = htonl(tstamp); 2798 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2799 vp->vallen = htonl(len); 2800 vp->ptr = emalloc(len); 2801 BN_bn2bin(peer->iffval, vp->ptr); 2802 if (tstamp == 0) 2803 return (XEVNT_OK); 2804 2805 vp->sig = emalloc(sign_siglen); 2806 EVP_SignInit(&ctx, sign_digest); 2807 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2808 EVP_SignUpdate(&ctx, vp->ptr, len); 2809 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2810 vp->siglen = htonl(sign_siglen); 2811 return (XEVNT_OK); 2812 } 2813 2814 2815 /* 2816 * crypto_bob3 - construct Bob's response to Alice's challenge 2817 * 2818 * Returns 2819 * XEVNT_OK success 2820 * XEVNT_ERR protocol error 2821 */ 2822 static int 2823 crypto_bob3( 2824 struct exten *ep, /* extension pointer */ 2825 struct value *vp /* value pointer */ 2826 ) 2827 { 2828 DSA *dsa; /* MV parameters */ 2829 DSA *sdsa; /* DSA signature context fake */ 2830 BN_CTX *bctx; /* BIGNUM context */ 2831 EVP_MD_CTX ctx; /* signature context */ 2832 tstamp_t tstamp; /* NTP timestamp */ 2833 BIGNUM *r, *k, *u; 2834 u_char *ptr; 2835 u_int len; 2836 2837 /* 2838 * If the MV parameters are not valid, something awful 2839 * happened or we are being tormented. 2840 */ 2841 if (mvkey_info == NULL) { 2842 msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable"); 2843 return (XEVNT_ID); 2844 } 2845 dsa = mvkey_info->pkey->pkey.dsa; 2846 2847 /* 2848 * Extract r from the challenge. 2849 */ 2850 len = ntohl(ep->vallen); 2851 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2852 msyslog(LOG_ERR, "crypto_bob3: %s", 2853 ERR_error_string(ERR_get_error(), NULL)); 2854 return (XEVNT_ERR); 2855 } 2856 2857 /* 2858 * Bob rolls random k (0 < k < q), making sure it is not a 2859 * factor of q. He then computes y = r A^k and sends (y, gbar^k, 2860 * and ghat^k) to Alice. 2861 */ 2862 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); 2863 sdsa = DSA_new(); 2864 sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new(); 2865 while (1) { 2866 BN_rand(k, BN_num_bits(dsa->q), 0, 0); 2867 BN_mod(k, k, dsa->q, bctx); 2868 BN_gcd(u, k, dsa->q, bctx); 2869 if (BN_is_one(u)) 2870 break; 2871 } 2872 BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A^k r */ 2873 BN_mod_mul(sdsa->p, u, r, dsa->p, bctx); 2874 BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */ 2875 BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */ 2876 BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u); 2877 #ifdef DEBUG 2878 if (debug > 1) 2879 DSA_print_fp(stdout, sdsa, 0); 2880 #endif 2881 2882 /* 2883 * Encode the values in ASN.1 and sign. The filestamp is from 2884 * the local file. 2885 */ 2886 memset(vp, 0, sizeof(struct value)); 2887 tstamp = crypto_time(); 2888 vp->tstamp = htonl(tstamp); 2889 vp->fstamp = htonl(mvkey_info->fstamp); 2890 len = i2d_DSAparams(sdsa, NULL); 2891 if (len == 0) { 2892 msyslog(LOG_ERR, "crypto_bob3: %s", 2893 ERR_error_string(ERR_get_error(), NULL)); 2894 DSA_free(sdsa); 2895 return (XEVNT_ERR); 2896 } 2897 vp->vallen = htonl(len); 2898 ptr = emalloc(len); 2899 vp->ptr = ptr; 2900 i2d_DSAparams(sdsa, &ptr); 2901 DSA_free(sdsa); 2902 if (tstamp == 0) 2903 return (XEVNT_OK); 2904 2905 vp->sig = emalloc(sign_siglen); 2906 EVP_SignInit(&ctx, sign_digest); 2907 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2908 EVP_SignUpdate(&ctx, vp->ptr, len); 2909 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2910 vp->siglen = htonl(sign_siglen); 2911 return (XEVNT_OK); 2912 } 2913 2914 2915 /* 2916 * crypto_mv - verify Bob's response to Alice's challenge 2917 * 2918 * Returns 2919 * XEVNT_OK success 2920 * XEVNT_ERR protocol error 2921 * XEVNT_FSP bad filestamp 2922 * XEVNT_ID bad or missing group key 2923 * XEVNT_PUB bad or missing public key 2924 */ 2925 int 2926 crypto_mv( 2927 struct exten *ep, /* extension pointer */ 2928 struct peer *peer /* peer structure pointer */ 2929 ) 2930 { 2931 DSA *dsa; /* MV parameters */ 2932 DSA *sdsa; /* DSA parameters */ 2933 BN_CTX *bctx; /* BIGNUM context */ 2934 BIGNUM *k, *u, *v; 2935 u_int len; 2936 const u_char *ptr; 2937 int temp; 2938 2939 /* 2940 * If the MV parameters are not valid or no challenge was sent, 2941 * something awful happened or we are being tormented. 2942 */ 2943 if (peer->ident_pkey == NULL) { 2944 msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable"); 2945 return (XEVNT_ID); 2946 } 2947 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2948 msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u", 2949 ntohl(ep->fstamp)); 2950 return (XEVNT_FSP); 2951 } 2952 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2953 msyslog(LOG_NOTICE, "crypto_mv: defective key"); 2954 return (XEVNT_PUB); 2955 } 2956 if (peer->iffval == NULL) { 2957 msyslog(LOG_NOTICE, "crypto_mv: missing challenge"); 2958 return (XEVNT_ID); 2959 } 2960 2961 /* 2962 * Extract the y, gbar and ghat values from the response. 2963 */ 2964 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new(); 2965 len = ntohl(ep->vallen); 2966 ptr = (u_char *)ep->pkt; 2967 if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) { 2968 msyslog(LOG_ERR, "crypto_mv: %s", 2969 ERR_error_string(ERR_get_error(), NULL)); 2970 return (XEVNT_ERR); 2971 } 2972 2973 /* 2974 * Compute (gbar^xhat ghat^xbar) mod p. 2975 */ 2976 BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx); 2977 BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx); 2978 BN_mod_mul(u, u, v, dsa->p, bctx); 2979 BN_mod_mul(u, u, sdsa->p, dsa->p, bctx); 2980 2981 /* 2982 * The result should match r. 2983 */ 2984 temp = BN_cmp(u, peer->iffval); 2985 BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v); 2986 BN_free(peer->iffval); 2987 peer->iffval = NULL; 2988 DSA_free(sdsa); 2989 if (temp == 0) 2990 return (XEVNT_OK); 2991 2992 msyslog(LOG_NOTICE, "crypto_mv: identity not verified"); 2993 return (XEVNT_ID); 2994 } 2995 2996 2997 /* 2998 *********************************************************************** 2999 * * 3000 * The following routines are used to manipulate certificates * 3001 * * 3002 *********************************************************************** 3003 */ 3004 /* 3005 * cert_sign - sign x509 certificate equest and update value structure. 3006 * 3007 * The certificate request includes a copy of the host certificate, 3008 * which includes the version number, subject name and public key of the 3009 * host. The resulting certificate includes these values plus the 3010 * serial number, issuer name and valid interval of the server. The 3011 * valid interval extends from the current time to the same time one 3012 * year hence. This may extend the life of the signed certificate beyond 3013 * that of the signer certificate. 3014 * 3015 * It is convenient to use the NTP seconds of the current time as the 3016 * serial number. In the value structure the timestamp is the current 3017 * time and the filestamp is taken from the extension field. Note this 3018 * routine is called only when the client clock is synchronized to a 3019 * proventic source, so timestamp comparisons are valid. 3020 * 3021 * The host certificate is valid from the time it was generated for a 3022 * period of one year. A signed certificate is valid from the time of 3023 * signature for a period of one year, but only the host certificate (or 3024 * sign certificate if used) is actually used to encrypt and decrypt 3025 * signatures. The signature trail is built from the client via the 3026 * intermediate servers to the trusted server. Each signature on the 3027 * trail must be valid at the time of signature, but it could happen 3028 * that a signer certificate expire before the signed certificate, which 3029 * remains valid until its expiration. 3030 * 3031 * Returns 3032 * XEVNT_OK success 3033 * XEVNT_CRT bad or missing certificate 3034 * XEVNT_PER host certificate expired 3035 * XEVNT_PUB bad or missing public key 3036 * XEVNT_VFY certificate not verified 3037 */ 3038 static int 3039 cert_sign( 3040 struct exten *ep, /* extension field pointer */ 3041 struct value *vp /* value pointer */ 3042 ) 3043 { 3044 X509 *req; /* X509 certificate request */ 3045 X509 *cert; /* X509 certificate */ 3046 X509_EXTENSION *ext; /* certificate extension */ 3047 ASN1_INTEGER *serial; /* serial number */ 3048 X509_NAME *subj; /* distinguished (common) name */ 3049 EVP_PKEY *pkey; /* public key */ 3050 EVP_MD_CTX ctx; /* message digest context */ 3051 tstamp_t tstamp; /* NTP timestamp */ 3052 struct calendar tscal; 3053 u_int len; 3054 const u_char *cptr; 3055 u_char *ptr; 3056 int i, temp; 3057 3058 /* 3059 * Decode ASN.1 objects and construct certificate structure. 3060 * Make sure the system clock is synchronized to a proventic 3061 * source. 3062 */ 3063 tstamp = crypto_time(); 3064 if (tstamp == 0) 3065 return (XEVNT_TSP); 3066 3067 cptr = (void *)ep->pkt; 3068 if ((req = d2i_X509(NULL, &cptr, ntohl(ep->vallen))) == NULL) { 3069 msyslog(LOG_ERR, "cert_sign: %s", 3070 ERR_error_string(ERR_get_error(), NULL)); 3071 return (XEVNT_CRT); 3072 } 3073 /* 3074 * Extract public key and check for errors. 3075 */ 3076 if ((pkey = X509_get_pubkey(req)) == NULL) { 3077 msyslog(LOG_ERR, "cert_sign: %s", 3078 ERR_error_string(ERR_get_error(), NULL)); 3079 X509_free(req); 3080 return (XEVNT_PUB); 3081 } 3082 3083 /* 3084 * Generate X509 certificate signed by this server. If this is a 3085 * trusted host, the issuer name is the group name; otherwise, 3086 * it is the host name. Also copy any extensions that might be 3087 * present. 3088 */ 3089 cert = X509_new(); 3090 X509_set_version(cert, X509_get_version(req)); 3091 serial = ASN1_INTEGER_new(); 3092 ASN1_INTEGER_set(serial, tstamp); 3093 X509_set_serialNumber(cert, serial); 3094 X509_gmtime_adj(X509_get_notBefore(cert), 0L); 3095 X509_gmtime_adj(X509_get_notAfter(cert), YEAR); 3096 subj = X509_get_issuer_name(cert); 3097 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 3098 hostval.ptr, strlen((const char *)hostval.ptr), -1, 0); 3099 subj = X509_get_subject_name(req); 3100 X509_set_subject_name(cert, subj); 3101 X509_set_pubkey(cert, pkey); 3102 temp = X509_get_ext_count(req); 3103 for (i = 0; i < temp; i++) { 3104 ext = X509_get_ext(req, i); 3105 INSIST(X509_add_ext(cert, ext, -1)); 3106 } 3107 X509_free(req); 3108 3109 /* 3110 * Sign and verify the client certificate, but only if the host 3111 * certificate has not expired. 3112 */ 3113 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 3114 if ((calcomp(&tscal, &(cert_host->first)) < 0) 3115 || (calcomp(&tscal, &(cert_host->last)) > 0)) { 3116 X509_free(cert); 3117 return (XEVNT_PER); 3118 } 3119 X509_sign(cert, sign_pkey, sign_digest); 3120 if (X509_verify(cert, sign_pkey) <= 0) { 3121 msyslog(LOG_ERR, "cert_sign: %s", 3122 ERR_error_string(ERR_get_error(), NULL)); 3123 X509_free(cert); 3124 return (XEVNT_VFY); 3125 } 3126 len = i2d_X509(cert, NULL); 3127 3128 /* 3129 * Build and sign the value structure. We have to sign it here, 3130 * since the response has to be returned right away. This is a 3131 * clogging hazard. 3132 */ 3133 memset(vp, 0, sizeof(struct value)); 3134 vp->tstamp = htonl(tstamp); 3135 vp->fstamp = ep->fstamp; 3136 vp->vallen = htonl(len); 3137 vp->ptr = emalloc(len); 3138 ptr = vp->ptr; 3139 i2d_X509(cert, (unsigned char **)(intptr_t)&ptr); 3140 vp->siglen = 0; 3141 if (tstamp != 0) { 3142 vp->sig = emalloc(sign_siglen); 3143 EVP_SignInit(&ctx, sign_digest); 3144 EVP_SignUpdate(&ctx, (u_char *)vp, 12); 3145 EVP_SignUpdate(&ctx, vp->ptr, len); 3146 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 3147 vp->siglen = htonl(sign_siglen); 3148 } 3149 #ifdef DEBUG 3150 if (debug > 1) 3151 X509_print_fp(stdout, cert); 3152 #endif 3153 X509_free(cert); 3154 return (XEVNT_OK); 3155 } 3156 3157 3158 /* 3159 * cert_install - install certificate in certificate cache 3160 * 3161 * This routine encodes an extension field into a certificate info/value 3162 * structure. It searches the certificate list for duplicates and 3163 * expunges whichever is older. Finally, it inserts this certificate 3164 * first on the list. 3165 * 3166 * Returns certificate info pointer if valid, NULL if not. 3167 */ 3168 struct cert_info * 3169 cert_install( 3170 struct exten *ep, /* cert info/value */ 3171 struct peer *peer /* peer structure */ 3172 ) 3173 { 3174 struct cert_info *cp, *xp, **zp; 3175 3176 /* 3177 * Parse and validate the signed certificate. If valid, 3178 * construct the info/value structure; otherwise, scamper home 3179 * empty handed. 3180 */ 3181 if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen), 3182 (tstamp_t)ntohl(ep->fstamp))) == NULL) 3183 return (NULL); 3184 3185 /* 3186 * Scan certificate list looking for another certificate with 3187 * the same subject and issuer. If another is found with the 3188 * same or older filestamp, unlink it and return the goodies to 3189 * the heap. If another is found with a later filestamp, discard 3190 * the new one and leave the building with the old one. 3191 * 3192 * Make a note to study this issue again. An earlier certificate 3193 * with a long lifetime might be overtaken by a later 3194 * certificate with a short lifetime, thus invalidating the 3195 * earlier signature. However, we gotta find a way to leak old 3196 * stuff from the cache, so we do it anyway. 3197 */ 3198 zp = &cinfo; 3199 for (xp = cinfo; xp != NULL; xp = xp->link) { 3200 if (strcmp(cp->subject, xp->subject) == 0 && 3201 strcmp(cp->issuer, xp->issuer) == 0) { 3202 if (ntohl(cp->cert.fstamp) <= 3203 ntohl(xp->cert.fstamp)) { 3204 cert_free(cp); 3205 cp = xp; 3206 } else { 3207 *zp = xp->link; 3208 cert_free(xp); 3209 xp = NULL; 3210 } 3211 break; 3212 } 3213 zp = &xp->link; 3214 } 3215 if (xp == NULL) { 3216 cp->link = cinfo; 3217 cinfo = cp; 3218 } 3219 cp->flags |= CERT_VALID; 3220 crypto_update(); 3221 return (cp); 3222 } 3223 3224 3225 /* 3226 * cert_hike - verify the signature using the issuer public key 3227 * 3228 * Returns 3229 * XEVNT_OK success 3230 * XEVNT_CRT bad or missing certificate 3231 * XEVNT_PER host certificate expired 3232 * XEVNT_VFY certificate not verified 3233 */ 3234 int 3235 cert_hike( 3236 struct peer *peer, /* peer structure pointer */ 3237 struct cert_info *yp /* issuer certificate */ 3238 ) 3239 { 3240 struct cert_info *xp; /* subject certificate */ 3241 X509 *cert; /* X509 certificate */ 3242 const u_char *ptr; 3243 3244 /* 3245 * Save the issuer on the new certificate, but remember the old 3246 * one. 3247 */ 3248 if (peer->issuer != NULL) 3249 free(peer->issuer); 3250 peer->issuer = estrdup(yp->issuer); 3251 xp = peer->xinfo; 3252 peer->xinfo = yp; 3253 3254 /* 3255 * If subject Y matches issuer Y, then the certificate trail is 3256 * complete. If Y is not trusted, the server certificate has yet 3257 * been signed, so keep trying. Otherwise, save the group key 3258 * and light the valid bit. If the host certificate is trusted, 3259 * do not execute a sign exchange. If no identity scheme is in 3260 * use, light the identity and proventic bits. 3261 */ 3262 if (strcmp(yp->subject, yp->issuer) == 0) { 3263 if (!(yp->flags & CERT_TRUST)) 3264 return (XEVNT_OK); 3265 3266 /* 3267 * If the server has an an identity scheme, fetch the 3268 * identity credentials. If not, the identity is 3269 * verified only by the trusted certificate. The next 3270 * signature will set the server proventic. 3271 */ 3272 peer->crypto |= CRYPTO_FLAG_CERT; 3273 peer->grpkey = yp->grpkey; 3274 if (peer->ident == NULL || !(peer->crypto & 3275 CRYPTO_FLAG_MASK)) 3276 peer->crypto |= CRYPTO_FLAG_VRFY; 3277 } 3278 3279 /* 3280 * If X exists, verify signature X using public key Y. 3281 */ 3282 if (xp == NULL) 3283 return (XEVNT_OK); 3284 3285 ptr = (u_char *)xp->cert.ptr; 3286 cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen)); 3287 if (cert == NULL) { 3288 xp->flags |= CERT_ERROR; 3289 return (XEVNT_CRT); 3290 } 3291 if (X509_verify(cert, yp->pkey) <= 0) { 3292 X509_free(cert); 3293 xp->flags |= CERT_ERROR; 3294 return (XEVNT_VFY); 3295 } 3296 X509_free(cert); 3297 3298 /* 3299 * Signature X is valid only if it begins during the 3300 * lifetime of Y. 3301 */ 3302 if ((calcomp(&(xp->first), &(yp->first)) < 0) 3303 || (calcomp(&(xp->first), &(yp->last)) > 0)) { 3304 xp->flags |= CERT_ERROR; 3305 return (XEVNT_PER); 3306 } 3307 xp->flags |= CERT_SIGN; 3308 return (XEVNT_OK); 3309 } 3310 3311 3312 /* 3313 * cert_parse - parse x509 certificate and create info/value structures. 3314 * 3315 * The server certificate includes the version number, issuer name, 3316 * subject name, public key and valid date interval. If the issuer name 3317 * is the same as the subject name, the certificate is self signed and 3318 * valid only if the server is configured as trustable. If the names are 3319 * different, another issuer has signed the server certificate and 3320 * vouched for it. In this case the server certificate is valid if 3321 * verified by the issuer public key. 3322 * 3323 * Returns certificate info/value pointer if valid, NULL if not. 3324 */ 3325 struct cert_info * /* certificate information structure */ 3326 cert_parse( 3327 const u_char *asn1cert, /* X509 certificate */ 3328 long len, /* certificate length */ 3329 tstamp_t fstamp /* filestamp */ 3330 ) 3331 { 3332 X509 *cert; /* X509 certificate */ 3333 X509_EXTENSION *ext; /* X509v3 extension */ 3334 struct cert_info *ret; /* certificate info/value */ 3335 BIO *bp; 3336 char pathbuf[MAXFILENAME]; 3337 const u_char *ptr; 3338 char *pch; 3339 int temp, cnt, i; 3340 struct calendar fscal; 3341 3342 /* 3343 * Decode ASN.1 objects and construct certificate structure. 3344 */ 3345 ptr = asn1cert; 3346 if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) { 3347 msyslog(LOG_ERR, "cert_parse: %s", 3348 ERR_error_string(ERR_get_error(), NULL)); 3349 return (NULL); 3350 } 3351 #ifdef DEBUG 3352 if (debug > 1) 3353 X509_print_fp(stdout, cert); 3354 #endif 3355 3356 /* 3357 * Extract version, subject name and public key. 3358 */ 3359 ret = emalloc_zero(sizeof(*ret)); 3360 if ((ret->pkey = X509_get_pubkey(cert)) == NULL) { 3361 msyslog(LOG_ERR, "cert_parse: %s", 3362 ERR_error_string(ERR_get_error(), NULL)); 3363 cert_free(ret); 3364 X509_free(cert); 3365 return (NULL); 3366 } 3367 ret->version = X509_get_version(cert); 3368 X509_NAME_oneline(X509_get_subject_name(cert), pathbuf, 3369 sizeof(pathbuf)); 3370 pch = strstr(pathbuf, "CN="); 3371 if (NULL == pch) { 3372 msyslog(LOG_NOTICE, "cert_parse: invalid subject %s", 3373 pathbuf); 3374 cert_free(ret); 3375 X509_free(cert); 3376 return (NULL); 3377 } 3378 ret->subject = estrdup(pch + 3); 3379 3380 /* 3381 * Extract remaining objects. Note that the NTP serial number is 3382 * the NTP seconds at the time of signing, but this might not be 3383 * the case for other authority. We don't bother to check the 3384 * objects at this time, since the real crunch can happen only 3385 * when the time is valid but not yet certificated. 3386 */ 3387 ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm); 3388 ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid); 3389 ret->serial = 3390 (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert)); 3391 X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf, 3392 sizeof(pathbuf)); 3393 if ((pch = strstr(pathbuf, "CN=")) == NULL) { 3394 msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s", 3395 pathbuf); 3396 cert_free(ret); 3397 X509_free(cert); 3398 return (NULL); 3399 } 3400 ret->issuer = estrdup(pch + 3); 3401 asn_to_calendar(X509_get_notBefore(cert), &(ret->first)); 3402 asn_to_calendar(X509_get_notAfter(cert), &(ret->last)); 3403 3404 /* 3405 * Extract extension fields. These are ad hoc ripoffs of 3406 * currently assigned functions and will certainly be changed 3407 * before prime time. 3408 */ 3409 cnt = X509_get_ext_count(cert); 3410 for (i = 0; i < cnt; i++) { 3411 ext = X509_get_ext(cert, i); 3412 temp = OBJ_obj2nid(ext->object); 3413 switch (temp) { 3414 3415 /* 3416 * If a key_usage field is present, we decode whether 3417 * this is a trusted or private certificate. This is 3418 * dorky; all we want is to compare NIDs, but OpenSSL 3419 * insists on BIO text strings. 3420 */ 3421 case NID_ext_key_usage: 3422 bp = BIO_new(BIO_s_mem()); 3423 X509V3_EXT_print(bp, ext, 0, 0); 3424 BIO_gets(bp, pathbuf, sizeof(pathbuf)); 3425 BIO_free(bp); 3426 if (strcmp(pathbuf, "Trust Root") == 0) 3427 ret->flags |= CERT_TRUST; 3428 else if (strcmp(pathbuf, "Private") == 0) 3429 ret->flags |= CERT_PRIV; 3430 #if DEBUG 3431 if (debug) 3432 printf("cert_parse: %s: %s\n", 3433 OBJ_nid2ln(temp), pathbuf); 3434 #endif 3435 break; 3436 3437 /* 3438 * If a NID_subject_key_identifier field is present, it 3439 * contains the GQ public key. 3440 */ 3441 case NID_subject_key_identifier: 3442 ret->grpkey = BN_bin2bn(&ext->value->data[2], 3443 ext->value->length - 2, NULL); 3444 /* fall through */ 3445 #if DEBUG 3446 default: 3447 if (debug) 3448 printf("cert_parse: %s\n", 3449 OBJ_nid2ln(temp)); 3450 #endif 3451 } 3452 } 3453 if (strcmp(ret->subject, ret->issuer) == 0) { 3454 3455 /* 3456 * If certificate is self signed, verify signature. 3457 */ 3458 if (X509_verify(cert, ret->pkey) <= 0) { 3459 msyslog(LOG_NOTICE, 3460 "cert_parse: signature not verified %s", 3461 ret->subject); 3462 cert_free(ret); 3463 X509_free(cert); 3464 return (NULL); 3465 } 3466 } else { 3467 3468 /* 3469 * Check for a certificate loop. 3470 */ 3471 if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) { 3472 msyslog(LOG_NOTICE, 3473 "cert_parse: certificate trail loop %s", 3474 ret->subject); 3475 cert_free(ret); 3476 X509_free(cert); 3477 return (NULL); 3478 } 3479 } 3480 3481 /* 3482 * Verify certificate valid times. Note that certificates cannot 3483 * be retroactive. 3484 */ 3485 (void)ntpcal_ntp_to_date(&fscal, fstamp, NULL); 3486 if ((calcomp(&(ret->first), &(ret->last)) > 0) 3487 || (calcomp(&(ret->first), &fscal) < 0)) { 3488 msyslog(LOG_NOTICE, 3489 "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u", 3490 ret->subject, 3491 ret->first.year, ret->first.month, ret->first.monthday, 3492 ret->first.hour, ret->first.minute, ret->first.second, 3493 ret->last.year, ret->last.month, ret->last.monthday, 3494 ret->last.hour, ret->last.minute, ret->last.second, 3495 fscal.year, fscal.month, fscal.monthday, 3496 fscal.hour, fscal.minute, fscal.second); 3497 cert_free(ret); 3498 X509_free(cert); 3499 return (NULL); 3500 } 3501 3502 /* 3503 * Build the value structure to sign and send later. 3504 */ 3505 ret->cert.fstamp = htonl(fstamp); 3506 ret->cert.vallen = htonl(len); 3507 ret->cert.ptr = emalloc(len); 3508 memcpy(ret->cert.ptr, asn1cert, len); 3509 X509_free(cert); 3510 return (ret); 3511 } 3512 3513 3514 /* 3515 * cert_free - free certificate information structure 3516 */ 3517 void 3518 cert_free( 3519 struct cert_info *cinf /* certificate info/value structure */ 3520 ) 3521 { 3522 if (cinf->pkey != NULL) 3523 EVP_PKEY_free(cinf->pkey); 3524 if (cinf->subject != NULL) 3525 free(cinf->subject); 3526 if (cinf->issuer != NULL) 3527 free(cinf->issuer); 3528 if (cinf->grpkey != NULL) 3529 BN_free(cinf->grpkey); 3530 value_free(&cinf->cert); 3531 free(cinf); 3532 } 3533 3534 3535 /* 3536 * crypto_key - load cryptographic parameters and keys 3537 * 3538 * This routine searches the key cache for matching name in the form 3539 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv, 3540 * and <name> is the host/group name. If not found, it tries to load a 3541 * PEM-encoded file of the same name and extracts the filestamp from 3542 * the first line of the file name. It returns the key pointer if valid, 3543 * NULL if not. 3544 */ 3545 static struct pkey_info * 3546 crypto_key( 3547 char *cp, /* file name */ 3548 char *passwd1, /* password */ 3549 sockaddr_u *addr /* IP address */ 3550 ) 3551 { 3552 FILE *str; /* file handle */ 3553 struct pkey_info *pkp; /* generic key */ 3554 EVP_PKEY *pkey = NULL; /* public/private key */ 3555 tstamp_t fstamp; 3556 char filename[MAXFILENAME]; /* name of key file */ 3557 char linkname[MAXFILENAME]; /* filestamp buffer) */ 3558 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3559 char *ptr; 3560 3561 /* 3562 * Search the key cache for matching key and name. 3563 */ 3564 for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) { 3565 if (strcmp(cp, pkp->name) == 0) 3566 return (pkp); 3567 } 3568 3569 /* 3570 * Open the key file. If the first character of the file name is 3571 * not '/', prepend the keys directory string. If something goes 3572 * wrong, abandon ship. 3573 */ 3574 if (*cp == '/') 3575 strlcpy(filename, cp, sizeof(filename)); 3576 else 3577 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3578 cp); 3579 str = fopen(filename, "r"); 3580 if (str == NULL) 3581 return (NULL); 3582 3583 /* 3584 * Read the filestamp, which is contained in the first line. 3585 */ 3586 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3587 msyslog(LOG_ERR, "crypto_key: empty file %s", 3588 filename); 3589 fclose(str); 3590 return (NULL); 3591 } 3592 if ((ptr = strrchr(ptr, '.')) == NULL) { 3593 msyslog(LOG_ERR, "crypto_key: no filestamp %s", 3594 filename); 3595 fclose(str); 3596 return (NULL); 3597 } 3598 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3599 msyslog(LOG_ERR, "crypto_key: invalid filestamp %s", 3600 filename); 3601 fclose(str); 3602 return (NULL); 3603 } 3604 3605 /* 3606 * Read and decrypt PEM-encoded private key. If it fails to 3607 * decrypt, game over. 3608 */ 3609 pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1); 3610 fclose(str); 3611 if (pkey == NULL) { 3612 msyslog(LOG_ERR, "crypto_key: %s", 3613 ERR_error_string(ERR_get_error(), NULL)); 3614 exit (-1); 3615 } 3616 3617 /* 3618 * Make a new entry in the key cache. 3619 */ 3620 pkp = emalloc(sizeof(struct pkey_info)); 3621 pkp->link = pkinfo; 3622 pkinfo = pkp; 3623 pkp->pkey = pkey; 3624 pkp->name = estrdup(cp); 3625 pkp->fstamp = fstamp; 3626 3627 /* 3628 * Leave tracks in the cryptostats. 3629 */ 3630 if ((ptr = strrchr(linkname, '\n')) != NULL) 3631 *ptr = '\0'; 3632 snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2], 3633 EVP_PKEY_size(pkey) * 8); 3634 record_crypto_stats(addr, statstr); 3635 #ifdef DEBUG 3636 if (debug) 3637 printf("crypto_key: %s\n", statstr); 3638 if (debug > 1) { 3639 if (pkey->type == EVP_PKEY_DSA) 3640 DSA_print_fp(stdout, pkey->pkey.dsa, 0); 3641 else if (pkey->type == EVP_PKEY_RSA) 3642 RSA_print_fp(stdout, pkey->pkey.rsa, 0); 3643 } 3644 #endif 3645 return (pkp); 3646 } 3647 3648 3649 /* 3650 *********************************************************************** 3651 * * 3652 * The following routines are used only at initialization time * 3653 * * 3654 *********************************************************************** 3655 */ 3656 /* 3657 * crypto_cert - load certificate from file 3658 * 3659 * This routine loads an X.509 RSA or DSA certificate from a file and 3660 * constructs a info/cert value structure for this machine. The 3661 * structure includes a filestamp extracted from the file name. Later 3662 * the certificate can be sent to another machine on request. 3663 * 3664 * Returns certificate info/value pointer if valid, NULL if not. 3665 */ 3666 static struct cert_info * /* certificate information */ 3667 crypto_cert( 3668 char *cp /* file name */ 3669 ) 3670 { 3671 struct cert_info *ret; /* certificate information */ 3672 FILE *str; /* file handle */ 3673 char filename[MAXFILENAME]; /* name of certificate file */ 3674 char linkname[MAXFILENAME]; /* filestamp buffer */ 3675 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3676 tstamp_t fstamp; /* filestamp */ 3677 long len; 3678 char *ptr; 3679 char *name, *header; 3680 u_char *data; 3681 3682 /* 3683 * Open the certificate file. If the first character of the file 3684 * name is not '/', prepend the keys directory string. If 3685 * something goes wrong, abandon ship. 3686 */ 3687 if (*cp == '/') 3688 strlcpy(filename, cp, sizeof(filename)); 3689 else 3690 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3691 cp); 3692 str = fopen(filename, "r"); 3693 if (str == NULL) 3694 return (NULL); 3695 3696 /* 3697 * Read the filestamp, which is contained in the first line. 3698 */ 3699 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3700 msyslog(LOG_ERR, "crypto_cert: empty file %s", 3701 filename); 3702 fclose(str); 3703 return (NULL); 3704 } 3705 if ((ptr = strrchr(ptr, '.')) == NULL) { 3706 msyslog(LOG_ERR, "crypto_cert: no filestamp %s", 3707 filename); 3708 fclose(str); 3709 return (NULL); 3710 } 3711 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3712 msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s", 3713 filename); 3714 fclose(str); 3715 return (NULL); 3716 } 3717 3718 /* 3719 * Read PEM-encoded certificate and install. 3720 */ 3721 if (!PEM_read(str, &name, &header, &data, &len)) { 3722 msyslog(LOG_ERR, "crypto_cert: %s", 3723 ERR_error_string(ERR_get_error(), NULL)); 3724 fclose(str); 3725 return (NULL); 3726 } 3727 fclose(str); 3728 free(header); 3729 if (strcmp(name, "CERTIFICATE") != 0) { 3730 msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s", 3731 name); 3732 free(name); 3733 free(data); 3734 return (NULL); 3735 } 3736 free(name); 3737 3738 /* 3739 * Parse certificate and generate info/value structure. The 3740 * pointer and copy nonsense is due something broken in Solaris. 3741 */ 3742 ret = cert_parse(data, len, fstamp); 3743 free(data); 3744 if (ret == NULL) 3745 return (NULL); 3746 3747 if ((ptr = strrchr(linkname, '\n')) != NULL) 3748 *ptr = '\0'; 3749 snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu", 3750 &linkname[2], ret->flags, len); 3751 record_crypto_stats(NULL, statstr); 3752 #ifdef DEBUG 3753 if (debug) 3754 printf("crypto_cert: %s\n", statstr); 3755 #endif 3756 return (ret); 3757 } 3758 3759 3760 /* 3761 * crypto_setup - load keys, certificate and identity parameters 3762 * 3763 * This routine loads the public/private host key and certificate. If 3764 * available, it loads the public/private sign key, which defaults to 3765 * the host key. The host key must be RSA, but the sign key can be 3766 * either RSA or DSA. If a trusted certificate, it loads the identity 3767 * parameters. In either case, the public key on the certificate must 3768 * agree with the sign key. 3769 * 3770 * Required but missing files and inconsistent data and errors are 3771 * fatal. Allowing configuration to continue would be hazardous and 3772 * require really messy error checks. 3773 */ 3774 void 3775 crypto_setup(void) 3776 { 3777 struct pkey_info *pinfo; /* private/public key */ 3778 char filename[MAXFILENAME]; /* file name buffer */ 3779 char hostname[MAXFILENAME]; /* host name buffer */ 3780 char *randfile; 3781 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3782 l_fp seed; /* crypto PRNG seed as NTP timestamp */ 3783 u_int len; 3784 int bytes; 3785 u_char *ptr; 3786 3787 /* 3788 * Check for correct OpenSSL version and avoid initialization in 3789 * the case of multiple crypto commands. 3790 */ 3791 if (crypto_flags & CRYPTO_FLAG_ENAB) { 3792 msyslog(LOG_NOTICE, 3793 "crypto_setup: spurious crypto command"); 3794 return; 3795 } 3796 ssl_check_version(); 3797 3798 /* 3799 * Load required random seed file and seed the random number 3800 * generator. Be default, it is found as .rnd in the user home 3801 * directory. The root home directory may be / or /root, 3802 * depending on the system. Wiggle the contents a bit and write 3803 * it back so the sequence does not repeat when we next restart. 3804 */ 3805 if (!RAND_status()) { 3806 if (rand_file == NULL) { 3807 RAND_file_name(filename, sizeof(filename)); 3808 randfile = filename; 3809 } else if (*rand_file != '/') { 3810 snprintf(filename, sizeof(filename), "%s/%s", 3811 keysdir, rand_file); 3812 randfile = filename; 3813 } else 3814 randfile = rand_file; 3815 3816 if ((bytes = RAND_load_file(randfile, -1)) == 0) { 3817 msyslog(LOG_ERR, 3818 "crypto_setup: random seed file %s missing", 3819 randfile); 3820 exit (-1); 3821 } 3822 get_systime(&seed); 3823 RAND_seed(&seed, sizeof(l_fp)); 3824 RAND_write_file(randfile); 3825 #ifdef DEBUG 3826 if (debug) 3827 printf( 3828 "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n", 3829 SSLeay(), randfile, bytes); 3830 #endif 3831 } 3832 3833 /* 3834 * Initialize structures. 3835 */ 3836 gethostname(hostname, sizeof(hostname)); 3837 if (host_filename != NULL) 3838 strlcpy(hostname, host_filename, sizeof(hostname)); 3839 if (passwd == NULL) 3840 passwd = estrdup(hostname); 3841 memset(&hostval, 0, sizeof(hostval)); 3842 memset(&pubkey, 0, sizeof(pubkey)); 3843 memset(&tai_leap, 0, sizeof(tai_leap)); 3844 3845 /* 3846 * Load required host key from file "ntpkey_host_<hostname>". If 3847 * no host key file is not found or has invalid password, life 3848 * as we know it ends. The host key also becomes the default 3849 * sign key. 3850 */ 3851 snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); 3852 pinfo = crypto_key(filename, passwd, NULL); 3853 if (pinfo == NULL) { 3854 msyslog(LOG_ERR, 3855 "crypto_setup: host key file %s not found or corrupt", 3856 filename); 3857 exit (-1); 3858 } 3859 if (pinfo->pkey->type != EVP_PKEY_RSA) { 3860 msyslog(LOG_ERR, 3861 "crypto_setup: host key is not RSA key type"); 3862 exit (-1); 3863 } 3864 host_pkey = pinfo->pkey; 3865 sign_pkey = host_pkey; 3866 hostval.fstamp = htonl(pinfo->fstamp); 3867 3868 /* 3869 * Construct public key extension field for agreement scheme. 3870 */ 3871 len = i2d_PublicKey(host_pkey, NULL); 3872 ptr = emalloc(len); 3873 pubkey.ptr = ptr; 3874 i2d_PublicKey(host_pkey, &ptr); 3875 pubkey.fstamp = hostval.fstamp; 3876 pubkey.vallen = htonl(len); 3877 3878 /* 3879 * Load optional sign key from file "ntpkey_sign_<hostname>". If 3880 * available, it becomes the sign key. 3881 */ 3882 snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname); 3883 pinfo = crypto_key(filename, passwd, NULL); 3884 if (pinfo != NULL) 3885 sign_pkey = pinfo->pkey; 3886 3887 /* 3888 * Load required certificate from file "ntpkey_cert_<hostname>". 3889 */ 3890 snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); 3891 cinfo = crypto_cert(filename); 3892 if (cinfo == NULL) { 3893 msyslog(LOG_ERR, 3894 "crypto_setup: certificate file %s not found or corrupt", 3895 filename); 3896 exit (-1); 3897 } 3898 cert_host = cinfo; 3899 sign_digest = cinfo->digest; 3900 sign_siglen = EVP_PKEY_size(sign_pkey); 3901 if (cinfo->flags & CERT_PRIV) 3902 crypto_flags |= CRYPTO_FLAG_PRIV; 3903 3904 /* 3905 * The certificate must be self-signed. 3906 */ 3907 if (strcmp(cinfo->subject, cinfo->issuer) != 0) { 3908 msyslog(LOG_ERR, 3909 "crypto_setup: certificate %s is not self-signed", 3910 filename); 3911 exit (-1); 3912 } 3913 hostval.ptr = estrdup(cinfo->subject); 3914 hostval.vallen = htonl(strlen(cinfo->subject)); 3915 sys_hostname = hostval.ptr; 3916 ptr = (u_char *)strchr(sys_hostname, '@'); 3917 if (ptr != NULL) 3918 sys_groupname = estrdup((char *)++ptr); 3919 if (ident_filename != NULL) 3920 strlcpy(hostname, ident_filename, sizeof(hostname)); 3921 3922 /* 3923 * Load optional IFF parameters from file 3924 * "ntpkey_iffkey_<hostname>". 3925 */ 3926 snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", 3927 hostname); 3928 iffkey_info = crypto_key(filename, passwd, NULL); 3929 if (iffkey_info != NULL) 3930 crypto_flags |= CRYPTO_FLAG_IFF; 3931 3932 /* 3933 * Load optional GQ parameters from file 3934 * "ntpkey_gqkey_<hostname>". 3935 */ 3936 snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", 3937 hostname); 3938 gqkey_info = crypto_key(filename, passwd, NULL); 3939 if (gqkey_info != NULL) 3940 crypto_flags |= CRYPTO_FLAG_GQ; 3941 3942 /* 3943 * Load optional MV parameters from file 3944 * "ntpkey_mvkey_<hostname>". 3945 */ 3946 snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s", 3947 hostname); 3948 mvkey_info = crypto_key(filename, passwd, NULL); 3949 if (mvkey_info != NULL) 3950 crypto_flags |= CRYPTO_FLAG_MV; 3951 3952 /* 3953 * We met the enemy and he is us. Now strike up the dance. 3954 */ 3955 crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16); 3956 snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s", 3957 crypto_flags, hostname, OBJ_nid2ln(cinfo->nid)); 3958 record_crypto_stats(NULL, statstr); 3959 #ifdef DEBUG 3960 if (debug) 3961 printf("crypto_setup: %s\n", statstr); 3962 #endif 3963 } 3964 3965 3966 /* 3967 * crypto_config - configure data from the crypto command. 3968 */ 3969 void 3970 crypto_config( 3971 int item, /* configuration item */ 3972 char *cp /* item name */ 3973 ) 3974 { 3975 int nid; 3976 3977 #ifdef DEBUG 3978 if (debug > 1) 3979 printf("crypto_config: item %d %s\n", item, cp); 3980 #endif 3981 switch (item) { 3982 3983 /* 3984 * Set host name (host). 3985 */ 3986 case CRYPTO_CONF_PRIV: 3987 if (NULL != host_filename) 3988 free(host_filename); 3989 host_filename = estrdup(cp); 3990 break; 3991 3992 /* 3993 * Set group name (ident). 3994 */ 3995 case CRYPTO_CONF_IDENT: 3996 if (NULL != ident_filename) 3997 free(ident_filename); 3998 ident_filename = estrdup(cp); 3999 break; 4000 4001 /* 4002 * Set private key password (pw). 4003 */ 4004 case CRYPTO_CONF_PW: 4005 if (NULL != passwd) 4006 free(passwd); 4007 passwd = estrdup(cp); 4008 break; 4009 4010 /* 4011 * Set random seed file name (randfile). 4012 */ 4013 case CRYPTO_CONF_RAND: 4014 if (NULL != rand_file) 4015 free(rand_file); 4016 rand_file = estrdup(cp); 4017 break; 4018 4019 /* 4020 * Set message digest NID. 4021 */ 4022 case CRYPTO_CONF_NID: 4023 nid = OBJ_sn2nid(cp); 4024 if (nid == 0) 4025 msyslog(LOG_ERR, 4026 "crypto_config: invalid digest name %s", cp); 4027 else 4028 crypto_nid = nid; 4029 break; 4030 } 4031 } 4032 # else /* !AUTOKEY follows */ 4033 int ntp_crypto_bs_pubkey; 4034 # endif /* !AUTOKEY */ 4035