1 /* $NetBSD: ntp_control.c,v 1.18 2016/11/22 03:09:30 christos Exp $ */ 2 3 /* 4 * ntp_control.c - respond to mode 6 control messages and send async 5 * traps. Provides service to ntpq and others. 6 */ 7 8 #ifdef HAVE_CONFIG_H 9 # include <config.h> 10 #endif 11 12 #include <stdio.h> 13 #include <ctype.h> 14 #include <signal.h> 15 #include <sys/stat.h> 16 #ifdef HAVE_NETINET_IN_H 17 # include <netinet/in.h> 18 #endif 19 #include <arpa/inet.h> 20 21 #include "ntpd.h" 22 #include "ntp_io.h" 23 #include "ntp_refclock.h" 24 #include "ntp_control.h" 25 #include "ntp_unixtime.h" 26 #include "ntp_stdlib.h" 27 #include "ntp_config.h" 28 #include "ntp_crypto.h" 29 #include "ntp_assert.h" 30 #include "ntp_leapsec.h" 31 #include "ntp_md5.h" /* provides OpenSSL digest API */ 32 #include "lib_strbuf.h" 33 #include <rc_cmdlength.h> 34 #ifdef KERNEL_PLL 35 # include "ntp_syscall.h" 36 #endif 37 38 #include "libssl_compat.h" 39 40 /* 41 * Structure to hold request procedure information 42 */ 43 44 struct ctl_proc { 45 short control_code; /* defined request code */ 46 #define NO_REQUEST (-1) 47 u_short flags; /* flags word */ 48 /* Only one flag. Authentication required or not. */ 49 #define NOAUTH 0 50 #define AUTH 1 51 void (*handler) (struct recvbuf *, int); /* handle request */ 52 }; 53 54 55 /* 56 * Request processing routines 57 */ 58 static void ctl_error (u_char); 59 #ifdef REFCLOCK 60 static u_short ctlclkstatus (struct refclockstat *); 61 #endif 62 static void ctl_flushpkt (u_char); 63 static void ctl_putdata (const char *, unsigned int, int); 64 static void ctl_putstr (const char *, const char *, size_t); 65 static void ctl_putdblf (const char *, int, int, double); 66 #define ctl_putdbl(tag, d) ctl_putdblf(tag, 1, 3, d) 67 #define ctl_putdbl6(tag, d) ctl_putdblf(tag, 1, 6, d) 68 #define ctl_putsfp(tag, sfp) ctl_putdblf(tag, 0, -1, \ 69 FPTOD(sfp)) 70 static void ctl_putuint (const char *, u_long); 71 static void ctl_puthex (const char *, u_long); 72 static void ctl_putint (const char *, long); 73 static void ctl_putts (const char *, l_fp *); 74 static void ctl_putadr (const char *, u_int32, 75 sockaddr_u *); 76 static void ctl_putrefid (const char *, u_int32); 77 static void ctl_putarray (const char *, double *, int); 78 static void ctl_putsys (int); 79 static void ctl_putpeer (int, struct peer *); 80 static void ctl_putfs (const char *, tstamp_t); 81 static void ctl_printf (const char *, ...) NTP_PRINTF(1, 2); 82 #ifdef REFCLOCK 83 static void ctl_putclock (int, struct refclockstat *, int); 84 #endif /* REFCLOCK */ 85 static const struct ctl_var *ctl_getitem(const struct ctl_var *, 86 char **); 87 static u_short count_var (const struct ctl_var *); 88 static void control_unspec (struct recvbuf *, int); 89 static void read_status (struct recvbuf *, int); 90 static void read_sysvars (void); 91 static void read_peervars (void); 92 static void read_variables (struct recvbuf *, int); 93 static void write_variables (struct recvbuf *, int); 94 static void read_clockstatus(struct recvbuf *, int); 95 static void write_clockstatus(struct recvbuf *, int); 96 static void set_trap (struct recvbuf *, int); 97 static void save_config (struct recvbuf *, int); 98 static void configure (struct recvbuf *, int); 99 static void send_mru_entry (mon_entry *, int); 100 static void send_random_tag_value(int); 101 static void read_mru_list (struct recvbuf *, int); 102 static void send_ifstats_entry(endpt *, u_int); 103 static void read_ifstats (struct recvbuf *); 104 static void sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *, 105 restrict_u *, int); 106 static void send_restrict_entry(restrict_u *, int, u_int); 107 static void send_restrict_list(restrict_u *, int, u_int *); 108 static void read_addr_restrictions(struct recvbuf *); 109 static void read_ordlist (struct recvbuf *, int); 110 static u_int32 derive_nonce (sockaddr_u *, u_int32, u_int32); 111 static void generate_nonce (struct recvbuf *, char *, size_t); 112 static int validate_nonce (const char *, struct recvbuf *); 113 static void req_nonce (struct recvbuf *, int); 114 static void unset_trap (struct recvbuf *, int); 115 static struct ctl_trap *ctlfindtrap(sockaddr_u *, 116 struct interface *); 117 118 int/*BOOL*/ is_safe_filename(const char * name); 119 120 static const struct ctl_proc control_codes[] = { 121 { CTL_OP_UNSPEC, NOAUTH, control_unspec }, 122 { CTL_OP_READSTAT, NOAUTH, read_status }, 123 { CTL_OP_READVAR, NOAUTH, read_variables }, 124 { CTL_OP_WRITEVAR, AUTH, write_variables }, 125 { CTL_OP_READCLOCK, NOAUTH, read_clockstatus }, 126 { CTL_OP_WRITECLOCK, AUTH, write_clockstatus }, 127 { CTL_OP_SETTRAP, AUTH, set_trap }, 128 { CTL_OP_CONFIGURE, AUTH, configure }, 129 { CTL_OP_SAVECONFIG, AUTH, save_config }, 130 { CTL_OP_READ_MRU, NOAUTH, read_mru_list }, 131 { CTL_OP_READ_ORDLIST_A, AUTH, read_ordlist }, 132 { CTL_OP_REQ_NONCE, NOAUTH, req_nonce }, 133 { CTL_OP_UNSETTRAP, AUTH, unset_trap }, 134 { NO_REQUEST, 0, NULL } 135 }; 136 137 /* 138 * System variables we understand 139 */ 140 #define CS_LEAP 1 141 #define CS_STRATUM 2 142 #define CS_PRECISION 3 143 #define CS_ROOTDELAY 4 144 #define CS_ROOTDISPERSION 5 145 #define CS_REFID 6 146 #define CS_REFTIME 7 147 #define CS_POLL 8 148 #define CS_PEERID 9 149 #define CS_OFFSET 10 150 #define CS_DRIFT 11 151 #define CS_JITTER 12 152 #define CS_ERROR 13 153 #define CS_CLOCK 14 154 #define CS_PROCESSOR 15 155 #define CS_SYSTEM 16 156 #define CS_VERSION 17 157 #define CS_STABIL 18 158 #define CS_VARLIST 19 159 #define CS_TAI 20 160 #define CS_LEAPTAB 21 161 #define CS_LEAPEND 22 162 #define CS_RATE 23 163 #define CS_MRU_ENABLED 24 164 #define CS_MRU_DEPTH 25 165 #define CS_MRU_DEEPEST 26 166 #define CS_MRU_MINDEPTH 27 167 #define CS_MRU_MAXAGE 28 168 #define CS_MRU_MAXDEPTH 29 169 #define CS_MRU_MEM 30 170 #define CS_MRU_MAXMEM 31 171 #define CS_SS_UPTIME 32 172 #define CS_SS_RESET 33 173 #define CS_SS_RECEIVED 34 174 #define CS_SS_THISVER 35 175 #define CS_SS_OLDVER 36 176 #define CS_SS_BADFORMAT 37 177 #define CS_SS_BADAUTH 38 178 #define CS_SS_DECLINED 39 179 #define CS_SS_RESTRICTED 40 180 #define CS_SS_LIMITED 41 181 #define CS_SS_KODSENT 42 182 #define CS_SS_PROCESSED 43 183 #define CS_PEERADR 44 184 #define CS_PEERMODE 45 185 #define CS_BCASTDELAY 46 186 #define CS_AUTHDELAY 47 187 #define CS_AUTHKEYS 48 188 #define CS_AUTHFREEK 49 189 #define CS_AUTHKLOOKUPS 50 190 #define CS_AUTHKNOTFOUND 51 191 #define CS_AUTHKUNCACHED 52 192 #define CS_AUTHKEXPIRED 53 193 #define CS_AUTHENCRYPTS 54 194 #define CS_AUTHDECRYPTS 55 195 #define CS_AUTHRESET 56 196 #define CS_K_OFFSET 57 197 #define CS_K_FREQ 58 198 #define CS_K_MAXERR 59 199 #define CS_K_ESTERR 60 200 #define CS_K_STFLAGS 61 201 #define CS_K_TIMECONST 62 202 #define CS_K_PRECISION 63 203 #define CS_K_FREQTOL 64 204 #define CS_K_PPS_FREQ 65 205 #define CS_K_PPS_STABIL 66 206 #define CS_K_PPS_JITTER 67 207 #define CS_K_PPS_CALIBDUR 68 208 #define CS_K_PPS_CALIBS 69 209 #define CS_K_PPS_CALIBERRS 70 210 #define CS_K_PPS_JITEXC 71 211 #define CS_K_PPS_STBEXC 72 212 #define CS_KERN_FIRST CS_K_OFFSET 213 #define CS_KERN_LAST CS_K_PPS_STBEXC 214 #define CS_IOSTATS_RESET 73 215 #define CS_TOTAL_RBUF 74 216 #define CS_FREE_RBUF 75 217 #define CS_USED_RBUF 76 218 #define CS_RBUF_LOWATER 77 219 #define CS_IO_DROPPED 78 220 #define CS_IO_IGNORED 79 221 #define CS_IO_RECEIVED 80 222 #define CS_IO_SENT 81 223 #define CS_IO_SENDFAILED 82 224 #define CS_IO_WAKEUPS 83 225 #define CS_IO_GOODWAKEUPS 84 226 #define CS_TIMERSTATS_RESET 85 227 #define CS_TIMER_OVERRUNS 86 228 #define CS_TIMER_XMTS 87 229 #define CS_FUZZ 88 230 #define CS_WANDER_THRESH 89 231 #define CS_LEAPSMEARINTV 90 232 #define CS_LEAPSMEAROFFS 91 233 #define CS_MAX_NOAUTOKEY CS_LEAPSMEAROFFS 234 #ifdef AUTOKEY 235 #define CS_FLAGS (1 + CS_MAX_NOAUTOKEY) 236 #define CS_HOST (2 + CS_MAX_NOAUTOKEY) 237 #define CS_PUBLIC (3 + CS_MAX_NOAUTOKEY) 238 #define CS_CERTIF (4 + CS_MAX_NOAUTOKEY) 239 #define CS_SIGNATURE (5 + CS_MAX_NOAUTOKEY) 240 #define CS_REVTIME (6 + CS_MAX_NOAUTOKEY) 241 #define CS_IDENT (7 + CS_MAX_NOAUTOKEY) 242 #define CS_DIGEST (8 + CS_MAX_NOAUTOKEY) 243 #define CS_MAXCODE CS_DIGEST 244 #else /* !AUTOKEY follows */ 245 #define CS_MAXCODE CS_MAX_NOAUTOKEY 246 #endif /* !AUTOKEY */ 247 248 /* 249 * Peer variables we understand 250 */ 251 #define CP_CONFIG 1 252 #define CP_AUTHENABLE 2 253 #define CP_AUTHENTIC 3 254 #define CP_SRCADR 4 255 #define CP_SRCPORT 5 256 #define CP_DSTADR 6 257 #define CP_DSTPORT 7 258 #define CP_LEAP 8 259 #define CP_HMODE 9 260 #define CP_STRATUM 10 261 #define CP_PPOLL 11 262 #define CP_HPOLL 12 263 #define CP_PRECISION 13 264 #define CP_ROOTDELAY 14 265 #define CP_ROOTDISPERSION 15 266 #define CP_REFID 16 267 #define CP_REFTIME 17 268 #define CP_ORG 18 269 #define CP_REC 19 270 #define CP_XMT 20 271 #define CP_REACH 21 272 #define CP_UNREACH 22 273 #define CP_TIMER 23 274 #define CP_DELAY 24 275 #define CP_OFFSET 25 276 #define CP_JITTER 26 277 #define CP_DISPERSION 27 278 #define CP_KEYID 28 279 #define CP_FILTDELAY 29 280 #define CP_FILTOFFSET 30 281 #define CP_PMODE 31 282 #define CP_RECEIVED 32 283 #define CP_SENT 33 284 #define CP_FILTERROR 34 285 #define CP_FLASH 35 286 #define CP_TTL 36 287 #define CP_VARLIST 37 288 #define CP_IN 38 289 #define CP_OUT 39 290 #define CP_RATE 40 291 #define CP_BIAS 41 292 #define CP_SRCHOST 42 293 #define CP_TIMEREC 43 294 #define CP_TIMEREACH 44 295 #define CP_BADAUTH 45 296 #define CP_BOGUSORG 46 297 #define CP_OLDPKT 47 298 #define CP_SELDISP 48 299 #define CP_SELBROKEN 49 300 #define CP_CANDIDATE 50 301 #define CP_MAX_NOAUTOKEY CP_CANDIDATE 302 #ifdef AUTOKEY 303 #define CP_FLAGS (1 + CP_MAX_NOAUTOKEY) 304 #define CP_HOST (2 + CP_MAX_NOAUTOKEY) 305 #define CP_VALID (3 + CP_MAX_NOAUTOKEY) 306 #define CP_INITSEQ (4 + CP_MAX_NOAUTOKEY) 307 #define CP_INITKEY (5 + CP_MAX_NOAUTOKEY) 308 #define CP_INITTSP (6 + CP_MAX_NOAUTOKEY) 309 #define CP_SIGNATURE (7 + CP_MAX_NOAUTOKEY) 310 #define CP_IDENT (8 + CP_MAX_NOAUTOKEY) 311 #define CP_MAXCODE CP_IDENT 312 #else /* !AUTOKEY follows */ 313 #define CP_MAXCODE CP_MAX_NOAUTOKEY 314 #endif /* !AUTOKEY */ 315 316 /* 317 * Clock variables we understand 318 */ 319 #define CC_TYPE 1 320 #define CC_TIMECODE 2 321 #define CC_POLL 3 322 #define CC_NOREPLY 4 323 #define CC_BADFORMAT 5 324 #define CC_BADDATA 6 325 #define CC_FUDGETIME1 7 326 #define CC_FUDGETIME2 8 327 #define CC_FUDGEVAL1 9 328 #define CC_FUDGEVAL2 10 329 #define CC_FLAGS 11 330 #define CC_DEVICE 12 331 #define CC_VARLIST 13 332 #define CC_MAXCODE CC_VARLIST 333 334 /* 335 * System variable values. The array can be indexed by the variable 336 * index to find the textual name. 337 */ 338 static const struct ctl_var sys_var[] = { 339 { 0, PADDING, "" }, /* 0 */ 340 { CS_LEAP, RW, "leap" }, /* 1 */ 341 { CS_STRATUM, RO, "stratum" }, /* 2 */ 342 { CS_PRECISION, RO, "precision" }, /* 3 */ 343 { CS_ROOTDELAY, RO, "rootdelay" }, /* 4 */ 344 { CS_ROOTDISPERSION, RO, "rootdisp" }, /* 5 */ 345 { CS_REFID, RO, "refid" }, /* 6 */ 346 { CS_REFTIME, RO, "reftime" }, /* 7 */ 347 { CS_POLL, RO, "tc" }, /* 8 */ 348 { CS_PEERID, RO, "peer" }, /* 9 */ 349 { CS_OFFSET, RO, "offset" }, /* 10 */ 350 { CS_DRIFT, RO, "frequency" }, /* 11 */ 351 { CS_JITTER, RO, "sys_jitter" }, /* 12 */ 352 { CS_ERROR, RO, "clk_jitter" }, /* 13 */ 353 { CS_CLOCK, RO, "clock" }, /* 14 */ 354 { CS_PROCESSOR, RO, "processor" }, /* 15 */ 355 { CS_SYSTEM, RO, "system" }, /* 16 */ 356 { CS_VERSION, RO, "version" }, /* 17 */ 357 { CS_STABIL, RO, "clk_wander" }, /* 18 */ 358 { CS_VARLIST, RO, "sys_var_list" }, /* 19 */ 359 { CS_TAI, RO, "tai" }, /* 20 */ 360 { CS_LEAPTAB, RO, "leapsec" }, /* 21 */ 361 { CS_LEAPEND, RO, "expire" }, /* 22 */ 362 { CS_RATE, RO, "mintc" }, /* 23 */ 363 { CS_MRU_ENABLED, RO, "mru_enabled" }, /* 24 */ 364 { CS_MRU_DEPTH, RO, "mru_depth" }, /* 25 */ 365 { CS_MRU_DEEPEST, RO, "mru_deepest" }, /* 26 */ 366 { CS_MRU_MINDEPTH, RO, "mru_mindepth" }, /* 27 */ 367 { CS_MRU_MAXAGE, RO, "mru_maxage" }, /* 28 */ 368 { CS_MRU_MAXDEPTH, RO, "mru_maxdepth" }, /* 29 */ 369 { CS_MRU_MEM, RO, "mru_mem" }, /* 30 */ 370 { CS_MRU_MAXMEM, RO, "mru_maxmem" }, /* 31 */ 371 { CS_SS_UPTIME, RO, "ss_uptime" }, /* 32 */ 372 { CS_SS_RESET, RO, "ss_reset" }, /* 33 */ 373 { CS_SS_RECEIVED, RO, "ss_received" }, /* 34 */ 374 { CS_SS_THISVER, RO, "ss_thisver" }, /* 35 */ 375 { CS_SS_OLDVER, RO, "ss_oldver" }, /* 36 */ 376 { CS_SS_BADFORMAT, RO, "ss_badformat" }, /* 37 */ 377 { CS_SS_BADAUTH, RO, "ss_badauth" }, /* 38 */ 378 { CS_SS_DECLINED, RO, "ss_declined" }, /* 39 */ 379 { CS_SS_RESTRICTED, RO, "ss_restricted" }, /* 40 */ 380 { CS_SS_LIMITED, RO, "ss_limited" }, /* 41 */ 381 { CS_SS_KODSENT, RO, "ss_kodsent" }, /* 42 */ 382 { CS_SS_PROCESSED, RO, "ss_processed" }, /* 43 */ 383 { CS_PEERADR, RO, "peeradr" }, /* 44 */ 384 { CS_PEERMODE, RO, "peermode" }, /* 45 */ 385 { CS_BCASTDELAY, RO, "bcastdelay" }, /* 46 */ 386 { CS_AUTHDELAY, RO, "authdelay" }, /* 47 */ 387 { CS_AUTHKEYS, RO, "authkeys" }, /* 48 */ 388 { CS_AUTHFREEK, RO, "authfreek" }, /* 49 */ 389 { CS_AUTHKLOOKUPS, RO, "authklookups" }, /* 50 */ 390 { CS_AUTHKNOTFOUND, RO, "authknotfound" }, /* 51 */ 391 { CS_AUTHKUNCACHED, RO, "authkuncached" }, /* 52 */ 392 { CS_AUTHKEXPIRED, RO, "authkexpired" }, /* 53 */ 393 { CS_AUTHENCRYPTS, RO, "authencrypts" }, /* 54 */ 394 { CS_AUTHDECRYPTS, RO, "authdecrypts" }, /* 55 */ 395 { CS_AUTHRESET, RO, "authreset" }, /* 56 */ 396 { CS_K_OFFSET, RO, "koffset" }, /* 57 */ 397 { CS_K_FREQ, RO, "kfreq" }, /* 58 */ 398 { CS_K_MAXERR, RO, "kmaxerr" }, /* 59 */ 399 { CS_K_ESTERR, RO, "kesterr" }, /* 60 */ 400 { CS_K_STFLAGS, RO, "kstflags" }, /* 61 */ 401 { CS_K_TIMECONST, RO, "ktimeconst" }, /* 62 */ 402 { CS_K_PRECISION, RO, "kprecis" }, /* 63 */ 403 { CS_K_FREQTOL, RO, "kfreqtol" }, /* 64 */ 404 { CS_K_PPS_FREQ, RO, "kppsfreq" }, /* 65 */ 405 { CS_K_PPS_STABIL, RO, "kppsstab" }, /* 66 */ 406 { CS_K_PPS_JITTER, RO, "kppsjitter" }, /* 67 */ 407 { CS_K_PPS_CALIBDUR, RO, "kppscalibdur" }, /* 68 */ 408 { CS_K_PPS_CALIBS, RO, "kppscalibs" }, /* 69 */ 409 { CS_K_PPS_CALIBERRS, RO, "kppscaliberrs" }, /* 70 */ 410 { CS_K_PPS_JITEXC, RO, "kppsjitexc" }, /* 71 */ 411 { CS_K_PPS_STBEXC, RO, "kppsstbexc" }, /* 72 */ 412 { CS_IOSTATS_RESET, RO, "iostats_reset" }, /* 73 */ 413 { CS_TOTAL_RBUF, RO, "total_rbuf" }, /* 74 */ 414 { CS_FREE_RBUF, RO, "free_rbuf" }, /* 75 */ 415 { CS_USED_RBUF, RO, "used_rbuf" }, /* 76 */ 416 { CS_RBUF_LOWATER, RO, "rbuf_lowater" }, /* 77 */ 417 { CS_IO_DROPPED, RO, "io_dropped" }, /* 78 */ 418 { CS_IO_IGNORED, RO, "io_ignored" }, /* 79 */ 419 { CS_IO_RECEIVED, RO, "io_received" }, /* 80 */ 420 { CS_IO_SENT, RO, "io_sent" }, /* 81 */ 421 { CS_IO_SENDFAILED, RO, "io_sendfailed" }, /* 82 */ 422 { CS_IO_WAKEUPS, RO, "io_wakeups" }, /* 83 */ 423 { CS_IO_GOODWAKEUPS, RO, "io_goodwakeups" }, /* 84 */ 424 { CS_TIMERSTATS_RESET, RO, "timerstats_reset" },/* 85 */ 425 { CS_TIMER_OVERRUNS, RO, "timer_overruns" }, /* 86 */ 426 { CS_TIMER_XMTS, RO, "timer_xmts" }, /* 87 */ 427 { CS_FUZZ, RO, "fuzz" }, /* 88 */ 428 { CS_WANDER_THRESH, RO, "clk_wander_threshold" }, /* 89 */ 429 430 { CS_LEAPSMEARINTV, RO, "leapsmearinterval" }, /* 90 */ 431 { CS_LEAPSMEAROFFS, RO, "leapsmearoffset" }, /* 91 */ 432 433 #ifdef AUTOKEY 434 { CS_FLAGS, RO, "flags" }, /* 1 + CS_MAX_NOAUTOKEY */ 435 { CS_HOST, RO, "host" }, /* 2 + CS_MAX_NOAUTOKEY */ 436 { CS_PUBLIC, RO, "update" }, /* 3 + CS_MAX_NOAUTOKEY */ 437 { CS_CERTIF, RO, "cert" }, /* 4 + CS_MAX_NOAUTOKEY */ 438 { CS_SIGNATURE, RO, "signature" }, /* 5 + CS_MAX_NOAUTOKEY */ 439 { CS_REVTIME, RO, "until" }, /* 6 + CS_MAX_NOAUTOKEY */ 440 { CS_IDENT, RO, "ident" }, /* 7 + CS_MAX_NOAUTOKEY */ 441 { CS_DIGEST, RO, "digest" }, /* 8 + CS_MAX_NOAUTOKEY */ 442 #endif /* AUTOKEY */ 443 { 0, EOV, "" } /* 87/95 */ 444 }; 445 446 static struct ctl_var *ext_sys_var = NULL; 447 448 /* 449 * System variables we print by default (in fuzzball order, 450 * more-or-less) 451 */ 452 static const u_char def_sys_var[] = { 453 CS_VERSION, 454 CS_PROCESSOR, 455 CS_SYSTEM, 456 CS_LEAP, 457 CS_STRATUM, 458 CS_PRECISION, 459 CS_ROOTDELAY, 460 CS_ROOTDISPERSION, 461 CS_REFID, 462 CS_REFTIME, 463 CS_CLOCK, 464 CS_PEERID, 465 CS_POLL, 466 CS_RATE, 467 CS_OFFSET, 468 CS_DRIFT, 469 CS_JITTER, 470 CS_ERROR, 471 CS_STABIL, 472 CS_TAI, 473 CS_LEAPTAB, 474 CS_LEAPEND, 475 CS_LEAPSMEARINTV, 476 CS_LEAPSMEAROFFS, 477 #ifdef AUTOKEY 478 CS_HOST, 479 CS_IDENT, 480 CS_FLAGS, 481 CS_DIGEST, 482 CS_SIGNATURE, 483 CS_PUBLIC, 484 CS_CERTIF, 485 #endif /* AUTOKEY */ 486 0 487 }; 488 489 490 /* 491 * Peer variable list 492 */ 493 static const struct ctl_var peer_var[] = { 494 { 0, PADDING, "" }, /* 0 */ 495 { CP_CONFIG, RO, "config" }, /* 1 */ 496 { CP_AUTHENABLE, RO, "authenable" }, /* 2 */ 497 { CP_AUTHENTIC, RO, "authentic" }, /* 3 */ 498 { CP_SRCADR, RO, "srcadr" }, /* 4 */ 499 { CP_SRCPORT, RO, "srcport" }, /* 5 */ 500 { CP_DSTADR, RO, "dstadr" }, /* 6 */ 501 { CP_DSTPORT, RO, "dstport" }, /* 7 */ 502 { CP_LEAP, RO, "leap" }, /* 8 */ 503 { CP_HMODE, RO, "hmode" }, /* 9 */ 504 { CP_STRATUM, RO, "stratum" }, /* 10 */ 505 { CP_PPOLL, RO, "ppoll" }, /* 11 */ 506 { CP_HPOLL, RO, "hpoll" }, /* 12 */ 507 { CP_PRECISION, RO, "precision" }, /* 13 */ 508 { CP_ROOTDELAY, RO, "rootdelay" }, /* 14 */ 509 { CP_ROOTDISPERSION, RO, "rootdisp" }, /* 15 */ 510 { CP_REFID, RO, "refid" }, /* 16 */ 511 { CP_REFTIME, RO, "reftime" }, /* 17 */ 512 { CP_ORG, RO, "org" }, /* 18 */ 513 { CP_REC, RO, "rec" }, /* 19 */ 514 { CP_XMT, RO, "xleave" }, /* 20 */ 515 { CP_REACH, RO, "reach" }, /* 21 */ 516 { CP_UNREACH, RO, "unreach" }, /* 22 */ 517 { CP_TIMER, RO, "timer" }, /* 23 */ 518 { CP_DELAY, RO, "delay" }, /* 24 */ 519 { CP_OFFSET, RO, "offset" }, /* 25 */ 520 { CP_JITTER, RO, "jitter" }, /* 26 */ 521 { CP_DISPERSION, RO, "dispersion" }, /* 27 */ 522 { CP_KEYID, RO, "keyid" }, /* 28 */ 523 { CP_FILTDELAY, RO, "filtdelay" }, /* 29 */ 524 { CP_FILTOFFSET, RO, "filtoffset" }, /* 30 */ 525 { CP_PMODE, RO, "pmode" }, /* 31 */ 526 { CP_RECEIVED, RO, "received"}, /* 32 */ 527 { CP_SENT, RO, "sent" }, /* 33 */ 528 { CP_FILTERROR, RO, "filtdisp" }, /* 34 */ 529 { CP_FLASH, RO, "flash" }, /* 35 */ 530 { CP_TTL, RO, "ttl" }, /* 36 */ 531 { CP_VARLIST, RO, "peer_var_list" }, /* 37 */ 532 { CP_IN, RO, "in" }, /* 38 */ 533 { CP_OUT, RO, "out" }, /* 39 */ 534 { CP_RATE, RO, "headway" }, /* 40 */ 535 { CP_BIAS, RO, "bias" }, /* 41 */ 536 { CP_SRCHOST, RO, "srchost" }, /* 42 */ 537 { CP_TIMEREC, RO, "timerec" }, /* 43 */ 538 { CP_TIMEREACH, RO, "timereach" }, /* 44 */ 539 { CP_BADAUTH, RO, "badauth" }, /* 45 */ 540 { CP_BOGUSORG, RO, "bogusorg" }, /* 46 */ 541 { CP_OLDPKT, RO, "oldpkt" }, /* 47 */ 542 { CP_SELDISP, RO, "seldisp" }, /* 48 */ 543 { CP_SELBROKEN, RO, "selbroken" }, /* 49 */ 544 { CP_CANDIDATE, RO, "candidate" }, /* 50 */ 545 #ifdef AUTOKEY 546 { CP_FLAGS, RO, "flags" }, /* 1 + CP_MAX_NOAUTOKEY */ 547 { CP_HOST, RO, "host" }, /* 2 + CP_MAX_NOAUTOKEY */ 548 { CP_VALID, RO, "valid" }, /* 3 + CP_MAX_NOAUTOKEY */ 549 { CP_INITSEQ, RO, "initsequence" }, /* 4 + CP_MAX_NOAUTOKEY */ 550 { CP_INITKEY, RO, "initkey" }, /* 5 + CP_MAX_NOAUTOKEY */ 551 { CP_INITTSP, RO, "timestamp" }, /* 6 + CP_MAX_NOAUTOKEY */ 552 { CP_SIGNATURE, RO, "signature" }, /* 7 + CP_MAX_NOAUTOKEY */ 553 { CP_IDENT, RO, "ident" }, /* 8 + CP_MAX_NOAUTOKEY */ 554 #endif /* AUTOKEY */ 555 { 0, EOV, "" } /* 50/58 */ 556 }; 557 558 559 /* 560 * Peer variables we print by default 561 */ 562 static const u_char def_peer_var[] = { 563 CP_SRCADR, 564 CP_SRCPORT, 565 CP_SRCHOST, 566 CP_DSTADR, 567 CP_DSTPORT, 568 CP_OUT, 569 CP_IN, 570 CP_LEAP, 571 CP_STRATUM, 572 CP_PRECISION, 573 CP_ROOTDELAY, 574 CP_ROOTDISPERSION, 575 CP_REFID, 576 CP_REFTIME, 577 CP_REC, 578 CP_REACH, 579 CP_UNREACH, 580 CP_HMODE, 581 CP_PMODE, 582 CP_HPOLL, 583 CP_PPOLL, 584 CP_RATE, 585 CP_FLASH, 586 CP_KEYID, 587 CP_TTL, 588 CP_OFFSET, 589 CP_DELAY, 590 CP_DISPERSION, 591 CP_JITTER, 592 CP_XMT, 593 CP_BIAS, 594 CP_FILTDELAY, 595 CP_FILTOFFSET, 596 CP_FILTERROR, 597 #ifdef AUTOKEY 598 CP_HOST, 599 CP_FLAGS, 600 CP_SIGNATURE, 601 CP_VALID, 602 CP_INITSEQ, 603 CP_IDENT, 604 #endif /* AUTOKEY */ 605 0 606 }; 607 608 609 #ifdef REFCLOCK 610 /* 611 * Clock variable list 612 */ 613 static const struct ctl_var clock_var[] = { 614 { 0, PADDING, "" }, /* 0 */ 615 { CC_TYPE, RO, "type" }, /* 1 */ 616 { CC_TIMECODE, RO, "timecode" }, /* 2 */ 617 { CC_POLL, RO, "poll" }, /* 3 */ 618 { CC_NOREPLY, RO, "noreply" }, /* 4 */ 619 { CC_BADFORMAT, RO, "badformat" }, /* 5 */ 620 { CC_BADDATA, RO, "baddata" }, /* 6 */ 621 { CC_FUDGETIME1, RO, "fudgetime1" }, /* 7 */ 622 { CC_FUDGETIME2, RO, "fudgetime2" }, /* 8 */ 623 { CC_FUDGEVAL1, RO, "stratum" }, /* 9 */ 624 { CC_FUDGEVAL2, RO, "refid" }, /* 10 */ 625 { CC_FLAGS, RO, "flags" }, /* 11 */ 626 { CC_DEVICE, RO, "device" }, /* 12 */ 627 { CC_VARLIST, RO, "clock_var_list" }, /* 13 */ 628 { 0, EOV, "" } /* 14 */ 629 }; 630 631 632 /* 633 * Clock variables printed by default 634 */ 635 static const u_char def_clock_var[] = { 636 CC_DEVICE, 637 CC_TYPE, /* won't be output if device = known */ 638 CC_TIMECODE, 639 CC_POLL, 640 CC_NOREPLY, 641 CC_BADFORMAT, 642 CC_BADDATA, 643 CC_FUDGETIME1, 644 CC_FUDGETIME2, 645 CC_FUDGEVAL1, 646 CC_FUDGEVAL2, 647 CC_FLAGS, 648 0 649 }; 650 #endif 651 652 /* 653 * MRU string constants shared by send_mru_entry() and read_mru_list(). 654 */ 655 static const char addr_fmt[] = "addr.%d"; 656 static const char last_fmt[] = "last.%d"; 657 658 /* 659 * System and processor definitions. 660 */ 661 #ifndef HAVE_UNAME 662 # ifndef STR_SYSTEM 663 # define STR_SYSTEM "UNIX" 664 # endif 665 # ifndef STR_PROCESSOR 666 # define STR_PROCESSOR "unknown" 667 # endif 668 669 static const char str_system[] = STR_SYSTEM; 670 static const char str_processor[] = STR_PROCESSOR; 671 #else 672 # include <sys/utsname.h> 673 static struct utsname utsnamebuf; 674 #endif /* HAVE_UNAME */ 675 676 /* 677 * Trap structures. We only allow a few of these, and send a copy of 678 * each async message to each live one. Traps time out after an hour, it 679 * is up to the trap receipient to keep resetting it to avoid being 680 * timed out. 681 */ 682 /* ntp_request.c */ 683 struct ctl_trap ctl_traps[CTL_MAXTRAPS]; 684 int num_ctl_traps; 685 686 /* 687 * Type bits, for ctlsettrap() call. 688 */ 689 #define TRAP_TYPE_CONFIG 0 /* used by configuration code */ 690 #define TRAP_TYPE_PRIO 1 /* priority trap */ 691 #define TRAP_TYPE_NONPRIO 2 /* nonpriority trap */ 692 693 694 /* 695 * List relating reference clock types to control message time sources. 696 * Index by the reference clock type. This list will only be used iff 697 * the reference clock driver doesn't set peer->sstclktype to something 698 * different than CTL_SST_TS_UNSPEC. 699 */ 700 #ifdef REFCLOCK 701 static const u_char clocktypes[] = { 702 CTL_SST_TS_NTP, /* REFCLK_NONE (0) */ 703 CTL_SST_TS_LOCAL, /* REFCLK_LOCALCLOCK (1) */ 704 CTL_SST_TS_UHF, /* deprecated REFCLK_GPS_TRAK (2) */ 705 CTL_SST_TS_HF, /* REFCLK_WWV_PST (3) */ 706 CTL_SST_TS_LF, /* REFCLK_WWVB_SPECTRACOM (4) */ 707 CTL_SST_TS_UHF, /* REFCLK_TRUETIME (5) */ 708 CTL_SST_TS_UHF, /* REFCLK_IRIG_AUDIO (6) */ 709 CTL_SST_TS_HF, /* REFCLK_CHU (7) */ 710 CTL_SST_TS_LF, /* REFCLOCK_PARSE (default) (8) */ 711 CTL_SST_TS_LF, /* REFCLK_GPS_MX4200 (9) */ 712 CTL_SST_TS_UHF, /* REFCLK_GPS_AS2201 (10) */ 713 CTL_SST_TS_UHF, /* REFCLK_GPS_ARBITER (11) */ 714 CTL_SST_TS_UHF, /* REFCLK_IRIG_TPRO (12) */ 715 CTL_SST_TS_ATOM, /* REFCLK_ATOM_LEITCH (13) */ 716 CTL_SST_TS_LF, /* deprecated REFCLK_MSF_EES (14) */ 717 CTL_SST_TS_NTP, /* not used (15) */ 718 CTL_SST_TS_UHF, /* REFCLK_IRIG_BANCOMM (16) */ 719 CTL_SST_TS_UHF, /* REFCLK_GPS_DATU (17) */ 720 CTL_SST_TS_TELEPHONE, /* REFCLK_NIST_ACTS (18) */ 721 CTL_SST_TS_HF, /* REFCLK_WWV_HEATH (19) */ 722 CTL_SST_TS_UHF, /* REFCLK_GPS_NMEA (20) */ 723 CTL_SST_TS_UHF, /* REFCLK_GPS_VME (21) */ 724 CTL_SST_TS_ATOM, /* REFCLK_ATOM_PPS (22) */ 725 CTL_SST_TS_NTP, /* not used (23) */ 726 CTL_SST_TS_NTP, /* not used (24) */ 727 CTL_SST_TS_NTP, /* not used (25) */ 728 CTL_SST_TS_UHF, /* REFCLK_GPS_HP (26) */ 729 CTL_SST_TS_LF, /* REFCLK_ARCRON_MSF (27) */ 730 CTL_SST_TS_UHF, /* REFCLK_SHM (28) */ 731 CTL_SST_TS_UHF, /* REFCLK_PALISADE (29) */ 732 CTL_SST_TS_UHF, /* REFCLK_ONCORE (30) */ 733 CTL_SST_TS_UHF, /* REFCLK_JUPITER (31) */ 734 CTL_SST_TS_LF, /* REFCLK_CHRONOLOG (32) */ 735 CTL_SST_TS_LF, /* REFCLK_DUMBCLOCK (33) */ 736 CTL_SST_TS_LF, /* REFCLK_ULINK (34) */ 737 CTL_SST_TS_LF, /* REFCLK_PCF (35) */ 738 CTL_SST_TS_HF, /* REFCLK_WWV (36) */ 739 CTL_SST_TS_LF, /* REFCLK_FG (37) */ 740 CTL_SST_TS_UHF, /* REFCLK_HOPF_SERIAL (38) */ 741 CTL_SST_TS_UHF, /* REFCLK_HOPF_PCI (39) */ 742 CTL_SST_TS_LF, /* REFCLK_JJY (40) */ 743 CTL_SST_TS_UHF, /* REFCLK_TT560 (41) */ 744 CTL_SST_TS_UHF, /* REFCLK_ZYFER (42) */ 745 CTL_SST_TS_UHF, /* REFCLK_RIPENCC (43) */ 746 CTL_SST_TS_UHF, /* REFCLK_NEOCLOCK4X (44) */ 747 CTL_SST_TS_UHF, /* REFCLK_TSYNCPCI (45) */ 748 CTL_SST_TS_UHF /* REFCLK_GPSDJSON (46) */ 749 }; 750 #endif /* REFCLOCK */ 751 752 753 /* 754 * Keyid used for authenticating write requests. 755 */ 756 keyid_t ctl_auth_keyid; 757 758 /* 759 * We keep track of the last error reported by the system internally 760 */ 761 static u_char ctl_sys_last_event; 762 static u_char ctl_sys_num_events; 763 764 765 /* 766 * Statistic counters to keep track of requests and responses. 767 */ 768 u_long ctltimereset; /* time stats reset */ 769 u_long numctlreq; /* number of requests we've received */ 770 u_long numctlbadpkts; /* number of bad control packets */ 771 u_long numctlresponses; /* number of resp packets sent with data */ 772 u_long numctlfrags; /* number of fragments sent */ 773 u_long numctlerrors; /* number of error responses sent */ 774 u_long numctltooshort; /* number of too short input packets */ 775 u_long numctlinputresp; /* number of responses on input */ 776 u_long numctlinputfrag; /* number of fragments on input */ 777 u_long numctlinputerr; /* number of input pkts with err bit set */ 778 u_long numctlbadoffset; /* number of input pkts with nonzero offset */ 779 u_long numctlbadversion; /* number of input pkts with unknown version */ 780 u_long numctldatatooshort; /* data too short for count */ 781 u_long numctlbadop; /* bad op code found in packet */ 782 u_long numasyncmsgs; /* number of async messages we've sent */ 783 784 /* 785 * Response packet used by these routines. Also some state information 786 * so that we can handle packet formatting within a common set of 787 * subroutines. Note we try to enter data in place whenever possible, 788 * but the need to set the more bit correctly means we occasionally 789 * use the extra buffer and copy. 790 */ 791 static struct ntp_control rpkt; 792 static u_char res_version; 793 static u_char res_opcode; 794 static associd_t res_associd; 795 static u_short res_frags; /* datagrams in this response */ 796 static int res_offset; /* offset of payload in response */ 797 static u_char * datapt; 798 static u_char * dataend; 799 static int datalinelen; 800 static int datasent; /* flag to avoid initial ", " */ 801 static int datanotbinflag; 802 static sockaddr_u *rmt_addr; 803 static struct interface *lcl_inter; 804 805 static u_char res_authenticate; 806 static u_char res_authokay; 807 static keyid_t res_keyid; 808 809 #define MAXDATALINELEN (72) 810 811 static u_char res_async; /* sending async trap response? */ 812 813 /* 814 * Pointers for saving state when decoding request packets 815 */ 816 static char *reqpt; 817 static char *reqend; 818 819 #ifndef MIN 820 #define MIN(a, b) (((a) <= (b)) ? (a) : (b)) 821 #endif 822 823 /* 824 * init_control - initialize request data 825 */ 826 void 827 init_control(void) 828 { 829 size_t i; 830 831 #ifdef HAVE_UNAME 832 uname(&utsnamebuf); 833 #endif /* HAVE_UNAME */ 834 835 ctl_clr_stats(); 836 837 ctl_auth_keyid = 0; 838 ctl_sys_last_event = EVNT_UNSPEC; 839 ctl_sys_num_events = 0; 840 841 num_ctl_traps = 0; 842 for (i = 0; i < COUNTOF(ctl_traps); i++) 843 ctl_traps[i].tr_flags = 0; 844 } 845 846 847 /* 848 * ctl_error - send an error response for the current request 849 */ 850 static void 851 ctl_error( 852 u_char errcode 853 ) 854 { 855 size_t maclen; 856 857 numctlerrors++; 858 DPRINTF(3, ("sending control error %u\n", errcode)); 859 860 /* 861 * Fill in the fields. We assume rpkt.sequence and rpkt.associd 862 * have already been filled in. 863 */ 864 rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR | 865 (res_opcode & CTL_OP_MASK); 866 rpkt.status = htons((u_short)(errcode << 8) & 0xff00); 867 rpkt.count = 0; 868 869 /* 870 * send packet and bump counters 871 */ 872 if (res_authenticate && sys_authenticate) { 873 maclen = authencrypt(res_keyid, (u_int32 *)&rpkt, 874 CTL_HEADER_LEN); 875 sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt, 876 CTL_HEADER_LEN + maclen); 877 } else 878 sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt, 879 CTL_HEADER_LEN); 880 } 881 882 int/*BOOL*/ 883 is_safe_filename(const char * name) 884 { 885 /* We need a strict validation of filenames we should write: The 886 * daemon might run with special permissions and is remote 887 * controllable, so we better take care what we allow as file 888 * name! 889 * 890 * The first character must be digit or a letter from the ASCII 891 * base plane or a '_' ([_A-Za-z0-9]), the following characters 892 * must be from [-._+A-Za-z0-9]. 893 * 894 * We do not trust the character classification much here: Since 895 * the NTP protocol makes no provisions for UTF-8 or local code 896 * pages, we strictly require the 7bit ASCII code page. 897 * 898 * The following table is a packed bit field of 128 two-bit 899 * groups. The LSB in each group tells us if a character is 900 * acceptable at the first position, the MSB if the character is 901 * accepted at any other position. 902 * 903 * This does not ensure that the file name is syntactically 904 * correct (multiple dots will not work with VMS...) but it will 905 * exclude potential globbing bombs and directory traversal. It 906 * also rules out drive selection. (For systems that have this 907 * notion, like Windows or VMS.) 908 */ 909 static const uint32_t chclass[8] = { 910 0x00000000, 0x00000000, 911 0x28800000, 0x000FFFFF, 912 0xFFFFFFFC, 0xC03FFFFF, 913 0xFFFFFFFC, 0x003FFFFF 914 }; 915 916 u_int widx, bidx, mask; 917 if ( ! (name && *name)) 918 return FALSE; 919 920 mask = 1u; 921 while (0 != (widx = (u_char)*name++)) { 922 bidx = (widx & 15) << 1; 923 widx = widx >> 4; 924 if (widx >= sizeof(chclass)/sizeof(chclass[0])) 925 return FALSE; 926 if (0 == ((chclass[widx] >> bidx) & mask)) 927 return FALSE; 928 mask = 2u; 929 } 930 return TRUE; 931 } 932 933 934 /* 935 * save_config - Implements ntpq -c "saveconfig <filename>" 936 * Writes current configuration including any runtime 937 * changes by ntpq's :config or config-from-file 938 * 939 * Note: There should be no buffer overflow or truncation in the 940 * processing of file names -- both cause security problems. This is bit 941 * painful to code but essential here. 942 */ 943 void 944 save_config( 945 struct recvbuf *rbufp, 946 int restrict_mask 947 ) 948 { 949 /* block directory traversal by searching for characters that 950 * indicate directory components in a file path. 951 * 952 * Conceptually we should be searching for DIRSEP in filename, 953 * however Windows actually recognizes both forward and 954 * backslashes as equivalent directory separators at the API 955 * level. On POSIX systems we could allow '\\' but such 956 * filenames are tricky to manipulate from a shell, so just 957 * reject both types of slashes on all platforms. 958 */ 959 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 960 static const char * illegal_in_filename = 961 #if defined(VMS) 962 ":[]" /* do not allow drive and path components here */ 963 #elif defined(SYS_WINNT) 964 ":\\/" /* path and drive separators */ 965 #else 966 "\\/" /* separator and critical char for POSIX */ 967 #endif 968 ; 969 char reply[128]; 970 #ifdef SAVECONFIG 971 static const char savedconfig_eq[] = "savedconfig="; 972 973 /* Build a safe open mode from the available mode flags. We want 974 * to create a new file and write it in text mode (when 975 * applicable -- only Windows does this...) 976 */ 977 static const int openmode = O_CREAT | O_TRUNC | O_WRONLY 978 # if defined(O_EXCL) /* posix, vms */ 979 | O_EXCL 980 # elif defined(_O_EXCL) /* windows is alway very special... */ 981 | _O_EXCL 982 # endif 983 # if defined(_O_TEXT) /* windows, again */ 984 | _O_TEXT 985 #endif 986 ; 987 988 char filespec[128]; 989 char filename[128]; 990 char fullpath[512]; 991 char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)]; 992 time_t now; 993 int fd; 994 FILE *fptr; 995 int prc; 996 size_t reqlen; 997 #endif 998 999 if (RES_NOMODIFY & restrict_mask) { 1000 ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify"); 1001 ctl_flushpkt(0); 1002 NLOG(NLOG_SYSINFO) 1003 msyslog(LOG_NOTICE, 1004 "saveconfig from %s rejected due to nomodify restriction", 1005 stoa(&rbufp->recv_srcadr)); 1006 sys_restricted++; 1007 return; 1008 } 1009 1010 #ifdef SAVECONFIG 1011 if (NULL == saveconfigdir) { 1012 ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured"); 1013 ctl_flushpkt(0); 1014 NLOG(NLOG_SYSINFO) 1015 msyslog(LOG_NOTICE, 1016 "saveconfig from %s rejected, no saveconfigdir", 1017 stoa(&rbufp->recv_srcadr)); 1018 return; 1019 } 1020 1021 /* The length checking stuff gets serious. Do not assume a NUL 1022 * byte can be found, but if so, use it to calculate the needed 1023 * buffer size. If the available buffer is too short, bail out; 1024 * likewise if there is no file spec. (The latter will not 1025 * happen when using NTPQ, but there are other ways to craft a 1026 * network packet!) 1027 */ 1028 reqlen = (size_t)(reqend - reqpt); 1029 if (0 != reqlen) { 1030 char * nulpos = (char*)memchr(reqpt, 0, reqlen); 1031 if (NULL != nulpos) 1032 reqlen = (size_t)(nulpos - reqpt); 1033 } 1034 if (0 == reqlen) 1035 return; 1036 if (reqlen >= sizeof(filespec)) { 1037 ctl_printf("saveconfig exceeded maximum raw name length (%u)", 1038 (u_int)sizeof(filespec)); 1039 ctl_flushpkt(0); 1040 msyslog(LOG_NOTICE, 1041 "saveconfig exceeded maximum raw name length from %s", 1042 stoa(&rbufp->recv_srcadr)); 1043 return; 1044 } 1045 1046 /* copy data directly as we exactly know the size */ 1047 memcpy(filespec, reqpt, reqlen); 1048 filespec[reqlen] = '\0'; 1049 1050 /* 1051 * allow timestamping of the saved config filename with 1052 * strftime() format such as: 1053 * ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf" 1054 * XXX: Nice feature, but not too safe. 1055 * YYY: The check for permitted characters in file names should 1056 * weed out the worst. Let's hope 'strftime()' does not 1057 * develop pathological problems. 1058 */ 1059 time(&now); 1060 if (0 == strftime(filename, sizeof(filename), filespec, 1061 localtime(&now))) 1062 { 1063 /* 1064 * If we arrive here, 'strftime()' balked; most likely 1065 * the buffer was too short. (Or it encounterd an empty 1066 * format, or just a format that expands to an empty 1067 * string.) We try to use the original name, though this 1068 * is very likely to fail later if there are format 1069 * specs in the string. Note that truncation cannot 1070 * happen here as long as both buffers have the same 1071 * size! 1072 */ 1073 strlcpy(filename, filespec, sizeof(filename)); 1074 } 1075 1076 /* 1077 * Check the file name for sanity. This might/will rule out file 1078 * names that would be legal but problematic, and it blocks 1079 * directory traversal. 1080 */ 1081 if (!is_safe_filename(filename)) { 1082 ctl_printf("saveconfig rejects unsafe file name '%s'", 1083 filename); 1084 ctl_flushpkt(0); 1085 msyslog(LOG_NOTICE, 1086 "saveconfig rejects unsafe file name from %s", 1087 stoa(&rbufp->recv_srcadr)); 1088 return; 1089 } 1090 1091 /* 1092 * XXX: This next test may not be needed with is_safe_filename() 1093 */ 1094 1095 /* block directory/drive traversal */ 1096 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 1097 if (NULL != strpbrk(filename, illegal_in_filename)) { 1098 snprintf(reply, sizeof(reply), 1099 "saveconfig does not allow directory in filename"); 1100 ctl_putdata(reply, strlen(reply), 0); 1101 ctl_flushpkt(0); 1102 msyslog(LOG_NOTICE, 1103 "saveconfig rejects unsafe file name from %s", 1104 stoa(&rbufp->recv_srcadr)); 1105 return; 1106 } 1107 1108 /* concatenation of directory and path can cause another 1109 * truncation... 1110 */ 1111 prc = snprintf(fullpath, sizeof(fullpath), "%s%s", 1112 saveconfigdir, filename); 1113 if (prc < 0 || (size_t)prc >= sizeof(fullpath)) { 1114 ctl_printf("saveconfig exceeded maximum path length (%u)", 1115 (u_int)sizeof(fullpath)); 1116 ctl_flushpkt(0); 1117 msyslog(LOG_NOTICE, 1118 "saveconfig exceeded maximum path length from %s", 1119 stoa(&rbufp->recv_srcadr)); 1120 return; 1121 } 1122 1123 fd = open(fullpath, openmode, S_IRUSR | S_IWUSR); 1124 if (-1 == fd) 1125 fptr = NULL; 1126 else 1127 fptr = fdopen(fd, "w"); 1128 1129 if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) { 1130 ctl_printf("Unable to save configuration to file '%s': %s", 1131 filename, strerror(errno)); 1132 msyslog(LOG_ERR, 1133 "saveconfig %s from %s failed", filename, 1134 stoa(&rbufp->recv_srcadr)); 1135 } else { 1136 ctl_printf("Configuration saved to '%s'", filename); 1137 msyslog(LOG_NOTICE, 1138 "Configuration saved to '%s' (requested by %s)", 1139 fullpath, stoa(&rbufp->recv_srcadr)); 1140 /* 1141 * save the output filename in system variable 1142 * savedconfig, retrieved with: 1143 * ntpq -c "rv 0 savedconfig" 1144 * Note: the way 'savedconfig' is defined makes overflow 1145 * checks unnecessary here. 1146 */ 1147 snprintf(savedconfig, sizeof(savedconfig), "%s%s", 1148 savedconfig_eq, filename); 1149 set_sys_var(savedconfig, strlen(savedconfig) + 1, RO); 1150 } 1151 1152 if (NULL != fptr) 1153 fclose(fptr); 1154 #else /* !SAVECONFIG follows */ 1155 ctl_printf("%s", 1156 "saveconfig unavailable, configured with --disable-saveconfig"); 1157 #endif 1158 ctl_flushpkt(0); 1159 } 1160 1161 1162 /* 1163 * process_control - process an incoming control message 1164 */ 1165 void 1166 process_control( 1167 struct recvbuf *rbufp, 1168 int restrict_mask 1169 ) 1170 { 1171 struct ntp_control *pkt; 1172 int req_count; 1173 int req_data; 1174 const struct ctl_proc *cc; 1175 keyid_t *pkid; 1176 int properlen; 1177 size_t maclen; 1178 1179 DPRINTF(3, ("in process_control()\n")); 1180 1181 /* 1182 * Save the addresses for error responses 1183 */ 1184 numctlreq++; 1185 rmt_addr = &rbufp->recv_srcadr; 1186 lcl_inter = rbufp->dstadr; 1187 pkt = (struct ntp_control *)&rbufp->recv_pkt; 1188 1189 /* 1190 * If the length is less than required for the header, or 1191 * it is a response or a fragment, ignore this. 1192 */ 1193 if (rbufp->recv_length < (int)CTL_HEADER_LEN 1194 || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op 1195 || pkt->offset != 0) { 1196 DPRINTF(1, ("invalid format in control packet\n")); 1197 if (rbufp->recv_length < (int)CTL_HEADER_LEN) 1198 numctltooshort++; 1199 if (CTL_RESPONSE & pkt->r_m_e_op) 1200 numctlinputresp++; 1201 if (CTL_MORE & pkt->r_m_e_op) 1202 numctlinputfrag++; 1203 if (CTL_ERROR & pkt->r_m_e_op) 1204 numctlinputerr++; 1205 if (pkt->offset != 0) 1206 numctlbadoffset++; 1207 return; 1208 } 1209 res_version = PKT_VERSION(pkt->li_vn_mode); 1210 if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) { 1211 DPRINTF(1, ("unknown version %d in control packet\n", 1212 res_version)); 1213 numctlbadversion++; 1214 return; 1215 } 1216 1217 /* 1218 * Pull enough data from the packet to make intelligent 1219 * responses 1220 */ 1221 rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version, 1222 MODE_CONTROL); 1223 res_opcode = pkt->r_m_e_op; 1224 rpkt.sequence = pkt->sequence; 1225 rpkt.associd = pkt->associd; 1226 rpkt.status = 0; 1227 res_frags = 1; 1228 res_offset = 0; 1229 res_associd = htons(pkt->associd); 1230 res_async = FALSE; 1231 res_authenticate = FALSE; 1232 res_keyid = 0; 1233 res_authokay = FALSE; 1234 req_count = (int)ntohs(pkt->count); 1235 datanotbinflag = FALSE; 1236 datalinelen = 0; 1237 datasent = 0; 1238 datapt = rpkt.u.data; 1239 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 1240 1241 if ((rbufp->recv_length & 0x3) != 0) 1242 DPRINTF(3, ("Control packet length %d unrounded\n", 1243 rbufp->recv_length)); 1244 1245 /* 1246 * We're set up now. Make sure we've got at least enough 1247 * incoming data space to match the count. 1248 */ 1249 req_data = rbufp->recv_length - CTL_HEADER_LEN; 1250 if (req_data < req_count || rbufp->recv_length & 0x3) { 1251 ctl_error(CERR_BADFMT); 1252 numctldatatooshort++; 1253 return; 1254 } 1255 1256 properlen = req_count + CTL_HEADER_LEN; 1257 /* round up proper len to a 8 octet boundary */ 1258 1259 properlen = (properlen + 7) & ~7; 1260 maclen = rbufp->recv_length - properlen; 1261 if ((rbufp->recv_length & 3) == 0 && 1262 maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN && 1263 sys_authenticate) { 1264 res_authenticate = TRUE; 1265 pkid = (void *)((char *)pkt + properlen); 1266 res_keyid = ntohl(*pkid); 1267 DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n", 1268 rbufp->recv_length, properlen, res_keyid, 1269 maclen)); 1270 1271 if (!authistrusted(res_keyid)) 1272 DPRINTF(3, ("invalid keyid %08x\n", res_keyid)); 1273 else if (authdecrypt(res_keyid, (u_int32 *)pkt, 1274 rbufp->recv_length - maclen, 1275 maclen)) { 1276 res_authokay = TRUE; 1277 DPRINTF(3, ("authenticated okay\n")); 1278 } else { 1279 res_keyid = 0; 1280 DPRINTF(3, ("authentication failed\n")); 1281 } 1282 } 1283 1284 /* 1285 * Set up translate pointers 1286 */ 1287 reqpt = (char *)pkt->u.data; 1288 reqend = reqpt + req_count; 1289 1290 /* 1291 * Look for the opcode processor 1292 */ 1293 for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) { 1294 if (cc->control_code == res_opcode) { 1295 DPRINTF(3, ("opcode %d, found command handler\n", 1296 res_opcode)); 1297 if (cc->flags == AUTH 1298 && (!res_authokay 1299 || res_keyid != ctl_auth_keyid)) { 1300 ctl_error(CERR_PERMISSION); 1301 return; 1302 } 1303 (cc->handler)(rbufp, restrict_mask); 1304 return; 1305 } 1306 } 1307 1308 /* 1309 * Can't find this one, return an error. 1310 */ 1311 numctlbadop++; 1312 ctl_error(CERR_BADOP); 1313 return; 1314 } 1315 1316 1317 /* 1318 * ctlpeerstatus - return a status word for this peer 1319 */ 1320 u_short 1321 ctlpeerstatus( 1322 register struct peer *p 1323 ) 1324 { 1325 u_short status; 1326 1327 status = p->status; 1328 if (FLAG_CONFIG & p->flags) 1329 status |= CTL_PST_CONFIG; 1330 if (p->keyid) 1331 status |= CTL_PST_AUTHENABLE; 1332 if (FLAG_AUTHENTIC & p->flags) 1333 status |= CTL_PST_AUTHENTIC; 1334 if (p->reach) 1335 status |= CTL_PST_REACH; 1336 if (MDF_TXONLY_MASK & p->cast_flags) 1337 status |= CTL_PST_BCAST; 1338 1339 return CTL_PEER_STATUS(status, p->num_events, p->last_event); 1340 } 1341 1342 1343 /* 1344 * ctlclkstatus - return a status word for this clock 1345 */ 1346 #ifdef REFCLOCK 1347 static u_short 1348 ctlclkstatus( 1349 struct refclockstat *pcs 1350 ) 1351 { 1352 return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus); 1353 } 1354 #endif 1355 1356 1357 /* 1358 * ctlsysstatus - return the system status word 1359 */ 1360 u_short 1361 ctlsysstatus(void) 1362 { 1363 register u_char this_clock; 1364 1365 this_clock = CTL_SST_TS_UNSPEC; 1366 #ifdef REFCLOCK 1367 if (sys_peer != NULL) { 1368 if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype) 1369 this_clock = sys_peer->sstclktype; 1370 else if (sys_peer->refclktype < COUNTOF(clocktypes)) 1371 this_clock = clocktypes[sys_peer->refclktype]; 1372 } 1373 #else /* REFCLOCK */ 1374 if (sys_peer != 0) 1375 this_clock = CTL_SST_TS_NTP; 1376 #endif /* REFCLOCK */ 1377 return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events, 1378 ctl_sys_last_event); 1379 } 1380 1381 1382 /* 1383 * ctl_flushpkt - write out the current packet and prepare 1384 * another if necessary. 1385 */ 1386 static void 1387 ctl_flushpkt( 1388 u_char more 1389 ) 1390 { 1391 size_t i; 1392 size_t dlen; 1393 size_t sendlen; 1394 size_t maclen; 1395 size_t totlen; 1396 keyid_t keyid; 1397 1398 dlen = datapt - rpkt.u.data; 1399 if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) { 1400 /* 1401 * Big hack, output a trailing \r\n 1402 */ 1403 *datapt++ = '\r'; 1404 *datapt++ = '\n'; 1405 dlen += 2; 1406 } 1407 sendlen = dlen + CTL_HEADER_LEN; 1408 1409 /* 1410 * Pad to a multiple of 32 bits 1411 */ 1412 while (sendlen & 0x3) { 1413 *datapt++ = '\0'; 1414 sendlen++; 1415 } 1416 1417 /* 1418 * Fill in the packet with the current info 1419 */ 1420 rpkt.r_m_e_op = CTL_RESPONSE | more | 1421 (res_opcode & CTL_OP_MASK); 1422 rpkt.count = htons((u_short)dlen); 1423 rpkt.offset = htons((u_short)res_offset); 1424 if (res_async) { 1425 for (i = 0; i < COUNTOF(ctl_traps); i++) { 1426 if (TRAP_INUSE & ctl_traps[i].tr_flags) { 1427 rpkt.li_vn_mode = 1428 PKT_LI_VN_MODE( 1429 sys_leap, 1430 ctl_traps[i].tr_version, 1431 MODE_CONTROL); 1432 rpkt.sequence = 1433 htons(ctl_traps[i].tr_sequence); 1434 sendpkt(&ctl_traps[i].tr_addr, 1435 ctl_traps[i].tr_localaddr, -4, 1436 (struct pkt *)&rpkt, sendlen); 1437 if (!more) 1438 ctl_traps[i].tr_sequence++; 1439 numasyncmsgs++; 1440 } 1441 } 1442 } else { 1443 if (res_authenticate && sys_authenticate) { 1444 totlen = sendlen; 1445 /* 1446 * If we are going to authenticate, then there 1447 * is an additional requirement that the MAC 1448 * begin on a 64 bit boundary. 1449 */ 1450 while (totlen & 7) { 1451 *datapt++ = '\0'; 1452 totlen++; 1453 } 1454 keyid = htonl(res_keyid); 1455 memcpy(datapt, &keyid, sizeof(keyid)); 1456 maclen = authencrypt(res_keyid, 1457 (u_int32 *)&rpkt, totlen); 1458 sendpkt(rmt_addr, lcl_inter, -5, 1459 (struct pkt *)&rpkt, totlen + maclen); 1460 } else { 1461 sendpkt(rmt_addr, lcl_inter, -6, 1462 (struct pkt *)&rpkt, sendlen); 1463 } 1464 if (more) 1465 numctlfrags++; 1466 else 1467 numctlresponses++; 1468 } 1469 1470 /* 1471 * Set us up for another go around. 1472 */ 1473 res_frags++; 1474 res_offset += dlen; 1475 datapt = rpkt.u.data; 1476 } 1477 1478 1479 /* 1480 * ctl_putdata - write data into the packet, fragmenting and starting 1481 * another if this one is full. 1482 */ 1483 static void 1484 ctl_putdata( 1485 const char *dp, 1486 unsigned int dlen, 1487 int bin /* set to 1 when data is binary */ 1488 ) 1489 { 1490 int overhead; 1491 unsigned int currentlen; 1492 1493 overhead = 0; 1494 if (!bin) { 1495 datanotbinflag = TRUE; 1496 overhead = 3; 1497 if (datasent) { 1498 *datapt++ = ','; 1499 datalinelen++; 1500 if ((dlen + datalinelen + 1) >= MAXDATALINELEN) { 1501 *datapt++ = '\r'; 1502 *datapt++ = '\n'; 1503 datalinelen = 0; 1504 } else { 1505 *datapt++ = ' '; 1506 datalinelen++; 1507 } 1508 } 1509 } 1510 1511 /* 1512 * Save room for trailing junk 1513 */ 1514 while (dlen + overhead + datapt > dataend) { 1515 /* 1516 * Not enough room in this one, flush it out. 1517 */ 1518 currentlen = MIN(dlen, (unsigned int)(dataend - datapt)); 1519 1520 memcpy(datapt, dp, currentlen); 1521 1522 datapt += currentlen; 1523 dp += currentlen; 1524 dlen -= currentlen; 1525 datalinelen += currentlen; 1526 1527 ctl_flushpkt(CTL_MORE); 1528 } 1529 1530 memcpy(datapt, dp, dlen); 1531 datapt += dlen; 1532 datalinelen += dlen; 1533 datasent = TRUE; 1534 } 1535 1536 1537 /* 1538 * ctl_putstr - write a tagged string into the response packet 1539 * in the form: 1540 * 1541 * tag="data" 1542 * 1543 * len is the data length excluding the NUL terminator, 1544 * as in ctl_putstr("var", "value", strlen("value")); 1545 */ 1546 static void 1547 ctl_putstr( 1548 const char * tag, 1549 const char * data, 1550 size_t len 1551 ) 1552 { 1553 char buffer[512]; 1554 char *cp; 1555 size_t tl; 1556 1557 tl = strlen(tag); 1558 memcpy(buffer, tag, tl); 1559 cp = buffer + tl; 1560 if (len > 0) { 1561 INSIST(tl + 3 + len <= sizeof(buffer)); 1562 *cp++ = '='; 1563 *cp++ = '"'; 1564 memcpy(cp, data, len); 1565 cp += len; 1566 *cp++ = '"'; 1567 } 1568 ctl_putdata(buffer, (u_int)(cp - buffer), 0); 1569 } 1570 1571 1572 /* 1573 * ctl_putunqstr - write a tagged string into the response packet 1574 * in the form: 1575 * 1576 * tag=data 1577 * 1578 * len is the data length excluding the NUL terminator. 1579 * data must not contain a comma or whitespace. 1580 */ 1581 static void 1582 ctl_putunqstr( 1583 const char * tag, 1584 const char * data, 1585 size_t len 1586 ) 1587 { 1588 char buffer[512]; 1589 char *cp; 1590 size_t tl; 1591 1592 tl = strlen(tag); 1593 memcpy(buffer, tag, tl); 1594 cp = buffer + tl; 1595 if (len > 0) { 1596 INSIST(tl + 1 + len <= sizeof(buffer)); 1597 *cp++ = '='; 1598 memcpy(cp, data, len); 1599 cp += len; 1600 } 1601 ctl_putdata(buffer, (u_int)(cp - buffer), 0); 1602 } 1603 1604 1605 /* 1606 * ctl_putdblf - write a tagged, signed double into the response packet 1607 */ 1608 static void 1609 ctl_putdblf( 1610 const char * tag, 1611 int use_f, 1612 int precision, 1613 double d 1614 ) 1615 { 1616 char *cp; 1617 const char *cq; 1618 char buffer[200]; 1619 1620 cp = buffer; 1621 cq = tag; 1622 while (*cq != '\0') 1623 *cp++ = *cq++; 1624 *cp++ = '='; 1625 INSIST((size_t)(cp - buffer) < sizeof(buffer)); 1626 snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g", 1627 precision, d); 1628 cp += strlen(cp); 1629 ctl_putdata(buffer, (unsigned)(cp - buffer), 0); 1630 } 1631 1632 /* 1633 * ctl_putuint - write a tagged unsigned integer into the response 1634 */ 1635 static void 1636 ctl_putuint( 1637 const char *tag, 1638 u_long uval 1639 ) 1640 { 1641 register char *cp; 1642 register const char *cq; 1643 char buffer[200]; 1644 1645 cp = buffer; 1646 cq = tag; 1647 while (*cq != '\0') 1648 *cp++ = *cq++; 1649 1650 *cp++ = '='; 1651 INSIST((cp - buffer) < (int)sizeof(buffer)); 1652 snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval); 1653 cp += strlen(cp); 1654 ctl_putdata(buffer, (unsigned)( cp - buffer ), 0); 1655 } 1656 1657 #ifdef AUTOKEY 1658 /* 1659 * ctl_putcal - write a decoded calendar data into the response 1660 */ 1661 static void 1662 ctl_putcal( 1663 const char *tag, 1664 const struct calendar *pcal 1665 ) 1666 { 1667 char buffer[100]; 1668 unsigned numch; 1669 1670 numch = snprintf(buffer, sizeof(buffer), 1671 "%s=%04d%02d%02d%02d%02d", 1672 tag, 1673 pcal->year, 1674 pcal->month, 1675 pcal->monthday, 1676 pcal->hour, 1677 pcal->minute 1678 ); 1679 INSIST(numch < sizeof(buffer)); 1680 ctl_putdata(buffer, numch, 0); 1681 1682 return; 1683 } 1684 #endif 1685 1686 /* 1687 * ctl_putfs - write a decoded filestamp into the response 1688 */ 1689 static void 1690 ctl_putfs( 1691 const char *tag, 1692 tstamp_t uval 1693 ) 1694 { 1695 register char *cp; 1696 register const char *cq; 1697 char buffer[200]; 1698 struct tm *tm = NULL; 1699 time_t fstamp; 1700 1701 cp = buffer; 1702 cq = tag; 1703 while (*cq != '\0') 1704 *cp++ = *cq++; 1705 1706 *cp++ = '='; 1707 fstamp = uval - JAN_1970; 1708 tm = gmtime(&fstamp); 1709 if (NULL == tm) 1710 return; 1711 INSIST((cp - buffer) < (int)sizeof(buffer)); 1712 snprintf(cp, sizeof(buffer) - (cp - buffer), 1713 "%04d%02d%02d%02d%02d", tm->tm_year + 1900, 1714 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min); 1715 cp += strlen(cp); 1716 ctl_putdata(buffer, (unsigned)( cp - buffer ), 0); 1717 } 1718 1719 1720 /* 1721 * ctl_puthex - write a tagged unsigned integer, in hex, into the 1722 * response 1723 */ 1724 static void 1725 ctl_puthex( 1726 const char *tag, 1727 u_long uval 1728 ) 1729 { 1730 register char *cp; 1731 register const char *cq; 1732 char buffer[200]; 1733 1734 cp = buffer; 1735 cq = tag; 1736 while (*cq != '\0') 1737 *cp++ = *cq++; 1738 1739 *cp++ = '='; 1740 INSIST((cp - buffer) < (int)sizeof(buffer)); 1741 snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval); 1742 cp += strlen(cp); 1743 ctl_putdata(buffer,(unsigned)( cp - buffer ), 0); 1744 } 1745 1746 1747 /* 1748 * ctl_putint - write a tagged signed integer into the response 1749 */ 1750 static void 1751 ctl_putint( 1752 const char *tag, 1753 long ival 1754 ) 1755 { 1756 register char *cp; 1757 register const char *cq; 1758 char buffer[200]; 1759 1760 cp = buffer; 1761 cq = tag; 1762 while (*cq != '\0') 1763 *cp++ = *cq++; 1764 1765 *cp++ = '='; 1766 INSIST((cp - buffer) < (int)sizeof(buffer)); 1767 snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival); 1768 cp += strlen(cp); 1769 ctl_putdata(buffer, (unsigned)( cp - buffer ), 0); 1770 } 1771 1772 1773 /* 1774 * ctl_putts - write a tagged timestamp, in hex, into the response 1775 */ 1776 static void 1777 ctl_putts( 1778 const char *tag, 1779 l_fp *ts 1780 ) 1781 { 1782 register char *cp; 1783 register const char *cq; 1784 char buffer[200]; 1785 1786 cp = buffer; 1787 cq = tag; 1788 while (*cq != '\0') 1789 *cp++ = *cq++; 1790 1791 *cp++ = '='; 1792 INSIST((size_t)(cp - buffer) < sizeof(buffer)); 1793 snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x", 1794 (u_int)ts->l_ui, (u_int)ts->l_uf); 1795 cp += strlen(cp); 1796 ctl_putdata(buffer, (unsigned)( cp - buffer ), 0); 1797 } 1798 1799 1800 /* 1801 * ctl_putadr - write an IP address into the response 1802 */ 1803 static void 1804 ctl_putadr( 1805 const char *tag, 1806 u_int32 addr32, 1807 sockaddr_u *addr 1808 ) 1809 { 1810 register char *cp; 1811 register const char *cq; 1812 char buffer[200]; 1813 1814 cp = buffer; 1815 cq = tag; 1816 while (*cq != '\0') 1817 *cp++ = *cq++; 1818 1819 *cp++ = '='; 1820 if (NULL == addr) 1821 cq = numtoa(addr32); 1822 else 1823 cq = stoa(addr); 1824 INSIST((cp - buffer) < (int)sizeof(buffer)); 1825 snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq); 1826 cp += strlen(cp); 1827 ctl_putdata(buffer, (unsigned)(cp - buffer), 0); 1828 } 1829 1830 1831 /* 1832 * ctl_putrefid - send a u_int32 refid as printable text 1833 */ 1834 static void 1835 ctl_putrefid( 1836 const char * tag, 1837 u_int32 refid 1838 ) 1839 { 1840 char output[16]; 1841 char * optr; 1842 char * oplim; 1843 char * iptr; 1844 char * iplim; 1845 char * past_eq; 1846 1847 optr = output; 1848 oplim = output + sizeof(output); 1849 while (optr < oplim && '\0' != *tag) 1850 *optr++ = *tag++; 1851 if (optr < oplim) { 1852 *optr++ = '='; 1853 past_eq = optr; 1854 } 1855 if (!(optr < oplim)) 1856 return; 1857 iptr = (char *)&refid; 1858 iplim = iptr + sizeof(refid); 1859 for ( ; optr < oplim && iptr < iplim && '\0' != *iptr; 1860 iptr++, optr++) 1861 if (isprint((int)*iptr)) 1862 *optr = *iptr; 1863 else 1864 *optr = '.'; 1865 if (!(optr <= oplim)) 1866 optr = past_eq; 1867 ctl_putdata(output, (u_int)(optr - output), FALSE); 1868 } 1869 1870 1871 /* 1872 * ctl_putarray - write a tagged eight element double array into the response 1873 */ 1874 static void 1875 ctl_putarray( 1876 const char *tag, 1877 double *arr, 1878 int start 1879 ) 1880 { 1881 register char *cp; 1882 register const char *cq; 1883 char buffer[200]; 1884 int i; 1885 cp = buffer; 1886 cq = tag; 1887 while (*cq != '\0') 1888 *cp++ = *cq++; 1889 *cp++ = '='; 1890 i = start; 1891 do { 1892 if (i == 0) 1893 i = NTP_SHIFT; 1894 i--; 1895 INSIST((cp - buffer) < (int)sizeof(buffer)); 1896 snprintf(cp, sizeof(buffer) - (cp - buffer), 1897 " %.2f", arr[i] * 1e3); 1898 cp += strlen(cp); 1899 } while (i != start); 1900 ctl_putdata(buffer, (unsigned)(cp - buffer), 0); 1901 } 1902 1903 /* 1904 * ctl_printf - put a formatted string into the data buffer 1905 */ 1906 static void 1907 ctl_printf( 1908 const char * fmt, 1909 ... 1910 ) 1911 { 1912 static const char * ellipsis = "[...]"; 1913 va_list va; 1914 char fmtbuf[128]; 1915 int rc; 1916 1917 va_start(va, fmt); 1918 rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va); 1919 va_end(va); 1920 if (rc < 0 || (size_t)rc >= sizeof(fmtbuf)) 1921 strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1, 1922 ellipsis); 1923 ctl_putdata(fmtbuf, strlen(fmtbuf), 0); 1924 } 1925 1926 1927 /* 1928 * ctl_putsys - output a system variable 1929 */ 1930 static void 1931 ctl_putsys( 1932 int varid 1933 ) 1934 { 1935 l_fp tmp; 1936 char str[256]; 1937 u_int u; 1938 double kb; 1939 double dtemp; 1940 const char *ss; 1941 #ifdef AUTOKEY 1942 struct cert_info *cp; 1943 #endif /* AUTOKEY */ 1944 #ifdef KERNEL_PLL 1945 static struct timex ntx; 1946 static u_long ntp_adjtime_time; 1947 1948 static const double to_ms = 1949 # ifdef STA_NANO 1950 1.0e-6; /* nsec to msec */ 1951 # else 1952 1.0e-3; /* usec to msec */ 1953 # endif 1954 1955 /* 1956 * CS_K_* variables depend on up-to-date output of ntp_adjtime() 1957 */ 1958 if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST && 1959 current_time != ntp_adjtime_time) { 1960 ZERO(ntx); 1961 if (ntp_adjtime(&ntx) < 0) 1962 msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m"); 1963 else 1964 ntp_adjtime_time = current_time; 1965 } 1966 #endif /* KERNEL_PLL */ 1967 1968 switch (varid) { 1969 1970 case CS_LEAP: 1971 ctl_putuint(sys_var[CS_LEAP].text, sys_leap); 1972 break; 1973 1974 case CS_STRATUM: 1975 ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum); 1976 break; 1977 1978 case CS_PRECISION: 1979 ctl_putint(sys_var[CS_PRECISION].text, sys_precision); 1980 break; 1981 1982 case CS_ROOTDELAY: 1983 ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay * 1984 1e3); 1985 break; 1986 1987 case CS_ROOTDISPERSION: 1988 ctl_putdbl(sys_var[CS_ROOTDISPERSION].text, 1989 sys_rootdisp * 1e3); 1990 break; 1991 1992 case CS_REFID: 1993 if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC) 1994 ctl_putadr(sys_var[varid].text, sys_refid, NULL); 1995 else 1996 ctl_putrefid(sys_var[varid].text, sys_refid); 1997 break; 1998 1999 case CS_REFTIME: 2000 ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime); 2001 break; 2002 2003 case CS_POLL: 2004 ctl_putuint(sys_var[CS_POLL].text, sys_poll); 2005 break; 2006 2007 case CS_PEERID: 2008 if (sys_peer == NULL) 2009 ctl_putuint(sys_var[CS_PEERID].text, 0); 2010 else 2011 ctl_putuint(sys_var[CS_PEERID].text, 2012 sys_peer->associd); 2013 break; 2014 2015 case CS_PEERADR: 2016 if (sys_peer != NULL && sys_peer->dstadr != NULL) 2017 ss = sptoa(&sys_peer->srcadr); 2018 else 2019 ss = "0.0.0.0:0"; 2020 ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss)); 2021 break; 2022 2023 case CS_PEERMODE: 2024 u = (sys_peer != NULL) 2025 ? sys_peer->hmode 2026 : MODE_UNSPEC; 2027 ctl_putuint(sys_var[CS_PEERMODE].text, u); 2028 break; 2029 2030 case CS_OFFSET: 2031 ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3); 2032 break; 2033 2034 case CS_DRIFT: 2035 ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6); 2036 break; 2037 2038 case CS_JITTER: 2039 ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3); 2040 break; 2041 2042 case CS_ERROR: 2043 ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3); 2044 break; 2045 2046 case CS_CLOCK: 2047 get_systime(&tmp); 2048 ctl_putts(sys_var[CS_CLOCK].text, &tmp); 2049 break; 2050 2051 case CS_PROCESSOR: 2052 #ifndef HAVE_UNAME 2053 ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor, 2054 sizeof(str_processor) - 1); 2055 #else 2056 ctl_putstr(sys_var[CS_PROCESSOR].text, 2057 utsnamebuf.machine, strlen(utsnamebuf.machine)); 2058 #endif /* HAVE_UNAME */ 2059 break; 2060 2061 case CS_SYSTEM: 2062 #ifndef HAVE_UNAME 2063 ctl_putstr(sys_var[CS_SYSTEM].text, str_system, 2064 sizeof(str_system) - 1); 2065 #else 2066 snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname, 2067 utsnamebuf.release); 2068 ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str)); 2069 #endif /* HAVE_UNAME */ 2070 break; 2071 2072 case CS_VERSION: 2073 ctl_putstr(sys_var[CS_VERSION].text, Version, 2074 strlen(Version)); 2075 break; 2076 2077 case CS_STABIL: 2078 ctl_putdbl(sys_var[CS_STABIL].text, clock_stability * 2079 1e6); 2080 break; 2081 2082 case CS_VARLIST: 2083 { 2084 char buf[CTL_MAX_DATA_LEN]; 2085 //buffPointer, firstElementPointer, buffEndPointer 2086 char *buffp, *buffend; 2087 int firstVarName; 2088 const char *ss1; 2089 int len; 2090 const struct ctl_var *k; 2091 2092 buffp = buf; 2093 buffend = buf + sizeof(buf); 2094 if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend) 2095 break; /* really long var name */ 2096 2097 snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text); 2098 buffp += strlen(buffp); 2099 firstVarName = TRUE; 2100 for (k = sys_var; !(k->flags & EOV); k++) { 2101 if (k->flags & PADDING) 2102 continue; 2103 len = strlen(k->text); 2104 if (buffp + len + 1 >= buffend) 2105 break; 2106 if (!firstVarName) 2107 *buffp++ = ','; 2108 else 2109 firstVarName = FALSE; 2110 memcpy(buffp, k->text, len); 2111 buffp += len; 2112 } 2113 2114 for (k = ext_sys_var; k && !(k->flags & EOV); k++) { 2115 if (k->flags & PADDING) 2116 continue; 2117 if (NULL == k->text) 2118 continue; 2119 ss1 = strchr(k->text, '='); 2120 if (NULL == ss1) 2121 len = strlen(k->text); 2122 else 2123 len = ss1 - k->text; 2124 if (buffp + len + 1 >= buffend) 2125 break; 2126 if (firstVarName) { 2127 *buffp++ = ','; 2128 firstVarName = FALSE; 2129 } 2130 memcpy(buffp, k->text,(unsigned)len); 2131 buffp += len; 2132 } 2133 if (buffp + 2 >= buffend) 2134 break; 2135 2136 *buffp++ = '"'; 2137 *buffp = '\0'; 2138 2139 ctl_putdata(buf, (unsigned)( buffp - buf ), 0); 2140 break; 2141 } 2142 2143 case CS_TAI: 2144 if (sys_tai > 0) 2145 ctl_putuint(sys_var[CS_TAI].text, sys_tai); 2146 break; 2147 2148 case CS_LEAPTAB: 2149 { 2150 leap_signature_t lsig; 2151 leapsec_getsig(&lsig); 2152 if (lsig.ttime > 0) 2153 ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime); 2154 break; 2155 } 2156 2157 case CS_LEAPEND: 2158 { 2159 leap_signature_t lsig; 2160 leapsec_getsig(&lsig); 2161 if (lsig.etime > 0) 2162 ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime); 2163 break; 2164 } 2165 2166 #ifdef LEAP_SMEAR 2167 case CS_LEAPSMEARINTV: 2168 if (leap_smear_intv > 0) 2169 ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv); 2170 break; 2171 2172 case CS_LEAPSMEAROFFS: 2173 if (leap_smear_intv > 0) 2174 ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text, 2175 leap_smear.doffset * 1e3); 2176 break; 2177 #endif /* LEAP_SMEAR */ 2178 2179 case CS_RATE: 2180 ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll); 2181 break; 2182 2183 case CS_MRU_ENABLED: 2184 ctl_puthex(sys_var[varid].text, mon_enabled); 2185 break; 2186 2187 case CS_MRU_DEPTH: 2188 ctl_putuint(sys_var[varid].text, mru_entries); 2189 break; 2190 2191 case CS_MRU_MEM: 2192 kb = mru_entries * (sizeof(mon_entry) / 1024.); 2193 u = (u_int)kb; 2194 if (kb - u >= 0.5) 2195 u++; 2196 ctl_putuint(sys_var[varid].text, u); 2197 break; 2198 2199 case CS_MRU_DEEPEST: 2200 ctl_putuint(sys_var[varid].text, mru_peakentries); 2201 break; 2202 2203 case CS_MRU_MINDEPTH: 2204 ctl_putuint(sys_var[varid].text, mru_mindepth); 2205 break; 2206 2207 case CS_MRU_MAXAGE: 2208 ctl_putint(sys_var[varid].text, mru_maxage); 2209 break; 2210 2211 case CS_MRU_MAXDEPTH: 2212 ctl_putuint(sys_var[varid].text, mru_maxdepth); 2213 break; 2214 2215 case CS_MRU_MAXMEM: 2216 kb = mru_maxdepth * (sizeof(mon_entry) / 1024.); 2217 u = (u_int)kb; 2218 if (kb - u >= 0.5) 2219 u++; 2220 ctl_putuint(sys_var[varid].text, u); 2221 break; 2222 2223 case CS_SS_UPTIME: 2224 ctl_putuint(sys_var[varid].text, current_time); 2225 break; 2226 2227 case CS_SS_RESET: 2228 ctl_putuint(sys_var[varid].text, 2229 current_time - sys_stattime); 2230 break; 2231 2232 case CS_SS_RECEIVED: 2233 ctl_putuint(sys_var[varid].text, sys_received); 2234 break; 2235 2236 case CS_SS_THISVER: 2237 ctl_putuint(sys_var[varid].text, sys_newversion); 2238 break; 2239 2240 case CS_SS_OLDVER: 2241 ctl_putuint(sys_var[varid].text, sys_oldversion); 2242 break; 2243 2244 case CS_SS_BADFORMAT: 2245 ctl_putuint(sys_var[varid].text, sys_badlength); 2246 break; 2247 2248 case CS_SS_BADAUTH: 2249 ctl_putuint(sys_var[varid].text, sys_badauth); 2250 break; 2251 2252 case CS_SS_DECLINED: 2253 ctl_putuint(sys_var[varid].text, sys_declined); 2254 break; 2255 2256 case CS_SS_RESTRICTED: 2257 ctl_putuint(sys_var[varid].text, sys_restricted); 2258 break; 2259 2260 case CS_SS_LIMITED: 2261 ctl_putuint(sys_var[varid].text, sys_limitrejected); 2262 break; 2263 2264 case CS_SS_KODSENT: 2265 ctl_putuint(sys_var[varid].text, sys_kodsent); 2266 break; 2267 2268 case CS_SS_PROCESSED: 2269 ctl_putuint(sys_var[varid].text, sys_processed); 2270 break; 2271 2272 case CS_BCASTDELAY: 2273 ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3); 2274 break; 2275 2276 case CS_AUTHDELAY: 2277 LFPTOD(&sys_authdelay, dtemp); 2278 ctl_putdbl(sys_var[varid].text, dtemp * 1e3); 2279 break; 2280 2281 case CS_AUTHKEYS: 2282 ctl_putuint(sys_var[varid].text, authnumkeys); 2283 break; 2284 2285 case CS_AUTHFREEK: 2286 ctl_putuint(sys_var[varid].text, authnumfreekeys); 2287 break; 2288 2289 case CS_AUTHKLOOKUPS: 2290 ctl_putuint(sys_var[varid].text, authkeylookups); 2291 break; 2292 2293 case CS_AUTHKNOTFOUND: 2294 ctl_putuint(sys_var[varid].text, authkeynotfound); 2295 break; 2296 2297 case CS_AUTHKUNCACHED: 2298 ctl_putuint(sys_var[varid].text, authkeyuncached); 2299 break; 2300 2301 case CS_AUTHKEXPIRED: 2302 ctl_putuint(sys_var[varid].text, authkeyexpired); 2303 break; 2304 2305 case CS_AUTHENCRYPTS: 2306 ctl_putuint(sys_var[varid].text, authencryptions); 2307 break; 2308 2309 case CS_AUTHDECRYPTS: 2310 ctl_putuint(sys_var[varid].text, authdecryptions); 2311 break; 2312 2313 case CS_AUTHRESET: 2314 ctl_putuint(sys_var[varid].text, 2315 current_time - auth_timereset); 2316 break; 2317 2318 /* 2319 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is 2320 * unavailable, otherwise calls putfunc with args. 2321 */ 2322 #ifndef KERNEL_PLL 2323 # define CTL_IF_KERNLOOP(putfunc, args) \ 2324 ctl_putint(sys_var[varid].text, 0) 2325 #else 2326 # define CTL_IF_KERNLOOP(putfunc, args) \ 2327 putfunc args 2328 #endif 2329 2330 /* 2331 * CTL_IF_KERNPPS() puts a zero if either the kernel 2332 * loop is unavailable, or kernel hard PPS is not 2333 * active, otherwise calls putfunc with args. 2334 */ 2335 #ifndef KERNEL_PLL 2336 # define CTL_IF_KERNPPS(putfunc, args) \ 2337 ctl_putint(sys_var[varid].text, 0) 2338 #else 2339 # define CTL_IF_KERNPPS(putfunc, args) \ 2340 if (0 == ntx.shift) \ 2341 ctl_putint(sys_var[varid].text, 0); \ 2342 else \ 2343 putfunc args /* no trailing ; */ 2344 #endif 2345 2346 case CS_K_OFFSET: 2347 CTL_IF_KERNLOOP( 2348 ctl_putdblf, 2349 (sys_var[varid].text, 0, -1, to_ms * ntx.offset) 2350 ); 2351 break; 2352 2353 case CS_K_FREQ: 2354 CTL_IF_KERNLOOP( 2355 ctl_putsfp, 2356 (sys_var[varid].text, ntx.freq) 2357 ); 2358 break; 2359 2360 case CS_K_MAXERR: 2361 CTL_IF_KERNLOOP( 2362 ctl_putdblf, 2363 (sys_var[varid].text, 0, 6, 2364 to_ms * ntx.maxerror) 2365 ); 2366 break; 2367 2368 case CS_K_ESTERR: 2369 CTL_IF_KERNLOOP( 2370 ctl_putdblf, 2371 (sys_var[varid].text, 0, 6, 2372 to_ms * ntx.esterror) 2373 ); 2374 break; 2375 2376 case CS_K_STFLAGS: 2377 #ifndef KERNEL_PLL 2378 ss = ""; 2379 #else 2380 ss = k_st_flags(ntx.status); 2381 #endif 2382 ctl_putstr(sys_var[varid].text, ss, strlen(ss)); 2383 break; 2384 2385 case CS_K_TIMECONST: 2386 CTL_IF_KERNLOOP( 2387 ctl_putint, 2388 (sys_var[varid].text, ntx.constant) 2389 ); 2390 break; 2391 2392 case CS_K_PRECISION: 2393 CTL_IF_KERNLOOP( 2394 ctl_putdblf, 2395 (sys_var[varid].text, 0, 6, 2396 to_ms * ntx.precision) 2397 ); 2398 break; 2399 2400 case CS_K_FREQTOL: 2401 CTL_IF_KERNLOOP( 2402 ctl_putsfp, 2403 (sys_var[varid].text, ntx.tolerance) 2404 ); 2405 break; 2406 2407 case CS_K_PPS_FREQ: 2408 CTL_IF_KERNPPS( 2409 ctl_putsfp, 2410 (sys_var[varid].text, ntx.ppsfreq) 2411 ); 2412 break; 2413 2414 case CS_K_PPS_STABIL: 2415 CTL_IF_KERNPPS( 2416 ctl_putsfp, 2417 (sys_var[varid].text, ntx.stabil) 2418 ); 2419 break; 2420 2421 case CS_K_PPS_JITTER: 2422 CTL_IF_KERNPPS( 2423 ctl_putdbl, 2424 (sys_var[varid].text, to_ms * ntx.jitter) 2425 ); 2426 break; 2427 2428 case CS_K_PPS_CALIBDUR: 2429 CTL_IF_KERNPPS( 2430 ctl_putint, 2431 (sys_var[varid].text, 1 << ntx.shift) 2432 ); 2433 break; 2434 2435 case CS_K_PPS_CALIBS: 2436 CTL_IF_KERNPPS( 2437 ctl_putint, 2438 (sys_var[varid].text, ntx.calcnt) 2439 ); 2440 break; 2441 2442 case CS_K_PPS_CALIBERRS: 2443 CTL_IF_KERNPPS( 2444 ctl_putint, 2445 (sys_var[varid].text, ntx.errcnt) 2446 ); 2447 break; 2448 2449 case CS_K_PPS_JITEXC: 2450 CTL_IF_KERNPPS( 2451 ctl_putint, 2452 (sys_var[varid].text, ntx.jitcnt) 2453 ); 2454 break; 2455 2456 case CS_K_PPS_STBEXC: 2457 CTL_IF_KERNPPS( 2458 ctl_putint, 2459 (sys_var[varid].text, ntx.stbcnt) 2460 ); 2461 break; 2462 2463 case CS_IOSTATS_RESET: 2464 ctl_putuint(sys_var[varid].text, 2465 current_time - io_timereset); 2466 break; 2467 2468 case CS_TOTAL_RBUF: 2469 ctl_putuint(sys_var[varid].text, total_recvbuffs()); 2470 break; 2471 2472 case CS_FREE_RBUF: 2473 ctl_putuint(sys_var[varid].text, free_recvbuffs()); 2474 break; 2475 2476 case CS_USED_RBUF: 2477 ctl_putuint(sys_var[varid].text, full_recvbuffs()); 2478 break; 2479 2480 case CS_RBUF_LOWATER: 2481 ctl_putuint(sys_var[varid].text, lowater_additions()); 2482 break; 2483 2484 case CS_IO_DROPPED: 2485 ctl_putuint(sys_var[varid].text, packets_dropped); 2486 break; 2487 2488 case CS_IO_IGNORED: 2489 ctl_putuint(sys_var[varid].text, packets_ignored); 2490 break; 2491 2492 case CS_IO_RECEIVED: 2493 ctl_putuint(sys_var[varid].text, packets_received); 2494 break; 2495 2496 case CS_IO_SENT: 2497 ctl_putuint(sys_var[varid].text, packets_sent); 2498 break; 2499 2500 case CS_IO_SENDFAILED: 2501 ctl_putuint(sys_var[varid].text, packets_notsent); 2502 break; 2503 2504 case CS_IO_WAKEUPS: 2505 ctl_putuint(sys_var[varid].text, handler_calls); 2506 break; 2507 2508 case CS_IO_GOODWAKEUPS: 2509 ctl_putuint(sys_var[varid].text, handler_pkts); 2510 break; 2511 2512 case CS_TIMERSTATS_RESET: 2513 ctl_putuint(sys_var[varid].text, 2514 current_time - timer_timereset); 2515 break; 2516 2517 case CS_TIMER_OVERRUNS: 2518 ctl_putuint(sys_var[varid].text, alarm_overflow); 2519 break; 2520 2521 case CS_TIMER_XMTS: 2522 ctl_putuint(sys_var[varid].text, timer_xmtcalls); 2523 break; 2524 2525 case CS_FUZZ: 2526 ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3); 2527 break; 2528 case CS_WANDER_THRESH: 2529 ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6); 2530 break; 2531 #ifdef AUTOKEY 2532 case CS_FLAGS: 2533 if (crypto_flags) 2534 ctl_puthex(sys_var[CS_FLAGS].text, 2535 crypto_flags); 2536 break; 2537 2538 case CS_DIGEST: 2539 if (crypto_flags) { 2540 strlcpy(str, OBJ_nid2ln(crypto_nid), 2541 COUNTOF(str)); 2542 ctl_putstr(sys_var[CS_DIGEST].text, str, 2543 strlen(str)); 2544 } 2545 break; 2546 2547 case CS_SIGNATURE: 2548 if (crypto_flags) { 2549 const EVP_MD *dp; 2550 2551 dp = EVP_get_digestbynid(crypto_flags >> 16); 2552 strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)), 2553 COUNTOF(str)); 2554 ctl_putstr(sys_var[CS_SIGNATURE].text, str, 2555 strlen(str)); 2556 } 2557 break; 2558 2559 case CS_HOST: 2560 if (hostval.ptr != NULL) 2561 ctl_putstr(sys_var[CS_HOST].text, hostval.ptr, 2562 strlen(hostval.ptr)); 2563 break; 2564 2565 case CS_IDENT: 2566 if (sys_ident != NULL) 2567 ctl_putstr(sys_var[CS_IDENT].text, sys_ident, 2568 strlen(sys_ident)); 2569 break; 2570 2571 case CS_CERTIF: 2572 for (cp = cinfo; cp != NULL; cp = cp->link) { 2573 snprintf(str, sizeof(str), "%s %s 0x%x", 2574 cp->subject, cp->issuer, cp->flags); 2575 ctl_putstr(sys_var[CS_CERTIF].text, str, 2576 strlen(str)); 2577 ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last)); 2578 } 2579 break; 2580 2581 case CS_PUBLIC: 2582 if (hostval.tstamp != 0) 2583 ctl_putfs(sys_var[CS_PUBLIC].text, 2584 ntohl(hostval.tstamp)); 2585 break; 2586 #endif /* AUTOKEY */ 2587 2588 default: 2589 break; 2590 } 2591 } 2592 2593 2594 /* 2595 * ctl_putpeer - output a peer variable 2596 */ 2597 static void 2598 ctl_putpeer( 2599 int id, 2600 struct peer *p 2601 ) 2602 { 2603 char buf[CTL_MAX_DATA_LEN]; 2604 char *s; 2605 char *t; 2606 char *be; 2607 int i; 2608 const struct ctl_var *k; 2609 #ifdef AUTOKEY 2610 struct autokey *ap; 2611 const EVP_MD *dp; 2612 const char *str; 2613 #endif /* AUTOKEY */ 2614 2615 switch (id) { 2616 2617 case CP_CONFIG: 2618 ctl_putuint(peer_var[id].text, 2619 !(FLAG_PREEMPT & p->flags)); 2620 break; 2621 2622 case CP_AUTHENABLE: 2623 ctl_putuint(peer_var[id].text, !(p->keyid)); 2624 break; 2625 2626 case CP_AUTHENTIC: 2627 ctl_putuint(peer_var[id].text, 2628 !!(FLAG_AUTHENTIC & p->flags)); 2629 break; 2630 2631 case CP_SRCADR: 2632 ctl_putadr(peer_var[id].text, 0, &p->srcadr); 2633 break; 2634 2635 case CP_SRCPORT: 2636 ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr)); 2637 break; 2638 2639 case CP_SRCHOST: 2640 if (p->hostname != NULL) 2641 ctl_putstr(peer_var[id].text, p->hostname, 2642 strlen(p->hostname)); 2643 break; 2644 2645 case CP_DSTADR: 2646 ctl_putadr(peer_var[id].text, 0, 2647 (p->dstadr != NULL) 2648 ? &p->dstadr->sin 2649 : NULL); 2650 break; 2651 2652 case CP_DSTPORT: 2653 ctl_putuint(peer_var[id].text, 2654 (p->dstadr != NULL) 2655 ? SRCPORT(&p->dstadr->sin) 2656 : 0); 2657 break; 2658 2659 case CP_IN: 2660 if (p->r21 > 0.) 2661 ctl_putdbl(peer_var[id].text, p->r21 / 1e3); 2662 break; 2663 2664 case CP_OUT: 2665 if (p->r34 > 0.) 2666 ctl_putdbl(peer_var[id].text, p->r34 / 1e3); 2667 break; 2668 2669 case CP_RATE: 2670 ctl_putuint(peer_var[id].text, p->throttle); 2671 break; 2672 2673 case CP_LEAP: 2674 ctl_putuint(peer_var[id].text, p->leap); 2675 break; 2676 2677 case CP_HMODE: 2678 ctl_putuint(peer_var[id].text, p->hmode); 2679 break; 2680 2681 case CP_STRATUM: 2682 ctl_putuint(peer_var[id].text, p->stratum); 2683 break; 2684 2685 case CP_PPOLL: 2686 ctl_putuint(peer_var[id].text, p->ppoll); 2687 break; 2688 2689 case CP_HPOLL: 2690 ctl_putuint(peer_var[id].text, p->hpoll); 2691 break; 2692 2693 case CP_PRECISION: 2694 ctl_putint(peer_var[id].text, p->precision); 2695 break; 2696 2697 case CP_ROOTDELAY: 2698 ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3); 2699 break; 2700 2701 case CP_ROOTDISPERSION: 2702 ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3); 2703 break; 2704 2705 case CP_REFID: 2706 #ifdef REFCLOCK 2707 if (p->flags & FLAG_REFCLOCK) { 2708 ctl_putrefid(peer_var[id].text, p->refid); 2709 break; 2710 } 2711 #endif 2712 if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC) 2713 ctl_putadr(peer_var[id].text, p->refid, 2714 NULL); 2715 else 2716 ctl_putrefid(peer_var[id].text, p->refid); 2717 break; 2718 2719 case CP_REFTIME: 2720 ctl_putts(peer_var[id].text, &p->reftime); 2721 break; 2722 2723 case CP_ORG: 2724 ctl_putts(peer_var[id].text, &p->aorg); 2725 break; 2726 2727 case CP_REC: 2728 ctl_putts(peer_var[id].text, &p->dst); 2729 break; 2730 2731 case CP_XMT: 2732 if (p->xleave) 2733 ctl_putdbl(peer_var[id].text, p->xleave * 1e3); 2734 break; 2735 2736 case CP_BIAS: 2737 if (p->bias != 0.) 2738 ctl_putdbl(peer_var[id].text, p->bias * 1e3); 2739 break; 2740 2741 case CP_REACH: 2742 ctl_puthex(peer_var[id].text, p->reach); 2743 break; 2744 2745 case CP_FLASH: 2746 ctl_puthex(peer_var[id].text, p->flash); 2747 break; 2748 2749 case CP_TTL: 2750 #ifdef REFCLOCK 2751 if (p->flags & FLAG_REFCLOCK) { 2752 ctl_putuint(peer_var[id].text, p->ttl); 2753 break; 2754 } 2755 #endif 2756 if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl)) 2757 ctl_putint(peer_var[id].text, 2758 sys_ttl[p->ttl]); 2759 break; 2760 2761 case CP_UNREACH: 2762 ctl_putuint(peer_var[id].text, p->unreach); 2763 break; 2764 2765 case CP_TIMER: 2766 ctl_putuint(peer_var[id].text, 2767 p->nextdate - current_time); 2768 break; 2769 2770 case CP_DELAY: 2771 ctl_putdbl(peer_var[id].text, p->delay * 1e3); 2772 break; 2773 2774 case CP_OFFSET: 2775 ctl_putdbl(peer_var[id].text, p->offset * 1e3); 2776 break; 2777 2778 case CP_JITTER: 2779 ctl_putdbl(peer_var[id].text, p->jitter * 1e3); 2780 break; 2781 2782 case CP_DISPERSION: 2783 ctl_putdbl(peer_var[id].text, p->disp * 1e3); 2784 break; 2785 2786 case CP_KEYID: 2787 if (p->keyid > NTP_MAXKEY) 2788 ctl_puthex(peer_var[id].text, p->keyid); 2789 else 2790 ctl_putuint(peer_var[id].text, p->keyid); 2791 break; 2792 2793 case CP_FILTDELAY: 2794 ctl_putarray(peer_var[id].text, p->filter_delay, 2795 p->filter_nextpt); 2796 break; 2797 2798 case CP_FILTOFFSET: 2799 ctl_putarray(peer_var[id].text, p->filter_offset, 2800 p->filter_nextpt); 2801 break; 2802 2803 case CP_FILTERROR: 2804 ctl_putarray(peer_var[id].text, p->filter_disp, 2805 p->filter_nextpt); 2806 break; 2807 2808 case CP_PMODE: 2809 ctl_putuint(peer_var[id].text, p->pmode); 2810 break; 2811 2812 case CP_RECEIVED: 2813 ctl_putuint(peer_var[id].text, p->received); 2814 break; 2815 2816 case CP_SENT: 2817 ctl_putuint(peer_var[id].text, p->sent); 2818 break; 2819 2820 case CP_VARLIST: 2821 s = buf; 2822 be = buf + sizeof(buf); 2823 if (strlen(peer_var[id].text) + 4 > sizeof(buf)) 2824 break; /* really long var name */ 2825 2826 snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text); 2827 s += strlen(s); 2828 t = s; 2829 for (k = peer_var; !(EOV & k->flags); k++) { 2830 if (PADDING & k->flags) 2831 continue; 2832 i = strlen(k->text); 2833 if (s + i + 1 >= be) 2834 break; 2835 if (s != t) 2836 *s++ = ','; 2837 memcpy(s, k->text, i); 2838 s += i; 2839 } 2840 if (s + 2 < be) { 2841 *s++ = '"'; 2842 *s = '\0'; 2843 ctl_putdata(buf, (u_int)(s - buf), 0); 2844 } 2845 break; 2846 2847 case CP_TIMEREC: 2848 ctl_putuint(peer_var[id].text, 2849 current_time - p->timereceived); 2850 break; 2851 2852 case CP_TIMEREACH: 2853 ctl_putuint(peer_var[id].text, 2854 current_time - p->timereachable); 2855 break; 2856 2857 case CP_BADAUTH: 2858 ctl_putuint(peer_var[id].text, p->badauth); 2859 break; 2860 2861 case CP_BOGUSORG: 2862 ctl_putuint(peer_var[id].text, p->bogusorg); 2863 break; 2864 2865 case CP_OLDPKT: 2866 ctl_putuint(peer_var[id].text, p->oldpkt); 2867 break; 2868 2869 case CP_SELDISP: 2870 ctl_putuint(peer_var[id].text, p->seldisptoolarge); 2871 break; 2872 2873 case CP_SELBROKEN: 2874 ctl_putuint(peer_var[id].text, p->selbroken); 2875 break; 2876 2877 case CP_CANDIDATE: 2878 ctl_putuint(peer_var[id].text, p->status); 2879 break; 2880 #ifdef AUTOKEY 2881 case CP_FLAGS: 2882 if (p->crypto) 2883 ctl_puthex(peer_var[id].text, p->crypto); 2884 break; 2885 2886 case CP_SIGNATURE: 2887 if (p->crypto) { 2888 dp = EVP_get_digestbynid(p->crypto >> 16); 2889 str = OBJ_nid2ln(EVP_MD_pkey_type(dp)); 2890 ctl_putstr(peer_var[id].text, str, strlen(str)); 2891 } 2892 break; 2893 2894 case CP_HOST: 2895 if (p->subject != NULL) 2896 ctl_putstr(peer_var[id].text, p->subject, 2897 strlen(p->subject)); 2898 break; 2899 2900 case CP_VALID: /* not used */ 2901 break; 2902 2903 case CP_INITSEQ: 2904 if (NULL == (ap = p->recval.ptr)) 2905 break; 2906 2907 ctl_putint(peer_var[CP_INITSEQ].text, ap->seq); 2908 ctl_puthex(peer_var[CP_INITKEY].text, ap->key); 2909 ctl_putfs(peer_var[CP_INITTSP].text, 2910 ntohl(p->recval.tstamp)); 2911 break; 2912 2913 case CP_IDENT: 2914 if (p->ident != NULL) 2915 ctl_putstr(peer_var[id].text, p->ident, 2916 strlen(p->ident)); 2917 break; 2918 2919 2920 #endif /* AUTOKEY */ 2921 } 2922 } 2923 2924 2925 #ifdef REFCLOCK 2926 /* 2927 * ctl_putclock - output clock variables 2928 */ 2929 static void 2930 ctl_putclock( 2931 int id, 2932 struct refclockstat *pcs, 2933 int mustput 2934 ) 2935 { 2936 char buf[CTL_MAX_DATA_LEN]; 2937 char *s, *t, *be; 2938 const char *ss; 2939 int i; 2940 const struct ctl_var *k; 2941 2942 switch (id) { 2943 2944 case CC_TYPE: 2945 if (mustput || pcs->clockdesc == NULL 2946 || *(pcs->clockdesc) == '\0') { 2947 ctl_putuint(clock_var[id].text, pcs->type); 2948 } 2949 break; 2950 case CC_TIMECODE: 2951 ctl_putstr(clock_var[id].text, 2952 pcs->p_lastcode, 2953 (unsigned)pcs->lencode); 2954 break; 2955 2956 case CC_POLL: 2957 ctl_putuint(clock_var[id].text, pcs->polls); 2958 break; 2959 2960 case CC_NOREPLY: 2961 ctl_putuint(clock_var[id].text, 2962 pcs->noresponse); 2963 break; 2964 2965 case CC_BADFORMAT: 2966 ctl_putuint(clock_var[id].text, 2967 pcs->badformat); 2968 break; 2969 2970 case CC_BADDATA: 2971 ctl_putuint(clock_var[id].text, 2972 pcs->baddata); 2973 break; 2974 2975 case CC_FUDGETIME1: 2976 if (mustput || (pcs->haveflags & CLK_HAVETIME1)) 2977 ctl_putdbl(clock_var[id].text, 2978 pcs->fudgetime1 * 1e3); 2979 break; 2980 2981 case CC_FUDGETIME2: 2982 if (mustput || (pcs->haveflags & CLK_HAVETIME2)) 2983 ctl_putdbl(clock_var[id].text, 2984 pcs->fudgetime2 * 1e3); 2985 break; 2986 2987 case CC_FUDGEVAL1: 2988 if (mustput || (pcs->haveflags & CLK_HAVEVAL1)) 2989 ctl_putint(clock_var[id].text, 2990 pcs->fudgeval1); 2991 break; 2992 2993 case CC_FUDGEVAL2: 2994 if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) { 2995 if (pcs->fudgeval1 > 1) 2996 ctl_putadr(clock_var[id].text, 2997 pcs->fudgeval2, NULL); 2998 else 2999 ctl_putrefid(clock_var[id].text, 3000 pcs->fudgeval2); 3001 } 3002 break; 3003 3004 case CC_FLAGS: 3005 ctl_putuint(clock_var[id].text, pcs->flags); 3006 break; 3007 3008 case CC_DEVICE: 3009 if (pcs->clockdesc == NULL || 3010 *(pcs->clockdesc) == '\0') { 3011 if (mustput) 3012 ctl_putstr(clock_var[id].text, 3013 "", 0); 3014 } else { 3015 ctl_putstr(clock_var[id].text, 3016 pcs->clockdesc, 3017 strlen(pcs->clockdesc)); 3018 } 3019 break; 3020 3021 case CC_VARLIST: 3022 s = buf; 3023 be = buf + sizeof(buf); 3024 if (strlen(clock_var[CC_VARLIST].text) + 4 > 3025 sizeof(buf)) 3026 break; /* really long var name */ 3027 3028 snprintf(s, sizeof(buf), "%s=\"", 3029 clock_var[CC_VARLIST].text); 3030 s += strlen(s); 3031 t = s; 3032 3033 for (k = clock_var; !(EOV & k->flags); k++) { 3034 if (PADDING & k->flags) 3035 continue; 3036 3037 i = strlen(k->text); 3038 if (s + i + 1 >= be) 3039 break; 3040 3041 if (s != t) 3042 *s++ = ','; 3043 memcpy(s, k->text, i); 3044 s += i; 3045 } 3046 3047 for (k = pcs->kv_list; k && !(EOV & k->flags); k++) { 3048 if (PADDING & k->flags) 3049 continue; 3050 3051 ss = k->text; 3052 if (NULL == ss) 3053 continue; 3054 3055 while (*ss && *ss != '=') 3056 ss++; 3057 i = ss - k->text; 3058 if (s + i + 1 >= be) 3059 break; 3060 3061 if (s != t) 3062 *s++ = ','; 3063 memcpy(s, k->text, (unsigned)i); 3064 s += i; 3065 *s = '\0'; 3066 } 3067 if (s + 2 >= be) 3068 break; 3069 3070 *s++ = '"'; 3071 *s = '\0'; 3072 ctl_putdata(buf, (unsigned)(s - buf), 0); 3073 break; 3074 } 3075 } 3076 #endif 3077 3078 3079 3080 /* 3081 * ctl_getitem - get the next data item from the incoming packet 3082 */ 3083 static const struct ctl_var * 3084 ctl_getitem( 3085 const struct ctl_var *var_list, 3086 char **data 3087 ) 3088 { 3089 /* [Bug 3008] First check the packet data sanity, then search 3090 * the key. This improves the consistency of result values: If 3091 * the result is NULL once, it will never be EOV again for this 3092 * packet; If it's EOV, it will never be NULL again until the 3093 * variable is found and processed in a given 'var_list'. (That 3094 * is, a result is returned that is neither NULL nor EOV). 3095 */ 3096 static const struct ctl_var eol = { 0, EOV, NULL }; 3097 static char buf[128]; 3098 static u_long quiet_until; 3099 const struct ctl_var *v; 3100 char *cp; 3101 char *tp; 3102 3103 /* 3104 * Part One: Validate the packet state 3105 */ 3106 3107 /* Delete leading commas and white space */ 3108 while (reqpt < reqend && (*reqpt == ',' || 3109 isspace((unsigned char)*reqpt))) 3110 reqpt++; 3111 if (reqpt >= reqend) 3112 return NULL; 3113 3114 /* Scan the string in the packet until we hit comma or 3115 * EoB. Register position of first '=' on the fly. */ 3116 for (tp = NULL, cp = reqpt; cp != reqend; ++cp) { 3117 if (*cp == '=' && tp == NULL) 3118 tp = cp; 3119 if (*cp == ',') 3120 break; 3121 } 3122 3123 /* Process payload, if any. */ 3124 *data = NULL; 3125 if (NULL != tp) { 3126 /* eventually strip white space from argument. */ 3127 const char *plhead = tp + 1; /* skip the '=' */ 3128 const char *pltail = cp; 3129 size_t plsize; 3130 3131 while (plhead != pltail && isspace((u_char)plhead[0])) 3132 ++plhead; 3133 while (plhead != pltail && isspace((u_char)pltail[-1])) 3134 --pltail; 3135 3136 /* check payload size, terminate packet on overflow */ 3137 plsize = (size_t)(pltail - plhead); 3138 if (plsize >= sizeof(buf)) 3139 goto badpacket; 3140 3141 /* copy data, NUL terminate, and set result data ptr */ 3142 memcpy(buf, plhead, plsize); 3143 buf[plsize] = '\0'; 3144 *data = buf; 3145 } else { 3146 /* no payload, current end --> current name termination */ 3147 tp = cp; 3148 } 3149 3150 /* Part Two 3151 * 3152 * Now we're sure that the packet data itself is sane. Scan the 3153 * list now. Make sure a NULL list is properly treated by 3154 * returning a synthetic End-Of-Values record. We must not 3155 * return NULL pointers after this point, or the behaviour would 3156 * become inconsistent if called several times with different 3157 * variable lists after an EoV was returned. (Such a behavior 3158 * actually caused Bug 3008.) 3159 */ 3160 3161 if (NULL == var_list) 3162 return &eol; 3163 3164 for (v = var_list; !(EOV & v->flags); ++v) 3165 if (!(PADDING & v->flags)) { 3166 /* Check if the var name matches the buffer. The 3167 * name is bracketed by [reqpt..tp] and not NUL 3168 * terminated, and it contains no '=' char. The 3169 * lookup value IS NUL-terminated but might 3170 * include a '='... We have to look out for 3171 * that! 3172 */ 3173 const char *sp1 = reqpt; 3174 const char *sp2 = v->text; 3175 3176 while ((sp1 != tp) && (*sp1 == *sp2)) { 3177 ++sp1; 3178 ++sp2; 3179 } 3180 if (sp1 == tp && (*sp2 == '\0' || *sp2 == '=')) 3181 break; 3182 } 3183 3184 /* See if we have found a valid entry or not. If found, advance 3185 * the request pointer for the next round; if not, clear the 3186 * data pointer so we have no dangling garbage here. 3187 */ 3188 if (EOV & v->flags) 3189 *data = NULL; 3190 else 3191 reqpt = cp + (cp != reqend); 3192 return v; 3193 3194 badpacket: 3195 /*TODO? somehow indicate this packet was bad, apart from syslog? */ 3196 numctlbadpkts++; 3197 NLOG(NLOG_SYSEVENT) 3198 if (quiet_until <= current_time) { 3199 quiet_until = current_time + 300; 3200 msyslog(LOG_WARNING, 3201 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", 3202 stoa(rmt_addr), SRCPORT(rmt_addr)); 3203 } 3204 reqpt = reqend; /* never again for this packet! */ 3205 return NULL; 3206 } 3207 3208 3209 /* 3210 * control_unspec - response to an unspecified op-code 3211 */ 3212 /*ARGSUSED*/ 3213 static void 3214 control_unspec( 3215 struct recvbuf *rbufp, 3216 int restrict_mask 3217 ) 3218 { 3219 struct peer *peer; 3220 3221 /* 3222 * What is an appropriate response to an unspecified op-code? 3223 * I return no errors and no data, unless a specified assocation 3224 * doesn't exist. 3225 */ 3226 if (res_associd) { 3227 peer = findpeerbyassoc(res_associd); 3228 if (NULL == peer) { 3229 ctl_error(CERR_BADASSOC); 3230 return; 3231 } 3232 rpkt.status = htons(ctlpeerstatus(peer)); 3233 } else 3234 rpkt.status = htons(ctlsysstatus()); 3235 ctl_flushpkt(0); 3236 } 3237 3238 3239 /* 3240 * read_status - return either a list of associd's, or a particular 3241 * peer's status. 3242 */ 3243 /*ARGSUSED*/ 3244 static void 3245 read_status( 3246 struct recvbuf *rbufp, 3247 int restrict_mask 3248 ) 3249 { 3250 struct peer *peer; 3251 const u_char *cp; 3252 size_t n; 3253 /* a_st holds association ID, status pairs alternating */ 3254 u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)]; 3255 3256 #ifdef DEBUG 3257 if (debug > 2) 3258 printf("read_status: ID %d\n", res_associd); 3259 #endif 3260 /* 3261 * Two choices here. If the specified association ID is 3262 * zero we return all known assocation ID's. Otherwise 3263 * we return a bunch of stuff about the particular peer. 3264 */ 3265 if (res_associd) { 3266 peer = findpeerbyassoc(res_associd); 3267 if (NULL == peer) { 3268 ctl_error(CERR_BADASSOC); 3269 return; 3270 } 3271 rpkt.status = htons(ctlpeerstatus(peer)); 3272 if (res_authokay) 3273 peer->num_events = 0; 3274 /* 3275 * For now, output everything we know about the 3276 * peer. May be more selective later. 3277 */ 3278 for (cp = def_peer_var; *cp != 0; cp++) 3279 ctl_putpeer((int)*cp, peer); 3280 ctl_flushpkt(0); 3281 return; 3282 } 3283 n = 0; 3284 rpkt.status = htons(ctlsysstatus()); 3285 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3286 a_st[n++] = htons(peer->associd); 3287 a_st[n++] = htons(ctlpeerstatus(peer)); 3288 /* two entries each loop iteration, so n + 1 */ 3289 if (n + 1 >= COUNTOF(a_st)) { 3290 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 3291 1); 3292 n = 0; 3293 } 3294 } 3295 if (n) 3296 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1); 3297 ctl_flushpkt(0); 3298 } 3299 3300 3301 /* 3302 * read_peervars - half of read_variables() implementation 3303 */ 3304 static void 3305 read_peervars(void) 3306 { 3307 const struct ctl_var *v; 3308 struct peer *peer; 3309 const u_char *cp; 3310 size_t i; 3311 char * valuep; 3312 u_char wants[CP_MAXCODE + 1]; 3313 u_int gotvar; 3314 3315 /* 3316 * Wants info for a particular peer. See if we know 3317 * the guy. 3318 */ 3319 peer = findpeerbyassoc(res_associd); 3320 if (NULL == peer) { 3321 ctl_error(CERR_BADASSOC); 3322 return; 3323 } 3324 rpkt.status = htons(ctlpeerstatus(peer)); 3325 if (res_authokay) 3326 peer->num_events = 0; 3327 ZERO(wants); 3328 gotvar = 0; 3329 while (NULL != (v = ctl_getitem(peer_var, &valuep))) { 3330 if (v->flags & EOV) { 3331 ctl_error(CERR_UNKNOWNVAR); 3332 return; 3333 } 3334 INSIST(v->code < COUNTOF(wants)); 3335 wants[v->code] = 1; 3336 gotvar = 1; 3337 } 3338 if (gotvar) { 3339 for (i = 1; i < COUNTOF(wants); i++) 3340 if (wants[i]) 3341 ctl_putpeer(i, peer); 3342 } else 3343 for (cp = def_peer_var; *cp != 0; cp++) 3344 ctl_putpeer((int)*cp, peer); 3345 ctl_flushpkt(0); 3346 } 3347 3348 3349 /* 3350 * read_sysvars - half of read_variables() implementation 3351 */ 3352 static void 3353 read_sysvars(void) 3354 { 3355 const struct ctl_var *v; 3356 struct ctl_var *kv; 3357 u_int n; 3358 u_int gotvar; 3359 const u_char *cs; 3360 char * valuep; 3361 const char * pch; 3362 u_char *wants; 3363 size_t wants_count; 3364 3365 /* 3366 * Wants system variables. Figure out which he wants 3367 * and give them to him. 3368 */ 3369 rpkt.status = htons(ctlsysstatus()); 3370 if (res_authokay) 3371 ctl_sys_num_events = 0; 3372 wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var); 3373 wants = emalloc_zero(wants_count); 3374 gotvar = 0; 3375 while (NULL != (v = ctl_getitem(sys_var, &valuep))) { 3376 if (!(EOV & v->flags)) { 3377 INSIST(v->code < wants_count); 3378 wants[v->code] = 1; 3379 gotvar = 1; 3380 } else { 3381 v = ctl_getitem(ext_sys_var, &valuep); 3382 if (NULL == v) { 3383 ctl_error(CERR_BADVALUE); 3384 free(wants); 3385 return; 3386 } 3387 if (EOV & v->flags) { 3388 ctl_error(CERR_UNKNOWNVAR); 3389 free(wants); 3390 return; 3391 } 3392 n = v->code + CS_MAXCODE + 1; 3393 INSIST(n < wants_count); 3394 wants[n] = 1; 3395 gotvar = 1; 3396 } 3397 } 3398 if (gotvar) { 3399 for (n = 1; n <= CS_MAXCODE; n++) 3400 if (wants[n]) 3401 ctl_putsys(n); 3402 for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++) 3403 if (wants[n + CS_MAXCODE + 1]) { 3404 pch = ext_sys_var[n].text; 3405 ctl_putdata(pch, strlen(pch), 0); 3406 } 3407 } else { 3408 for (cs = def_sys_var; *cs != 0; cs++) 3409 ctl_putsys((int)*cs); 3410 for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++) 3411 if (DEF & kv->flags) 3412 ctl_putdata(kv->text, strlen(kv->text), 3413 0); 3414 } 3415 free(wants); 3416 ctl_flushpkt(0); 3417 } 3418 3419 3420 /* 3421 * read_variables - return the variables the caller asks for 3422 */ 3423 /*ARGSUSED*/ 3424 static void 3425 read_variables( 3426 struct recvbuf *rbufp, 3427 int restrict_mask 3428 ) 3429 { 3430 if (res_associd) 3431 read_peervars(); 3432 else 3433 read_sysvars(); 3434 } 3435 3436 3437 /* 3438 * write_variables - write into variables. We only allow leap bit 3439 * writing this way. 3440 */ 3441 /*ARGSUSED*/ 3442 static void 3443 write_variables( 3444 struct recvbuf *rbufp, 3445 int restrict_mask 3446 ) 3447 { 3448 const struct ctl_var *v; 3449 int ext_var; 3450 char *valuep; 3451 long val; 3452 size_t octets; 3453 char *vareqv; 3454 const char *t; 3455 char *tt; 3456 3457 val = 0; 3458 /* 3459 * If he's trying to write into a peer tell him no way 3460 */ 3461 if (res_associd != 0) { 3462 ctl_error(CERR_PERMISSION); 3463 return; 3464 } 3465 3466 /* 3467 * Set status 3468 */ 3469 rpkt.status = htons(ctlsysstatus()); 3470 3471 /* 3472 * Look through the variables. Dump out at the first sign of 3473 * trouble. 3474 */ 3475 while ((v = ctl_getitem(sys_var, &valuep)) != 0) { 3476 ext_var = 0; 3477 if (v->flags & EOV) { 3478 if ((v = ctl_getitem(ext_sys_var, &valuep)) != 3479 0) { 3480 if (v->flags & EOV) { 3481 ctl_error(CERR_UNKNOWNVAR); 3482 return; 3483 } 3484 ext_var = 1; 3485 } else { 3486 break; 3487 } 3488 } 3489 if (!(v->flags & CAN_WRITE)) { 3490 ctl_error(CERR_PERMISSION); 3491 return; 3492 } 3493 if (!ext_var && (*valuep == '\0' || !atoint(valuep, 3494 &val))) { 3495 ctl_error(CERR_BADFMT); 3496 return; 3497 } 3498 if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) { 3499 ctl_error(CERR_BADVALUE); 3500 return; 3501 } 3502 3503 if (ext_var) { 3504 octets = strlen(v->text) + strlen(valuep) + 2; 3505 vareqv = emalloc(octets); 3506 tt = vareqv; 3507 t = v->text; 3508 while (*t && *t != '=') 3509 *tt++ = *t++; 3510 *tt++ = '='; 3511 memcpy(tt, valuep, 1 + strlen(valuep)); 3512 set_sys_var(vareqv, 1 + strlen(vareqv), v->flags); 3513 free(vareqv); 3514 } else { 3515 ctl_error(CERR_UNSPEC); /* really */ 3516 return; 3517 } 3518 } 3519 3520 /* 3521 * If we got anything, do it. xxx nothing to do *** 3522 */ 3523 /* 3524 if (leapind != ~0 || leapwarn != ~0) { 3525 if (!leap_setleap((int)leapind, (int)leapwarn)) { 3526 ctl_error(CERR_PERMISSION); 3527 return; 3528 } 3529 } 3530 */ 3531 ctl_flushpkt(0); 3532 } 3533 3534 3535 /* 3536 * configure() processes ntpq :config/config-from-file, allowing 3537 * generic runtime reconfiguration. 3538 */ 3539 static void configure( 3540 struct recvbuf *rbufp, 3541 int restrict_mask 3542 ) 3543 { 3544 size_t data_count; 3545 int retval; 3546 3547 /* I haven't yet implemented changes to an existing association. 3548 * Hence check if the association id is 0 3549 */ 3550 if (res_associd != 0) { 3551 ctl_error(CERR_BADVALUE); 3552 return; 3553 } 3554 3555 if (RES_NOMODIFY & restrict_mask) { 3556 snprintf(remote_config.err_msg, 3557 sizeof(remote_config.err_msg), 3558 "runtime configuration prohibited by restrict ... nomodify"); 3559 ctl_putdata(remote_config.err_msg, 3560 strlen(remote_config.err_msg), 0); 3561 ctl_flushpkt(0); 3562 NLOG(NLOG_SYSINFO) 3563 msyslog(LOG_NOTICE, 3564 "runtime config from %s rejected due to nomodify restriction", 3565 stoa(&rbufp->recv_srcadr)); 3566 sys_restricted++; 3567 return; 3568 } 3569 3570 /* Initialize the remote config buffer */ 3571 data_count = remoteconfig_cmdlength(reqpt, reqend); 3572 3573 if (data_count > sizeof(remote_config.buffer) - 2) { 3574 snprintf(remote_config.err_msg, 3575 sizeof(remote_config.err_msg), 3576 "runtime configuration failed: request too long"); 3577 ctl_putdata(remote_config.err_msg, 3578 strlen(remote_config.err_msg), 0); 3579 ctl_flushpkt(0); 3580 msyslog(LOG_NOTICE, 3581 "runtime config from %s rejected: request too long", 3582 stoa(&rbufp->recv_srcadr)); 3583 return; 3584 } 3585 /* Bug 2853 -- check if all characters were acceptable */ 3586 if (data_count != (size_t)(reqend - reqpt)) { 3587 snprintf(remote_config.err_msg, 3588 sizeof(remote_config.err_msg), 3589 "runtime configuration failed: request contains an unprintable character"); 3590 ctl_putdata(remote_config.err_msg, 3591 strlen(remote_config.err_msg), 0); 3592 ctl_flushpkt(0); 3593 msyslog(LOG_NOTICE, 3594 "runtime config from %s rejected: request contains an unprintable character: %0x", 3595 stoa(&rbufp->recv_srcadr), 3596 reqpt[data_count]); 3597 return; 3598 } 3599 3600 memcpy(remote_config.buffer, reqpt, data_count); 3601 /* The buffer has no trailing linefeed or NUL right now. For 3602 * logging, we do not want a newline, so we do that first after 3603 * adding the necessary NUL byte. 3604 */ 3605 remote_config.buffer[data_count] = '\0'; 3606 DPRINTF(1, ("Got Remote Configuration Command: %s\n", 3607 remote_config.buffer)); 3608 msyslog(LOG_NOTICE, "%s config: %s", 3609 stoa(&rbufp->recv_srcadr), 3610 remote_config.buffer); 3611 3612 /* Now we have to make sure there is a NL/NUL sequence at the 3613 * end of the buffer before we parse it. 3614 */ 3615 remote_config.buffer[data_count++] = '\n'; 3616 remote_config.buffer[data_count] = '\0'; 3617 remote_config.pos = 0; 3618 remote_config.err_pos = 0; 3619 remote_config.no_errors = 0; 3620 config_remotely(&rbufp->recv_srcadr); 3621 3622 /* 3623 * Check if errors were reported. If not, output 'Config 3624 * Succeeded'. Else output the error count. It would be nice 3625 * to output any parser error messages. 3626 */ 3627 if (0 == remote_config.no_errors) { 3628 retval = snprintf(remote_config.err_msg, 3629 sizeof(remote_config.err_msg), 3630 "Config Succeeded"); 3631 if (retval > 0) 3632 remote_config.err_pos += retval; 3633 } 3634 3635 ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0); 3636 ctl_flushpkt(0); 3637 3638 DPRINTF(1, ("Reply: %s\n", remote_config.err_msg)); 3639 3640 if (remote_config.no_errors > 0) 3641 msyslog(LOG_NOTICE, "%d error in %s config", 3642 remote_config.no_errors, 3643 stoa(&rbufp->recv_srcadr)); 3644 } 3645 3646 3647 /* 3648 * derive_nonce - generate client-address-specific nonce value 3649 * associated with a given timestamp. 3650 */ 3651 static u_int32 derive_nonce( 3652 sockaddr_u * addr, 3653 u_int32 ts_i, 3654 u_int32 ts_f 3655 ) 3656 { 3657 static u_int32 salt[4]; 3658 static u_long last_salt_update; 3659 union d_tag { 3660 u_char digest[EVP_MAX_MD_SIZE]; 3661 u_int32 extract; 3662 } d; 3663 EVP_MD_CTX *ctx; 3664 u_int len; 3665 3666 while (!salt[0] || current_time - last_salt_update >= 3600) { 3667 salt[0] = ntp_random(); 3668 salt[1] = ntp_random(); 3669 salt[2] = ntp_random(); 3670 salt[3] = ntp_random(); 3671 last_salt_update = current_time; 3672 } 3673 3674 ctx = EVP_MD_CTX_new(); 3675 EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5)); 3676 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3677 EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i)); 3678 EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f)); 3679 if (IS_IPV4(addr)) 3680 EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr), 3681 sizeof(SOCK_ADDR4(addr))); 3682 else 3683 EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr), 3684 sizeof(SOCK_ADDR6(addr))); 3685 EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr))); 3686 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3687 EVP_DigestFinal(ctx, d.digest, &len); 3688 EVP_MD_CTX_free(ctx); 3689 3690 return d.extract; 3691 } 3692 3693 3694 /* 3695 * generate_nonce - generate client-address-specific nonce string. 3696 */ 3697 static void generate_nonce( 3698 struct recvbuf * rbufp, 3699 char * nonce, 3700 size_t nonce_octets 3701 ) 3702 { 3703 u_int32 derived; 3704 3705 derived = derive_nonce(&rbufp->recv_srcadr, 3706 rbufp->recv_time.l_ui, 3707 rbufp->recv_time.l_uf); 3708 snprintf(nonce, nonce_octets, "%08x%08x%08x", 3709 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived); 3710 } 3711 3712 3713 /* 3714 * validate_nonce - validate client-address-specific nonce string. 3715 * 3716 * Returns TRUE if the local calculation of the nonce matches the 3717 * client-provided value and the timestamp is recent enough. 3718 */ 3719 static int validate_nonce( 3720 const char * pnonce, 3721 struct recvbuf * rbufp 3722 ) 3723 { 3724 u_int ts_i; 3725 u_int ts_f; 3726 l_fp ts; 3727 l_fp now_delta; 3728 u_int supposed; 3729 u_int derived; 3730 3731 if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed)) 3732 return FALSE; 3733 3734 ts.l_ui = (u_int32)ts_i; 3735 ts.l_uf = (u_int32)ts_f; 3736 derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf); 3737 get_systime(&now_delta); 3738 L_SUB(&now_delta, &ts); 3739 3740 return (supposed == derived && now_delta.l_ui < 16); 3741 } 3742 3743 3744 /* 3745 * send_random_tag_value - send a randomly-generated three character 3746 * tag prefix, a '.', an index, a '=' and a 3747 * random integer value. 3748 * 3749 * To try to force clients to ignore unrecognized tags in mrulist, 3750 * reslist, and ifstats responses, the first and last rows are spiced 3751 * with randomly-generated tag names with correct .# index. Make it 3752 * three characters knowing that none of the currently-used subscripted 3753 * tags have that length, avoiding the need to test for 3754 * tag collision. 3755 */ 3756 static void 3757 send_random_tag_value( 3758 int indx 3759 ) 3760 { 3761 int noise; 3762 char buf[32]; 3763 3764 noise = rand() ^ (rand() << 16); 3765 buf[0] = 'a' + noise % 26; 3766 noise >>= 5; 3767 buf[1] = 'a' + noise % 26; 3768 noise >>= 5; 3769 buf[2] = 'a' + noise % 26; 3770 noise >>= 5; 3771 buf[3] = '.'; 3772 snprintf(&buf[4], sizeof(buf) - 4, "%d", indx); 3773 ctl_putuint(buf, noise); 3774 } 3775 3776 3777 /* 3778 * Send a MRU list entry in response to a "ntpq -c mrulist" operation. 3779 * 3780 * To keep clients honest about not depending on the order of values, 3781 * and thereby avoid being locked into ugly workarounds to maintain 3782 * backward compatibility later as new fields are added to the response, 3783 * the order is random. 3784 */ 3785 static void 3786 send_mru_entry( 3787 mon_entry * mon, 3788 int count 3789 ) 3790 { 3791 const char first_fmt[] = "first.%d"; 3792 const char ct_fmt[] = "ct.%d"; 3793 const char mv_fmt[] = "mv.%d"; 3794 const char rs_fmt[] = "rs.%d"; 3795 char tag[32]; 3796 u_char sent[6]; /* 6 tag=value pairs */ 3797 u_int32 noise; 3798 u_int which; 3799 u_int remaining; 3800 const char * pch; 3801 3802 remaining = COUNTOF(sent); 3803 ZERO(sent); 3804 noise = (u_int32)(rand() ^ (rand() << 16)); 3805 while (remaining > 0) { 3806 which = (noise & 7) % COUNTOF(sent); 3807 noise >>= 3; 3808 while (sent[which]) 3809 which = (which + 1) % COUNTOF(sent); 3810 3811 switch (which) { 3812 3813 case 0: 3814 snprintf(tag, sizeof(tag), addr_fmt, count); 3815 pch = sptoa(&mon->rmtadr); 3816 ctl_putunqstr(tag, pch, strlen(pch)); 3817 break; 3818 3819 case 1: 3820 snprintf(tag, sizeof(tag), last_fmt, count); 3821 ctl_putts(tag, &mon->last); 3822 break; 3823 3824 case 2: 3825 snprintf(tag, sizeof(tag), first_fmt, count); 3826 ctl_putts(tag, &mon->first); 3827 break; 3828 3829 case 3: 3830 snprintf(tag, sizeof(tag), ct_fmt, count); 3831 ctl_putint(tag, mon->count); 3832 break; 3833 3834 case 4: 3835 snprintf(tag, sizeof(tag), mv_fmt, count); 3836 ctl_putuint(tag, mon->vn_mode); 3837 break; 3838 3839 case 5: 3840 snprintf(tag, sizeof(tag), rs_fmt, count); 3841 ctl_puthex(tag, mon->flags); 3842 break; 3843 } 3844 sent[which] = TRUE; 3845 remaining--; 3846 } 3847 } 3848 3849 3850 /* 3851 * read_mru_list - supports ntpq's mrulist command. 3852 * 3853 * The challenge here is to match ntpdc's monlist functionality without 3854 * being limited to hundreds of entries returned total, and without 3855 * requiring state on the server. If state were required, ntpq's 3856 * mrulist command would require authentication. 3857 * 3858 * The approach was suggested by Ry Jones. A finite and variable number 3859 * of entries are retrieved per request, to avoid having responses with 3860 * such large numbers of packets that socket buffers are overflowed and 3861 * packets lost. The entries are retrieved oldest-first, taking into 3862 * account that the MRU list will be changing between each request. We 3863 * can expect to see duplicate entries for addresses updated in the MRU 3864 * list during the fetch operation. In the end, the client can assemble 3865 * a close approximation of the MRU list at the point in time the last 3866 * response was sent by ntpd. The only difference is it may be longer, 3867 * containing some number of oldest entries which have since been 3868 * reclaimed. If necessary, the protocol could be extended to zap those 3869 * from the client snapshot at the end, but so far that doesn't seem 3870 * useful. 3871 * 3872 * To accomodate the changing MRU list, the starting point for requests 3873 * after the first request is supplied as a series of last seen 3874 * timestamps and associated addresses, the newest ones the client has 3875 * received. As long as at least one of those entries hasn't been 3876 * bumped to the head of the MRU list, ntpd can pick up at that point. 3877 * Otherwise, the request is failed and it is up to ntpq to back up and 3878 * provide the next newest entry's timestamps and addresses, conceivably 3879 * backing up all the way to the starting point. 3880 * 3881 * input parameters: 3882 * nonce= Regurgitated nonce retrieved by the client 3883 * previously using CTL_OP_REQ_NONCE, demonstrating 3884 * ability to receive traffic sent to its address. 3885 * frags= Limit on datagrams (fragments) in response. Used 3886 * by newer ntpq versions instead of limit= when 3887 * retrieving multiple entries. 3888 * limit= Limit on MRU entries returned. One of frags= or 3889 * limit= must be provided. 3890 * limit=1 is a special case: Instead of fetching 3891 * beginning with the supplied starting point's 3892 * newer neighbor, fetch the supplied entry, and 3893 * in that case the #.last timestamp can be zero. 3894 * This enables fetching a single entry by IP 3895 * address. When limit is not one and frags= is 3896 * provided, the fragment limit controls. 3897 * mincount= (decimal) Return entries with count >= mincount. 3898 * laddr= Return entries associated with the server's IP 3899 * address given. No port specification is needed, 3900 * and any supplied is ignored. 3901 * resall= 0x-prefixed hex restrict bits which must all be 3902 * lit for an MRU entry to be included. 3903 * Has precedence over any resany=. 3904 * resany= 0x-prefixed hex restrict bits, at least one of 3905 * which must be list for an MRU entry to be 3906 * included. 3907 * last.0= 0x-prefixed hex l_fp timestamp of newest entry 3908 * which client previously received. 3909 * addr.0= text of newest entry's IP address and port, 3910 * IPv6 addresses in bracketed form: [::]:123 3911 * last.1= timestamp of 2nd newest entry client has. 3912 * addr.1= address of 2nd newest entry. 3913 * [...] 3914 * 3915 * ntpq provides as many last/addr pairs as will fit in a single request 3916 * packet, except for the first request in a MRU fetch operation. 3917 * 3918 * The response begins with a new nonce value to be used for any 3919 * followup request. Following the nonce is the next newer entry than 3920 * referred to by last.0 and addr.0, if the "0" entry has not been 3921 * bumped to the front. If it has, the first entry returned will be the 3922 * next entry newer than referred to by last.1 and addr.1, and so on. 3923 * If none of the referenced entries remain unchanged, the request fails 3924 * and ntpq backs up to the next earlier set of entries to resync. 3925 * 3926 * Except for the first response, the response begins with confirmation 3927 * of the entry that precedes the first additional entry provided: 3928 * 3929 * last.older= hex l_fp timestamp matching one of the input 3930 * .last timestamps, which entry now precedes the 3931 * response 0. entry in the MRU list. 3932 * addr.older= text of address corresponding to older.last. 3933 * 3934 * And in any case, a successful response contains sets of values 3935 * comprising entries, with the oldest numbered 0 and incrementing from 3936 * there: 3937 * 3938 * addr.# text of IPv4 or IPv6 address and port 3939 * last.# hex l_fp timestamp of last receipt 3940 * first.# hex l_fp timestamp of first receipt 3941 * ct.# count of packets received 3942 * mv.# mode and version 3943 * rs.# restriction mask (RES_* bits) 3944 * 3945 * Note the code currently assumes there are no valid three letter 3946 * tags sent with each row, and needs to be adjusted if that changes. 3947 * 3948 * The client should accept the values in any order, and ignore .# 3949 * values which it does not understand, to allow a smooth path to 3950 * future changes without requiring a new opcode. Clients can rely 3951 * on all *.0 values preceding any *.1 values, that is all values for 3952 * a given index number are together in the response. 3953 * 3954 * The end of the response list is noted with one or two tag=value 3955 * pairs. Unconditionally: 3956 * 3957 * now= 0x-prefixed l_fp timestamp at the server marking 3958 * the end of the operation. 3959 * 3960 * If any entries were returned, now= is followed by: 3961 * 3962 * last.newest= hex l_fp identical to last.# of the prior 3963 * entry. 3964 */ 3965 static void read_mru_list( 3966 struct recvbuf *rbufp, 3967 int restrict_mask 3968 ) 3969 { 3970 static const char nulltxt[1] = { '\0' }; 3971 static const char nonce_text[] = "nonce"; 3972 static const char frags_text[] = "frags"; 3973 static const char limit_text[] = "limit"; 3974 static const char mincount_text[] = "mincount"; 3975 static const char resall_text[] = "resall"; 3976 static const char resany_text[] = "resany"; 3977 static const char maxlstint_text[] = "maxlstint"; 3978 static const char laddr_text[] = "laddr"; 3979 static const char resaxx_fmt[] = "0x%hx"; 3980 3981 u_int limit; 3982 u_short frags; 3983 u_short resall; 3984 u_short resany; 3985 int mincount; 3986 u_int maxlstint; 3987 sockaddr_u laddr; 3988 struct interface * lcladr; 3989 u_int count; 3990 u_int ui; 3991 u_int uf; 3992 l_fp last[16]; 3993 sockaddr_u addr[COUNTOF(last)]; 3994 char buf[128]; 3995 struct ctl_var * in_parms; 3996 const struct ctl_var * v; 3997 const char * val; 3998 const char * pch; 3999 char * pnonce; 4000 int nonce_valid; 4001 size_t i; 4002 int priors; 4003 u_short hash; 4004 mon_entry * mon; 4005 mon_entry * prior_mon; 4006 l_fp now; 4007 4008 if (RES_NOMRULIST & restrict_mask) { 4009 ctl_error(CERR_PERMISSION); 4010 NLOG(NLOG_SYSINFO) 4011 msyslog(LOG_NOTICE, 4012 "mrulist from %s rejected due to nomrulist restriction", 4013 stoa(&rbufp->recv_srcadr)); 4014 sys_restricted++; 4015 return; 4016 } 4017 /* 4018 * fill in_parms var list with all possible input parameters. 4019 */ 4020 in_parms = NULL; 4021 set_var(&in_parms, nonce_text, sizeof(nonce_text), 0); 4022 set_var(&in_parms, frags_text, sizeof(frags_text), 0); 4023 set_var(&in_parms, limit_text, sizeof(limit_text), 0); 4024 set_var(&in_parms, mincount_text, sizeof(mincount_text), 0); 4025 set_var(&in_parms, resall_text, sizeof(resall_text), 0); 4026 set_var(&in_parms, resany_text, sizeof(resany_text), 0); 4027 set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0); 4028 set_var(&in_parms, laddr_text, sizeof(laddr_text), 0); 4029 for (i = 0; i < COUNTOF(last); i++) { 4030 snprintf(buf, sizeof(buf), last_fmt, (int)i); 4031 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4032 snprintf(buf, sizeof(buf), addr_fmt, (int)i); 4033 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4034 } 4035 4036 /* decode input parms */ 4037 pnonce = NULL; 4038 frags = 0; 4039 limit = 0; 4040 mincount = 0; 4041 resall = 0; 4042 resany = 0; 4043 maxlstint = 0; 4044 lcladr = NULL; 4045 priors = 0; 4046 ZERO(last); 4047 ZERO(addr); 4048 4049 /* have to go through '(void*)' to drop 'const' property from pointer. 4050 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org 4051 */ 4052 while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) && 4053 !(EOV & v->flags)) { 4054 int si; 4055 4056 if (NULL == val) 4057 val = nulltxt; 4058 4059 if (!strcmp(nonce_text, v->text)) { 4060 free(pnonce); 4061 pnonce = (*val) ? estrdup(val) : NULL; 4062 } else if (!strcmp(frags_text, v->text)) { 4063 if (1 != sscanf(val, "%hu", &frags)) 4064 goto blooper; 4065 } else if (!strcmp(limit_text, v->text)) { 4066 if (1 != sscanf(val, "%u", &limit)) 4067 goto blooper; 4068 } else if (!strcmp(mincount_text, v->text)) { 4069 if (1 != sscanf(val, "%d", &mincount)) 4070 goto blooper; 4071 if (mincount < 0) 4072 mincount = 0; 4073 } else if (!strcmp(resall_text, v->text)) { 4074 if (1 != sscanf(val, resaxx_fmt, &resall)) 4075 goto blooper; 4076 } else if (!strcmp(resany_text, v->text)) { 4077 if (1 != sscanf(val, resaxx_fmt, &resany)) 4078 goto blooper; 4079 } else if (!strcmp(maxlstint_text, v->text)) { 4080 if (1 != sscanf(val, "%u", &maxlstint)) 4081 goto blooper; 4082 } else if (!strcmp(laddr_text, v->text)) { 4083 if (!decodenetnum(val, &laddr)) 4084 goto blooper; 4085 lcladr = getinterface(&laddr, 0); 4086 } else if (1 == sscanf(v->text, last_fmt, &si) && 4087 (size_t)si < COUNTOF(last)) { 4088 if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf)) 4089 goto blooper; 4090 last[si].l_ui = ui; 4091 last[si].l_uf = uf; 4092 if (!SOCK_UNSPEC(&addr[si]) && si == priors) 4093 priors++; 4094 } else if (1 == sscanf(v->text, addr_fmt, &si) && 4095 (size_t)si < COUNTOF(addr)) { 4096 if (!decodenetnum(val, &addr[si])) 4097 goto blooper; 4098 if (last[si].l_ui && last[si].l_uf && si == priors) 4099 priors++; 4100 } else { 4101 DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n", 4102 v->text)); 4103 continue; 4104 4105 blooper: 4106 DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n", 4107 v->text, val)); 4108 free(pnonce); 4109 pnonce = NULL; 4110 break; 4111 } 4112 } 4113 free_varlist(in_parms); 4114 in_parms = NULL; 4115 4116 /* return no responses until the nonce is validated */ 4117 if (NULL == pnonce) 4118 return; 4119 4120 nonce_valid = validate_nonce(pnonce, rbufp); 4121 free(pnonce); 4122 if (!nonce_valid) 4123 return; 4124 4125 if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) || 4126 frags > MRU_FRAGS_LIMIT) { 4127 ctl_error(CERR_BADVALUE); 4128 return; 4129 } 4130 4131 /* 4132 * If either frags or limit is not given, use the max. 4133 */ 4134 if (0 != frags && 0 == limit) 4135 limit = UINT_MAX; 4136 else if (0 != limit && 0 == frags) 4137 frags = MRU_FRAGS_LIMIT; 4138 4139 /* 4140 * Find the starting point if one was provided. 4141 */ 4142 mon = NULL; 4143 for (i = 0; i < (size_t)priors; i++) { 4144 hash = MON_HASH(&addr[i]); 4145 for (mon = mon_hash[hash]; 4146 mon != NULL; 4147 mon = mon->hash_next) 4148 if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i])) 4149 break; 4150 if (mon != NULL) { 4151 if (L_ISEQU(&mon->last, &last[i])) 4152 break; 4153 mon = NULL; 4154 } 4155 } 4156 4157 /* If a starting point was provided... */ 4158 if (priors) { 4159 /* and none could be found unmodified... */ 4160 if (NULL == mon) { 4161 /* tell ntpq to try again with older entries */ 4162 ctl_error(CERR_UNKNOWNVAR); 4163 return; 4164 } 4165 /* confirm the prior entry used as starting point */ 4166 ctl_putts("last.older", &mon->last); 4167 pch = sptoa(&mon->rmtadr); 4168 ctl_putunqstr("addr.older", pch, strlen(pch)); 4169 4170 /* 4171 * Move on to the first entry the client doesn't have, 4172 * except in the special case of a limit of one. In 4173 * that case return the starting point entry. 4174 */ 4175 if (limit > 1) 4176 mon = PREV_DLIST(mon_mru_list, mon, mru); 4177 } else { /* start with the oldest */ 4178 mon = TAIL_DLIST(mon_mru_list, mru); 4179 } 4180 4181 /* 4182 * send up to limit= entries in up to frags= datagrams 4183 */ 4184 get_systime(&now); 4185 generate_nonce(rbufp, buf, sizeof(buf)); 4186 ctl_putunqstr("nonce", buf, strlen(buf)); 4187 prior_mon = NULL; 4188 for (count = 0; 4189 mon != NULL && res_frags < frags && count < limit; 4190 mon = PREV_DLIST(mon_mru_list, mon, mru)) { 4191 4192 if (mon->count < mincount) 4193 continue; 4194 if (resall && resall != (resall & mon->flags)) 4195 continue; 4196 if (resany && !(resany & mon->flags)) 4197 continue; 4198 if (maxlstint > 0 && now.l_ui - mon->last.l_ui > 4199 maxlstint) 4200 continue; 4201 if (lcladr != NULL && mon->lcladr != lcladr) 4202 continue; 4203 4204 send_mru_entry(mon, count); 4205 if (!count) 4206 send_random_tag_value(0); 4207 count++; 4208 prior_mon = mon; 4209 } 4210 4211 /* 4212 * If this batch completes the MRU list, say so explicitly with 4213 * a now= l_fp timestamp. 4214 */ 4215 if (NULL == mon) { 4216 if (count > 1) 4217 send_random_tag_value(count - 1); 4218 ctl_putts("now", &now); 4219 /* if any entries were returned confirm the last */ 4220 if (prior_mon != NULL) 4221 ctl_putts("last.newest", &prior_mon->last); 4222 } 4223 ctl_flushpkt(0); 4224 } 4225 4226 4227 /* 4228 * Send a ifstats entry in response to a "ntpq -c ifstats" request. 4229 * 4230 * To keep clients honest about not depending on the order of values, 4231 * and thereby avoid being locked into ugly workarounds to maintain 4232 * backward compatibility later as new fields are added to the response, 4233 * the order is random. 4234 */ 4235 static void 4236 send_ifstats_entry( 4237 endpt * la, 4238 u_int ifnum 4239 ) 4240 { 4241 const char addr_fmtu[] = "addr.%u"; 4242 const char bcast_fmt[] = "bcast.%u"; 4243 const char en_fmt[] = "en.%u"; /* enabled */ 4244 const char name_fmt[] = "name.%u"; 4245 const char flags_fmt[] = "flags.%u"; 4246 const char tl_fmt[] = "tl.%u"; /* ttl */ 4247 const char mc_fmt[] = "mc.%u"; /* mcast count */ 4248 const char rx_fmt[] = "rx.%u"; 4249 const char tx_fmt[] = "tx.%u"; 4250 const char txerr_fmt[] = "txerr.%u"; 4251 const char pc_fmt[] = "pc.%u"; /* peer count */ 4252 const char up_fmt[] = "up.%u"; /* uptime */ 4253 char tag[32]; 4254 u_char sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */ 4255 int noisebits; 4256 u_int32 noise; 4257 u_int which; 4258 u_int remaining; 4259 const char *pch; 4260 4261 remaining = COUNTOF(sent); 4262 ZERO(sent); 4263 noise = 0; 4264 noisebits = 0; 4265 while (remaining > 0) { 4266 if (noisebits < 4) { 4267 noise = rand() ^ (rand() << 16); 4268 noisebits = 31; 4269 } 4270 which = (noise & 0xf) % COUNTOF(sent); 4271 noise >>= 4; 4272 noisebits -= 4; 4273 4274 while (sent[which]) 4275 which = (which + 1) % COUNTOF(sent); 4276 4277 switch (which) { 4278 4279 case 0: 4280 snprintf(tag, sizeof(tag), addr_fmtu, ifnum); 4281 pch = sptoa(&la->sin); 4282 ctl_putunqstr(tag, pch, strlen(pch)); 4283 break; 4284 4285 case 1: 4286 snprintf(tag, sizeof(tag), bcast_fmt, ifnum); 4287 if (INT_BCASTOPEN & la->flags) 4288 pch = sptoa(&la->bcast); 4289 else 4290 pch = ""; 4291 ctl_putunqstr(tag, pch, strlen(pch)); 4292 break; 4293 4294 case 2: 4295 snprintf(tag, sizeof(tag), en_fmt, ifnum); 4296 ctl_putint(tag, !la->ignore_packets); 4297 break; 4298 4299 case 3: 4300 snprintf(tag, sizeof(tag), name_fmt, ifnum); 4301 ctl_putstr(tag, la->name, strlen(la->name)); 4302 break; 4303 4304 case 4: 4305 snprintf(tag, sizeof(tag), flags_fmt, ifnum); 4306 ctl_puthex(tag, (u_int)la->flags); 4307 break; 4308 4309 case 5: 4310 snprintf(tag, sizeof(tag), tl_fmt, ifnum); 4311 ctl_putint(tag, la->last_ttl); 4312 break; 4313 4314 case 6: 4315 snprintf(tag, sizeof(tag), mc_fmt, ifnum); 4316 ctl_putint(tag, la->num_mcast); 4317 break; 4318 4319 case 7: 4320 snprintf(tag, sizeof(tag), rx_fmt, ifnum); 4321 ctl_putint(tag, la->received); 4322 break; 4323 4324 case 8: 4325 snprintf(tag, sizeof(tag), tx_fmt, ifnum); 4326 ctl_putint(tag, la->sent); 4327 break; 4328 4329 case 9: 4330 snprintf(tag, sizeof(tag), txerr_fmt, ifnum); 4331 ctl_putint(tag, la->notsent); 4332 break; 4333 4334 case 10: 4335 snprintf(tag, sizeof(tag), pc_fmt, ifnum); 4336 ctl_putuint(tag, la->peercnt); 4337 break; 4338 4339 case 11: 4340 snprintf(tag, sizeof(tag), up_fmt, ifnum); 4341 ctl_putuint(tag, current_time - la->starttime); 4342 break; 4343 } 4344 sent[which] = TRUE; 4345 remaining--; 4346 } 4347 send_random_tag_value((int)ifnum); 4348 } 4349 4350 4351 /* 4352 * read_ifstats - send statistics for each local address, exposed by 4353 * ntpq -c ifstats 4354 */ 4355 static void 4356 read_ifstats( 4357 struct recvbuf * rbufp 4358 ) 4359 { 4360 u_int ifidx; 4361 endpt * la; 4362 4363 /* 4364 * loop over [0..sys_ifnum] searching ep_list for each 4365 * ifnum in turn. 4366 */ 4367 for (ifidx = 0; ifidx < sys_ifnum; ifidx++) { 4368 for (la = ep_list; la != NULL; la = la->elink) 4369 if (ifidx == la->ifnum) 4370 break; 4371 if (NULL == la) 4372 continue; 4373 /* return stats for one local address */ 4374 send_ifstats_entry(la, ifidx); 4375 } 4376 ctl_flushpkt(0); 4377 } 4378 4379 static void 4380 sockaddrs_from_restrict_u( 4381 sockaddr_u * psaA, 4382 sockaddr_u * psaM, 4383 restrict_u * pres, 4384 int ipv6 4385 ) 4386 { 4387 ZERO(*psaA); 4388 ZERO(*psaM); 4389 if (!ipv6) { 4390 psaA->sa.sa_family = AF_INET; 4391 psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr); 4392 psaM->sa.sa_family = AF_INET; 4393 psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask); 4394 } else { 4395 psaA->sa.sa_family = AF_INET6; 4396 memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr, 4397 sizeof(psaA->sa6.sin6_addr)); 4398 psaM->sa.sa_family = AF_INET6; 4399 memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask, 4400 sizeof(psaA->sa6.sin6_addr)); 4401 } 4402 } 4403 4404 4405 /* 4406 * Send a restrict entry in response to a "ntpq -c reslist" request. 4407 * 4408 * To keep clients honest about not depending on the order of values, 4409 * and thereby avoid being locked into ugly workarounds to maintain 4410 * backward compatibility later as new fields are added to the response, 4411 * the order is random. 4412 */ 4413 static void 4414 send_restrict_entry( 4415 restrict_u * pres, 4416 int ipv6, 4417 u_int idx 4418 ) 4419 { 4420 const char addr_fmtu[] = "addr.%u"; 4421 const char mask_fmtu[] = "mask.%u"; 4422 const char hits_fmt[] = "hits.%u"; 4423 const char flags_fmt[] = "flags.%u"; 4424 char tag[32]; 4425 u_char sent[RESLIST_FIELDS]; /* 4 tag=value pairs */ 4426 int noisebits; 4427 u_int32 noise; 4428 u_int which; 4429 u_int remaining; 4430 sockaddr_u addr; 4431 sockaddr_u mask; 4432 const char * pch; 4433 char * buf; 4434 const char * match_str; 4435 const char * access_str; 4436 4437 sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6); 4438 remaining = COUNTOF(sent); 4439 ZERO(sent); 4440 noise = 0; 4441 noisebits = 0; 4442 while (remaining > 0) { 4443 if (noisebits < 2) { 4444 noise = rand() ^ (rand() << 16); 4445 noisebits = 31; 4446 } 4447 which = (noise & 0x3) % COUNTOF(sent); 4448 noise >>= 2; 4449 noisebits -= 2; 4450 4451 while (sent[which]) 4452 which = (which + 1) % COUNTOF(sent); 4453 4454 switch (which) { 4455 4456 case 0: 4457 snprintf(tag, sizeof(tag), addr_fmtu, idx); 4458 pch = stoa(&addr); 4459 ctl_putunqstr(tag, pch, strlen(pch)); 4460 break; 4461 4462 case 1: 4463 snprintf(tag, sizeof(tag), mask_fmtu, idx); 4464 pch = stoa(&mask); 4465 ctl_putunqstr(tag, pch, strlen(pch)); 4466 break; 4467 4468 case 2: 4469 snprintf(tag, sizeof(tag), hits_fmt, idx); 4470 ctl_putuint(tag, pres->count); 4471 break; 4472 4473 case 3: 4474 snprintf(tag, sizeof(tag), flags_fmt, idx); 4475 match_str = res_match_flags(pres->mflags); 4476 access_str = res_access_flags(pres->flags); 4477 if ('\0' == match_str[0]) { 4478 pch = access_str; 4479 } else { 4480 LIB_GETBUF(buf); 4481 snprintf(buf, LIB_BUFLENGTH, "%s %s", 4482 match_str, access_str); 4483 pch = buf; 4484 } 4485 ctl_putunqstr(tag, pch, strlen(pch)); 4486 break; 4487 } 4488 sent[which] = TRUE; 4489 remaining--; 4490 } 4491 send_random_tag_value((int)idx); 4492 } 4493 4494 4495 static void 4496 send_restrict_list( 4497 restrict_u * pres, 4498 int ipv6, 4499 u_int * pidx 4500 ) 4501 { 4502 for ( ; pres != NULL; pres = pres->link) { 4503 send_restrict_entry(pres, ipv6, *pidx); 4504 (*pidx)++; 4505 } 4506 } 4507 4508 4509 /* 4510 * read_addr_restrictions - returns IPv4 and IPv6 access control lists 4511 */ 4512 static void 4513 read_addr_restrictions( 4514 struct recvbuf * rbufp 4515 ) 4516 { 4517 u_int idx; 4518 4519 idx = 0; 4520 send_restrict_list(restrictlist4, FALSE, &idx); 4521 send_restrict_list(restrictlist6, TRUE, &idx); 4522 ctl_flushpkt(0); 4523 } 4524 4525 4526 /* 4527 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist 4528 */ 4529 static void 4530 read_ordlist( 4531 struct recvbuf * rbufp, 4532 int restrict_mask 4533 ) 4534 { 4535 const char ifstats_s[] = "ifstats"; 4536 const size_t ifstats_chars = COUNTOF(ifstats_s) - 1; 4537 const char addr_rst_s[] = "addr_restrictions"; 4538 const size_t a_r_chars = COUNTOF(addr_rst_s) - 1; 4539 struct ntp_control * cpkt; 4540 u_short qdata_octets; 4541 4542 /* 4543 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and 4544 * used only for ntpq -c ifstats. With the addition of reslist 4545 * the same opcode was generalized to retrieve ordered lists 4546 * which require authentication. The request data is empty or 4547 * contains "ifstats" (not null terminated) to retrieve local 4548 * addresses and associated stats. It is "addr_restrictions" 4549 * to retrieve the IPv4 then IPv6 remote address restrictions, 4550 * which are access control lists. Other request data return 4551 * CERR_UNKNOWNVAR. 4552 */ 4553 cpkt = (struct ntp_control *)&rbufp->recv_pkt; 4554 qdata_octets = ntohs(cpkt->count); 4555 if (0 == qdata_octets || (ifstats_chars == qdata_octets && 4556 !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) { 4557 read_ifstats(rbufp); 4558 return; 4559 } 4560 if (a_r_chars == qdata_octets && 4561 !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) { 4562 read_addr_restrictions(rbufp); 4563 return; 4564 } 4565 ctl_error(CERR_UNKNOWNVAR); 4566 } 4567 4568 4569 /* 4570 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite. 4571 */ 4572 static void req_nonce( 4573 struct recvbuf * rbufp, 4574 int restrict_mask 4575 ) 4576 { 4577 char buf[64]; 4578 4579 generate_nonce(rbufp, buf, sizeof(buf)); 4580 ctl_putunqstr("nonce", buf, strlen(buf)); 4581 ctl_flushpkt(0); 4582 } 4583 4584 4585 /* 4586 * read_clockstatus - return clock radio status 4587 */ 4588 /*ARGSUSED*/ 4589 static void 4590 read_clockstatus( 4591 struct recvbuf *rbufp, 4592 int restrict_mask 4593 ) 4594 { 4595 #ifndef REFCLOCK 4596 /* 4597 * If no refclock support, no data to return 4598 */ 4599 ctl_error(CERR_BADASSOC); 4600 #else 4601 const struct ctl_var * v; 4602 int i; 4603 struct peer * peer; 4604 char * valuep; 4605 u_char * wants; 4606 size_t wants_alloc; 4607 int gotvar; 4608 const u_char * cc; 4609 struct ctl_var * kv; 4610 struct refclockstat cs; 4611 4612 if (res_associd != 0) { 4613 peer = findpeerbyassoc(res_associd); 4614 } else { 4615 /* 4616 * Find a clock for this jerk. If the system peer 4617 * is a clock use it, else search peer_list for one. 4618 */ 4619 if (sys_peer != NULL && (FLAG_REFCLOCK & 4620 sys_peer->flags)) 4621 peer = sys_peer; 4622 else 4623 for (peer = peer_list; 4624 peer != NULL; 4625 peer = peer->p_link) 4626 if (FLAG_REFCLOCK & peer->flags) 4627 break; 4628 } 4629 if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) { 4630 ctl_error(CERR_BADASSOC); 4631 return; 4632 } 4633 /* 4634 * If we got here we have a peer which is a clock. Get his 4635 * status. 4636 */ 4637 cs.kv_list = NULL; 4638 refclock_control(&peer->srcadr, NULL, &cs); 4639 kv = cs.kv_list; 4640 /* 4641 * Look for variables in the packet. 4642 */ 4643 rpkt.status = htons(ctlclkstatus(&cs)); 4644 wants_alloc = CC_MAXCODE + 1 + count_var(kv); 4645 wants = emalloc_zero(wants_alloc); 4646 gotvar = FALSE; 4647 while (NULL != (v = ctl_getitem(clock_var, &valuep))) { 4648 if (!(EOV & v->flags)) { 4649 wants[v->code] = TRUE; 4650 gotvar = TRUE; 4651 } else { 4652 v = ctl_getitem(kv, &valuep); 4653 if (NULL == v) { 4654 ctl_error(CERR_BADVALUE); 4655 free(wants); 4656 free_varlist(cs.kv_list); 4657 return; 4658 } 4659 if (EOV & v->flags) { 4660 ctl_error(CERR_UNKNOWNVAR); 4661 free(wants); 4662 free_varlist(cs.kv_list); 4663 return; 4664 } 4665 wants[CC_MAXCODE + 1 + v->code] = TRUE; 4666 gotvar = TRUE; 4667 } 4668 } 4669 4670 if (gotvar) { 4671 for (i = 1; i <= CC_MAXCODE; i++) 4672 if (wants[i]) 4673 ctl_putclock(i, &cs, TRUE); 4674 if (kv != NULL) 4675 for (i = 0; !(EOV & kv[i].flags); i++) 4676 if (wants[i + CC_MAXCODE + 1]) 4677 ctl_putdata(kv[i].text, 4678 strlen(kv[i].text), 4679 FALSE); 4680 } else { 4681 for (cc = def_clock_var; *cc != 0; cc++) 4682 ctl_putclock((int)*cc, &cs, FALSE); 4683 for ( ; kv != NULL && !(EOV & kv->flags); kv++) 4684 if (DEF & kv->flags) 4685 ctl_putdata(kv->text, strlen(kv->text), 4686 FALSE); 4687 } 4688 4689 free(wants); 4690 free_varlist(cs.kv_list); 4691 4692 ctl_flushpkt(0); 4693 #endif 4694 } 4695 4696 4697 /* 4698 * write_clockstatus - we don't do this 4699 */ 4700 /*ARGSUSED*/ 4701 static void 4702 write_clockstatus( 4703 struct recvbuf *rbufp, 4704 int restrict_mask 4705 ) 4706 { 4707 ctl_error(CERR_PERMISSION); 4708 } 4709 4710 /* 4711 * Trap support from here on down. We send async trap messages when the 4712 * upper levels report trouble. Traps can by set either by control 4713 * messages or by configuration. 4714 */ 4715 /* 4716 * set_trap - set a trap in response to a control message 4717 */ 4718 static void 4719 set_trap( 4720 struct recvbuf *rbufp, 4721 int restrict_mask 4722 ) 4723 { 4724 int traptype; 4725 4726 /* 4727 * See if this guy is allowed 4728 */ 4729 if (restrict_mask & RES_NOTRAP) { 4730 ctl_error(CERR_PERMISSION); 4731 return; 4732 } 4733 4734 /* 4735 * Determine his allowed trap type. 4736 */ 4737 traptype = TRAP_TYPE_PRIO; 4738 if (restrict_mask & RES_LPTRAP) 4739 traptype = TRAP_TYPE_NONPRIO; 4740 4741 /* 4742 * Call ctlsettrap() to do the work. Return 4743 * an error if it can't assign the trap. 4744 */ 4745 if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype, 4746 (int)res_version)) 4747 ctl_error(CERR_NORESOURCE); 4748 ctl_flushpkt(0); 4749 } 4750 4751 4752 /* 4753 * unset_trap - unset a trap in response to a control message 4754 */ 4755 static void 4756 unset_trap( 4757 struct recvbuf *rbufp, 4758 int restrict_mask 4759 ) 4760 { 4761 int traptype; 4762 4763 /* 4764 * We don't prevent anyone from removing his own trap unless the 4765 * trap is configured. Note we also must be aware of the 4766 * possibility that restriction flags were changed since this 4767 * guy last set his trap. Set the trap type based on this. 4768 */ 4769 traptype = TRAP_TYPE_PRIO; 4770 if (restrict_mask & RES_LPTRAP) 4771 traptype = TRAP_TYPE_NONPRIO; 4772 4773 /* 4774 * Call ctlclrtrap() to clear this out. 4775 */ 4776 if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype)) 4777 ctl_error(CERR_BADASSOC); 4778 ctl_flushpkt(0); 4779 } 4780 4781 4782 /* 4783 * ctlsettrap - called to set a trap 4784 */ 4785 int 4786 ctlsettrap( 4787 sockaddr_u *raddr, 4788 struct interface *linter, 4789 int traptype, 4790 int version 4791 ) 4792 { 4793 size_t n; 4794 struct ctl_trap *tp; 4795 struct ctl_trap *tptouse; 4796 4797 /* 4798 * See if we can find this trap. If so, we only need update 4799 * the flags and the time. 4800 */ 4801 if ((tp = ctlfindtrap(raddr, linter)) != NULL) { 4802 switch (traptype) { 4803 4804 case TRAP_TYPE_CONFIG: 4805 tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED; 4806 break; 4807 4808 case TRAP_TYPE_PRIO: 4809 if (tp->tr_flags & TRAP_CONFIGURED) 4810 return (1); /* don't change anything */ 4811 tp->tr_flags = TRAP_INUSE; 4812 break; 4813 4814 case TRAP_TYPE_NONPRIO: 4815 if (tp->tr_flags & TRAP_CONFIGURED) 4816 return (1); /* don't change anything */ 4817 tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO; 4818 break; 4819 } 4820 tp->tr_settime = current_time; 4821 tp->tr_resets++; 4822 return (1); 4823 } 4824 4825 /* 4826 * First we heard of this guy. Try to find a trap structure 4827 * for him to use, clearing out lesser priority guys if we 4828 * have to. Clear out anyone who's expired while we're at it. 4829 */ 4830 tptouse = NULL; 4831 for (n = 0; n < COUNTOF(ctl_traps); n++) { 4832 tp = &ctl_traps[n]; 4833 if ((TRAP_INUSE & tp->tr_flags) && 4834 !(TRAP_CONFIGURED & tp->tr_flags) && 4835 ((tp->tr_settime + CTL_TRAPTIME) > current_time)) { 4836 tp->tr_flags = 0; 4837 num_ctl_traps--; 4838 } 4839 if (!(TRAP_INUSE & tp->tr_flags)) { 4840 tptouse = tp; 4841 } else if (!(TRAP_CONFIGURED & tp->tr_flags)) { 4842 switch (traptype) { 4843 4844 case TRAP_TYPE_CONFIG: 4845 if (tptouse == NULL) { 4846 tptouse = tp; 4847 break; 4848 } 4849 if ((TRAP_NONPRIO & tptouse->tr_flags) && 4850 !(TRAP_NONPRIO & tp->tr_flags)) 4851 break; 4852 4853 if (!(TRAP_NONPRIO & tptouse->tr_flags) 4854 && (TRAP_NONPRIO & tp->tr_flags)) { 4855 tptouse = tp; 4856 break; 4857 } 4858 if (tptouse->tr_origtime < 4859 tp->tr_origtime) 4860 tptouse = tp; 4861 break; 4862 4863 case TRAP_TYPE_PRIO: 4864 if ( TRAP_NONPRIO & tp->tr_flags) { 4865 if (tptouse == NULL || 4866 ((TRAP_INUSE & 4867 tptouse->tr_flags) && 4868 tptouse->tr_origtime < 4869 tp->tr_origtime)) 4870 tptouse = tp; 4871 } 4872 break; 4873 4874 case TRAP_TYPE_NONPRIO: 4875 break; 4876 } 4877 } 4878 } 4879 4880 /* 4881 * If we don't have room for him return an error. 4882 */ 4883 if (tptouse == NULL) 4884 return (0); 4885 4886 /* 4887 * Set up this structure for him. 4888 */ 4889 tptouse->tr_settime = tptouse->tr_origtime = current_time; 4890 tptouse->tr_count = tptouse->tr_resets = 0; 4891 tptouse->tr_sequence = 1; 4892 tptouse->tr_addr = *raddr; 4893 tptouse->tr_localaddr = linter; 4894 tptouse->tr_version = (u_char) version; 4895 tptouse->tr_flags = TRAP_INUSE; 4896 if (traptype == TRAP_TYPE_CONFIG) 4897 tptouse->tr_flags |= TRAP_CONFIGURED; 4898 else if (traptype == TRAP_TYPE_NONPRIO) 4899 tptouse->tr_flags |= TRAP_NONPRIO; 4900 num_ctl_traps++; 4901 return (1); 4902 } 4903 4904 4905 /* 4906 * ctlclrtrap - called to clear a trap 4907 */ 4908 int 4909 ctlclrtrap( 4910 sockaddr_u *raddr, 4911 struct interface *linter, 4912 int traptype 4913 ) 4914 { 4915 register struct ctl_trap *tp; 4916 4917 if ((tp = ctlfindtrap(raddr, linter)) == NULL) 4918 return (0); 4919 4920 if (tp->tr_flags & TRAP_CONFIGURED 4921 && traptype != TRAP_TYPE_CONFIG) 4922 return (0); 4923 4924 tp->tr_flags = 0; 4925 num_ctl_traps--; 4926 return (1); 4927 } 4928 4929 4930 /* 4931 * ctlfindtrap - find a trap given the remote and local addresses 4932 */ 4933 static struct ctl_trap * 4934 ctlfindtrap( 4935 sockaddr_u *raddr, 4936 struct interface *linter 4937 ) 4938 { 4939 size_t n; 4940 4941 for (n = 0; n < COUNTOF(ctl_traps); n++) 4942 if ((ctl_traps[n].tr_flags & TRAP_INUSE) 4943 && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr) 4944 && (linter == ctl_traps[n].tr_localaddr)) 4945 return &ctl_traps[n]; 4946 4947 return NULL; 4948 } 4949 4950 4951 /* 4952 * report_event - report an event to the trappers 4953 */ 4954 void 4955 report_event( 4956 int err, /* error code */ 4957 struct peer *peer, /* peer structure pointer */ 4958 const char *str /* protostats string */ 4959 ) 4960 { 4961 char statstr[NTP_MAXSTRLEN]; 4962 int i; 4963 size_t len; 4964 4965 /* 4966 * Report the error to the protostats file, system log and 4967 * trappers. 4968 */ 4969 if (peer == NULL) { 4970 4971 /* 4972 * Discard a system report if the number of reports of 4973 * the same type exceeds the maximum. 4974 */ 4975 if (ctl_sys_last_event != (u_char)err) 4976 ctl_sys_num_events= 0; 4977 if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS) 4978 return; 4979 4980 ctl_sys_last_event = (u_char)err; 4981 ctl_sys_num_events++; 4982 snprintf(statstr, sizeof(statstr), 4983 "0.0.0.0 %04x %02x %s", 4984 ctlsysstatus(), err, eventstr(err)); 4985 if (str != NULL) { 4986 len = strlen(statstr); 4987 snprintf(statstr + len, sizeof(statstr) - len, 4988 " %s", str); 4989 } 4990 NLOG(NLOG_SYSEVENT) 4991 msyslog(LOG_INFO, "%s", statstr); 4992 } else { 4993 4994 /* 4995 * Discard a peer report if the number of reports of 4996 * the same type exceeds the maximum for that peer. 4997 */ 4998 const char * src; 4999 u_char errlast; 5000 5001 errlast = (u_char)err & ~PEER_EVENT; 5002 if (peer->last_event == errlast) 5003 peer->num_events = 0; 5004 if (peer->num_events >= CTL_PEER_MAXEVENTS) 5005 return; 5006 5007 peer->last_event = errlast; 5008 peer->num_events++; 5009 if (ISREFCLOCKADR(&peer->srcadr)) 5010 src = refnumtoa(&peer->srcadr); 5011 else 5012 src = stoa(&peer->srcadr); 5013 5014 snprintf(statstr, sizeof(statstr), 5015 "%s %04x %02x %s", src, 5016 ctlpeerstatus(peer), err, eventstr(err)); 5017 if (str != NULL) { 5018 len = strlen(statstr); 5019 snprintf(statstr + len, sizeof(statstr) - len, 5020 " %s", str); 5021 } 5022 NLOG(NLOG_PEEREVENT) 5023 msyslog(LOG_INFO, "%s", statstr); 5024 } 5025 record_proto_stats(statstr); 5026 #if DEBUG 5027 if (debug) 5028 printf("event at %lu %s\n", current_time, statstr); 5029 #endif 5030 5031 /* 5032 * If no trappers, return. 5033 */ 5034 if (num_ctl_traps <= 0) 5035 return; 5036 5037 /* [Bug 3119] 5038 * Peer Events should be associated with a peer -- hence the 5039 * name. But there are instances where this function is called 5040 * *without* a valid peer. This happens e.g. with an unsolicited 5041 * CryptoNAK, or when a leap second alarm is going off while 5042 * currently without a system peer. 5043 * 5044 * The most sensible approach to this seems to bail out here if 5045 * this happens. Avoiding to call this function would also 5046 * bypass the log reporting in the first part of this function, 5047 * and this is probably not the best of all options. 5048 * -*-perlinger@ntp.org-*- 5049 */ 5050 if ((err & PEER_EVENT) && !peer) 5051 return; 5052 5053 /* 5054 * Set up the outgoing packet variables 5055 */ 5056 res_opcode = CTL_OP_ASYNCMSG; 5057 res_offset = 0; 5058 res_async = TRUE; 5059 res_authenticate = FALSE; 5060 datapt = rpkt.u.data; 5061 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 5062 if (!(err & PEER_EVENT)) { 5063 rpkt.associd = 0; 5064 rpkt.status = htons(ctlsysstatus()); 5065 5066 /* Include the core system variables and the list. */ 5067 for (i = 1; i <= CS_VARLIST; i++) 5068 ctl_putsys(i); 5069 } else if (NULL != peer) { /* paranoia -- skip output */ 5070 rpkt.associd = htons(peer->associd); 5071 rpkt.status = htons(ctlpeerstatus(peer)); 5072 5073 /* Dump it all. Later, maybe less. */ 5074 for (i = 1; i <= CP_MAX_NOAUTOKEY; i++) 5075 ctl_putpeer(i, peer); 5076 # ifdef REFCLOCK 5077 /* 5078 * for clock exception events: add clock variables to 5079 * reflect info on exception 5080 */ 5081 if (err == PEVNT_CLOCK) { 5082 struct refclockstat cs; 5083 struct ctl_var *kv; 5084 5085 cs.kv_list = NULL; 5086 refclock_control(&peer->srcadr, NULL, &cs); 5087 5088 ctl_puthex("refclockstatus", 5089 ctlclkstatus(&cs)); 5090 5091 for (i = 1; i <= CC_MAXCODE; i++) 5092 ctl_putclock(i, &cs, FALSE); 5093 for (kv = cs.kv_list; 5094 kv != NULL && !(EOV & kv->flags); 5095 kv++) 5096 if (DEF & kv->flags) 5097 ctl_putdata(kv->text, 5098 strlen(kv->text), 5099 FALSE); 5100 free_varlist(cs.kv_list); 5101 } 5102 # endif /* REFCLOCK */ 5103 } 5104 5105 /* 5106 * We're done, return. 5107 */ 5108 ctl_flushpkt(0); 5109 } 5110 5111 5112 /* 5113 * mprintf_event - printf-style varargs variant of report_event() 5114 */ 5115 int 5116 mprintf_event( 5117 int evcode, /* event code */ 5118 struct peer * p, /* may be NULL */ 5119 const char * fmt, /* msnprintf format */ 5120 ... 5121 ) 5122 { 5123 va_list ap; 5124 int rc; 5125 char msg[512]; 5126 5127 va_start(ap, fmt); 5128 rc = mvsnprintf(msg, sizeof(msg), fmt, ap); 5129 va_end(ap); 5130 report_event(evcode, p, msg); 5131 5132 return rc; 5133 } 5134 5135 5136 /* 5137 * ctl_clr_stats - clear stat counters 5138 */ 5139 void 5140 ctl_clr_stats(void) 5141 { 5142 ctltimereset = current_time; 5143 numctlreq = 0; 5144 numctlbadpkts = 0; 5145 numctlresponses = 0; 5146 numctlfrags = 0; 5147 numctlerrors = 0; 5148 numctlfrags = 0; 5149 numctltooshort = 0; 5150 numctlinputresp = 0; 5151 numctlinputfrag = 0; 5152 numctlinputerr = 0; 5153 numctlbadoffset = 0; 5154 numctlbadversion = 0; 5155 numctldatatooshort = 0; 5156 numctlbadop = 0; 5157 numasyncmsgs = 0; 5158 } 5159 5160 static u_short 5161 count_var( 5162 const struct ctl_var *k 5163 ) 5164 { 5165 u_int c; 5166 5167 if (NULL == k) 5168 return 0; 5169 5170 c = 0; 5171 while (!(EOV & (k++)->flags)) 5172 c++; 5173 5174 ENSURE(c <= USHRT_MAX); 5175 return (u_short)c; 5176 } 5177 5178 5179 char * 5180 add_var( 5181 struct ctl_var **kv, 5182 u_long size, 5183 u_short def 5184 ) 5185 { 5186 u_short c; 5187 struct ctl_var *k; 5188 char * buf; 5189 5190 c = count_var(*kv); 5191 *kv = erealloc(*kv, (c + 2) * sizeof(**kv)); 5192 k = *kv; 5193 buf = emalloc(size); 5194 k[c].code = c; 5195 k[c].text = buf; 5196 k[c].flags = def; 5197 k[c + 1].code = 0; 5198 k[c + 1].text = NULL; 5199 k[c + 1].flags = EOV; 5200 5201 return buf; 5202 } 5203 5204 5205 void 5206 set_var( 5207 struct ctl_var **kv, 5208 const char *data, 5209 u_long size, 5210 u_short def 5211 ) 5212 { 5213 struct ctl_var *k; 5214 const char *s; 5215 const char *t; 5216 char *td; 5217 5218 if (NULL == data || !size) 5219 return; 5220 5221 k = *kv; 5222 if (k != NULL) { 5223 while (!(EOV & k->flags)) { 5224 if (NULL == k->text) { 5225 td = emalloc(size); 5226 memcpy(td, data, size); 5227 k->text = td; 5228 k->flags = def; 5229 return; 5230 } else { 5231 s = data; 5232 t = k->text; 5233 while (*t != '=' && *s == *t) { 5234 s++; 5235 t++; 5236 } 5237 if (*s == *t && ((*t == '=') || !*t)) { 5238 td = erealloc((void *)(intptr_t)k->text, size); 5239 memcpy(td, data, size); 5240 k->text = td; 5241 k->flags = def; 5242 return; 5243 } 5244 } 5245 k++; 5246 } 5247 } 5248 td = add_var(kv, size, def); 5249 memcpy(td, data, size); 5250 } 5251 5252 5253 void 5254 set_sys_var( 5255 const char *data, 5256 u_long size, 5257 u_short def 5258 ) 5259 { 5260 set_var(&ext_sys_var, data, size, def); 5261 } 5262 5263 5264 /* 5265 * get_ext_sys_var() retrieves the value of a user-defined variable or 5266 * NULL if the variable has not been setvar'd. 5267 */ 5268 const char * 5269 get_ext_sys_var(const char *tag) 5270 { 5271 struct ctl_var * v; 5272 size_t c; 5273 const char * val; 5274 5275 val = NULL; 5276 c = strlen(tag); 5277 for (v = ext_sys_var; !(EOV & v->flags); v++) { 5278 if (NULL != v->text && !memcmp(tag, v->text, c)) { 5279 if ('=' == v->text[c]) { 5280 val = v->text + c + 1; 5281 break; 5282 } else if ('\0' == v->text[c]) { 5283 val = ""; 5284 break; 5285 } 5286 } 5287 } 5288 5289 return val; 5290 } 5291 5292 5293 void 5294 free_varlist( 5295 struct ctl_var *kv 5296 ) 5297 { 5298 struct ctl_var *k; 5299 if (kv) { 5300 for (k = kv; !(k->flags & EOV); k++) 5301 free((void *)(intptr_t)k->text); 5302 free((void *)kv); 5303 } 5304 } 5305