1 /* $NetBSD: ntp_crypto.c,v 1.16 2020/05/25 20:47:25 christos Exp $ */ 2 3 /* 4 * ntp_crypto.c - NTP version 4 public key routines 5 */ 6 #ifdef HAVE_CONFIG_H 7 #include <config.h> 8 #endif 9 10 #ifdef AUTOKEY 11 #include <stdio.h> 12 #include <stdlib.h> /* strtoul */ 13 #include <sys/types.h> 14 #include <sys/param.h> 15 #include <unistd.h> 16 #include <fcntl.h> 17 18 #include "ntpd.h" 19 #include "ntp_stdlib.h" 20 #include "ntp_unixtime.h" 21 #include "ntp_string.h" 22 #include "ntp_random.h" 23 #include "ntp_assert.h" 24 #include "ntp_calendar.h" 25 #include "ntp_leapsec.h" 26 27 #include "openssl/asn1.h" 28 #include "openssl/bn.h" 29 #include "openssl/crypto.h" 30 #include "openssl/err.h" 31 #include "openssl/evp.h" 32 #include "openssl/opensslv.h" 33 #include "openssl/pem.h" 34 #include "openssl/rand.h" 35 #include "openssl/x509.h" 36 #include "openssl/x509v3.h" 37 #include "libssl_compat.h" 38 39 #ifdef KERNEL_PLL 40 #include "ntp_syscall.h" 41 #endif /* KERNEL_PLL */ 42 43 /* 44 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp 45 * No, it's not a plotter. If you don't understand that, you're too young. 46 */ 47 static int calcomp(struct calendar *pjd1, struct calendar *pjd2) 48 { 49 int32_t diff; /* large enough to hold the signed difference between two uint16_t values */ 50 51 diff = pjd1->year - pjd2->year; 52 if (diff < 0) return -1; else if (diff > 0) return 1; 53 /* same year; compare months */ 54 diff = pjd1->month - pjd2->month; 55 if (diff < 0) return -1; else if (diff > 0) return 1; 56 /* same year and month; compare monthday */ 57 diff = pjd1->monthday - pjd2->monthday; 58 if (diff < 0) return -1; else if (diff > 0) return 1; 59 /* same year and month and monthday; compare time */ 60 diff = pjd1->hour - pjd2->hour; 61 if (diff < 0) return -1; else if (diff > 0) return 1; 62 diff = pjd1->minute - pjd2->minute; 63 if (diff < 0) return -1; else if (diff > 0) return 1; 64 diff = pjd1->second - pjd2->second; 65 if (diff < 0) return -1; else if (diff > 0) return 1; 66 /* identical */ 67 return 0; 68 } 69 70 /* 71 * Extension field message format 72 * 73 * These are always signed and saved before sending in network byte 74 * order. They must be converted to and from host byte order for 75 * processing. 76 * 77 * +-------+-------+ 78 * | op | len | <- extension pointer 79 * +-------+-------+ 80 * | associd | 81 * +---------------+ 82 * | timestamp | <- value pointer 83 * +---------------+ 84 * | filestamp | 85 * +---------------+ 86 * | value len | 87 * +---------------+ 88 * | | 89 * = value = 90 * | | 91 * +---------------+ 92 * | signature len | 93 * +---------------+ 94 * | | 95 * = signature = 96 * | | 97 * +---------------+ 98 * 99 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses. 100 * Requests carry the association ID of the receiver; responses carry 101 * the association ID of the sender. Some messages include only the 102 * operation/length and association ID words and so have length 8 103 * octets. Ohers include the value structure and associated value and 104 * signature fields. These messages include the timestamp, filestamp, 105 * value and signature words and so have length at least 24 octets. The 106 * signature and/or value fields can be empty, in which case the 107 * respective length words are zero. An empty value with nonempty 108 * signature is syntactically valid, but semantically questionable. 109 * 110 * The filestamp represents the time when a cryptographic data file such 111 * as a public/private key pair is created. It follows every reference 112 * depending on that file and serves as a means to obsolete earlier data 113 * of the same type. The timestamp represents the time when the 114 * cryptographic data of the message were last signed. Creation of a 115 * cryptographic data file or signing a message can occur only when the 116 * creator or signor is synchronized to an authoritative source and 117 * proventicated to a trusted authority. 118 * 119 * Note there are several conditions required for server trust. First, 120 * the public key on the server certificate must be verified, which can 121 * involve a hike along the certificate trail to a trusted host. Next, 122 * the server trust must be confirmed by one of several identity 123 * schemes. Valid cryptographic values are signed with attached 124 * timestamp and filestamp. Individual packet trust is confirmed 125 * relative to these values by a message digest with keys generated by a 126 * reverse-order pseudorandom hash. 127 * 128 * State decomposition. These flags are lit in the order given. They are 129 * dim only when the association is demobilized. 130 * 131 * CRYPTO_FLAG_ENAB Lit upon acceptance of a CRYPTO_ASSOC message 132 * CRYPTO_FLAG_CERT Lit when a self-digned trusted certificate is 133 * accepted. 134 * CRYPTO_FLAG_VRFY Lit when identity is confirmed. 135 * CRYPTO_FLAG_PROV Lit when the first signature is verified. 136 * CRYPTO_FLAG_COOK Lit when a valid cookie is accepted. 137 * CRYPTO_FLAG_AUTO Lit when valid autokey values are accepted. 138 * CRYPTO_FLAG_SIGN Lit when the server signed certificate is 139 * accepted. 140 * CRYPTO_FLAG_LEAP Lit when the leapsecond values are accepted. 141 */ 142 /* 143 * Cryptodefines 144 */ 145 #define TAI_1972 10 /* initial TAI offset (s) */ 146 #define MAX_LEAP 100 /* max UTC leapseconds (s) */ 147 #define VALUE_LEN (6 * 4) /* min response field length */ 148 #define MAX_VALLEN (65535 - VALUE_LEN) 149 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */ 150 151 /* 152 * Global cryptodata in host byte order 153 */ 154 u_int32 crypto_flags = 0x0; /* status word */ 155 int crypto_nid = KEY_TYPE_MD5; /* digest nid */ 156 char *sys_hostname = NULL; 157 char *sys_groupname = NULL; 158 static char *host_filename = NULL; /* host file name */ 159 static char *ident_filename = NULL; /* group file name */ 160 161 /* 162 * Global cryptodata in network byte order 163 */ 164 struct cert_info *cinfo = NULL; /* certificate info/value cache */ 165 struct cert_info *cert_host = NULL; /* host certificate */ 166 struct pkey_info *pkinfo = NULL; /* key info/value cache */ 167 struct value hostval; /* host value */ 168 struct value pubkey; /* public key */ 169 struct value tai_leap; /* leapseconds values */ 170 struct pkey_info *iffkey_info = NULL; /* IFF keys */ 171 struct pkey_info *gqkey_info = NULL; /* GQ keys */ 172 struct pkey_info *mvkey_info = NULL; /* MV keys */ 173 174 /* 175 * Private cryptodata in host byte order 176 */ 177 static char *passwd = NULL; /* private key password */ 178 static EVP_PKEY *host_pkey = NULL; /* host key */ 179 static EVP_PKEY *sign_pkey = NULL; /* sign key */ 180 static const EVP_MD *sign_digest = NULL; /* sign digest */ 181 static u_int sign_siglen; /* sign key length */ 182 static char *rand_file = NULL; /* random seed file */ 183 184 /* 185 * Cryptotypes 186 */ 187 static int crypto_verify (struct exten *, struct value *, 188 struct peer *); 189 static int crypto_encrypt (const u_char *, u_int, keyid_t *, 190 struct value *); 191 static int crypto_alice (struct peer *, struct value *); 192 static int crypto_alice2 (struct peer *, struct value *); 193 static int crypto_alice3 (struct peer *, struct value *); 194 static int crypto_bob (struct exten *, struct value *); 195 static int crypto_bob2 (struct exten *, struct value *); 196 static int crypto_bob3 (struct exten *, struct value *); 197 static int crypto_iff (struct exten *, struct peer *); 198 static int crypto_gq (struct exten *, struct peer *); 199 static int crypto_mv (struct exten *, struct peer *); 200 static int crypto_send (struct exten *, struct value *, int); 201 static tstamp_t crypto_time (void); 202 static void asn_to_calendar (const ASN1_TIME *, struct calendar*); 203 static struct cert_info *cert_parse (const u_char *, long, tstamp_t); 204 static int cert_sign (struct exten *, struct value *); 205 static struct cert_info *cert_install (struct exten *, struct peer *); 206 static int cert_hike (struct peer *, struct cert_info *); 207 static void cert_free (struct cert_info *); 208 static struct pkey_info *crypto_key (char *, char *, sockaddr_u *); 209 static void bighash (BIGNUM *, BIGNUM *); 210 static struct cert_info *crypto_cert (char *); 211 static u_int exten_payload_size(const struct exten *); 212 213 #ifdef SYS_WINNT 214 int 215 readlink(char * link, char * file, int len) { 216 return (-1); 217 } 218 #endif 219 220 /* 221 * session_key - generate session key 222 * 223 * This routine generates a session key from the source address, 224 * destination address, key ID and private value. The value of the 225 * session key is the MD5 hash of these values, while the next key ID is 226 * the first four octets of the hash. 227 * 228 * Returns the next key ID or 0 if there is no destination address. 229 */ 230 keyid_t 231 session_key( 232 sockaddr_u *srcadr, /* source address */ 233 sockaddr_u *dstadr, /* destination address */ 234 keyid_t keyno, /* key ID */ 235 keyid_t private, /* private value */ 236 u_long lifetime /* key lifetime */ 237 ) 238 { 239 EVP_MD_CTX *ctx; /* message digest context */ 240 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 241 keyid_t keyid; /* key identifer */ 242 u_int32 header[10]; /* data in network byte order */ 243 u_int hdlen, len; 244 245 if (!dstadr) 246 return 0; 247 248 /* 249 * Generate the session key and key ID. If the lifetime is 250 * greater than zero, install the key and call it trusted. 251 */ 252 hdlen = 0; 253 switch(AF(srcadr)) { 254 case AF_INET: 255 header[0] = NSRCADR(srcadr); 256 header[1] = NSRCADR(dstadr); 257 header[2] = htonl(keyno); 258 header[3] = htonl(private); 259 hdlen = 4 * sizeof(u_int32); 260 break; 261 262 case AF_INET6: 263 memcpy(&header[0], PSOCK_ADDR6(srcadr), 264 sizeof(struct in6_addr)); 265 memcpy(&header[4], PSOCK_ADDR6(dstadr), 266 sizeof(struct in6_addr)); 267 header[8] = htonl(keyno); 268 header[9] = htonl(private); 269 hdlen = 10 * sizeof(u_int32); 270 break; 271 } 272 ctx = EVP_MD_CTX_new(); 273 # if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) 274 /* [Bug 3457] set flags and don't kill them again */ 275 EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 276 EVP_DigestInit_ex(ctx, EVP_get_digestbynid(crypto_nid), NULL); 277 # else 278 EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid)); 279 # endif 280 EVP_DigestUpdate(ctx, (u_char *)header, hdlen); 281 EVP_DigestFinal(ctx, dgst, &len); 282 EVP_MD_CTX_free(ctx); 283 memcpy(&keyid, dgst, 4); 284 keyid = ntohl(keyid); 285 if (lifetime != 0) { 286 MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL); 287 authtrust(keyno, lifetime); 288 } 289 DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n", 290 stoa(srcadr), stoa(dstadr), keyno, 291 private, keyid, lifetime)); 292 293 return (keyid); 294 } 295 296 297 /* 298 * make_keylist - generate key list 299 * 300 * Returns 301 * XEVNT_OK success 302 * XEVNT_ERR protocol error 303 * 304 * This routine constructs a pseudo-random sequence by repeatedly 305 * hashing the session key starting from a given source address, 306 * destination address, private value and the next key ID of the 307 * preceeding session key. The last entry on the list is saved along 308 * with its sequence number and public signature. 309 */ 310 int 311 make_keylist( 312 struct peer *peer, /* peer structure pointer */ 313 struct interface *dstadr /* interface */ 314 ) 315 { 316 EVP_MD_CTX *ctx; /* signature context */ 317 tstamp_t tstamp; /* NTP timestamp */ 318 struct autokey *ap; /* autokey pointer */ 319 struct value *vp; /* value pointer */ 320 keyid_t keyid = 0; /* next key ID */ 321 keyid_t cookie; /* private value */ 322 long lifetime; 323 u_int len, mpoll; 324 int i; 325 326 if (!dstadr) 327 return XEVNT_ERR; 328 329 /* 330 * Allocate the key list if necessary. 331 */ 332 tstamp = crypto_time(); 333 if (peer->keylist == NULL) 334 peer->keylist = eallocarray(NTP_MAXSESSION, 335 sizeof(keyid_t)); 336 337 /* 338 * Generate an initial key ID which is unique and greater than 339 * NTP_MAXKEY. 340 */ 341 while (1) { 342 keyid = ntp_random() & 0xffffffff; 343 if (keyid <= NTP_MAXKEY) 344 continue; 345 346 if (authhavekey(keyid)) 347 continue; 348 break; 349 } 350 351 /* 352 * Generate up to NTP_MAXSESSION session keys. Stop if the 353 * next one would not be unique or not a session key ID or if 354 * it would expire before the next poll. The private value 355 * included in the hash is zero if broadcast mode, the peer 356 * cookie if client mode or the host cookie if symmetric modes. 357 */ 358 mpoll = 1U << min(peer->ppoll, peer->hpoll); 359 lifetime = min((1UL << sys_automax), NTP_MAXSESSION * mpoll); 360 if (peer->hmode == MODE_BROADCAST) 361 cookie = 0; 362 else 363 cookie = peer->pcookie; 364 for (i = 0; i < NTP_MAXSESSION; i++) { 365 peer->keylist[i] = keyid; 366 peer->keynumber = i; 367 keyid = session_key(&dstadr->sin, &peer->srcadr, keyid, 368 cookie, lifetime + mpoll); 369 lifetime -= mpoll; 370 if (auth_havekey(keyid) || keyid <= NTP_MAXKEY || 371 lifetime < 0 || tstamp == 0) 372 break; 373 } 374 375 /* 376 * Save the last session key ID, sequence number and timestamp, 377 * then sign these values for later retrieval by the clients. Be 378 * careful not to use invalid key media. Use the public values 379 * timestamp as filestamp. 380 */ 381 vp = &peer->sndval; 382 if (vp->ptr == NULL) 383 vp->ptr = emalloc(sizeof(struct autokey)); 384 ap = (struct autokey *)vp->ptr; 385 ap->seq = htonl(peer->keynumber); 386 ap->key = htonl(keyid); 387 vp->tstamp = htonl(tstamp); 388 vp->fstamp = hostval.tstamp; 389 vp->vallen = htonl(sizeof(struct autokey)); 390 vp->siglen = 0; 391 if (tstamp != 0) { 392 if (vp->sig == NULL) 393 vp->sig = emalloc(sign_siglen); 394 ctx = EVP_MD_CTX_new(); 395 EVP_SignInit(ctx, sign_digest); 396 EVP_SignUpdate(ctx, (u_char *)vp, 12); 397 EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey)); 398 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 399 INSIST(len <= sign_siglen); 400 vp->siglen = htonl(len); 401 peer->flags |= FLAG_ASSOC; 402 } 403 EVP_MD_CTX_free(ctx); 404 } 405 DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n", 406 peer->keynumber, keyid, cookie, ntohl(vp->tstamp), 407 ntohl(vp->fstamp), peer->hpoll)); 408 return (XEVNT_OK); 409 } 410 411 412 /* 413 * crypto_recv - parse extension fields 414 * 415 * This routine is called when the packet has been matched to an 416 * association and passed sanity, format and MAC checks. We believe the 417 * extension field values only if the field has proper format and 418 * length, the timestamp and filestamp are valid and the signature has 419 * valid length and is verified. There are a few cases where some values 420 * are believed even if the signature fails, but only if the proventic 421 * bit is not set. 422 * 423 * Returns 424 * XEVNT_OK success 425 * XEVNT_ERR protocol error 426 * XEVNT_LEN bad field format or length 427 */ 428 int 429 crypto_recv( 430 struct peer *peer, /* peer structure pointer */ 431 struct recvbuf *rbufp /* packet buffer pointer */ 432 ) 433 { 434 const EVP_MD *dp; /* message digest algorithm */ 435 u_int32 *pkt; /* receive packet pointer */ 436 struct autokey *ap, *bp; /* autokey pointer */ 437 struct exten *ep, *fp; /* extension pointers */ 438 struct cert_info *xinfo; /* certificate info pointer */ 439 int macbytes; /* length of MAC field, signed by intention */ 440 int authlen; /* offset of MAC field */ 441 associd_t associd; /* association ID */ 442 tstamp_t fstamp = 0; /* filestamp */ 443 u_int len; /* extension field length */ 444 u_int code; /* extension field opcode */ 445 u_int vallen = 0; /* value length */ 446 X509 *cert; /* X509 certificate */ 447 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 448 keyid_t cookie; /* crumbles */ 449 int hismode; /* packet mode */ 450 int rval = XEVNT_OK; 451 const u_char *puch; 452 u_int32 temp32; 453 454 /* 455 * Initialize. Note that the packet has already been checked for 456 * valid format and extension field lengths. First extract the 457 * field length, command code and association ID in host byte 458 * order. These are used with all commands and modes. Then check 459 * the version number, which must be 2, and length, which must 460 * be at least 8 for requests and VALUE_LEN (24) for responses. 461 * Packets that fail either test sink without a trace. The 462 * association ID is saved only if nonzero. 463 */ 464 authlen = LEN_PKT_NOMAC; 465 hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode); 466 while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) { 467 /* We can be reasonably sure that we can read at least 468 * the opcode and the size field here. More stringent 469 * checks follow up shortly. 470 */ 471 pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4; 472 ep = (struct exten *)pkt; 473 code = ntohl(ep->opcode) & 0xffff0000; 474 len = ntohl(ep->opcode) & 0x0000ffff; 475 // HMS: Why pkt[1] instead of ep->associd ? 476 associd = (associd_t)ntohl(pkt[1]); 477 rval = XEVNT_OK; 478 DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n", 479 peer->crypto, authlen, len, code >> 16, 480 associd)); 481 482 /* 483 * Check version number and field length. If bad, 484 * quietly ignore the packet. 485 */ 486 if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) { 487 sys_badlength++; 488 code |= CRYPTO_ERROR; 489 } 490 491 /* Check if the declared size fits into the remaining 492 * buffer. We *know* 'macbytes' > 0 here! 493 */ 494 if (len > (u_int)macbytes) { 495 DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n", 496 associd)); 497 return XEVNT_LEN; 498 } 499 500 /* Check if the paylod of the extension fits into the 501 * declared frame. 502 */ 503 if (len >= VALUE_LEN) { 504 fstamp = ntohl(ep->fstamp); 505 vallen = ntohl(ep->vallen); 506 /* 507 * Bug 2761: I hope this isn't too early... 508 */ 509 if ( vallen == 0 510 || len - VALUE_LEN < vallen) 511 return XEVNT_LEN; 512 } 513 switch (code) { 514 515 /* 516 * Install status word, host name, signature scheme and 517 * association ID. In OpenSSL the signature algorithm is 518 * bound to the digest algorithm, so the NID completely 519 * defines the signature scheme. Note the request and 520 * response are identical, but neither is validated by 521 * signature. The request is processed here only in 522 * symmetric modes. The server name field might be 523 * useful to implement access controls in future. 524 */ 525 case CRYPTO_ASSOC: 526 527 /* 528 * If our state machine is running when this 529 * message arrives, the other fellow might have 530 * restarted. However, this could be an 531 * intruder, so just clamp the poll interval and 532 * find out for ourselves. Otherwise, pass the 533 * extension field to the transmit side. 534 */ 535 if (peer->crypto & CRYPTO_FLAG_CERT) { 536 rval = XEVNT_ERR; 537 break; 538 } 539 if (peer->cmmd) { 540 if (peer->assoc != associd) { 541 rval = XEVNT_ERR; 542 break; 543 } 544 free(peer->cmmd); /* will be set again! */ 545 } 546 fp = emalloc(len); 547 memcpy(fp, ep, len); 548 fp->associd = htonl(peer->associd); 549 peer->cmmd = fp; 550 /* fall through */ 551 552 case CRYPTO_ASSOC | CRYPTO_RESP: 553 554 /* 555 * Discard the message if it has already been 556 * stored or the message has been amputated. 557 */ 558 if (peer->crypto) { 559 if (peer->assoc != associd) 560 rval = XEVNT_ERR; 561 break; 562 } 563 INSIST(len >= VALUE_LEN); 564 if (vallen == 0 || vallen > MAXHOSTNAME || 565 len - VALUE_LEN < vallen) { 566 rval = XEVNT_LEN; 567 break; 568 } 569 DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n", 570 crypto_flags, peer->associd, fstamp, 571 peer->assoc)); 572 temp32 = crypto_flags & CRYPTO_FLAG_MASK; 573 574 /* 575 * If the client scheme is PC, the server scheme 576 * must be PC. The public key and identity are 577 * presumed valid, so we skip the certificate 578 * and identity exchanges and move immediately 579 * to the cookie exchange which confirms the 580 * server signature. 581 */ 582 if (crypto_flags & CRYPTO_FLAG_PRIV) { 583 if (!(fstamp & CRYPTO_FLAG_PRIV)) { 584 rval = XEVNT_KEY; 585 break; 586 } 587 fstamp |= CRYPTO_FLAG_CERT | 588 CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN; 589 590 /* 591 * It is an error if either peer supports 592 * identity, but the other does not. 593 */ 594 } else if (hismode == MODE_ACTIVE || hismode == 595 MODE_PASSIVE) { 596 if ((temp32 && !(fstamp & 597 CRYPTO_FLAG_MASK)) || 598 (!temp32 && (fstamp & 599 CRYPTO_FLAG_MASK))) { 600 rval = XEVNT_KEY; 601 break; 602 } 603 } 604 605 /* 606 * Discard the message if the signature digest 607 * NID is not supported. 608 */ 609 temp32 = (fstamp >> 16) & 0xffff; 610 dp = 611 (const EVP_MD *)EVP_get_digestbynid(temp32); 612 if (dp == NULL) { 613 rval = XEVNT_MD; 614 break; 615 } 616 617 /* 618 * Save status word, host name and message 619 * digest/signature type. If this is from a 620 * broadcast and the association ID has changed, 621 * request the autokey values. 622 */ 623 peer->assoc = associd; 624 if (hismode == MODE_SERVER) 625 fstamp |= CRYPTO_FLAG_AUTO; 626 if (!(fstamp & CRYPTO_FLAG_TAI)) 627 fstamp |= CRYPTO_FLAG_LEAP; 628 RAND_bytes((u_char *)&peer->hcookie, 4); 629 peer->crypto = fstamp; 630 peer->digest = dp; 631 if (peer->subject != NULL) 632 free(peer->subject); 633 peer->subject = emalloc(vallen + 1); 634 memcpy(peer->subject, ep->pkt, vallen); 635 peer->subject[vallen] = '\0'; 636 if (peer->issuer != NULL) 637 free(peer->issuer); 638 peer->issuer = estrdup(peer->subject); 639 snprintf(statstr, sizeof(statstr), 640 "assoc %d %d host %s %s", peer->associd, 641 peer->assoc, peer->subject, 642 OBJ_nid2ln(temp32)); 643 record_crypto_stats(&peer->srcadr, statstr); 644 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 645 break; 646 647 /* 648 * Decode X509 certificate in ASN.1 format and extract 649 * the data containing, among other things, subject 650 * name and public key. In the default identification 651 * scheme, the certificate trail is followed to a self 652 * signed trusted certificate. 653 */ 654 case CRYPTO_CERT | CRYPTO_RESP: 655 656 /* 657 * Discard the message if empty or invalid. 658 */ 659 if (len < VALUE_LEN) 660 break; 661 662 if ((rval = crypto_verify(ep, NULL, peer)) != 663 XEVNT_OK) 664 break; 665 666 /* 667 * Scan the certificate list to delete old 668 * versions and link the newest version first on 669 * the list. Then, verify the signature. If the 670 * certificate is bad or missing, just ignore 671 * it. 672 */ 673 if ((xinfo = cert_install(ep, peer)) == NULL) { 674 rval = XEVNT_CRT; 675 break; 676 } 677 if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK) 678 break; 679 680 /* 681 * We plug in the public key and lifetime from 682 * the first certificate received. However, note 683 * that this certificate might not be signed by 684 * the server, so we can't check the 685 * signature/digest NID. 686 */ 687 if (peer->pkey == NULL) { 688 puch = xinfo->cert.ptr; 689 cert = d2i_X509(NULL, &puch, 690 ntohl(xinfo->cert.vallen)); 691 peer->pkey = X509_get_pubkey(cert); 692 X509_free(cert); 693 } 694 peer->flash &= ~TEST8; 695 temp32 = xinfo->nid; 696 snprintf(statstr, sizeof(statstr), 697 "cert %s %s 0x%x %s (%u) fs %u", 698 xinfo->subject, xinfo->issuer, xinfo->flags, 699 OBJ_nid2ln(temp32), temp32, 700 ntohl(ep->fstamp)); 701 record_crypto_stats(&peer->srcadr, statstr); 702 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 703 break; 704 705 /* 706 * Schnorr (IFF) identity scheme. This scheme is 707 * designed for use with shared secret server group keys 708 * and where the certificate may be generated by a third 709 * party. The client sends a challenge to the server, 710 * which performs a calculation and returns the result. 711 * A positive result is possible only if both client and 712 * server contain the same secret group key. 713 */ 714 case CRYPTO_IFF | CRYPTO_RESP: 715 716 /* 717 * Discard the message if invalid. 718 */ 719 if ((rval = crypto_verify(ep, NULL, peer)) != 720 XEVNT_OK) 721 break; 722 723 /* 724 * If the challenge matches the response, the 725 * server public key, signature and identity are 726 * all verified at the same time. The server is 727 * declared trusted, so we skip further 728 * certificate exchanges and move immediately to 729 * the cookie exchange. 730 */ 731 if ((rval = crypto_iff(ep, peer)) != XEVNT_OK) 732 break; 733 734 peer->crypto |= CRYPTO_FLAG_VRFY; 735 peer->flash &= ~TEST8; 736 snprintf(statstr, sizeof(statstr), "iff %s fs %u", 737 peer->issuer, ntohl(ep->fstamp)); 738 record_crypto_stats(&peer->srcadr, statstr); 739 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 740 break; 741 742 /* 743 * Guillou-Quisquater (GQ) identity scheme. This scheme 744 * is designed for use with public certificates carrying 745 * the GQ public key in an extension field. The client 746 * sends a challenge to the server, which performs a 747 * calculation and returns the result. A positive result 748 * is possible only if both client and server contain 749 * the same group key and the server has the matching GQ 750 * private key. 751 */ 752 case CRYPTO_GQ | CRYPTO_RESP: 753 754 /* 755 * Discard the message if invalid 756 */ 757 if ((rval = crypto_verify(ep, NULL, peer)) != 758 XEVNT_OK) 759 break; 760 761 /* 762 * If the challenge matches the response, the 763 * server public key, signature and identity are 764 * all verified at the same time. The server is 765 * declared trusted, so we skip further 766 * certificate exchanges and move immediately to 767 * the cookie exchange. 768 */ 769 if ((rval = crypto_gq(ep, peer)) != XEVNT_OK) 770 break; 771 772 peer->crypto |= CRYPTO_FLAG_VRFY; 773 peer->flash &= ~TEST8; 774 snprintf(statstr, sizeof(statstr), "gq %s fs %u", 775 peer->issuer, ntohl(ep->fstamp)); 776 record_crypto_stats(&peer->srcadr, statstr); 777 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 778 break; 779 780 /* 781 * Mu-Varadharajan (MV) identity scheme. This scheme is 782 * designed for use with three levels of trust, trusted 783 * host, server and client. The trusted host key is 784 * opaque to servers and clients; the server keys are 785 * opaque to clients and each client key is different. 786 * Client keys can be revoked without requiring new key 787 * generations. 788 */ 789 case CRYPTO_MV | CRYPTO_RESP: 790 791 /* 792 * Discard the message if invalid. 793 */ 794 if ((rval = crypto_verify(ep, NULL, peer)) != 795 XEVNT_OK) 796 break; 797 798 /* 799 * If the challenge matches the response, the 800 * server public key, signature and identity are 801 * all verified at the same time. The server is 802 * declared trusted, so we skip further 803 * certificate exchanges and move immediately to 804 * the cookie exchange. 805 */ 806 if ((rval = crypto_mv(ep, peer)) != XEVNT_OK) 807 break; 808 809 peer->crypto |= CRYPTO_FLAG_VRFY; 810 peer->flash &= ~TEST8; 811 snprintf(statstr, sizeof(statstr), "mv %s fs %u", 812 peer->issuer, ntohl(ep->fstamp)); 813 record_crypto_stats(&peer->srcadr, statstr); 814 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 815 break; 816 817 818 /* 819 * Cookie response in client and symmetric modes. If the 820 * cookie bit is set, the working cookie is the EXOR of 821 * the current and new values. 822 */ 823 case CRYPTO_COOK | CRYPTO_RESP: 824 825 /* 826 * Discard the message if invalid or signature 827 * not verified with respect to the cookie 828 * values. 829 */ 830 if ((rval = crypto_verify(ep, &peer->cookval, 831 peer)) != XEVNT_OK) 832 break; 833 834 /* 835 * Decrypt the cookie, hunting all the time for 836 * errors. 837 */ 838 if (vallen == (u_int)EVP_PKEY_size(host_pkey)) { 839 RSA *rsa = EVP_PKEY_get0_RSA(host_pkey); 840 u_int32 *cookiebuf = malloc(RSA_size(rsa)); 841 if (!cookiebuf) { 842 rval = XEVNT_CKY; 843 break; 844 } 845 846 if (RSA_private_decrypt(vallen, 847 (u_char *)ep->pkt, 848 (u_char *)cookiebuf, 849 rsa, 850 RSA_PKCS1_OAEP_PADDING) != 4) { 851 rval = XEVNT_CKY; 852 free(cookiebuf); 853 break; 854 } else { 855 cookie = ntohl(*cookiebuf); 856 free(cookiebuf); 857 } 858 } else { 859 rval = XEVNT_CKY; 860 break; 861 } 862 863 /* 864 * Install cookie values and light the cookie 865 * bit. If this is not broadcast client mode, we 866 * are done here. 867 */ 868 key_expire(peer); 869 if (hismode == MODE_ACTIVE || hismode == 870 MODE_PASSIVE) 871 peer->pcookie = peer->hcookie ^ cookie; 872 else 873 peer->pcookie = cookie; 874 peer->crypto |= CRYPTO_FLAG_COOK; 875 peer->flash &= ~TEST8; 876 snprintf(statstr, sizeof(statstr), 877 "cook %x ts %u fs %u", peer->pcookie, 878 ntohl(ep->tstamp), ntohl(ep->fstamp)); 879 record_crypto_stats(&peer->srcadr, statstr); 880 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 881 break; 882 883 /* 884 * Install autokey values in broadcast client and 885 * symmetric modes. We have to do this every time the 886 * sever/peer cookie changes or a new keylist is 887 * rolled. Ordinarily, this is automatic as this message 888 * is piggybacked on the first NTP packet sent upon 889 * either of these events. Note that a broadcast client 890 * or symmetric peer can receive this response without a 891 * matching request. 892 */ 893 case CRYPTO_AUTO | CRYPTO_RESP: 894 895 /* 896 * Discard the message if invalid or signature 897 * not verified with respect to the receive 898 * autokey values. 899 */ 900 if ((rval = crypto_verify(ep, &peer->recval, 901 peer)) != XEVNT_OK) 902 break; 903 904 /* 905 * Discard the message if a broadcast client and 906 * the association ID does not match. This might 907 * happen if a broacast server restarts the 908 * protocol. A protocol restart will occur at 909 * the next ASSOC message. 910 */ 911 if ((peer->cast_flags & MDF_BCLNT) && 912 peer->assoc != associd) 913 break; 914 915 /* 916 * Install autokey values and light the 917 * autokey bit. This is not hard. 918 */ 919 if (ep->tstamp == 0) 920 break; 921 922 if (peer->recval.ptr == NULL) 923 peer->recval.ptr = 924 emalloc(sizeof(struct autokey)); 925 bp = (struct autokey *)peer->recval.ptr; 926 peer->recval.tstamp = ep->tstamp; 927 peer->recval.fstamp = ep->fstamp; 928 ap = (struct autokey *)ep->pkt; 929 bp->seq = ntohl(ap->seq); 930 bp->key = ntohl(ap->key); 931 peer->pkeyid = bp->key; 932 peer->crypto |= CRYPTO_FLAG_AUTO; 933 peer->flash &= ~TEST8; 934 snprintf(statstr, sizeof(statstr), 935 "auto seq %d key %x ts %u fs %u", bp->seq, 936 bp->key, ntohl(ep->tstamp), 937 ntohl(ep->fstamp)); 938 record_crypto_stats(&peer->srcadr, statstr); 939 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 940 break; 941 942 /* 943 * X509 certificate sign response. Validate the 944 * certificate signed by the server and install. Later 945 * this can be provided to clients of this server in 946 * lieu of the self signed certificate in order to 947 * validate the public key. 948 */ 949 case CRYPTO_SIGN | CRYPTO_RESP: 950 951 /* 952 * Discard the message if invalid. 953 */ 954 if ((rval = crypto_verify(ep, NULL, peer)) != 955 XEVNT_OK) 956 break; 957 958 /* 959 * Scan the certificate list to delete old 960 * versions and link the newest version first on 961 * the list. 962 */ 963 if ((xinfo = cert_install(ep, peer)) == NULL) { 964 rval = XEVNT_CRT; 965 break; 966 } 967 peer->crypto |= CRYPTO_FLAG_SIGN; 968 peer->flash &= ~TEST8; 969 temp32 = xinfo->nid; 970 snprintf(statstr, sizeof(statstr), 971 "sign %s %s 0x%x %s (%u) fs %u", 972 xinfo->subject, xinfo->issuer, xinfo->flags, 973 OBJ_nid2ln(temp32), temp32, 974 ntohl(ep->fstamp)); 975 record_crypto_stats(&peer->srcadr, statstr); 976 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 977 break; 978 979 /* 980 * Install leapseconds values. While the leapsecond 981 * values epoch, TAI offset and values expiration epoch 982 * are retained, only the current TAI offset is provided 983 * via the kernel to other applications. 984 */ 985 case CRYPTO_LEAP | CRYPTO_RESP: 986 /* 987 * Discard the message if invalid. We can't 988 * compare the value timestamps here, as they 989 * can be updated by different servers. 990 */ 991 rval = crypto_verify(ep, NULL, peer); 992 if ((rval != XEVNT_OK ) || 993 (vallen != 3*sizeof(uint32_t)) ) 994 break; 995 996 /* Check if we can update the basic TAI offset 997 * for our current leap frame. This is a hack 998 * and ignores the time stamps in the autokey 999 * message. 1000 */ 1001 if (sys_leap != LEAP_NOTINSYNC) 1002 leapsec_autokey_tai(ntohl(ep->pkt[0]), 1003 rbufp->recv_time.l_ui, NULL); 1004 tai_leap.tstamp = ep->tstamp; 1005 tai_leap.fstamp = ep->fstamp; 1006 crypto_update(); 1007 mprintf_event(EVNT_TAI, peer, 1008 "%d seconds", ntohl(ep->pkt[0])); 1009 peer->crypto |= CRYPTO_FLAG_LEAP; 1010 peer->flash &= ~TEST8; 1011 snprintf(statstr, sizeof(statstr), 1012 "leap TAI offset %d at %u expire %u fs %u", 1013 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]), 1014 ntohl(ep->pkt[2]), ntohl(ep->fstamp)); 1015 record_crypto_stats(&peer->srcadr, statstr); 1016 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 1017 break; 1018 1019 /* 1020 * We come here in symmetric modes for miscellaneous 1021 * commands that have value fields but are processed on 1022 * the transmit side. All we need do here is check for 1023 * valid field length. Note that ASSOC is handled 1024 * separately. 1025 */ 1026 case CRYPTO_CERT: 1027 case CRYPTO_IFF: 1028 case CRYPTO_GQ: 1029 case CRYPTO_MV: 1030 case CRYPTO_COOK: 1031 case CRYPTO_SIGN: 1032 if (len < VALUE_LEN) { 1033 rval = XEVNT_LEN; 1034 break; 1035 } 1036 /* fall through */ 1037 1038 /* 1039 * We come here in symmetric modes for requests 1040 * requiring a response (above plus AUTO and LEAP) and 1041 * for responses. If a request, save the extension field 1042 * for later; invalid requests will be caught on the 1043 * transmit side. If an error or invalid response, 1044 * declare a protocol error. 1045 */ 1046 default: 1047 if (code & (CRYPTO_RESP | CRYPTO_ERROR)) { 1048 rval = XEVNT_ERR; 1049 } else if (peer->cmmd == NULL) { 1050 fp = emalloc(len); 1051 memcpy(fp, ep, len); 1052 peer->cmmd = fp; 1053 } 1054 } 1055 1056 /* 1057 * The first error found terminates the extension field 1058 * scan and we return the laundry to the caller. 1059 */ 1060 if (rval != XEVNT_OK) { 1061 snprintf(statstr, sizeof(statstr), 1062 "%04x %d %02x %s", htonl(ep->opcode), 1063 associd, rval, eventstr(rval)); 1064 record_crypto_stats(&peer->srcadr, statstr); 1065 DPRINTF(1, ("crypto_recv: %s\n", statstr)); 1066 return (rval); 1067 } 1068 authlen += (len + 3) / 4 * 4; 1069 } 1070 return (rval); 1071 } 1072 1073 1074 /* 1075 * crypto_xmit - construct extension fields 1076 * 1077 * This routine is called both when an association is configured and 1078 * when one is not. The only case where this matters is to retrieve the 1079 * autokey information, in which case the caller has to provide the 1080 * association ID to match the association. 1081 * 1082 * Side effect: update the packet offset. 1083 * 1084 * Errors 1085 * XEVNT_OK success 1086 * XEVNT_CRT bad or missing certificate 1087 * XEVNT_ERR protocol error 1088 * XEVNT_LEN bad field format or length 1089 * XEVNT_PER host certificate expired 1090 */ 1091 int 1092 crypto_xmit( 1093 struct peer *peer, /* peer structure pointer */ 1094 struct pkt *xpkt, /* transmit packet pointer */ 1095 struct recvbuf *rbufp, /* receive buffer pointer */ 1096 int start, /* offset to extension field */ 1097 struct exten *ep, /* extension pointer */ 1098 keyid_t cookie /* session cookie */ 1099 ) 1100 { 1101 struct exten *fp; /* extension pointers */ 1102 struct cert_info *cp, *xp, *yp; /* cert info/value pointer */ 1103 sockaddr_u *srcadr_sin; /* source address */ 1104 u_int32 *pkt; /* packet pointer */ 1105 u_int opcode; /* extension field opcode */ 1106 char certname[MAXHOSTNAME + 1]; /* subject name buffer */ 1107 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1108 tstamp_t tstamp; 1109 struct calendar tscal; 1110 u_int vallen; 1111 struct value vtemp; 1112 associd_t associd; 1113 int rval; 1114 int len; 1115 keyid_t tcookie; 1116 1117 /* 1118 * Generate the requested extension field request code, length 1119 * and association ID. If this is a response and the host is not 1120 * synchronized, light the error bit and go home. 1121 */ 1122 pkt = (u_int32 *)xpkt + start / 4; 1123 fp = (struct exten *)pkt; 1124 opcode = ntohl(ep->opcode); 1125 if (peer != NULL) { 1126 srcadr_sin = &peer->srcadr; 1127 if (!(opcode & CRYPTO_RESP)) 1128 peer->opcode = ep->opcode; 1129 } else { 1130 srcadr_sin = &rbufp->recv_srcadr; 1131 } 1132 associd = (associd_t) ntohl(ep->associd); 1133 len = 8; 1134 fp->opcode = htonl((opcode & 0xffff0000) | len); 1135 fp->associd = ep->associd; 1136 rval = XEVNT_OK; 1137 tstamp = crypto_time(); 1138 switch (opcode & 0xffff0000) { 1139 1140 /* 1141 * Send association request and response with status word and 1142 * host name. Note, this message is not signed and the filestamp 1143 * contains only the status word. 1144 */ 1145 case CRYPTO_ASSOC: 1146 case CRYPTO_ASSOC | CRYPTO_RESP: 1147 len = crypto_send(fp, &hostval, start); 1148 fp->fstamp = htonl(crypto_flags); 1149 break; 1150 1151 /* 1152 * Send certificate request. Use the values from the extension 1153 * field. 1154 */ 1155 case CRYPTO_CERT: 1156 memset(&vtemp, 0, sizeof(vtemp)); 1157 vtemp.tstamp = ep->tstamp; 1158 vtemp.fstamp = ep->fstamp; 1159 vtemp.vallen = ep->vallen; 1160 vtemp.ptr = (u_char *)ep->pkt; 1161 len = crypto_send(fp, &vtemp, start); 1162 break; 1163 1164 /* 1165 * Send sign request. Use the host certificate, which is self- 1166 * signed and may or may not be trusted. 1167 */ 1168 case CRYPTO_SIGN: 1169 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 1170 if ((calcomp(&tscal, &(cert_host->first)) < 0) 1171 || (calcomp(&tscal, &(cert_host->last)) > 0)) 1172 rval = XEVNT_PER; 1173 else 1174 len = crypto_send(fp, &cert_host->cert, start); 1175 break; 1176 1177 /* 1178 * Send certificate response. Use the name in the extension 1179 * field to find the certificate in the cache. If the request 1180 * contains no subject name, assume the name of this host. This 1181 * is for backwards compatibility. Private certificates are 1182 * never sent. 1183 * 1184 * There may be several certificates matching the request. First 1185 * choice is a self-signed trusted certificate; second choice is 1186 * any certificate signed by another host. There is no third 1187 * choice. 1188 */ 1189 case CRYPTO_CERT | CRYPTO_RESP: 1190 vallen = exten_payload_size(ep); /* Must be <64k */ 1191 if (vallen == 0 || vallen >= sizeof(certname) ) { 1192 rval = XEVNT_LEN; 1193 break; 1194 } 1195 1196 /* 1197 * Find all public valid certificates with matching 1198 * subject. If a self-signed, trusted certificate is 1199 * found, use that certificate. If not, use the last non 1200 * self-signed certificate. 1201 */ 1202 memcpy(certname, ep->pkt, vallen); 1203 certname[vallen] = '\0'; 1204 xp = yp = NULL; 1205 for (cp = cinfo; cp != NULL; cp = cp->link) { 1206 if (cp->flags & (CERT_PRIV | CERT_ERROR)) 1207 continue; 1208 1209 if (strcmp(certname, cp->subject) != 0) 1210 continue; 1211 1212 if (strcmp(certname, cp->issuer) != 0) 1213 yp = cp; 1214 else if (cp ->flags & CERT_TRUST) 1215 xp = cp; 1216 continue; 1217 } 1218 1219 /* 1220 * Be careful who you trust. If the certificate is not 1221 * found, return an empty response. Note that we dont 1222 * enforce lifetimes here. 1223 * 1224 * The timestamp and filestamp are taken from the 1225 * certificate value structure. For all certificates the 1226 * timestamp is the latest signature update time. For 1227 * host and imported certificates the filestamp is the 1228 * creation epoch. For signed certificates the filestamp 1229 * is the creation epoch of the trusted certificate at 1230 * the root of the certificate trail. In principle, this 1231 * allows strong checking for signature masquerade. 1232 */ 1233 if (xp == NULL) 1234 xp = yp; 1235 if (xp == NULL) 1236 break; 1237 1238 if (tstamp == 0) 1239 break; 1240 1241 len = crypto_send(fp, &xp->cert, start); 1242 break; 1243 1244 /* 1245 * Send challenge in Schnorr (IFF) identity scheme. 1246 */ 1247 case CRYPTO_IFF: 1248 if (peer == NULL) 1249 break; /* hack attack */ 1250 1251 if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) { 1252 len = crypto_send(fp, &vtemp, start); 1253 value_free(&vtemp); 1254 } 1255 break; 1256 1257 /* 1258 * Send response in Schnorr (IFF) identity scheme. 1259 */ 1260 case CRYPTO_IFF | CRYPTO_RESP: 1261 if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) { 1262 len = crypto_send(fp, &vtemp, start); 1263 value_free(&vtemp); 1264 } 1265 break; 1266 1267 /* 1268 * Send challenge in Guillou-Quisquater (GQ) identity scheme. 1269 */ 1270 case CRYPTO_GQ: 1271 if (peer == NULL) 1272 break; /* hack attack */ 1273 1274 if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) { 1275 len = crypto_send(fp, &vtemp, start); 1276 value_free(&vtemp); 1277 } 1278 break; 1279 1280 /* 1281 * Send response in Guillou-Quisquater (GQ) identity scheme. 1282 */ 1283 case CRYPTO_GQ | CRYPTO_RESP: 1284 if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) { 1285 len = crypto_send(fp, &vtemp, start); 1286 value_free(&vtemp); 1287 } 1288 break; 1289 1290 /* 1291 * Send challenge in MV identity scheme. 1292 */ 1293 case CRYPTO_MV: 1294 if (peer == NULL) 1295 break; /* hack attack */ 1296 1297 if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) { 1298 len = crypto_send(fp, &vtemp, start); 1299 value_free(&vtemp); 1300 } 1301 break; 1302 1303 /* 1304 * Send response in MV identity scheme. 1305 */ 1306 case CRYPTO_MV | CRYPTO_RESP: 1307 if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) { 1308 len = crypto_send(fp, &vtemp, start); 1309 value_free(&vtemp); 1310 } 1311 break; 1312 1313 /* 1314 * Send certificate sign response. The integrity of the request 1315 * certificate has already been verified on the receive side. 1316 * Sign the response using the local server key. Use the 1317 * filestamp from the request and use the timestamp as the 1318 * current time. Light the error bit if the certificate is 1319 * invalid or contains an unverified signature. 1320 */ 1321 case CRYPTO_SIGN | CRYPTO_RESP: 1322 if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) { 1323 len = crypto_send(fp, &vtemp, start); 1324 value_free(&vtemp); 1325 } 1326 break; 1327 1328 /* 1329 * Send public key and signature. Use the values from the public 1330 * key. 1331 */ 1332 case CRYPTO_COOK: 1333 len = crypto_send(fp, &pubkey, start); 1334 break; 1335 1336 /* 1337 * Encrypt and send cookie and signature. Light the error bit if 1338 * anything goes wrong. 1339 */ 1340 case CRYPTO_COOK | CRYPTO_RESP: 1341 vallen = ntohl(ep->vallen); /* Must be <64k */ 1342 if ( vallen == 0 1343 || (vallen >= MAX_VALLEN) 1344 || (opcode & 0x0000ffff) < VALUE_LEN + vallen) { 1345 rval = XEVNT_LEN; 1346 break; 1347 } 1348 if (peer == NULL) 1349 tcookie = cookie; 1350 else 1351 tcookie = peer->hcookie; 1352 if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp)) 1353 == XEVNT_OK) { 1354 len = crypto_send(fp, &vtemp, start); 1355 value_free(&vtemp); 1356 } 1357 break; 1358 1359 /* 1360 * Find peer and send autokey data and signature in broadcast 1361 * server and symmetric modes. Use the values in the autokey 1362 * structure. If no association is found, either the server has 1363 * restarted with new associations or some perp has replayed an 1364 * old message, in which case light the error bit. 1365 */ 1366 case CRYPTO_AUTO | CRYPTO_RESP: 1367 if (peer == NULL) { 1368 if ((peer = findpeerbyassoc(associd)) == NULL) { 1369 rval = XEVNT_ERR; 1370 break; 1371 } 1372 } 1373 peer->flags &= ~FLAG_ASSOC; 1374 len = crypto_send(fp, &peer->sndval, start); 1375 break; 1376 1377 /* 1378 * Send leapseconds values and signature. Use the values from 1379 * the tai structure. If no table has been loaded, just send an 1380 * empty request. 1381 */ 1382 case CRYPTO_LEAP | CRYPTO_RESP: 1383 len = crypto_send(fp, &tai_leap, start); 1384 break; 1385 1386 /* 1387 * Default - Send a valid command for unknown requests; send 1388 * an error response for unknown resonses. 1389 */ 1390 default: 1391 if (opcode & CRYPTO_RESP) 1392 rval = XEVNT_ERR; 1393 } 1394 1395 /* 1396 * In case of error, flame the log. If a request, toss the 1397 * puppy; if a response, return so the sender can flame, too. 1398 */ 1399 if (rval != XEVNT_OK) { 1400 u_int32 uint32; 1401 1402 uint32 = CRYPTO_ERROR; 1403 opcode |= uint32; 1404 fp->opcode |= htonl(uint32); 1405 snprintf(statstr, sizeof(statstr), 1406 "%04x %d %02x %s", opcode, associd, rval, 1407 eventstr(rval)); 1408 record_crypto_stats(srcadr_sin, statstr); 1409 DPRINTF(1, ("crypto_xmit: %s\n", statstr)); 1410 if (!(opcode & CRYPTO_RESP)) 1411 return (0); 1412 } 1413 DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n", 1414 crypto_flags, start, len, opcode >> 16, associd)); 1415 return (len); 1416 } 1417 1418 1419 /* 1420 * crypto_verify - verify the extension field value and signature 1421 * 1422 * Returns 1423 * XEVNT_OK success 1424 * XEVNT_ERR protocol error 1425 * XEVNT_FSP bad filestamp 1426 * XEVNT_LEN bad field format or length 1427 * XEVNT_PUB bad or missing public key 1428 * XEVNT_SGL bad signature length 1429 * XEVNT_SIG signature not verified 1430 * XEVNT_TSP bad timestamp 1431 */ 1432 static int 1433 crypto_verify( 1434 struct exten *ep, /* extension pointer */ 1435 struct value *vp, /* value pointer */ 1436 struct peer *peer /* peer structure pointer */ 1437 ) 1438 { 1439 EVP_PKEY *pkey; /* server public key */ 1440 EVP_MD_CTX *ctx; /* signature context */ 1441 tstamp_t tstamp, tstamp1 = 0; /* timestamp */ 1442 tstamp_t fstamp, fstamp1 = 0; /* filestamp */ 1443 u_int vallen; /* value length */ 1444 u_int siglen; /* signature length */ 1445 u_int opcode, len; 1446 int i; 1447 1448 /* 1449 * We are extremely parannoyed. We require valid opcode, length, 1450 * association ID, timestamp, filestamp, public key, digest, 1451 * signature length and signature, where relevant. Note that 1452 * preliminary length checks are done in the main loop. 1453 */ 1454 len = ntohl(ep->opcode) & 0x0000ffff; 1455 opcode = ntohl(ep->opcode) & 0xffff0000; 1456 1457 /* 1458 * Check for valid value header, association ID and extension 1459 * field length. Remember, it is not an error to receive an 1460 * unsolicited response; however, the response ID must match 1461 * the association ID. 1462 */ 1463 if (opcode & CRYPTO_ERROR) 1464 return (XEVNT_ERR); 1465 1466 if (len < VALUE_LEN) 1467 return (XEVNT_LEN); 1468 1469 if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode == 1470 MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) { 1471 if (ntohl(ep->associd) != peer->assoc) 1472 return (XEVNT_ERR); 1473 } else { 1474 if (ntohl(ep->associd) != peer->associd) 1475 return (XEVNT_ERR); 1476 } 1477 1478 /* 1479 * We have a valid value header. Check for valid value and 1480 * signature field lengths. The extension field length must be 1481 * long enough to contain the value header, value and signature. 1482 * Note both the value and signature field lengths are rounded 1483 * up to the next word (4 octets). 1484 */ 1485 vallen = ntohl(ep->vallen); 1486 if ( vallen == 0 1487 || vallen > MAX_VALLEN) 1488 return (XEVNT_LEN); 1489 1490 i = (vallen + 3) / 4; 1491 siglen = ntohl(ep->pkt[i]); 1492 ++i; 1493 if ( siglen > MAX_VALLEN 1494 || len - VALUE_LEN < ((vallen + 3) / 4) * 4 1495 || len - VALUE_LEN - ((vallen + 3) / 4) * 4 1496 < ((siglen + 3) / 4) * 4) 1497 return (XEVNT_LEN); 1498 1499 /* 1500 * Check for valid timestamp and filestamp. If the timestamp is 1501 * zero, the sender is not synchronized and signatures are 1502 * not possible. If nonzero the timestamp must not precede the 1503 * filestamp. The timestamp and filestamp must not precede the 1504 * corresponding values in the value structure, if present. 1505 */ 1506 tstamp = ntohl(ep->tstamp); 1507 fstamp = ntohl(ep->fstamp); 1508 if (tstamp == 0) 1509 return (XEVNT_TSP); 1510 1511 if (tstamp < fstamp) 1512 return (XEVNT_TSP); 1513 1514 if (vp != NULL) { 1515 tstamp1 = ntohl(vp->tstamp); 1516 fstamp1 = ntohl(vp->fstamp); 1517 if (tstamp1 != 0 && fstamp1 != 0) { 1518 if (tstamp < tstamp1) 1519 return (XEVNT_TSP); 1520 1521 if ((tstamp < fstamp1 || fstamp < fstamp1)) 1522 return (XEVNT_FSP); 1523 } 1524 } 1525 1526 /* 1527 * At the time the certificate message is validated, the public 1528 * key in the message is not available. Thus, don't try to 1529 * verify the signature. 1530 */ 1531 if (opcode == (CRYPTO_CERT | CRYPTO_RESP)) 1532 return (XEVNT_OK); 1533 1534 /* 1535 * Check for valid signature length, public key and digest 1536 * algorithm. 1537 */ 1538 if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV) 1539 pkey = sign_pkey; 1540 else 1541 pkey = peer->pkey; 1542 if (siglen == 0 || pkey == NULL || peer->digest == NULL) 1543 return (XEVNT_ERR); 1544 1545 if (siglen != (u_int)EVP_PKEY_size(pkey)) 1546 return (XEVNT_SGL); 1547 1548 /* 1549 * Darn, I thought we would never get here. Verify the 1550 * signature. If the identity exchange is verified, light the 1551 * proventic bit. What a relief. 1552 */ 1553 ctx = EVP_MD_CTX_new(); 1554 EVP_VerifyInit(ctx, peer->digest); 1555 /* XXX: the "+ 12" needs to be at least documented... */ 1556 EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen + 12); 1557 if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen, 1558 pkey) <= 0) { 1559 EVP_MD_CTX_free(ctx); 1560 return (XEVNT_SIG); 1561 } 1562 EVP_MD_CTX_free(ctx); 1563 1564 if (peer->crypto & CRYPTO_FLAG_VRFY) 1565 peer->crypto |= CRYPTO_FLAG_PROV; 1566 return (XEVNT_OK); 1567 } 1568 1569 1570 /* 1571 * crypto_encrypt - construct vp (encrypted cookie and signature) from 1572 * the public key and cookie. 1573 * 1574 * Returns: 1575 * XEVNT_OK success 1576 * XEVNT_CKY bad or missing cookie 1577 * XEVNT_PUB bad or missing public key 1578 */ 1579 static int 1580 crypto_encrypt( 1581 const u_char *ptr, /* Public Key */ 1582 u_int vallen, /* Length of Public Key */ 1583 keyid_t *cookie, /* server cookie */ 1584 struct value *vp /* value pointer */ 1585 ) 1586 { 1587 EVP_PKEY *pkey; /* public key */ 1588 EVP_MD_CTX *ctx; /* signature context */ 1589 tstamp_t tstamp; /* NTP timestamp */ 1590 u_int32 temp32; 1591 u_char *puch; 1592 1593 /* 1594 * Extract the public key from the request. 1595 */ 1596 pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen); 1597 if (pkey == NULL) { 1598 msyslog(LOG_ERR, "crypto_encrypt: %s", 1599 ERR_error_string(ERR_get_error(), NULL)); 1600 return (XEVNT_PUB); 1601 } 1602 1603 /* 1604 * Encrypt the cookie, encode in ASN.1 and sign. 1605 */ 1606 memset(vp, 0, sizeof(struct value)); 1607 tstamp = crypto_time(); 1608 vp->tstamp = htonl(tstamp); 1609 vp->fstamp = hostval.tstamp; 1610 vallen = EVP_PKEY_size(pkey); 1611 vp->vallen = htonl(vallen); 1612 vp->ptr = emalloc(vallen); 1613 puch = vp->ptr; 1614 temp32 = htonl(*cookie); 1615 if (RSA_public_encrypt(4, (u_char *)&temp32, puch, 1616 EVP_PKEY_get0_RSA(pkey), RSA_PKCS1_OAEP_PADDING) <= 0) { 1617 msyslog(LOG_ERR, "crypto_encrypt: %s", 1618 ERR_error_string(ERR_get_error(), NULL)); 1619 free(vp->ptr); 1620 EVP_PKEY_free(pkey); 1621 return (XEVNT_CKY); 1622 } 1623 EVP_PKEY_free(pkey); 1624 if (tstamp == 0) 1625 return (XEVNT_OK); 1626 1627 vp->sig = emalloc(sign_siglen); 1628 ctx = EVP_MD_CTX_new(); 1629 EVP_SignInit(ctx, sign_digest); 1630 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 1631 EVP_SignUpdate(ctx, vp->ptr, vallen); 1632 if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) { 1633 INSIST(vallen <= sign_siglen); 1634 vp->siglen = htonl(vallen); 1635 } 1636 EVP_MD_CTX_free(ctx); 1637 return (XEVNT_OK); 1638 } 1639 1640 1641 /* 1642 * crypto_ident - construct extension field for identity scheme 1643 * 1644 * This routine determines which identity scheme is in use and 1645 * constructs an extension field for that scheme. 1646 * 1647 * Returns 1648 * CRYTPO_IFF IFF scheme 1649 * CRYPTO_GQ GQ scheme 1650 * CRYPTO_MV MV scheme 1651 * CRYPTO_NULL no available scheme 1652 */ 1653 u_int 1654 crypto_ident( 1655 struct peer *peer /* peer structure pointer */ 1656 ) 1657 { 1658 char filename[MAXFILENAME]; 1659 const char * scheme_name; 1660 u_int scheme_id; 1661 1662 /* 1663 * We come here after the group trusted host has been found; its 1664 * name defines the group name. Search the key cache for all 1665 * keys matching the same group name in order IFF, GQ and MV. 1666 * Use the first one available. 1667 */ 1668 scheme_name = NULL; 1669 if (peer->crypto & CRYPTO_FLAG_IFF) { 1670 scheme_name = "iff"; 1671 scheme_id = CRYPTO_IFF; 1672 } else if (peer->crypto & CRYPTO_FLAG_GQ) { 1673 scheme_name = "gq"; 1674 scheme_id = CRYPTO_GQ; 1675 } else if (peer->crypto & CRYPTO_FLAG_MV) { 1676 scheme_name = "mv"; 1677 scheme_id = CRYPTO_MV; 1678 } 1679 1680 if (scheme_name != NULL) { 1681 snprintf(filename, sizeof(filename), "ntpkey_%spar_%s", 1682 scheme_name, peer->ident); 1683 peer->ident_pkey = crypto_key(filename, NULL, 1684 &peer->srcadr); 1685 if (peer->ident_pkey != NULL) 1686 return scheme_id; 1687 } 1688 1689 msyslog(LOG_NOTICE, 1690 "crypto_ident: no identity parameters found for group %s", 1691 peer->ident); 1692 1693 return CRYPTO_NULL; 1694 } 1695 1696 1697 /* 1698 * crypto_args - construct extension field from arguments 1699 * 1700 * This routine creates an extension field with current timestamps and 1701 * specified opcode, association ID and optional string. Note that the 1702 * extension field is created here, but freed after the crypto_xmit() 1703 * call in the protocol module. 1704 * 1705 * Returns extension field pointer (no errors) 1706 * 1707 * XXX: opcode and len should really be 32-bit quantities and 1708 * we should make sure that str is not too big. 1709 */ 1710 struct exten * 1711 crypto_args( 1712 struct peer *peer, /* peer structure pointer */ 1713 u_int opcode, /* operation code */ 1714 associd_t associd, /* association ID */ 1715 char *str /* argument string */ 1716 ) 1717 { 1718 tstamp_t tstamp; /* NTP timestamp */ 1719 struct exten *ep; /* extension field pointer */ 1720 u_int len; /* extension field length */ 1721 size_t slen = 0; 1722 1723 tstamp = crypto_time(); 1724 len = sizeof(struct exten); 1725 if (str != NULL) { 1726 slen = strlen(str); 1727 INSIST(slen < MAX_VALLEN); 1728 len += slen; 1729 } 1730 ep = emalloc_zero(len); 1731 if (opcode == 0) 1732 return (ep); 1733 1734 REQUIRE(0 == (len & ~0x0000ffff)); 1735 REQUIRE(0 == (opcode & ~0xffff0000)); 1736 1737 ep->opcode = htonl(opcode + len); 1738 ep->associd = htonl(associd); 1739 ep->tstamp = htonl(tstamp); 1740 ep->fstamp = hostval.tstamp; 1741 ep->vallen = 0; 1742 if (str != NULL) { 1743 ep->vallen = htonl(slen); 1744 memcpy((char *)ep->pkt, str, slen); 1745 } 1746 return (ep); 1747 } 1748 1749 1750 /* 1751 * crypto_send - construct extension field from value components 1752 * 1753 * The value and signature fields are zero-padded to a word boundary. 1754 * Note: it is not polite to send a nonempty signature with zero 1755 * timestamp or a nonzero timestamp with an empty signature, but those 1756 * rules are not enforced here. 1757 * 1758 * XXX This code won't work on a box with 16-bit ints. 1759 */ 1760 int 1761 crypto_send( 1762 struct exten *ep, /* extension field pointer */ 1763 struct value *vp, /* value pointer */ 1764 int start /* buffer offset */ 1765 ) 1766 { 1767 u_int len, vallen, siglen, opcode; 1768 u_int i, j; 1769 1770 /* 1771 * Calculate extension field length and check for buffer 1772 * overflow. Leave room for the MAC. 1773 */ 1774 len = 16; /* XXX Document! */ 1775 vallen = ntohl(vp->vallen); 1776 INSIST(vallen <= MAX_VALLEN); 1777 len += ((vallen + 3) / 4 + 1) * 4; 1778 siglen = ntohl(vp->siglen); 1779 len += ((siglen + 3) / 4 + 1) * 4; 1780 if (start + len > sizeof(struct pkt) - MAX_MAC_LEN) 1781 return (0); 1782 1783 /* 1784 * Copy timestamps. 1785 */ 1786 ep->tstamp = vp->tstamp; 1787 ep->fstamp = vp->fstamp; 1788 ep->vallen = vp->vallen; 1789 1790 /* 1791 * Copy value. If the data field is empty or zero length, 1792 * encode an empty value with length zero. 1793 */ 1794 i = 0; 1795 if (vallen > 0 && vp->ptr != NULL) { 1796 j = vallen / 4; 1797 if (j * 4 < vallen) 1798 ep->pkt[i + j++] = 0; 1799 memcpy(&ep->pkt[i], vp->ptr, vallen); 1800 i += j; 1801 } 1802 1803 /* 1804 * Copy signature. If the signature field is empty or zero 1805 * length, encode an empty signature with length zero. 1806 */ 1807 ep->pkt[i++] = vp->siglen; 1808 if (siglen > 0 && vp->sig != NULL) { 1809 j = siglen / 4; 1810 if (j * 4 < siglen) 1811 ep->pkt[i + j++] = 0; 1812 memcpy(&ep->pkt[i], vp->sig, siglen); 1813 /* i += j; */ /* We don't use i after this */ 1814 } 1815 opcode = ntohl(ep->opcode); 1816 ep->opcode = htonl((opcode & 0xffff0000) | len); 1817 ENSURE(len <= MAX_VALLEN); 1818 return (len); 1819 } 1820 1821 1822 /* 1823 * crypto_update - compute new public value and sign extension fields 1824 * 1825 * This routine runs periodically, like once a day, and when something 1826 * changes. It updates the timestamps on three value structures and one 1827 * value structure list, then signs all the structures: 1828 * 1829 * hostval host name (not signed) 1830 * pubkey public key 1831 * cinfo certificate info/value list 1832 * tai_leap leap values 1833 * 1834 * Filestamps are proventic data, so this routine runs only when the 1835 * host is synchronized to a proventicated source. Thus, the timestamp 1836 * is proventic and can be used to deflect clogging attacks. 1837 * 1838 * Returns void (no errors) 1839 */ 1840 void 1841 crypto_update(void) 1842 { 1843 EVP_MD_CTX *ctx; /* message digest context */ 1844 struct cert_info *cp; /* certificate info/value */ 1845 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1846 u_int32 *ptr; 1847 u_int len; 1848 leap_result_t leap_data; 1849 1850 hostval.tstamp = htonl(crypto_time()); 1851 if (hostval.tstamp == 0) 1852 return; 1853 1854 ctx = EVP_MD_CTX_new(); 1855 1856 /* 1857 * Sign public key and timestamps. The filestamp is derived from 1858 * the host key file extension from wherever the file was 1859 * generated. 1860 */ 1861 if (pubkey.vallen != 0) { 1862 pubkey.tstamp = hostval.tstamp; 1863 pubkey.siglen = 0; 1864 if (pubkey.sig == NULL) 1865 pubkey.sig = emalloc(sign_siglen); 1866 EVP_SignInit(ctx, sign_digest); 1867 EVP_SignUpdate(ctx, (u_char *)&pubkey, 12); 1868 EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen)); 1869 if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) { 1870 INSIST(len <= sign_siglen); 1871 pubkey.siglen = htonl(len); 1872 } 1873 } 1874 1875 /* 1876 * Sign certificates and timestamps. The filestamp is derived 1877 * from the certificate file extension from wherever the file 1878 * was generated. Note we do not throw expired certificates 1879 * away; they may have signed younger ones. 1880 */ 1881 for (cp = cinfo; cp != NULL; cp = cp->link) { 1882 cp->cert.tstamp = hostval.tstamp; 1883 cp->cert.siglen = 0; 1884 if (cp->cert.sig == NULL) 1885 cp->cert.sig = emalloc(sign_siglen); 1886 EVP_SignInit(ctx, sign_digest); 1887 EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12); 1888 EVP_SignUpdate(ctx, cp->cert.ptr, 1889 ntohl(cp->cert.vallen)); 1890 if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) { 1891 INSIST(len <= sign_siglen); 1892 cp->cert.siglen = htonl(len); 1893 } 1894 } 1895 1896 /* 1897 * Sign leapseconds values and timestamps. Note it is not an 1898 * error to return null values. 1899 */ 1900 tai_leap.tstamp = hostval.tstamp; 1901 tai_leap.fstamp = hostval.fstamp; 1902 1903 /* Get the leap second era. We might need a full lookup early 1904 * after start, when the cache is not yet loaded. 1905 */ 1906 leapsec_frame(&leap_data); 1907 if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) { 1908 time_t now = time(NULL); 1909 uint32_t nowntp = (uint32_t)now + JAN_1970; 1910 leapsec_query(&leap_data, nowntp, &now); 1911 } 1912 1913 /* Create the data block. The protocol does not work without. */ 1914 len = 3 * sizeof(u_int32); 1915 if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) { 1916 free(tai_leap.ptr); 1917 tai_leap.ptr = emalloc(len); 1918 tai_leap.vallen = htonl(len); 1919 } 1920 ptr = (u_int32 *)tai_leap.ptr; 1921 if (leap_data.tai_offs > 10) { 1922 /* create a TAI / leap era block. The end time is a 1923 * fake -- maybe we can do better. 1924 */ 1925 ptr[0] = htonl(leap_data.tai_offs); 1926 ptr[1] = htonl(leap_data.ebase.d_s.lo); 1927 if (leap_data.ttime.d_s.hi >= 0) 1928 ptr[2] = htonl(leap_data.ttime.D_s.lo + 7*86400); 1929 else 1930 ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400); 1931 } else { 1932 /* no leap era available */ 1933 memset(ptr, 0, len); 1934 } 1935 if (tai_leap.sig == NULL) 1936 tai_leap.sig = emalloc(sign_siglen); 1937 EVP_SignInit(ctx, sign_digest); 1938 EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12); 1939 EVP_SignUpdate(ctx, tai_leap.ptr, len); 1940 if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) { 1941 INSIST(len <= sign_siglen); 1942 tai_leap.siglen = htonl(len); 1943 } 1944 crypto_flags |= CRYPTO_FLAG_TAI; 1945 1946 snprintf(statstr, sizeof(statstr), "signature update ts %u", 1947 ntohl(hostval.tstamp)); 1948 record_crypto_stats(NULL, statstr); 1949 DPRINTF(1, ("crypto_update: %s\n", statstr)); 1950 EVP_MD_CTX_free(ctx); 1951 } 1952 1953 /* 1954 * crypto_update_taichange - eventually trigger crypto_update 1955 * 1956 * This is called when a change in 'sys_tai' is detected. This will 1957 * happen shortly after a leap second is detected, but unhappily also 1958 * early after system start; also, the crypto stuff might be unused and 1959 * an unguarded call to crypto_update() causes a crash. 1960 * 1961 * This function makes sure that there already *is* a valid crypto block 1962 * for the use with autokey, and only calls 'crypto_update()' if it can 1963 * succeed. 1964 * 1965 * Returns void (no errors) 1966 */ 1967 void 1968 crypto_update_taichange(void) 1969 { 1970 static const u_int len = 3 * sizeof(u_int32); 1971 1972 /* check if the signing digest algo is available */ 1973 if (sign_digest == NULL || sign_pkey == NULL) 1974 return; 1975 1976 /* check size of TAI extension block */ 1977 if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) 1978 return; 1979 1980 /* crypto_update should at least not crash here! */ 1981 crypto_update(); 1982 } 1983 1984 /* 1985 * value_free - free value structure components. 1986 * 1987 * Returns void (no errors) 1988 */ 1989 void 1990 value_free( 1991 struct value *vp /* value structure */ 1992 ) 1993 { 1994 if (vp->ptr != NULL) 1995 free(vp->ptr); 1996 if (vp->sig != NULL) 1997 free(vp->sig); 1998 memset(vp, 0, sizeof(struct value)); 1999 } 2000 2001 2002 /* 2003 * crypto_time - returns current NTP time. 2004 * 2005 * Returns NTP seconds if in synch, 0 otherwise 2006 */ 2007 tstamp_t 2008 crypto_time() 2009 { 2010 l_fp tstamp; /* NTP time */ 2011 2012 L_CLR(&tstamp); 2013 if (sys_leap != LEAP_NOTINSYNC) 2014 get_systime(&tstamp); 2015 return (tstamp.l_ui); 2016 } 2017 2018 2019 /* 2020 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar. 2021 * 2022 */ 2023 static 2024 void 2025 asn_to_calendar ( 2026 const ASN1_TIME *asn1time, /* pointer to ASN1_TIME structure */ 2027 struct calendar *pjd /* pointer to result */ 2028 ) 2029 { 2030 size_t len; /* length of ASN1_TIME string */ 2031 char v[24]; /* writable copy of ASN1_TIME string */ 2032 unsigned long temp; /* result from strtoul */ 2033 2034 /* 2035 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure. 2036 * Or YYYYMMDDHHMMSSZ. 2037 * Note that the YY, MM, DD fields start with one, the HH, MM, 2038 * SS fields start with zero and the Z character is ignored. 2039 * Also note that two-digit years less than 50 map to years greater than 2040 * 100. Dontcha love ASN.1? Better than MIL-188. 2041 */ 2042 len = asn1time->length; 2043 REQUIRE(len < sizeof(v)); 2044 (void)strncpy(v, (char *)(asn1time->data), len); 2045 REQUIRE(len >= 13); 2046 temp = strtoul(v+len-3, NULL, 10); 2047 pjd->second = temp; 2048 v[len-3] = '\0'; 2049 2050 temp = strtoul(v+len-5, NULL, 10); 2051 pjd->minute = temp; 2052 v[len-5] = '\0'; 2053 2054 temp = strtoul(v+len-7, NULL, 10); 2055 pjd->hour = temp; 2056 v[len-7] = '\0'; 2057 2058 temp = strtoul(v+len-9, NULL, 10); 2059 pjd->monthday = temp; 2060 v[len-9] = '\0'; 2061 2062 temp = strtoul(v+len-11, NULL, 10); 2063 pjd->month = temp; 2064 v[len-11] = '\0'; 2065 2066 temp = strtoul(v, NULL, 10); 2067 /* handle two-digit years */ 2068 if (temp < 50UL) 2069 temp += 100UL; 2070 if (temp < 150UL) 2071 temp += 1900UL; 2072 pjd->year = temp; 2073 2074 pjd->yearday = pjd->weekday = 0; 2075 return; 2076 } 2077 2078 2079 /* 2080 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number. 2081 * 2082 * Returns void (no errors) 2083 */ 2084 static void 2085 bighash( 2086 BIGNUM *bn, /* BIGNUM * from */ 2087 BIGNUM *bk /* BIGNUM * to */ 2088 ) 2089 { 2090 EVP_MD_CTX *ctx; /* message digest context */ 2091 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 2092 u_char *ptr; /* a BIGNUM as binary string */ 2093 u_int len; 2094 2095 len = BN_num_bytes(bn); 2096 ptr = emalloc(len); 2097 BN_bn2bin(bn, ptr); 2098 ctx = EVP_MD_CTX_new(); 2099 # if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) 2100 /* [Bug 3457] set flags and don't kill them again */ 2101 EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 2102 EVP_DigestInit_ex(ctx, EVP_md5(), NULL); 2103 # else 2104 EVP_DigestInit(ctx, EVP_md5()); 2105 # endif 2106 EVP_DigestUpdate(ctx, ptr, len); 2107 EVP_DigestFinal(ctx, dgst, &len); 2108 EVP_MD_CTX_free(ctx); 2109 BN_bin2bn(dgst, len, bk); 2110 free(ptr); 2111 } 2112 2113 2114 /* 2115 *********************************************************************** 2116 * * 2117 * The following routines implement the Schnorr (IFF) identity scheme * 2118 * * 2119 *********************************************************************** 2120 * 2121 * The Schnorr (IFF) identity scheme is intended for use when 2122 * certificates are generated by some other trusted certificate 2123 * authority and the certificate cannot be used to convey public 2124 * parameters. There are two kinds of files: encrypted server files that 2125 * contain private and public values and nonencrypted client files that 2126 * contain only public values. New generations of server files must be 2127 * securely transmitted to all servers of the group; client files can be 2128 * distributed by any means. The scheme is self contained and 2129 * independent of new generations of host keys, sign keys and 2130 * certificates. 2131 * 2132 * The IFF values hide in a DSA cuckoo structure which uses the same 2133 * parameters. The values are used by an identity scheme based on DSA 2134 * cryptography and described in Stimson p. 285. The p is a 512-bit 2135 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 2136 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 2137 * private random group key b (0 < b < q) and public key v = g^b, then 2138 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 2139 * Alice challenges Bob to confirm identity using the protocol described 2140 * below. 2141 * 2142 * How it works 2143 * 2144 * The scheme goes like this. Both Alice and Bob have the public primes 2145 * p, q and generator g. The TA gives private key b to Bob and public 2146 * key v to Alice. 2147 * 2148 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 2149 * the IFF request message. Bob rolls new random k (0 < k < q), then 2150 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 2151 * to Alice in the response message. Besides making the response 2152 * shorter, the hash makes it effectivey impossible for an intruder to 2153 * solve for b by observing a number of these messages. 2154 * 2155 * Alice receives the response and computes g^y v^r mod p. After a bit 2156 * of algebra, this simplifies to g^k. If the hash of this result 2157 * matches hash(x), Alice knows that Bob has the group key b. The signed 2158 * response binds this knowledge to Bob's private key and the public key 2159 * previously received in his certificate. 2160 * 2161 * crypto_alice - construct Alice's challenge in IFF scheme 2162 * 2163 * Returns 2164 * XEVNT_OK success 2165 * XEVNT_ID bad or missing group key 2166 * XEVNT_PUB bad or missing public key 2167 */ 2168 static int 2169 crypto_alice( 2170 struct peer *peer, /* peer pointer */ 2171 struct value *vp /* value pointer */ 2172 ) 2173 { 2174 DSA *dsa; /* IFF parameters */ 2175 BN_CTX *bctx; /* BIGNUM context */ 2176 EVP_MD_CTX *ctx; /* signature context */ 2177 tstamp_t tstamp; 2178 u_int len; 2179 const BIGNUM *q; 2180 2181 /* 2182 * The identity parameters must have correct format and content. 2183 */ 2184 if (peer->ident_pkey == NULL) { 2185 msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable"); 2186 return (XEVNT_ID); 2187 } 2188 2189 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2190 msyslog(LOG_NOTICE, "crypto_alice: defective key"); 2191 return (XEVNT_PUB); 2192 } 2193 2194 /* 2195 * Roll new random r (0 < r < q). 2196 */ 2197 if (peer->iffval != NULL) 2198 BN_free(peer->iffval); 2199 peer->iffval = BN_new(); 2200 DSA_get0_pqg(dsa, NULL, &q, NULL); 2201 len = BN_num_bytes(q); 2202 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod q*/ 2203 bctx = BN_CTX_new(); 2204 BN_mod(peer->iffval, peer->iffval, q, bctx); 2205 BN_CTX_free(bctx); 2206 2207 /* 2208 * Sign and send to Bob. The filestamp is from the local file. 2209 */ 2210 memset(vp, 0, sizeof(struct value)); 2211 tstamp = crypto_time(); 2212 vp->tstamp = htonl(tstamp); 2213 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2214 vp->vallen = htonl(len); 2215 vp->ptr = emalloc(len); 2216 BN_bn2bin(peer->iffval, vp->ptr); 2217 if (tstamp == 0) 2218 return (XEVNT_OK); 2219 2220 vp->sig = emalloc(sign_siglen); 2221 ctx = EVP_MD_CTX_new(); 2222 EVP_SignInit(ctx, sign_digest); 2223 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2224 EVP_SignUpdate(ctx, vp->ptr, len); 2225 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2226 INSIST(len <= sign_siglen); 2227 vp->siglen = htonl(len); 2228 } 2229 EVP_MD_CTX_free(ctx); 2230 return (XEVNT_OK); 2231 } 2232 2233 2234 /* 2235 * crypto_bob - construct Bob's response to Alice's challenge 2236 * 2237 * Returns 2238 * XEVNT_OK success 2239 * XEVNT_ERR protocol error 2240 * XEVNT_ID bad or missing group key 2241 */ 2242 static int 2243 crypto_bob( 2244 struct exten *ep, /* extension pointer */ 2245 struct value *vp /* value pointer */ 2246 ) 2247 { 2248 DSA *dsa; /* IFF parameters */ 2249 DSA_SIG *sdsa; /* DSA signature context fake */ 2250 BN_CTX *bctx; /* BIGNUM context */ 2251 EVP_MD_CTX *ctx; /* signature context */ 2252 tstamp_t tstamp; /* NTP timestamp */ 2253 BIGNUM *bn, *bk, *r; 2254 u_char *ptr; 2255 u_int len; /* extension field value length */ 2256 const BIGNUM *p, *q, *g; 2257 const BIGNUM *priv_key; 2258 2259 /* 2260 * If the IFF parameters are not valid, something awful 2261 * happened or we are being tormented. 2262 */ 2263 if (iffkey_info == NULL) { 2264 msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable"); 2265 return (XEVNT_ID); 2266 } 2267 dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey); 2268 DSA_get0_pqg(dsa, &p, &q, &g); 2269 DSA_get0_key(dsa, NULL, &priv_key); 2270 2271 /* 2272 * Extract r from the challenge. 2273 */ 2274 len = exten_payload_size(ep); 2275 if (len == 0 || len > MAX_VALLEN) 2276 return (XEVNT_LEN); 2277 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2278 msyslog(LOG_ERR, "crypto_bob: %s", 2279 ERR_error_string(ERR_get_error(), NULL)); 2280 return (XEVNT_ERR); 2281 } 2282 2283 /* 2284 * Bob rolls random k (0 < k < q), computes y = k + b r mod q 2285 * and x = g^k mod p, then sends (y, hash(x)) to Alice. 2286 */ 2287 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2288 sdsa = DSA_SIG_new(); 2289 BN_rand(bk, len * 8, -1, 1); /* k */ 2290 BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */ 2291 BN_add(bn, bn, bk); 2292 BN_mod(bn, bn, q, bctx); /* k + b r mod q */ 2293 BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */ 2294 bighash(bk, bk); 2295 DSA_SIG_set0(sdsa, bn, bk); 2296 BN_CTX_free(bctx); 2297 BN_free(r); 2298 #ifdef DEBUG 2299 if (debug > 1) 2300 DSA_print_fp(stdout, dsa, 0); 2301 #endif 2302 2303 /* 2304 * Encode the values in ASN.1 and sign. The filestamp is from 2305 * the local file. 2306 */ 2307 len = i2d_DSA_SIG(sdsa, NULL); 2308 if (len == 0) { 2309 msyslog(LOG_ERR, "crypto_bob: %s", 2310 ERR_error_string(ERR_get_error(), NULL)); 2311 DSA_SIG_free(sdsa); 2312 return (XEVNT_ERR); 2313 } 2314 if (len > MAX_VALLEN) { 2315 msyslog(LOG_ERR, "crypto_bob: signature is too big: %u", 2316 len); 2317 DSA_SIG_free(sdsa); 2318 return (XEVNT_LEN); 2319 } 2320 memset(vp, 0, sizeof(struct value)); 2321 tstamp = crypto_time(); 2322 vp->tstamp = htonl(tstamp); 2323 vp->fstamp = htonl(iffkey_info->fstamp); 2324 vp->vallen = htonl(len); 2325 ptr = emalloc(len); 2326 vp->ptr = ptr; 2327 i2d_DSA_SIG(sdsa, &ptr); 2328 DSA_SIG_free(sdsa); 2329 if (tstamp == 0) 2330 return (XEVNT_OK); 2331 2332 /* XXX: more validation to make sure the sign fits... */ 2333 vp->sig = emalloc(sign_siglen); 2334 ctx = EVP_MD_CTX_new(); 2335 EVP_SignInit(ctx, sign_digest); 2336 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2337 EVP_SignUpdate(ctx, vp->ptr, len); 2338 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2339 INSIST(len <= sign_siglen); 2340 vp->siglen = htonl(len); 2341 } 2342 EVP_MD_CTX_free(ctx); 2343 return (XEVNT_OK); 2344 } 2345 2346 2347 /* 2348 * crypto_iff - verify Bob's response to Alice's challenge 2349 * 2350 * Returns 2351 * XEVNT_OK success 2352 * XEVNT_FSP bad filestamp 2353 * XEVNT_ID bad or missing group key 2354 * XEVNT_PUB bad or missing public key 2355 */ 2356 int 2357 crypto_iff( 2358 struct exten *ep, /* extension pointer */ 2359 struct peer *peer /* peer structure pointer */ 2360 ) 2361 { 2362 DSA *dsa; /* IFF parameters */ 2363 BN_CTX *bctx; /* BIGNUM context */ 2364 DSA_SIG *sdsa; /* DSA parameters */ 2365 BIGNUM *bn, *bk; 2366 u_int len; 2367 const u_char *ptr; 2368 int temp; 2369 const BIGNUM *p, *g; 2370 const BIGNUM *r, *s; 2371 const BIGNUM *pub_key; 2372 2373 /* 2374 * If the IFF parameters are not valid or no challenge was sent, 2375 * something awful happened or we are being tormented. 2376 */ 2377 if (peer->ident_pkey == NULL) { 2378 msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable"); 2379 return (XEVNT_ID); 2380 } 2381 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2382 msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u", 2383 ntohl(ep->fstamp)); 2384 return (XEVNT_FSP); 2385 } 2386 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2387 msyslog(LOG_NOTICE, "crypto_iff: defective key"); 2388 return (XEVNT_PUB); 2389 } 2390 if (peer->iffval == NULL) { 2391 msyslog(LOG_NOTICE, "crypto_iff: missing challenge"); 2392 return (XEVNT_ID); 2393 } 2394 2395 /* 2396 * Extract the k + b r and g^k values from the response. 2397 */ 2398 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2399 len = ntohl(ep->vallen); 2400 ptr = (u_char *)ep->pkt; 2401 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2402 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2403 msyslog(LOG_ERR, "crypto_iff: %s", 2404 ERR_error_string(ERR_get_error(), NULL)); 2405 return (XEVNT_ERR); 2406 } 2407 2408 /* 2409 * Compute g^(k + b r) g^(q - b)r mod p. 2410 */ 2411 DSA_get0_key(dsa, &pub_key, NULL); 2412 DSA_get0_pqg(dsa, &p, NULL, &g); 2413 DSA_SIG_get0(sdsa, &r, &s); 2414 BN_mod_exp(bn, pub_key, peer->iffval, p, bctx); 2415 BN_mod_exp(bk, g, r, p, bctx); 2416 BN_mod_mul(bn, bn, bk, p, bctx); 2417 2418 /* 2419 * Verify the hash of the result matches hash(x). 2420 */ 2421 bighash(bn, bn); 2422 temp = BN_cmp(bn, s); 2423 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2424 BN_free(peer->iffval); 2425 peer->iffval = NULL; 2426 DSA_SIG_free(sdsa); 2427 if (temp == 0) 2428 return (XEVNT_OK); 2429 2430 msyslog(LOG_NOTICE, "crypto_iff: identity not verified"); 2431 return (XEVNT_ID); 2432 } 2433 2434 2435 /* 2436 *********************************************************************** 2437 * * 2438 * The following routines implement the Guillou-Quisquater (GQ) * 2439 * identity scheme * 2440 * * 2441 *********************************************************************** 2442 * 2443 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 2444 * the certificate can be used to convey public parameters. The scheme 2445 * uses a X509v3 certificate extension field do convey the public key of 2446 * a private key known only to servers. There are two kinds of files: 2447 * encrypted server files that contain private and public values and 2448 * nonencrypted client files that contain only public values. New 2449 * generations of server files must be securely transmitted to all 2450 * servers of the group; client files can be distributed by any means. 2451 * The scheme is self contained and independent of new generations of 2452 * host keys and sign keys. The scheme is self contained and independent 2453 * of new generations of host keys and sign keys. 2454 * 2455 * The GQ parameters hide in a RSA cuckoo structure which uses the same 2456 * parameters. The values are used by an identity scheme based on RSA 2457 * cryptography and described in Stimson p. 300 (with errors). The 512- 2458 * bit public modulus is n = p q, where p and q are secret large primes. 2459 * The TA rolls private random group key b as RSA exponent. These values 2460 * are known to all group members. 2461 * 2462 * When rolling new certificates, a server recomputes the private and 2463 * public keys. The private key u is a random roll, while the public key 2464 * is the inverse obscured by the group key v = (u^-1)^b. These values 2465 * replace the private and public keys normally generated by the RSA 2466 * scheme. Alice challenges Bob to confirm identity using the protocol 2467 * described below. 2468 * 2469 * How it works 2470 * 2471 * The scheme goes like this. Both Alice and Bob have the same modulus n 2472 * and some random b as the group key. These values are computed and 2473 * distributed in advance via secret means, although only the group key 2474 * b is truly secret. Each has a private random private key u and public 2475 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 2476 * can regenerate the key pair from time to time without affecting 2477 * operations. The public key is conveyed on the certificate in an 2478 * extension field; the private key is never revealed. 2479 * 2480 * Alice rolls new random challenge r and sends to Bob in the GQ 2481 * request message. Bob rolls new random k, then computes y = k u^r mod 2482 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 2483 * message. Besides making the response shorter, the hash makes it 2484 * effectivey impossible for an intruder to solve for b by observing 2485 * a number of these messages. 2486 * 2487 * Alice receives the response and computes y^b v^r mod n. After a bit 2488 * of algebra, this simplifies to k^b. If the hash of this result 2489 * matches hash(x), Alice knows that Bob has the group key b. The signed 2490 * response binds this knowledge to Bob's private key and the public key 2491 * previously received in his certificate. 2492 * 2493 * crypto_alice2 - construct Alice's challenge in GQ scheme 2494 * 2495 * Returns 2496 * XEVNT_OK success 2497 * XEVNT_ID bad or missing group key 2498 * XEVNT_PUB bad or missing public key 2499 */ 2500 static int 2501 crypto_alice2( 2502 struct peer *peer, /* peer pointer */ 2503 struct value *vp /* value pointer */ 2504 ) 2505 { 2506 RSA *rsa; /* GQ parameters */ 2507 BN_CTX *bctx; /* BIGNUM context */ 2508 EVP_MD_CTX *ctx; /* signature context */ 2509 tstamp_t tstamp; 2510 u_int len; 2511 const BIGNUM *n; 2512 2513 /* 2514 * The identity parameters must have correct format and content. 2515 */ 2516 if (peer->ident_pkey == NULL) 2517 return (XEVNT_ID); 2518 2519 if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) { 2520 msyslog(LOG_NOTICE, "crypto_alice2: defective key"); 2521 return (XEVNT_PUB); 2522 } 2523 2524 /* 2525 * Roll new random r (0 < r < n). 2526 */ 2527 if (peer->iffval != NULL) 2528 BN_free(peer->iffval); 2529 peer->iffval = BN_new(); 2530 RSA_get0_key(rsa, &n, NULL, NULL); 2531 len = BN_num_bytes(n); 2532 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */ 2533 bctx = BN_CTX_new(); 2534 BN_mod(peer->iffval, peer->iffval, n, bctx); 2535 BN_CTX_free(bctx); 2536 2537 /* 2538 * Sign and send to Bob. The filestamp is from the local file. 2539 */ 2540 memset(vp, 0, sizeof(struct value)); 2541 tstamp = crypto_time(); 2542 vp->tstamp = htonl(tstamp); 2543 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2544 vp->vallen = htonl(len); 2545 vp->ptr = emalloc(len); 2546 BN_bn2bin(peer->iffval, vp->ptr); 2547 if (tstamp == 0) 2548 return (XEVNT_OK); 2549 2550 vp->sig = emalloc(sign_siglen); 2551 ctx = EVP_MD_CTX_new(); 2552 EVP_SignInit(ctx, sign_digest); 2553 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2554 EVP_SignUpdate(ctx, vp->ptr, len); 2555 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2556 INSIST(len <= sign_siglen); 2557 vp->siglen = htonl(len); 2558 } 2559 EVP_MD_CTX_free(ctx); 2560 return (XEVNT_OK); 2561 } 2562 2563 2564 /* 2565 * crypto_bob2 - construct Bob's response to Alice's challenge 2566 * 2567 * Returns 2568 * XEVNT_OK success 2569 * XEVNT_ERR protocol error 2570 * XEVNT_ID bad or missing group key 2571 */ 2572 static int 2573 crypto_bob2( 2574 struct exten *ep, /* extension pointer */ 2575 struct value *vp /* value pointer */ 2576 ) 2577 { 2578 RSA *rsa; /* GQ parameters */ 2579 DSA_SIG *sdsa; /* DSA parameters */ 2580 BN_CTX *bctx; /* BIGNUM context */ 2581 EVP_MD_CTX *ctx; /* signature context */ 2582 tstamp_t tstamp; /* NTP timestamp */ 2583 BIGNUM *r, *k, *g, *y; 2584 u_char *ptr; 2585 u_int len; 2586 int s_len; 2587 const BIGNUM *n, *p, *e; 2588 2589 /* 2590 * If the GQ parameters are not valid, something awful 2591 * happened or we are being tormented. 2592 */ 2593 if (gqkey_info == NULL) { 2594 msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable"); 2595 return (XEVNT_ID); 2596 } 2597 rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey); 2598 RSA_get0_key(rsa, &n, &p, &e); 2599 2600 /* 2601 * Extract r from the challenge. 2602 */ 2603 len = exten_payload_size(ep); 2604 if (len == 0 || len > MAX_VALLEN) 2605 return (XEVNT_LEN); 2606 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2607 msyslog(LOG_ERR, "crypto_bob2: %s", 2608 ERR_error_string(ERR_get_error(), NULL)); 2609 return (XEVNT_ERR); 2610 } 2611 2612 /* 2613 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and 2614 * x = k^b mod n, then sends (y, hash(x)) to Alice. 2615 */ 2616 bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new(); 2617 sdsa = DSA_SIG_new(); 2618 BN_rand(k, len * 8, -1, 1); /* k */ 2619 BN_mod(k, k, n, bctx); 2620 BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */ 2621 BN_mod_mul(y, k, y, n, bctx); /* k u^r mod n */ 2622 BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */ 2623 bighash(g, g); 2624 DSA_SIG_set0(sdsa, y, g); 2625 BN_CTX_free(bctx); 2626 BN_free(r); BN_free(k); 2627 #ifdef DEBUG 2628 if (debug > 1) 2629 RSA_print_fp(stdout, rsa, 0); 2630 #endif 2631 2632 /* 2633 * Encode the values in ASN.1 and sign. The filestamp is from 2634 * the local file. 2635 */ 2636 len = s_len = i2d_DSA_SIG(sdsa, NULL); 2637 if (s_len <= 0) { 2638 msyslog(LOG_ERR, "crypto_bob2: %s", 2639 ERR_error_string(ERR_get_error(), NULL)); 2640 DSA_SIG_free(sdsa); 2641 return (XEVNT_ERR); 2642 } 2643 memset(vp, 0, sizeof(struct value)); 2644 tstamp = crypto_time(); 2645 vp->tstamp = htonl(tstamp); 2646 vp->fstamp = htonl(gqkey_info->fstamp); 2647 vp->vallen = htonl(len); 2648 ptr = emalloc(len); 2649 vp->ptr = ptr; 2650 i2d_DSA_SIG(sdsa, &ptr); 2651 DSA_SIG_free(sdsa); 2652 if (tstamp == 0) 2653 return (XEVNT_OK); 2654 2655 vp->sig = emalloc(sign_siglen); 2656 ctx = EVP_MD_CTX_new(); 2657 EVP_SignInit(ctx, sign_digest); 2658 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2659 EVP_SignUpdate(ctx, vp->ptr, len); 2660 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2661 INSIST(len <= sign_siglen); 2662 vp->siglen = htonl(len); 2663 } 2664 EVP_MD_CTX_free(ctx); 2665 return (XEVNT_OK); 2666 } 2667 2668 2669 /* 2670 * crypto_gq - verify Bob's response to Alice's challenge 2671 * 2672 * Returns 2673 * XEVNT_OK success 2674 * XEVNT_ERR protocol error 2675 * XEVNT_FSP bad filestamp 2676 * XEVNT_ID bad or missing group keys 2677 * XEVNT_PUB bad or missing public key 2678 */ 2679 int 2680 crypto_gq( 2681 struct exten *ep, /* extension pointer */ 2682 struct peer *peer /* peer structure pointer */ 2683 ) 2684 { 2685 RSA *rsa; /* GQ parameters */ 2686 BN_CTX *bctx; /* BIGNUM context */ 2687 DSA_SIG *sdsa; /* RSA signature context fake */ 2688 BIGNUM *y, *v; 2689 const u_char *ptr; 2690 long len; 2691 u_int temp; 2692 const BIGNUM *n, *e; 2693 const BIGNUM *r, *s; 2694 2695 /* 2696 * If the GQ parameters are not valid or no challenge was sent, 2697 * something awful happened or we are being tormented. Note that 2698 * the filestamp on the local key file can be greater than on 2699 * the remote parameter file if the keys have been refreshed. 2700 */ 2701 if (peer->ident_pkey == NULL) { 2702 msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable"); 2703 return (XEVNT_ID); 2704 } 2705 if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) { 2706 msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u", 2707 ntohl(ep->fstamp)); 2708 return (XEVNT_FSP); 2709 } 2710 if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) { 2711 msyslog(LOG_NOTICE, "crypto_gq: defective key"); 2712 return (XEVNT_PUB); 2713 } 2714 RSA_get0_key(rsa, &n, NULL, &e); 2715 if (peer->iffval == NULL) { 2716 msyslog(LOG_NOTICE, "crypto_gq: missing challenge"); 2717 return (XEVNT_ID); 2718 } 2719 2720 /* 2721 * Extract the y = k u^r and hash(x = k^b) values from the 2722 * response. 2723 */ 2724 bctx = BN_CTX_new(); y = BN_new(); v = BN_new(); 2725 len = ntohl(ep->vallen); 2726 ptr = (u_char *)ep->pkt; 2727 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2728 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2729 msyslog(LOG_ERR, "crypto_gq: %s", 2730 ERR_error_string(ERR_get_error(), NULL)); 2731 return (XEVNT_ERR); 2732 } 2733 DSA_SIG_get0(sdsa, &r, &s); 2734 2735 /* 2736 * Compute v^r y^b mod n. 2737 */ 2738 if (peer->grpkey == NULL) { 2739 msyslog(LOG_NOTICE, "crypto_gq: missing group key"); 2740 return (XEVNT_ID); 2741 } 2742 BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx); 2743 /* v^r mod n */ 2744 BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */ 2745 BN_mod_mul(y, v, y, n, bctx); /* v^r y^b mod n */ 2746 2747 /* 2748 * Verify the hash of the result matches hash(x). 2749 */ 2750 bighash(y, y); 2751 temp = BN_cmp(y, s); 2752 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2753 BN_free(peer->iffval); 2754 peer->iffval = NULL; 2755 DSA_SIG_free(sdsa); 2756 if (temp == 0) 2757 return (XEVNT_OK); 2758 2759 msyslog(LOG_NOTICE, "crypto_gq: identity not verified"); 2760 return (XEVNT_ID); 2761 } 2762 2763 2764 /* 2765 *********************************************************************** 2766 * * 2767 * The following routines implement the Mu-Varadharajan (MV) identity * 2768 * scheme * 2769 * * 2770 *********************************************************************** 2771 * 2772 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 2773 * servers broadcast messages to clients, but clients never send 2774 * messages to servers. There is one encryption key for the server and a 2775 * separate decryption key for each client. It operated something like a 2776 * pay-per-view satellite broadcasting system where the session key is 2777 * encrypted by the broadcaster and the decryption keys are held in a 2778 * tamperproof set-top box. 2779 * 2780 * The MV parameters and private encryption key hide in a DSA cuckoo 2781 * structure which uses the same parameters, but generated in a 2782 * different way. The values are used in an encryption scheme similar to 2783 * El Gamal cryptography and a polynomial formed from the expansion of 2784 * product terms (x - x[j]), as described in Mu, Y., and V. 2785 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 2786 * 223-231. The paper has significant errors and serious omissions. 2787 * 2788 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 2789 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 2790 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 2791 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 2792 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 2793 * project into Zp* as exponents of g. Sometimes we have to compute an 2794 * inverse b^-1 of random b in Zq, but for that purpose we require 2795 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 2796 * relatively small, like 30. These are the parameters of the scheme and 2797 * they are expensive to compute. 2798 * 2799 * We set up an instance of the scheme as follows. A set of random 2800 * values x[j] mod q (j = 1...n), are generated as the zeros of a 2801 * polynomial of order n. The product terms (x - x[j]) are expanded to 2802 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 2803 * used as exponents of the generator g mod p to generate the private 2804 * encryption key A. The pair (gbar, ghat) of public server keys and the 2805 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 2806 * to construct the decryption keys. The devil is in the details. 2807 * 2808 * This routine generates a private server encryption file including the 2809 * private encryption key E and partial decryption keys gbar and ghat. 2810 * It then generates public client decryption files including the public 2811 * keys xbar[j] and xhat[j] for each client j. The partial decryption 2812 * files are used to compute the inverse of E. These values are suitably 2813 * blinded so secrets are not revealed. 2814 * 2815 * The distinguishing characteristic of this scheme is the capability to 2816 * revoke keys. Included in the calculation of E, gbar and ghat is the 2817 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 2818 * subsequently removed from the product and E, gbar and ghat 2819 * recomputed, the jth client will no longer be able to compute E^-1 and 2820 * thus unable to decrypt the messageblock. 2821 * 2822 * How it works 2823 * 2824 * The scheme goes like this. Bob has the server values (p, E, q, gbar, 2825 * ghat) and Alice has the client values (p, xbar, xhat). 2826 * 2827 * Alice rolls new random nonce r mod p and sends to Bob in the MV 2828 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 2829 * mod p and sends (y, gbar^k, ghat^k) to Alice. 2830 * 2831 * Alice receives the response and computes the inverse (E^k)^-1 from 2832 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 2833 * decrypts y and verifies it matches the original r. The signed 2834 * response binds this knowledge to Bob's private key and the public key 2835 * previously received in his certificate. 2836 * 2837 * crypto_alice3 - construct Alice's challenge in MV scheme 2838 * 2839 * Returns 2840 * XEVNT_OK success 2841 * XEVNT_ID bad or missing group key 2842 * XEVNT_PUB bad or missing public key 2843 */ 2844 static int 2845 crypto_alice3( 2846 struct peer *peer, /* peer pointer */ 2847 struct value *vp /* value pointer */ 2848 ) 2849 { 2850 DSA *dsa; /* MV parameters */ 2851 BN_CTX *bctx; /* BIGNUM context */ 2852 EVP_MD_CTX *ctx; /* signature context */ 2853 tstamp_t tstamp; 2854 u_int len; 2855 const BIGNUM *p; 2856 2857 /* 2858 * The identity parameters must have correct format and content. 2859 */ 2860 if (peer->ident_pkey == NULL) 2861 return (XEVNT_ID); 2862 2863 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 2864 msyslog(LOG_NOTICE, "crypto_alice3: defective key"); 2865 return (XEVNT_PUB); 2866 } 2867 DSA_get0_pqg(dsa, &p, NULL, NULL); 2868 2869 /* 2870 * Roll new random r (0 < r < q). 2871 */ 2872 if (peer->iffval != NULL) 2873 BN_free(peer->iffval); 2874 peer->iffval = BN_new(); 2875 len = BN_num_bytes(p); 2876 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod p */ 2877 bctx = BN_CTX_new(); 2878 BN_mod(peer->iffval, peer->iffval, p, bctx); 2879 BN_CTX_free(bctx); 2880 2881 /* 2882 * Sign and send to Bob. The filestamp is from the local file. 2883 */ 2884 memset(vp, 0, sizeof(struct value)); 2885 tstamp = crypto_time(); 2886 vp->tstamp = htonl(tstamp); 2887 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2888 vp->vallen = htonl(len); 2889 vp->ptr = emalloc(len); 2890 BN_bn2bin(peer->iffval, vp->ptr); 2891 if (tstamp == 0) 2892 return (XEVNT_OK); 2893 2894 vp->sig = emalloc(sign_siglen); 2895 ctx = EVP_MD_CTX_new(); 2896 EVP_SignInit(ctx, sign_digest); 2897 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 2898 EVP_SignUpdate(ctx, vp->ptr, len); 2899 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 2900 INSIST(len <= sign_siglen); 2901 vp->siglen = htonl(len); 2902 } 2903 EVP_MD_CTX_free(ctx); 2904 return (XEVNT_OK); 2905 } 2906 2907 2908 /* 2909 * crypto_bob3 - construct Bob's response to Alice's challenge 2910 * 2911 * Returns 2912 * XEVNT_OK success 2913 * XEVNT_ERR protocol error 2914 */ 2915 static int 2916 crypto_bob3( 2917 struct exten *ep, /* extension pointer */ 2918 struct value *vp /* value pointer */ 2919 ) 2920 { 2921 DSA *dsa; /* MV parameters */ 2922 DSA *sdsa; /* DSA signature context fake */ 2923 BN_CTX *bctx; /* BIGNUM context */ 2924 EVP_MD_CTX *ctx; /* signature context */ 2925 tstamp_t tstamp; /* NTP timestamp */ 2926 BIGNUM *r, *k, *u; 2927 u_char *ptr; 2928 u_int len; 2929 const BIGNUM *p, *q, *g; 2930 const BIGNUM *pub_key, *priv_key; 2931 BIGNUM *sp, *sq, *sg; 2932 2933 /* 2934 * If the MV parameters are not valid, something awful 2935 * happened or we are being tormented. 2936 */ 2937 if (mvkey_info == NULL) { 2938 msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable"); 2939 return (XEVNT_ID); 2940 } 2941 dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey); 2942 DSA_get0_pqg(dsa, &p, &q, &g); 2943 DSA_get0_key(dsa, &pub_key, &priv_key); 2944 2945 /* 2946 * Extract r from the challenge. 2947 */ 2948 len = exten_payload_size(ep); 2949 if (len == 0 || len > MAX_VALLEN) 2950 return (XEVNT_LEN); 2951 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2952 msyslog(LOG_ERR, "crypto_bob3: %s", 2953 ERR_error_string(ERR_get_error(), NULL)); 2954 return (XEVNT_ERR); 2955 } 2956 2957 /* 2958 * Bob rolls random k (0 < k < q), making sure it is not a 2959 * factor of q. He then computes y = r A^k and sends (y, gbar^k, 2960 * and ghat^k) to Alice. 2961 */ 2962 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); 2963 sdsa = DSA_new(); 2964 sp = BN_new(); sq = BN_new(); sg = BN_new(); 2965 while (1) { 2966 BN_rand(k, BN_num_bits(q), 0, 0); 2967 BN_mod(k, k, q, bctx); 2968 BN_gcd(u, k, q, bctx); 2969 if (BN_is_one(u)) 2970 break; 2971 } 2972 BN_mod_exp(u, g, k, p, bctx); /* A^k r */ 2973 BN_mod_mul(sp, u, r, p, bctx); 2974 BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */ 2975 BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */ 2976 DSA_set0_key(sdsa, BN_dup(pub_key), NULL); 2977 DSA_set0_pqg(sdsa, sp, sq, sg); 2978 BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u); 2979 #ifdef DEBUG 2980 if (debug > 1) 2981 DSA_print_fp(stdout, sdsa, 0); 2982 #endif 2983 2984 /* 2985 * Encode the values in ASN.1 and sign. The filestamp is from 2986 * the local file. 2987 */ 2988 memset(vp, 0, sizeof(struct value)); 2989 tstamp = crypto_time(); 2990 vp->tstamp = htonl(tstamp); 2991 vp->fstamp = htonl(mvkey_info->fstamp); 2992 len = i2d_DSAparams(sdsa, NULL); 2993 if (len == 0) { 2994 msyslog(LOG_ERR, "crypto_bob3: %s", 2995 ERR_error_string(ERR_get_error(), NULL)); 2996 DSA_free(sdsa); 2997 return (XEVNT_ERR); 2998 } 2999 vp->vallen = htonl(len); 3000 ptr = emalloc(len); 3001 vp->ptr = ptr; 3002 i2d_DSAparams(sdsa, &ptr); 3003 DSA_free(sdsa); 3004 if (tstamp == 0) 3005 return (XEVNT_OK); 3006 3007 vp->sig = emalloc(sign_siglen); 3008 ctx = EVP_MD_CTX_new(); 3009 EVP_SignInit(ctx, sign_digest); 3010 EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12); 3011 EVP_SignUpdate(ctx, vp->ptr, len); 3012 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 3013 INSIST(len <= sign_siglen); 3014 vp->siglen = htonl(len); 3015 } 3016 EVP_MD_CTX_free(ctx); 3017 return (XEVNT_OK); 3018 } 3019 3020 3021 /* 3022 * crypto_mv - verify Bob's response to Alice's challenge 3023 * 3024 * Returns 3025 * XEVNT_OK success 3026 * XEVNT_ERR protocol error 3027 * XEVNT_FSP bad filestamp 3028 * XEVNT_ID bad or missing group key 3029 * XEVNT_PUB bad or missing public key 3030 */ 3031 int 3032 crypto_mv( 3033 struct exten *ep, /* extension pointer */ 3034 struct peer *peer /* peer structure pointer */ 3035 ) 3036 { 3037 DSA *dsa; /* MV parameters */ 3038 DSA *sdsa; /* DSA parameters */ 3039 BN_CTX *bctx; /* BIGNUM context */ 3040 BIGNUM *k, *u, *v; 3041 u_int len; 3042 const u_char *ptr; 3043 int temp; 3044 const BIGNUM *p; 3045 const BIGNUM *pub_key, *priv_key; 3046 const BIGNUM *sp, *sq, *sg; 3047 3048 /* 3049 * If the MV parameters are not valid or no challenge was sent, 3050 * something awful happened or we are being tormented. 3051 */ 3052 if (peer->ident_pkey == NULL) { 3053 msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable"); 3054 return (XEVNT_ID); 3055 } 3056 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 3057 msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u", 3058 ntohl(ep->fstamp)); 3059 return (XEVNT_FSP); 3060 } 3061 if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) { 3062 msyslog(LOG_NOTICE, "crypto_mv: defective key"); 3063 return (XEVNT_PUB); 3064 } 3065 DSA_get0_pqg(dsa, &p, NULL, NULL); 3066 DSA_get0_key(dsa, &pub_key, &priv_key); 3067 if (peer->iffval == NULL) { 3068 msyslog(LOG_NOTICE, "crypto_mv: missing challenge"); 3069 return (XEVNT_ID); 3070 } 3071 3072 /* 3073 * Extract the y, gbar and ghat values from the response. 3074 */ 3075 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new(); 3076 len = ntohl(ep->vallen); 3077 ptr = (u_char *)ep->pkt; 3078 if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) { 3079 msyslog(LOG_ERR, "crypto_mv: %s", 3080 ERR_error_string(ERR_get_error(), NULL)); 3081 return (XEVNT_ERR); 3082 } 3083 DSA_get0_pqg(sdsa, &sp, &sq, &sg); 3084 3085 /* 3086 * Compute (gbar^xhat ghat^xbar) mod p. 3087 */ 3088 BN_mod_exp(u, sq, pub_key, p, bctx); 3089 BN_mod_exp(v, sg, priv_key, p, bctx); 3090 BN_mod_mul(u, u, v, p, bctx); 3091 BN_mod_mul(u, u, sp, p, bctx); 3092 3093 /* 3094 * The result should match r. 3095 */ 3096 temp = BN_cmp(u, peer->iffval); 3097 BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v); 3098 BN_free(peer->iffval); 3099 peer->iffval = NULL; 3100 DSA_free(sdsa); 3101 if (temp == 0) 3102 return (XEVNT_OK); 3103 3104 msyslog(LOG_NOTICE, "crypto_mv: identity not verified"); 3105 return (XEVNT_ID); 3106 } 3107 3108 3109 /* 3110 *********************************************************************** 3111 * * 3112 * The following routines are used to manipulate certificates * 3113 * * 3114 *********************************************************************** 3115 */ 3116 /* 3117 * cert_sign - sign x509 certificate equest and update value structure. 3118 * 3119 * The certificate request includes a copy of the host certificate, 3120 * which includes the version number, subject name and public key of the 3121 * host. The resulting certificate includes these values plus the 3122 * serial number, issuer name and valid interval of the server. The 3123 * valid interval extends from the current time to the same time one 3124 * year hence. This may extend the life of the signed certificate beyond 3125 * that of the signer certificate. 3126 * 3127 * It is convenient to use the NTP seconds of the current time as the 3128 * serial number. In the value structure the timestamp is the current 3129 * time and the filestamp is taken from the extension field. Note this 3130 * routine is called only when the client clock is synchronized to a 3131 * proventic source, so timestamp comparisons are valid. 3132 * 3133 * The host certificate is valid from the time it was generated for a 3134 * period of one year. A signed certificate is valid from the time of 3135 * signature for a period of one year, but only the host certificate (or 3136 * sign certificate if used) is actually used to encrypt and decrypt 3137 * signatures. The signature trail is built from the client via the 3138 * intermediate servers to the trusted server. Each signature on the 3139 * trail must be valid at the time of signature, but it could happen 3140 * that a signer certificate expire before the signed certificate, which 3141 * remains valid until its expiration. 3142 * 3143 * Returns 3144 * XEVNT_OK success 3145 * XEVNT_CRT bad or missing certificate 3146 * XEVNT_PER host certificate expired 3147 * XEVNT_PUB bad or missing public key 3148 * XEVNT_VFY certificate not verified 3149 */ 3150 static int 3151 cert_sign( 3152 struct exten *ep, /* extension field pointer */ 3153 struct value *vp /* value pointer */ 3154 ) 3155 { 3156 X509 *req; /* X509 certificate request */ 3157 X509 *cert; /* X509 certificate */ 3158 X509_EXTENSION *ext; /* certificate extension */ 3159 ASN1_INTEGER *serial; /* serial number */ 3160 X509_NAME *subj; /* distinguished (common) name */ 3161 EVP_PKEY *pkey; /* public key */ 3162 EVP_MD_CTX *ctx; /* message digest context */ 3163 tstamp_t tstamp; /* NTP timestamp */ 3164 struct calendar tscal; 3165 u_int len; 3166 const u_char *cptr; 3167 u_char *ptr; 3168 int i, temp; 3169 3170 /* 3171 * Decode ASN.1 objects and construct certificate structure. 3172 * Make sure the system clock is synchronized to a proventic 3173 * source. 3174 */ 3175 tstamp = crypto_time(); 3176 if (tstamp == 0) 3177 return (XEVNT_TSP); 3178 3179 len = exten_payload_size(ep); 3180 if (len == 0 || len > MAX_VALLEN) 3181 return (XEVNT_LEN); 3182 cptr = (void *)ep->pkt; 3183 if ((req = d2i_X509(NULL, &cptr, len)) == NULL) { 3184 msyslog(LOG_ERR, "cert_sign: %s", 3185 ERR_error_string(ERR_get_error(), NULL)); 3186 return (XEVNT_CRT); 3187 } 3188 /* 3189 * Extract public key and check for errors. 3190 */ 3191 if ((pkey = X509_get_pubkey(req)) == NULL) { 3192 msyslog(LOG_ERR, "cert_sign: %s", 3193 ERR_error_string(ERR_get_error(), NULL)); 3194 X509_free(req); 3195 return (XEVNT_PUB); 3196 } 3197 3198 /* 3199 * Generate X509 certificate signed by this server. If this is a 3200 * trusted host, the issuer name is the group name; otherwise, 3201 * it is the host name. Also copy any extensions that might be 3202 * present. 3203 */ 3204 cert = X509_new(); 3205 X509_set_version(cert, X509_get_version(req)); 3206 serial = ASN1_INTEGER_new(); 3207 ASN1_INTEGER_set(serial, tstamp); 3208 X509_set_serialNumber(cert, serial); 3209 X509_gmtime_adj(X509_getm_notBefore(cert), 0L); 3210 X509_gmtime_adj(X509_getm_notAfter(cert), YEAR); 3211 subj = X509_get_issuer_name(cert); 3212 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 3213 hostval.ptr, strlen((const char *)hostval.ptr), -1, 0); 3214 subj = X509_get_subject_name(req); 3215 X509_set_subject_name(cert, subj); 3216 X509_set_pubkey(cert, pkey); 3217 temp = X509_get_ext_count(req); 3218 for (i = 0; i < temp; i++) { 3219 ext = X509_get_ext(req, i); 3220 INSIST(X509_add_ext(cert, ext, -1)); 3221 } 3222 X509_free(req); 3223 3224 /* 3225 * Sign and verify the client certificate, but only if the host 3226 * certificate has not expired. 3227 */ 3228 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 3229 if ((calcomp(&tscal, &(cert_host->first)) < 0) 3230 || (calcomp(&tscal, &(cert_host->last)) > 0)) { 3231 X509_free(cert); 3232 return (XEVNT_PER); 3233 } 3234 X509_sign(cert, sign_pkey, sign_digest); 3235 if (X509_verify(cert, sign_pkey) <= 0) { 3236 msyslog(LOG_ERR, "cert_sign: %s", 3237 ERR_error_string(ERR_get_error(), NULL)); 3238 X509_free(cert); 3239 return (XEVNT_VFY); 3240 } 3241 len = i2d_X509(cert, NULL); 3242 3243 /* 3244 * Build and sign the value structure. We have to sign it here, 3245 * since the response has to be returned right away. This is a 3246 * clogging hazard. 3247 */ 3248 memset(vp, 0, sizeof(struct value)); 3249 vp->tstamp = htonl(tstamp); 3250 vp->fstamp = ep->fstamp; 3251 vp->vallen = htonl(len); 3252 vp->ptr = emalloc(len); 3253 ptr = vp->ptr; 3254 i2d_X509(cert, (unsigned char **)(intptr_t)&ptr); 3255 vp->siglen = 0; 3256 if (tstamp != 0) { 3257 vp->sig = emalloc(sign_siglen); 3258 ctx = EVP_MD_CTX_new(); 3259 EVP_SignInit(ctx, sign_digest); 3260 EVP_SignUpdate(ctx, (u_char *)vp, 12); 3261 EVP_SignUpdate(ctx, vp->ptr, len); 3262 if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) { 3263 INSIST(len <= sign_siglen); 3264 vp->siglen = htonl(len); 3265 } 3266 EVP_MD_CTX_free(ctx); 3267 } 3268 #ifdef DEBUG 3269 if (debug > 1) 3270 X509_print_fp(stdout, cert); 3271 #endif 3272 X509_free(cert); 3273 return (XEVNT_OK); 3274 } 3275 3276 3277 /* 3278 * cert_install - install certificate in certificate cache 3279 * 3280 * This routine encodes an extension field into a certificate info/value 3281 * structure. It searches the certificate list for duplicates and 3282 * expunges whichever is older. Finally, it inserts this certificate 3283 * first on the list. 3284 * 3285 * Returns certificate info pointer if valid, NULL if not. 3286 */ 3287 struct cert_info * 3288 cert_install( 3289 struct exten *ep, /* cert info/value */ 3290 struct peer *peer /* peer structure */ 3291 ) 3292 { 3293 struct cert_info *cp, *xp, **zp; 3294 3295 /* 3296 * Parse and validate the signed certificate. If valid, 3297 * construct the info/value structure; otherwise, scamper home 3298 * empty handed. 3299 */ 3300 if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen), 3301 (tstamp_t)ntohl(ep->fstamp))) == NULL) 3302 return (NULL); 3303 3304 /* 3305 * Scan certificate list looking for another certificate with 3306 * the same subject and issuer. If another is found with the 3307 * same or older filestamp, unlink it and return the goodies to 3308 * the heap. If another is found with a later filestamp, discard 3309 * the new one and leave the building with the old one. 3310 * 3311 * Make a note to study this issue again. An earlier certificate 3312 * with a long lifetime might be overtaken by a later 3313 * certificate with a short lifetime, thus invalidating the 3314 * earlier signature. However, we gotta find a way to leak old 3315 * stuff from the cache, so we do it anyway. 3316 */ 3317 zp = &cinfo; 3318 for (xp = cinfo; xp != NULL; xp = xp->link) { 3319 if (strcmp(cp->subject, xp->subject) == 0 && 3320 strcmp(cp->issuer, xp->issuer) == 0) { 3321 if (ntohl(cp->cert.fstamp) <= 3322 ntohl(xp->cert.fstamp)) { 3323 cert_free(cp); 3324 cp = xp; 3325 } else { 3326 *zp = xp->link; 3327 cert_free(xp); 3328 xp = NULL; 3329 } 3330 break; 3331 } 3332 zp = &xp->link; 3333 } 3334 if (xp == NULL) { 3335 cp->link = cinfo; 3336 cinfo = cp; 3337 } 3338 cp->flags |= CERT_VALID; 3339 crypto_update(); 3340 return (cp); 3341 } 3342 3343 3344 /* 3345 * cert_hike - verify the signature using the issuer public key 3346 * 3347 * Returns 3348 * XEVNT_OK success 3349 * XEVNT_CRT bad or missing certificate 3350 * XEVNT_PER host certificate expired 3351 * XEVNT_VFY certificate not verified 3352 */ 3353 int 3354 cert_hike( 3355 struct peer *peer, /* peer structure pointer */ 3356 struct cert_info *yp /* issuer certificate */ 3357 ) 3358 { 3359 struct cert_info *xp; /* subject certificate */ 3360 X509 *cert; /* X509 certificate */ 3361 const u_char *ptr; 3362 3363 /* 3364 * Save the issuer on the new certificate, but remember the old 3365 * one. 3366 */ 3367 if (peer->issuer != NULL) 3368 free(peer->issuer); 3369 peer->issuer = estrdup(yp->issuer); 3370 xp = peer->xinfo; 3371 peer->xinfo = yp; 3372 3373 /* 3374 * If subject Y matches issuer Y, then the certificate trail is 3375 * complete. If Y is not trusted, the server certificate has yet 3376 * been signed, so keep trying. Otherwise, save the group key 3377 * and light the valid bit. If the host certificate is trusted, 3378 * do not execute a sign exchange. If no identity scheme is in 3379 * use, light the identity and proventic bits. 3380 */ 3381 if (strcmp(yp->subject, yp->issuer) == 0) { 3382 if (!(yp->flags & CERT_TRUST)) 3383 return (XEVNT_OK); 3384 3385 /* 3386 * If the server has an an identity scheme, fetch the 3387 * identity credentials. If not, the identity is 3388 * verified only by the trusted certificate. The next 3389 * signature will set the server proventic. 3390 */ 3391 peer->crypto |= CRYPTO_FLAG_CERT; 3392 peer->grpkey = yp->grpkey; 3393 if (peer->ident == NULL || !(peer->crypto & 3394 CRYPTO_FLAG_MASK)) 3395 peer->crypto |= CRYPTO_FLAG_VRFY; 3396 } 3397 3398 /* 3399 * If X exists, verify signature X using public key Y. 3400 */ 3401 if (xp == NULL) 3402 return (XEVNT_OK); 3403 3404 ptr = (u_char *)xp->cert.ptr; 3405 cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen)); 3406 if (cert == NULL) { 3407 xp->flags |= CERT_ERROR; 3408 return (XEVNT_CRT); 3409 } 3410 if (X509_verify(cert, yp->pkey) <= 0) { 3411 X509_free(cert); 3412 xp->flags |= CERT_ERROR; 3413 return (XEVNT_VFY); 3414 } 3415 X509_free(cert); 3416 3417 /* 3418 * Signature X is valid only if it begins during the 3419 * lifetime of Y. 3420 */ 3421 if ((calcomp(&(xp->first), &(yp->first)) < 0) 3422 || (calcomp(&(xp->first), &(yp->last)) > 0)) { 3423 xp->flags |= CERT_ERROR; 3424 return (XEVNT_PER); 3425 } 3426 xp->flags |= CERT_SIGN; 3427 return (XEVNT_OK); 3428 } 3429 3430 3431 /* 3432 * cert_parse - parse x509 certificate and create info/value structures. 3433 * 3434 * The server certificate includes the version number, issuer name, 3435 * subject name, public key and valid date interval. If the issuer name 3436 * is the same as the subject name, the certificate is self signed and 3437 * valid only if the server is configured as trustable. If the names are 3438 * different, another issuer has signed the server certificate and 3439 * vouched for it. In this case the server certificate is valid if 3440 * verified by the issuer public key. 3441 * 3442 * Returns certificate info/value pointer if valid, NULL if not. 3443 */ 3444 struct cert_info * /* certificate information structure */ 3445 cert_parse( 3446 const u_char *asn1cert, /* X509 certificate */ 3447 long len, /* certificate length */ 3448 tstamp_t fstamp /* filestamp */ 3449 ) 3450 { 3451 X509 *cert; /* X509 certificate */ 3452 struct cert_info *ret; /* certificate info/value */ 3453 BIO *bp; 3454 char pathbuf[MAXFILENAME]; 3455 const u_char *ptr; 3456 char *pch; 3457 int cnt, i; 3458 struct calendar fscal; 3459 3460 /* 3461 * Decode ASN.1 objects and construct certificate structure. 3462 */ 3463 ptr = asn1cert; 3464 if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) { 3465 msyslog(LOG_ERR, "cert_parse: %s", 3466 ERR_error_string(ERR_get_error(), NULL)); 3467 return (NULL); 3468 } 3469 #ifdef DEBUG 3470 if (debug > 1) 3471 X509_print_fp(stdout, cert); 3472 #endif 3473 3474 /* 3475 * Extract version, subject name and public key. 3476 */ 3477 ret = emalloc_zero(sizeof(*ret)); 3478 if ((ret->pkey = X509_get_pubkey(cert)) == NULL) { 3479 msyslog(LOG_ERR, "cert_parse: %s", 3480 ERR_error_string(ERR_get_error(), NULL)); 3481 cert_free(ret); 3482 X509_free(cert); 3483 return (NULL); 3484 } 3485 ret->version = X509_get_version(cert); 3486 X509_NAME_oneline(X509_get_subject_name(cert), pathbuf, 3487 sizeof(pathbuf)); 3488 pch = strstr(pathbuf, "CN="); 3489 if (NULL == pch) { 3490 msyslog(LOG_NOTICE, "cert_parse: invalid subject %s", 3491 pathbuf); 3492 cert_free(ret); 3493 X509_free(cert); 3494 return (NULL); 3495 } 3496 ret->subject = estrdup(pch + 3); 3497 3498 /* 3499 * Extract remaining objects. Note that the NTP serial number is 3500 * the NTP seconds at the time of signing, but this might not be 3501 * the case for other authority. We don't bother to check the 3502 * objects at this time, since the real crunch can happen only 3503 * when the time is valid but not yet certificated. 3504 */ 3505 ret->nid = X509_get_signature_nid(cert); 3506 ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid); 3507 ret->serial = 3508 (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert)); 3509 X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf, 3510 sizeof(pathbuf)); 3511 if ((pch = strstr(pathbuf, "CN=")) == NULL) { 3512 msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s", 3513 pathbuf); 3514 cert_free(ret); 3515 X509_free(cert); 3516 return (NULL); 3517 } 3518 ret->issuer = estrdup(pch + 3); 3519 asn_to_calendar(X509_get0_notBefore(cert), &(ret->first)); 3520 asn_to_calendar(X509_get0_notAfter(cert), &(ret->last)); 3521 3522 /* 3523 * Extract extension fields. These are ad hoc ripoffs of 3524 * currently assigned functions and will certainly be changed 3525 * before prime time. 3526 */ 3527 cnt = X509_get_ext_count(cert); 3528 for (i = 0; i < cnt; i++) { 3529 X509_EXTENSION *ext; 3530 ASN1_OBJECT *obj; 3531 int nid; 3532 ASN1_OCTET_STRING *data; 3533 3534 ext = X509_get_ext(cert, i); 3535 obj = X509_EXTENSION_get_object(ext); 3536 nid = OBJ_obj2nid(obj); 3537 3538 switch (nid) { 3539 3540 /* 3541 * If a key_usage field is present, we decode whether 3542 * this is a trusted or private certificate. This is 3543 * dorky; all we want is to compare NIDs, but OpenSSL 3544 * insists on BIO text strings. 3545 */ 3546 case NID_ext_key_usage: 3547 bp = BIO_new(BIO_s_mem()); 3548 X509V3_EXT_print(bp, ext, 0, 0); 3549 BIO_gets(bp, pathbuf, sizeof(pathbuf)); 3550 BIO_free(bp); 3551 if (strcmp(pathbuf, "Trust Root") == 0) 3552 ret->flags |= CERT_TRUST; 3553 else if (strcmp(pathbuf, "Private") == 0) 3554 ret->flags |= CERT_PRIV; 3555 DPRINTF(1, ("cert_parse: %s: %s\n", 3556 OBJ_nid2ln(nid), pathbuf)); 3557 break; 3558 3559 /* 3560 * If a NID_subject_key_identifier field is present, it 3561 * contains the GQ public key. 3562 */ 3563 case NID_subject_key_identifier: 3564 data = X509_EXTENSION_get_data(ext); 3565 ret->grpkey = BN_bin2bn(&data->data[2], 3566 data->length - 2, NULL); 3567 /* fall through */ 3568 default: 3569 DPRINTF(1, ("cert_parse: %s\n", 3570 OBJ_nid2ln(nid))); 3571 break; 3572 } 3573 } 3574 if (strcmp(ret->subject, ret->issuer) == 0) { 3575 3576 /* 3577 * If certificate is self signed, verify signature. 3578 */ 3579 if (X509_verify(cert, ret->pkey) <= 0) { 3580 msyslog(LOG_NOTICE, 3581 "cert_parse: signature not verified %s", 3582 ret->subject); 3583 cert_free(ret); 3584 X509_free(cert); 3585 return (NULL); 3586 } 3587 } else { 3588 3589 /* 3590 * Check for a certificate loop. 3591 */ 3592 if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) { 3593 msyslog(LOG_NOTICE, 3594 "cert_parse: certificate trail loop %s", 3595 ret->subject); 3596 cert_free(ret); 3597 X509_free(cert); 3598 return (NULL); 3599 } 3600 } 3601 3602 /* 3603 * Verify certificate valid times. Note that certificates cannot 3604 * be retroactive. 3605 */ 3606 (void)ntpcal_ntp_to_date(&fscal, fstamp, NULL); 3607 if ((calcomp(&(ret->first), &(ret->last)) > 0) 3608 || (calcomp(&(ret->first), &fscal) < 0)) { 3609 msyslog(LOG_NOTICE, 3610 "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u", 3611 ret->subject, 3612 ret->first.year, ret->first.month, ret->first.monthday, 3613 ret->first.hour, ret->first.minute, ret->first.second, 3614 ret->last.year, ret->last.month, ret->last.monthday, 3615 ret->last.hour, ret->last.minute, ret->last.second, 3616 fscal.year, fscal.month, fscal.monthday, 3617 fscal.hour, fscal.minute, fscal.second); 3618 cert_free(ret); 3619 X509_free(cert); 3620 return (NULL); 3621 } 3622 3623 /* 3624 * Build the value structure to sign and send later. 3625 */ 3626 ret->cert.fstamp = htonl(fstamp); 3627 ret->cert.vallen = htonl(len); 3628 ret->cert.ptr = emalloc(len); 3629 memcpy(ret->cert.ptr, asn1cert, len); 3630 X509_free(cert); 3631 return (ret); 3632 } 3633 3634 3635 /* 3636 * cert_free - free certificate information structure 3637 */ 3638 void 3639 cert_free( 3640 struct cert_info *cinf /* certificate info/value structure */ 3641 ) 3642 { 3643 if (cinf->pkey != NULL) 3644 EVP_PKEY_free(cinf->pkey); 3645 if (cinf->subject != NULL) 3646 free(cinf->subject); 3647 if (cinf->issuer != NULL) 3648 free(cinf->issuer); 3649 if (cinf->grpkey != NULL) 3650 BN_free(cinf->grpkey); 3651 value_free(&cinf->cert); 3652 free(cinf); 3653 } 3654 3655 3656 /* 3657 * crypto_key - load cryptographic parameters and keys 3658 * 3659 * This routine searches the key cache for matching name in the form 3660 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv, 3661 * and <name> is the host/group name. If not found, it tries to load a 3662 * PEM-encoded file of the same name and extracts the filestamp from 3663 * the first line of the file name. It returns the key pointer if valid, 3664 * NULL if not. 3665 */ 3666 static struct pkey_info * 3667 crypto_key( 3668 char *cp, /* file name */ 3669 char *passwd1, /* password */ 3670 sockaddr_u *addr /* IP address */ 3671 ) 3672 { 3673 FILE *str; /* file handle */ 3674 struct pkey_info *pkp; /* generic key */ 3675 EVP_PKEY *pkey = NULL; /* public/private key */ 3676 tstamp_t fstamp; 3677 char filename[MAXFILENAME]; /* name of key file */ 3678 char linkname[MAXFILENAME]; /* filestamp buffer) */ 3679 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3680 char *ptr; 3681 3682 /* 3683 * Search the key cache for matching key and name. 3684 */ 3685 for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) { 3686 if (strcmp(cp, pkp->name) == 0) 3687 return (pkp); 3688 } 3689 3690 /* 3691 * Open the key file. If the first character of the file name is 3692 * not '/', prepend the keys directory string. If something goes 3693 * wrong, abandon ship. 3694 */ 3695 if (*cp == '/') 3696 strlcpy(filename, cp, sizeof(filename)); 3697 else 3698 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3699 cp); 3700 str = fopen(filename, "r"); 3701 if (str == NULL) 3702 return (NULL); 3703 3704 /* 3705 * Read the filestamp, which is contained in the first line. 3706 */ 3707 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3708 msyslog(LOG_ERR, "crypto_key: empty file %s", 3709 filename); 3710 fclose(str); 3711 return (NULL); 3712 } 3713 if ((ptr = strrchr(ptr, '.')) == NULL) { 3714 msyslog(LOG_ERR, "crypto_key: no filestamp %s", 3715 filename); 3716 fclose(str); 3717 return (NULL); 3718 } 3719 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3720 msyslog(LOG_ERR, "crypto_key: invalid filestamp %s", 3721 filename); 3722 fclose(str); 3723 return (NULL); 3724 } 3725 3726 /* 3727 * Read and decrypt PEM-encoded private key. If it fails to 3728 * decrypt, game over. 3729 */ 3730 pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1); 3731 fclose(str); 3732 if (pkey == NULL) { 3733 msyslog(LOG_ERR, "crypto_key: %s", 3734 ERR_error_string(ERR_get_error(), NULL)); 3735 exit (-1); 3736 } 3737 3738 /* 3739 * Make a new entry in the key cache. 3740 */ 3741 pkp = emalloc(sizeof(struct pkey_info)); 3742 pkp->link = pkinfo; 3743 pkinfo = pkp; 3744 pkp->pkey = pkey; 3745 pkp->name = estrdup(cp); 3746 pkp->fstamp = fstamp; 3747 3748 /* 3749 * Leave tracks in the cryptostats. 3750 */ 3751 if ((ptr = strrchr(linkname, '\n')) != NULL) 3752 *ptr = '\0'; 3753 snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2], 3754 EVP_PKEY_size(pkey) * 8); 3755 record_crypto_stats(addr, statstr); 3756 3757 DPRINTF(1, ("crypto_key: %s\n", statstr)); 3758 #ifdef DEBUG 3759 if (debug > 1) { 3760 if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA) 3761 DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0); 3762 else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA) 3763 RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0); 3764 } 3765 #endif 3766 return (pkp); 3767 } 3768 3769 3770 /* 3771 *********************************************************************** 3772 * * 3773 * The following routines are used only at initialization time * 3774 * * 3775 *********************************************************************** 3776 */ 3777 /* 3778 * crypto_cert - load certificate from file 3779 * 3780 * This routine loads an X.509 RSA or DSA certificate from a file and 3781 * constructs a info/cert value structure for this machine. The 3782 * structure includes a filestamp extracted from the file name. Later 3783 * the certificate can be sent to another machine on request. 3784 * 3785 * Returns certificate info/value pointer if valid, NULL if not. 3786 */ 3787 static struct cert_info * /* certificate information */ 3788 crypto_cert( 3789 char *cp /* file name */ 3790 ) 3791 { 3792 struct cert_info *ret; /* certificate information */ 3793 FILE *str; /* file handle */ 3794 char filename[MAXFILENAME]; /* name of certificate file */ 3795 char linkname[MAXFILENAME]; /* filestamp buffer */ 3796 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3797 tstamp_t fstamp; /* filestamp */ 3798 long len; 3799 char *ptr; 3800 char *name, *header; 3801 u_char *data; 3802 3803 /* 3804 * Open the certificate file. If the first character of the file 3805 * name is not '/', prepend the keys directory string. If 3806 * something goes wrong, abandon ship. 3807 */ 3808 if (*cp == '/') 3809 strlcpy(filename, cp, sizeof(filename)); 3810 else 3811 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3812 cp); 3813 str = fopen(filename, "r"); 3814 if (str == NULL) 3815 return (NULL); 3816 3817 /* 3818 * Read the filestamp, which is contained in the first line. 3819 */ 3820 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3821 msyslog(LOG_ERR, "crypto_cert: empty file %s", 3822 filename); 3823 fclose(str); 3824 return (NULL); 3825 } 3826 if ((ptr = strrchr(ptr, '.')) == NULL) { 3827 msyslog(LOG_ERR, "crypto_cert: no filestamp %s", 3828 filename); 3829 fclose(str); 3830 return (NULL); 3831 } 3832 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3833 msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s", 3834 filename); 3835 fclose(str); 3836 return (NULL); 3837 } 3838 3839 /* 3840 * Read PEM-encoded certificate and install. 3841 */ 3842 if (!PEM_read(str, &name, &header, &data, &len)) { 3843 msyslog(LOG_ERR, "crypto_cert: %s", 3844 ERR_error_string(ERR_get_error(), NULL)); 3845 fclose(str); 3846 return (NULL); 3847 } 3848 fclose(str); 3849 free(header); 3850 if (strcmp(name, "CERTIFICATE") != 0) { 3851 msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s", 3852 name); 3853 free(name); 3854 free(data); 3855 return (NULL); 3856 } 3857 free(name); 3858 3859 /* 3860 * Parse certificate and generate info/value structure. The 3861 * pointer and copy nonsense is due something broken in Solaris. 3862 */ 3863 ret = cert_parse(data, len, fstamp); 3864 free(data); 3865 if (ret == NULL) 3866 return (NULL); 3867 3868 if ((ptr = strrchr(linkname, '\n')) != NULL) 3869 *ptr = '\0'; 3870 snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu", 3871 &linkname[2], ret->flags, len); 3872 record_crypto_stats(NULL, statstr); 3873 DPRINTF(1, ("crypto_cert: %s\n", statstr)); 3874 return (ret); 3875 } 3876 3877 3878 /* 3879 * crypto_setup - load keys, certificate and identity parameters 3880 * 3881 * This routine loads the public/private host key and certificate. If 3882 * available, it loads the public/private sign key, which defaults to 3883 * the host key. The host key must be RSA, but the sign key can be 3884 * either RSA or DSA. If a trusted certificate, it loads the identity 3885 * parameters. In either case, the public key on the certificate must 3886 * agree with the sign key. 3887 * 3888 * Required but missing files and inconsistent data and errors are 3889 * fatal. Allowing configuration to continue would be hazardous and 3890 * require really messy error checks. 3891 */ 3892 void 3893 crypto_setup(void) 3894 { 3895 struct pkey_info *pinfo; /* private/public key */ 3896 char filename[MAXFILENAME]; /* file name buffer */ 3897 char hostname[MAXFILENAME]; /* host name buffer */ 3898 char *randfile; 3899 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3900 l_fp seed; /* crypto PRNG seed as NTP timestamp */ 3901 u_int len; 3902 int bytes; 3903 u_char *ptr; 3904 3905 /* 3906 * Check for correct OpenSSL version and avoid initialization in 3907 * the case of multiple crypto commands. 3908 */ 3909 if (crypto_flags & CRYPTO_FLAG_ENAB) { 3910 msyslog(LOG_NOTICE, 3911 "crypto_setup: spurious crypto command"); 3912 return; 3913 } 3914 ssl_check_version(); 3915 3916 /* 3917 * Load required random seed file and seed the random number 3918 * generator. Be default, it is found as .rnd in the user home 3919 * directory. The root home directory may be / or /root, 3920 * depending on the system. Wiggle the contents a bit and write 3921 * it back so the sequence does not repeat when we next restart. 3922 */ 3923 if (!RAND_status()) { 3924 if (rand_file == NULL) { 3925 RAND_file_name(filename, sizeof(filename)); 3926 randfile = filename; 3927 } else if (*rand_file != '/') { 3928 snprintf(filename, sizeof(filename), "%s/%s", 3929 keysdir, rand_file); 3930 randfile = filename; 3931 } else 3932 randfile = rand_file; 3933 3934 if ((bytes = RAND_load_file(randfile, -1)) == 0) { 3935 msyslog(LOG_ERR, 3936 "crypto_setup: random seed file %s missing", 3937 randfile); 3938 exit (-1); 3939 } 3940 get_systime(&seed); 3941 RAND_seed(&seed, sizeof(l_fp)); 3942 RAND_write_file(randfile); 3943 DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n", 3944 OpenSSL_version_num(), randfile, bytes)); 3945 3946 } 3947 3948 /* 3949 * Initialize structures. 3950 */ 3951 gethostname(hostname, sizeof(hostname)); 3952 if (host_filename != NULL) 3953 strlcpy(hostname, host_filename, sizeof(hostname)); 3954 if (passwd == NULL) 3955 passwd = estrdup(hostname); 3956 memset(&hostval, 0, sizeof(hostval)); 3957 memset(&pubkey, 0, sizeof(pubkey)); 3958 memset(&tai_leap, 0, sizeof(tai_leap)); 3959 3960 /* 3961 * Load required host key from file "ntpkey_host_<hostname>". If 3962 * no host key file is not found or has invalid password, life 3963 * as we know it ends. The host key also becomes the default 3964 * sign key. 3965 */ 3966 snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); 3967 pinfo = crypto_key(filename, passwd, NULL); 3968 if (pinfo == NULL) { 3969 msyslog(LOG_ERR, 3970 "crypto_setup: host key file %s not found or corrupt", 3971 filename); 3972 exit (-1); 3973 } 3974 if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) { 3975 msyslog(LOG_ERR, 3976 "crypto_setup: host key is not RSA key type"); 3977 exit (-1); 3978 } 3979 host_pkey = pinfo->pkey; 3980 sign_pkey = host_pkey; 3981 hostval.fstamp = htonl(pinfo->fstamp); 3982 3983 /* 3984 * Construct public key extension field for agreement scheme. 3985 */ 3986 len = i2d_PublicKey(host_pkey, NULL); 3987 ptr = emalloc(len); 3988 pubkey.ptr = ptr; 3989 i2d_PublicKey(host_pkey, &ptr); 3990 pubkey.fstamp = hostval.fstamp; 3991 pubkey.vallen = htonl(len); 3992 3993 /* 3994 * Load optional sign key from file "ntpkey_sign_<hostname>". If 3995 * available, it becomes the sign key. 3996 */ 3997 snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname); 3998 pinfo = crypto_key(filename, passwd, NULL); 3999 if (pinfo != NULL) 4000 sign_pkey = pinfo->pkey; 4001 4002 /* 4003 * Load required certificate from file "ntpkey_cert_<hostname>". 4004 */ 4005 snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); 4006 cinfo = crypto_cert(filename); 4007 if (cinfo == NULL) { 4008 msyslog(LOG_ERR, 4009 "crypto_setup: certificate file %s not found or corrupt", 4010 filename); 4011 exit (-1); 4012 } 4013 cert_host = cinfo; 4014 sign_digest = cinfo->digest; 4015 sign_siglen = EVP_PKEY_size(sign_pkey); 4016 if (cinfo->flags & CERT_PRIV) 4017 crypto_flags |= CRYPTO_FLAG_PRIV; 4018 4019 /* 4020 * The certificate must be self-signed. 4021 */ 4022 if (strcmp(cinfo->subject, cinfo->issuer) != 0) { 4023 msyslog(LOG_ERR, 4024 "crypto_setup: certificate %s is not self-signed", 4025 filename); 4026 exit (-1); 4027 } 4028 hostval.ptr = estrdup(cinfo->subject); 4029 hostval.vallen = htonl(strlen(cinfo->subject)); 4030 sys_hostname = hostval.ptr; 4031 ptr = (u_char *)strchr(sys_hostname, '@'); 4032 if (ptr != NULL) 4033 sys_groupname = estrdup((char *)++ptr); 4034 if (ident_filename != NULL) 4035 strlcpy(hostname, ident_filename, sizeof(hostname)); 4036 4037 /* 4038 * Load optional IFF parameters from file 4039 * "ntpkey_iffkey_<hostname>". 4040 */ 4041 snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", 4042 hostname); 4043 iffkey_info = crypto_key(filename, passwd, NULL); 4044 if (iffkey_info != NULL) 4045 crypto_flags |= CRYPTO_FLAG_IFF; 4046 4047 /* 4048 * Load optional GQ parameters from file 4049 * "ntpkey_gqkey_<hostname>". 4050 */ 4051 snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", 4052 hostname); 4053 gqkey_info = crypto_key(filename, passwd, NULL); 4054 if (gqkey_info != NULL) 4055 crypto_flags |= CRYPTO_FLAG_GQ; 4056 4057 /* 4058 * Load optional MV parameters from file 4059 * "ntpkey_mvkey_<hostname>". 4060 */ 4061 snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s", 4062 hostname); 4063 mvkey_info = crypto_key(filename, passwd, NULL); 4064 if (mvkey_info != NULL) 4065 crypto_flags |= CRYPTO_FLAG_MV; 4066 4067 /* 4068 * We met the enemy and he is us. Now strike up the dance. 4069 */ 4070 crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16); 4071 snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s", 4072 crypto_flags, hostname, OBJ_nid2ln(cinfo->nid)); 4073 record_crypto_stats(NULL, statstr); 4074 DPRINTF(1, ("crypto_setup: %s\n", statstr)); 4075 } 4076 4077 4078 /* 4079 * crypto_config - configure data from the crypto command. 4080 */ 4081 void 4082 crypto_config( 4083 int item, /* configuration item */ 4084 char *cp /* item name */ 4085 ) 4086 { 4087 int nid; 4088 4089 DPRINTF(1, ("crypto_config: item %d %s\n", item, cp)); 4090 4091 switch (item) { 4092 4093 /* 4094 * Set host name (host). 4095 */ 4096 case CRYPTO_CONF_PRIV: 4097 if (NULL != host_filename) 4098 free(host_filename); 4099 host_filename = estrdup(cp); 4100 break; 4101 4102 /* 4103 * Set group name (ident). 4104 */ 4105 case CRYPTO_CONF_IDENT: 4106 if (NULL != ident_filename) 4107 free(ident_filename); 4108 ident_filename = estrdup(cp); 4109 break; 4110 4111 /* 4112 * Set private key password (pw). 4113 */ 4114 case CRYPTO_CONF_PW: 4115 if (NULL != passwd) 4116 free(passwd); 4117 passwd = estrdup(cp); 4118 break; 4119 4120 /* 4121 * Set random seed file name (randfile). 4122 */ 4123 case CRYPTO_CONF_RAND: 4124 if (NULL != rand_file) 4125 free(rand_file); 4126 rand_file = estrdup(cp); 4127 break; 4128 4129 /* 4130 * Set message digest NID. 4131 */ 4132 case CRYPTO_CONF_NID: 4133 nid = OBJ_sn2nid(cp); 4134 if (nid == 0) 4135 msyslog(LOG_ERR, 4136 "crypto_config: invalid digest name %s", cp); 4137 else 4138 crypto_nid = nid; 4139 break; 4140 } 4141 } 4142 4143 /* 4144 * Get the payload size (internal value length) of an extension packet. 4145 * If the inner value size does not match the outer packet size (that 4146 * is, the value would end behind the frame given by the opcode/size 4147 * field) the function will effectively return UINT_MAX. If the frame is 4148 * too short to hold a variable-sized value, the return value is zero. 4149 */ 4150 static u_int 4151 exten_payload_size( 4152 const struct exten * ep) 4153 { 4154 typedef const u_char *BPTR; 4155 4156 size_t extn_size; 4157 size_t data_size; 4158 size_t head_size; 4159 4160 data_size = 0; 4161 if (NULL != ep) { 4162 head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep; 4163 extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff); 4164 if (extn_size >= head_size) { 4165 data_size = (uint32_t)ntohl(ep->vallen); 4166 if (data_size > extn_size - head_size) 4167 data_size = ~(size_t)0u; 4168 } 4169 } 4170 return (u_int)data_size; 4171 } 4172 # else /* !AUTOKEY follows */ 4173 int ntp_crypto_bs_pubkey; 4174 # endif /* !AUTOKEY */ 4175