xref: /netbsd-src/external/bsd/ntp/dist/ntpd/ntp_control.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /*	$NetBSD: ntp_control.c,v 1.22 2019/02/03 10:48:47 mrg Exp $	*/
2 
3 /*
4  * ntp_control.c - respond to mode 6 control messages and send async
5  *		   traps.  Provides service to ntpq and others.
6  */
7 
8 #ifdef HAVE_CONFIG_H
9 # include <config.h>
10 #endif
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <signal.h>
15 #include <sys/stat.h>
16 #ifdef HAVE_NETINET_IN_H
17 # include <netinet/in.h>
18 #endif
19 #include <arpa/inet.h>
20 
21 #include "ntpd.h"
22 #include "ntp_io.h"
23 #include "ntp_refclock.h"
24 #include "ntp_control.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 #include "ntp_config.h"
28 #include "ntp_crypto.h"
29 #include "ntp_assert.h"
30 #include "ntp_leapsec.h"
31 #include "ntp_md5.h"	/* provides OpenSSL digest API */
32 #include "lib_strbuf.h"
33 #include <rc_cmdlength.h>
34 #ifdef KERNEL_PLL
35 # include "ntp_syscall.h"
36 #endif
37 
38 /*
39  * Structure to hold request procedure information
40  */
41 
42 struct ctl_proc {
43 	short control_code;		/* defined request code */
44 #define NO_REQUEST	(-1)
45 	u_short flags;			/* flags word */
46 	/* Only one flag.  Authentication required or not. */
47 #define NOAUTH	0
48 #define AUTH	1
49 	void (*handler) (struct recvbuf *, int); /* handle request */
50 };
51 
52 
53 /*
54  * Request processing routines
55  */
56 static	void	ctl_error	(u_char);
57 #ifdef REFCLOCK
58 static	u_short ctlclkstatus	(struct refclockstat *);
59 #endif
60 static	void	ctl_flushpkt	(u_char);
61 static	void	ctl_putdata	(const char *, unsigned int, int);
62 static	void	ctl_putstr	(const char *, const char *, size_t);
63 static	void	ctl_putdblf	(const char *, int, int, double);
64 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67 					    FPTOD(sfp))
68 static	void	ctl_putuint	(const char *, u_long);
69 static	void	ctl_puthex	(const char *, u_long);
70 static	void	ctl_putint	(const char *, long);
71 static	void	ctl_putts	(const char *, l_fp *);
72 static	void	ctl_putadr	(const char *, u_int32,
73 				 sockaddr_u *);
74 static	void	ctl_putrefid	(const char *, u_int32);
75 static	void	ctl_putarray	(const char *, double *, int);
76 static	void	ctl_putsys	(int);
77 static	void	ctl_putpeer	(int, struct peer *);
78 static	void	ctl_putfs	(const char *, tstamp_t);
79 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
80 #ifdef REFCLOCK
81 static	void	ctl_putclock	(int, struct refclockstat *, int);
82 #endif	/* REFCLOCK */
83 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84 					  char **);
85 static	u_short	count_var	(const struct ctl_var *);
86 static	void	control_unspec	(struct recvbuf *, int);
87 static	void	read_status	(struct recvbuf *, int);
88 static	void	read_sysvars	(void);
89 static	void	read_peervars	(void);
90 static	void	read_variables	(struct recvbuf *, int);
91 static	void	write_variables (struct recvbuf *, int);
92 static	void	read_clockstatus(struct recvbuf *, int);
93 static	void	write_clockstatus(struct recvbuf *, int);
94 static	void	set_trap	(struct recvbuf *, int);
95 static	void	save_config	(struct recvbuf *, int);
96 static	void	configure	(struct recvbuf *, int);
97 static	void	send_mru_entry	(mon_entry *, int);
98 static	void	send_random_tag_value(int);
99 static	void	read_mru_list	(struct recvbuf *, int);
100 static	void	send_ifstats_entry(endpt *, u_int);
101 static	void	read_ifstats	(struct recvbuf *);
102 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
103 					  restrict_u *, int);
104 static	void	send_restrict_entry(restrict_u *, int, u_int);
105 static	void	send_restrict_list(restrict_u *, int, u_int *);
106 static	void	read_addr_restrictions(struct recvbuf *);
107 static	void	read_ordlist	(struct recvbuf *, int);
108 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
109 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
110 static	int	validate_nonce	(const char *, struct recvbuf *);
111 static	void	req_nonce	(struct recvbuf *, int);
112 static	void	unset_trap	(struct recvbuf *, int);
113 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
114 				     struct interface *);
115 
116 int/*BOOL*/ is_safe_filename(const char * name);
117 
118 static const struct ctl_proc control_codes[] = {
119 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
120 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
121 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
122 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
123 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
124 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
125 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
126 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
127 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
128 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
129 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
130 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
131 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
132 	{ NO_REQUEST,			0,	NULL }
133 };
134 
135 /*
136  * System variables we understand
137  */
138 #define	CS_LEAP			1
139 #define	CS_STRATUM		2
140 #define	CS_PRECISION		3
141 #define	CS_ROOTDELAY		4
142 #define	CS_ROOTDISPERSION	5
143 #define	CS_REFID		6
144 #define	CS_REFTIME		7
145 #define	CS_POLL			8
146 #define	CS_PEERID		9
147 #define	CS_OFFSET		10
148 #define	CS_DRIFT		11
149 #define	CS_JITTER		12
150 #define	CS_ERROR		13
151 #define	CS_CLOCK		14
152 #define	CS_PROCESSOR		15
153 #define	CS_SYSTEM		16
154 #define	CS_VERSION		17
155 #define	CS_STABIL		18
156 #define	CS_VARLIST		19
157 #define	CS_TAI			20
158 #define	CS_LEAPTAB		21
159 #define	CS_LEAPEND		22
160 #define	CS_RATE			23
161 #define	CS_MRU_ENABLED		24
162 #define	CS_MRU_DEPTH		25
163 #define	CS_MRU_DEEPEST		26
164 #define	CS_MRU_MINDEPTH		27
165 #define	CS_MRU_MAXAGE		28
166 #define	CS_MRU_MAXDEPTH		29
167 #define	CS_MRU_MEM		30
168 #define	CS_MRU_MAXMEM		31
169 #define	CS_SS_UPTIME		32
170 #define	CS_SS_RESET		33
171 #define	CS_SS_RECEIVED		34
172 #define	CS_SS_THISVER		35
173 #define	CS_SS_OLDVER		36
174 #define	CS_SS_BADFORMAT		37
175 #define	CS_SS_BADAUTH		38
176 #define	CS_SS_DECLINED		39
177 #define	CS_SS_RESTRICTED	40
178 #define	CS_SS_LIMITED		41
179 #define	CS_SS_KODSENT		42
180 #define	CS_SS_PROCESSED		43
181 #define	CS_SS_LAMPORT		44
182 #define	CS_SS_TSROUNDING	45
183 #define	CS_PEERADR		46
184 #define	CS_PEERMODE		47
185 #define	CS_BCASTDELAY		48
186 #define	CS_AUTHDELAY		49
187 #define	CS_AUTHKEYS		50
188 #define	CS_AUTHFREEK		51
189 #define	CS_AUTHKLOOKUPS		52
190 #define	CS_AUTHKNOTFOUND	53
191 #define	CS_AUTHKUNCACHED	54
192 #define	CS_AUTHKEXPIRED		55
193 #define	CS_AUTHENCRYPTS		56
194 #define	CS_AUTHDECRYPTS		57
195 #define	CS_AUTHRESET		58
196 #define	CS_K_OFFSET		59
197 #define	CS_K_FREQ		60
198 #define	CS_K_MAXERR		61
199 #define	CS_K_ESTERR		62
200 #define	CS_K_STFLAGS		63
201 #define	CS_K_TIMECONST		64
202 #define	CS_K_PRECISION		65
203 #define	CS_K_FREQTOL		66
204 #define	CS_K_PPS_FREQ		67
205 #define	CS_K_PPS_STABIL		68
206 #define	CS_K_PPS_JITTER		69
207 #define	CS_K_PPS_CALIBDUR	70
208 #define	CS_K_PPS_CALIBS		71
209 #define	CS_K_PPS_CALIBERRS	72
210 #define	CS_K_PPS_JITEXC		73
211 #define	CS_K_PPS_STBEXC		74
212 #define	CS_KERN_FIRST		CS_K_OFFSET
213 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
214 #define	CS_IOSTATS_RESET	75
215 #define	CS_TOTAL_RBUF		76
216 #define	CS_FREE_RBUF		77
217 #define	CS_USED_RBUF		78
218 #define	CS_RBUF_LOWATER		79
219 #define	CS_IO_DROPPED		80
220 #define	CS_IO_IGNORED		81
221 #define	CS_IO_RECEIVED		82
222 #define	CS_IO_SENT		83
223 #define	CS_IO_SENDFAILED	84
224 #define	CS_IO_WAKEUPS		85
225 #define	CS_IO_GOODWAKEUPS	86
226 #define	CS_TIMERSTATS_RESET	87
227 #define	CS_TIMER_OVERRUNS	88
228 #define	CS_TIMER_XMTS		89
229 #define	CS_FUZZ			90
230 #define	CS_WANDER_THRESH	91
231 #define	CS_LEAPSMEARINTV	92
232 #define	CS_LEAPSMEAROFFS	93
233 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
234 #ifdef AUTOKEY
235 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
236 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
237 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
238 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
239 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
240 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
241 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
242 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
243 #define	CS_MAXCODE		CS_DIGEST
244 #else	/* !AUTOKEY follows */
245 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
246 #endif	/* !AUTOKEY */
247 
248 /*
249  * Peer variables we understand
250  */
251 #define	CP_CONFIG		1
252 #define	CP_AUTHENABLE		2
253 #define	CP_AUTHENTIC		3
254 #define	CP_SRCADR		4
255 #define	CP_SRCPORT		5
256 #define	CP_DSTADR		6
257 #define	CP_DSTPORT		7
258 #define	CP_LEAP			8
259 #define	CP_HMODE		9
260 #define	CP_STRATUM		10
261 #define	CP_PPOLL		11
262 #define	CP_HPOLL		12
263 #define	CP_PRECISION		13
264 #define	CP_ROOTDELAY		14
265 #define	CP_ROOTDISPERSION	15
266 #define	CP_REFID		16
267 #define	CP_REFTIME		17
268 #define	CP_ORG			18
269 #define	CP_REC			19
270 #define	CP_XMT			20
271 #define	CP_REACH		21
272 #define	CP_UNREACH		22
273 #define	CP_TIMER		23
274 #define	CP_DELAY		24
275 #define	CP_OFFSET		25
276 #define	CP_JITTER		26
277 #define	CP_DISPERSION		27
278 #define	CP_KEYID		28
279 #define	CP_FILTDELAY		29
280 #define	CP_FILTOFFSET		30
281 #define	CP_PMODE		31
282 #define	CP_RECEIVED		32
283 #define	CP_SENT			33
284 #define	CP_FILTERROR		34
285 #define	CP_FLASH		35
286 #define	CP_TTL			36
287 #define	CP_VARLIST		37
288 #define	CP_IN			38
289 #define	CP_OUT			39
290 #define	CP_RATE			40
291 #define	CP_BIAS			41
292 #define	CP_SRCHOST		42
293 #define	CP_TIMEREC		43
294 #define	CP_TIMEREACH		44
295 #define	CP_BADAUTH		45
296 #define	CP_BOGUSORG		46
297 #define	CP_OLDPKT		47
298 #define	CP_SELDISP		48
299 #define	CP_SELBROKEN		49
300 #define	CP_CANDIDATE		50
301 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
302 #ifdef AUTOKEY
303 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
304 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
305 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
307 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
308 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
309 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
310 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
311 #define	CP_MAXCODE		CP_IDENT
312 #else	/* !AUTOKEY follows */
313 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
314 #endif	/* !AUTOKEY */
315 
316 /*
317  * Clock variables we understand
318  */
319 #define	CC_TYPE		1
320 #define	CC_TIMECODE	2
321 #define	CC_POLL		3
322 #define	CC_NOREPLY	4
323 #define	CC_BADFORMAT	5
324 #define	CC_BADDATA	6
325 #define	CC_FUDGETIME1	7
326 #define	CC_FUDGETIME2	8
327 #define	CC_FUDGEVAL1	9
328 #define	CC_FUDGEVAL2	10
329 #define	CC_FLAGS	11
330 #define	CC_DEVICE	12
331 #define	CC_VARLIST	13
332 #define	CC_MAXCODE	CC_VARLIST
333 
334 /*
335  * System variable values. The array can be indexed by the variable
336  * index to find the textual name.
337  */
338 static const struct ctl_var sys_var[] = {
339 	{ 0,		PADDING, "" },		/* 0 */
340 	{ CS_LEAP,	RW, "leap" },		/* 1 */
341 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
342 	{ CS_PRECISION, RO, "precision" },	/* 3 */
343 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
344 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
345 	{ CS_REFID,	RO, "refid" },		/* 6 */
346 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
347 	{ CS_POLL,	RO, "tc" },		/* 8 */
348 	{ CS_PEERID,	RO, "peer" },		/* 9 */
349 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
350 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
351 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
352 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
353 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
354 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
355 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
356 	{ CS_VERSION,	RO, "version" },	/* 17 */
357 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
358 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
359 	{ CS_TAI,	RO, "tai" },		/* 20 */
360 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
361 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
362 	{ CS_RATE,	RO, "mintc" },		/* 23 */
363 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
364 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
365 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
366 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
367 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
368 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
369 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
370 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
371 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
372 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
373 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
374 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
375 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
376 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
377 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
378 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
379 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
380 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
381 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
382 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
383 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
384 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
385 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
386 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
387 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
388 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
389 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
390 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
391 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
392 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
393 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
394 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
395 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
396 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
397 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
398 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
399 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
400 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
401 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
402 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
403 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
404 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
405 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
406 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
407 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
408 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
409 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
410 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
411 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
412 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
413 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
414 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
415 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
416 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
417 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
418 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
419 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
420 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
421 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
422 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
423 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
424 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
425 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
426 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
427 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
428 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
429 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
430 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
431 
432 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
433 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
434 
435 #ifdef AUTOKEY
436 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
437 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
438 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
439 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
440 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
441 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
442 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
443 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
444 #endif	/* AUTOKEY */
445 	{ 0,		EOV, "" }		/* 94/102 */
446 };
447 
448 static struct ctl_var *ext_sys_var = NULL;
449 
450 /*
451  * System variables we print by default (in fuzzball order,
452  * more-or-less)
453  */
454 static const u_char def_sys_var[] = {
455 	CS_VERSION,
456 	CS_PROCESSOR,
457 	CS_SYSTEM,
458 	CS_LEAP,
459 	CS_STRATUM,
460 	CS_PRECISION,
461 	CS_ROOTDELAY,
462 	CS_ROOTDISPERSION,
463 	CS_REFID,
464 	CS_REFTIME,
465 	CS_CLOCK,
466 	CS_PEERID,
467 	CS_POLL,
468 	CS_RATE,
469 	CS_OFFSET,
470 	CS_DRIFT,
471 	CS_JITTER,
472 	CS_ERROR,
473 	CS_STABIL,
474 	CS_TAI,
475 	CS_LEAPTAB,
476 	CS_LEAPEND,
477 	CS_LEAPSMEARINTV,
478 	CS_LEAPSMEAROFFS,
479 #ifdef AUTOKEY
480 	CS_HOST,
481 	CS_IDENT,
482 	CS_FLAGS,
483 	CS_DIGEST,
484 	CS_SIGNATURE,
485 	CS_PUBLIC,
486 	CS_CERTIF,
487 #endif	/* AUTOKEY */
488 	0
489 };
490 
491 
492 /*
493  * Peer variable list
494  */
495 static const struct ctl_var peer_var[] = {
496 	{ 0,		PADDING, "" },		/* 0 */
497 	{ CP_CONFIG,	RO, "config" },		/* 1 */
498 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
499 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
500 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
501 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
502 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
503 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
504 	{ CP_LEAP,	RO, "leap" },		/* 8 */
505 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
506 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
507 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
508 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
509 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
510 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
511 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
512 	{ CP_REFID,	RO, "refid" },		/* 16 */
513 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
514 	{ CP_ORG,	RO, "org" },		/* 18 */
515 	{ CP_REC,	RO, "rec" },		/* 19 */
516 	{ CP_XMT,	RO, "xleave" },		/* 20 */
517 	{ CP_REACH,	RO, "reach" },		/* 21 */
518 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
519 	{ CP_TIMER,	RO, "timer" },		/* 23 */
520 	{ CP_DELAY,	RO, "delay" },		/* 24 */
521 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
522 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
523 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
524 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
525 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
526 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
527 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
528 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
529 	{ CP_SENT,	RO, "sent" },		/* 33 */
530 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
531 	{ CP_FLASH,	RO, "flash" },		/* 35 */
532 	{ CP_TTL,	RO, "ttl" },		/* 36 */
533 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
534 	{ CP_IN,	RO, "in" },		/* 38 */
535 	{ CP_OUT,	RO, "out" },		/* 39 */
536 	{ CP_RATE,	RO, "headway" },	/* 40 */
537 	{ CP_BIAS,	RO, "bias" },		/* 41 */
538 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
539 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
540 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
541 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
542 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
543 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
544 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
545 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
546 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
547 #ifdef AUTOKEY
548 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
549 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
550 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
551 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
552 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
553 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
554 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
555 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
556 #endif	/* AUTOKEY */
557 	{ 0,		EOV, "" }		/* 50/58 */
558 };
559 
560 
561 /*
562  * Peer variables we print by default
563  */
564 static const u_char def_peer_var[] = {
565 	CP_SRCADR,
566 	CP_SRCPORT,
567 	CP_SRCHOST,
568 	CP_DSTADR,
569 	CP_DSTPORT,
570 	CP_OUT,
571 	CP_IN,
572 	CP_LEAP,
573 	CP_STRATUM,
574 	CP_PRECISION,
575 	CP_ROOTDELAY,
576 	CP_ROOTDISPERSION,
577 	CP_REFID,
578 	CP_REFTIME,
579 	CP_REC,
580 	CP_REACH,
581 	CP_UNREACH,
582 	CP_HMODE,
583 	CP_PMODE,
584 	CP_HPOLL,
585 	CP_PPOLL,
586 	CP_RATE,
587 	CP_FLASH,
588 	CP_KEYID,
589 	CP_TTL,
590 	CP_OFFSET,
591 	CP_DELAY,
592 	CP_DISPERSION,
593 	CP_JITTER,
594 	CP_XMT,
595 	CP_BIAS,
596 	CP_FILTDELAY,
597 	CP_FILTOFFSET,
598 	CP_FILTERROR,
599 #ifdef AUTOKEY
600 	CP_HOST,
601 	CP_FLAGS,
602 	CP_SIGNATURE,
603 	CP_VALID,
604 	CP_INITSEQ,
605 	CP_IDENT,
606 #endif	/* AUTOKEY */
607 	0
608 };
609 
610 
611 #ifdef REFCLOCK
612 /*
613  * Clock variable list
614  */
615 static const struct ctl_var clock_var[] = {
616 	{ 0,		PADDING, "" },		/* 0 */
617 	{ CC_TYPE,	RO, "type" },		/* 1 */
618 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
619 	{ CC_POLL,	RO, "poll" },		/* 3 */
620 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
621 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
622 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
623 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
624 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
625 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
626 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
627 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
628 	{ CC_DEVICE,	RO, "device" },		/* 12 */
629 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
630 	{ 0,		EOV, ""  }		/* 14 */
631 };
632 
633 
634 /*
635  * Clock variables printed by default
636  */
637 static const u_char def_clock_var[] = {
638 	CC_DEVICE,
639 	CC_TYPE,	/* won't be output if device = known */
640 	CC_TIMECODE,
641 	CC_POLL,
642 	CC_NOREPLY,
643 	CC_BADFORMAT,
644 	CC_BADDATA,
645 	CC_FUDGETIME1,
646 	CC_FUDGETIME2,
647 	CC_FUDGEVAL1,
648 	CC_FUDGEVAL2,
649 	CC_FLAGS,
650 	0
651 };
652 #endif
653 
654 /*
655  * MRU string constants shared by send_mru_entry() and read_mru_list().
656  */
657 static const char addr_fmt[] =		"addr.%d";
658 static const char last_fmt[] =		"last.%d";
659 
660 /*
661  * System and processor definitions.
662  */
663 #ifndef HAVE_UNAME
664 # ifndef STR_SYSTEM
665 #  define		STR_SYSTEM	"UNIX"
666 # endif
667 # ifndef STR_PROCESSOR
668 #  define		STR_PROCESSOR	"unknown"
669 # endif
670 
671 static const char str_system[] = STR_SYSTEM;
672 static const char str_processor[] = STR_PROCESSOR;
673 #else
674 # include <sys/utsname.h>
675 static struct utsname utsnamebuf;
676 #endif /* HAVE_UNAME */
677 
678 /*
679  * Trap structures. We only allow a few of these, and send a copy of
680  * each async message to each live one. Traps time out after an hour, it
681  * is up to the trap receipient to keep resetting it to avoid being
682  * timed out.
683  */
684 /* ntp_request.c */
685 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
686 int num_ctl_traps;
687 
688 /*
689  * Type bits, for ctlsettrap() call.
690  */
691 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
692 #define TRAP_TYPE_PRIO		1	/* priority trap */
693 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
694 
695 
696 /*
697  * List relating reference clock types to control message time sources.
698  * Index by the reference clock type. This list will only be used iff
699  * the reference clock driver doesn't set peer->sstclktype to something
700  * different than CTL_SST_TS_UNSPEC.
701  */
702 #ifdef REFCLOCK
703 static const u_char clocktypes[] = {
704 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
705 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
706 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
707 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
708 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
709 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
710 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
711 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
712 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
713 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
714 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
715 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
716 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
717 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
718 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
719 	CTL_SST_TS_NTP,		/* not used (15) */
720 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
721 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
722 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
723 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
725 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
726 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
727 	CTL_SST_TS_NTP,		/* not used (23) */
728 	CTL_SST_TS_NTP,		/* not used (24) */
729 	CTL_SST_TS_NTP,		/* not used (25) */
730 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
731 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
732 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
733 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
734 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
735 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
736 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
737 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
738 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
739 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
740 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
741 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
742 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
743 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
744 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
745 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
746 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
747 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
748 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
749 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
750 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
751 };
752 #endif  /* REFCLOCK */
753 
754 
755 /*
756  * Keyid used for authenticating write requests.
757  */
758 keyid_t ctl_auth_keyid;
759 
760 /*
761  * We keep track of the last error reported by the system internally
762  */
763 static	u_char ctl_sys_last_event;
764 static	u_char ctl_sys_num_events;
765 
766 
767 /*
768  * Statistic counters to keep track of requests and responses.
769  */
770 u_long ctltimereset;		/* time stats reset */
771 u_long numctlreq;		/* number of requests we've received */
772 u_long numctlbadpkts;		/* number of bad control packets */
773 u_long numctlresponses;		/* number of resp packets sent with data */
774 u_long numctlfrags;		/* number of fragments sent */
775 u_long numctlerrors;		/* number of error responses sent */
776 u_long numctltooshort;		/* number of too short input packets */
777 u_long numctlinputresp;		/* number of responses on input */
778 u_long numctlinputfrag;		/* number of fragments on input */
779 u_long numctlinputerr;		/* number of input pkts with err bit set */
780 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
781 u_long numctlbadversion;	/* number of input pkts with unknown version */
782 u_long numctldatatooshort;	/* data too short for count */
783 u_long numctlbadop;		/* bad op code found in packet */
784 u_long numasyncmsgs;		/* number of async messages we've sent */
785 
786 /*
787  * Response packet used by these routines. Also some state information
788  * so that we can handle packet formatting within a common set of
789  * subroutines.  Note we try to enter data in place whenever possible,
790  * but the need to set the more bit correctly means we occasionally
791  * use the extra buffer and copy.
792  */
793 static struct ntp_control rpkt;
794 static u_char	res_version;
795 static u_char	res_opcode;
796 static associd_t res_associd;
797 static u_short	res_frags;	/* datagrams in this response */
798 static int	res_offset;	/* offset of payload in response */
799 static u_char * datapt;
800 static u_char * dataend;
801 static int	datalinelen;
802 static int	datasent;	/* flag to avoid initial ", " */
803 static int	datanotbinflag;
804 static sockaddr_u *rmt_addr;
805 static struct interface *lcl_inter;
806 
807 static u_char	res_authenticate;
808 static u_char	res_authokay;
809 static keyid_t	res_keyid;
810 
811 #define MAXDATALINELEN	(72)
812 
813 static u_char	res_async;	/* sending async trap response? */
814 
815 /*
816  * Pointers for saving state when decoding request packets
817  */
818 static	char *reqpt;
819 static	char *reqend;
820 
821 #ifndef MIN
822 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
823 #endif
824 
825 /*
826  * init_control - initialize request data
827  */
828 void
829 init_control(void)
830 {
831 	size_t i;
832 
833 #ifdef HAVE_UNAME
834 	uname(&utsnamebuf);
835 #endif /* HAVE_UNAME */
836 
837 	ctl_clr_stats();
838 
839 	ctl_auth_keyid = 0;
840 	ctl_sys_last_event = EVNT_UNSPEC;
841 	ctl_sys_num_events = 0;
842 
843 	num_ctl_traps = 0;
844 	for (i = 0; i < COUNTOF(ctl_traps); i++)
845 		ctl_traps[i].tr_flags = 0;
846 }
847 
848 
849 /*
850  * ctl_error - send an error response for the current request
851  */
852 static void
853 ctl_error(
854 	u_char errcode
855 	)
856 {
857 	size_t		maclen;
858 
859 	numctlerrors++;
860 	DPRINTF(3, ("sending control error %u\n", errcode));
861 
862 	/*
863 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
864 	 * have already been filled in.
865 	 */
866 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
867 			(res_opcode & CTL_OP_MASK);
868 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
869 	rpkt.count = 0;
870 
871 	/*
872 	 * send packet and bump counters
873 	 */
874 	if (res_authenticate && sys_authenticate) {
875 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
876 				     CTL_HEADER_LEN);
877 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
878 			CTL_HEADER_LEN + maclen);
879 	} else
880 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
881 			CTL_HEADER_LEN);
882 }
883 
884 int/*BOOL*/
885 is_safe_filename(const char * name)
886 {
887 	/* We need a strict validation of filenames we should write: The
888 	 * daemon might run with special permissions and is remote
889 	 * controllable, so we better take care what we allow as file
890 	 * name!
891 	 *
892 	 * The first character must be digit or a letter from the ASCII
893 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
894 	 * must be from [-._+A-Za-z0-9].
895 	 *
896 	 * We do not trust the character classification much here: Since
897 	 * the NTP protocol makes no provisions for UTF-8 or local code
898 	 * pages, we strictly require the 7bit ASCII code page.
899 	 *
900 	 * The following table is a packed bit field of 128 two-bit
901 	 * groups. The LSB in each group tells us if a character is
902 	 * acceptable at the first position, the MSB if the character is
903 	 * accepted at any other position.
904 	 *
905 	 * This does not ensure that the file name is syntactically
906 	 * correct (multiple dots will not work with VMS...) but it will
907 	 * exclude potential globbing bombs and directory traversal. It
908 	 * also rules out drive selection. (For systems that have this
909 	 * notion, like Windows or VMS.)
910 	 */
911 	static const uint32_t chclass[8] = {
912 		0x00000000, 0x00000000,
913 		0x28800000, 0x000FFFFF,
914 		0xFFFFFFFC, 0xC03FFFFF,
915 		0xFFFFFFFC, 0x003FFFFF
916 	};
917 
918 	u_int widx, bidx, mask;
919 	if ( ! (name && *name))
920 		return FALSE;
921 
922 	mask = 1u;
923 	while (0 != (widx = (u_char)*name++)) {
924 		bidx = (widx & 15) << 1;
925 		widx = widx >> 4;
926 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
927 			return FALSE;
928 		if (0 == ((chclass[widx] >> bidx) & mask))
929 			return FALSE;
930 		mask = 2u;
931 	}
932 	return TRUE;
933 }
934 
935 
936 /*
937  * save_config - Implements ntpq -c "saveconfig <filename>"
938  *		 Writes current configuration including any runtime
939  *		 changes by ntpq's :config or config-from-file
940  *
941  * Note: There should be no buffer overflow or truncation in the
942  * processing of file names -- both cause security problems. This is bit
943  * painful to code but essential here.
944  */
945 void
946 save_config(
947 	struct recvbuf *rbufp,
948 	int restrict_mask
949 	)
950 {
951 	/* block directory traversal by searching for characters that
952 	 * indicate directory components in a file path.
953 	 *
954 	 * Conceptually we should be searching for DIRSEP in filename,
955 	 * however Windows actually recognizes both forward and
956 	 * backslashes as equivalent directory separators at the API
957 	 * level.  On POSIX systems we could allow '\\' but such
958 	 * filenames are tricky to manipulate from a shell, so just
959 	 * reject both types of slashes on all platforms.
960 	 */
961 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
962 	static const char * illegal_in_filename =
963 #if defined(VMS)
964 	    ":[]"	/* do not allow drive and path components here */
965 #elif defined(SYS_WINNT)
966 	    ":\\/"	/* path and drive separators */
967 #else
968 	    "\\/"	/* separator and critical char for POSIX */
969 #endif
970 	    ;
971 	char reply[128];
972 #ifdef SAVECONFIG
973 	static const char savedconfig_eq[] = "savedconfig=";
974 
975 	/* Build a safe open mode from the available mode flags. We want
976 	 * to create a new file and write it in text mode (when
977 	 * applicable -- only Windows does this...)
978 	 */
979 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
980 #  if defined(O_EXCL)		/* posix, vms */
981 	    | O_EXCL
982 #  elif defined(_O_EXCL)	/* windows is alway very special... */
983 	    | _O_EXCL
984 #  endif
985 #  if defined(_O_TEXT)		/* windows, again */
986 	    | _O_TEXT
987 #endif
988 	    ;
989 
990 	char filespec[128];
991 	char filename[128];
992 	char fullpath[512];
993 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
994 	time_t now;
995 	int fd;
996 	FILE *fptr;
997 	int prc;
998 	size_t reqlen;
999 #endif
1000 
1001 	if (RES_NOMODIFY & restrict_mask) {
1002 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1003 		ctl_flushpkt(0);
1004 		NLOG(NLOG_SYSINFO)
1005 			msyslog(LOG_NOTICE,
1006 				"saveconfig from %s rejected due to nomodify restriction",
1007 				stoa(&rbufp->recv_srcadr));
1008 		sys_restricted++;
1009 		return;
1010 	}
1011 
1012 #ifdef SAVECONFIG
1013 	if (NULL == saveconfigdir) {
1014 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1015 		ctl_flushpkt(0);
1016 		NLOG(NLOG_SYSINFO)
1017 			msyslog(LOG_NOTICE,
1018 				"saveconfig from %s rejected, no saveconfigdir",
1019 				stoa(&rbufp->recv_srcadr));
1020 		return;
1021 	}
1022 
1023 	/* The length checking stuff gets serious. Do not assume a NUL
1024 	 * byte can be found, but if so, use it to calculate the needed
1025 	 * buffer size. If the available buffer is too short, bail out;
1026 	 * likewise if there is no file spec. (The latter will not
1027 	 * happen when using NTPQ, but there are other ways to craft a
1028 	 * network packet!)
1029 	 */
1030 	reqlen = (size_t)(reqend - reqpt);
1031 	if (0 != reqlen) {
1032 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1033 		if (NULL != nulpos)
1034 			reqlen = (size_t)(nulpos - reqpt);
1035 	}
1036 	if (0 == reqlen)
1037 		return;
1038 	if (reqlen >= sizeof(filespec)) {
1039 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1040 			   (u_int)sizeof(filespec));
1041 		ctl_flushpkt(0);
1042 		msyslog(LOG_NOTICE,
1043 			"saveconfig exceeded maximum raw name length from %s",
1044 			stoa(&rbufp->recv_srcadr));
1045 		return;
1046 	}
1047 
1048 	/* copy data directly as we exactly know the size */
1049 	memcpy(filespec, reqpt, reqlen);
1050 	filespec[reqlen] = '\0';
1051 
1052 	/*
1053 	 * allow timestamping of the saved config filename with
1054 	 * strftime() format such as:
1055 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1056 	 * XXX: Nice feature, but not too safe.
1057 	 * YYY: The check for permitted characters in file names should
1058 	 *      weed out the worst. Let's hope 'strftime()' does not
1059 	 *      develop pathological problems.
1060 	 */
1061 	time(&now);
1062 	if (0 == strftime(filename, sizeof(filename), filespec,
1063 			  localtime(&now)))
1064 	{
1065 		/*
1066 		 * If we arrive here, 'strftime()' balked; most likely
1067 		 * the buffer was too short. (Or it encounterd an empty
1068 		 * format, or just a format that expands to an empty
1069 		 * string.) We try to use the original name, though this
1070 		 * is very likely to fail later if there are format
1071 		 * specs in the string. Note that truncation cannot
1072 		 * happen here as long as both buffers have the same
1073 		 * size!
1074 		 */
1075 		strlcpy(filename, filespec, sizeof(filename));
1076 	}
1077 
1078 	/*
1079 	 * Check the file name for sanity. This might/will rule out file
1080 	 * names that would be legal but problematic, and it blocks
1081 	 * directory traversal.
1082 	 */
1083 	if (!is_safe_filename(filename)) {
1084 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1085 			   filename);
1086 		ctl_flushpkt(0);
1087 		msyslog(LOG_NOTICE,
1088 			"saveconfig rejects unsafe file name from %s",
1089 			stoa(&rbufp->recv_srcadr));
1090 		return;
1091 	}
1092 
1093 	/*
1094 	 * XXX: This next test may not be needed with is_safe_filename()
1095 	 */
1096 
1097 	/* block directory/drive traversal */
1098 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1099 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1100 		snprintf(reply, sizeof(reply),
1101 			 "saveconfig does not allow directory in filename");
1102 		ctl_putdata(reply, strlen(reply), 0);
1103 		ctl_flushpkt(0);
1104 		msyslog(LOG_NOTICE,
1105 			"saveconfig rejects unsafe file name from %s",
1106 			stoa(&rbufp->recv_srcadr));
1107 		return;
1108 	}
1109 
1110 	/* concatenation of directory and path can cause another
1111 	 * truncation...
1112 	 */
1113 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1114 		       saveconfigdir, filename);
1115 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1116 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1117 			   (u_int)sizeof(fullpath));
1118 		ctl_flushpkt(0);
1119 		msyslog(LOG_NOTICE,
1120 			"saveconfig exceeded maximum path length from %s",
1121 			stoa(&rbufp->recv_srcadr));
1122 		return;
1123 	}
1124 
1125 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1126 	if (-1 == fd)
1127 		fptr = NULL;
1128 	else
1129 		fptr = fdopen(fd, "w");
1130 
1131 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1132 		ctl_printf("Unable to save configuration to file '%s': %s",
1133 			   filename, strerror(errno));
1134 		msyslog(LOG_ERR,
1135 			"saveconfig %s from %s failed", filename,
1136 			stoa(&rbufp->recv_srcadr));
1137 	} else {
1138 		ctl_printf("Configuration saved to '%s'", filename);
1139 		msyslog(LOG_NOTICE,
1140 			"Configuration saved to '%s' (requested by %s)",
1141 			fullpath, stoa(&rbufp->recv_srcadr));
1142 		/*
1143 		 * save the output filename in system variable
1144 		 * savedconfig, retrieved with:
1145 		 *   ntpq -c "rv 0 savedconfig"
1146 		 * Note: the way 'savedconfig' is defined makes overflow
1147 		 * checks unnecessary here.
1148 		 */
1149 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1150 			 savedconfig_eq, filename);
1151 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1152 	}
1153 
1154 	if (NULL != fptr)
1155 		fclose(fptr);
1156 #else	/* !SAVECONFIG follows */
1157 	ctl_printf("%s",
1158 		   "saveconfig unavailable, configured with --disable-saveconfig");
1159 #endif
1160 	ctl_flushpkt(0);
1161 }
1162 
1163 
1164 /*
1165  * process_control - process an incoming control message
1166  */
1167 void
1168 process_control(
1169 	struct recvbuf *rbufp,
1170 	int restrict_mask
1171 	)
1172 {
1173 	struct ntp_control *pkt;
1174 	int req_count;
1175 	int req_data;
1176 	const struct ctl_proc *cc;
1177 	keyid_t *pkid;
1178 	int properlen;
1179 	size_t maclen;
1180 
1181 	DPRINTF(3, ("in process_control()\n"));
1182 
1183 	/*
1184 	 * Save the addresses for error responses
1185 	 */
1186 	numctlreq++;
1187 	rmt_addr = &rbufp->recv_srcadr;
1188 	lcl_inter = rbufp->dstadr;
1189 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1190 
1191 	/*
1192 	 * If the length is less than required for the header, or
1193 	 * it is a response or a fragment, ignore this.
1194 	 */
1195 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1196 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1197 	    || pkt->offset != 0) {
1198 		DPRINTF(1, ("invalid format in control packet\n"));
1199 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1200 			numctltooshort++;
1201 		if (CTL_RESPONSE & pkt->r_m_e_op)
1202 			numctlinputresp++;
1203 		if (CTL_MORE & pkt->r_m_e_op)
1204 			numctlinputfrag++;
1205 		if (CTL_ERROR & pkt->r_m_e_op)
1206 			numctlinputerr++;
1207 		if (pkt->offset != 0)
1208 			numctlbadoffset++;
1209 		return;
1210 	}
1211 	res_version = PKT_VERSION(pkt->li_vn_mode);
1212 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1213 		DPRINTF(1, ("unknown version %d in control packet\n",
1214 			    res_version));
1215 		numctlbadversion++;
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * Pull enough data from the packet to make intelligent
1221 	 * responses
1222 	 */
1223 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1224 					 MODE_CONTROL);
1225 	res_opcode = pkt->r_m_e_op;
1226 	rpkt.sequence = pkt->sequence;
1227 	rpkt.associd = pkt->associd;
1228 	rpkt.status = 0;
1229 	res_frags = 1;
1230 	res_offset = 0;
1231 	res_associd = htons(pkt->associd);
1232 	res_async = FALSE;
1233 	res_authenticate = FALSE;
1234 	res_keyid = 0;
1235 	res_authokay = FALSE;
1236 	req_count = (int)ntohs(pkt->count);
1237 	datanotbinflag = FALSE;
1238 	datalinelen = 0;
1239 	datasent = 0;
1240 	datapt = rpkt.u.data;
1241 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1242 
1243 	if ((rbufp->recv_length & 0x3) != 0)
1244 		DPRINTF(3, ("Control packet length %d unrounded\n",
1245 			    rbufp->recv_length));
1246 
1247 	/*
1248 	 * We're set up now. Make sure we've got at least enough
1249 	 * incoming data space to match the count.
1250 	 */
1251 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1252 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1253 		ctl_error(CERR_BADFMT);
1254 		numctldatatooshort++;
1255 		return;
1256 	}
1257 
1258 	properlen = req_count + CTL_HEADER_LEN;
1259 	/* round up proper len to a 8 octet boundary */
1260 
1261 	properlen = (properlen + 7) & ~7;
1262 	maclen = rbufp->recv_length - properlen;
1263 	if ((rbufp->recv_length & 3) == 0 &&
1264 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1265 	    sys_authenticate) {
1266 		res_authenticate = TRUE;
1267 		pkid = (void *)((char *)pkt + properlen);
1268 		res_keyid = ntohl(*pkid);
1269 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1270 			    rbufp->recv_length, properlen, res_keyid,
1271 			    maclen));
1272 
1273 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1274 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1275 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1276 				     rbufp->recv_length - maclen,
1277 				     maclen)) {
1278 			res_authokay = TRUE;
1279 			DPRINTF(3, ("authenticated okay\n"));
1280 		} else {
1281 			res_keyid = 0;
1282 			DPRINTF(3, ("authentication failed\n"));
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * Set up translate pointers
1288 	 */
1289 	reqpt = (char *)pkt->u.data;
1290 	reqend = reqpt + req_count;
1291 
1292 	/*
1293 	 * Look for the opcode processor
1294 	 */
1295 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1296 		if (cc->control_code == res_opcode) {
1297 			DPRINTF(3, ("opcode %d, found command handler\n",
1298 				    res_opcode));
1299 			if (cc->flags == AUTH
1300 			    && (!res_authokay
1301 				|| res_keyid != ctl_auth_keyid)) {
1302 				ctl_error(CERR_PERMISSION);
1303 				return;
1304 			}
1305 			(cc->handler)(rbufp, restrict_mask);
1306 			return;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * Can't find this one, return an error.
1312 	 */
1313 	numctlbadop++;
1314 	ctl_error(CERR_BADOP);
1315 	return;
1316 }
1317 
1318 
1319 /*
1320  * ctlpeerstatus - return a status word for this peer
1321  */
1322 u_short
1323 ctlpeerstatus(
1324 	register struct peer *p
1325 	)
1326 {
1327 	u_short status;
1328 
1329 	status = p->status;
1330 	if (FLAG_CONFIG & p->flags)
1331 		status |= CTL_PST_CONFIG;
1332 	if (p->keyid)
1333 		status |= CTL_PST_AUTHENABLE;
1334 	if (FLAG_AUTHENTIC & p->flags)
1335 		status |= CTL_PST_AUTHENTIC;
1336 	if (p->reach)
1337 		status |= CTL_PST_REACH;
1338 	if (MDF_TXONLY_MASK & p->cast_flags)
1339 		status |= CTL_PST_BCAST;
1340 
1341 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1342 }
1343 
1344 
1345 /*
1346  * ctlclkstatus - return a status word for this clock
1347  */
1348 #ifdef REFCLOCK
1349 static u_short
1350 ctlclkstatus(
1351 	struct refclockstat *pcs
1352 	)
1353 {
1354 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1355 }
1356 #endif
1357 
1358 
1359 /*
1360  * ctlsysstatus - return the system status word
1361  */
1362 u_short
1363 ctlsysstatus(void)
1364 {
1365 	register u_char this_clock;
1366 
1367 	this_clock = CTL_SST_TS_UNSPEC;
1368 #ifdef REFCLOCK
1369 	if (sys_peer != NULL) {
1370 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1371 			this_clock = sys_peer->sstclktype;
1372 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1373 			this_clock = clocktypes[sys_peer->refclktype];
1374 	}
1375 #else /* REFCLOCK */
1376 	if (sys_peer != 0)
1377 		this_clock = CTL_SST_TS_NTP;
1378 #endif /* REFCLOCK */
1379 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1380 			      ctl_sys_last_event);
1381 }
1382 
1383 
1384 /*
1385  * ctl_flushpkt - write out the current packet and prepare
1386  *		  another if necessary.
1387  */
1388 static void
1389 ctl_flushpkt(
1390 	u_char more
1391 	)
1392 {
1393 	size_t i;
1394 	size_t dlen;
1395 	size_t sendlen;
1396 	size_t maclen;
1397 	size_t totlen;
1398 	keyid_t keyid;
1399 
1400 	dlen = datapt - rpkt.u.data;
1401 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1402 		/*
1403 		 * Big hack, output a trailing \r\n
1404 		 */
1405 		*datapt++ = '\r';
1406 		*datapt++ = '\n';
1407 		dlen += 2;
1408 	}
1409 	sendlen = dlen + CTL_HEADER_LEN;
1410 
1411 	/*
1412 	 * Pad to a multiple of 32 bits
1413 	 */
1414 	while (sendlen & 0x3) {
1415 		*datapt++ = '\0';
1416 		sendlen++;
1417 	}
1418 
1419 	/*
1420 	 * Fill in the packet with the current info
1421 	 */
1422 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1423 			(res_opcode & CTL_OP_MASK);
1424 	rpkt.count = htons((u_short)dlen);
1425 	rpkt.offset = htons((u_short)res_offset);
1426 	if (res_async) {
1427 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1428 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1429 				rpkt.li_vn_mode =
1430 				    PKT_LI_VN_MODE(
1431 					sys_leap,
1432 					ctl_traps[i].tr_version,
1433 					MODE_CONTROL);
1434 				rpkt.sequence =
1435 				    htons(ctl_traps[i].tr_sequence);
1436 				sendpkt(&ctl_traps[i].tr_addr,
1437 					ctl_traps[i].tr_localaddr, -4,
1438 					(struct pkt *)&rpkt, sendlen);
1439 				if (!more)
1440 					ctl_traps[i].tr_sequence++;
1441 				numasyncmsgs++;
1442 			}
1443 		}
1444 	} else {
1445 		if (res_authenticate && sys_authenticate) {
1446 			totlen = sendlen;
1447 			/*
1448 			 * If we are going to authenticate, then there
1449 			 * is an additional requirement that the MAC
1450 			 * begin on a 64 bit boundary.
1451 			 */
1452 			while (totlen & 7) {
1453 				*datapt++ = '\0';
1454 				totlen++;
1455 			}
1456 			keyid = htonl(res_keyid);
1457 			memcpy(datapt, &keyid, sizeof(keyid));
1458 			maclen = authencrypt(res_keyid,
1459 					     (u_int32 *)&rpkt, totlen);
1460 			sendpkt(rmt_addr, lcl_inter, -5,
1461 				(struct pkt *)&rpkt, totlen + maclen);
1462 		} else {
1463 			sendpkt(rmt_addr, lcl_inter, -6,
1464 				(struct pkt *)&rpkt, sendlen);
1465 		}
1466 		if (more)
1467 			numctlfrags++;
1468 		else
1469 			numctlresponses++;
1470 	}
1471 
1472 	/*
1473 	 * Set us up for another go around.
1474 	 */
1475 	res_frags++;
1476 	res_offset += dlen;
1477 	datapt = rpkt.u.data;
1478 }
1479 
1480 
1481 /* --------------------------------------------------------------------
1482  * block transfer API -- stream string/data fragments into xmit buffer
1483  * without additional copying
1484  */
1485 
1486 /* buffer descriptor: address & size of fragment
1487  * 'buf' may only be NULL when 'len' is zero!
1488  */
1489 typedef struct {
1490 	const void  *buf;
1491 	size_t       len;
1492 } CtlMemBufT;
1493 
1494 /* put ctl data in a gather-style operation */
1495 static void
1496 ctl_putdata_ex(
1497 	const CtlMemBufT * argv,
1498 	size_t             argc,
1499 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1500 	)
1501 {
1502 	const char * src_ptr;
1503 	size_t       src_len, cur_len, add_len, argi;
1504 
1505 	/* text / binary preprocessing, possibly create new linefeed */
1506 	if (bin) {
1507 		add_len = 0;
1508 	} else {
1509 		datanotbinflag = TRUE;
1510 		add_len = 3;
1511 
1512 		if (datasent) {
1513 			*datapt++ = ',';
1514 			datalinelen++;
1515 
1516 			/* sum up total length */
1517 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1518 				src_len += argv[argi].len;
1519 			/* possibly start a new line, assume no size_t overflow */
1520 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1521 				*datapt++ = '\r';
1522 				*datapt++ = '\n';
1523 				datalinelen = 0;
1524 			} else {
1525 				*datapt++ = ' ';
1526 				datalinelen++;
1527 			}
1528 		}
1529 	}
1530 
1531 	/* now stream out all buffers */
1532 	for (argi = 0; argi < argc; ++argi) {
1533 		src_ptr = argv[argi].buf;
1534 		src_len = argv[argi].len;
1535 
1536 		if ( ! (src_ptr && src_len))
1537 			continue;
1538 
1539 		cur_len = (size_t)(dataend - datapt);
1540 		while ((src_len + add_len) > cur_len) {
1541 			/* Not enough room in this one, flush it out. */
1542 			if (src_len < cur_len)
1543 				cur_len = src_len;
1544 
1545 			memcpy(datapt, src_ptr, cur_len);
1546 			datapt      += cur_len;
1547 			datalinelen += cur_len;
1548 
1549 			src_ptr     += cur_len;
1550 			src_len     -= cur_len;
1551 
1552 			ctl_flushpkt(CTL_MORE);
1553 			cur_len = (size_t)(dataend - datapt);
1554 		}
1555 
1556 		memcpy(datapt, src_ptr, src_len);
1557 		datapt      += src_len;
1558 		datalinelen += src_len;
1559 
1560 		datasent = TRUE;
1561 	}
1562 }
1563 
1564 /*
1565  * ctl_putdata - write data into the packet, fragmenting and starting
1566  * another if this one is full.
1567  */
1568 static void
1569 ctl_putdata(
1570 	const char *dp,
1571 	unsigned int dlen,
1572 	int bin			/* set to 1 when data is binary */
1573 	)
1574 {
1575 	CtlMemBufT args[1];
1576 
1577 	args[0].buf = dp;
1578 	args[0].len = dlen;
1579 	ctl_putdata_ex(args, 1, bin);
1580 }
1581 
1582 /*
1583  * ctl_putstr - write a tagged string into the response packet
1584  *		in the form:
1585  *
1586  *		tag="data"
1587  *
1588  *		len is the data length excluding the NUL terminator,
1589  *		as in ctl_putstr("var", "value", strlen("value"));
1590  */
1591 static void
1592 ctl_putstr(
1593 	const char *	tag,
1594 	const char *	data,
1595 	size_t		len
1596 	)
1597 {
1598 	CtlMemBufT args[4];
1599 
1600 	args[0].buf = tag;
1601 	args[0].len = strlen(tag);
1602 	if (data && len) {
1603 	    args[1].buf = "=\"";
1604 	    args[1].len = 2;
1605 	    args[2].buf = data;
1606 	    args[2].len = len;
1607 	    args[3].buf = "\"";
1608 	    args[3].len = 1;
1609 	    ctl_putdata_ex(args, 4, FALSE);
1610 	} else {
1611 	    args[1].buf = "=\"\"";
1612 	    args[1].len = 3;
1613 	    ctl_putdata_ex(args, 2, FALSE);
1614 	}
1615 }
1616 
1617 
1618 /*
1619  * ctl_putunqstr - write a tagged string into the response packet
1620  *		   in the form:
1621  *
1622  *		   tag=data
1623  *
1624  *	len is the data length excluding the NUL terminator.
1625  *	data must not contain a comma or whitespace.
1626  */
1627 static void
1628 ctl_putunqstr(
1629 	const char *	tag,
1630 	const char *	data,
1631 	size_t		len
1632 	)
1633 {
1634 	CtlMemBufT args[3];
1635 
1636 	args[0].buf = tag;
1637 	args[0].len = strlen(tag);
1638 	args[1].buf = "=";
1639 	args[1].len = 1;
1640 	if (data && len) {
1641 		args[2].buf = data;
1642 		args[2].len = len;
1643 		ctl_putdata_ex(args, 3, FALSE);
1644 	} else {
1645 		ctl_putdata_ex(args, 2, FALSE);
1646 	}
1647 }
1648 
1649 
1650 /*
1651  * ctl_putdblf - write a tagged, signed double into the response packet
1652  */
1653 static void
1654 ctl_putdblf(
1655 	const char *	tag,
1656 	int		use_f,
1657 	int		precision,
1658 	double		d
1659 	)
1660 {
1661 	char buffer[40];
1662 	int  rc;
1663 
1664 	rc = snprintf(buffer, sizeof(buffer),
1665 		      (use_f ? "%.*f" : "%.*g"),
1666 		      precision, d);
1667 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1668 	ctl_putunqstr(tag, buffer, rc);
1669 }
1670 
1671 /*
1672  * ctl_putuint - write a tagged unsigned integer into the response
1673  */
1674 static void
1675 ctl_putuint(
1676 	const char *tag,
1677 	u_long uval
1678 	)
1679 {
1680 	char buffer[24]; /* needs to fit for 64 bits! */
1681 	int  rc;
1682 
1683 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1684 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1685 	ctl_putunqstr(tag, buffer, rc);
1686 }
1687 
1688 /*
1689  * ctl_putcal - write a decoded calendar data into the response.
1690  * only used with AUTOKEY currently, so compiled conditional
1691  */
1692 #ifdef AUTOKEY
1693 static void
1694 ctl_putcal(
1695 	const char *tag,
1696 	const struct calendar *pcal
1697 	)
1698 {
1699 	char buffer[16];
1700 	int  rc;
1701 
1702 	rc = snprintf(buffer, sizeof(buffer),
1703 		      "%04d%02d%02d%02d%02d",
1704 		      pcal->year, pcal->month, pcal->monthday,
1705 		      pcal->hour, pcal->minute
1706 		);
1707 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1708 	ctl_putunqstr(tag, buffer, rc);
1709 }
1710 #endif
1711 
1712 /*
1713  * ctl_putfs - write a decoded filestamp into the response
1714  */
1715 static void
1716 ctl_putfs(
1717 	const char *tag,
1718 	tstamp_t uval
1719 	)
1720 {
1721 	char buffer[16];
1722 	int  rc;
1723 
1724 	time_t fstamp = (time_t)uval - JAN_1970;
1725 	struct tm *tm = gmtime(&fstamp);
1726 
1727 	if (NULL == tm)
1728 		return;
1729 
1730 	rc = snprintf(buffer, sizeof(buffer),
1731 		      "%04d%02d%02d%02d%02d",
1732 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1733 		      tm->tm_hour, tm->tm_min);
1734 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1735 	ctl_putunqstr(tag, buffer, rc);
1736 }
1737 
1738 
1739 /*
1740  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1741  * response
1742  */
1743 static void
1744 ctl_puthex(
1745 	const char *tag,
1746 	u_long uval
1747 	)
1748 {
1749 	char buffer[24];	/* must fit 64bit int! */
1750 	int  rc;
1751 
1752 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1753 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1754 	ctl_putunqstr(tag, buffer, rc);
1755 }
1756 
1757 
1758 /*
1759  * ctl_putint - write a tagged signed integer into the response
1760  */
1761 static void
1762 ctl_putint(
1763 	const char *tag,
1764 	long ival
1765 	)
1766 {
1767 	char buffer[24];	/*must fit 64bit int */
1768 	int  rc;
1769 
1770 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1771 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1772 	ctl_putunqstr(tag, buffer, rc);
1773 }
1774 
1775 
1776 /*
1777  * ctl_putts - write a tagged timestamp, in hex, into the response
1778  */
1779 static void
1780 ctl_putts(
1781 	const char *tag,
1782 	l_fp *ts
1783 	)
1784 {
1785 	char buffer[24];
1786 	int  rc;
1787 
1788 	rc = snprintf(buffer, sizeof(buffer),
1789 		      "0x%08lx.%08lx",
1790 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1791 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1792 	ctl_putunqstr(tag, buffer, rc);
1793 }
1794 
1795 
1796 /*
1797  * ctl_putadr - write an IP address into the response
1798  */
1799 static void
1800 ctl_putadr(
1801 	const char *tag,
1802 	u_int32 addr32,
1803 	sockaddr_u *addr
1804 	)
1805 {
1806 	const char *cq;
1807 
1808 	if (NULL == addr)
1809 		cq = numtoa(addr32);
1810 	else
1811 		cq = stoa(addr);
1812 	ctl_putunqstr(tag, cq, strlen(cq));
1813 }
1814 
1815 
1816 /*
1817  * ctl_putrefid - send a u_int32 refid as printable text
1818  */
1819 static void
1820 ctl_putrefid(
1821 	const char *	tag,
1822 	u_int32		refid
1823 	)
1824 {
1825 	size_t nc;
1826 
1827 	union {
1828 		uint32_t w;
1829 		uint8_t  b[sizeof(uint32_t)];
1830 	} bytes;
1831 
1832 	bytes.w = refid;
1833 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1834 		if (  !isprint(bytes.b[nc])
1835 		    || isspace(bytes.b[nc])
1836 		    || bytes.b[nc] == ','  )
1837 			bytes.b[nc] = '.';
1838 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1839 }
1840 
1841 
1842 /*
1843  * ctl_putarray - write a tagged eight element double array into the response
1844  */
1845 static void
1846 ctl_putarray(
1847 	const char *tag,
1848 	double *arr,
1849 	int start
1850 	)
1851 {
1852 	char *cp, *ep;
1853 	char buffer[200];
1854 	int  i, rc;
1855 
1856 	cp = buffer;
1857 	ep = buffer + sizeof(buffer);
1858 	i  = start;
1859 	do {
1860 		if (i == 0)
1861 			i = NTP_SHIFT;
1862 		i--;
1863 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1864 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1865 		cp += rc;
1866 	} while (i != start);
1867 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1868 }
1869 
1870 /*
1871  * ctl_printf - put a formatted string into the data buffer
1872  */
1873 static void
1874 ctl_printf(
1875 	const char * fmt,
1876 	...
1877 	)
1878 {
1879 	static const char * ellipsis = "[...]";
1880 	va_list va;
1881 	char    fmtbuf[128];
1882 	int     rc;
1883 
1884 	va_start(va, fmt);
1885 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1886 	va_end(va);
1887 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1888 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1889 		       ellipsis);
1890 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1891 }
1892 
1893 
1894 /*
1895  * ctl_putsys - output a system variable
1896  */
1897 static void
1898 ctl_putsys(
1899 	int varid
1900 	)
1901 {
1902 	l_fp tmp;
1903 #ifndef HAVE_UNAME
1904 	char str[256];
1905 #else
1906 	char str[sizeof utsnamebuf.sysname + sizeof utsnamebuf.release];
1907 #endif
1908 	u_int u;
1909 	double kb;
1910 	double dtemp;
1911 	const char *ss;
1912 #ifdef AUTOKEY
1913 	struct cert_info *cp;
1914 #endif	/* AUTOKEY */
1915 #ifdef KERNEL_PLL
1916 	static struct timex ntx;
1917 	static u_long ntp_adjtime_time;
1918 
1919 	static const double to_ms =
1920 # ifdef STA_NANO
1921 		1.0e-6; /* nsec to msec */
1922 # else
1923 		1.0e-3; /* usec to msec */
1924 # endif
1925 
1926 	/*
1927 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1928 	 */
1929 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1930 	    current_time != ntp_adjtime_time) {
1931 		ZERO(ntx);
1932 		if (ntp_adjtime(&ntx) < 0)
1933 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1934 		else
1935 			ntp_adjtime_time = current_time;
1936 	}
1937 #endif	/* KERNEL_PLL */
1938 
1939 	switch (varid) {
1940 
1941 	case CS_LEAP:
1942 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1943 		break;
1944 
1945 	case CS_STRATUM:
1946 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1947 		break;
1948 
1949 	case CS_PRECISION:
1950 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1951 		break;
1952 
1953 	case CS_ROOTDELAY:
1954 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1955 			   1e3);
1956 		break;
1957 
1958 	case CS_ROOTDISPERSION:
1959 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1960 			   sys_rootdisp * 1e3);
1961 		break;
1962 
1963 	case CS_REFID:
1964 		if (REFID_ISTEXT(sys_stratum))
1965 			ctl_putrefid(sys_var[varid].text, sys_refid);
1966 		else
1967 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1968 		break;
1969 
1970 	case CS_REFTIME:
1971 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1972 		break;
1973 
1974 	case CS_POLL:
1975 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1976 		break;
1977 
1978 	case CS_PEERID:
1979 		if (sys_peer == NULL)
1980 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1981 		else
1982 			ctl_putuint(sys_var[CS_PEERID].text,
1983 				    sys_peer->associd);
1984 		break;
1985 
1986 	case CS_PEERADR:
1987 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1988 			ss = sptoa(&sys_peer->srcadr);
1989 		else
1990 			ss = "0.0.0.0:0";
1991 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1992 		break;
1993 
1994 	case CS_PEERMODE:
1995 		u = (sys_peer != NULL)
1996 			? sys_peer->hmode
1997 			: MODE_UNSPEC;
1998 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1999 		break;
2000 
2001 	case CS_OFFSET:
2002 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2003 		break;
2004 
2005 	case CS_DRIFT:
2006 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2007 		break;
2008 
2009 	case CS_JITTER:
2010 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2011 		break;
2012 
2013 	case CS_ERROR:
2014 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2015 		break;
2016 
2017 	case CS_CLOCK:
2018 		get_systime(&tmp);
2019 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2020 		break;
2021 
2022 	case CS_PROCESSOR:
2023 #ifndef HAVE_UNAME
2024 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2025 			   sizeof(str_processor) - 1);
2026 #else
2027 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2028 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2029 #endif /* HAVE_UNAME */
2030 		break;
2031 
2032 	case CS_SYSTEM:
2033 #ifndef HAVE_UNAME
2034 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2035 			   sizeof(str_system) - 1);
2036 #else
2037 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2038 			 utsnamebuf.release);
2039 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2040 #endif /* HAVE_UNAME */
2041 		break;
2042 
2043 	case CS_VERSION:
2044 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2045 			   strlen(Version));
2046 		break;
2047 
2048 	case CS_STABIL:
2049 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2050 			   1e6);
2051 		break;
2052 
2053 	case CS_VARLIST:
2054 	{
2055 		char buf[CTL_MAX_DATA_LEN];
2056 		//buffPointer, firstElementPointer, buffEndPointer
2057 		char *buffp, *buffend;
2058 		int firstVarName;
2059 		const char *ss1;
2060 		int len;
2061 		const struct ctl_var *k;
2062 
2063 		buffp = buf;
2064 		buffend = buf + sizeof(buf);
2065 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2066 			break;	/* really long var name */
2067 
2068 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2069 		buffp += strlen(buffp);
2070 		firstVarName = TRUE;
2071 		for (k = sys_var; !(k->flags & EOV); k++) {
2072 			if (k->flags & PADDING)
2073 				continue;
2074 			len = strlen(k->text);
2075 			if (len + 1 >= buffend - buffp)
2076 				break;
2077 			if (!firstVarName)
2078 				*buffp++ = ',';
2079 			else
2080 				firstVarName = FALSE;
2081 			memcpy(buffp, k->text, len);
2082 			buffp += len;
2083 		}
2084 
2085 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2086 			if (k->flags & PADDING)
2087 				continue;
2088 			if (NULL == k->text)
2089 				continue;
2090 			ss1 = strchr(k->text, '=');
2091 			if (NULL == ss1)
2092 				len = strlen(k->text);
2093 			else
2094 				len = ss1 - k->text;
2095 			if (len + 1 >= buffend - buffp)
2096 				break;
2097 			if (firstVarName) {
2098 				*buffp++ = ',';
2099 				firstVarName = FALSE;
2100 			}
2101 			memcpy(buffp, k->text,(unsigned)len);
2102 			buffp += len;
2103 		}
2104 		if (2 >= buffend - buffp)
2105 			break;
2106 
2107 		*buffp++ = '"';
2108 		*buffp = '\0';
2109 
2110 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2111 		break;
2112 	}
2113 
2114 	case CS_TAI:
2115 		if (sys_tai > 0)
2116 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2117 		break;
2118 
2119 	case CS_LEAPTAB:
2120 	{
2121 		leap_signature_t lsig;
2122 		leapsec_getsig(&lsig);
2123 		if (lsig.ttime > 0)
2124 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2125 		break;
2126 	}
2127 
2128 	case CS_LEAPEND:
2129 	{
2130 		leap_signature_t lsig;
2131 		leapsec_getsig(&lsig);
2132 		if (lsig.etime > 0)
2133 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2134 		break;
2135 	}
2136 
2137 #ifdef LEAP_SMEAR
2138 	case CS_LEAPSMEARINTV:
2139 		if (leap_smear_intv > 0)
2140 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2141 		break;
2142 
2143 	case CS_LEAPSMEAROFFS:
2144 		if (leap_smear_intv > 0)
2145 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2146 				   leap_smear.doffset * 1e3);
2147 		break;
2148 #endif	/* LEAP_SMEAR */
2149 
2150 	case CS_RATE:
2151 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2152 		break;
2153 
2154 	case CS_MRU_ENABLED:
2155 		ctl_puthex(sys_var[varid].text, mon_enabled);
2156 		break;
2157 
2158 	case CS_MRU_DEPTH:
2159 		ctl_putuint(sys_var[varid].text, mru_entries);
2160 		break;
2161 
2162 	case CS_MRU_MEM:
2163 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2164 		u = (u_int)kb;
2165 		if (kb - u >= 0.5)
2166 			u++;
2167 		ctl_putuint(sys_var[varid].text, u);
2168 		break;
2169 
2170 	case CS_MRU_DEEPEST:
2171 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2172 		break;
2173 
2174 	case CS_MRU_MINDEPTH:
2175 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2176 		break;
2177 
2178 	case CS_MRU_MAXAGE:
2179 		ctl_putint(sys_var[varid].text, mru_maxage);
2180 		break;
2181 
2182 	case CS_MRU_MAXDEPTH:
2183 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2184 		break;
2185 
2186 	case CS_MRU_MAXMEM:
2187 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2188 		u = (u_int)kb;
2189 		if (kb - u >= 0.5)
2190 			u++;
2191 		ctl_putuint(sys_var[varid].text, u);
2192 		break;
2193 
2194 	case CS_SS_UPTIME:
2195 		ctl_putuint(sys_var[varid].text, current_time);
2196 		break;
2197 
2198 	case CS_SS_RESET:
2199 		ctl_putuint(sys_var[varid].text,
2200 			    current_time - sys_stattime);
2201 		break;
2202 
2203 	case CS_SS_RECEIVED:
2204 		ctl_putuint(sys_var[varid].text, sys_received);
2205 		break;
2206 
2207 	case CS_SS_THISVER:
2208 		ctl_putuint(sys_var[varid].text, sys_newversion);
2209 		break;
2210 
2211 	case CS_SS_OLDVER:
2212 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2213 		break;
2214 
2215 	case CS_SS_BADFORMAT:
2216 		ctl_putuint(sys_var[varid].text, sys_badlength);
2217 		break;
2218 
2219 	case CS_SS_BADAUTH:
2220 		ctl_putuint(sys_var[varid].text, sys_badauth);
2221 		break;
2222 
2223 	case CS_SS_DECLINED:
2224 		ctl_putuint(sys_var[varid].text, sys_declined);
2225 		break;
2226 
2227 	case CS_SS_RESTRICTED:
2228 		ctl_putuint(sys_var[varid].text, sys_restricted);
2229 		break;
2230 
2231 	case CS_SS_LIMITED:
2232 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2233 		break;
2234 
2235 	case CS_SS_LAMPORT:
2236 		ctl_putuint(sys_var[varid].text, sys_lamport);
2237 		break;
2238 
2239 	case CS_SS_TSROUNDING:
2240 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2241 		break;
2242 
2243 	case CS_SS_KODSENT:
2244 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2245 		break;
2246 
2247 	case CS_SS_PROCESSED:
2248 		ctl_putuint(sys_var[varid].text, sys_processed);
2249 		break;
2250 
2251 	case CS_BCASTDELAY:
2252 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2253 		break;
2254 
2255 	case CS_AUTHDELAY:
2256 		LFPTOD(&sys_authdelay, dtemp);
2257 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2258 		break;
2259 
2260 	case CS_AUTHKEYS:
2261 		ctl_putuint(sys_var[varid].text, authnumkeys);
2262 		break;
2263 
2264 	case CS_AUTHFREEK:
2265 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2266 		break;
2267 
2268 	case CS_AUTHKLOOKUPS:
2269 		ctl_putuint(sys_var[varid].text, authkeylookups);
2270 		break;
2271 
2272 	case CS_AUTHKNOTFOUND:
2273 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2274 		break;
2275 
2276 	case CS_AUTHKUNCACHED:
2277 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2278 		break;
2279 
2280 	case CS_AUTHKEXPIRED:
2281 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2282 		break;
2283 
2284 	case CS_AUTHENCRYPTS:
2285 		ctl_putuint(sys_var[varid].text, authencryptions);
2286 		break;
2287 
2288 	case CS_AUTHDECRYPTS:
2289 		ctl_putuint(sys_var[varid].text, authdecryptions);
2290 		break;
2291 
2292 	case CS_AUTHRESET:
2293 		ctl_putuint(sys_var[varid].text,
2294 			    current_time - auth_timereset);
2295 		break;
2296 
2297 		/*
2298 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2299 		 * unavailable, otherwise calls putfunc with args.
2300 		 */
2301 #ifndef KERNEL_PLL
2302 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2303 		ctl_putint(sys_var[varid].text, 0)
2304 #else
2305 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2306 		putfunc args
2307 #endif
2308 
2309 		/*
2310 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2311 		 * loop is unavailable, or kernel hard PPS is not
2312 		 * active, otherwise calls putfunc with args.
2313 		 */
2314 #ifndef KERNEL_PLL
2315 # define	CTL_IF_KERNPPS(putfunc, args)	\
2316 		ctl_putint(sys_var[varid].text, 0)
2317 #else
2318 # define	CTL_IF_KERNPPS(putfunc, args)			\
2319 		if (0 == ntx.shift)				\
2320 			ctl_putint(sys_var[varid].text, 0);	\
2321 		else						\
2322 			putfunc args	/* no trailing ; */
2323 #endif
2324 
2325 	case CS_K_OFFSET:
2326 		CTL_IF_KERNLOOP(
2327 			ctl_putdblf,
2328 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2329 		);
2330 		break;
2331 
2332 	case CS_K_FREQ:
2333 		CTL_IF_KERNLOOP(
2334 			ctl_putsfp,
2335 			(sys_var[varid].text, ntx.freq)
2336 		);
2337 		break;
2338 
2339 	case CS_K_MAXERR:
2340 		CTL_IF_KERNLOOP(
2341 			ctl_putdblf,
2342 			(sys_var[varid].text, 0, 6,
2343 			 to_ms * ntx.maxerror)
2344 		);
2345 		break;
2346 
2347 	case CS_K_ESTERR:
2348 		CTL_IF_KERNLOOP(
2349 			ctl_putdblf,
2350 			(sys_var[varid].text, 0, 6,
2351 			 to_ms * ntx.esterror)
2352 		);
2353 		break;
2354 
2355 	case CS_K_STFLAGS:
2356 #ifndef KERNEL_PLL
2357 		ss = "";
2358 #else
2359 		ss = k_st_flags(ntx.status);
2360 #endif
2361 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2362 		break;
2363 
2364 	case CS_K_TIMECONST:
2365 		CTL_IF_KERNLOOP(
2366 			ctl_putint,
2367 			(sys_var[varid].text, ntx.constant)
2368 		);
2369 		break;
2370 
2371 	case CS_K_PRECISION:
2372 		CTL_IF_KERNLOOP(
2373 			ctl_putdblf,
2374 			(sys_var[varid].text, 0, 6,
2375 			    to_ms * ntx.precision)
2376 		);
2377 		break;
2378 
2379 	case CS_K_FREQTOL:
2380 		CTL_IF_KERNLOOP(
2381 			ctl_putsfp,
2382 			(sys_var[varid].text, ntx.tolerance)
2383 		);
2384 		break;
2385 
2386 	case CS_K_PPS_FREQ:
2387 		CTL_IF_KERNPPS(
2388 			ctl_putsfp,
2389 			(sys_var[varid].text, ntx.ppsfreq)
2390 		);
2391 		break;
2392 
2393 	case CS_K_PPS_STABIL:
2394 		CTL_IF_KERNPPS(
2395 			ctl_putsfp,
2396 			(sys_var[varid].text, ntx.stabil)
2397 		);
2398 		break;
2399 
2400 	case CS_K_PPS_JITTER:
2401 		CTL_IF_KERNPPS(
2402 			ctl_putdbl,
2403 			(sys_var[varid].text, to_ms * ntx.jitter)
2404 		);
2405 		break;
2406 
2407 	case CS_K_PPS_CALIBDUR:
2408 		CTL_IF_KERNPPS(
2409 			ctl_putint,
2410 			(sys_var[varid].text, 1 << ntx.shift)
2411 		);
2412 		break;
2413 
2414 	case CS_K_PPS_CALIBS:
2415 		CTL_IF_KERNPPS(
2416 			ctl_putint,
2417 			(sys_var[varid].text, ntx.calcnt)
2418 		);
2419 		break;
2420 
2421 	case CS_K_PPS_CALIBERRS:
2422 		CTL_IF_KERNPPS(
2423 			ctl_putint,
2424 			(sys_var[varid].text, ntx.errcnt)
2425 		);
2426 		break;
2427 
2428 	case CS_K_PPS_JITEXC:
2429 		CTL_IF_KERNPPS(
2430 			ctl_putint,
2431 			(sys_var[varid].text, ntx.jitcnt)
2432 		);
2433 		break;
2434 
2435 	case CS_K_PPS_STBEXC:
2436 		CTL_IF_KERNPPS(
2437 			ctl_putint,
2438 			(sys_var[varid].text, ntx.stbcnt)
2439 		);
2440 		break;
2441 
2442 	case CS_IOSTATS_RESET:
2443 		ctl_putuint(sys_var[varid].text,
2444 			    current_time - io_timereset);
2445 		break;
2446 
2447 	case CS_TOTAL_RBUF:
2448 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2449 		break;
2450 
2451 	case CS_FREE_RBUF:
2452 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2453 		break;
2454 
2455 	case CS_USED_RBUF:
2456 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2457 		break;
2458 
2459 	case CS_RBUF_LOWATER:
2460 		ctl_putuint(sys_var[varid].text, lowater_additions());
2461 		break;
2462 
2463 	case CS_IO_DROPPED:
2464 		ctl_putuint(sys_var[varid].text, packets_dropped);
2465 		break;
2466 
2467 	case CS_IO_IGNORED:
2468 		ctl_putuint(sys_var[varid].text, packets_ignored);
2469 		break;
2470 
2471 	case CS_IO_RECEIVED:
2472 		ctl_putuint(sys_var[varid].text, packets_received);
2473 		break;
2474 
2475 	case CS_IO_SENT:
2476 		ctl_putuint(sys_var[varid].text, packets_sent);
2477 		break;
2478 
2479 	case CS_IO_SENDFAILED:
2480 		ctl_putuint(sys_var[varid].text, packets_notsent);
2481 		break;
2482 
2483 	case CS_IO_WAKEUPS:
2484 		ctl_putuint(sys_var[varid].text, handler_calls);
2485 		break;
2486 
2487 	case CS_IO_GOODWAKEUPS:
2488 		ctl_putuint(sys_var[varid].text, handler_pkts);
2489 		break;
2490 
2491 	case CS_TIMERSTATS_RESET:
2492 		ctl_putuint(sys_var[varid].text,
2493 			    current_time - timer_timereset);
2494 		break;
2495 
2496 	case CS_TIMER_OVERRUNS:
2497 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2498 		break;
2499 
2500 	case CS_TIMER_XMTS:
2501 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2502 		break;
2503 
2504 	case CS_FUZZ:
2505 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2506 		break;
2507 	case CS_WANDER_THRESH:
2508 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2509 		break;
2510 #ifdef AUTOKEY
2511 	case CS_FLAGS:
2512 		if (crypto_flags)
2513 			ctl_puthex(sys_var[CS_FLAGS].text,
2514 			    crypto_flags);
2515 		break;
2516 
2517 	case CS_DIGEST:
2518 		if (crypto_flags) {
2519 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2520 			    COUNTOF(str));
2521 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2522 			    strlen(str));
2523 		}
2524 		break;
2525 
2526 	case CS_SIGNATURE:
2527 		if (crypto_flags) {
2528 			const EVP_MD *dp;
2529 
2530 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2531 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2532 			    COUNTOF(str));
2533 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2534 			    strlen(str));
2535 		}
2536 		break;
2537 
2538 	case CS_HOST:
2539 		if (hostval.ptr != NULL)
2540 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2541 			    strlen(hostval.ptr));
2542 		break;
2543 
2544 	case CS_IDENT:
2545 		if (sys_ident != NULL)
2546 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2547 			    strlen(sys_ident));
2548 		break;
2549 
2550 	case CS_CERTIF:
2551 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2552 			snprintf(str, sizeof(str), "%s %s 0x%x",
2553 			    cp->subject, cp->issuer, cp->flags);
2554 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2555 			    strlen(str));
2556 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2557 		}
2558 		break;
2559 
2560 	case CS_PUBLIC:
2561 		if (hostval.tstamp != 0)
2562 			ctl_putfs(sys_var[CS_PUBLIC].text,
2563 			    ntohl(hostval.tstamp));
2564 		break;
2565 #endif	/* AUTOKEY */
2566 
2567 	default:
2568 		break;
2569 	}
2570 }
2571 
2572 
2573 /*
2574  * ctl_putpeer - output a peer variable
2575  */
2576 static void
2577 ctl_putpeer(
2578 	int id,
2579 	struct peer *p
2580 	)
2581 {
2582 	char buf[CTL_MAX_DATA_LEN];
2583 	char *s;
2584 	char *t;
2585 	char *be;
2586 	int i;
2587 	const struct ctl_var *k;
2588 #ifdef AUTOKEY
2589 	struct autokey *ap;
2590 	const EVP_MD *dp;
2591 	const char *str;
2592 #endif	/* AUTOKEY */
2593 
2594 	switch (id) {
2595 
2596 	case CP_CONFIG:
2597 		ctl_putuint(peer_var[id].text,
2598 			    !(FLAG_PREEMPT & p->flags));
2599 		break;
2600 
2601 	case CP_AUTHENABLE:
2602 		ctl_putuint(peer_var[id].text, !(p->keyid));
2603 		break;
2604 
2605 	case CP_AUTHENTIC:
2606 		ctl_putuint(peer_var[id].text,
2607 			    !!(FLAG_AUTHENTIC & p->flags));
2608 		break;
2609 
2610 	case CP_SRCADR:
2611 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2612 		break;
2613 
2614 	case CP_SRCPORT:
2615 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2616 		break;
2617 
2618 	case CP_SRCHOST:
2619 		if (p->hostname != NULL)
2620 			ctl_putstr(peer_var[id].text, p->hostname,
2621 				   strlen(p->hostname));
2622 		break;
2623 
2624 	case CP_DSTADR:
2625 		ctl_putadr(peer_var[id].text, 0,
2626 			   (p->dstadr != NULL)
2627 				? &p->dstadr->sin
2628 				: NULL);
2629 		break;
2630 
2631 	case CP_DSTPORT:
2632 		ctl_putuint(peer_var[id].text,
2633 			    (p->dstadr != NULL)
2634 				? SRCPORT(&p->dstadr->sin)
2635 				: 0);
2636 		break;
2637 
2638 	case CP_IN:
2639 		if (p->r21 > 0.)
2640 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2641 		break;
2642 
2643 	case CP_OUT:
2644 		if (p->r34 > 0.)
2645 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2646 		break;
2647 
2648 	case CP_RATE:
2649 		ctl_putuint(peer_var[id].text, p->throttle);
2650 		break;
2651 
2652 	case CP_LEAP:
2653 		ctl_putuint(peer_var[id].text, p->leap);
2654 		break;
2655 
2656 	case CP_HMODE:
2657 		ctl_putuint(peer_var[id].text, p->hmode);
2658 		break;
2659 
2660 	case CP_STRATUM:
2661 		ctl_putuint(peer_var[id].text, p->stratum);
2662 		break;
2663 
2664 	case CP_PPOLL:
2665 		ctl_putuint(peer_var[id].text, p->ppoll);
2666 		break;
2667 
2668 	case CP_HPOLL:
2669 		ctl_putuint(peer_var[id].text, p->hpoll);
2670 		break;
2671 
2672 	case CP_PRECISION:
2673 		ctl_putint(peer_var[id].text, p->precision);
2674 		break;
2675 
2676 	case CP_ROOTDELAY:
2677 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2678 		break;
2679 
2680 	case CP_ROOTDISPERSION:
2681 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2682 		break;
2683 
2684 	case CP_REFID:
2685 #ifdef REFCLOCK
2686 		if (p->flags & FLAG_REFCLOCK) {
2687 			ctl_putrefid(peer_var[id].text, p->refid);
2688 			break;
2689 		}
2690 #endif
2691 		if (REFID_ISTEXT(p->stratum))
2692 			ctl_putrefid(peer_var[id].text, p->refid);
2693 		else
2694 			ctl_putadr(peer_var[id].text, p->refid, NULL);
2695 		break;
2696 
2697 	case CP_REFTIME:
2698 		ctl_putts(peer_var[id].text, &p->reftime);
2699 		break;
2700 
2701 	case CP_ORG:
2702 		ctl_putts(peer_var[id].text, &p->aorg);
2703 		break;
2704 
2705 	case CP_REC:
2706 		ctl_putts(peer_var[id].text, &p->dst);
2707 		break;
2708 
2709 	case CP_XMT:
2710 		if (p->xleave)
2711 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2712 		break;
2713 
2714 	case CP_BIAS:
2715 		if (p->bias != 0.)
2716 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2717 		break;
2718 
2719 	case CP_REACH:
2720 		ctl_puthex(peer_var[id].text, p->reach);
2721 		break;
2722 
2723 	case CP_FLASH:
2724 		ctl_puthex(peer_var[id].text, p->flash);
2725 		break;
2726 
2727 	case CP_TTL:
2728 #ifdef REFCLOCK
2729 		if (p->flags & FLAG_REFCLOCK) {
2730 			ctl_putuint(peer_var[id].text, p->ttl);
2731 			break;
2732 		}
2733 #endif
2734 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2735 			ctl_putint(peer_var[id].text,
2736 				   sys_ttl[p->ttl]);
2737 		break;
2738 
2739 	case CP_UNREACH:
2740 		ctl_putuint(peer_var[id].text, p->unreach);
2741 		break;
2742 
2743 	case CP_TIMER:
2744 		ctl_putuint(peer_var[id].text,
2745 			    p->nextdate - current_time);
2746 		break;
2747 
2748 	case CP_DELAY:
2749 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2750 		break;
2751 
2752 	case CP_OFFSET:
2753 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2754 		break;
2755 
2756 	case CP_JITTER:
2757 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2758 		break;
2759 
2760 	case CP_DISPERSION:
2761 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2762 		break;
2763 
2764 	case CP_KEYID:
2765 		if (p->keyid > NTP_MAXKEY)
2766 			ctl_puthex(peer_var[id].text, p->keyid);
2767 		else
2768 			ctl_putuint(peer_var[id].text, p->keyid);
2769 		break;
2770 
2771 	case CP_FILTDELAY:
2772 		ctl_putarray(peer_var[id].text, p->filter_delay,
2773 			     p->filter_nextpt);
2774 		break;
2775 
2776 	case CP_FILTOFFSET:
2777 		ctl_putarray(peer_var[id].text, p->filter_offset,
2778 			     p->filter_nextpt);
2779 		break;
2780 
2781 	case CP_FILTERROR:
2782 		ctl_putarray(peer_var[id].text, p->filter_disp,
2783 			     p->filter_nextpt);
2784 		break;
2785 
2786 	case CP_PMODE:
2787 		ctl_putuint(peer_var[id].text, p->pmode);
2788 		break;
2789 
2790 	case CP_RECEIVED:
2791 		ctl_putuint(peer_var[id].text, p->received);
2792 		break;
2793 
2794 	case CP_SENT:
2795 		ctl_putuint(peer_var[id].text, p->sent);
2796 		break;
2797 
2798 	case CP_VARLIST:
2799 		s = buf;
2800 		be = buf + sizeof(buf);
2801 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2802 			break;	/* really long var name */
2803 
2804 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2805 		s += strlen(s);
2806 		t = s;
2807 		for (k = peer_var; !(EOV & k->flags); k++) {
2808 			if (PADDING & k->flags)
2809 				continue;
2810 			i = strlen(k->text);
2811 			if (s + i + 1 >= be)
2812 				break;
2813 			if (s != t)
2814 				*s++ = ',';
2815 			memcpy(s, k->text, i);
2816 			s += i;
2817 		}
2818 		if (s + 2 < be) {
2819 			*s++ = '"';
2820 			*s = '\0';
2821 			ctl_putdata(buf, (u_int)(s - buf), 0);
2822 		}
2823 		break;
2824 
2825 	case CP_TIMEREC:
2826 		ctl_putuint(peer_var[id].text,
2827 			    current_time - p->timereceived);
2828 		break;
2829 
2830 	case CP_TIMEREACH:
2831 		ctl_putuint(peer_var[id].text,
2832 			    current_time - p->timereachable);
2833 		break;
2834 
2835 	case CP_BADAUTH:
2836 		ctl_putuint(peer_var[id].text, p->badauth);
2837 		break;
2838 
2839 	case CP_BOGUSORG:
2840 		ctl_putuint(peer_var[id].text, p->bogusorg);
2841 		break;
2842 
2843 	case CP_OLDPKT:
2844 		ctl_putuint(peer_var[id].text, p->oldpkt);
2845 		break;
2846 
2847 	case CP_SELDISP:
2848 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2849 		break;
2850 
2851 	case CP_SELBROKEN:
2852 		ctl_putuint(peer_var[id].text, p->selbroken);
2853 		break;
2854 
2855 	case CP_CANDIDATE:
2856 		ctl_putuint(peer_var[id].text, p->status);
2857 		break;
2858 #ifdef AUTOKEY
2859 	case CP_FLAGS:
2860 		if (p->crypto)
2861 			ctl_puthex(peer_var[id].text, p->crypto);
2862 		break;
2863 
2864 	case CP_SIGNATURE:
2865 		if (p->crypto) {
2866 			dp = EVP_get_digestbynid(p->crypto >> 16);
2867 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2868 			ctl_putstr(peer_var[id].text, str, strlen(str));
2869 		}
2870 		break;
2871 
2872 	case CP_HOST:
2873 		if (p->subject != NULL)
2874 			ctl_putstr(peer_var[id].text, p->subject,
2875 			    strlen(p->subject));
2876 		break;
2877 
2878 	case CP_VALID:		/* not used */
2879 		break;
2880 
2881 	case CP_INITSEQ:
2882 		if (NULL == (ap = p->recval.ptr))
2883 			break;
2884 
2885 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2886 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2887 		ctl_putfs(peer_var[CP_INITTSP].text,
2888 			  ntohl(p->recval.tstamp));
2889 		break;
2890 
2891 	case CP_IDENT:
2892 		if (p->ident != NULL)
2893 			ctl_putstr(peer_var[id].text, p->ident,
2894 			    strlen(p->ident));
2895 		break;
2896 
2897 
2898 #endif	/* AUTOKEY */
2899 	}
2900 }
2901 
2902 
2903 #ifdef REFCLOCK
2904 /*
2905  * ctl_putclock - output clock variables
2906  */
2907 static void
2908 ctl_putclock(
2909 	int id,
2910 	struct refclockstat *pcs,
2911 	int mustput
2912 	)
2913 {
2914 	char buf[CTL_MAX_DATA_LEN];
2915 	char *s, *t, *be;
2916 	const char *ss;
2917 	int i;
2918 	const struct ctl_var *k;
2919 
2920 	switch (id) {
2921 
2922 	case CC_TYPE:
2923 		if (mustput || pcs->clockdesc == NULL
2924 		    || *(pcs->clockdesc) == '\0') {
2925 			ctl_putuint(clock_var[id].text, pcs->type);
2926 		}
2927 		break;
2928 	case CC_TIMECODE:
2929 		ctl_putstr(clock_var[id].text,
2930 			   pcs->p_lastcode,
2931 			   (unsigned)pcs->lencode);
2932 		break;
2933 
2934 	case CC_POLL:
2935 		ctl_putuint(clock_var[id].text, pcs->polls);
2936 		break;
2937 
2938 	case CC_NOREPLY:
2939 		ctl_putuint(clock_var[id].text,
2940 			    pcs->noresponse);
2941 		break;
2942 
2943 	case CC_BADFORMAT:
2944 		ctl_putuint(clock_var[id].text,
2945 			    pcs->badformat);
2946 		break;
2947 
2948 	case CC_BADDATA:
2949 		ctl_putuint(clock_var[id].text,
2950 			    pcs->baddata);
2951 		break;
2952 
2953 	case CC_FUDGETIME1:
2954 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2955 			ctl_putdbl(clock_var[id].text,
2956 				   pcs->fudgetime1 * 1e3);
2957 		break;
2958 
2959 	case CC_FUDGETIME2:
2960 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2961 			ctl_putdbl(clock_var[id].text,
2962 				   pcs->fudgetime2 * 1e3);
2963 		break;
2964 
2965 	case CC_FUDGEVAL1:
2966 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2967 			ctl_putint(clock_var[id].text,
2968 				   pcs->fudgeval1);
2969 		break;
2970 
2971 	case CC_FUDGEVAL2:
2972 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2973 			if (pcs->fudgeval1 > 1)
2974 				ctl_putadr(clock_var[id].text,
2975 					   pcs->fudgeval2, NULL);
2976 			else
2977 				ctl_putrefid(clock_var[id].text,
2978 					     pcs->fudgeval2);
2979 		}
2980 		break;
2981 
2982 	case CC_FLAGS:
2983 		ctl_putuint(clock_var[id].text, pcs->flags);
2984 		break;
2985 
2986 	case CC_DEVICE:
2987 		if (pcs->clockdesc == NULL ||
2988 		    *(pcs->clockdesc) == '\0') {
2989 			if (mustput)
2990 				ctl_putstr(clock_var[id].text,
2991 					   "", 0);
2992 		} else {
2993 			ctl_putstr(clock_var[id].text,
2994 				   pcs->clockdesc,
2995 				   strlen(pcs->clockdesc));
2996 		}
2997 		break;
2998 
2999 	case CC_VARLIST:
3000 		s = buf;
3001 		be = buf + sizeof(buf);
3002 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
3003 		    sizeof(buf))
3004 			break;	/* really long var name */
3005 
3006 		snprintf(s, sizeof(buf), "%s=\"",
3007 			 clock_var[CC_VARLIST].text);
3008 		s += strlen(s);
3009 		t = s;
3010 
3011 		for (k = clock_var; !(EOV & k->flags); k++) {
3012 			if (PADDING & k->flags)
3013 				continue;
3014 
3015 			i = strlen(k->text);
3016 			if (s + i + 1 >= be)
3017 				break;
3018 
3019 			if (s != t)
3020 				*s++ = ',';
3021 			memcpy(s, k->text, i);
3022 			s += i;
3023 		}
3024 
3025 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3026 			if (PADDING & k->flags)
3027 				continue;
3028 
3029 			ss = k->text;
3030 			if (NULL == ss)
3031 				continue;
3032 
3033 			while (*ss && *ss != '=')
3034 				ss++;
3035 			i = ss - k->text;
3036 			if (s + i + 1 >= be)
3037 				break;
3038 
3039 			if (s != t)
3040 				*s++ = ',';
3041 			memcpy(s, k->text, (unsigned)i);
3042 			s += i;
3043 			*s = '\0';
3044 		}
3045 		if (s + 2 >= be)
3046 			break;
3047 
3048 		*s++ = '"';
3049 		*s = '\0';
3050 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3051 		break;
3052 	}
3053 }
3054 #endif
3055 
3056 
3057 
3058 /*
3059  * ctl_getitem - get the next data item from the incoming packet
3060  */
3061 static const struct ctl_var *
3062 ctl_getitem(
3063 	const struct ctl_var *var_list,
3064 	char **data
3065 	)
3066 {
3067 	/* [Bug 3008] First check the packet data sanity, then search
3068 	 * the key. This improves the consistency of result values: If
3069 	 * the result is NULL once, it will never be EOV again for this
3070 	 * packet; If it's EOV, it will never be NULL again until the
3071 	 * variable is found and processed in a given 'var_list'. (That
3072 	 * is, a result is returned that is neither NULL nor EOV).
3073 	 */
3074 	static const struct ctl_var eol = { 0, EOV, NULL };
3075 	static char buf[128];
3076 	static u_long quiet_until;
3077 	const struct ctl_var *v;
3078 	char *cp;
3079 	char *tp;
3080 
3081 	/*
3082 	 * Part One: Validate the packet state
3083 	 */
3084 
3085 	/* Delete leading commas and white space */
3086 	while (reqpt < reqend && (*reqpt == ',' ||
3087 				  isspace((unsigned char)*reqpt)))
3088 		reqpt++;
3089 	if (reqpt >= reqend)
3090 		return NULL;
3091 
3092 	/* Scan the string in the packet until we hit comma or
3093 	 * EoB. Register position of first '=' on the fly. */
3094 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3095 		if (*cp == '=' && tp == NULL)
3096 			tp = cp;
3097 		if (*cp == ',')
3098 			break;
3099 	}
3100 
3101 	/* Process payload, if any. */
3102 	*data = NULL;
3103 	if (NULL != tp) {
3104 		/* eventually strip white space from argument. */
3105 		const char *plhead = tp + 1; /* skip the '=' */
3106 		const char *pltail = cp;
3107 		size_t      plsize;
3108 
3109 		while (plhead != pltail && isspace((u_char)plhead[0]))
3110 			++plhead;
3111 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3112 			--pltail;
3113 
3114 		/* check payload size, terminate packet on overflow */
3115 		plsize = (size_t)(pltail - plhead);
3116 		if (plsize >= sizeof(buf))
3117 			goto badpacket;
3118 
3119 		/* copy data, NUL terminate, and set result data ptr */
3120 		memcpy(buf, plhead, plsize);
3121 		buf[plsize] = '\0';
3122 		*data = buf;
3123 	} else {
3124 		/* no payload, current end --> current name termination */
3125 		tp = cp;
3126 	}
3127 
3128 	/* Part Two
3129 	 *
3130 	 * Now we're sure that the packet data itself is sane. Scan the
3131 	 * list now. Make sure a NULL list is properly treated by
3132 	 * returning a synthetic End-Of-Values record. We must not
3133 	 * return NULL pointers after this point, or the behaviour would
3134 	 * become inconsistent if called several times with different
3135 	 * variable lists after an EoV was returned.  (Such a behavior
3136 	 * actually caused Bug 3008.)
3137 	 */
3138 
3139 	if (NULL == var_list)
3140 		return &eol;
3141 
3142 	for (v = var_list; !(EOV & v->flags); ++v)
3143 		if (!(PADDING & v->flags)) {
3144 			/* Check if the var name matches the buffer. The
3145 			 * name is bracketed by [reqpt..tp] and not NUL
3146 			 * terminated, and it contains no '=' char. The
3147 			 * lookup value IS NUL-terminated but might
3148 			 * include a '='... We have to look out for
3149 			 * that!
3150 			 */
3151 			const char *sp1 = reqpt;
3152 			const char *sp2 = v->text;
3153 
3154 			/* [Bug 3412] do not compare past NUL byte in name */
3155 			while (   (sp1 != tp)
3156 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3157 				++sp1;
3158 				++sp2;
3159 			}
3160 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3161 				break;
3162 		}
3163 
3164 	/* See if we have found a valid entry or not. If found, advance
3165 	 * the request pointer for the next round; if not, clear the
3166 	 * data pointer so we have no dangling garbage here.
3167 	 */
3168 	if (EOV & v->flags)
3169 		*data = NULL;
3170 	else
3171 		reqpt = cp + (cp != reqend);
3172 	return v;
3173 
3174   badpacket:
3175 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3176 	numctlbadpkts++;
3177 	NLOG(NLOG_SYSEVENT)
3178 	    if (quiet_until <= current_time) {
3179 		    quiet_until = current_time + 300;
3180 		    msyslog(LOG_WARNING,
3181 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3182 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3183 	    }
3184 	reqpt = reqend; /* never again for this packet! */
3185 	return NULL;
3186 }
3187 
3188 
3189 /*
3190  * control_unspec - response to an unspecified op-code
3191  */
3192 /*ARGSUSED*/
3193 static void
3194 control_unspec(
3195 	struct recvbuf *rbufp,
3196 	int restrict_mask
3197 	)
3198 {
3199 	struct peer *peer;
3200 
3201 	/*
3202 	 * What is an appropriate response to an unspecified op-code?
3203 	 * I return no errors and no data, unless a specified assocation
3204 	 * doesn't exist.
3205 	 */
3206 	if (res_associd) {
3207 		peer = findpeerbyassoc(res_associd);
3208 		if (NULL == peer) {
3209 			ctl_error(CERR_BADASSOC);
3210 			return;
3211 		}
3212 		rpkt.status = htons(ctlpeerstatus(peer));
3213 	} else
3214 		rpkt.status = htons(ctlsysstatus());
3215 	ctl_flushpkt(0);
3216 }
3217 
3218 
3219 /*
3220  * read_status - return either a list of associd's, or a particular
3221  * peer's status.
3222  */
3223 /*ARGSUSED*/
3224 static void
3225 read_status(
3226 	struct recvbuf *rbufp,
3227 	int restrict_mask
3228 	)
3229 {
3230 	struct peer *peer;
3231 	const u_char *cp;
3232 	size_t n;
3233 	/* a_st holds association ID, status pairs alternating */
3234 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3235 
3236 #ifdef DEBUG
3237 	if (debug > 2)
3238 		printf("read_status: ID %d\n", res_associd);
3239 #endif
3240 	/*
3241 	 * Two choices here. If the specified association ID is
3242 	 * zero we return all known assocation ID's.  Otherwise
3243 	 * we return a bunch of stuff about the particular peer.
3244 	 */
3245 	if (res_associd) {
3246 		peer = findpeerbyassoc(res_associd);
3247 		if (NULL == peer) {
3248 			ctl_error(CERR_BADASSOC);
3249 			return;
3250 		}
3251 		rpkt.status = htons(ctlpeerstatus(peer));
3252 		if (res_authokay)
3253 			peer->num_events = 0;
3254 		/*
3255 		 * For now, output everything we know about the
3256 		 * peer. May be more selective later.
3257 		 */
3258 		for (cp = def_peer_var; *cp != 0; cp++)
3259 			ctl_putpeer((int)*cp, peer);
3260 		ctl_flushpkt(0);
3261 		return;
3262 	}
3263 	n = 0;
3264 	rpkt.status = htons(ctlsysstatus());
3265 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3266 		a_st[n++] = htons(peer->associd);
3267 		a_st[n++] = htons(ctlpeerstatus(peer));
3268 		/* two entries each loop iteration, so n + 1 */
3269 		if (n + 1 >= COUNTOF(a_st)) {
3270 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3271 				    1);
3272 			n = 0;
3273 		}
3274 	}
3275 	if (n)
3276 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3277 	ctl_flushpkt(0);
3278 }
3279 
3280 
3281 /*
3282  * read_peervars - half of read_variables() implementation
3283  */
3284 static void
3285 read_peervars(void)
3286 {
3287 	const struct ctl_var *v;
3288 	struct peer *peer;
3289 	const u_char *cp;
3290 	size_t i;
3291 	char *	valuep;
3292 	u_char	wants[CP_MAXCODE + 1];
3293 	u_int	gotvar;
3294 
3295 	/*
3296 	 * Wants info for a particular peer. See if we know
3297 	 * the guy.
3298 	 */
3299 	peer = findpeerbyassoc(res_associd);
3300 	if (NULL == peer) {
3301 		ctl_error(CERR_BADASSOC);
3302 		return;
3303 	}
3304 	rpkt.status = htons(ctlpeerstatus(peer));
3305 	if (res_authokay)
3306 		peer->num_events = 0;
3307 	ZERO(wants);
3308 	gotvar = 0;
3309 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3310 		if (v->flags & EOV) {
3311 			ctl_error(CERR_UNKNOWNVAR);
3312 			return;
3313 		}
3314 		INSIST(v->code < COUNTOF(wants));
3315 		wants[v->code] = 1;
3316 		gotvar = 1;
3317 	}
3318 	if (gotvar) {
3319 		for (i = 1; i < COUNTOF(wants); i++)
3320 			if (wants[i])
3321 				ctl_putpeer(i, peer);
3322 	} else
3323 		for (cp = def_peer_var; *cp != 0; cp++)
3324 			ctl_putpeer((int)*cp, peer);
3325 	ctl_flushpkt(0);
3326 }
3327 
3328 
3329 /*
3330  * read_sysvars - half of read_variables() implementation
3331  */
3332 static void
3333 read_sysvars(void)
3334 {
3335 	const struct ctl_var *v;
3336 	struct ctl_var *kv;
3337 	u_int	n;
3338 	u_int	gotvar;
3339 	const u_char *cs;
3340 	char *	valuep;
3341 	const char * pch;
3342 	u_char *wants;
3343 	size_t	wants_count;
3344 
3345 	/*
3346 	 * Wants system variables. Figure out which he wants
3347 	 * and give them to him.
3348 	 */
3349 	rpkt.status = htons(ctlsysstatus());
3350 	if (res_authokay)
3351 		ctl_sys_num_events = 0;
3352 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3353 	wants = emalloc_zero(wants_count);
3354 	gotvar = 0;
3355 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3356 		if (!(EOV & v->flags)) {
3357 			INSIST(v->code < wants_count);
3358 			wants[v->code] = 1;
3359 			gotvar = 1;
3360 		} else {
3361 			v = ctl_getitem(ext_sys_var, &valuep);
3362 			if (NULL == v) {
3363 				ctl_error(CERR_BADVALUE);
3364 				free(wants);
3365 				return;
3366 			}
3367 			if (EOV & v->flags) {
3368 				ctl_error(CERR_UNKNOWNVAR);
3369 				free(wants);
3370 				return;
3371 			}
3372 			n = v->code + CS_MAXCODE + 1;
3373 			INSIST(n < wants_count);
3374 			wants[n] = 1;
3375 			gotvar = 1;
3376 		}
3377 	}
3378 	if (gotvar) {
3379 		for (n = 1; n <= CS_MAXCODE; n++)
3380 			if (wants[n])
3381 				ctl_putsys(n);
3382 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3383 			if (wants[n + CS_MAXCODE + 1]) {
3384 				pch = ext_sys_var[n].text;
3385 				ctl_putdata(pch, strlen(pch), 0);
3386 			}
3387 	} else {
3388 		for (cs = def_sys_var; *cs != 0; cs++)
3389 			ctl_putsys((int)*cs);
3390 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3391 			if (DEF & kv->flags)
3392 				ctl_putdata(kv->text, strlen(kv->text),
3393 					    0);
3394 	}
3395 	free(wants);
3396 	ctl_flushpkt(0);
3397 }
3398 
3399 
3400 /*
3401  * read_variables - return the variables the caller asks for
3402  */
3403 /*ARGSUSED*/
3404 static void
3405 read_variables(
3406 	struct recvbuf *rbufp,
3407 	int restrict_mask
3408 	)
3409 {
3410 	if (res_associd)
3411 		read_peervars();
3412 	else
3413 		read_sysvars();
3414 }
3415 
3416 
3417 /*
3418  * write_variables - write into variables. We only allow leap bit
3419  * writing this way.
3420  */
3421 /*ARGSUSED*/
3422 static void
3423 write_variables(
3424 	struct recvbuf *rbufp,
3425 	int restrict_mask
3426 	)
3427 {
3428 	const struct ctl_var *v;
3429 	int ext_var;
3430 	char *valuep;
3431 	long val;
3432 	size_t octets;
3433 	char *vareqv;
3434 	const char *t;
3435 	char *tt;
3436 
3437 	val = 0;
3438 	/*
3439 	 * If he's trying to write into a peer tell him no way
3440 	 */
3441 	if (res_associd != 0) {
3442 		ctl_error(CERR_PERMISSION);
3443 		return;
3444 	}
3445 
3446 	/*
3447 	 * Set status
3448 	 */
3449 	rpkt.status = htons(ctlsysstatus());
3450 
3451 	/*
3452 	 * Look through the variables. Dump out at the first sign of
3453 	 * trouble.
3454 	 */
3455 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3456 		ext_var = 0;
3457 		if (v->flags & EOV) {
3458 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3459 			    0) {
3460 				if (v->flags & EOV) {
3461 					ctl_error(CERR_UNKNOWNVAR);
3462 					return;
3463 				}
3464 				ext_var = 1;
3465 			} else {
3466 				break;
3467 			}
3468 		}
3469 		if (!(v->flags & CAN_WRITE)) {
3470 			ctl_error(CERR_PERMISSION);
3471 			return;
3472 		}
3473 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3474 							    &val))) {
3475 			ctl_error(CERR_BADFMT);
3476 			return;
3477 		}
3478 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3479 			ctl_error(CERR_BADVALUE);
3480 			return;
3481 		}
3482 
3483 		if (ext_var) {
3484 			octets = strlen(v->text) + strlen(valuep) + 2;
3485 			vareqv = emalloc(octets);
3486 			tt = vareqv;
3487 			t = v->text;
3488 			while (*t && *t != '=')
3489 				*tt++ = *t++;
3490 			*tt++ = '=';
3491 			memcpy(tt, valuep, 1 + strlen(valuep));
3492 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3493 			free(vareqv);
3494 		} else {
3495 			ctl_error(CERR_UNSPEC); /* really */
3496 			return;
3497 		}
3498 	}
3499 
3500 	/*
3501 	 * If we got anything, do it. xxx nothing to do ***
3502 	 */
3503 	/*
3504 	  if (leapind != ~0 || leapwarn != ~0) {
3505 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3506 	  ctl_error(CERR_PERMISSION);
3507 	  return;
3508 	  }
3509 	  }
3510 	*/
3511 	ctl_flushpkt(0);
3512 }
3513 
3514 
3515 /*
3516  * configure() processes ntpq :config/config-from-file, allowing
3517  *		generic runtime reconfiguration.
3518  */
3519 static void configure(
3520 	struct recvbuf *rbufp,
3521 	int restrict_mask
3522 	)
3523 {
3524 	size_t data_count;
3525 	int retval;
3526 
3527 	/* I haven't yet implemented changes to an existing association.
3528 	 * Hence check if the association id is 0
3529 	 */
3530 	if (res_associd != 0) {
3531 		ctl_error(CERR_BADVALUE);
3532 		return;
3533 	}
3534 
3535 	if (RES_NOMODIFY & restrict_mask) {
3536 		snprintf(remote_config.err_msg,
3537 			 sizeof(remote_config.err_msg),
3538 			 "runtime configuration prohibited by restrict ... nomodify");
3539 		ctl_putdata(remote_config.err_msg,
3540 			    strlen(remote_config.err_msg), 0);
3541 		ctl_flushpkt(0);
3542 		NLOG(NLOG_SYSINFO)
3543 			msyslog(LOG_NOTICE,
3544 				"runtime config from %s rejected due to nomodify restriction",
3545 				stoa(&rbufp->recv_srcadr));
3546 		sys_restricted++;
3547 		return;
3548 	}
3549 
3550 	/* Initialize the remote config buffer */
3551 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3552 
3553 	if (data_count > sizeof(remote_config.buffer) - 2) {
3554 		snprintf(remote_config.err_msg,
3555 			 sizeof(remote_config.err_msg),
3556 			 "runtime configuration failed: request too long");
3557 		ctl_putdata(remote_config.err_msg,
3558 			    strlen(remote_config.err_msg), 0);
3559 		ctl_flushpkt(0);
3560 		msyslog(LOG_NOTICE,
3561 			"runtime config from %s rejected: request too long",
3562 			stoa(&rbufp->recv_srcadr));
3563 		return;
3564 	}
3565 	/* Bug 2853 -- check if all characters were acceptable */
3566 	if (data_count != (size_t)(reqend - reqpt)) {
3567 		snprintf(remote_config.err_msg,
3568 			 sizeof(remote_config.err_msg),
3569 			 "runtime configuration failed: request contains an unprintable character");
3570 		ctl_putdata(remote_config.err_msg,
3571 			    strlen(remote_config.err_msg), 0);
3572 		ctl_flushpkt(0);
3573 		msyslog(LOG_NOTICE,
3574 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3575 			stoa(&rbufp->recv_srcadr),
3576 			reqpt[data_count]);
3577 		return;
3578 	}
3579 
3580 	memcpy(remote_config.buffer, reqpt, data_count);
3581 	/* The buffer has no trailing linefeed or NUL right now. For
3582 	 * logging, we do not want a newline, so we do that first after
3583 	 * adding the necessary NUL byte.
3584 	 */
3585 	remote_config.buffer[data_count] = '\0';
3586 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3587 		remote_config.buffer));
3588 	msyslog(LOG_NOTICE, "%s config: %s",
3589 		stoa(&rbufp->recv_srcadr),
3590 		remote_config.buffer);
3591 
3592 	/* Now we have to make sure there is a NL/NUL sequence at the
3593 	 * end of the buffer before we parse it.
3594 	 */
3595 	remote_config.buffer[data_count++] = '\n';
3596 	remote_config.buffer[data_count] = '\0';
3597 	remote_config.pos = 0;
3598 	remote_config.err_pos = 0;
3599 	remote_config.no_errors = 0;
3600 	config_remotely(&rbufp->recv_srcadr);
3601 
3602 	/*
3603 	 * Check if errors were reported. If not, output 'Config
3604 	 * Succeeded'.  Else output the error count.  It would be nice
3605 	 * to output any parser error messages.
3606 	 */
3607 	if (0 == remote_config.no_errors) {
3608 		retval = snprintf(remote_config.err_msg,
3609 				  sizeof(remote_config.err_msg),
3610 				  "Config Succeeded");
3611 		if (retval > 0)
3612 			remote_config.err_pos += retval;
3613 	}
3614 
3615 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3616 	ctl_flushpkt(0);
3617 
3618 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3619 
3620 	if (remote_config.no_errors > 0)
3621 		msyslog(LOG_NOTICE, "%d error in %s config",
3622 			remote_config.no_errors,
3623 			stoa(&rbufp->recv_srcadr));
3624 }
3625 
3626 
3627 /*
3628  * derive_nonce - generate client-address-specific nonce value
3629  *		  associated with a given timestamp.
3630  */
3631 static u_int32 derive_nonce(
3632 	sockaddr_u *	addr,
3633 	u_int32		ts_i,
3634 	u_int32		ts_f
3635 	)
3636 {
3637 	static u_int32	salt[4];
3638 	static u_long	last_salt_update;
3639 	union d_tag {
3640 		u_char	digest[EVP_MAX_MD_SIZE];
3641 		u_int32 extract;
3642 	}		d;
3643 	EVP_MD_CTX	*ctx;
3644 	u_int		len;
3645 
3646 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3647 		salt[0] = ntp_random();
3648 		salt[1] = ntp_random();
3649 		salt[2] = ntp_random();
3650 		salt[3] = ntp_random();
3651 		last_salt_update = current_time;
3652 	}
3653 
3654 	ctx = EVP_MD_CTX_new();
3655 #   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3656 	/* [Bug 3457] set flags and don't kill them again */
3657 	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3658 	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3659 #   else
3660 	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3661 #   endif
3662 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3663 	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3664 	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3665 	if (IS_IPV4(addr))
3666 		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3667 			         sizeof(SOCK_ADDR4(addr)));
3668 	else
3669 		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3670 			         sizeof(SOCK_ADDR6(addr)));
3671 	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3672 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3673 	EVP_DigestFinal(ctx, d.digest, &len);
3674 	EVP_MD_CTX_free(ctx);
3675 
3676 	return d.extract;
3677 }
3678 
3679 
3680 /*
3681  * generate_nonce - generate client-address-specific nonce string.
3682  */
3683 static void generate_nonce(
3684 	struct recvbuf *	rbufp,
3685 	char *			nonce,
3686 	size_t			nonce_octets
3687 	)
3688 {
3689 	u_int32 derived;
3690 
3691 	derived = derive_nonce(&rbufp->recv_srcadr,
3692 			       rbufp->recv_time.l_ui,
3693 			       rbufp->recv_time.l_uf);
3694 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3695 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3696 }
3697 
3698 
3699 /*
3700  * validate_nonce - validate client-address-specific nonce string.
3701  *
3702  * Returns TRUE if the local calculation of the nonce matches the
3703  * client-provided value and the timestamp is recent enough.
3704  */
3705 static int validate_nonce(
3706 	const char *		pnonce,
3707 	struct recvbuf *	rbufp
3708 	)
3709 {
3710 	u_int	ts_i;
3711 	u_int	ts_f;
3712 	l_fp	ts;
3713 	l_fp	now_delta;
3714 	u_int	supposed;
3715 	u_int	derived;
3716 
3717 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3718 		return FALSE;
3719 
3720 	ts.l_ui = (u_int32)ts_i;
3721 	ts.l_uf = (u_int32)ts_f;
3722 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3723 	get_systime(&now_delta);
3724 	L_SUB(&now_delta, &ts);
3725 
3726 	return (supposed == derived && now_delta.l_ui < 16);
3727 }
3728 
3729 
3730 /*
3731  * send_random_tag_value - send a randomly-generated three character
3732  *			   tag prefix, a '.', an index, a '=' and a
3733  *			   random integer value.
3734  *
3735  * To try to force clients to ignore unrecognized tags in mrulist,
3736  * reslist, and ifstats responses, the first and last rows are spiced
3737  * with randomly-generated tag names with correct .# index.  Make it
3738  * three characters knowing that none of the currently-used subscripted
3739  * tags have that length, avoiding the need to test for
3740  * tag collision.
3741  */
3742 static void
3743 send_random_tag_value(
3744 	int	indx
3745 	)
3746 {
3747 	int	noise;
3748 	char	buf[32];
3749 
3750 	noise = rand() ^ (rand() << 16);
3751 	buf[0] = 'a' + noise % 26;
3752 	noise >>= 5;
3753 	buf[1] = 'a' + noise % 26;
3754 	noise >>= 5;
3755 	buf[2] = 'a' + noise % 26;
3756 	noise >>= 5;
3757 	buf[3] = '.';
3758 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3759 	ctl_putuint(buf, noise);
3760 }
3761 
3762 
3763 /*
3764  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3765  *
3766  * To keep clients honest about not depending on the order of values,
3767  * and thereby avoid being locked into ugly workarounds to maintain
3768  * backward compatibility later as new fields are added to the response,
3769  * the order is random.
3770  */
3771 static void
3772 send_mru_entry(
3773 	mon_entry *	mon,
3774 	int		count
3775 	)
3776 {
3777 	const char first_fmt[] =	"first.%d";
3778 	const char ct_fmt[] =		"ct.%d";
3779 	const char mv_fmt[] =		"mv.%d";
3780 	const char rs_fmt[] =		"rs.%d";
3781 	char	tag[32];
3782 	u_char	sent[6]; /* 6 tag=value pairs */
3783 	u_int32 noise;
3784 	u_int	which;
3785 	u_int	remaining;
3786 	const char * pch;
3787 
3788 	remaining = COUNTOF(sent);
3789 	ZERO(sent);
3790 	noise = (u_int32)(rand() ^ (rand() << 16));
3791 	while (remaining > 0) {
3792 		which = (noise & 7) % COUNTOF(sent);
3793 		noise >>= 3;
3794 		while (sent[which])
3795 			which = (which + 1) % COUNTOF(sent);
3796 
3797 		switch (which) {
3798 
3799 		case 0:
3800 			snprintf(tag, sizeof(tag), addr_fmt, count);
3801 			pch = sptoa(&mon->rmtadr);
3802 			ctl_putunqstr(tag, pch, strlen(pch));
3803 			break;
3804 
3805 		case 1:
3806 			snprintf(tag, sizeof(tag), last_fmt, count);
3807 			ctl_putts(tag, &mon->last);
3808 			break;
3809 
3810 		case 2:
3811 			snprintf(tag, sizeof(tag), first_fmt, count);
3812 			ctl_putts(tag, &mon->first);
3813 			break;
3814 
3815 		case 3:
3816 			snprintf(tag, sizeof(tag), ct_fmt, count);
3817 			ctl_putint(tag, mon->count);
3818 			break;
3819 
3820 		case 4:
3821 			snprintf(tag, sizeof(tag), mv_fmt, count);
3822 			ctl_putuint(tag, mon->vn_mode);
3823 			break;
3824 
3825 		case 5:
3826 			snprintf(tag, sizeof(tag), rs_fmt, count);
3827 			ctl_puthex(tag, mon->flags);
3828 			break;
3829 		}
3830 		sent[which] = TRUE;
3831 		remaining--;
3832 	}
3833 }
3834 
3835 
3836 /*
3837  * read_mru_list - supports ntpq's mrulist command.
3838  *
3839  * The challenge here is to match ntpdc's monlist functionality without
3840  * being limited to hundreds of entries returned total, and without
3841  * requiring state on the server.  If state were required, ntpq's
3842  * mrulist command would require authentication.
3843  *
3844  * The approach was suggested by Ry Jones.  A finite and variable number
3845  * of entries are retrieved per request, to avoid having responses with
3846  * such large numbers of packets that socket buffers are overflowed and
3847  * packets lost.  The entries are retrieved oldest-first, taking into
3848  * account that the MRU list will be changing between each request.  We
3849  * can expect to see duplicate entries for addresses updated in the MRU
3850  * list during the fetch operation.  In the end, the client can assemble
3851  * a close approximation of the MRU list at the point in time the last
3852  * response was sent by ntpd.  The only difference is it may be longer,
3853  * containing some number of oldest entries which have since been
3854  * reclaimed.  If necessary, the protocol could be extended to zap those
3855  * from the client snapshot at the end, but so far that doesn't seem
3856  * useful.
3857  *
3858  * To accomodate the changing MRU list, the starting point for requests
3859  * after the first request is supplied as a series of last seen
3860  * timestamps and associated addresses, the newest ones the client has
3861  * received.  As long as at least one of those entries hasn't been
3862  * bumped to the head of the MRU list, ntpd can pick up at that point.
3863  * Otherwise, the request is failed and it is up to ntpq to back up and
3864  * provide the next newest entry's timestamps and addresses, conceivably
3865  * backing up all the way to the starting point.
3866  *
3867  * input parameters:
3868  *	nonce=		Regurgitated nonce retrieved by the client
3869  *			previously using CTL_OP_REQ_NONCE, demonstrating
3870  *			ability to receive traffic sent to its address.
3871  *	frags=		Limit on datagrams (fragments) in response.  Used
3872  *			by newer ntpq versions instead of limit= when
3873  *			retrieving multiple entries.
3874  *	limit=		Limit on MRU entries returned.  One of frags= or
3875  *			limit= must be provided.
3876  *			limit=1 is a special case:  Instead of fetching
3877  *			beginning with the supplied starting point's
3878  *			newer neighbor, fetch the supplied entry, and
3879  *			in that case the #.last timestamp can be zero.
3880  *			This enables fetching a single entry by IP
3881  *			address.  When limit is not one and frags= is
3882  *			provided, the fragment limit controls.
3883  *	mincount=	(decimal) Return entries with count >= mincount.
3884  *	laddr=		Return entries associated with the server's IP
3885  *			address given.  No port specification is needed,
3886  *			and any supplied is ignored.
3887  *	resall=		0x-prefixed hex restrict bits which must all be
3888  *			lit for an MRU entry to be included.
3889  *			Has precedence over any resany=.
3890  *	resany=		0x-prefixed hex restrict bits, at least one of
3891  *			which must be list for an MRU entry to be
3892  *			included.
3893  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3894  *			which client previously received.
3895  *	addr.0=		text of newest entry's IP address and port,
3896  *			IPv6 addresses in bracketed form: [::]:123
3897  *	last.1=		timestamp of 2nd newest entry client has.
3898  *	addr.1=		address of 2nd newest entry.
3899  *	[...]
3900  *
3901  * ntpq provides as many last/addr pairs as will fit in a single request
3902  * packet, except for the first request in a MRU fetch operation.
3903  *
3904  * The response begins with a new nonce value to be used for any
3905  * followup request.  Following the nonce is the next newer entry than
3906  * referred to by last.0 and addr.0, if the "0" entry has not been
3907  * bumped to the front.  If it has, the first entry returned will be the
3908  * next entry newer than referred to by last.1 and addr.1, and so on.
3909  * If none of the referenced entries remain unchanged, the request fails
3910  * and ntpq backs up to the next earlier set of entries to resync.
3911  *
3912  * Except for the first response, the response begins with confirmation
3913  * of the entry that precedes the first additional entry provided:
3914  *
3915  *	last.older=	hex l_fp timestamp matching one of the input
3916  *			.last timestamps, which entry now precedes the
3917  *			response 0. entry in the MRU list.
3918  *	addr.older=	text of address corresponding to older.last.
3919  *
3920  * And in any case, a successful response contains sets of values
3921  * comprising entries, with the oldest numbered 0 and incrementing from
3922  * there:
3923  *
3924  *	addr.#		text of IPv4 or IPv6 address and port
3925  *	last.#		hex l_fp timestamp of last receipt
3926  *	first.#		hex l_fp timestamp of first receipt
3927  *	ct.#		count of packets received
3928  *	mv.#		mode and version
3929  *	rs.#		restriction mask (RES_* bits)
3930  *
3931  * Note the code currently assumes there are no valid three letter
3932  * tags sent with each row, and needs to be adjusted if that changes.
3933  *
3934  * The client should accept the values in any order, and ignore .#
3935  * values which it does not understand, to allow a smooth path to
3936  * future changes without requiring a new opcode.  Clients can rely
3937  * on all *.0 values preceding any *.1 values, that is all values for
3938  * a given index number are together in the response.
3939  *
3940  * The end of the response list is noted with one or two tag=value
3941  * pairs.  Unconditionally:
3942  *
3943  *	now=		0x-prefixed l_fp timestamp at the server marking
3944  *			the end of the operation.
3945  *
3946  * If any entries were returned, now= is followed by:
3947  *
3948  *	last.newest=	hex l_fp identical to last.# of the prior
3949  *			entry.
3950  */
3951 static void read_mru_list(
3952 	struct recvbuf *rbufp,
3953 	int restrict_mask
3954 	)
3955 {
3956 	static const char	nulltxt[1] = 		{ '\0' };
3957 	static const char	nonce_text[] =		"nonce";
3958 	static const char	frags_text[] =		"frags";
3959 	static const char	limit_text[] =		"limit";
3960 	static const char	mincount_text[] =	"mincount";
3961 	static const char	resall_text[] =		"resall";
3962 	static const char	resany_text[] =		"resany";
3963 	static const char	maxlstint_text[] =	"maxlstint";
3964 	static const char	laddr_text[] =		"laddr";
3965 	static const char	resaxx_fmt[] =		"0x%hx";
3966 
3967 	u_int			limit;
3968 	u_short			frags;
3969 	u_short			resall;
3970 	u_short			resany;
3971 	int			mincount;
3972 	u_int			maxlstint;
3973 	sockaddr_u		laddr;
3974 	struct interface *	lcladr;
3975 	u_int			count;
3976 	u_int			ui;
3977 	u_int			uf;
3978 	l_fp			last[16];
3979 	sockaddr_u		addr[COUNTOF(last)];
3980 	char			buf[128];
3981 	struct ctl_var *	in_parms;
3982 	const struct ctl_var *	v;
3983 	const char *		val;
3984 	const char *		pch;
3985 	char *			pnonce;
3986 	int			nonce_valid;
3987 	size_t			i;
3988 	int			priors;
3989 	u_short			hash;
3990 	mon_entry *		mon;
3991 	mon_entry *		prior_mon;
3992 	l_fp			now;
3993 
3994 	if (RES_NOMRULIST & restrict_mask) {
3995 		ctl_error(CERR_PERMISSION);
3996 		NLOG(NLOG_SYSINFO)
3997 			msyslog(LOG_NOTICE,
3998 				"mrulist from %s rejected due to nomrulist restriction",
3999 				stoa(&rbufp->recv_srcadr));
4000 		sys_restricted++;
4001 		return;
4002 	}
4003 	/*
4004 	 * fill in_parms var list with all possible input parameters.
4005 	 */
4006 	in_parms = NULL;
4007 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4008 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4009 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4010 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4011 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4012 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4013 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4014 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4015 	for (i = 0; i < COUNTOF(last); i++) {
4016 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4017 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4018 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4019 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4020 	}
4021 
4022 	/* decode input parms */
4023 	pnonce = NULL;
4024 	frags = 0;
4025 	limit = 0;
4026 	mincount = 0;
4027 	resall = 0;
4028 	resany = 0;
4029 	maxlstint = 0;
4030 	lcladr = NULL;
4031 	priors = 0;
4032 	ZERO(last);
4033 	ZERO(addr);
4034 
4035 	/* have to go through '(void*)' to drop 'const' property from pointer.
4036 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4037 	 */
4038 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4039 	       !(EOV & v->flags)) {
4040 		int si;
4041 
4042 		if (NULL == val)
4043 			val = nulltxt;
4044 
4045 		if (!strcmp(nonce_text, v->text)) {
4046 			free(pnonce);
4047 			pnonce = (*val) ? estrdup(val) : NULL;
4048 		} else if (!strcmp(frags_text, v->text)) {
4049 			if (1 != sscanf(val, "%hu", &frags))
4050 				goto blooper;
4051 		} else if (!strcmp(limit_text, v->text)) {
4052 			if (1 != sscanf(val, "%u", &limit))
4053 				goto blooper;
4054 		} else if (!strcmp(mincount_text, v->text)) {
4055 			if (1 != sscanf(val, "%d", &mincount))
4056 				goto blooper;
4057 			if (mincount < 0)
4058 				mincount = 0;
4059 		} else if (!strcmp(resall_text, v->text)) {
4060 			if (1 != sscanf(val, resaxx_fmt, &resall))
4061 				goto blooper;
4062 		} else if (!strcmp(resany_text, v->text)) {
4063 			if (1 != sscanf(val, resaxx_fmt, &resany))
4064 				goto blooper;
4065 		} else if (!strcmp(maxlstint_text, v->text)) {
4066 			if (1 != sscanf(val, "%u", &maxlstint))
4067 				goto blooper;
4068 		} else if (!strcmp(laddr_text, v->text)) {
4069 			if (!decodenetnum(val, &laddr))
4070 				goto blooper;
4071 			lcladr = getinterface(&laddr, 0);
4072 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4073 			   (size_t)si < COUNTOF(last)) {
4074 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4075 				goto blooper;
4076 			last[si].l_ui = ui;
4077 			last[si].l_uf = uf;
4078 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4079 				priors++;
4080 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4081 			   (size_t)si < COUNTOF(addr)) {
4082 			if (!decodenetnum(val, &addr[si]))
4083 				goto blooper;
4084 			if (last[si].l_ui && last[si].l_uf && si == priors)
4085 				priors++;
4086 		} else {
4087 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4088 				    v->text));
4089 			continue;
4090 
4091 		blooper:
4092 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4093 				    v->text, val));
4094 			free(pnonce);
4095 			pnonce = NULL;
4096 			break;
4097 		}
4098 	}
4099 	free_varlist(in_parms);
4100 	in_parms = NULL;
4101 
4102 	/* return no responses until the nonce is validated */
4103 	if (NULL == pnonce)
4104 		return;
4105 
4106 	nonce_valid = validate_nonce(pnonce, rbufp);
4107 	free(pnonce);
4108 	if (!nonce_valid)
4109 		return;
4110 
4111 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4112 	    frags > MRU_FRAGS_LIMIT) {
4113 		ctl_error(CERR_BADVALUE);
4114 		return;
4115 	}
4116 
4117 	/*
4118 	 * If either frags or limit is not given, use the max.
4119 	 */
4120 	if (0 != frags && 0 == limit)
4121 		limit = UINT_MAX;
4122 	else if (0 != limit && 0 == frags)
4123 		frags = MRU_FRAGS_LIMIT;
4124 
4125 	/*
4126 	 * Find the starting point if one was provided.
4127 	 */
4128 	mon = NULL;
4129 	for (i = 0; i < (size_t)priors; i++) {
4130 		hash = MON_HASH(&addr[i]);
4131 		for (mon = mon_hash[hash];
4132 		     mon != NULL;
4133 		     mon = mon->hash_next)
4134 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4135 				break;
4136 		if (mon != NULL) {
4137 			if (L_ISEQU(&mon->last, &last[i]))
4138 				break;
4139 			mon = NULL;
4140 		}
4141 	}
4142 
4143 	/* If a starting point was provided... */
4144 	if (priors) {
4145 		/* and none could be found unmodified... */
4146 		if (NULL == mon) {
4147 			/* tell ntpq to try again with older entries */
4148 			ctl_error(CERR_UNKNOWNVAR);
4149 			return;
4150 		}
4151 		/* confirm the prior entry used as starting point */
4152 		ctl_putts("last.older", &mon->last);
4153 		pch = sptoa(&mon->rmtadr);
4154 		ctl_putunqstr("addr.older", pch, strlen(pch));
4155 
4156 		/*
4157 		 * Move on to the first entry the client doesn't have,
4158 		 * except in the special case of a limit of one.  In
4159 		 * that case return the starting point entry.
4160 		 */
4161 		if (limit > 1)
4162 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4163 	} else {	/* start with the oldest */
4164 		mon = TAIL_DLIST(mon_mru_list, mru);
4165 	}
4166 
4167 	/*
4168 	 * send up to limit= entries in up to frags= datagrams
4169 	 */
4170 	get_systime(&now);
4171 	generate_nonce(rbufp, buf, sizeof(buf));
4172 	ctl_putunqstr("nonce", buf, strlen(buf));
4173 	prior_mon = NULL;
4174 	for (count = 0;
4175 	     mon != NULL && res_frags < frags && count < limit;
4176 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4177 
4178 		if (mon->count < mincount)
4179 			continue;
4180 		if (resall && resall != (resall & mon->flags))
4181 			continue;
4182 		if (resany && !(resany & mon->flags))
4183 			continue;
4184 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4185 		    maxlstint)
4186 			continue;
4187 		if (lcladr != NULL && mon->lcladr != lcladr)
4188 			continue;
4189 
4190 		send_mru_entry(mon, count);
4191 		if (!count)
4192 			send_random_tag_value(0);
4193 		count++;
4194 		prior_mon = mon;
4195 	}
4196 
4197 	/*
4198 	 * If this batch completes the MRU list, say so explicitly with
4199 	 * a now= l_fp timestamp.
4200 	 */
4201 	if (NULL == mon) {
4202 		if (count > 1)
4203 			send_random_tag_value(count - 1);
4204 		ctl_putts("now", &now);
4205 		/* if any entries were returned confirm the last */
4206 		if (prior_mon != NULL)
4207 			ctl_putts("last.newest", &prior_mon->last);
4208 	}
4209 	ctl_flushpkt(0);
4210 }
4211 
4212 
4213 /*
4214  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4215  *
4216  * To keep clients honest about not depending on the order of values,
4217  * and thereby avoid being locked into ugly workarounds to maintain
4218  * backward compatibility later as new fields are added to the response,
4219  * the order is random.
4220  */
4221 static void
4222 send_ifstats_entry(
4223 	endpt *	la,
4224 	u_int	ifnum
4225 	)
4226 {
4227 	const char addr_fmtu[] =	"addr.%u";
4228 	const char bcast_fmt[] =	"bcast.%u";
4229 	const char en_fmt[] =		"en.%u";	/* enabled */
4230 	const char name_fmt[] =		"name.%u";
4231 	const char flags_fmt[] =	"flags.%u";
4232 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4233 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4234 	const char rx_fmt[] =		"rx.%u";
4235 	const char tx_fmt[] =		"tx.%u";
4236 	const char txerr_fmt[] =	"txerr.%u";
4237 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4238 	const char up_fmt[] =		"up.%u";	/* uptime */
4239 	char	tag[32];
4240 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4241 	int	noisebits;
4242 	u_int32 noise;
4243 	u_int	which;
4244 	u_int	remaining;
4245 	const char *pch;
4246 
4247 	remaining = COUNTOF(sent);
4248 	ZERO(sent);
4249 	noise = 0;
4250 	noisebits = 0;
4251 	while (remaining > 0) {
4252 		if (noisebits < 4) {
4253 			noise = rand() ^ (rand() << 16);
4254 			noisebits = 31;
4255 		}
4256 		which = (noise & 0xf) % COUNTOF(sent);
4257 		noise >>= 4;
4258 		noisebits -= 4;
4259 
4260 		while (sent[which])
4261 			which = (which + 1) % COUNTOF(sent);
4262 
4263 		switch (which) {
4264 
4265 		case 0:
4266 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4267 			pch = sptoa(&la->sin);
4268 			ctl_putunqstr(tag, pch, strlen(pch));
4269 			break;
4270 
4271 		case 1:
4272 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4273 			if (INT_BCASTOPEN & la->flags)
4274 				pch = sptoa(&la->bcast);
4275 			else
4276 				pch = "";
4277 			ctl_putunqstr(tag, pch, strlen(pch));
4278 			break;
4279 
4280 		case 2:
4281 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4282 			ctl_putint(tag, !la->ignore_packets);
4283 			break;
4284 
4285 		case 3:
4286 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4287 			ctl_putstr(tag, la->name, strlen(la->name));
4288 			break;
4289 
4290 		case 4:
4291 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4292 			ctl_puthex(tag, (u_int)la->flags);
4293 			break;
4294 
4295 		case 5:
4296 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4297 			ctl_putint(tag, la->last_ttl);
4298 			break;
4299 
4300 		case 6:
4301 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4302 			ctl_putint(tag, la->num_mcast);
4303 			break;
4304 
4305 		case 7:
4306 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4307 			ctl_putint(tag, la->received);
4308 			break;
4309 
4310 		case 8:
4311 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4312 			ctl_putint(tag, la->sent);
4313 			break;
4314 
4315 		case 9:
4316 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4317 			ctl_putint(tag, la->notsent);
4318 			break;
4319 
4320 		case 10:
4321 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4322 			ctl_putuint(tag, la->peercnt);
4323 			break;
4324 
4325 		case 11:
4326 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4327 			ctl_putuint(tag, current_time - la->starttime);
4328 			break;
4329 		}
4330 		sent[which] = TRUE;
4331 		remaining--;
4332 	}
4333 	send_random_tag_value((int)ifnum);
4334 }
4335 
4336 
4337 /*
4338  * read_ifstats - send statistics for each local address, exposed by
4339  *		  ntpq -c ifstats
4340  */
4341 static void
4342 read_ifstats(
4343 	struct recvbuf *	rbufp
4344 	)
4345 {
4346 	u_int	ifidx;
4347 	endpt *	la;
4348 
4349 	/*
4350 	 * loop over [0..sys_ifnum] searching ep_list for each
4351 	 * ifnum in turn.
4352 	 */
4353 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4354 		for (la = ep_list; la != NULL; la = la->elink)
4355 			if (ifidx == la->ifnum)
4356 				break;
4357 		if (NULL == la)
4358 			continue;
4359 		/* return stats for one local address */
4360 		send_ifstats_entry(la, ifidx);
4361 	}
4362 	ctl_flushpkt(0);
4363 }
4364 
4365 static void
4366 sockaddrs_from_restrict_u(
4367 	sockaddr_u *	psaA,
4368 	sockaddr_u *	psaM,
4369 	restrict_u *	pres,
4370 	int		ipv6
4371 	)
4372 {
4373 	ZERO(*psaA);
4374 	ZERO(*psaM);
4375 	if (!ipv6) {
4376 		psaA->sa.sa_family = AF_INET;
4377 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4378 		psaM->sa.sa_family = AF_INET;
4379 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4380 	} else {
4381 		psaA->sa.sa_family = AF_INET6;
4382 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4383 		       sizeof(psaA->sa6.sin6_addr));
4384 		psaM->sa.sa_family = AF_INET6;
4385 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4386 		       sizeof(psaA->sa6.sin6_addr));
4387 	}
4388 }
4389 
4390 
4391 /*
4392  * Send a restrict entry in response to a "ntpq -c reslist" request.
4393  *
4394  * To keep clients honest about not depending on the order of values,
4395  * and thereby avoid being locked into ugly workarounds to maintain
4396  * backward compatibility later as new fields are added to the response,
4397  * the order is random.
4398  */
4399 static void
4400 send_restrict_entry(
4401 	restrict_u *	pres,
4402 	int		ipv6,
4403 	u_int		idx
4404 	)
4405 {
4406 	const char addr_fmtu[] =	"addr.%u";
4407 	const char mask_fmtu[] =	"mask.%u";
4408 	const char hits_fmt[] =		"hits.%u";
4409 	const char flags_fmt[] =	"flags.%u";
4410 	char		tag[32];
4411 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4412 	int		noisebits;
4413 	u_int32		noise;
4414 	u_int		which;
4415 	u_int		remaining;
4416 	sockaddr_u	addr;
4417 	sockaddr_u	mask;
4418 	const char *	pch;
4419 	char *		buf;
4420 	const char *	match_str;
4421 	const char *	access_str;
4422 
4423 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4424 	remaining = COUNTOF(sent);
4425 	ZERO(sent);
4426 	noise = 0;
4427 	noisebits = 0;
4428 	while (remaining > 0) {
4429 		if (noisebits < 2) {
4430 			noise = rand() ^ (rand() << 16);
4431 			noisebits = 31;
4432 		}
4433 		which = (noise & 0x3) % COUNTOF(sent);
4434 		noise >>= 2;
4435 		noisebits -= 2;
4436 
4437 		while (sent[which])
4438 			which = (which + 1) % COUNTOF(sent);
4439 
4440 		/* XXX: Numbers?  Really? */
4441 		switch (which) {
4442 
4443 		case 0:
4444 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4445 			pch = stoa(&addr);
4446 			ctl_putunqstr(tag, pch, strlen(pch));
4447 			break;
4448 
4449 		case 1:
4450 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4451 			pch = stoa(&mask);
4452 			ctl_putunqstr(tag, pch, strlen(pch));
4453 			break;
4454 
4455 		case 2:
4456 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4457 			ctl_putuint(tag, pres->count);
4458 			break;
4459 
4460 		case 3:
4461 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4462 			match_str = res_match_flags(pres->mflags);
4463 			access_str = res_access_flags(pres->rflags);
4464 			if ('\0' == match_str[0]) {
4465 				pch = access_str;
4466 			} else {
4467 				LIB_GETBUF(buf);
4468 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4469 					 match_str, access_str);
4470 				pch = buf;
4471 			}
4472 			ctl_putunqstr(tag, pch, strlen(pch));
4473 			break;
4474 		}
4475 		sent[which] = TRUE;
4476 		remaining--;
4477 	}
4478 	send_random_tag_value((int)idx);
4479 }
4480 
4481 
4482 static void
4483 send_restrict_list(
4484 	restrict_u *	pres,
4485 	int		ipv6,
4486 	u_int *		pidx
4487 	)
4488 {
4489 	for ( ; pres != NULL; pres = pres->link) {
4490 		send_restrict_entry(pres, ipv6, *pidx);
4491 		(*pidx)++;
4492 	}
4493 }
4494 
4495 
4496 /*
4497  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4498  */
4499 static void
4500 read_addr_restrictions(
4501 	struct recvbuf *	rbufp
4502 )
4503 {
4504 	u_int idx;
4505 
4506 	idx = 0;
4507 	send_restrict_list(restrictlist4, FALSE, &idx);
4508 	send_restrict_list(restrictlist6, TRUE, &idx);
4509 	ctl_flushpkt(0);
4510 }
4511 
4512 
4513 /*
4514  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4515  */
4516 static void
4517 read_ordlist(
4518 	struct recvbuf *	rbufp,
4519 	int			restrict_mask
4520 	)
4521 {
4522 	const char ifstats_s[] = "ifstats";
4523 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4524 	const char addr_rst_s[] = "addr_restrictions";
4525 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4526 	struct ntp_control *	cpkt;
4527 	u_short			qdata_octets;
4528 
4529 	/*
4530 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4531 	 * used only for ntpq -c ifstats.  With the addition of reslist
4532 	 * the same opcode was generalized to retrieve ordered lists
4533 	 * which require authentication.  The request data is empty or
4534 	 * contains "ifstats" (not null terminated) to retrieve local
4535 	 * addresses and associated stats.  It is "addr_restrictions"
4536 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4537 	 * which are access control lists.  Other request data return
4538 	 * CERR_UNKNOWNVAR.
4539 	 */
4540 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4541 	qdata_octets = ntohs(cpkt->count);
4542 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4543 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4544 		read_ifstats(rbufp);
4545 		return;
4546 	}
4547 	if (a_r_chars == qdata_octets &&
4548 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4549 		read_addr_restrictions(rbufp);
4550 		return;
4551 	}
4552 	ctl_error(CERR_UNKNOWNVAR);
4553 }
4554 
4555 
4556 /*
4557  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4558  */
4559 static void req_nonce(
4560 	struct recvbuf *	rbufp,
4561 	int			restrict_mask
4562 	)
4563 {
4564 	char	buf[64];
4565 
4566 	generate_nonce(rbufp, buf, sizeof(buf));
4567 	ctl_putunqstr("nonce", buf, strlen(buf));
4568 	ctl_flushpkt(0);
4569 }
4570 
4571 
4572 /*
4573  * read_clockstatus - return clock radio status
4574  */
4575 /*ARGSUSED*/
4576 static void
4577 read_clockstatus(
4578 	struct recvbuf *rbufp,
4579 	int restrict_mask
4580 	)
4581 {
4582 #ifndef REFCLOCK
4583 	/*
4584 	 * If no refclock support, no data to return
4585 	 */
4586 	ctl_error(CERR_BADASSOC);
4587 #else
4588 	const struct ctl_var *	v;
4589 	int			i;
4590 	struct peer *		peer;
4591 	char *			valuep;
4592 	u_char *		wants;
4593 	size_t			wants_alloc;
4594 	int			gotvar;
4595 	const u_char *		cc;
4596 	struct ctl_var *	kv;
4597 	struct refclockstat	cs;
4598 
4599 	if (res_associd != 0) {
4600 		peer = findpeerbyassoc(res_associd);
4601 	} else {
4602 		/*
4603 		 * Find a clock for this jerk.	If the system peer
4604 		 * is a clock use it, else search peer_list for one.
4605 		 */
4606 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4607 		    sys_peer->flags))
4608 			peer = sys_peer;
4609 		else
4610 			for (peer = peer_list;
4611 			     peer != NULL;
4612 			     peer = peer->p_link)
4613 				if (FLAG_REFCLOCK & peer->flags)
4614 					break;
4615 	}
4616 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4617 		ctl_error(CERR_BADASSOC);
4618 		return;
4619 	}
4620 	/*
4621 	 * If we got here we have a peer which is a clock. Get his
4622 	 * status.
4623 	 */
4624 	cs.kv_list = NULL;
4625 	refclock_control(&peer->srcadr, NULL, &cs);
4626 	kv = cs.kv_list;
4627 	/*
4628 	 * Look for variables in the packet.
4629 	 */
4630 	rpkt.status = htons(ctlclkstatus(&cs));
4631 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4632 	wants = emalloc_zero(wants_alloc);
4633 	gotvar = FALSE;
4634 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4635 		if (!(EOV & v->flags)) {
4636 			wants[v->code] = TRUE;
4637 			gotvar = TRUE;
4638 		} else {
4639 			v = ctl_getitem(kv, &valuep);
4640 			if (NULL == v) {
4641 				ctl_error(CERR_BADVALUE);
4642 				free(wants);
4643 				free_varlist(cs.kv_list);
4644 				return;
4645 			}
4646 			if (EOV & v->flags) {
4647 				ctl_error(CERR_UNKNOWNVAR);
4648 				free(wants);
4649 				free_varlist(cs.kv_list);
4650 				return;
4651 			}
4652 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4653 			gotvar = TRUE;
4654 		}
4655 	}
4656 
4657 	if (gotvar) {
4658 		for (i = 1; i <= CC_MAXCODE; i++)
4659 			if (wants[i])
4660 				ctl_putclock(i, &cs, TRUE);
4661 		if (kv != NULL)
4662 			for (i = 0; !(EOV & kv[i].flags); i++)
4663 				if (wants[i + CC_MAXCODE + 1])
4664 					ctl_putdata(kv[i].text,
4665 						    strlen(kv[i].text),
4666 						    FALSE);
4667 	} else {
4668 		for (cc = def_clock_var; *cc != 0; cc++)
4669 			ctl_putclock((int)*cc, &cs, FALSE);
4670 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4671 			if (DEF & kv->flags)
4672 				ctl_putdata(kv->text, strlen(kv->text),
4673 					    FALSE);
4674 	}
4675 
4676 	free(wants);
4677 	free_varlist(cs.kv_list);
4678 
4679 	ctl_flushpkt(0);
4680 #endif
4681 }
4682 
4683 
4684 /*
4685  * write_clockstatus - we don't do this
4686  */
4687 /*ARGSUSED*/
4688 static void
4689 write_clockstatus(
4690 	struct recvbuf *rbufp,
4691 	int restrict_mask
4692 	)
4693 {
4694 	ctl_error(CERR_PERMISSION);
4695 }
4696 
4697 /*
4698  * Trap support from here on down. We send async trap messages when the
4699  * upper levels report trouble. Traps can by set either by control
4700  * messages or by configuration.
4701  */
4702 /*
4703  * set_trap - set a trap in response to a control message
4704  */
4705 static void
4706 set_trap(
4707 	struct recvbuf *rbufp,
4708 	int restrict_mask
4709 	)
4710 {
4711 	int traptype;
4712 
4713 	/*
4714 	 * See if this guy is allowed
4715 	 */
4716 	if (restrict_mask & RES_NOTRAP) {
4717 		ctl_error(CERR_PERMISSION);
4718 		return;
4719 	}
4720 
4721 	/*
4722 	 * Determine his allowed trap type.
4723 	 */
4724 	traptype = TRAP_TYPE_PRIO;
4725 	if (restrict_mask & RES_LPTRAP)
4726 		traptype = TRAP_TYPE_NONPRIO;
4727 
4728 	/*
4729 	 * Call ctlsettrap() to do the work.  Return
4730 	 * an error if it can't assign the trap.
4731 	 */
4732 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4733 			(int)res_version))
4734 		ctl_error(CERR_NORESOURCE);
4735 	ctl_flushpkt(0);
4736 }
4737 
4738 
4739 /*
4740  * unset_trap - unset a trap in response to a control message
4741  */
4742 static void
4743 unset_trap(
4744 	struct recvbuf *rbufp,
4745 	int restrict_mask
4746 	)
4747 {
4748 	int traptype;
4749 
4750 	/*
4751 	 * We don't prevent anyone from removing his own trap unless the
4752 	 * trap is configured. Note we also must be aware of the
4753 	 * possibility that restriction flags were changed since this
4754 	 * guy last set his trap. Set the trap type based on this.
4755 	 */
4756 	traptype = TRAP_TYPE_PRIO;
4757 	if (restrict_mask & RES_LPTRAP)
4758 		traptype = TRAP_TYPE_NONPRIO;
4759 
4760 	/*
4761 	 * Call ctlclrtrap() to clear this out.
4762 	 */
4763 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4764 		ctl_error(CERR_BADASSOC);
4765 	ctl_flushpkt(0);
4766 }
4767 
4768 
4769 /*
4770  * ctlsettrap - called to set a trap
4771  */
4772 int
4773 ctlsettrap(
4774 	sockaddr_u *raddr,
4775 	struct interface *linter,
4776 	int traptype,
4777 	int version
4778 	)
4779 {
4780 	size_t n;
4781 	struct ctl_trap *tp;
4782 	struct ctl_trap *tptouse;
4783 
4784 	/*
4785 	 * See if we can find this trap.  If so, we only need update
4786 	 * the flags and the time.
4787 	 */
4788 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4789 		switch (traptype) {
4790 
4791 		case TRAP_TYPE_CONFIG:
4792 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4793 			break;
4794 
4795 		case TRAP_TYPE_PRIO:
4796 			if (tp->tr_flags & TRAP_CONFIGURED)
4797 				return (1); /* don't change anything */
4798 			tp->tr_flags = TRAP_INUSE;
4799 			break;
4800 
4801 		case TRAP_TYPE_NONPRIO:
4802 			if (tp->tr_flags & TRAP_CONFIGURED)
4803 				return (1); /* don't change anything */
4804 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4805 			break;
4806 		}
4807 		tp->tr_settime = current_time;
4808 		tp->tr_resets++;
4809 		return (1);
4810 	}
4811 
4812 	/*
4813 	 * First we heard of this guy.	Try to find a trap structure
4814 	 * for him to use, clearing out lesser priority guys if we
4815 	 * have to. Clear out anyone who's expired while we're at it.
4816 	 */
4817 	tptouse = NULL;
4818 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4819 		tp = &ctl_traps[n];
4820 		if ((TRAP_INUSE & tp->tr_flags) &&
4821 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4822 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4823 			tp->tr_flags = 0;
4824 			num_ctl_traps--;
4825 		}
4826 		if (!(TRAP_INUSE & tp->tr_flags)) {
4827 			tptouse = tp;
4828 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4829 			switch (traptype) {
4830 
4831 			case TRAP_TYPE_CONFIG:
4832 				if (tptouse == NULL) {
4833 					tptouse = tp;
4834 					break;
4835 				}
4836 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4837 				    !(TRAP_NONPRIO & tp->tr_flags))
4838 					break;
4839 
4840 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4841 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4842 					tptouse = tp;
4843 					break;
4844 				}
4845 				if (tptouse->tr_origtime <
4846 				    tp->tr_origtime)
4847 					tptouse = tp;
4848 				break;
4849 
4850 			case TRAP_TYPE_PRIO:
4851 				if ( TRAP_NONPRIO & tp->tr_flags) {
4852 					if (tptouse == NULL ||
4853 					    ((TRAP_INUSE &
4854 					      tptouse->tr_flags) &&
4855 					     tptouse->tr_origtime <
4856 					     tp->tr_origtime))
4857 						tptouse = tp;
4858 				}
4859 				break;
4860 
4861 			case TRAP_TYPE_NONPRIO:
4862 				break;
4863 			}
4864 		}
4865 	}
4866 
4867 	/*
4868 	 * If we don't have room for him return an error.
4869 	 */
4870 	if (tptouse == NULL)
4871 		return (0);
4872 
4873 	/*
4874 	 * Set up this structure for him.
4875 	 */
4876 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4877 	tptouse->tr_count = tptouse->tr_resets = 0;
4878 	tptouse->tr_sequence = 1;
4879 	tptouse->tr_addr = *raddr;
4880 	tptouse->tr_localaddr = linter;
4881 	tptouse->tr_version = (u_char) version;
4882 	tptouse->tr_flags = TRAP_INUSE;
4883 	if (traptype == TRAP_TYPE_CONFIG)
4884 		tptouse->tr_flags |= TRAP_CONFIGURED;
4885 	else if (traptype == TRAP_TYPE_NONPRIO)
4886 		tptouse->tr_flags |= TRAP_NONPRIO;
4887 	num_ctl_traps++;
4888 	return (1);
4889 }
4890 
4891 
4892 /*
4893  * ctlclrtrap - called to clear a trap
4894  */
4895 int
4896 ctlclrtrap(
4897 	sockaddr_u *raddr,
4898 	struct interface *linter,
4899 	int traptype
4900 	)
4901 {
4902 	register struct ctl_trap *tp;
4903 
4904 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4905 		return (0);
4906 
4907 	if (tp->tr_flags & TRAP_CONFIGURED
4908 	    && traptype != TRAP_TYPE_CONFIG)
4909 		return (0);
4910 
4911 	tp->tr_flags = 0;
4912 	num_ctl_traps--;
4913 	return (1);
4914 }
4915 
4916 
4917 /*
4918  * ctlfindtrap - find a trap given the remote and local addresses
4919  */
4920 static struct ctl_trap *
4921 ctlfindtrap(
4922 	sockaddr_u *raddr,
4923 	struct interface *linter
4924 	)
4925 {
4926 	size_t	n;
4927 
4928 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4929 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4930 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4931 		    && (linter == ctl_traps[n].tr_localaddr))
4932 			return &ctl_traps[n];
4933 
4934 	return NULL;
4935 }
4936 
4937 
4938 /*
4939  * report_event - report an event to the trappers
4940  */
4941 void
4942 report_event(
4943 	int	err,		/* error code */
4944 	struct peer *peer,	/* peer structure pointer */
4945 	const char *str		/* protostats string */
4946 	)
4947 {
4948 	char	statstr[NTP_MAXSTRLEN];
4949 	int	i;
4950 	size_t	len;
4951 
4952 	/*
4953 	 * Report the error to the protostats file, system log and
4954 	 * trappers.
4955 	 */
4956 	if (peer == NULL) {
4957 
4958 		/*
4959 		 * Discard a system report if the number of reports of
4960 		 * the same type exceeds the maximum.
4961 		 */
4962 		if (ctl_sys_last_event != (u_char)err)
4963 			ctl_sys_num_events= 0;
4964 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4965 			return;
4966 
4967 		ctl_sys_last_event = (u_char)err;
4968 		ctl_sys_num_events++;
4969 		snprintf(statstr, sizeof(statstr),
4970 		    "0.0.0.0 %04x %02x %s",
4971 		    ctlsysstatus(), err, eventstr(err));
4972 		if (str != NULL) {
4973 			len = strlen(statstr);
4974 			snprintf(statstr + len, sizeof(statstr) - len,
4975 			    " %s", str);
4976 		}
4977 		NLOG(NLOG_SYSEVENT)
4978 			msyslog(LOG_INFO, "%s", statstr);
4979 	} else {
4980 
4981 		/*
4982 		 * Discard a peer report if the number of reports of
4983 		 * the same type exceeds the maximum for that peer.
4984 		 */
4985 		const char *	src;
4986 		u_char		errlast;
4987 
4988 		errlast = (u_char)err & ~PEER_EVENT;
4989 		if (peer->last_event != errlast)
4990 			peer->num_events = 0;
4991 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4992 			return;
4993 
4994 		peer->last_event = errlast;
4995 		peer->num_events++;
4996 		if (ISREFCLOCKADR(&peer->srcadr))
4997 			src = refnumtoa(&peer->srcadr);
4998 		else
4999 			src = stoa(&peer->srcadr);
5000 
5001 		snprintf(statstr, sizeof(statstr),
5002 		    "%s %04x %02x %s", src,
5003 		    ctlpeerstatus(peer), err, eventstr(err));
5004 		if (str != NULL) {
5005 			len = strlen(statstr);
5006 			snprintf(statstr + len, sizeof(statstr) - len,
5007 			    " %s", str);
5008 		}
5009 		NLOG(NLOG_PEEREVENT)
5010 			msyslog(LOG_INFO, "%s", statstr);
5011 	}
5012 	record_proto_stats(statstr);
5013 #if DEBUG
5014 	if (debug)
5015 		printf("event at %lu %s\n", current_time, statstr);
5016 #endif
5017 
5018 	/*
5019 	 * If no trappers, return.
5020 	 */
5021 	if (num_ctl_traps <= 0)
5022 		return;
5023 
5024 	/* [Bug 3119]
5025 	 * Peer Events should be associated with a peer -- hence the
5026 	 * name. But there are instances where this function is called
5027 	 * *without* a valid peer. This happens e.g. with an unsolicited
5028 	 * CryptoNAK, or when a leap second alarm is going off while
5029 	 * currently without a system peer.
5030 	 *
5031 	 * The most sensible approach to this seems to bail out here if
5032 	 * this happens. Avoiding to call this function would also
5033 	 * bypass the log reporting in the first part of this function,
5034 	 * and this is probably not the best of all options.
5035 	 *   -*-perlinger@ntp.org-*-
5036 	 */
5037 	if ((err & PEER_EVENT) && !peer)
5038 		return;
5039 
5040 	/*
5041 	 * Set up the outgoing packet variables
5042 	 */
5043 	res_opcode = CTL_OP_ASYNCMSG;
5044 	res_offset = 0;
5045 	res_async = TRUE;
5046 	res_authenticate = FALSE;
5047 	datapt = rpkt.u.data;
5048 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5049 	if (!(err & PEER_EVENT)) {
5050 		rpkt.associd = 0;
5051 		rpkt.status = htons(ctlsysstatus());
5052 
5053 		/* Include the core system variables and the list. */
5054 		for (i = 1; i <= CS_VARLIST; i++)
5055 			ctl_putsys(i);
5056 	} else if (NULL != peer) { /* paranoia -- skip output */
5057 		rpkt.associd = htons(peer->associd);
5058 		rpkt.status = htons(ctlpeerstatus(peer));
5059 
5060 		/* Dump it all. Later, maybe less. */
5061 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5062 			ctl_putpeer(i, peer);
5063 #	    ifdef REFCLOCK
5064 		/*
5065 		 * for clock exception events: add clock variables to
5066 		 * reflect info on exception
5067 		 */
5068 		if (err == PEVNT_CLOCK) {
5069 			struct refclockstat cs;
5070 			struct ctl_var *kv;
5071 
5072 			cs.kv_list = NULL;
5073 			refclock_control(&peer->srcadr, NULL, &cs);
5074 
5075 			ctl_puthex("refclockstatus",
5076 				   ctlclkstatus(&cs));
5077 
5078 			for (i = 1; i <= CC_MAXCODE; i++)
5079 				ctl_putclock(i, &cs, FALSE);
5080 			for (kv = cs.kv_list;
5081 			     kv != NULL && !(EOV & kv->flags);
5082 			     kv++)
5083 				if (DEF & kv->flags)
5084 					ctl_putdata(kv->text,
5085 						    strlen(kv->text),
5086 						    FALSE);
5087 			free_varlist(cs.kv_list);
5088 		}
5089 #	    endif /* REFCLOCK */
5090 	}
5091 
5092 	/*
5093 	 * We're done, return.
5094 	 */
5095 	ctl_flushpkt(0);
5096 }
5097 
5098 
5099 /*
5100  * mprintf_event - printf-style varargs variant of report_event()
5101  */
5102 int
5103 mprintf_event(
5104 	int		evcode,		/* event code */
5105 	struct peer *	p,		/* may be NULL */
5106 	const char *	fmt,		/* msnprintf format */
5107 	...
5108 	)
5109 {
5110 	va_list	ap;
5111 	int	rc;
5112 	char	msg[512];
5113 
5114 	va_start(ap, fmt);
5115 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5116 	va_end(ap);
5117 	report_event(evcode, p, msg);
5118 
5119 	return rc;
5120 }
5121 
5122 
5123 /*
5124  * ctl_clr_stats - clear stat counters
5125  */
5126 void
5127 ctl_clr_stats(void)
5128 {
5129 	ctltimereset = current_time;
5130 	numctlreq = 0;
5131 	numctlbadpkts = 0;
5132 	numctlresponses = 0;
5133 	numctlfrags = 0;
5134 	numctlerrors = 0;
5135 	numctlfrags = 0;
5136 	numctltooshort = 0;
5137 	numctlinputresp = 0;
5138 	numctlinputfrag = 0;
5139 	numctlinputerr = 0;
5140 	numctlbadoffset = 0;
5141 	numctlbadversion = 0;
5142 	numctldatatooshort = 0;
5143 	numctlbadop = 0;
5144 	numasyncmsgs = 0;
5145 }
5146 
5147 static u_short
5148 count_var(
5149 	const struct ctl_var *k
5150 	)
5151 {
5152 	u_int c;
5153 
5154 	if (NULL == k)
5155 		return 0;
5156 
5157 	c = 0;
5158 	while (!(EOV & (k++)->flags))
5159 		c++;
5160 
5161 	ENSURE(c <= USHRT_MAX);
5162 	return (u_short)c;
5163 }
5164 
5165 
5166 char *
5167 add_var(
5168 	struct ctl_var **kv,
5169 	u_long size,
5170 	u_short def
5171 	)
5172 {
5173 	u_short		c;
5174 	struct ctl_var *k;
5175 	char *		buf;
5176 
5177 	c = count_var(*kv);
5178 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5179 	k = *kv;
5180 	buf = emalloc(size);
5181 	k[c].code  = c;
5182 	k[c].text  = buf;
5183 	k[c].flags = def;
5184 	k[c + 1].code  = 0;
5185 	k[c + 1].text  = NULL;
5186 	k[c + 1].flags = EOV;
5187 
5188 	return buf;
5189 }
5190 
5191 
5192 void
5193 set_var(
5194 	struct ctl_var **kv,
5195 	const char *data,
5196 	u_long size,
5197 	u_short def
5198 	)
5199 {
5200 	struct ctl_var *k;
5201 	const char *s;
5202 	const char *t;
5203 	char *td;
5204 
5205 	if (NULL == data || !size)
5206 		return;
5207 
5208 	k = *kv;
5209 	if (k != NULL) {
5210 		while (!(EOV & k->flags)) {
5211 			if (NULL == k->text)	{
5212 				td = emalloc(size);
5213 				memcpy(td, data, size);
5214 				k->text = td;
5215 				k->flags = def;
5216 				return;
5217 			} else {
5218 				s = data;
5219 				t = k->text;
5220 				while (*t != '=' && *s == *t) {
5221 					s++;
5222 					t++;
5223 				}
5224 				if (*s == *t && ((*t == '=') || !*t)) {
5225 					td = erealloc((void *)(intptr_t)k->text, size);
5226 					memcpy(td, data, size);
5227 					k->text = td;
5228 					k->flags = def;
5229 					return;
5230 				}
5231 			}
5232 			k++;
5233 		}
5234 	}
5235 	td = add_var(kv, size, def);
5236 	memcpy(td, data, size);
5237 }
5238 
5239 
5240 void
5241 set_sys_var(
5242 	const char *data,
5243 	u_long size,
5244 	u_short def
5245 	)
5246 {
5247 	set_var(&ext_sys_var, data, size, def);
5248 }
5249 
5250 
5251 /*
5252  * get_ext_sys_var() retrieves the value of a user-defined variable or
5253  * NULL if the variable has not been setvar'd.
5254  */
5255 const char *
5256 get_ext_sys_var(const char *tag)
5257 {
5258 	struct ctl_var *	v;
5259 	size_t			c;
5260 	const char *		val;
5261 
5262 	val = NULL;
5263 	c = strlen(tag);
5264 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5265 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5266 			if ('=' == v->text[c]) {
5267 				val = v->text + c + 1;
5268 				break;
5269 			} else if ('\0' == v->text[c]) {
5270 				val = "";
5271 				break;
5272 			}
5273 		}
5274 	}
5275 
5276 	return val;
5277 }
5278 
5279 
5280 void
5281 free_varlist(
5282 	struct ctl_var *kv
5283 	)
5284 {
5285 	struct ctl_var *k;
5286 	if (kv) {
5287 		for (k = kv; !(k->flags & EOV); k++)
5288 			free((void *)(intptr_t)k->text);
5289 		free((void *)kv);
5290 	}
5291 }
5292