1 /* $NetBSD: ntp_crypto.c,v 1.15 2018/04/07 00:19:52 christos Exp $ */ 2 3 /* 4 * ntp_crypto.c - NTP version 4 public key routines 5 */ 6 #ifdef HAVE_CONFIG_H 7 #include <config.h> 8 #endif 9 10 #ifdef AUTOKEY 11 #include <stdio.h> 12 #include <stdlib.h> /* strtoul */ 13 #include <sys/types.h> 14 #include <sys/param.h> 15 #include <unistd.h> 16 #include <fcntl.h> 17 18 #include "ntpd.h" 19 #include "ntp_stdlib.h" 20 #include "ntp_unixtime.h" 21 #include "ntp_string.h" 22 #include "ntp_random.h" 23 #include "ntp_assert.h" 24 #include "ntp_calendar.h" 25 #include "ntp_leapsec.h" 26 27 #include "openssl/asn1.h" 28 #include "openssl/bn.h" 29 #include "openssl/crypto.h" 30 #include "openssl/err.h" 31 #include "openssl/evp.h" 32 #include "openssl/opensslv.h" 33 #include "openssl/pem.h" 34 #include "openssl/rand.h" 35 #include "openssl/x509.h" 36 #include "openssl/x509v3.h" 37 #include "libssl_compat.h" 38 39 #ifdef KERNEL_PLL 40 #include "ntp_syscall.h" 41 #endif /* KERNEL_PLL */ 42 43 /* 44 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp 45 * No, it's not a plotter. If you don't understand that, you're too young. 46 */ 47 static int calcomp(struct calendar *pjd1, struct calendar *pjd2) 48 { 49 int32_t diff; /* large enough to hold the signed difference between two uint16_t values */ 50 51 diff = pjd1->year - pjd2->year; 52 if (diff < 0) return -1; else if (diff > 0) return 1; 53 /* same year; compare months */ 54 diff = pjd1->month - pjd2->month; 55 if (diff < 0) return -1; else if (diff > 0) return 1; 56 /* same year and month; compare monthday */ 57 diff = pjd1->monthday - pjd2->monthday; 58 if (diff < 0) return -1; else if (diff > 0) return 1; 59 /* same year and month and monthday; compare time */ 60 diff = pjd1->hour - pjd2->hour; 61 if (diff < 0) return -1; else if (diff > 0) return 1; 62 diff = pjd1->minute - pjd2->minute; 63 if (diff < 0) return -1; else if (diff > 0) return 1; 64 diff = pjd1->second - pjd2->second; 65 if (diff < 0) return -1; else if (diff > 0) return 1; 66 /* identical */ 67 return 0; 68 } 69 70 /* 71 * Extension field message format 72 * 73 * These are always signed and saved before sending in network byte 74 * order. They must be converted to and from host byte order for 75 * processing. 76 * 77 * +-------+-------+ 78 * | op | len | <- extension pointer 79 * +-------+-------+ 80 * | associd | 81 * +---------------+ 82 * | timestamp | <- value pointer 83 * +---------------+ 84 * | filestamp | 85 * +---------------+ 86 * | value len | 87 * +---------------+ 88 * | | 89 * = value = 90 * | | 91 * +---------------+ 92 * | signature len | 93 * +---------------+ 94 * | | 95 * = signature = 96 * | | 97 * +---------------+ 98 * 99 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses. 100 * Requests carry the association ID of the receiver; responses carry 101 * the association ID of the sender. Some messages include only the 102 * operation/length and association ID words and so have length 8 103 * octets. Ohers include the value structure and associated value and 104 * signature fields. These messages include the timestamp, filestamp, 105 * value and signature words and so have length at least 24 octets. The 106 * signature and/or value fields can be empty, in which case the 107 * respective length words are zero. An empty value with nonempty 108 * signature is syntactically valid, but semantically questionable. 109 * 110 * The filestamp represents the time when a cryptographic data file such 111 * as a public/private key pair is created. It follows every reference 112 * depending on that file and serves as a means to obsolete earlier data 113 * of the same type. The timestamp represents the time when the 114 * cryptographic data of the message were last signed. Creation of a 115 * cryptographic data file or signing a message can occur only when the 116 * creator or signor is synchronized to an authoritative source and 117 * proventicated to a trusted authority. 118 * 119 * Note there are several conditions required for server trust. First, 120 * the public key on the server certificate must be verified, which can 121 * involve a hike along the certificate trail to a trusted host. Next, 122 * the server trust must be confirmed by one of several identity 123 * schemes. Valid cryptographic values are signed with attached 124 * timestamp and filestamp. Individual packet trust is confirmed 125 * relative to these values by a message digest with keys generated by a 126 * reverse-order pseudorandom hash. 127 * 128 * State decomposition. These flags are lit in the order given. They are 129 * dim only when the association is demobilized. 130 * 131 * CRYPTO_FLAG_ENAB Lit upon acceptance of a CRYPTO_ASSOC message 132 * CRYPTO_FLAG_CERT Lit when a self-digned trusted certificate is 133 * accepted. 134 * CRYPTO_FLAG_VRFY Lit when identity is confirmed. 135 * CRYPTO_FLAG_PROV Lit when the first signature is verified. 136 * CRYPTO_FLAG_COOK Lit when a valid cookie is accepted. 137 * CRYPTO_FLAG_AUTO Lit when valid autokey values are accepted. 138 * CRYPTO_FLAG_SIGN Lit when the server signed certificate is 139 * accepted. 140 * CRYPTO_FLAG_LEAP Lit when the leapsecond values are accepted. 141 */ 142 /* 143 * Cryptodefines 144 */ 145 #define TAI_1972 10 /* initial TAI offset (s) */ 146 #define MAX_LEAP 100 /* max UTC leapseconds (s) */ 147 #define VALUE_LEN (6 * 4) /* min response field length */ 148 #define MAX_VALLEN (65535 - VALUE_LEN) 149 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */ 150 151 /* 152 * Global cryptodata in host byte order 153 */ 154 u_int32 crypto_flags = 0x0; /* status word */ 155 int crypto_nid = KEY_TYPE_MD5; /* digest nid */ 156 char *sys_hostname = NULL; 157 char *sys_groupname = NULL; 158 static char *host_filename = NULL; /* host file name */ 159 static char *ident_filename = NULL; /* group file name */ 160 161 /* 162 * Global cryptodata in network byte order 163 */ 164 struct cert_info *cinfo = NULL; /* certificate info/value cache */ 165 struct cert_info *cert_host = NULL; /* host certificate */ 166 struct pkey_info *pkinfo = NULL; /* key info/value cache */ 167 struct value hostval; /* host value */ 168 struct value pubkey; /* public key */ 169 struct value tai_leap; /* leapseconds values */ 170 struct pkey_info *iffkey_info = NULL; /* IFF keys */ 171 struct pkey_info *gqkey_info = NULL; /* GQ keys */ 172 struct pkey_info *mvkey_info = NULL; /* MV keys */ 173 174 /* 175 * Private cryptodata in host byte order 176 */ 177 static char *passwd = NULL; /* private key password */ 178 static EVP_PKEY *host_pkey = NULL; /* host key */ 179 static EVP_PKEY *sign_pkey = NULL; /* sign key */ 180 static const EVP_MD *sign_digest = NULL; /* sign digest */ 181 static u_int sign_siglen; /* sign key length */ 182 static char *rand_file = NULL; /* random seed file */ 183 184 /* 185 * Cryptotypes 186 */ 187 static int crypto_verify (struct exten *, struct value *, 188 struct peer *); 189 static int crypto_encrypt (const u_char *, u_int, keyid_t *, 190 struct value *); 191 static int crypto_alice (struct peer *, struct value *); 192 static int crypto_alice2 (struct peer *, struct value *); 193 static int crypto_alice3 (struct peer *, struct value *); 194 static int crypto_bob (struct exten *, struct value *); 195 static int crypto_bob2 (struct exten *, struct value *); 196 static int crypto_bob3 (struct exten *, struct value *); 197 static int crypto_iff (struct exten *, struct peer *); 198 static int crypto_gq (struct exten *, struct peer *); 199 static int crypto_mv (struct exten *, struct peer *); 200 static int crypto_send (struct exten *, struct value *, int); 201 static tstamp_t crypto_time (void); 202 static void asn_to_calendar (const ASN1_TIME *, struct calendar*); 203 static struct cert_info *cert_parse (const u_char *, long, tstamp_t); 204 static int cert_sign (struct exten *, struct value *); 205 static struct cert_info *cert_install (struct exten *, struct peer *); 206 static int cert_hike (struct peer *, struct cert_info *); 207 static void cert_free (struct cert_info *); 208 static struct pkey_info *crypto_key (char *, char *, sockaddr_u *); 209 static void bighash (BIGNUM *, BIGNUM *); 210 static struct cert_info *crypto_cert (char *); 211 static u_int exten_payload_size(const struct exten *); 212 213 #ifdef SYS_WINNT 214 int 215 readlink(char * link, char * file, int len) { 216 return (-1); 217 } 218 #endif 219 220 /* 221 * session_key - generate session key 222 * 223 * This routine generates a session key from the source address, 224 * destination address, key ID and private value. The value of the 225 * session key is the MD5 hash of these values, while the next key ID is 226 * the first four octets of the hash. 227 * 228 * Returns the next key ID or 0 if there is no destination address. 229 */ 230 keyid_t 231 session_key( 232 sockaddr_u *srcadr, /* source address */ 233 sockaddr_u *dstadr, /* destination address */ 234 keyid_t keyno, /* key ID */ 235 keyid_t private, /* private value */ 236 u_long lifetime /* key lifetime */ 237 ) 238 { 239 EVP_MD_CTX *ctx; /* message digest context */ 240 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 241 keyid_t keyid; /* key identifer */ 242 u_int32 header[10]; /* data in network byte order */ 243 u_int hdlen, len; 244 245 if (!dstadr) 246 return 0; 247 248 /* 249 * Generate the session key and key ID. If the lifetime is 250 * greater than zero, install the key and call it trusted. 251 */ 252 hdlen = 0; 253 switch(AF(srcadr)) { 254 case AF_INET: 255 header[0] = NSRCADR(srcadr); 256 header[1] = NSRCADR(dstadr); 257 header[2] = htonl(keyno); 258 header[3] = htonl(private); 259 hdlen = 4 * sizeof(u_int32); 260 break; 261 262 case AF_INET6: 263 memcpy(&header[0], PSOCK_ADDR6(srcadr), 264 sizeof(struct in6_addr)); 265 memcpy(&header[4], PSOCK_ADDR6(dstadr), 266 sizeof(struct in6_addr)); 267 header[8] = htonl(keyno); 268 header[9] = htonl(private); 269 hdlen = 10 * sizeof(u_int32); 270 break; 271 } 272 ctx = EVP_MD_CTX_new(); 273 # if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) 274 /* [Bug 3457] set flags and don't kill them again */ 275 EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 276 EVP_DigestInit_ex(ctx, EVP_get_digestbynid(crypto_nid), NULL); 277 # else 278 EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid)); 279 # endif 280 EVP_DigestUpdate(ctx, (u_char *)header, hdlen); 281 EVP_DigestFinal(ctx, dgst, &len); 282 EVP_MD_CTX_free(ctx); 283 memcpy(&keyid, dgst, 4); 284 keyid = ntohl(keyid); 285 if (lifetime != 0) { 286 MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL); 287 authtrust(keyno, lifetime); 288 } 289 DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n", 290 stoa(srcadr), stoa(dstadr), keyno, 291 private, keyid, lifetime)); 292 293 return (keyid); 294 } 295 296 297 /* 298 * make_keylist - generate key list 299 * 300 * Returns 301 * XEVNT_OK success 302 * XEVNT_ERR protocol error 303 * 304 * This routine constructs a pseudo-random sequence by repeatedly 305 * hashing the session key starting from a given source address, 306 * destination address, private value and the next key ID of the 307 * preceeding session key. The last entry on the list is saved along 308 * with its sequence number and public signature. 309 */ 310 int 311 make_keylist( 312 struct peer *peer, /* peer structure pointer */ 313 struct interface *dstadr /* interface */ 314 ) 315 { 316 EVP_MD_CTX *ctx; /* signature context */ 317 tstamp_t tstamp; /* NTP timestamp */ 318 struct autokey *ap; /* autokey pointer */ 319 struct value *vp; /* value pointer */ 320 keyid_t keyid = 0; /* next key ID */ 321 keyid_t cookie; /* private value */ 322 long lifetime; 323 u_int len, mpoll; 324 int i; 325 326 if (!dstadr) 327 return XEVNT_ERR; 328 329 /* 330 * Allocate the key list if necessary. 331 */ 332 tstamp = crypto_time(); 333 if (peer->keylist == NULL) 334 peer->keylist = eallocarray(NTP_MAXSESSION, 335 sizeof(keyid_t)); 336 337 /* 338 * Generate an initial key ID which is unique and greater than 339 * NTP_MAXKEY. 340 */ 341 while (1) { 342 keyid = ntp_random() & 0xffffffff; 343 if (keyid <= NTP_MAXKEY) 344 continue; 345 346 if (authhavekey(keyid)) 347 continue; 348 break; 349 } 350 351 /* 352 * Generate up to NTP_MAXSESSION session keys. Stop if the 353 * next one would not be unique or not a session key ID or if 354 * it would expire before the next poll. The private value 355 * included in the hash is zero if broadcast mode, the peer 356 * cookie if client mode or the host cookie if symmetric modes. 357 */ 358 mpoll = 1 << min(peer->ppoll, peer->hpoll); 359 lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll); 360 if (peer->hmode == MODE_BROADCAST) 361 cookie = 0; 362 else 363 cookie = peer->pcookie; 364 for (i = 0; i < NTP_MAXSESSION; i++) { 365 peer->keylist[i] = keyid; 366 peer->keynumber = i; 367 keyid = session_key(&dstadr->sin, &peer->srcadr, keyid, 368 cookie, lifetime + mpoll); 369 lifetime -= mpoll; 370 if (auth_havekey(keyid) || keyid <= NTP_MAXKEY || 371 lifetime < 0 || tstamp == 0) 372 break; 373 } 374 375 /* 376 * Save the last session key ID, sequence number and timestamp, 377 * then sign these values for later retrieval by the clients. Be 378 * careful not to use invalid key media. Use the public values 379 * timestamp as filestamp. 380 */ 381 vp = &peer->sndval; 382 if (vp->ptr == NULL) 383 vp->ptr = emalloc(sizeof(struct autokey)); 384 ap = (struct autokey *)vp->ptr; 385 ap->seq = htonl(peer->keynumber); 386 ap->key = htonl(keyid); 387 vp->tstamp = htonl(tstamp); 388 vp->fstamp = hostval.tstamp; 389 vp->vallen = htonl(sizeof(struct autokey)); 390 vp->siglen = 0; 391 if (tstamp != 0) { 392 if (vp->sig == NULL) 393 vp->sig = emalloc(sign_siglen); 394 ctx = EVP_MD_CTX_new(); 395 EVP_SignInit(ctx, sign_digest); 396 EVP_SignUpdate(ctx, (u_char *)vp, 12); 397 EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey)); 398 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 399 INSIST(len <= sign_siglen); 400 vp->siglen = htonl(len); 401 peer->flags |= FLAG_ASSOC; 402 } 403 EVP_MD_CTX_free(ctx); 404 } 405 DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n", 406 peer->keynumber, keyid, cookie, ntohl(vp->tstamp), 407 ntohl(vp->fstamp), peer->hpoll)); 408 return (XEVNT_OK); 409 } 410 411 412 /* 413 * crypto_recv - parse extension fields 414 * 415 * This routine is called when the packet has been matched to an 416 * association and passed sanity, format and MAC checks. We believe the 417 * extension field values only if the field has proper format and 418 * length, the timestamp and filestamp are valid and the signature has 419 * valid length and is verified. There are a few cases where some values 420 * are believed even if the signature fails, but only if the proventic 421 * bit is not set. 422 * 423 * Returns 424 * XEVNT_OK success 425 * XEVNT_ERR protocol error 426 * XEVNT_LEN bad field format or length 427 */ 428 int 429 crypto_recv( 430 struct peer *peer, /* peer structure pointer */ 431 struct recvbuf *rbufp /* packet buffer pointer */ 432 ) 433 { 434 const EVP_MD *dp; /* message digest algorithm */ 435 u_int32 *pkt; /* receive packet pointer */ 436 struct autokey *ap, *bp; /* autokey pointer */ 437 struct exten *ep, *fp; /* extension pointers */ 438 struct cert_info *xinfo; /* certificate info pointer */ 439 int macbytes; /* length of MAC field, signed by intention */ 440 int authlen; /* offset of MAC field */ 441 associd_t associd; /* association ID */ 442 tstamp_t fstamp = 0; /* filestamp */ 443 u_int len; /* extension field length */ 444 u_int code; /* extension field opcode */ 445 u_int vallen = 0; /* value length */ 446 X509 *cert; /* X509 certificate */ 447 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 448 keyid_t cookie; /* crumbles */ 449 int hismode; /* packet mode */ 450 int rval = XEVNT_OK; 451 const u_char *puch; 452 u_int32 temp32; 453 454 /* 455 * Initialize. Note that the packet has already been checked for 456 * valid format and extension field lengths. First extract the 457 * field length, command code and association ID in host byte 458 * order. These are used with all commands and modes. Then check 459 * the version number, which must be 2, and length, which must 460 * be at least 8 for requests and VALUE_LEN (24) for responses. 461 * Packets that fail either test sink without a trace. The 462 * association ID is saved only if nonzero. 463 */ 464 authlen = LEN_PKT_NOMAC; 465 hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode); 466 while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) { 467 /* We can be reasonably sure that we can read at least 468 * the opcode and the size field here. More stringent 469 * checks follow up shortly. 470 */ 471 pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4; 472 ep = (struct exten *)pkt; 473 code = ntohl(ep->opcode) & 0xffff0000; 474 len = ntohl(ep->opcode) & 0x0000ffff; 475 // HMS: Why pkt[1] instead of ep->associd ? 476 associd = (associd_t)ntohl(pkt[1]); 477 rval = XEVNT_OK; 478 DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n", 479 peer->crypto, authlen, len, code >> 16, 480 associd)); 481 482 /* 483 * Check version number and field length. If bad, 484 * quietly ignore the packet. 485 */ 486 if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) { 487 sys_badlength++; 488 code |= CRYPTO_ERROR; 489 } 490 491 /* Check if the declared size fits into the remaining 492 * buffer. We *know* 'macbytes' > 0 here! 493 */ 494 if (len > (u_int)macbytes) { 495 DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n", 496 associd)); 497 return XEVNT_LEN; 498 } 499 500 /* Check if the paylod of the extension fits into the 501 * declared frame. 502 */ 503 if (len >= VALUE_LEN) { 504 fstamp = ntohl(ep->fstamp); 505 vallen = ntohl(ep->vallen); 506 /* 507 * Bug 2761: I hope this isn't too early... 508 */ 509 if ( vallen == 0 510 || len - VALUE_LEN < vallen) 511 return XEVNT_LEN; 512 } 513 switch (code) { 514 515 /* 516 * Install status word, host name, signature scheme and 517 * association ID. In OpenSSL the signature algorithm is 518 * bound to the digest algorithm, so the NID completely 519 * defines the signature scheme. Note the request and 520 * response are identical, but neither is validated by 521 * signature. The request is processed here only in 522 * symmetric modes. The server name field might be 523 * useful to implement access controls in future. 524 */ 525 case CRYPTO_ASSOC: 526 527 /* 528 * If our state machine is running when this 529 * message arrives, the other fellow might have 530 * restarted. However, this could be an 531 * intruder, so just clamp the poll interval and 532 * find out for ourselves. Otherwise, pass the 533 * extension field to the transmit side. 534 */ 535 if (peer->crypto & CRYPTO_FLAG_CERT) { 536 rval = XEVNT_ERR; 537 break; 538 } 539 if (peer->cmmd) { 540 if (peer->assoc != associd) { 541 rval = XEVNT_ERR; 542 break; 543 } 544 free(peer->cmmd); /* will be set again! */ 545 } 546 fp = emalloc(len); 547 memcpy(fp, ep, len); 548 fp->associd = htonl(peer->associd); 549 peer->cmmd = fp; 550 /* fall through */ 551 552 case CRYPTO_ASSOC | CRYPTO_RESP: 553 554 /* 555 * Discard the message if it has already been 556 * stored or the message has been amputated. 557 */ 558 if (peer->crypto) { 559 if (peer->assoc != associd) 560 rval = XEVNT_ERR; 561 break; 562 } 563 INSIST(len >= VALUE_LEN); 564 if (vallen == 0 || vallen > MAXHOSTNAME || 565 len - VALUE_LEN < vallen) { 566 rval = XEVNT_LEN; 567 break; 568 } 569 DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n", 570 crypto_flags, peer->associd, fstamp, 571 peer->assoc)); 572 temp32 = crypto_flags & CRYPTO_FLAG_MASK; 573 574 /* 575 * If the client scheme is PC, the server scheme 576 * must be PC. The public key and identity are 577 * presumed valid, so we skip the certificate 578 * and identity exchanges and move immediately 579 * to the cookie exchange which confirms the 580 * server signature. 581 */ 582 if (crypto_flags & CRYPTO_FLAG_PRIV) { 583 if (!(fstamp & CRYPTO_FLAG_PRIV)) { 584 rval = XEVNT_KEY; 585 break; 586 } 587 fstamp |= CRYPTO_FLAG_CERT | 588 CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN; 589 590 /* 591 * It is an error if either peer supports 592 * identity, but the other does not. 593 */ 594 } else if (hismode == MODE_ACTIVE || hismode == 595 MODE_PASSIVE) { 596 if ((temp32 && !(fstamp & 597 CRYPTO_FLAG_MASK)) || 598 (!temp32 && (fstamp & 599 CRYPTO_FLAG_MASK))) { 600 rval = XEVNT_KEY; 601 break; 602 } 603 } 604 605 /* 606 * Discard the message if the signature digest 607 * NID is not supported. 608 */ 609 temp32 = (fstamp >> 16) & 0xffff; 610 dp = 611 (const EVP_MD *)EVP_get_digestbynid(temp32); 612 if (dp == NULL) { 613 rval = XEVNT_MD; 614 break; 615 } 616 617 /* 618 * Save status word, host name and message 619 * digest/signature type. If this is from a 620 * broadcast and the association ID has changed, 621 * request the autokey values. 622 */ 623 peer->assoc = associd; 624 if (hismode == MODE_SERVER) 625 fstamp |= CRYPTO_FLAG_AUTO; 626 if (!(fstamp & CRYPTO_FLAG_TAI)) 627 fstamp |= CRYPTO_FLAG_LEAP; 628 RAND_bytes((u_char *)&peer->hcookie, 4); 629 peer->crypto = fstamp; 630 peer->digest = dp; 631 if (peer->subject != NULL) 632 free(peer->subject); 633 peer->subject = emalloc(vallen + 1); 634 memcpy(peer->subject, ep->pkt, vallen); 635 peer->subject[vallen] = '\0'; 636 if (peer->issuer != NULL) 637 free(peer->issuer); 638 peer->issuer = estrdup(peer->subject); 639 snprintf(statstr, sizeof(statstr), 640 "assoc %d %d host %s %s", peer->associd, 641 peer->assoc, peer->subject, 642 OBJ_nid2ln(temp32)); 643 record_crypto_stats(&peer->srcadr, statstr); 644 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 645 break; 646 647 /* 648 * Decode X509 certificate in ASN.1 format and extract 649 * the data containing, among other things, subject 650 * name and public key. In the default identification 651 * scheme, the certificate trail is followed to a self 652 * signed trusted certificate. 653 */ 654 case CRYPTO_CERT | CRYPTO_RESP: 655 656 /* 657 * Discard the message if empty or invalid. 658 */ 659 if (len < VALUE_LEN) 660 break; 661 662 if ((rval = crypto_verify(ep, NULL, peer)) != 663 XEVNT_OK) 664 break; 665 666 /* 667 * Scan the certificate list to delete old 668 * versions and link the newest version first on 669 * the list. Then, verify the signature. If the 670 * certificate is bad or missing, just ignore 671 * it. 672 */ 673 if ((xinfo = cert_install(ep, peer)) == NULL) { 674 rval = XEVNT_CRT; 675 break; 676 } 677 if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK) 678 break; 679 680 /* 681 * We plug in the public key and lifetime from 682 * the first certificate received. However, note 683 * that this certificate might not be signed by 684 * the server, so we can't check the 685 * signature/digest NID. 686 */ 687 if (peer->pkey == NULL) { 688 puch = xinfo->cert.ptr; 689 cert = d2i_X509(NULL, &puch, 690 ntohl(xinfo->cert.vallen)); 691 peer->pkey = X509_get_pubkey(cert); 692 X509_free(cert); 693 } 694 peer->flash &= ~TEST8; 695 temp32 = xinfo->nid; 696 snprintf(statstr, sizeof(statstr), 697 "cert %s %s 0x%x %s (%u) fs %u", 698 xinfo->subject, xinfo->issuer, xinfo->flags, 699 OBJ_nid2ln(temp32), temp32, 700 ntohl(ep->fstamp)); 701 record_crypto_stats(&peer->srcadr, statstr); 702 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 703 break; 704 705 /* 706 * Schnorr (IFF) identity scheme. This scheme is 707 * designed for use with shared secret server group keys 708 * and where the certificate may be generated by a third 709 * party. The client sends a challenge to the server, 710 * which performs a calculation and returns the result. 711 * A positive result is possible only if both client and 712 * server contain the same secret group key. 713 */ 714 case CRYPTO_IFF | CRYPTO_RESP: 715 716 /* 717 * Discard the message if invalid. 718 */ 719 if ((rval = crypto_verify(ep, NULL, peer)) != 720 XEVNT_OK) 721 break; 722 723 /* 724 * If the challenge matches the response, the 725 * server public key, signature and identity are 726 * all verified at the same time. The server is 727 * declared trusted, so we skip further 728 * certificate exchanges and move immediately to 729 * the cookie exchange. 730 */ 731 if ((rval = crypto_iff(ep, peer)) != XEVNT_OK) 732 break; 733 734 peer->crypto |= CRYPTO_FLAG_VRFY; 735 peer->flash &= ~TEST8; 736 snprintf(statstr, sizeof(statstr), "iff %s fs %u", 737 peer->issuer, ntohl(ep->fstamp)); 738 record_crypto_stats(&peer->srcadr, statstr); 739 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 740 break; 741 742 /* 743 * Guillou-Quisquater (GQ) identity scheme. This scheme 744 * is designed for use with public certificates carrying 745 * the GQ public key in an extension field. The client 746 * sends a challenge to the server, which performs a 747 * calculation and returns the result. A positive result 748 * is possible only if both client and server contain 749 * the same group key and the server has the matching GQ 750 * private key. 751 */ 752 case CRYPTO_GQ | CRYPTO_RESP: 753 754 /* 755 * Discard the message if invalid 756 */ 757 if ((rval = crypto_verify(ep, NULL, peer)) != 758 XEVNT_OK) 759 break; 760 761 /* 762 * If the challenge matches the response, the 763 * server public key, signature and identity are 764 * all verified at the same time. The server is 765 * declared trusted, so we skip further 766 * certificate exchanges and move immediately to 767 * the cookie exchange. 768 */ 769 if ((rval = crypto_gq(ep, peer)) != XEVNT_OK) 770 break; 771 772 peer->crypto |= CRYPTO_FLAG_VRFY; 773 peer->flash &= ~TEST8; 774 snprintf(statstr, sizeof(statstr), "gq %s fs %u", 775 peer->issuer, ntohl(ep->fstamp)); 776 record_crypto_stats(&peer->srcadr, statstr); 777 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 778 break; 779 780 /* 781 * Mu-Varadharajan (MV) identity scheme. This scheme is 782 * designed for use with three levels of trust, trusted 783 * host, server and client. The trusted host key is 784 * opaque to servers and clients; the server keys are 785 * opaque to clients and each client key is different. 786 * Client keys can be revoked without requiring new key 787 * generations. 788 */ 789 case CRYPTO_MV | CRYPTO_RESP: 790 791 /* 792 * Discard the message if invalid. 793 */ 794 if ((rval = crypto_verify(ep, NULL, peer)) != 795 XEVNT_OK) 796 break; 797 798 /* 799 * If the challenge matches the response, the 800 * server public key, signature and identity are 801 * all verified at the same time. The server is 802 * declared trusted, so we skip further 803 * certificate exchanges and move immediately to 804 * the cookie exchange. 805 */ 806 if ((rval = crypto_mv(ep, peer)) != XEVNT_OK) 807 break; 808 809 peer->crypto |= CRYPTO_FLAG_VRFY; 810 peer->flash &= ~TEST8; 811 snprintf(statstr, sizeof(statstr), "mv %s fs %u", 812 peer->issuer, ntohl(ep->fstamp)); 813 record_crypto_stats(&peer->srcadr, statstr); 814 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 815 break; 816 817 818 /* 819 * Cookie response in client and symmetric modes. If the 820 * cookie bit is set, the working cookie is the EXOR of 821 * the current and new values. 822 */ 823 case CRYPTO_COOK | CRYPTO_RESP: 824 825 /* 826 * Discard the message if invalid or signature 827 * not verified with respect to the cookie 828 * values. 829 */ 830 if ((rval = crypto_verify(ep, &peer->cookval, 831 peer)) != XEVNT_OK) 832 break; 833 834 /* 835 * Decrypt the cookie, hunting all the time for 836 * errors. 837 */ 838 if (vallen == (u_int)EVP_PKEY_size(host_pkey)) { 839 RSA *rsa = EVP_PKEY_get0_RSA(host_pkey); 840 u_int32 *cookiebuf = malloc(RSA_size(rsa)); 841 if (!cookiebuf) { 842 rval = XEVNT_CKY; 843 break; 844 } 845 846 if (RSA_private_decrypt(vallen, 847 (u_char *)ep->pkt, 848 (u_char *)cookiebuf, 849 rsa, 850 RSA_PKCS1_OAEP_PADDING) != 4) { 851 rval = XEVNT_CKY; 852 free(cookiebuf); 853 break; 854 } else { 855 cookie = ntohl(*cookiebuf); 856 free(cookiebuf); 857 } 858 } else { 859 rval = XEVNT_CKY; 860 break; 861 } 862 863 /* 864 * Install cookie values and light the cookie 865 * bit. If this is not broadcast client mode, we 866 * are done here. 867 */ 868 key_expire(peer); 869 if (hismode == MODE_ACTIVE || hismode == 870 MODE_PASSIVE) 871 peer->pcookie = peer->hcookie ^ cookie; 872 else 873 peer->pcookie = cookie; 874 peer->crypto |= CRYPTO_FLAG_COOK; 875 peer->flash &= ~TEST8; 876 snprintf(statstr, sizeof(statstr), 877 "cook %x ts %u fs %u", peer->pcookie, 878 ntohl(ep->tstamp), ntohl(ep->fstamp)); 879 record_crypto_stats(&peer->srcadr, statstr); 880 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 881 break; 882 883 /* 884 * Install autokey values in broadcast client and 885 * symmetric modes. We have to do this every time the 886 * sever/peer cookie changes or a new keylist is 887 * rolled. Ordinarily, this is automatic as this message 888 * is piggybacked on the first NTP packet sent upon 889 * either of these events. Note that a broadcast client 890 * or symmetric peer can receive this response without a 891 * matching request. 892 */ 893 case CRYPTO_AUTO | CRYPTO_RESP: 894 895 /* 896 * Discard the message if invalid or signature 897 * not verified with respect to the receive 898 * autokey values. 899 */ 900 if ((rval = crypto_verify(ep, &peer->recval, 901 peer)) != XEVNT_OK) 902 break; 903 904 /* 905 * Discard the message if a broadcast client and 906 * the association ID does not match. This might 907 * happen if a broacast server restarts the 908 * protocol. A protocol restart will occur at 909 * the next ASSOC message. 910 */ 911 if ((peer->cast_flags & MDF_BCLNT) && 912 peer->assoc != associd) 913 break; 914 915 /* 916 * Install autokey values and light the 917 * autokey bit. This is not hard. 918 */ 919 if (ep->tstamp == 0) 920 break; 921 922 if (peer->recval.ptr == NULL) 923 peer->recval.ptr = 924 emalloc(sizeof(struct autokey)); 925 bp = (struct autokey *)peer->recval.ptr; 926 peer->recval.tstamp = ep->tstamp; 927 peer->recval.fstamp = ep->fstamp; 928 ap = (struct autokey *)ep->pkt; 929 bp->seq = ntohl(ap->seq); 930 bp->key = ntohl(ap->key); 931 peer->pkeyid = bp->key; 932 peer->crypto |= CRYPTO_FLAG_AUTO; 933 peer->flash &= ~TEST8; 934 snprintf(statstr, sizeof(statstr), 935 "auto seq %d key %x ts %u fs %u", bp->seq, 936 bp->key, ntohl(ep->tstamp), 937 ntohl(ep->fstamp)); 938 record_crypto_stats(&peer->srcadr, statstr); 939 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 940 break; 941 942 /* 943 * X509 certificate sign response. Validate the 944 * certificate signed by the server and install. Later 945 * this can be provided to clients of this server in 946 * lieu of the self signed certificate in order to 947 * validate the public key. 948 */ 949 case CRYPTO_SIGN | CRYPTO_RESP: 950 951 /* 952 * Discard the message if invalid. 953 */ 954 if ((rval = crypto_verify(ep, NULL, peer)) != 955 XEVNT_OK) 956 break; 957 958 /* 959 * Scan the certificate list to delete old 960 * versions and link the newest version first on 961 * the list. 962 */ 963 if ((xinfo = cert_install(ep, peer)) == NULL) { 964 rval = XEVNT_CRT; 965 break; 966 } 967 peer->crypto |= CRYPTO_FLAG_SIGN; 968 peer->flash &= ~TEST8; 969 temp32 = xinfo->nid; 970 snprintf(statstr, sizeof(statstr), 971 "sign %s %s 0x%x %s (%u) fs %u", 972 xinfo->subject, xinfo->issuer, xinfo->flags, 973 OBJ_nid2ln(temp32), temp32, 974 ntohl(ep->fstamp)); 975 record_crypto_stats(&peer->srcadr, statstr); 976 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 977 break; 978 979 /* 980 * Install leapseconds values. While the leapsecond 981 * values epoch, TAI offset and values expiration epoch 982 * are retained, only the current TAI offset is provided 983 * via the kernel to other applications. 984 */ 985 case CRYPTO_LEAP | CRYPTO_RESP: 986 /* 987 * Discard the message if invalid. We can't 988 * compare the value timestamps here, as they 989 * can be updated by different servers. 990 */ 991 rval = crypto_verify(ep, NULL, peer); 992 if ((rval != XEVNT_OK ) || 993 (vallen != 3*sizeof(uint32_t)) ) 994 break; 995 996 /* Check if we can update the basic TAI offset 997 * for our current leap frame. This is a hack 998 * and ignores the time stamps in the autokey 999 * message. 1000 */ 1001 if (sys_leap != LEAP_NOTINSYNC) 1002 leapsec_autokey_tai(ntohl(ep->pkt[0]), 1003 rbufp->recv_time.l_ui, NULL); 1004 tai_leap.tstamp = ep->tstamp; 1005 tai_leap.fstamp = ep->fstamp; 1006 crypto_update(); 1007 mprintf_event(EVNT_TAI, peer, 1008 "%d seconds", ntohl(ep->pkt[0])); 1009 peer->crypto |= CRYPTO_FLAG_LEAP; 1010 peer->flash &= ~TEST8; 1011 snprintf(statstr, sizeof(statstr), 1012 "leap TAI offset %d at %u expire %u fs %u", 1013 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]), 1014 ntohl(ep->pkt[2]), ntohl(ep->fstamp)); 1015 record_crypto_stats(&peer->srcadr, statstr); 1016 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 1017 break; 1018 1019 /* 1020 * We come here in symmetric modes for miscellaneous 1021 * commands that have value fields but are processed on 1022 * the transmit side. All we need do here is check for 1023 * valid field length. Note that ASSOC is handled 1024 * separately. 1025 */ 1026 case CRYPTO_CERT: 1027 case CRYPTO_IFF: 1028 case CRYPTO_GQ: 1029 case CRYPTO_MV: 1030 case CRYPTO_COOK: 1031 case CRYPTO_SIGN: 1032 if (len < VALUE_LEN) { 1033 rval = XEVNT_LEN; 1034 break; 1035 } 1036 /* fall through */ 1037 1038 /* 1039 * We come here in symmetric modes for requests 1040 * requiring a response (above plus AUTO and LEAP) and 1041 * for responses. If a request, save the extension field 1042 * for later; invalid requests will be caught on the 1043 * transmit side. If an error or invalid response, 1044 * declare a protocol error. 1045 */ 1046 default: 1047 if (code & (CRYPTO_RESP | CRYPTO_ERROR)) { 1048 rval = XEVNT_ERR; 1049 } else if (peer->cmmd == NULL) { 1050 fp = emalloc(len); 1051 memcpy(fp, ep, len); 1052 peer->cmmd = fp; 1053 } 1054 } 1055 1056 /* 1057 * The first error found terminates the extension field 1058 * scan and we return the laundry to the caller. 1059 */ 1060 if (rval != XEVNT_OK) { 1061 snprintf(statstr, sizeof(statstr), 1062 "%04x %d %02x %s", htonl(ep->opcode), 1063 associd, rval, eventstr(rval)); 1064 record_crypto_stats(&peer->srcadr, statstr); 1065 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 1066 return (rval); 1067 } 1068 authlen += (len + 3) / 4 * 4; 1069 } 1070 return (rval); 1071 } 1072 1073 1074 /* 1075 * crypto_xmit - construct extension fields 1076 * 1077 * This routine is called both when an association is configured and 1078 * when one is not. The only case where this matters is to retrieve the 1079 * autokey information, in which case the caller has to provide the 1080 * association ID to match the association. 1081 * 1082 * Side effect: update the packet offset. 1083 * 1084 * Errors 1085 * XEVNT_OK success 1086 * XEVNT_CRT bad or missing certificate 1087 * XEVNT_ERR protocol error 1088 * XEVNT_LEN bad field format or length 1089 * XEVNT_PER host certificate expired 1090 */ 1091 int 1092 crypto_xmit( 1093 struct peer *peer, /* peer structure pointer */ 1094 struct pkt *xpkt, /* transmit packet pointer */ 1095 struct recvbuf *rbufp, /* receive buffer pointer */ 1096 int start, /* offset to extension field */ 1097 struct exten *ep, /* extension pointer */ 1098 keyid_t cookie /* session cookie */ 1099 ) 1100 { 1101 struct exten *fp; /* extension pointers */ 1102 struct cert_info *cp, *xp, *yp; /* cert info/value pointer */ 1103 sockaddr_u *srcadr_sin; /* source address */ 1104 u_int32 *pkt; /* packet pointer */ 1105 u_int opcode; /* extension field opcode */ 1106 char certname[MAXHOSTNAME + 1]; /* subject name buffer */ 1107 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1108 tstamp_t tstamp; 1109 struct calendar tscal; 1110 u_int vallen; 1111 struct value vtemp; 1112 associd_t associd; 1113 int rval; 1114 int len; 1115 keyid_t tcookie; 1116 1117 /* 1118 * Generate the requested extension field request code, length 1119 * and association ID. If this is a response and the host is not 1120 * synchronized, light the error bit and go home. 1121 */ 1122 pkt = (u_int32 *)xpkt + start / 4; 1123 fp = (struct exten *)pkt; 1124 opcode = ntohl(ep->opcode); 1125 if (peer != NULL) { 1126 srcadr_sin = &peer->srcadr; 1127 if (!(opcode & CRYPTO_RESP)) 1128 peer->opcode = ep->opcode; 1129 } else { 1130 srcadr_sin = &rbufp->recv_srcadr; 1131 } 1132 associd = (associd_t) ntohl(ep->associd); 1133 len = 8; 1134 fp->opcode = htonl((opcode & 0xffff0000) | len); 1135 fp->associd = ep->associd; 1136 rval = XEVNT_OK; 1137 tstamp = crypto_time(); 1138 switch (opcode & 0xffff0000) { 1139 1140 /* 1141 * Send association request and response with status word and 1142 * host name. Note, this message is not signed and the filestamp 1143 * contains only the status word. 1144 */ 1145 case CRYPTO_ASSOC: 1146 case CRYPTO_ASSOC | CRYPTO_RESP: 1147 len = crypto_send(fp, &hostval, start); 1148 fp->fstamp = htonl(crypto_flags); 1149 break; 1150 1151 /* 1152 * Send certificate request. Use the values from the extension 1153 * field. 1154 */ 1155 case CRYPTO_CERT: 1156 memset(&vtemp, 0, sizeof(vtemp)); 1157 vtemp.tstamp = ep->tstamp; 1158 vtemp.fstamp = ep->fstamp; 1159 vtemp.vallen = ep->vallen; 1160 vtemp.ptr = (u_char *)ep->pkt; 1161 len = crypto_send(fp, &vtemp, start); 1162 break; 1163 1164 /* 1165 * Send sign request. Use the host certificate, which is self- 1166 * signed and may or may not be trusted. 1167 */ 1168 case CRYPTO_SIGN: 1169 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 1170 if ((calcomp(&tscal, &(cert_host->first)) < 0) 1171 || (calcomp(&tscal, &(cert_host->last)) > 0)) 1172 rval = XEVNT_PER; 1173 else 1174 len = crypto_send(fp, &cert_host->cert, start); 1175 break; 1176 1177 /* 1178 * Send certificate response. Use the name in the extension 1179 * field to find the certificate in the cache. If the request 1180 * contains no subject name, assume the name of this host. This 1181 * is for backwards compatibility. Private certificates are 1182 * never sent. 1183 * 1184 * There may be several certificates matching the request. First 1185 * choice is a self-signed trusted certificate; second choice is 1186 * any certificate signed by another host. There is no third 1187 * choice. 1188 */ 1189 case CRYPTO_CERT | CRYPTO_RESP: 1190 vallen = exten_payload_size(ep); /* Must be <64k */ 1191 if (vallen == 0 || vallen >= sizeof(certname) ) { 1192 rval = XEVNT_LEN; 1193 break; 1194 } 1195 1196 /* 1197 * Find all public valid certificates with matching 1198 * subject. If a self-signed, trusted certificate is 1199 * found, use that certificate. If not, use the last non 1200 * self-signed certificate. 1201 */ 1202 memcpy(certname, ep->pkt, vallen); 1203 certname[vallen] = '\0'; 1204 xp = yp = NULL; 1205 for (cp = cinfo; cp != NULL; cp = cp->link) { 1206 if (cp->flags & (CERT_PRIV | CERT_ERROR)) 1207 continue; 1208 1209 if (strcmp(certname, cp->subject) != 0) 1210 continue; 1211 1212 if (strcmp(certname, cp->issuer) != 0) 1213 yp = cp; 1214 else if (cp ->flags & CERT_TRUST) 1215 xp = cp; 1216 continue; 1217 } 1218 1219 /* 1220 * Be careful who you trust. If the certificate is not 1221 * found, return an empty response. Note that we dont 1222 * enforce lifetimes here. 1223 * 1224 * The timestamp and filestamp are taken from the 1225 * certificate value structure. For all certificates the 1226 * timestamp is the latest signature update time. For 1227 * host and imported certificates the filestamp is the 1228 * creation epoch. For signed certificates the filestamp 1229 * is the creation epoch of the trusted certificate at 1230 * the root of the certificate trail. In principle, this 1231 * allows strong checking for signature masquerade. 1232 */ 1233 if (xp == NULL) 1234 xp = yp; 1235 if (xp == NULL) 1236 break; 1237 1238 if (tstamp == 0) 1239 break; 1240 1241 len = crypto_send(fp, &xp->cert, start); 1242 break; 1243 1244 /* 1245 * Send challenge in Schnorr (IFF) identity scheme. 1246 */ 1247 case CRYPTO_IFF: 1248 if (peer == NULL) 1249 break; /* hack attack */ 1250 1251 if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) { 1252 len = crypto_send(fp, &vtemp, start); 1253 value_free(&vtemp); 1254 } 1255 break; 1256 1257 /* 1258 * Send response in Schnorr (IFF) identity scheme. 1259 */ 1260 case CRYPTO_IFF | CRYPTO_RESP: 1261 if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) { 1262 len = crypto_send(fp, &vtemp, start); 1263 value_free(&vtemp); 1264 } 1265 break; 1266 1267 /* 1268 * Send challenge in Guillou-Quisquater (GQ) identity scheme. 1269 */ 1270 case CRYPTO_GQ: 1271 if (peer == NULL) 1272 break; /* hack attack */ 1273 1274 if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) { 1275 len = crypto_send(fp, &vtemp, start); 1276 value_free(&vtemp); 1277 } 1278 break; 1279 1280 /* 1281 * Send response in Guillou-Quisquater (GQ) identity scheme. 1282 */ 1283 case CRYPTO_GQ | CRYPTO_RESP: 1284 if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) { 1285 len = crypto_send(fp, &vtemp, start); 1286 value_free(&vtemp); 1287 } 1288 break; 1289 1290 /* 1291 * Send challenge in MV identity scheme. 1292 */ 1293 case CRYPTO_MV: 1294 if (peer == NULL) 1295 break; /* hack attack */ 1296 1297 if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) { 1298 len = crypto_send(fp, &vtemp, start); 1299 value_free(&vtemp); 1300 } 1301 break; 1302 1303 /* 1304 * Send response in MV identity scheme. 1305 */ 1306 case CRYPTO_MV | CRYPTO_RESP: 1307 if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) { 1308 len = crypto_send(fp, &vtemp, start); 1309 value_free(&vtemp); 1310 } 1311 break; 1312 1313 /* 1314 * Send certificate sign response. The integrity of the request 1315 * certificate has already been verified on the receive side. 1316 * Sign the response using the local server key. Use the 1317 * filestamp from the request and use the timestamp as the 1318 * current time. Light the error bit if the certificate is 1319 * invalid or contains an unverified signature. 1320 */ 1321 case CRYPTO_SIGN | CRYPTO_RESP: 1322 if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) { 1323 len = crypto_send(fp, &vtemp, start); 1324 value_free(&vtemp); 1325 } 1326 break; 1327 1328 /* 1329 * Send public key and signature. Use the values from the public 1330 * key. 1331 */ 1332 case CRYPTO_COOK: 1333 len = crypto_send(fp, &pubkey, start); 1334 break; 1335 1336 /* 1337 * Encrypt and send cookie and signature. Light the error bit if 1338 * anything goes wrong. 1339 */ 1340 case CRYPTO_COOK | CRYPTO_RESP: 1341 vallen = ntohl(ep->vallen); /* Must be <64k */ 1342 if ( vallen == 0 1343 || (vallen >= MAX_VALLEN) 1344 || (opcode & 0x0000ffff) < VALUE_LEN + vallen) { 1345 rval = XEVNT_LEN; 1346 break; 1347 } 1348 if (peer == NULL) 1349 tcookie = cookie; 1350 else 1351 tcookie = peer->hcookie; 1352 if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp)) 1353 == XEVNT_OK) { 1354 len = crypto_send(fp, &vtemp, start); 1355 value_free(&vtemp); 1356 } 1357 break; 1358 1359 /* 1360 * Find peer and send autokey data and signature in broadcast 1361 * server and symmetric modes. Use the values in the autokey 1362 * structure. If no association is found, either the server has 1363 * restarted with new associations or some perp has replayed an 1364 * old message, in which case light the error bit. 1365 */ 1366 case CRYPTO_AUTO | CRYPTO_RESP: 1367 if (peer == NULL) { 1368 if ((peer = findpeerbyassoc(associd)) == NULL) { 1369 rval = XEVNT_ERR; 1370 break; 1371 } 1372 } 1373 peer->flags &= ~FLAG_ASSOC; 1374 len = crypto_send(fp, &peer->sndval, start); 1375 break; 1376 1377 /* 1378 * Send leapseconds values and signature. Use the values from 1379 * the tai structure. If no table has been loaded, just send an 1380 * empty request. 1381 */ 1382 case CRYPTO_LEAP | CRYPTO_RESP: 1383 len = crypto_send(fp, &tai_leap, start); 1384 break; 1385 1386 /* 1387 * Default - Send a valid command for unknown requests; send 1388 * an error response for unknown resonses. 1389 */ 1390 default: 1391 if (opcode & CRYPTO_RESP) 1392 rval = XEVNT_ERR; 1393 } 1394 1395 /* 1396 * In case of error, flame the log. If a request, toss the 1397 * puppy; if a response, return so the sender can flame, too. 1398 */ 1399 if (rval != XEVNT_OK) { 1400 u_int32 uint32; 1401 1402 uint32 = CRYPTO_ERROR; 1403 opcode |= uint32; 1404 fp->opcode |= htonl(uint32); 1405 snprintf(statstr, sizeof(statstr), 1406 "%04x %d %02x %s", opcode, associd, rval, 1407 eventstr(rval)); 1408 record_crypto_stats(srcadr_sin, statstr); 1409 DPRINTF(1, ("crypto_xmit: %s\n", statstr)); 1410 if (!(opcode & CRYPTO_RESP)) 1411 return (0); 1412 } 1413 DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n", 1414 crypto_flags, start, len, opcode >> 16, associd)); 1415 return (len); 1416 } 1417 1418 1419 /* 1420 * crypto_verify - verify the extension field value and signature 1421 * 1422 * Returns 1423 * XEVNT_OK success 1424 * XEVNT_ERR protocol error 1425 * XEVNT_FSP bad filestamp 1426 * XEVNT_LEN bad field format or length 1427 * XEVNT_PUB bad or missing public key 1428 * XEVNT_SGL bad signature length 1429 * XEVNT_SIG signature not verified 1430 * XEVNT_TSP bad timestamp 1431 */ 1432 static int 1433 crypto_verify( 1434 struct exten *ep, /* extension pointer */ 1435 struct value *vp, /* value pointer */ 1436 struct peer *peer /* peer structure pointer */ 1437 ) 1438 { 1439 EVP_PKEY *pkey; /* server public key */ 1440 EVP_MD_CTX *ctx; /* signature context */ 1441 tstamp_t tstamp, tstamp1 = 0; /* timestamp */ 1442 tstamp_t fstamp, fstamp1 = 0; /* filestamp */ 1443 u_int vallen; /* value length */ 1444 u_int siglen; /* signature length */ 1445 u_int opcode, len; 1446 int i; 1447 1448 /* 1449 * We are extremely parannoyed. We require valid opcode, length, 1450 * association ID, timestamp, filestamp, public key, digest, 1451 * signature length and signature, where relevant. Note that 1452 * preliminary length checks are done in the main loop. 1453 */ 1454 len = ntohl(ep->opcode) & 0x0000ffff; 1455 opcode = ntohl(ep->opcode) & 0xffff0000; 1456 1457 /* 1458 * Check for valid value header, association ID and extension 1459 * field length. Remember, it is not an error to receive an 1460 * unsolicited response; however, the response ID must match 1461 * the association ID. 1462 */ 1463 if (opcode & CRYPTO_ERROR) 1464 return (XEVNT_ERR); 1465 1466 if (len < VALUE_LEN) 1467 return (XEVNT_LEN); 1468 1469 if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode == 1470 MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) { 1471 if (ntohl(ep->associd) != peer->assoc) 1472 return (XEVNT_ERR); 1473 } else { 1474 if (ntohl(ep->associd) != peer->associd) 1475 return (XEVNT_ERR); 1476 } 1477 1478 /* 1479 * We have a valid value header. Check for valid value and 1480 * signature field lengths. The extension field length must be 1481 * long enough to contain the value header, value and signature. 1482 * Note both the value and signature field lengths are rounded 1483 * up to the next word (4 octets). 1484 */ 1485 vallen = ntohl(ep->vallen); 1486 if ( vallen == 0 1487 || vallen > MAX_VALLEN) 1488 return (XEVNT_LEN); 1489 1490 i = (vallen + 3) / 4; 1491 siglen = ntohl(ep->pkt[i++]); 1492 if ( siglen > MAX_VALLEN 1493 || len - VALUE_LEN < ((vallen + 3) / 4) * 4 1494 || len - VALUE_LEN - ((vallen + 3) / 4) * 4 1495 < ((siglen + 3) / 4) * 4) 1496 return (XEVNT_LEN); 1497 1498 /* 1499 * Check for valid timestamp and filestamp. If the timestamp is 1500 * zero, the sender is not synchronized and signatures are 1501 * not possible. If nonzero the timestamp must not precede the 1502 * filestamp. The timestamp and filestamp must not precede the 1503 * corresponding values in the value structure, if present. 1504 */ 1505 tstamp = ntohl(ep->tstamp); 1506 fstamp = ntohl(ep->fstamp); 1507 if (tstamp == 0) 1508 return (XEVNT_TSP); 1509 1510 if (tstamp < fstamp) 1511 return (XEVNT_TSP); 1512 1513 if (vp != NULL) { 1514 tstamp1 = ntohl(vp->tstamp); 1515 fstamp1 = ntohl(vp->fstamp); 1516 if (tstamp1 != 0 && fstamp1 != 0) { 1517 if (tstamp < tstamp1) 1518 return (XEVNT_TSP); 1519 1520 if ((tstamp < fstamp1 || fstamp < fstamp1)) 1521 return (XEVNT_FSP); 1522 } 1523 } 1524 1525 /* 1526 * At the time the certificate message is validated, the public 1527 * key in the message is not available. Thus, don't try to 1528 * verify the signature. 1529 */ 1530 if (opcode == (CRYPTO_CERT | CRYPTO_RESP)) 1531 return (XEVNT_OK); 1532 1533 /* 1534 * Check for valid signature length, public key and digest 1535 * algorithm. 1536 */ 1537 if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV) 1538 pkey = sign_pkey; 1539 else 1540 pkey = peer->pkey; 1541 if (siglen == 0 || pkey == NULL || peer->digest == NULL) 1542 return (XEVNT_ERR); 1543 1544 if (siglen != (u_int)EVP_PKEY_size(pkey)) 1545 return (XEVNT_SGL); 1546 1547 /* 1548 * Darn, I thought we would never get here. Verify the 1549 * signature. If the identity exchange is verified, light the 1550 * proventic bit. What a relief. 1551 */ 1552 ctx = EVP_MD_CTX_new(); 1553 EVP_VerifyInit(ctx, peer->digest); 1554 /* XXX: the "+ 12" needs to be at least documented... */ 1555 EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen + 12); 1556 if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen, 1557 pkey) <= 0) { 1558 EVP_MD_CTX_free(ctx); 1559 return (XEVNT_SIG); 1560 } 1561 EVP_MD_CTX_free(ctx); 1562 1563 if (peer->crypto & CRYPTO_FLAG_VRFY) 1564 peer->crypto |= CRYPTO_FLAG_PROV; 1565 return (XEVNT_OK); 1566 } 1567 1568 1569 /* 1570 * crypto_encrypt - construct vp (encrypted cookie and signature) from 1571 * the public key and cookie. 1572 * 1573 * Returns: 1574 * XEVNT_OK success 1575 * XEVNT_CKY bad or missing cookie 1576 * XEVNT_PUB bad or missing public key 1577 */ 1578 static int 1579 crypto_encrypt( 1580 const u_char *ptr, /* Public Key */ 1581 u_int vallen, /* Length of Public Key */ 1582 keyid_t *cookie, /* server cookie */ 1583 struct value *vp /* value pointer */ 1584 ) 1585 { 1586 EVP_PKEY *pkey; /* public key */ 1587 EVP_MD_CTX *ctx; /* signature context */ 1588 tstamp_t tstamp; /* NTP timestamp */ 1589 u_int32 temp32; 1590 u_char *puch; 1591 1592 /* 1593 * Extract the public key from the request. 1594 */ 1595 pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen); 1596 if (pkey == NULL) { 1597 msyslog(LOG_ERR, "crypto_encrypt: %s", 1598 ERR_error_string(ERR_get_error(), NULL)); 1599 return (XEVNT_PUB); 1600 } 1601 1602 /* 1603 * Encrypt the cookie, encode in ASN.1 and sign. 1604 */ 1605 memset(vp, 0, sizeof(struct value)); 1606 tstamp = crypto_time(); 1607 vp->tstamp = htonl(tstamp); 1608 vp->fstamp = hostval.tstamp; 1609 vallen = EVP_PKEY_size(pkey); 1610 vp->vallen = htonl(vallen); 1611 vp->ptr = emalloc(vallen); 1612 puch = vp->ptr; 1613 temp32 = htonl(*cookie); 1614 if (RSA_public_encrypt(4, (u_char *)&temp32, puch, 1615 EVP_PKEY_get0_RSA(pkey), RSA_PKCS1_OAEP_PADDING) <= 0) { 1616 msyslog(LOG_ERR, "crypto_encrypt: %s", 1617 ERR_error_string(ERR_get_error(), NULL)); 1618 free(vp->ptr); 1619 EVP_PKEY_free(pkey); 1620 return (XEVNT_CKY); 1621 } 1622 EVP_PKEY_free(pkey); 1623 if (tstamp == 0) 1624 return (XEVNT_OK); 1625 1626 vp->sig = emalloc(sign_siglen); 1627 ctx = EVP_MD_CTX_new(); 1628 EVP_SignInit(ctx, sign_digest); 1629 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 1630 EVP_SignUpdate(ctx, vp->ptr, vallen); 1631 if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) { 1632 INSIST(vallen <= sign_siglen); 1633 vp->siglen = htonl(vallen); 1634 } 1635 EVP_MD_CTX_free(ctx); 1636 return (XEVNT_OK); 1637 } 1638 1639 1640 /* 1641 * crypto_ident - construct extension field for identity scheme 1642 * 1643 * This routine determines which identity scheme is in use and 1644 * constructs an extension field for that scheme. 1645 * 1646 * Returns 1647 * CRYTPO_IFF IFF scheme 1648 * CRYPTO_GQ GQ scheme 1649 * CRYPTO_MV MV scheme 1650 * CRYPTO_NULL no available scheme 1651 */ 1652 u_int 1653 crypto_ident( 1654 struct peer *peer /* peer structure pointer */ 1655 ) 1656 { 1657 char filename[MAXFILENAME]; 1658 const char * scheme_name; 1659 u_int scheme_id; 1660 1661 /* 1662 * We come here after the group trusted host has been found; its 1663 * name defines the group name. Search the key cache for all 1664 * keys matching the same group name in order IFF, GQ and MV. 1665 * Use the first one available. 1666 */ 1667 scheme_name = NULL; 1668 if (peer->crypto & CRYPTO_FLAG_IFF) { 1669 scheme_name = "iff"; 1670 scheme_id = CRYPTO_IFF; 1671 } else if (peer->crypto & CRYPTO_FLAG_GQ) { 1672 scheme_name = "gq"; 1673 scheme_id = CRYPTO_GQ; 1674 } else if (peer->crypto & CRYPTO_FLAG_MV) { 1675 scheme_name = "mv"; 1676 scheme_id = CRYPTO_MV; 1677 } 1678 1679 if (scheme_name != NULL) { 1680 snprintf(filename, sizeof(filename), "ntpkey_%spar_%s", 1681 scheme_name, peer->ident); 1682 peer->ident_pkey = crypto_key(filename, NULL, 1683 &peer->srcadr); 1684 if (peer->ident_pkey != NULL) 1685 return scheme_id; 1686 } 1687 1688 msyslog(LOG_NOTICE, 1689 "crypto_ident: no identity parameters found for group %s", 1690 peer->ident); 1691 1692 return CRYPTO_NULL; 1693 } 1694 1695 1696 /* 1697 * crypto_args - construct extension field from arguments 1698 * 1699 * This routine creates an extension field with current timestamps and 1700 * specified opcode, association ID and optional string. Note that the 1701 * extension field is created here, but freed after the crypto_xmit() 1702 * call in the protocol module. 1703 * 1704 * Returns extension field pointer (no errors) 1705 * 1706 * XXX: opcode and len should really be 32-bit quantities and 1707 * we should make sure that str is not too big. 1708 */ 1709 struct exten * 1710 crypto_args( 1711 struct peer *peer, /* peer structure pointer */ 1712 u_int opcode, /* operation code */ 1713 associd_t associd, /* association ID */ 1714 char *str /* argument string */ 1715 ) 1716 { 1717 tstamp_t tstamp; /* NTP timestamp */ 1718 struct exten *ep; /* extension field pointer */ 1719 u_int len; /* extension field length */ 1720 size_t slen = 0; 1721 1722 tstamp = crypto_time(); 1723 len = sizeof(struct exten); 1724 if (str != NULL) { 1725 slen = strlen(str); 1726 INSIST(slen < MAX_VALLEN); 1727 len += slen; 1728 } 1729 ep = emalloc_zero(len); 1730 if (opcode == 0) 1731 return (ep); 1732 1733 REQUIRE(0 == (len & ~0x0000ffff)); 1734 REQUIRE(0 == (opcode & ~0xffff0000)); 1735 1736 ep->opcode = htonl(opcode + len); 1737 ep->associd = htonl(associd); 1738 ep->tstamp = htonl(tstamp); 1739 ep->fstamp = hostval.tstamp; 1740 ep->vallen = 0; 1741 if (str != NULL) { 1742 ep->vallen = htonl(slen); 1743 memcpy((char *)ep->pkt, str, slen); 1744 } 1745 return (ep); 1746 } 1747 1748 1749 /* 1750 * crypto_send - construct extension field from value components 1751 * 1752 * The value and signature fields are zero-padded to a word boundary. 1753 * Note: it is not polite to send a nonempty signature with zero 1754 * timestamp or a nonzero timestamp with an empty signature, but those 1755 * rules are not enforced here. 1756 * 1757 * XXX This code won't work on a box with 16-bit ints. 1758 */ 1759 int 1760 crypto_send( 1761 struct exten *ep, /* extension field pointer */ 1762 struct value *vp, /* value pointer */ 1763 int start /* buffer offset */ 1764 ) 1765 { 1766 u_int len, vallen, siglen, opcode; 1767 u_int i, j; 1768 1769 /* 1770 * Calculate extension field length and check for buffer 1771 * overflow. Leave room for the MAC. 1772 */ 1773 len = 16; /* XXX Document! */ 1774 vallen = ntohl(vp->vallen); 1775 INSIST(vallen <= MAX_VALLEN); 1776 len += ((vallen + 3) / 4 + 1) * 4; 1777 siglen = ntohl(vp->siglen); 1778 len += ((siglen + 3) / 4 + 1) * 4; 1779 if (start + len > sizeof(struct pkt) - MAX_MAC_LEN) 1780 return (0); 1781 1782 /* 1783 * Copy timestamps. 1784 */ 1785 ep->tstamp = vp->tstamp; 1786 ep->fstamp = vp->fstamp; 1787 ep->vallen = vp->vallen; 1788 1789 /* 1790 * Copy value. If the data field is empty or zero length, 1791 * encode an empty value with length zero. 1792 */ 1793 i = 0; 1794 if (vallen > 0 && vp->ptr != NULL) { 1795 j = vallen / 4; 1796 if (j * 4 < vallen) 1797 ep->pkt[i + j++] = 0; 1798 memcpy(&ep->pkt[i], vp->ptr, vallen); 1799 i += j; 1800 } 1801 1802 /* 1803 * Copy signature. If the signature field is empty or zero 1804 * length, encode an empty signature with length zero. 1805 */ 1806 ep->pkt[i++] = vp->siglen; 1807 if (siglen > 0 && vp->sig != NULL) { 1808 j = siglen / 4; 1809 if (j * 4 < siglen) 1810 ep->pkt[i + j++] = 0; 1811 memcpy(&ep->pkt[i], vp->sig, siglen); 1812 /* i += j; */ /* We don't use i after this */ 1813 } 1814 opcode = ntohl(ep->opcode); 1815 ep->opcode = htonl((opcode & 0xffff0000) | len); 1816 ENSURE(len <= MAX_VALLEN); 1817 return (len); 1818 } 1819 1820 1821 /* 1822 * crypto_update - compute new public value and sign extension fields 1823 * 1824 * This routine runs periodically, like once a day, and when something 1825 * changes. It updates the timestamps on three value structures and one 1826 * value structure list, then signs all the structures: 1827 * 1828 * hostval host name (not signed) 1829 * pubkey public key 1830 * cinfo certificate info/value list 1831 * tai_leap leap values 1832 * 1833 * Filestamps are proventic data, so this routine runs only when the 1834 * host is synchronized to a proventicated source. Thus, the timestamp 1835 * is proventic and can be used to deflect clogging attacks. 1836 * 1837 * Returns void (no errors) 1838 */ 1839 void 1840 crypto_update(void) 1841 { 1842 EVP_MD_CTX *ctx; /* message digest context */ 1843 struct cert_info *cp; /* certificate info/value */ 1844 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1845 u_int32 *ptr; 1846 u_int len; 1847 leap_result_t leap_data; 1848 1849 hostval.tstamp = htonl(crypto_time()); 1850 if (hostval.tstamp == 0) 1851 return; 1852 1853 ctx = EVP_MD_CTX_new(); 1854 1855 /* 1856 * Sign public key and timestamps. The filestamp is derived from 1857 * the host key file extension from wherever the file was 1858 * generated. 1859 */ 1860 if (pubkey.vallen != 0) { 1861 pubkey.tstamp = hostval.tstamp; 1862 pubkey.siglen = 0; 1863 if (pubkey.sig == NULL) 1864 pubkey.sig = emalloc(sign_siglen); 1865 EVP_SignInit(ctx, sign_digest); 1866 EVP_SignUpdate(ctx, (u_char *)&pubkey, 12); 1867 EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen)); 1868 if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) { 1869 INSIST(len <= sign_siglen); 1870 pubkey.siglen = htonl(len); 1871 } 1872 } 1873 1874 /* 1875 * Sign certificates and timestamps. The filestamp is derived 1876 * from the certificate file extension from wherever the file 1877 * was generated. Note we do not throw expired certificates 1878 * away; they may have signed younger ones. 1879 */ 1880 for (cp = cinfo; cp != NULL; cp = cp->link) { 1881 cp->cert.tstamp = hostval.tstamp; 1882 cp->cert.siglen = 0; 1883 if (cp->cert.sig == NULL) 1884 cp->cert.sig = emalloc(sign_siglen); 1885 EVP_SignInit(ctx, sign_digest); 1886 EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12); 1887 EVP_SignUpdate(ctx, cp->cert.ptr, 1888 ntohl(cp->cert.vallen)); 1889 if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) { 1890 INSIST(len <= sign_siglen); 1891 cp->cert.siglen = htonl(len); 1892 } 1893 } 1894 1895 /* 1896 * Sign leapseconds values and timestamps. Note it is not an 1897 * error to return null values. 1898 */ 1899 tai_leap.tstamp = hostval.tstamp; 1900 tai_leap.fstamp = hostval.fstamp; 1901 1902 /* Get the leap second era. We might need a full lookup early 1903 * after start, when the cache is not yet loaded. 1904 */ 1905 leapsec_frame(&leap_data); 1906 if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) { 1907 time_t now = time(NULL); 1908 uint32_t nowntp = (uint32_t)now + JAN_1970; 1909 leapsec_query(&leap_data, nowntp, &now); 1910 } 1911 1912 /* Create the data block. The protocol does not work without. */ 1913 len = 3 * sizeof(u_int32); 1914 if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) { 1915 free(tai_leap.ptr); 1916 tai_leap.ptr = emalloc(len); 1917 tai_leap.vallen = htonl(len); 1918 } 1919 ptr = (u_int32 *)tai_leap.ptr; 1920 if (leap_data.tai_offs > 10) { 1921 /* create a TAI / leap era block. The end time is a 1922 * fake -- maybe we can do better. 1923 */ 1924 ptr[0] = htonl(leap_data.tai_offs); 1925 ptr[1] = htonl(leap_data.ebase.d_s.lo); 1926 if (leap_data.ttime.d_s.hi >= 0) 1927 ptr[2] = htonl(leap_data.ttime.D_s.lo + 7*86400); 1928 else 1929 ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400); 1930 } else { 1931 /* no leap era available */ 1932 memset(ptr, 0, len); 1933 } 1934 if (tai_leap.sig == NULL) 1935 tai_leap.sig = emalloc(sign_siglen); 1936 EVP_SignInit(ctx, sign_digest); 1937 EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12); 1938 EVP_SignUpdate(ctx, tai_leap.ptr, len); 1939 if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) { 1940 INSIST(len <= sign_siglen); 1941 tai_leap.siglen = htonl(len); 1942 } 1943 crypto_flags |= CRYPTO_FLAG_TAI; 1944 1945 snprintf(statstr, sizeof(statstr), "signature update ts %u", 1946 ntohl(hostval.tstamp)); 1947 record_crypto_stats(NULL, statstr); 1948 DPRINTF(1, ("crypto_update: %s\n", statstr)); 1949 EVP_MD_CTX_free(ctx); 1950 } 1951 1952 /* 1953 * crypto_update_taichange - eventually trigger crypto_update 1954 * 1955 * This is called when a change in 'sys_tai' is detected. This will 1956 * happen shortly after a leap second is detected, but unhappily also 1957 * early after system start; also, the crypto stuff might be unused and 1958 * an unguarded call to crypto_update() causes a crash. 1959 * 1960 * This function makes sure that there already *is* a valid crypto block 1961 * for the use with autokey, and only calls 'crypto_update()' if it can 1962 * succeed. 1963 * 1964 * Returns void (no errors) 1965 */ 1966 void 1967 crypto_update_taichange(void) 1968 { 1969 static const u_int len = 3 * sizeof(u_int32); 1970 1971 /* check if the signing digest algo is available */ 1972 if (sign_digest == NULL || sign_pkey == NULL) 1973 return; 1974 1975 /* check size of TAI extension block */ 1976 if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) 1977 return; 1978 1979 /* crypto_update should at least not crash here! */ 1980 crypto_update(); 1981 } 1982 1983 /* 1984 * value_free - free value structure components. 1985 * 1986 * Returns void (no errors) 1987 */ 1988 void 1989 value_free( 1990 struct value *vp /* value structure */ 1991 ) 1992 { 1993 if (vp->ptr != NULL) 1994 free(vp->ptr); 1995 if (vp->sig != NULL) 1996 free(vp->sig); 1997 memset(vp, 0, sizeof(struct value)); 1998 } 1999 2000 2001 /* 2002 * crypto_time - returns current NTP time. 2003 * 2004 * Returns NTP seconds if in synch, 0 otherwise 2005 */ 2006 tstamp_t 2007 crypto_time() 2008 { 2009 l_fp tstamp; /* NTP time */ 2010 2011 L_CLR(&tstamp); 2012 if (sys_leap != LEAP_NOTINSYNC) 2013 get_systime(&tstamp); 2014 return (tstamp.l_ui); 2015 } 2016 2017 2018 /* 2019 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar. 2020 * 2021 */ 2022 static 2023 void 2024 asn_to_calendar ( 2025 const ASN1_TIME *asn1time, /* pointer to ASN1_TIME structure */ 2026 struct calendar *pjd /* pointer to result */ 2027 ) 2028 { 2029 size_t len; /* length of ASN1_TIME string */ 2030 char v[24]; /* writable copy of ASN1_TIME string */ 2031 unsigned long temp; /* result from strtoul */ 2032 2033 /* 2034 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure. 2035 * Or YYYYMMDDHHMMSSZ. 2036 * Note that the YY, MM, DD fields start with one, the HH, MM, 2037 * SS fields start with zero and the Z character is ignored. 2038 * Also note that two-digit years less than 50 map to years greater than 2039 * 100. Dontcha love ASN.1? Better than MIL-188. 2040 */ 2041 len = asn1time->length; 2042 REQUIRE(len < sizeof(v)); 2043 (void)strncpy(v, (char *)(asn1time->data), len); 2044 REQUIRE(len >= 13); 2045 temp = strtoul(v+len-3, NULL, 10); 2046 pjd->second = temp; 2047 v[len-3] = '\0'; 2048 2049 temp = strtoul(v+len-5, NULL, 10); 2050 pjd->minute = temp; 2051 v[len-5] = '\0'; 2052 2053 temp = strtoul(v+len-7, NULL, 10); 2054 pjd->hour = temp; 2055 v[len-7] = '\0'; 2056 2057 temp = strtoul(v+len-9, NULL, 10); 2058 pjd->monthday = temp; 2059 v[len-9] = '\0'; 2060 2061 temp = strtoul(v+len-11, NULL, 10); 2062 pjd->month = temp; 2063 v[len-11] = '\0'; 2064 2065 temp = strtoul(v, NULL, 10); 2066 /* handle two-digit years */ 2067 if (temp < 50UL) 2068 temp += 100UL; 2069 if (temp < 150UL) 2070 temp += 1900UL; 2071 pjd->year = temp; 2072 2073 pjd->yearday = pjd->weekday = 0; 2074 return; 2075 } 2076 2077 2078 /* 2079 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number. 2080 * 2081 * Returns void (no errors) 2082 */ 2083 static void 2084 bighash( 2085 BIGNUM *bn, /* BIGNUM * from */ 2086 BIGNUM *bk /* BIGNUM * to */ 2087 ) 2088 { 2089 EVP_MD_CTX *ctx; /* message digest context */ 2090 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 2091 u_char *ptr; /* a BIGNUM as binary string */ 2092 u_int len; 2093 2094 len = BN_num_bytes(bn); 2095 ptr = emalloc(len); 2096 BN_bn2bin(bn, ptr); 2097 ctx = EVP_MD_CTX_new(); 2098 # if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) 2099 /* [Bug 3457] set flags and don't kill them again */ 2100 EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 2101 EVP_DigestInit_ex(ctx, EVP_md5(), NULL); 2102 # else 2103 EVP_DigestInit(ctx, EVP_md5()); 2104 # endif 2105 EVP_DigestUpdate(ctx, ptr, len); 2106 EVP_DigestFinal(ctx, dgst, &len); 2107 EVP_MD_CTX_free(ctx); 2108 BN_bin2bn(dgst, len, bk); 2109 free(ptr); 2110 } 2111 2112 2113 /* 2114 *********************************************************************** 2115 * * 2116 * The following routines implement the Schnorr (IFF) identity scheme * 2117 * * 2118 *********************************************************************** 2119 * 2120 * The Schnorr (IFF) identity scheme is intended for use when 2121 * certificates are generated by some other trusted certificate 2122 * authority and the certificate cannot be used to convey public 2123 * parameters. There are two kinds of files: encrypted server files that 2124 * contain private and public values and nonencrypted client files that 2125 * contain only public values. New generations of server files must be 2126 * securely transmitted to all servers of the group; client files can be 2127 * distributed by any means. The scheme is self contained and 2128 * independent of new generations of host keys, sign keys and 2129 * certificates. 2130 * 2131 * The IFF values hide in a DSA cuckoo structure which uses the same 2132 * parameters. The values are used by an identity scheme based on DSA 2133 * cryptography and described in Stimson p. 285. The p is a 512-bit 2134 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 2135 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 2136 * private random group key b (0 < b < q) and public key v = g^b, then 2137 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 2138 * Alice challenges Bob to confirm identity using the protocol described 2139 * below. 2140 * 2141 * How it works 2142 * 2143 * The scheme goes like this. Both Alice and Bob have the public primes 2144 * p, q and generator g. The TA gives private key b to Bob and public 2145 * key v to Alice. 2146 * 2147 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 2148 * the IFF request message. Bob rolls new random k (0 < k < q), then 2149 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 2150 * to Alice in the response message. Besides making the response 2151 * shorter, the hash makes it effectivey impossible for an intruder to 2152 * solve for b by observing a number of these messages. 2153 * 2154 * Alice receives the response and computes g^y v^r mod p. After a bit 2155 * of algebra, this simplifies to g^k. If the hash of this result 2156 * matches hash(x), Alice knows that Bob has the group key b. The signed 2157 * response binds this knowledge to Bob's private key and the public key 2158 * previously received in his certificate. 2159 * 2160 * crypto_alice - construct Alice's challenge in IFF scheme 2161 * 2162 * Returns 2163 * XEVNT_OK success 2164 * XEVNT_ID bad or missing group key 2165 * XEVNT_PUB bad or missing public key 2166 */ 2167 static int 2168 crypto_alice( 2169 struct peer *peer, /* peer pointer */ 2170 struct value *vp /* value pointer */ 2171 ) 2172 { 2173 DSA *dsa; /* IFF parameters */ 2174 BN_CTX *bctx; /* BIGNUM context */ 2175 EVP_MD_CTX *ctx; /* signature context */ 2176 tstamp_t tstamp; 2177 u_int len; 2178 const BIGNUM *q; 2179 2180 /* 2181 * The identity parameters must have correct format and content. 2182 */ 2183 if (peer->ident_pkey == NULL) { 2184 msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable"); 2185 return (XEVNT_ID); 2186 } 2187 2188 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2189 msyslog(LOG_NOTICE, "crypto_alice: defective key"); 2190 return (XEVNT_PUB); 2191 } 2192 2193 /* 2194 * Roll new random r (0 < r < q). 2195 */ 2196 if (peer->iffval != NULL) 2197 BN_free(peer->iffval); 2198 peer->iffval = BN_new(); 2199 DSA_get0_pqg(dsa, NULL, &q, NULL); 2200 len = BN_num_bytes(q); 2201 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod q*/ 2202 bctx = BN_CTX_new(); 2203 BN_mod(peer->iffval, peer->iffval, q, bctx); 2204 BN_CTX_free(bctx); 2205 2206 /* 2207 * Sign and send to Bob. The filestamp is from the local file. 2208 */ 2209 memset(vp, 0, sizeof(struct value)); 2210 tstamp = crypto_time(); 2211 vp->tstamp = htonl(tstamp); 2212 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2213 vp->vallen = htonl(len); 2214 vp->ptr = emalloc(len); 2215 BN_bn2bin(peer->iffval, vp->ptr); 2216 if (tstamp == 0) 2217 return (XEVNT_OK); 2218 2219 vp->sig = emalloc(sign_siglen); 2220 ctx = EVP_MD_CTX_new(); 2221 EVP_SignInit(ctx, sign_digest); 2222 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2223 EVP_SignUpdate(ctx, vp->ptr, len); 2224 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2225 INSIST(len <= sign_siglen); 2226 vp->siglen = htonl(len); 2227 } 2228 EVP_MD_CTX_free(ctx); 2229 return (XEVNT_OK); 2230 } 2231 2232 2233 /* 2234 * crypto_bob - construct Bob's response to Alice's challenge 2235 * 2236 * Returns 2237 * XEVNT_OK success 2238 * XEVNT_ERR protocol error 2239 * XEVNT_ID bad or missing group key 2240 */ 2241 static int 2242 crypto_bob( 2243 struct exten *ep, /* extension pointer */ 2244 struct value *vp /* value pointer */ 2245 ) 2246 { 2247 DSA *dsa; /* IFF parameters */ 2248 DSA_SIG *sdsa; /* DSA signature context fake */ 2249 BN_CTX *bctx; /* BIGNUM context */ 2250 EVP_MD_CTX *ctx; /* signature context */ 2251 tstamp_t tstamp; /* NTP timestamp */ 2252 BIGNUM *bn, *bk, *r; 2253 u_char *ptr; 2254 u_int len; /* extension field value length */ 2255 const BIGNUM *p, *q, *g; 2256 const BIGNUM *priv_key; 2257 2258 /* 2259 * If the IFF parameters are not valid, something awful 2260 * happened or we are being tormented. 2261 */ 2262 if (iffkey_info == NULL) { 2263 msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable"); 2264 return (XEVNT_ID); 2265 } 2266 dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey); 2267 DSA_get0_pqg(dsa, &p, &q, &g); 2268 DSA_get0_key(dsa, NULL, &priv_key); 2269 2270 /* 2271 * Extract r from the challenge. 2272 */ 2273 len = exten_payload_size(ep); 2274 if (len == 0 || len > MAX_VALLEN) 2275 return (XEVNT_LEN); 2276 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2277 msyslog(LOG_ERR, "crypto_bob: %s", 2278 ERR_error_string(ERR_get_error(), NULL)); 2279 return (XEVNT_ERR); 2280 } 2281 2282 /* 2283 * Bob rolls random k (0 < k < q), computes y = k + b r mod q 2284 * and x = g^k mod p, then sends (y, hash(x)) to Alice. 2285 */ 2286 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2287 sdsa = DSA_SIG_new(); 2288 BN_rand(bk, len * 8, -1, 1); /* k */ 2289 BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */ 2290 BN_add(bn, bn, bk); 2291 BN_mod(bn, bn, q, bctx); /* k + b r mod q */ 2292 BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */ 2293 bighash(bk, bk); 2294 DSA_SIG_set0(sdsa, bn, bk); 2295 BN_CTX_free(bctx); 2296 BN_free(r); 2297 #ifdef DEBUG 2298 if (debug > 1) 2299 DSA_print_fp(stdout, dsa, 0); 2300 #endif 2301 2302 /* 2303 * Encode the values in ASN.1 and sign. The filestamp is from 2304 * the local file. 2305 */ 2306 len = i2d_DSA_SIG(sdsa, NULL); 2307 if (len == 0) { 2308 msyslog(LOG_ERR, "crypto_bob: %s", 2309 ERR_error_string(ERR_get_error(), NULL)); 2310 DSA_SIG_free(sdsa); 2311 return (XEVNT_ERR); 2312 } 2313 if (len > MAX_VALLEN) { 2314 msyslog(LOG_ERR, "crypto_bob: signature is too big: %u", 2315 len); 2316 DSA_SIG_free(sdsa); 2317 return (XEVNT_LEN); 2318 } 2319 memset(vp, 0, sizeof(struct value)); 2320 tstamp = crypto_time(); 2321 vp->tstamp = htonl(tstamp); 2322 vp->fstamp = htonl(iffkey_info->fstamp); 2323 vp->vallen = htonl(len); 2324 ptr = emalloc(len); 2325 vp->ptr = ptr; 2326 i2d_DSA_SIG(sdsa, &ptr); 2327 DSA_SIG_free(sdsa); 2328 if (tstamp == 0) 2329 return (XEVNT_OK); 2330 2331 /* XXX: more validation to make sure the sign fits... */ 2332 vp->sig = emalloc(sign_siglen); 2333 ctx = EVP_MD_CTX_new(); 2334 EVP_SignInit(ctx, sign_digest); 2335 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2336 EVP_SignUpdate(ctx, vp->ptr, len); 2337 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2338 INSIST(len <= sign_siglen); 2339 vp->siglen = htonl(len); 2340 } 2341 EVP_MD_CTX_free(ctx); 2342 return (XEVNT_OK); 2343 } 2344 2345 2346 /* 2347 * crypto_iff - verify Bob's response to Alice's challenge 2348 * 2349 * Returns 2350 * XEVNT_OK success 2351 * XEVNT_FSP bad filestamp 2352 * XEVNT_ID bad or missing group key 2353 * XEVNT_PUB bad or missing public key 2354 */ 2355 int 2356 crypto_iff( 2357 struct exten *ep, /* extension pointer */ 2358 struct peer *peer /* peer structure pointer */ 2359 ) 2360 { 2361 DSA *dsa; /* IFF parameters */ 2362 BN_CTX *bctx; /* BIGNUM context */ 2363 DSA_SIG *sdsa; /* DSA parameters */ 2364 BIGNUM *bn, *bk; 2365 u_int len; 2366 const u_char *ptr; 2367 int temp; 2368 const BIGNUM *p, *g; 2369 const BIGNUM *r, *s; 2370 const BIGNUM *pub_key; 2371 2372 /* 2373 * If the IFF parameters are not valid or no challenge was sent, 2374 * something awful happened or we are being tormented. 2375 */ 2376 if (peer->ident_pkey == NULL) { 2377 msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable"); 2378 return (XEVNT_ID); 2379 } 2380 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2381 msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u", 2382 ntohl(ep->fstamp)); 2383 return (XEVNT_FSP); 2384 } 2385 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2386 msyslog(LOG_NOTICE, "crypto_iff: defective key"); 2387 return (XEVNT_PUB); 2388 } 2389 if (peer->iffval == NULL) { 2390 msyslog(LOG_NOTICE, "crypto_iff: missing challenge"); 2391 return (XEVNT_ID); 2392 } 2393 2394 /* 2395 * Extract the k + b r and g^k values from the response. 2396 */ 2397 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2398 len = ntohl(ep->vallen); 2399 ptr = (u_char *)ep->pkt; 2400 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2401 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2402 msyslog(LOG_ERR, "crypto_iff: %s", 2403 ERR_error_string(ERR_get_error(), NULL)); 2404 return (XEVNT_ERR); 2405 } 2406 2407 /* 2408 * Compute g^(k + b r) g^(q - b)r mod p. 2409 */ 2410 DSA_get0_key(dsa, &pub_key, NULL); 2411 DSA_get0_pqg(dsa, &p, NULL, &g); 2412 DSA_SIG_get0(sdsa, &r, &s); 2413 BN_mod_exp(bn, pub_key, peer->iffval, p, bctx); 2414 BN_mod_exp(bk, g, r, p, bctx); 2415 BN_mod_mul(bn, bn, bk, p, bctx); 2416 2417 /* 2418 * Verify the hash of the result matches hash(x). 2419 */ 2420 bighash(bn, bn); 2421 temp = BN_cmp(bn, s); 2422 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2423 BN_free(peer->iffval); 2424 peer->iffval = NULL; 2425 DSA_SIG_free(sdsa); 2426 if (temp == 0) 2427 return (XEVNT_OK); 2428 2429 msyslog(LOG_NOTICE, "crypto_iff: identity not verified"); 2430 return (XEVNT_ID); 2431 } 2432 2433 2434 /* 2435 *********************************************************************** 2436 * * 2437 * The following routines implement the Guillou-Quisquater (GQ) * 2438 * identity scheme * 2439 * * 2440 *********************************************************************** 2441 * 2442 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 2443 * the certificate can be used to convey public parameters. The scheme 2444 * uses a X509v3 certificate extension field do convey the public key of 2445 * a private key known only to servers. There are two kinds of files: 2446 * encrypted server files that contain private and public values and 2447 * nonencrypted client files that contain only public values. New 2448 * generations of server files must be securely transmitted to all 2449 * servers of the group; client files can be distributed by any means. 2450 * The scheme is self contained and independent of new generations of 2451 * host keys and sign keys. The scheme is self contained and independent 2452 * of new generations of host keys and sign keys. 2453 * 2454 * The GQ parameters hide in a RSA cuckoo structure which uses the same 2455 * parameters. The values are used by an identity scheme based on RSA 2456 * cryptography and described in Stimson p. 300 (with errors). The 512- 2457 * bit public modulus is n = p q, where p and q are secret large primes. 2458 * The TA rolls private random group key b as RSA exponent. These values 2459 * are known to all group members. 2460 * 2461 * When rolling new certificates, a server recomputes the private and 2462 * public keys. The private key u is a random roll, while the public key 2463 * is the inverse obscured by the group key v = (u^-1)^b. These values 2464 * replace the private and public keys normally generated by the RSA 2465 * scheme. Alice challenges Bob to confirm identity using the protocol 2466 * described below. 2467 * 2468 * How it works 2469 * 2470 * The scheme goes like this. Both Alice and Bob have the same modulus n 2471 * and some random b as the group key. These values are computed and 2472 * distributed in advance via secret means, although only the group key 2473 * b is truly secret. Each has a private random private key u and public 2474 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 2475 * can regenerate the key pair from time to time without affecting 2476 * operations. The public key is conveyed on the certificate in an 2477 * extension field; the private key is never revealed. 2478 * 2479 * Alice rolls new random challenge r and sends to Bob in the GQ 2480 * request message. Bob rolls new random k, then computes y = k u^r mod 2481 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 2482 * message. Besides making the response shorter, the hash makes it 2483 * effectivey impossible for an intruder to solve for b by observing 2484 * a number of these messages. 2485 * 2486 * Alice receives the response and computes y^b v^r mod n. After a bit 2487 * of algebra, this simplifies to k^b. If the hash of this result 2488 * matches hash(x), Alice knows that Bob has the group key b. The signed 2489 * response binds this knowledge to Bob's private key and the public key 2490 * previously received in his certificate. 2491 * 2492 * crypto_alice2 - construct Alice's challenge in GQ scheme 2493 * 2494 * Returns 2495 * XEVNT_OK success 2496 * XEVNT_ID bad or missing group key 2497 * XEVNT_PUB bad or missing public key 2498 */ 2499 static int 2500 crypto_alice2( 2501 struct peer *peer, /* peer pointer */ 2502 struct value *vp /* value pointer */ 2503 ) 2504 { 2505 RSA *rsa; /* GQ parameters */ 2506 BN_CTX *bctx; /* BIGNUM context */ 2507 EVP_MD_CTX *ctx; /* signature context */ 2508 tstamp_t tstamp; 2509 u_int len; 2510 const BIGNUM *n; 2511 2512 /* 2513 * The identity parameters must have correct format and content. 2514 */ 2515 if (peer->ident_pkey == NULL) 2516 return (XEVNT_ID); 2517 2518 if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) { 2519 msyslog(LOG_NOTICE, "crypto_alice2: defective key"); 2520 return (XEVNT_PUB); 2521 } 2522 2523 /* 2524 * Roll new random r (0 < r < n). 2525 */ 2526 if (peer->iffval != NULL) 2527 BN_free(peer->iffval); 2528 peer->iffval = BN_new(); 2529 RSA_get0_key(rsa, &n, NULL, NULL); 2530 len = BN_num_bytes(n); 2531 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */ 2532 bctx = BN_CTX_new(); 2533 BN_mod(peer->iffval, peer->iffval, n, bctx); 2534 BN_CTX_free(bctx); 2535 2536 /* 2537 * Sign and send to Bob. The filestamp is from the local file. 2538 */ 2539 memset(vp, 0, sizeof(struct value)); 2540 tstamp = crypto_time(); 2541 vp->tstamp = htonl(tstamp); 2542 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2543 vp->vallen = htonl(len); 2544 vp->ptr = emalloc(len); 2545 BN_bn2bin(peer->iffval, vp->ptr); 2546 if (tstamp == 0) 2547 return (XEVNT_OK); 2548 2549 vp->sig = emalloc(sign_siglen); 2550 ctx = EVP_MD_CTX_new(); 2551 EVP_SignInit(ctx, sign_digest); 2552 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2553 EVP_SignUpdate(ctx, vp->ptr, len); 2554 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2555 INSIST(len <= sign_siglen); 2556 vp->siglen = htonl(len); 2557 } 2558 EVP_MD_CTX_free(ctx); 2559 return (XEVNT_OK); 2560 } 2561 2562 2563 /* 2564 * crypto_bob2 - construct Bob's response to Alice's challenge 2565 * 2566 * Returns 2567 * XEVNT_OK success 2568 * XEVNT_ERR protocol error 2569 * XEVNT_ID bad or missing group key 2570 */ 2571 static int 2572 crypto_bob2( 2573 struct exten *ep, /* extension pointer */ 2574 struct value *vp /* value pointer */ 2575 ) 2576 { 2577 RSA *rsa; /* GQ parameters */ 2578 DSA_SIG *sdsa; /* DSA parameters */ 2579 BN_CTX *bctx; /* BIGNUM context */ 2580 EVP_MD_CTX *ctx; /* signature context */ 2581 tstamp_t tstamp; /* NTP timestamp */ 2582 BIGNUM *r, *k, *g, *y; 2583 u_char *ptr; 2584 u_int len; 2585 int s_len; 2586 const BIGNUM *n, *p, *e; 2587 2588 /* 2589 * If the GQ parameters are not valid, something awful 2590 * happened or we are being tormented. 2591 */ 2592 if (gqkey_info == NULL) { 2593 msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable"); 2594 return (XEVNT_ID); 2595 } 2596 rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey); 2597 RSA_get0_key(rsa, &n, &p, &e); 2598 2599 /* 2600 * Extract r from the challenge. 2601 */ 2602 len = exten_payload_size(ep); 2603 if (len == 0 || len > MAX_VALLEN) 2604 return (XEVNT_LEN); 2605 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2606 msyslog(LOG_ERR, "crypto_bob2: %s", 2607 ERR_error_string(ERR_get_error(), NULL)); 2608 return (XEVNT_ERR); 2609 } 2610 2611 /* 2612 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and 2613 * x = k^b mod n, then sends (y, hash(x)) to Alice. 2614 */ 2615 bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new(); 2616 sdsa = DSA_SIG_new(); 2617 BN_rand(k, len * 8, -1, 1); /* k */ 2618 BN_mod(k, k, n, bctx); 2619 BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */ 2620 BN_mod_mul(y, k, y, n, bctx); /* k u^r mod n */ 2621 BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */ 2622 bighash(g, g); 2623 DSA_SIG_set0(sdsa, y, g); 2624 BN_CTX_free(bctx); 2625 BN_free(r); BN_free(k); 2626 #ifdef DEBUG 2627 if (debug > 1) 2628 RSA_print_fp(stdout, rsa, 0); 2629 #endif 2630 2631 /* 2632 * Encode the values in ASN.1 and sign. The filestamp is from 2633 * the local file. 2634 */ 2635 len = s_len = i2d_DSA_SIG(sdsa, NULL); 2636 if (s_len <= 0) { 2637 msyslog(LOG_ERR, "crypto_bob2: %s", 2638 ERR_error_string(ERR_get_error(), NULL)); 2639 DSA_SIG_free(sdsa); 2640 return (XEVNT_ERR); 2641 } 2642 memset(vp, 0, sizeof(struct value)); 2643 tstamp = crypto_time(); 2644 vp->tstamp = htonl(tstamp); 2645 vp->fstamp = htonl(gqkey_info->fstamp); 2646 vp->vallen = htonl(len); 2647 ptr = emalloc(len); 2648 vp->ptr = ptr; 2649 i2d_DSA_SIG(sdsa, &ptr); 2650 DSA_SIG_free(sdsa); 2651 if (tstamp == 0) 2652 return (XEVNT_OK); 2653 2654 vp->sig = emalloc(sign_siglen); 2655 ctx = EVP_MD_CTX_new(); 2656 EVP_SignInit(ctx, sign_digest); 2657 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2658 EVP_SignUpdate(ctx, vp->ptr, len); 2659 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2660 INSIST(len <= sign_siglen); 2661 vp->siglen = htonl(len); 2662 } 2663 EVP_MD_CTX_free(ctx); 2664 return (XEVNT_OK); 2665 } 2666 2667 2668 /* 2669 * crypto_gq - verify Bob's response to Alice's challenge 2670 * 2671 * Returns 2672 * XEVNT_OK success 2673 * XEVNT_ERR protocol error 2674 * XEVNT_FSP bad filestamp 2675 * XEVNT_ID bad or missing group keys 2676 * XEVNT_PUB bad or missing public key 2677 */ 2678 int 2679 crypto_gq( 2680 struct exten *ep, /* extension pointer */ 2681 struct peer *peer /* peer structure pointer */ 2682 ) 2683 { 2684 RSA *rsa; /* GQ parameters */ 2685 BN_CTX *bctx; /* BIGNUM context */ 2686 DSA_SIG *sdsa; /* RSA signature context fake */ 2687 BIGNUM *y, *v; 2688 const u_char *ptr; 2689 long len; 2690 u_int temp; 2691 const BIGNUM *n, *e; 2692 const BIGNUM *r, *s; 2693 2694 /* 2695 * If the GQ parameters are not valid or no challenge was sent, 2696 * something awful happened or we are being tormented. Note that 2697 * the filestamp on the local key file can be greater than on 2698 * the remote parameter file if the keys have been refreshed. 2699 */ 2700 if (peer->ident_pkey == NULL) { 2701 msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable"); 2702 return (XEVNT_ID); 2703 } 2704 if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) { 2705 msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u", 2706 ntohl(ep->fstamp)); 2707 return (XEVNT_FSP); 2708 } 2709 if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) { 2710 msyslog(LOG_NOTICE, "crypto_gq: defective key"); 2711 return (XEVNT_PUB); 2712 } 2713 RSA_get0_key(rsa, &n, NULL, &e); 2714 if (peer->iffval == NULL) { 2715 msyslog(LOG_NOTICE, "crypto_gq: missing challenge"); 2716 return (XEVNT_ID); 2717 } 2718 2719 /* 2720 * Extract the y = k u^r and hash(x = k^b) values from the 2721 * response. 2722 */ 2723 bctx = BN_CTX_new(); y = BN_new(); v = BN_new(); 2724 len = ntohl(ep->vallen); 2725 ptr = (u_char *)ep->pkt; 2726 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2727 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2728 msyslog(LOG_ERR, "crypto_gq: %s", 2729 ERR_error_string(ERR_get_error(), NULL)); 2730 return (XEVNT_ERR); 2731 } 2732 DSA_SIG_get0(sdsa, &r, &s); 2733 2734 /* 2735 * Compute v^r y^b mod n. 2736 */ 2737 if (peer->grpkey == NULL) { 2738 msyslog(LOG_NOTICE, "crypto_gq: missing group key"); 2739 return (XEVNT_ID); 2740 } 2741 BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx); 2742 /* v^r mod n */ 2743 BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */ 2744 BN_mod_mul(y, v, y, n, bctx); /* v^r y^b mod n */ 2745 2746 /* 2747 * Verify the hash of the result matches hash(x). 2748 */ 2749 bighash(y, y); 2750 temp = BN_cmp(y, s); 2751 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2752 BN_free(peer->iffval); 2753 peer->iffval = NULL; 2754 DSA_SIG_free(sdsa); 2755 if (temp == 0) 2756 return (XEVNT_OK); 2757 2758 msyslog(LOG_NOTICE, "crypto_gq: identity not verified"); 2759 return (XEVNT_ID); 2760 } 2761 2762 2763 /* 2764 *********************************************************************** 2765 * * 2766 * The following routines implement the Mu-Varadharajan (MV) identity * 2767 * scheme * 2768 * * 2769 *********************************************************************** 2770 * 2771 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 2772 * servers broadcast messages to clients, but clients never send 2773 * messages to servers. There is one encryption key for the server and a 2774 * separate decryption key for each client. It operated something like a 2775 * pay-per-view satellite broadcasting system where the session key is 2776 * encrypted by the broadcaster and the decryption keys are held in a 2777 * tamperproof set-top box. 2778 * 2779 * The MV parameters and private encryption key hide in a DSA cuckoo 2780 * structure which uses the same parameters, but generated in a 2781 * different way. The values are used in an encryption scheme similar to 2782 * El Gamal cryptography and a polynomial formed from the expansion of 2783 * product terms (x - x[j]), as described in Mu, Y., and V. 2784 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 2785 * 223-231. The paper has significant errors and serious omissions. 2786 * 2787 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 2788 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 2789 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 2790 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 2791 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 2792 * project into Zp* as exponents of g. Sometimes we have to compute an 2793 * inverse b^-1 of random b in Zq, but for that purpose we require 2794 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 2795 * relatively small, like 30. These are the parameters of the scheme and 2796 * they are expensive to compute. 2797 * 2798 * We set up an instance of the scheme as follows. A set of random 2799 * values x[j] mod q (j = 1...n), are generated as the zeros of a 2800 * polynomial of order n. The product terms (x - x[j]) are expanded to 2801 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 2802 * used as exponents of the generator g mod p to generate the private 2803 * encryption key A. The pair (gbar, ghat) of public server keys and the 2804 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 2805 * to construct the decryption keys. The devil is in the details. 2806 * 2807 * This routine generates a private server encryption file including the 2808 * private encryption key E and partial decryption keys gbar and ghat. 2809 * It then generates public client decryption files including the public 2810 * keys xbar[j] and xhat[j] for each client j. The partial decryption 2811 * files are used to compute the inverse of E. These values are suitably 2812 * blinded so secrets are not revealed. 2813 * 2814 * The distinguishing characteristic of this scheme is the capability to 2815 * revoke keys. Included in the calculation of E, gbar and ghat is the 2816 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 2817 * subsequently removed from the product and E, gbar and ghat 2818 * recomputed, the jth client will no longer be able to compute E^-1 and 2819 * thus unable to decrypt the messageblock. 2820 * 2821 * How it works 2822 * 2823 * The scheme goes like this. Bob has the server values (p, E, q, gbar, 2824 * ghat) and Alice has the client values (p, xbar, xhat). 2825 * 2826 * Alice rolls new random nonce r mod p and sends to Bob in the MV 2827 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 2828 * mod p and sends (y, gbar^k, ghat^k) to Alice. 2829 * 2830 * Alice receives the response and computes the inverse (E^k)^-1 from 2831 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 2832 * decrypts y and verifies it matches the original r. The signed 2833 * response binds this knowledge to Bob's private key and the public key 2834 * previously received in his certificate. 2835 * 2836 * crypto_alice3 - construct Alice's challenge in MV scheme 2837 * 2838 * Returns 2839 * XEVNT_OK success 2840 * XEVNT_ID bad or missing group key 2841 * XEVNT_PUB bad or missing public key 2842 */ 2843 static int 2844 crypto_alice3( 2845 struct peer *peer, /* peer pointer */ 2846 struct value *vp /* value pointer */ 2847 ) 2848 { 2849 DSA *dsa; /* MV parameters */ 2850 BN_CTX *bctx; /* BIGNUM context */ 2851 EVP_MD_CTX *ctx; /* signature context */ 2852 tstamp_t tstamp; 2853 u_int len; 2854 const BIGNUM *p; 2855 2856 /* 2857 * The identity parameters must have correct format and content. 2858 */ 2859 if (peer->ident_pkey == NULL) 2860 return (XEVNT_ID); 2861 2862 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2863 msyslog(LOG_NOTICE, "crypto_alice3: defective key"); 2864 return (XEVNT_PUB); 2865 } 2866 DSA_get0_pqg(dsa, &p, NULL, NULL); 2867 2868 /* 2869 * Roll new random r (0 < r < q). 2870 */ 2871 if (peer->iffval != NULL) 2872 BN_free(peer->iffval); 2873 peer->iffval = BN_new(); 2874 len = BN_num_bytes(p); 2875 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod p */ 2876 bctx = BN_CTX_new(); 2877 BN_mod(peer->iffval, peer->iffval, p, bctx); 2878 BN_CTX_free(bctx); 2879 2880 /* 2881 * Sign and send to Bob. The filestamp is from the local file. 2882 */ 2883 memset(vp, 0, sizeof(struct value)); 2884 tstamp = crypto_time(); 2885 vp->tstamp = htonl(tstamp); 2886 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2887 vp->vallen = htonl(len); 2888 vp->ptr = emalloc(len); 2889 BN_bn2bin(peer->iffval, vp->ptr); 2890 if (tstamp == 0) 2891 return (XEVNT_OK); 2892 2893 vp->sig = emalloc(sign_siglen); 2894 ctx = EVP_MD_CTX_new(); 2895 EVP_SignInit(ctx, sign_digest); 2896 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2897 EVP_SignUpdate(ctx, vp->ptr, len); 2898 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2899 INSIST(len <= sign_siglen); 2900 vp->siglen = htonl(len); 2901 } 2902 EVP_MD_CTX_free(ctx); 2903 return (XEVNT_OK); 2904 } 2905 2906 2907 /* 2908 * crypto_bob3 - construct Bob's response to Alice's challenge 2909 * 2910 * Returns 2911 * XEVNT_OK success 2912 * XEVNT_ERR protocol error 2913 */ 2914 static int 2915 crypto_bob3( 2916 struct exten *ep, /* extension pointer */ 2917 struct value *vp /* value pointer */ 2918 ) 2919 { 2920 DSA *dsa; /* MV parameters */ 2921 DSA *sdsa; /* DSA signature context fake */ 2922 BN_CTX *bctx; /* BIGNUM context */ 2923 EVP_MD_CTX *ctx; /* signature context */ 2924 tstamp_t tstamp; /* NTP timestamp */ 2925 BIGNUM *r, *k, *u; 2926 u_char *ptr; 2927 u_int len; 2928 const BIGNUM *p, *q, *g; 2929 const BIGNUM *pub_key, *priv_key; 2930 BIGNUM *sp, *sq, *sg; 2931 2932 /* 2933 * If the MV parameters are not valid, something awful 2934 * happened or we are being tormented. 2935 */ 2936 if (mvkey_info == NULL) { 2937 msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable"); 2938 return (XEVNT_ID); 2939 } 2940 dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey); 2941 DSA_get0_pqg(dsa, &p, &q, &g); 2942 DSA_get0_key(dsa, &pub_key, &priv_key); 2943 2944 /* 2945 * Extract r from the challenge. 2946 */ 2947 len = exten_payload_size(ep); 2948 if (len == 0 || len > MAX_VALLEN) 2949 return (XEVNT_LEN); 2950 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2951 msyslog(LOG_ERR, "crypto_bob3: %s", 2952 ERR_error_string(ERR_get_error(), NULL)); 2953 return (XEVNT_ERR); 2954 } 2955 2956 /* 2957 * Bob rolls random k (0 < k < q), making sure it is not a 2958 * factor of q. He then computes y = r A^k and sends (y, gbar^k, 2959 * and ghat^k) to Alice. 2960 */ 2961 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); 2962 sdsa = DSA_new(); 2963 sp = BN_new(); sq = BN_new(); sg = BN_new(); 2964 while (1) { 2965 BN_rand(k, BN_num_bits(q), 0, 0); 2966 BN_mod(k, k, q, bctx); 2967 BN_gcd(u, k, q, bctx); 2968 if (BN_is_one(u)) 2969 break; 2970 } 2971 BN_mod_exp(u, g, k, p, bctx); /* A^k r */ 2972 BN_mod_mul(sp, u, r, p, bctx); 2973 BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */ 2974 BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */ 2975 DSA_set0_key(sdsa, BN_dup(pub_key), NULL); 2976 DSA_set0_pqg(sdsa, sp, sq, sg); 2977 BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u); 2978 #ifdef DEBUG 2979 if (debug > 1) 2980 DSA_print_fp(stdout, sdsa, 0); 2981 #endif 2982 2983 /* 2984 * Encode the values in ASN.1 and sign. The filestamp is from 2985 * the local file. 2986 */ 2987 memset(vp, 0, sizeof(struct value)); 2988 tstamp = crypto_time(); 2989 vp->tstamp = htonl(tstamp); 2990 vp->fstamp = htonl(mvkey_info->fstamp); 2991 len = i2d_DSAparams(sdsa, NULL); 2992 if (len == 0) { 2993 msyslog(LOG_ERR, "crypto_bob3: %s", 2994 ERR_error_string(ERR_get_error(), NULL)); 2995 DSA_free(sdsa); 2996 return (XEVNT_ERR); 2997 } 2998 vp->vallen = htonl(len); 2999 ptr = emalloc(len); 3000 vp->ptr = ptr; 3001 i2d_DSAparams(sdsa, &ptr); 3002 DSA_free(sdsa); 3003 if (tstamp == 0) 3004 return (XEVNT_OK); 3005 3006 vp->sig = emalloc(sign_siglen); 3007 ctx = EVP_MD_CTX_new(); 3008 EVP_SignInit(ctx, sign_digest); 3009 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 3010 EVP_SignUpdate(ctx, vp->ptr, len); 3011 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 3012 INSIST(len <= sign_siglen); 3013 vp->siglen = htonl(len); 3014 } 3015 EVP_MD_CTX_free(ctx); 3016 return (XEVNT_OK); 3017 } 3018 3019 3020 /* 3021 * crypto_mv - verify Bob's response to Alice's challenge 3022 * 3023 * Returns 3024 * XEVNT_OK success 3025 * XEVNT_ERR protocol error 3026 * XEVNT_FSP bad filestamp 3027 * XEVNT_ID bad or missing group key 3028 * XEVNT_PUB bad or missing public key 3029 */ 3030 int 3031 crypto_mv( 3032 struct exten *ep, /* extension pointer */ 3033 struct peer *peer /* peer structure pointer */ 3034 ) 3035 { 3036 DSA *dsa; /* MV parameters */ 3037 DSA *sdsa; /* DSA parameters */ 3038 BN_CTX *bctx; /* BIGNUM context */ 3039 BIGNUM *k, *u, *v; 3040 u_int len; 3041 const u_char *ptr; 3042 int temp; 3043 const BIGNUM *p; 3044 const BIGNUM *pub_key, *priv_key; 3045 const BIGNUM *sp, *sq, *sg; 3046 3047 /* 3048 * If the MV parameters are not valid or no challenge was sent, 3049 * something awful happened or we are being tormented. 3050 */ 3051 if (peer->ident_pkey == NULL) { 3052 msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable"); 3053 return (XEVNT_ID); 3054 } 3055 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 3056 msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u", 3057 ntohl(ep->fstamp)); 3058 return (XEVNT_FSP); 3059 } 3060 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 3061 msyslog(LOG_NOTICE, "crypto_mv: defective key"); 3062 return (XEVNT_PUB); 3063 } 3064 DSA_get0_pqg(dsa, &p, NULL, NULL); 3065 DSA_get0_key(dsa, &pub_key, &priv_key); 3066 if (peer->iffval == NULL) { 3067 msyslog(LOG_NOTICE, "crypto_mv: missing challenge"); 3068 return (XEVNT_ID); 3069 } 3070 3071 /* 3072 * Extract the y, gbar and ghat values from the response. 3073 */ 3074 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new(); 3075 len = ntohl(ep->vallen); 3076 ptr = (u_char *)ep->pkt; 3077 if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) { 3078 msyslog(LOG_ERR, "crypto_mv: %s", 3079 ERR_error_string(ERR_get_error(), NULL)); 3080 return (XEVNT_ERR); 3081 } 3082 DSA_get0_pqg(sdsa, &sp, &sq, &sg); 3083 3084 /* 3085 * Compute (gbar^xhat ghat^xbar) mod p. 3086 */ 3087 BN_mod_exp(u, sq, pub_key, p, bctx); 3088 BN_mod_exp(v, sg, priv_key, p, bctx); 3089 BN_mod_mul(u, u, v, p, bctx); 3090 BN_mod_mul(u, u, sp, p, bctx); 3091 3092 /* 3093 * The result should match r. 3094 */ 3095 temp = BN_cmp(u, peer->iffval); 3096 BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v); 3097 BN_free(peer->iffval); 3098 peer->iffval = NULL; 3099 DSA_free(sdsa); 3100 if (temp == 0) 3101 return (XEVNT_OK); 3102 3103 msyslog(LOG_NOTICE, "crypto_mv: identity not verified"); 3104 return (XEVNT_ID); 3105 } 3106 3107 3108 /* 3109 *********************************************************************** 3110 * * 3111 * The following routines are used to manipulate certificates * 3112 * * 3113 *********************************************************************** 3114 */ 3115 /* 3116 * cert_sign - sign x509 certificate equest and update value structure. 3117 * 3118 * The certificate request includes a copy of the host certificate, 3119 * which includes the version number, subject name and public key of the 3120 * host. The resulting certificate includes these values plus the 3121 * serial number, issuer name and valid interval of the server. The 3122 * valid interval extends from the current time to the same time one 3123 * year hence. This may extend the life of the signed certificate beyond 3124 * that of the signer certificate. 3125 * 3126 * It is convenient to use the NTP seconds of the current time as the 3127 * serial number. In the value structure the timestamp is the current 3128 * time and the filestamp is taken from the extension field. Note this 3129 * routine is called only when the client clock is synchronized to a 3130 * proventic source, so timestamp comparisons are valid. 3131 * 3132 * The host certificate is valid from the time it was generated for a 3133 * period of one year. A signed certificate is valid from the time of 3134 * signature for a period of one year, but only the host certificate (or 3135 * sign certificate if used) is actually used to encrypt and decrypt 3136 * signatures. The signature trail is built from the client via the 3137 * intermediate servers to the trusted server. Each signature on the 3138 * trail must be valid at the time of signature, but it could happen 3139 * that a signer certificate expire before the signed certificate, which 3140 * remains valid until its expiration. 3141 * 3142 * Returns 3143 * XEVNT_OK success 3144 * XEVNT_CRT bad or missing certificate 3145 * XEVNT_PER host certificate expired 3146 * XEVNT_PUB bad or missing public key 3147 * XEVNT_VFY certificate not verified 3148 */ 3149 static int 3150 cert_sign( 3151 struct exten *ep, /* extension field pointer */ 3152 struct value *vp /* value pointer */ 3153 ) 3154 { 3155 X509 *req; /* X509 certificate request */ 3156 X509 *cert; /* X509 certificate */ 3157 X509_EXTENSION *ext; /* certificate extension */ 3158 ASN1_INTEGER *serial; /* serial number */ 3159 X509_NAME *subj; /* distinguished (common) name */ 3160 EVP_PKEY *pkey; /* public key */ 3161 EVP_MD_CTX *ctx; /* message digest context */ 3162 tstamp_t tstamp; /* NTP timestamp */ 3163 struct calendar tscal; 3164 u_int len; 3165 const u_char *cptr; 3166 u_char *ptr; 3167 int i, temp; 3168 3169 /* 3170 * Decode ASN.1 objects and construct certificate structure. 3171 * Make sure the system clock is synchronized to a proventic 3172 * source. 3173 */ 3174 tstamp = crypto_time(); 3175 if (tstamp == 0) 3176 return (XEVNT_TSP); 3177 3178 len = exten_payload_size(ep); 3179 if (len == 0 || len > MAX_VALLEN) 3180 return (XEVNT_LEN); 3181 cptr = (void *)ep->pkt; 3182 if ((req = d2i_X509(NULL, &cptr, len)) == NULL) { 3183 msyslog(LOG_ERR, "cert_sign: %s", 3184 ERR_error_string(ERR_get_error(), NULL)); 3185 return (XEVNT_CRT); 3186 } 3187 /* 3188 * Extract public key and check for errors. 3189 */ 3190 if ((pkey = X509_get_pubkey(req)) == NULL) { 3191 msyslog(LOG_ERR, "cert_sign: %s", 3192 ERR_error_string(ERR_get_error(), NULL)); 3193 X509_free(req); 3194 return (XEVNT_PUB); 3195 } 3196 3197 /* 3198 * Generate X509 certificate signed by this server. If this is a 3199 * trusted host, the issuer name is the group name; otherwise, 3200 * it is the host name. Also copy any extensions that might be 3201 * present. 3202 */ 3203 cert = X509_new(); 3204 X509_set_version(cert, X509_get_version(req)); 3205 serial = ASN1_INTEGER_new(); 3206 ASN1_INTEGER_set(serial, tstamp); 3207 X509_set_serialNumber(cert, serial); 3208 X509_gmtime_adj(X509_getm_notBefore(cert), 0L); 3209 X509_gmtime_adj(X509_getm_notAfter(cert), YEAR); 3210 subj = X509_get_issuer_name(cert); 3211 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 3212 hostval.ptr, strlen((const char *)hostval.ptr), -1, 0); 3213 subj = X509_get_subject_name(req); 3214 X509_set_subject_name(cert, subj); 3215 X509_set_pubkey(cert, pkey); 3216 temp = X509_get_ext_count(req); 3217 for (i = 0; i < temp; i++) { 3218 ext = X509_get_ext(req, i); 3219 INSIST(X509_add_ext(cert, ext, -1)); 3220 } 3221 X509_free(req); 3222 3223 /* 3224 * Sign and verify the client certificate, but only if the host 3225 * certificate has not expired. 3226 */ 3227 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 3228 if ((calcomp(&tscal, &(cert_host->first)) < 0) 3229 || (calcomp(&tscal, &(cert_host->last)) > 0)) { 3230 X509_free(cert); 3231 return (XEVNT_PER); 3232 } 3233 X509_sign(cert, sign_pkey, sign_digest); 3234 if (X509_verify(cert, sign_pkey) <= 0) { 3235 msyslog(LOG_ERR, "cert_sign: %s", 3236 ERR_error_string(ERR_get_error(), NULL)); 3237 X509_free(cert); 3238 return (XEVNT_VFY); 3239 } 3240 len = i2d_X509(cert, NULL); 3241 3242 /* 3243 * Build and sign the value structure. We have to sign it here, 3244 * since the response has to be returned right away. This is a 3245 * clogging hazard. 3246 */ 3247 memset(vp, 0, sizeof(struct value)); 3248 vp->tstamp = htonl(tstamp); 3249 vp->fstamp = ep->fstamp; 3250 vp->vallen = htonl(len); 3251 vp->ptr = emalloc(len); 3252 ptr = vp->ptr; 3253 i2d_X509(cert, (unsigned char **)(intptr_t)&ptr); 3254 vp->siglen = 0; 3255 if (tstamp != 0) { 3256 vp->sig = emalloc(sign_siglen); 3257 ctx = EVP_MD_CTX_new(); 3258 EVP_SignInit(ctx, sign_digest); 3259 EVP_SignUpdate(ctx, (u_char *)vp, 12); 3260 EVP_SignUpdate(ctx, vp->ptr, len); 3261 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 3262 INSIST(len <= sign_siglen); 3263 vp->siglen = htonl(len); 3264 } 3265 EVP_MD_CTX_free(ctx); 3266 } 3267 #ifdef DEBUG 3268 if (debug > 1) 3269 X509_print_fp(stdout, cert); 3270 #endif 3271 X509_free(cert); 3272 return (XEVNT_OK); 3273 } 3274 3275 3276 /* 3277 * cert_install - install certificate in certificate cache 3278 * 3279 * This routine encodes an extension field into a certificate info/value 3280 * structure. It searches the certificate list for duplicates and 3281 * expunges whichever is older. Finally, it inserts this certificate 3282 * first on the list. 3283 * 3284 * Returns certificate info pointer if valid, NULL if not. 3285 */ 3286 struct cert_info * 3287 cert_install( 3288 struct exten *ep, /* cert info/value */ 3289 struct peer *peer /* peer structure */ 3290 ) 3291 { 3292 struct cert_info *cp, *xp, **zp; 3293 3294 /* 3295 * Parse and validate the signed certificate. If valid, 3296 * construct the info/value structure; otherwise, scamper home 3297 * empty handed. 3298 */ 3299 if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen), 3300 (tstamp_t)ntohl(ep->fstamp))) == NULL) 3301 return (NULL); 3302 3303 /* 3304 * Scan certificate list looking for another certificate with 3305 * the same subject and issuer. If another is found with the 3306 * same or older filestamp, unlink it and return the goodies to 3307 * the heap. If another is found with a later filestamp, discard 3308 * the new one and leave the building with the old one. 3309 * 3310 * Make a note to study this issue again. An earlier certificate 3311 * with a long lifetime might be overtaken by a later 3312 * certificate with a short lifetime, thus invalidating the 3313 * earlier signature. However, we gotta find a way to leak old 3314 * stuff from the cache, so we do it anyway. 3315 */ 3316 zp = &cinfo; 3317 for (xp = cinfo; xp != NULL; xp = xp->link) { 3318 if (strcmp(cp->subject, xp->subject) == 0 && 3319 strcmp(cp->issuer, xp->issuer) == 0) { 3320 if (ntohl(cp->cert.fstamp) <= 3321 ntohl(xp->cert.fstamp)) { 3322 cert_free(cp); 3323 cp = xp; 3324 } else { 3325 *zp = xp->link; 3326 cert_free(xp); 3327 xp = NULL; 3328 } 3329 break; 3330 } 3331 zp = &xp->link; 3332 } 3333 if (xp == NULL) { 3334 cp->link = cinfo; 3335 cinfo = cp; 3336 } 3337 cp->flags |= CERT_VALID; 3338 crypto_update(); 3339 return (cp); 3340 } 3341 3342 3343 /* 3344 * cert_hike - verify the signature using the issuer public key 3345 * 3346 * Returns 3347 * XEVNT_OK success 3348 * XEVNT_CRT bad or missing certificate 3349 * XEVNT_PER host certificate expired 3350 * XEVNT_VFY certificate not verified 3351 */ 3352 int 3353 cert_hike( 3354 struct peer *peer, /* peer structure pointer */ 3355 struct cert_info *yp /* issuer certificate */ 3356 ) 3357 { 3358 struct cert_info *xp; /* subject certificate */ 3359 X509 *cert; /* X509 certificate */ 3360 const u_char *ptr; 3361 3362 /* 3363 * Save the issuer on the new certificate, but remember the old 3364 * one. 3365 */ 3366 if (peer->issuer != NULL) 3367 free(peer->issuer); 3368 peer->issuer = estrdup(yp->issuer); 3369 xp = peer->xinfo; 3370 peer->xinfo = yp; 3371 3372 /* 3373 * If subject Y matches issuer Y, then the certificate trail is 3374 * complete. If Y is not trusted, the server certificate has yet 3375 * been signed, so keep trying. Otherwise, save the group key 3376 * and light the valid bit. If the host certificate is trusted, 3377 * do not execute a sign exchange. If no identity scheme is in 3378 * use, light the identity and proventic bits. 3379 */ 3380 if (strcmp(yp->subject, yp->issuer) == 0) { 3381 if (!(yp->flags & CERT_TRUST)) 3382 return (XEVNT_OK); 3383 3384 /* 3385 * If the server has an an identity scheme, fetch the 3386 * identity credentials. If not, the identity is 3387 * verified only by the trusted certificate. The next 3388 * signature will set the server proventic. 3389 */ 3390 peer->crypto |= CRYPTO_FLAG_CERT; 3391 peer->grpkey = yp->grpkey; 3392 if (peer->ident == NULL || !(peer->crypto & 3393 CRYPTO_FLAG_MASK)) 3394 peer->crypto |= CRYPTO_FLAG_VRFY; 3395 } 3396 3397 /* 3398 * If X exists, verify signature X using public key Y. 3399 */ 3400 if (xp == NULL) 3401 return (XEVNT_OK); 3402 3403 ptr = (u_char *)xp->cert.ptr; 3404 cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen)); 3405 if (cert == NULL) { 3406 xp->flags |= CERT_ERROR; 3407 return (XEVNT_CRT); 3408 } 3409 if (X509_verify(cert, yp->pkey) <= 0) { 3410 X509_free(cert); 3411 xp->flags |= CERT_ERROR; 3412 return (XEVNT_VFY); 3413 } 3414 X509_free(cert); 3415 3416 /* 3417 * Signature X is valid only if it begins during the 3418 * lifetime of Y. 3419 */ 3420 if ((calcomp(&(xp->first), &(yp->first)) < 0) 3421 || (calcomp(&(xp->first), &(yp->last)) > 0)) { 3422 xp->flags |= CERT_ERROR; 3423 return (XEVNT_PER); 3424 } 3425 xp->flags |= CERT_SIGN; 3426 return (XEVNT_OK); 3427 } 3428 3429 3430 /* 3431 * cert_parse - parse x509 certificate and create info/value structures. 3432 * 3433 * The server certificate includes the version number, issuer name, 3434 * subject name, public key and valid date interval. If the issuer name 3435 * is the same as the subject name, the certificate is self signed and 3436 * valid only if the server is configured as trustable. If the names are 3437 * different, another issuer has signed the server certificate and 3438 * vouched for it. In this case the server certificate is valid if 3439 * verified by the issuer public key. 3440 * 3441 * Returns certificate info/value pointer if valid, NULL if not. 3442 */ 3443 struct cert_info * /* certificate information structure */ 3444 cert_parse( 3445 const u_char *asn1cert, /* X509 certificate */ 3446 long len, /* certificate length */ 3447 tstamp_t fstamp /* filestamp */ 3448 ) 3449 { 3450 X509 *cert; /* X509 certificate */ 3451 struct cert_info *ret; /* certificate info/value */ 3452 BIO *bp; 3453 char pathbuf[MAXFILENAME]; 3454 const u_char *ptr; 3455 char *pch; 3456 int cnt, i; 3457 struct calendar fscal; 3458 3459 /* 3460 * Decode ASN.1 objects and construct certificate structure. 3461 */ 3462 ptr = asn1cert; 3463 if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) { 3464 msyslog(LOG_ERR, "cert_parse: %s", 3465 ERR_error_string(ERR_get_error(), NULL)); 3466 return (NULL); 3467 } 3468 #ifdef DEBUG 3469 if (debug > 1) 3470 X509_print_fp(stdout, cert); 3471 #endif 3472 3473 /* 3474 * Extract version, subject name and public key. 3475 */ 3476 ret = emalloc_zero(sizeof(*ret)); 3477 if ((ret->pkey = X509_get_pubkey(cert)) == NULL) { 3478 msyslog(LOG_ERR, "cert_parse: %s", 3479 ERR_error_string(ERR_get_error(), NULL)); 3480 cert_free(ret); 3481 X509_free(cert); 3482 return (NULL); 3483 } 3484 ret->version = X509_get_version(cert); 3485 X509_NAME_oneline(X509_get_subject_name(cert), pathbuf, 3486 sizeof(pathbuf)); 3487 pch = strstr(pathbuf, "CN="); 3488 if (NULL == pch) { 3489 msyslog(LOG_NOTICE, "cert_parse: invalid subject %s", 3490 pathbuf); 3491 cert_free(ret); 3492 X509_free(cert); 3493 return (NULL); 3494 } 3495 ret->subject = estrdup(pch + 3); 3496 3497 /* 3498 * Extract remaining objects. Note that the NTP serial number is 3499 * the NTP seconds at the time of signing, but this might not be 3500 * the case for other authority. We don't bother to check the 3501 * objects at this time, since the real crunch can happen only 3502 * when the time is valid but not yet certificated. 3503 */ 3504 ret->nid = X509_get_signature_nid(cert); 3505 ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid); 3506 ret->serial = 3507 (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert)); 3508 X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf, 3509 sizeof(pathbuf)); 3510 if ((pch = strstr(pathbuf, "CN=")) == NULL) { 3511 msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s", 3512 pathbuf); 3513 cert_free(ret); 3514 X509_free(cert); 3515 return (NULL); 3516 } 3517 ret->issuer = estrdup(pch + 3); 3518 asn_to_calendar(X509_get0_notBefore(cert), &(ret->first)); 3519 asn_to_calendar(X509_get0_notAfter(cert), &(ret->last)); 3520 3521 /* 3522 * Extract extension fields. These are ad hoc ripoffs of 3523 * currently assigned functions and will certainly be changed 3524 * before prime time. 3525 */ 3526 cnt = X509_get_ext_count(cert); 3527 for (i = 0; i < cnt; i++) { 3528 X509_EXTENSION *ext; 3529 ASN1_OBJECT *obj; 3530 int nid; 3531 ASN1_OCTET_STRING *data; 3532 3533 ext = X509_get_ext(cert, i); 3534 obj = X509_EXTENSION_get_object(ext); 3535 nid = OBJ_obj2nid(obj); 3536 3537 switch (nid) { 3538 3539 /* 3540 * If a key_usage field is present, we decode whether 3541 * this is a trusted or private certificate. This is 3542 * dorky; all we want is to compare NIDs, but OpenSSL 3543 * insists on BIO text strings. 3544 */ 3545 case NID_ext_key_usage: 3546 bp = BIO_new(BIO_s_mem()); 3547 X509V3_EXT_print(bp, ext, 0, 0); 3548 BIO_gets(bp, pathbuf, sizeof(pathbuf)); 3549 BIO_free(bp); 3550 if (strcmp(pathbuf, "Trust Root") == 0) 3551 ret->flags |= CERT_TRUST; 3552 else if (strcmp(pathbuf, "Private") == 0) 3553 ret->flags |= CERT_PRIV; 3554 DPRINTF(1, ("cert_parse: %s: %s\n", 3555 OBJ_nid2ln(nid), pathbuf)); 3556 break; 3557 3558 /* 3559 * If a NID_subject_key_identifier field is present, it 3560 * contains the GQ public key. 3561 */ 3562 case NID_subject_key_identifier: 3563 data = X509_EXTENSION_get_data(ext); 3564 ret->grpkey = BN_bin2bn(&data->data[2], 3565 data->length - 2, NULL); 3566 /* fall through */ 3567 default: 3568 DPRINTF(1, ("cert_parse: %s\n", 3569 OBJ_nid2ln(nid))); 3570 break; 3571 } 3572 } 3573 if (strcmp(ret->subject, ret->issuer) == 0) { 3574 3575 /* 3576 * If certificate is self signed, verify signature. 3577 */ 3578 if (X509_verify(cert, ret->pkey) <= 0) { 3579 msyslog(LOG_NOTICE, 3580 "cert_parse: signature not verified %s", 3581 ret->subject); 3582 cert_free(ret); 3583 X509_free(cert); 3584 return (NULL); 3585 } 3586 } else { 3587 3588 /* 3589 * Check for a certificate loop. 3590 */ 3591 if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) { 3592 msyslog(LOG_NOTICE, 3593 "cert_parse: certificate trail loop %s", 3594 ret->subject); 3595 cert_free(ret); 3596 X509_free(cert); 3597 return (NULL); 3598 } 3599 } 3600 3601 /* 3602 * Verify certificate valid times. Note that certificates cannot 3603 * be retroactive. 3604 */ 3605 (void)ntpcal_ntp_to_date(&fscal, fstamp, NULL); 3606 if ((calcomp(&(ret->first), &(ret->last)) > 0) 3607 || (calcomp(&(ret->first), &fscal) < 0)) { 3608 msyslog(LOG_NOTICE, 3609 "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u", 3610 ret->subject, 3611 ret->first.year, ret->first.month, ret->first.monthday, 3612 ret->first.hour, ret->first.minute, ret->first.second, 3613 ret->last.year, ret->last.month, ret->last.monthday, 3614 ret->last.hour, ret->last.minute, ret->last.second, 3615 fscal.year, fscal.month, fscal.monthday, 3616 fscal.hour, fscal.minute, fscal.second); 3617 cert_free(ret); 3618 X509_free(cert); 3619 return (NULL); 3620 } 3621 3622 /* 3623 * Build the value structure to sign and send later. 3624 */ 3625 ret->cert.fstamp = htonl(fstamp); 3626 ret->cert.vallen = htonl(len); 3627 ret->cert.ptr = emalloc(len); 3628 memcpy(ret->cert.ptr, asn1cert, len); 3629 X509_free(cert); 3630 return (ret); 3631 } 3632 3633 3634 /* 3635 * cert_free - free certificate information structure 3636 */ 3637 void 3638 cert_free( 3639 struct cert_info *cinf /* certificate info/value structure */ 3640 ) 3641 { 3642 if (cinf->pkey != NULL) 3643 EVP_PKEY_free(cinf->pkey); 3644 if (cinf->subject != NULL) 3645 free(cinf->subject); 3646 if (cinf->issuer != NULL) 3647 free(cinf->issuer); 3648 if (cinf->grpkey != NULL) 3649 BN_free(cinf->grpkey); 3650 value_free(&cinf->cert); 3651 free(cinf); 3652 } 3653 3654 3655 /* 3656 * crypto_key - load cryptographic parameters and keys 3657 * 3658 * This routine searches the key cache for matching name in the form 3659 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv, 3660 * and <name> is the host/group name. If not found, it tries to load a 3661 * PEM-encoded file of the same name and extracts the filestamp from 3662 * the first line of the file name. It returns the key pointer if valid, 3663 * NULL if not. 3664 */ 3665 static struct pkey_info * 3666 crypto_key( 3667 char *cp, /* file name */ 3668 char *passwd1, /* password */ 3669 sockaddr_u *addr /* IP address */ 3670 ) 3671 { 3672 FILE *str; /* file handle */ 3673 struct pkey_info *pkp; /* generic key */ 3674 EVP_PKEY *pkey = NULL; /* public/private key */ 3675 tstamp_t fstamp; 3676 char filename[MAXFILENAME]; /* name of key file */ 3677 char linkname[MAXFILENAME]; /* filestamp buffer) */ 3678 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3679 char *ptr; 3680 3681 /* 3682 * Search the key cache for matching key and name. 3683 */ 3684 for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) { 3685 if (strcmp(cp, pkp->name) == 0) 3686 return (pkp); 3687 } 3688 3689 /* 3690 * Open the key file. If the first character of the file name is 3691 * not '/', prepend the keys directory string. If something goes 3692 * wrong, abandon ship. 3693 */ 3694 if (*cp == '/') 3695 strlcpy(filename, cp, sizeof(filename)); 3696 else 3697 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3698 cp); 3699 str = fopen(filename, "r"); 3700 if (str == NULL) 3701 return (NULL); 3702 3703 /* 3704 * Read the filestamp, which is contained in the first line. 3705 */ 3706 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3707 msyslog(LOG_ERR, "crypto_key: empty file %s", 3708 filename); 3709 fclose(str); 3710 return (NULL); 3711 } 3712 if ((ptr = strrchr(ptr, '.')) == NULL) { 3713 msyslog(LOG_ERR, "crypto_key: no filestamp %s", 3714 filename); 3715 fclose(str); 3716 return (NULL); 3717 } 3718 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3719 msyslog(LOG_ERR, "crypto_key: invalid filestamp %s", 3720 filename); 3721 fclose(str); 3722 return (NULL); 3723 } 3724 3725 /* 3726 * Read and decrypt PEM-encoded private key. If it fails to 3727 * decrypt, game over. 3728 */ 3729 pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1); 3730 fclose(str); 3731 if (pkey == NULL) { 3732 msyslog(LOG_ERR, "crypto_key: %s", 3733 ERR_error_string(ERR_get_error(), NULL)); 3734 exit (-1); 3735 } 3736 3737 /* 3738 * Make a new entry in the key cache. 3739 */ 3740 pkp = emalloc(sizeof(struct pkey_info)); 3741 pkp->link = pkinfo; 3742 pkinfo = pkp; 3743 pkp->pkey = pkey; 3744 pkp->name = estrdup(cp); 3745 pkp->fstamp = fstamp; 3746 3747 /* 3748 * Leave tracks in the cryptostats. 3749 */ 3750 if ((ptr = strrchr(linkname, '\n')) != NULL) 3751 *ptr = '\0'; 3752 snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2], 3753 EVP_PKEY_size(pkey) * 8); 3754 record_crypto_stats(addr, statstr); 3755 3756 DPRINTF(1, ("crypto_key: %s\n", statstr)); 3757 #ifdef DEBUG 3758 if (debug > 1) { 3759 if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA) 3760 DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0); 3761 else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA) 3762 RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0); 3763 } 3764 #endif 3765 return (pkp); 3766 } 3767 3768 3769 /* 3770 *********************************************************************** 3771 * * 3772 * The following routines are used only at initialization time * 3773 * * 3774 *********************************************************************** 3775 */ 3776 /* 3777 * crypto_cert - load certificate from file 3778 * 3779 * This routine loads an X.509 RSA or DSA certificate from a file and 3780 * constructs a info/cert value structure for this machine. The 3781 * structure includes a filestamp extracted from the file name. Later 3782 * the certificate can be sent to another machine on request. 3783 * 3784 * Returns certificate info/value pointer if valid, NULL if not. 3785 */ 3786 static struct cert_info * /* certificate information */ 3787 crypto_cert( 3788 char *cp /* file name */ 3789 ) 3790 { 3791 struct cert_info *ret; /* certificate information */ 3792 FILE *str; /* file handle */ 3793 char filename[MAXFILENAME]; /* name of certificate file */ 3794 char linkname[MAXFILENAME]; /* filestamp buffer */ 3795 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3796 tstamp_t fstamp; /* filestamp */ 3797 long len; 3798 char *ptr; 3799 char *name, *header; 3800 u_char *data; 3801 3802 /* 3803 * Open the certificate file. If the first character of the file 3804 * name is not '/', prepend the keys directory string. If 3805 * something goes wrong, abandon ship. 3806 */ 3807 if (*cp == '/') 3808 strlcpy(filename, cp, sizeof(filename)); 3809 else 3810 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3811 cp); 3812 str = fopen(filename, "r"); 3813 if (str == NULL) 3814 return (NULL); 3815 3816 /* 3817 * Read the filestamp, which is contained in the first line. 3818 */ 3819 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3820 msyslog(LOG_ERR, "crypto_cert: empty file %s", 3821 filename); 3822 fclose(str); 3823 return (NULL); 3824 } 3825 if ((ptr = strrchr(ptr, '.')) == NULL) { 3826 msyslog(LOG_ERR, "crypto_cert: no filestamp %s", 3827 filename); 3828 fclose(str); 3829 return (NULL); 3830 } 3831 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3832 msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s", 3833 filename); 3834 fclose(str); 3835 return (NULL); 3836 } 3837 3838 /* 3839 * Read PEM-encoded certificate and install. 3840 */ 3841 if (!PEM_read(str, &name, &header, &data, &len)) { 3842 msyslog(LOG_ERR, "crypto_cert: %s", 3843 ERR_error_string(ERR_get_error(), NULL)); 3844 fclose(str); 3845 return (NULL); 3846 } 3847 fclose(str); 3848 free(header); 3849 if (strcmp(name, "CERTIFICATE") != 0) { 3850 msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s", 3851 name); 3852 free(name); 3853 free(data); 3854 return (NULL); 3855 } 3856 free(name); 3857 3858 /* 3859 * Parse certificate and generate info/value structure. The 3860 * pointer and copy nonsense is due something broken in Solaris. 3861 */ 3862 ret = cert_parse(data, len, fstamp); 3863 free(data); 3864 if (ret == NULL) 3865 return (NULL); 3866 3867 if ((ptr = strrchr(linkname, '\n')) != NULL) 3868 *ptr = '\0'; 3869 snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu", 3870 &linkname[2], ret->flags, len); 3871 record_crypto_stats(NULL, statstr); 3872 DPRINTF(1, ("crypto_cert: %s\n", statstr)); 3873 return (ret); 3874 } 3875 3876 3877 /* 3878 * crypto_setup - load keys, certificate and identity parameters 3879 * 3880 * This routine loads the public/private host key and certificate. If 3881 * available, it loads the public/private sign key, which defaults to 3882 * the host key. The host key must be RSA, but the sign key can be 3883 * either RSA or DSA. If a trusted certificate, it loads the identity 3884 * parameters. In either case, the public key on the certificate must 3885 * agree with the sign key. 3886 * 3887 * Required but missing files and inconsistent data and errors are 3888 * fatal. Allowing configuration to continue would be hazardous and 3889 * require really messy error checks. 3890 */ 3891 void 3892 crypto_setup(void) 3893 { 3894 struct pkey_info *pinfo; /* private/public key */ 3895 char filename[MAXFILENAME]; /* file name buffer */ 3896 char hostname[MAXFILENAME]; /* host name buffer */ 3897 char *randfile; 3898 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3899 l_fp seed; /* crypto PRNG seed as NTP timestamp */ 3900 u_int len; 3901 int bytes; 3902 u_char *ptr; 3903 3904 /* 3905 * Check for correct OpenSSL version and avoid initialization in 3906 * the case of multiple crypto commands. 3907 */ 3908 if (crypto_flags & CRYPTO_FLAG_ENAB) { 3909 msyslog(LOG_NOTICE, 3910 "crypto_setup: spurious crypto command"); 3911 return; 3912 } 3913 ssl_check_version(); 3914 3915 /* 3916 * Load required random seed file and seed the random number 3917 * generator. Be default, it is found as .rnd in the user home 3918 * directory. The root home directory may be / or /root, 3919 * depending on the system. Wiggle the contents a bit and write 3920 * it back so the sequence does not repeat when we next restart. 3921 */ 3922 if (!RAND_status()) { 3923 if (rand_file == NULL) { 3924 RAND_file_name(filename, sizeof(filename)); 3925 randfile = filename; 3926 } else if (*rand_file != '/') { 3927 snprintf(filename, sizeof(filename), "%s/%s", 3928 keysdir, rand_file); 3929 randfile = filename; 3930 } else 3931 randfile = rand_file; 3932 3933 if ((bytes = RAND_load_file(randfile, -1)) == 0) { 3934 msyslog(LOG_ERR, 3935 "crypto_setup: random seed file %s missing", 3936 randfile); 3937 exit (-1); 3938 } 3939 get_systime(&seed); 3940 RAND_seed(&seed, sizeof(l_fp)); 3941 RAND_write_file(randfile); 3942 DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n", 3943 OpenSSL_version_num(), randfile, bytes)); 3944 3945 } 3946 3947 /* 3948 * Initialize structures. 3949 */ 3950 gethostname(hostname, sizeof(hostname)); 3951 if (host_filename != NULL) 3952 strlcpy(hostname, host_filename, sizeof(hostname)); 3953 if (passwd == NULL) 3954 passwd = estrdup(hostname); 3955 memset(&hostval, 0, sizeof(hostval)); 3956 memset(&pubkey, 0, sizeof(pubkey)); 3957 memset(&tai_leap, 0, sizeof(tai_leap)); 3958 3959 /* 3960 * Load required host key from file "ntpkey_host_<hostname>". If 3961 * no host key file is not found or has invalid password, life 3962 * as we know it ends. The host key also becomes the default 3963 * sign key. 3964 */ 3965 snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); 3966 pinfo = crypto_key(filename, passwd, NULL); 3967 if (pinfo == NULL) { 3968 msyslog(LOG_ERR, 3969 "crypto_setup: host key file %s not found or corrupt", 3970 filename); 3971 exit (-1); 3972 } 3973 if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) { 3974 msyslog(LOG_ERR, 3975 "crypto_setup: host key is not RSA key type"); 3976 exit (-1); 3977 } 3978 host_pkey = pinfo->pkey; 3979 sign_pkey = host_pkey; 3980 hostval.fstamp = htonl(pinfo->fstamp); 3981 3982 /* 3983 * Construct public key extension field for agreement scheme. 3984 */ 3985 len = i2d_PublicKey(host_pkey, NULL); 3986 ptr = emalloc(len); 3987 pubkey.ptr = ptr; 3988 i2d_PublicKey(host_pkey, &ptr); 3989 pubkey.fstamp = hostval.fstamp; 3990 pubkey.vallen = htonl(len); 3991 3992 /* 3993 * Load optional sign key from file "ntpkey_sign_<hostname>". If 3994 * available, it becomes the sign key. 3995 */ 3996 snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname); 3997 pinfo = crypto_key(filename, passwd, NULL); 3998 if (pinfo != NULL) 3999 sign_pkey = pinfo->pkey; 4000 4001 /* 4002 * Load required certificate from file "ntpkey_cert_<hostname>". 4003 */ 4004 snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); 4005 cinfo = crypto_cert(filename); 4006 if (cinfo == NULL) { 4007 msyslog(LOG_ERR, 4008 "crypto_setup: certificate file %s not found or corrupt", 4009 filename); 4010 exit (-1); 4011 } 4012 cert_host = cinfo; 4013 sign_digest = cinfo->digest; 4014 sign_siglen = EVP_PKEY_size(sign_pkey); 4015 if (cinfo->flags & CERT_PRIV) 4016 crypto_flags |= CRYPTO_FLAG_PRIV; 4017 4018 /* 4019 * The certificate must be self-signed. 4020 */ 4021 if (strcmp(cinfo->subject, cinfo->issuer) != 0) { 4022 msyslog(LOG_ERR, 4023 "crypto_setup: certificate %s is not self-signed", 4024 filename); 4025 exit (-1); 4026 } 4027 hostval.ptr = estrdup(cinfo->subject); 4028 hostval.vallen = htonl(strlen(cinfo->subject)); 4029 sys_hostname = hostval.ptr; 4030 ptr = (u_char *)strchr(sys_hostname, '@'); 4031 if (ptr != NULL) 4032 sys_groupname = estrdup((char *)++ptr); 4033 if (ident_filename != NULL) 4034 strlcpy(hostname, ident_filename, sizeof(hostname)); 4035 4036 /* 4037 * Load optional IFF parameters from file 4038 * "ntpkey_iffkey_<hostname>". 4039 */ 4040 snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", 4041 hostname); 4042 iffkey_info = crypto_key(filename, passwd, NULL); 4043 if (iffkey_info != NULL) 4044 crypto_flags |= CRYPTO_FLAG_IFF; 4045 4046 /* 4047 * Load optional GQ parameters from file 4048 * "ntpkey_gqkey_<hostname>". 4049 */ 4050 snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", 4051 hostname); 4052 gqkey_info = crypto_key(filename, passwd, NULL); 4053 if (gqkey_info != NULL) 4054 crypto_flags |= CRYPTO_FLAG_GQ; 4055 4056 /* 4057 * Load optional MV parameters from file 4058 * "ntpkey_mvkey_<hostname>". 4059 */ 4060 snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s", 4061 hostname); 4062 mvkey_info = crypto_key(filename, passwd, NULL); 4063 if (mvkey_info != NULL) 4064 crypto_flags |= CRYPTO_FLAG_MV; 4065 4066 /* 4067 * We met the enemy and he is us. Now strike up the dance. 4068 */ 4069 crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16); 4070 snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s", 4071 crypto_flags, hostname, OBJ_nid2ln(cinfo->nid)); 4072 record_crypto_stats(NULL, statstr); 4073 DPRINTF(1, ("crypto_setup: %s\n", statstr)); 4074 } 4075 4076 4077 /* 4078 * crypto_config - configure data from the crypto command. 4079 */ 4080 void 4081 crypto_config( 4082 int item, /* configuration item */ 4083 char *cp /* item name */ 4084 ) 4085 { 4086 int nid; 4087 4088 DPRINTF(1, ("crypto_config: item %d %s\n", item, cp)); 4089 4090 switch (item) { 4091 4092 /* 4093 * Set host name (host). 4094 */ 4095 case CRYPTO_CONF_PRIV: 4096 if (NULL != host_filename) 4097 free(host_filename); 4098 host_filename = estrdup(cp); 4099 break; 4100 4101 /* 4102 * Set group name (ident). 4103 */ 4104 case CRYPTO_CONF_IDENT: 4105 if (NULL != ident_filename) 4106 free(ident_filename); 4107 ident_filename = estrdup(cp); 4108 break; 4109 4110 /* 4111 * Set private key password (pw). 4112 */ 4113 case CRYPTO_CONF_PW: 4114 if (NULL != passwd) 4115 free(passwd); 4116 passwd = estrdup(cp); 4117 break; 4118 4119 /* 4120 * Set random seed file name (randfile). 4121 */ 4122 case CRYPTO_CONF_RAND: 4123 if (NULL != rand_file) 4124 free(rand_file); 4125 rand_file = estrdup(cp); 4126 break; 4127 4128 /* 4129 * Set message digest NID. 4130 */ 4131 case CRYPTO_CONF_NID: 4132 nid = OBJ_sn2nid(cp); 4133 if (nid == 0) 4134 msyslog(LOG_ERR, 4135 "crypto_config: invalid digest name %s", cp); 4136 else 4137 crypto_nid = nid; 4138 break; 4139 } 4140 } 4141 4142 /* 4143 * Get the payload size (internal value length) of an extension packet. 4144 * If the inner value size does not match the outer packet size (that 4145 * is, the value would end behind the frame given by the opcode/size 4146 * field) the function will effectively return UINT_MAX. If the frame is 4147 * too short to hold a variable-sized value, the return value is zero. 4148 */ 4149 static u_int 4150 exten_payload_size( 4151 const struct exten * ep) 4152 { 4153 typedef const u_char *BPTR; 4154 4155 size_t extn_size; 4156 size_t data_size; 4157 size_t head_size; 4158 4159 data_size = 0; 4160 if (NULL != ep) { 4161 head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep; 4162 extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff); 4163 if (extn_size >= head_size) { 4164 data_size = (uint32_t)ntohl(ep->vallen); 4165 if (data_size > extn_size - head_size) 4166 data_size = ~(size_t)0u; 4167 } 4168 } 4169 return (u_int)data_size; 4170 } 4171 # else /* !AUTOKEY follows */ 4172 int ntp_crypto_bs_pubkey; 4173 # endif /* !AUTOKEY */ 4174