1 /* $NetBSD: ntp_control.c,v 1.23 2020/05/25 20:47:25 christos Exp $ */ 2 3 /* 4 * ntp_control.c - respond to mode 6 control messages and send async 5 * traps. Provides service to ntpq and others. 6 */ 7 8 #ifdef HAVE_CONFIG_H 9 # include <config.h> 10 #endif 11 12 #include <stdio.h> 13 #include <ctype.h> 14 #include <signal.h> 15 #include <sys/stat.h> 16 #ifdef HAVE_NETINET_IN_H 17 # include <netinet/in.h> 18 #endif 19 #include <arpa/inet.h> 20 21 #include "ntpd.h" 22 #include "ntp_io.h" 23 #include "ntp_refclock.h" 24 #include "ntp_control.h" 25 #include "ntp_unixtime.h" 26 #include "ntp_stdlib.h" 27 #include "ntp_config.h" 28 #include "ntp_crypto.h" 29 #include "ntp_assert.h" 30 #include "ntp_leapsec.h" 31 #include "ntp_md5.h" /* provides OpenSSL digest API */ 32 #include "lib_strbuf.h" 33 #include "timexsup.h" 34 35 #include <rc_cmdlength.h> 36 #ifdef KERNEL_PLL 37 # include "ntp_syscall.h" 38 #endif 39 40 /* 41 * Structure to hold request procedure information 42 */ 43 44 struct ctl_proc { 45 short control_code; /* defined request code */ 46 #define NO_REQUEST (-1) 47 u_short flags; /* flags word */ 48 /* Only one flag. Authentication required or not. */ 49 #define NOAUTH 0 50 #define AUTH 1 51 void (*handler) (struct recvbuf *, int); /* handle request */ 52 }; 53 54 55 /* 56 * Request processing routines 57 */ 58 static void ctl_error (u_char); 59 #ifdef REFCLOCK 60 static u_short ctlclkstatus (struct refclockstat *); 61 #endif 62 static void ctl_flushpkt (u_char); 63 static void ctl_putdata (const char *, unsigned int, int); 64 static void ctl_putstr (const char *, const char *, size_t); 65 static void ctl_putdblf (const char *, int, int, double); 66 #define ctl_putdbl(tag, d) ctl_putdblf(tag, 1, 3, d) 67 #define ctl_putdbl6(tag, d) ctl_putdblf(tag, 1, 6, d) 68 #define ctl_putsfp(tag, sfp) ctl_putdblf(tag, 0, -1, \ 69 FPTOD(sfp)) 70 static void ctl_putuint (const char *, u_long); 71 static void ctl_puthex (const char *, u_long); 72 static void ctl_putint (const char *, long); 73 static void ctl_putts (const char *, l_fp *); 74 static void ctl_putadr (const char *, u_int32, 75 sockaddr_u *); 76 static void ctl_putrefid (const char *, u_int32); 77 static void ctl_putarray (const char *, double *, int); 78 static void ctl_putsys (int); 79 static void ctl_putpeer (int, struct peer *); 80 static void ctl_putfs (const char *, tstamp_t); 81 static void ctl_printf (const char *, ...) NTP_PRINTF(1, 2); 82 #ifdef REFCLOCK 83 static void ctl_putclock (int, struct refclockstat *, int); 84 #endif /* REFCLOCK */ 85 static const struct ctl_var *ctl_getitem(const struct ctl_var *, 86 char **); 87 static u_short count_var (const struct ctl_var *); 88 static void control_unspec (struct recvbuf *, int); 89 static void read_status (struct recvbuf *, int); 90 static void read_sysvars (void); 91 static void read_peervars (void); 92 static void read_variables (struct recvbuf *, int); 93 static void write_variables (struct recvbuf *, int); 94 static void read_clockstatus(struct recvbuf *, int); 95 static void write_clockstatus(struct recvbuf *, int); 96 static void set_trap (struct recvbuf *, int); 97 static void save_config (struct recvbuf *, int); 98 static void configure (struct recvbuf *, int); 99 static void send_mru_entry (mon_entry *, int); 100 static void send_random_tag_value(int); 101 static void read_mru_list (struct recvbuf *, int); 102 static void send_ifstats_entry(endpt *, u_int); 103 static void read_ifstats (struct recvbuf *); 104 static void sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *, 105 restrict_u *, int); 106 static void send_restrict_entry(restrict_u *, int, u_int); 107 static void send_restrict_list(restrict_u *, int, u_int *); 108 static void read_addr_restrictions(struct recvbuf *); 109 static void read_ordlist (struct recvbuf *, int); 110 static u_int32 derive_nonce (sockaddr_u *, u_int32, u_int32); 111 static void generate_nonce (struct recvbuf *, char *, size_t); 112 static int validate_nonce (const char *, struct recvbuf *); 113 static void req_nonce (struct recvbuf *, int); 114 static void unset_trap (struct recvbuf *, int); 115 static struct ctl_trap *ctlfindtrap(sockaddr_u *, 116 struct interface *); 117 118 int/*BOOL*/ is_safe_filename(const char * name); 119 120 static const struct ctl_proc control_codes[] = { 121 { CTL_OP_UNSPEC, NOAUTH, control_unspec }, 122 { CTL_OP_READSTAT, NOAUTH, read_status }, 123 { CTL_OP_READVAR, NOAUTH, read_variables }, 124 { CTL_OP_WRITEVAR, AUTH, write_variables }, 125 { CTL_OP_READCLOCK, NOAUTH, read_clockstatus }, 126 { CTL_OP_WRITECLOCK, AUTH, write_clockstatus }, 127 { CTL_OP_SETTRAP, AUTH, set_trap }, 128 { CTL_OP_CONFIGURE, AUTH, configure }, 129 { CTL_OP_SAVECONFIG, AUTH, save_config }, 130 { CTL_OP_READ_MRU, NOAUTH, read_mru_list }, 131 { CTL_OP_READ_ORDLIST_A, AUTH, read_ordlist }, 132 { CTL_OP_REQ_NONCE, NOAUTH, req_nonce }, 133 { CTL_OP_UNSETTRAP, AUTH, unset_trap }, 134 { NO_REQUEST, 0, NULL } 135 }; 136 137 /* 138 * System variables we understand 139 */ 140 #define CS_LEAP 1 141 #define CS_STRATUM 2 142 #define CS_PRECISION 3 143 #define CS_ROOTDELAY 4 144 #define CS_ROOTDISPERSION 5 145 #define CS_REFID 6 146 #define CS_REFTIME 7 147 #define CS_POLL 8 148 #define CS_PEERID 9 149 #define CS_OFFSET 10 150 #define CS_DRIFT 11 151 #define CS_JITTER 12 152 #define CS_ERROR 13 153 #define CS_CLOCK 14 154 #define CS_PROCESSOR 15 155 #define CS_SYSTEM 16 156 #define CS_VERSION 17 157 #define CS_STABIL 18 158 #define CS_VARLIST 19 159 #define CS_TAI 20 160 #define CS_LEAPTAB 21 161 #define CS_LEAPEND 22 162 #define CS_RATE 23 163 #define CS_MRU_ENABLED 24 164 #define CS_MRU_DEPTH 25 165 #define CS_MRU_DEEPEST 26 166 #define CS_MRU_MINDEPTH 27 167 #define CS_MRU_MAXAGE 28 168 #define CS_MRU_MAXDEPTH 29 169 #define CS_MRU_MEM 30 170 #define CS_MRU_MAXMEM 31 171 #define CS_SS_UPTIME 32 172 #define CS_SS_RESET 33 173 #define CS_SS_RECEIVED 34 174 #define CS_SS_THISVER 35 175 #define CS_SS_OLDVER 36 176 #define CS_SS_BADFORMAT 37 177 #define CS_SS_BADAUTH 38 178 #define CS_SS_DECLINED 39 179 #define CS_SS_RESTRICTED 40 180 #define CS_SS_LIMITED 41 181 #define CS_SS_KODSENT 42 182 #define CS_SS_PROCESSED 43 183 #define CS_SS_LAMPORT 44 184 #define CS_SS_TSROUNDING 45 185 #define CS_PEERADR 46 186 #define CS_PEERMODE 47 187 #define CS_BCASTDELAY 48 188 #define CS_AUTHDELAY 49 189 #define CS_AUTHKEYS 50 190 #define CS_AUTHFREEK 51 191 #define CS_AUTHKLOOKUPS 52 192 #define CS_AUTHKNOTFOUND 53 193 #define CS_AUTHKUNCACHED 54 194 #define CS_AUTHKEXPIRED 55 195 #define CS_AUTHENCRYPTS 56 196 #define CS_AUTHDECRYPTS 57 197 #define CS_AUTHRESET 58 198 #define CS_K_OFFSET 59 199 #define CS_K_FREQ 60 200 #define CS_K_MAXERR 61 201 #define CS_K_ESTERR 62 202 #define CS_K_STFLAGS 63 203 #define CS_K_TIMECONST 64 204 #define CS_K_PRECISION 65 205 #define CS_K_FREQTOL 66 206 #define CS_K_PPS_FREQ 67 207 #define CS_K_PPS_STABIL 68 208 #define CS_K_PPS_JITTER 69 209 #define CS_K_PPS_CALIBDUR 70 210 #define CS_K_PPS_CALIBS 71 211 #define CS_K_PPS_CALIBERRS 72 212 #define CS_K_PPS_JITEXC 73 213 #define CS_K_PPS_STBEXC 74 214 #define CS_KERN_FIRST CS_K_OFFSET 215 #define CS_KERN_LAST CS_K_PPS_STBEXC 216 #define CS_IOSTATS_RESET 75 217 #define CS_TOTAL_RBUF 76 218 #define CS_FREE_RBUF 77 219 #define CS_USED_RBUF 78 220 #define CS_RBUF_LOWATER 79 221 #define CS_IO_DROPPED 80 222 #define CS_IO_IGNORED 81 223 #define CS_IO_RECEIVED 82 224 #define CS_IO_SENT 83 225 #define CS_IO_SENDFAILED 84 226 #define CS_IO_WAKEUPS 85 227 #define CS_IO_GOODWAKEUPS 86 228 #define CS_TIMERSTATS_RESET 87 229 #define CS_TIMER_OVERRUNS 88 230 #define CS_TIMER_XMTS 89 231 #define CS_FUZZ 90 232 #define CS_WANDER_THRESH 91 233 #define CS_LEAPSMEARINTV 92 234 #define CS_LEAPSMEAROFFS 93 235 #define CS_MAX_NOAUTOKEY CS_LEAPSMEAROFFS 236 #ifdef AUTOKEY 237 #define CS_FLAGS (1 + CS_MAX_NOAUTOKEY) 238 #define CS_HOST (2 + CS_MAX_NOAUTOKEY) 239 #define CS_PUBLIC (3 + CS_MAX_NOAUTOKEY) 240 #define CS_CERTIF (4 + CS_MAX_NOAUTOKEY) 241 #define CS_SIGNATURE (5 + CS_MAX_NOAUTOKEY) 242 #define CS_REVTIME (6 + CS_MAX_NOAUTOKEY) 243 #define CS_IDENT (7 + CS_MAX_NOAUTOKEY) 244 #define CS_DIGEST (8 + CS_MAX_NOAUTOKEY) 245 #define CS_MAXCODE CS_DIGEST 246 #else /* !AUTOKEY follows */ 247 #define CS_MAXCODE CS_MAX_NOAUTOKEY 248 #endif /* !AUTOKEY */ 249 250 /* 251 * Peer variables we understand 252 */ 253 #define CP_CONFIG 1 254 #define CP_AUTHENABLE 2 255 #define CP_AUTHENTIC 3 256 #define CP_SRCADR 4 257 #define CP_SRCPORT 5 258 #define CP_DSTADR 6 259 #define CP_DSTPORT 7 260 #define CP_LEAP 8 261 #define CP_HMODE 9 262 #define CP_STRATUM 10 263 #define CP_PPOLL 11 264 #define CP_HPOLL 12 265 #define CP_PRECISION 13 266 #define CP_ROOTDELAY 14 267 #define CP_ROOTDISPERSION 15 268 #define CP_REFID 16 269 #define CP_REFTIME 17 270 #define CP_ORG 18 271 #define CP_REC 19 272 #define CP_XMT 20 273 #define CP_REACH 21 274 #define CP_UNREACH 22 275 #define CP_TIMER 23 276 #define CP_DELAY 24 277 #define CP_OFFSET 25 278 #define CP_JITTER 26 279 #define CP_DISPERSION 27 280 #define CP_KEYID 28 281 #define CP_FILTDELAY 29 282 #define CP_FILTOFFSET 30 283 #define CP_PMODE 31 284 #define CP_RECEIVED 32 285 #define CP_SENT 33 286 #define CP_FILTERROR 34 287 #define CP_FLASH 35 288 #define CP_TTL 36 289 #define CP_VARLIST 37 290 #define CP_IN 38 291 #define CP_OUT 39 292 #define CP_RATE 40 293 #define CP_BIAS 41 294 #define CP_SRCHOST 42 295 #define CP_TIMEREC 43 296 #define CP_TIMEREACH 44 297 #define CP_BADAUTH 45 298 #define CP_BOGUSORG 46 299 #define CP_OLDPKT 47 300 #define CP_SELDISP 48 301 #define CP_SELBROKEN 49 302 #define CP_CANDIDATE 50 303 #define CP_MAX_NOAUTOKEY CP_CANDIDATE 304 #ifdef AUTOKEY 305 #define CP_FLAGS (1 + CP_MAX_NOAUTOKEY) 306 #define CP_HOST (2 + CP_MAX_NOAUTOKEY) 307 #define CP_VALID (3 + CP_MAX_NOAUTOKEY) 308 #define CP_INITSEQ (4 + CP_MAX_NOAUTOKEY) 309 #define CP_INITKEY (5 + CP_MAX_NOAUTOKEY) 310 #define CP_INITTSP (6 + CP_MAX_NOAUTOKEY) 311 #define CP_SIGNATURE (7 + CP_MAX_NOAUTOKEY) 312 #define CP_IDENT (8 + CP_MAX_NOAUTOKEY) 313 #define CP_MAXCODE CP_IDENT 314 #else /* !AUTOKEY follows */ 315 #define CP_MAXCODE CP_MAX_NOAUTOKEY 316 #endif /* !AUTOKEY */ 317 318 /* 319 * Clock variables we understand 320 */ 321 #define CC_TYPE 1 322 #define CC_TIMECODE 2 323 #define CC_POLL 3 324 #define CC_NOREPLY 4 325 #define CC_BADFORMAT 5 326 #define CC_BADDATA 6 327 #define CC_FUDGETIME1 7 328 #define CC_FUDGETIME2 8 329 #define CC_FUDGEVAL1 9 330 #define CC_FUDGEVAL2 10 331 #define CC_FLAGS 11 332 #define CC_DEVICE 12 333 #define CC_VARLIST 13 334 #define CC_FUDGEMINJIT 14 335 #define CC_MAXCODE CC_FUDGEMINJIT 336 337 /* 338 * System variable values. The array can be indexed by the variable 339 * index to find the textual name. 340 */ 341 static const struct ctl_var sys_var[] = { 342 { 0, PADDING, "" }, /* 0 */ 343 { CS_LEAP, RW, "leap" }, /* 1 */ 344 { CS_STRATUM, RO, "stratum" }, /* 2 */ 345 { CS_PRECISION, RO, "precision" }, /* 3 */ 346 { CS_ROOTDELAY, RO, "rootdelay" }, /* 4 */ 347 { CS_ROOTDISPERSION, RO, "rootdisp" }, /* 5 */ 348 { CS_REFID, RO, "refid" }, /* 6 */ 349 { CS_REFTIME, RO, "reftime" }, /* 7 */ 350 { CS_POLL, RO, "tc" }, /* 8 */ 351 { CS_PEERID, RO, "peer" }, /* 9 */ 352 { CS_OFFSET, RO, "offset" }, /* 10 */ 353 { CS_DRIFT, RO, "frequency" }, /* 11 */ 354 { CS_JITTER, RO, "sys_jitter" }, /* 12 */ 355 { CS_ERROR, RO, "clk_jitter" }, /* 13 */ 356 { CS_CLOCK, RO, "clock" }, /* 14 */ 357 { CS_PROCESSOR, RO, "processor" }, /* 15 */ 358 { CS_SYSTEM, RO, "system" }, /* 16 */ 359 { CS_VERSION, RO, "version" }, /* 17 */ 360 { CS_STABIL, RO, "clk_wander" }, /* 18 */ 361 { CS_VARLIST, RO, "sys_var_list" }, /* 19 */ 362 { CS_TAI, RO, "tai" }, /* 20 */ 363 { CS_LEAPTAB, RO, "leapsec" }, /* 21 */ 364 { CS_LEAPEND, RO, "expire" }, /* 22 */ 365 { CS_RATE, RO, "mintc" }, /* 23 */ 366 { CS_MRU_ENABLED, RO, "mru_enabled" }, /* 24 */ 367 { CS_MRU_DEPTH, RO, "mru_depth" }, /* 25 */ 368 { CS_MRU_DEEPEST, RO, "mru_deepest" }, /* 26 */ 369 { CS_MRU_MINDEPTH, RO, "mru_mindepth" }, /* 27 */ 370 { CS_MRU_MAXAGE, RO, "mru_maxage" }, /* 28 */ 371 { CS_MRU_MAXDEPTH, RO, "mru_maxdepth" }, /* 29 */ 372 { CS_MRU_MEM, RO, "mru_mem" }, /* 30 */ 373 { CS_MRU_MAXMEM, RO, "mru_maxmem" }, /* 31 */ 374 { CS_SS_UPTIME, RO, "ss_uptime" }, /* 32 */ 375 { CS_SS_RESET, RO, "ss_reset" }, /* 33 */ 376 { CS_SS_RECEIVED, RO, "ss_received" }, /* 34 */ 377 { CS_SS_THISVER, RO, "ss_thisver" }, /* 35 */ 378 { CS_SS_OLDVER, RO, "ss_oldver" }, /* 36 */ 379 { CS_SS_BADFORMAT, RO, "ss_badformat" }, /* 37 */ 380 { CS_SS_BADAUTH, RO, "ss_badauth" }, /* 38 */ 381 { CS_SS_DECLINED, RO, "ss_declined" }, /* 39 */ 382 { CS_SS_RESTRICTED, RO, "ss_restricted" }, /* 40 */ 383 { CS_SS_LIMITED, RO, "ss_limited" }, /* 41 */ 384 { CS_SS_KODSENT, RO, "ss_kodsent" }, /* 42 */ 385 { CS_SS_PROCESSED, RO, "ss_processed" }, /* 43 */ 386 { CS_SS_LAMPORT, RO, "ss_lamport" }, /* 44 */ 387 { CS_SS_TSROUNDING, RO, "ss_tsrounding" }, /* 45 */ 388 { CS_PEERADR, RO, "peeradr" }, /* 46 */ 389 { CS_PEERMODE, RO, "peermode" }, /* 47 */ 390 { CS_BCASTDELAY, RO, "bcastdelay" }, /* 48 */ 391 { CS_AUTHDELAY, RO, "authdelay" }, /* 49 */ 392 { CS_AUTHKEYS, RO, "authkeys" }, /* 50 */ 393 { CS_AUTHFREEK, RO, "authfreek" }, /* 51 */ 394 { CS_AUTHKLOOKUPS, RO, "authklookups" }, /* 52 */ 395 { CS_AUTHKNOTFOUND, RO, "authknotfound" }, /* 53 */ 396 { CS_AUTHKUNCACHED, RO, "authkuncached" }, /* 54 */ 397 { CS_AUTHKEXPIRED, RO, "authkexpired" }, /* 55 */ 398 { CS_AUTHENCRYPTS, RO, "authencrypts" }, /* 56 */ 399 { CS_AUTHDECRYPTS, RO, "authdecrypts" }, /* 57 */ 400 { CS_AUTHRESET, RO, "authreset" }, /* 58 */ 401 { CS_K_OFFSET, RO, "koffset" }, /* 59 */ 402 { CS_K_FREQ, RO, "kfreq" }, /* 60 */ 403 { CS_K_MAXERR, RO, "kmaxerr" }, /* 61 */ 404 { CS_K_ESTERR, RO, "kesterr" }, /* 62 */ 405 { CS_K_STFLAGS, RO, "kstflags" }, /* 63 */ 406 { CS_K_TIMECONST, RO, "ktimeconst" }, /* 64 */ 407 { CS_K_PRECISION, RO, "kprecis" }, /* 65 */ 408 { CS_K_FREQTOL, RO, "kfreqtol" }, /* 66 */ 409 { CS_K_PPS_FREQ, RO, "kppsfreq" }, /* 67 */ 410 { CS_K_PPS_STABIL, RO, "kppsstab" }, /* 68 */ 411 { CS_K_PPS_JITTER, RO, "kppsjitter" }, /* 69 */ 412 { CS_K_PPS_CALIBDUR, RO, "kppscalibdur" }, /* 70 */ 413 { CS_K_PPS_CALIBS, RO, "kppscalibs" }, /* 71 */ 414 { CS_K_PPS_CALIBERRS, RO, "kppscaliberrs" }, /* 72 */ 415 { CS_K_PPS_JITEXC, RO, "kppsjitexc" }, /* 73 */ 416 { CS_K_PPS_STBEXC, RO, "kppsstbexc" }, /* 74 */ 417 { CS_IOSTATS_RESET, RO, "iostats_reset" }, /* 75 */ 418 { CS_TOTAL_RBUF, RO, "total_rbuf" }, /* 76 */ 419 { CS_FREE_RBUF, RO, "free_rbuf" }, /* 77 */ 420 { CS_USED_RBUF, RO, "used_rbuf" }, /* 78 */ 421 { CS_RBUF_LOWATER, RO, "rbuf_lowater" }, /* 79 */ 422 { CS_IO_DROPPED, RO, "io_dropped" }, /* 80 */ 423 { CS_IO_IGNORED, RO, "io_ignored" }, /* 81 */ 424 { CS_IO_RECEIVED, RO, "io_received" }, /* 82 */ 425 { CS_IO_SENT, RO, "io_sent" }, /* 83 */ 426 { CS_IO_SENDFAILED, RO, "io_sendfailed" }, /* 84 */ 427 { CS_IO_WAKEUPS, RO, "io_wakeups" }, /* 85 */ 428 { CS_IO_GOODWAKEUPS, RO, "io_goodwakeups" }, /* 86 */ 429 { CS_TIMERSTATS_RESET, RO, "timerstats_reset" },/* 87 */ 430 { CS_TIMER_OVERRUNS, RO, "timer_overruns" }, /* 88 */ 431 { CS_TIMER_XMTS, RO, "timer_xmts" }, /* 89 */ 432 { CS_FUZZ, RO, "fuzz" }, /* 90 */ 433 { CS_WANDER_THRESH, RO, "clk_wander_threshold" }, /* 91 */ 434 435 { CS_LEAPSMEARINTV, RO, "leapsmearinterval" }, /* 92 */ 436 { CS_LEAPSMEAROFFS, RO, "leapsmearoffset" }, /* 93 */ 437 438 #ifdef AUTOKEY 439 { CS_FLAGS, RO, "flags" }, /* 1 + CS_MAX_NOAUTOKEY */ 440 { CS_HOST, RO, "host" }, /* 2 + CS_MAX_NOAUTOKEY */ 441 { CS_PUBLIC, RO, "update" }, /* 3 + CS_MAX_NOAUTOKEY */ 442 { CS_CERTIF, RO, "cert" }, /* 4 + CS_MAX_NOAUTOKEY */ 443 { CS_SIGNATURE, RO, "signature" }, /* 5 + CS_MAX_NOAUTOKEY */ 444 { CS_REVTIME, RO, "until" }, /* 6 + CS_MAX_NOAUTOKEY */ 445 { CS_IDENT, RO, "ident" }, /* 7 + CS_MAX_NOAUTOKEY */ 446 { CS_DIGEST, RO, "digest" }, /* 8 + CS_MAX_NOAUTOKEY */ 447 #endif /* AUTOKEY */ 448 { 0, EOV, "" } /* 94/102 */ 449 }; 450 451 static struct ctl_var *ext_sys_var = NULL; 452 453 /* 454 * System variables we print by default (in fuzzball order, 455 * more-or-less) 456 */ 457 static const u_char def_sys_var[] = { 458 CS_VERSION, 459 CS_PROCESSOR, 460 CS_SYSTEM, 461 CS_LEAP, 462 CS_STRATUM, 463 CS_PRECISION, 464 CS_ROOTDELAY, 465 CS_ROOTDISPERSION, 466 CS_REFID, 467 CS_REFTIME, 468 CS_CLOCK, 469 CS_PEERID, 470 CS_POLL, 471 CS_RATE, 472 CS_OFFSET, 473 CS_DRIFT, 474 CS_JITTER, 475 CS_ERROR, 476 CS_STABIL, 477 CS_TAI, 478 CS_LEAPTAB, 479 CS_LEAPEND, 480 CS_LEAPSMEARINTV, 481 CS_LEAPSMEAROFFS, 482 #ifdef AUTOKEY 483 CS_HOST, 484 CS_IDENT, 485 CS_FLAGS, 486 CS_DIGEST, 487 CS_SIGNATURE, 488 CS_PUBLIC, 489 CS_CERTIF, 490 #endif /* AUTOKEY */ 491 0 492 }; 493 494 495 /* 496 * Peer variable list 497 */ 498 static const struct ctl_var peer_var[] = { 499 { 0, PADDING, "" }, /* 0 */ 500 { CP_CONFIG, RO, "config" }, /* 1 */ 501 { CP_AUTHENABLE, RO, "authenable" }, /* 2 */ 502 { CP_AUTHENTIC, RO, "authentic" }, /* 3 */ 503 { CP_SRCADR, RO, "srcadr" }, /* 4 */ 504 { CP_SRCPORT, RO, "srcport" }, /* 5 */ 505 { CP_DSTADR, RO, "dstadr" }, /* 6 */ 506 { CP_DSTPORT, RO, "dstport" }, /* 7 */ 507 { CP_LEAP, RO, "leap" }, /* 8 */ 508 { CP_HMODE, RO, "hmode" }, /* 9 */ 509 { CP_STRATUM, RO, "stratum" }, /* 10 */ 510 { CP_PPOLL, RO, "ppoll" }, /* 11 */ 511 { CP_HPOLL, RO, "hpoll" }, /* 12 */ 512 { CP_PRECISION, RO, "precision" }, /* 13 */ 513 { CP_ROOTDELAY, RO, "rootdelay" }, /* 14 */ 514 { CP_ROOTDISPERSION, RO, "rootdisp" }, /* 15 */ 515 { CP_REFID, RO, "refid" }, /* 16 */ 516 { CP_REFTIME, RO, "reftime" }, /* 17 */ 517 { CP_ORG, RO, "org" }, /* 18 */ 518 { CP_REC, RO, "rec" }, /* 19 */ 519 { CP_XMT, RO, "xleave" }, /* 20 */ 520 { CP_REACH, RO, "reach" }, /* 21 */ 521 { CP_UNREACH, RO, "unreach" }, /* 22 */ 522 { CP_TIMER, RO, "timer" }, /* 23 */ 523 { CP_DELAY, RO, "delay" }, /* 24 */ 524 { CP_OFFSET, RO, "offset" }, /* 25 */ 525 { CP_JITTER, RO, "jitter" }, /* 26 */ 526 { CP_DISPERSION, RO, "dispersion" }, /* 27 */ 527 { CP_KEYID, RO, "keyid" }, /* 28 */ 528 { CP_FILTDELAY, RO, "filtdelay" }, /* 29 */ 529 { CP_FILTOFFSET, RO, "filtoffset" }, /* 30 */ 530 { CP_PMODE, RO, "pmode" }, /* 31 */ 531 { CP_RECEIVED, RO, "received"}, /* 32 */ 532 { CP_SENT, RO, "sent" }, /* 33 */ 533 { CP_FILTERROR, RO, "filtdisp" }, /* 34 */ 534 { CP_FLASH, RO, "flash" }, /* 35 */ 535 { CP_TTL, RO, "ttl" }, /* 36 */ 536 { CP_VARLIST, RO, "peer_var_list" }, /* 37 */ 537 { CP_IN, RO, "in" }, /* 38 */ 538 { CP_OUT, RO, "out" }, /* 39 */ 539 { CP_RATE, RO, "headway" }, /* 40 */ 540 { CP_BIAS, RO, "bias" }, /* 41 */ 541 { CP_SRCHOST, RO, "srchost" }, /* 42 */ 542 { CP_TIMEREC, RO, "timerec" }, /* 43 */ 543 { CP_TIMEREACH, RO, "timereach" }, /* 44 */ 544 { CP_BADAUTH, RO, "badauth" }, /* 45 */ 545 { CP_BOGUSORG, RO, "bogusorg" }, /* 46 */ 546 { CP_OLDPKT, RO, "oldpkt" }, /* 47 */ 547 { CP_SELDISP, RO, "seldisp" }, /* 48 */ 548 { CP_SELBROKEN, RO, "selbroken" }, /* 49 */ 549 { CP_CANDIDATE, RO, "candidate" }, /* 50 */ 550 #ifdef AUTOKEY 551 { CP_FLAGS, RO, "flags" }, /* 1 + CP_MAX_NOAUTOKEY */ 552 { CP_HOST, RO, "host" }, /* 2 + CP_MAX_NOAUTOKEY */ 553 { CP_VALID, RO, "valid" }, /* 3 + CP_MAX_NOAUTOKEY */ 554 { CP_INITSEQ, RO, "initsequence" }, /* 4 + CP_MAX_NOAUTOKEY */ 555 { CP_INITKEY, RO, "initkey" }, /* 5 + CP_MAX_NOAUTOKEY */ 556 { CP_INITTSP, RO, "timestamp" }, /* 6 + CP_MAX_NOAUTOKEY */ 557 { CP_SIGNATURE, RO, "signature" }, /* 7 + CP_MAX_NOAUTOKEY */ 558 { CP_IDENT, RO, "ident" }, /* 8 + CP_MAX_NOAUTOKEY */ 559 #endif /* AUTOKEY */ 560 { 0, EOV, "" } /* 50/58 */ 561 }; 562 563 564 /* 565 * Peer variables we print by default 566 */ 567 static const u_char def_peer_var[] = { 568 CP_SRCADR, 569 CP_SRCPORT, 570 CP_SRCHOST, 571 CP_DSTADR, 572 CP_DSTPORT, 573 CP_OUT, 574 CP_IN, 575 CP_LEAP, 576 CP_STRATUM, 577 CP_PRECISION, 578 CP_ROOTDELAY, 579 CP_ROOTDISPERSION, 580 CP_REFID, 581 CP_REFTIME, 582 CP_REC, 583 CP_REACH, 584 CP_UNREACH, 585 CP_HMODE, 586 CP_PMODE, 587 CP_HPOLL, 588 CP_PPOLL, 589 CP_RATE, 590 CP_FLASH, 591 CP_KEYID, 592 CP_TTL, 593 CP_OFFSET, 594 CP_DELAY, 595 CP_DISPERSION, 596 CP_JITTER, 597 CP_XMT, 598 CP_BIAS, 599 CP_FILTDELAY, 600 CP_FILTOFFSET, 601 CP_FILTERROR, 602 #ifdef AUTOKEY 603 CP_HOST, 604 CP_FLAGS, 605 CP_SIGNATURE, 606 CP_VALID, 607 CP_INITSEQ, 608 CP_IDENT, 609 #endif /* AUTOKEY */ 610 0 611 }; 612 613 614 #ifdef REFCLOCK 615 /* 616 * Clock variable list 617 */ 618 static const struct ctl_var clock_var[] = { 619 { 0, PADDING, "" }, /* 0 */ 620 { CC_TYPE, RO, "type" }, /* 1 */ 621 { CC_TIMECODE, RO, "timecode" }, /* 2 */ 622 { CC_POLL, RO, "poll" }, /* 3 */ 623 { CC_NOREPLY, RO, "noreply" }, /* 4 */ 624 { CC_BADFORMAT, RO, "badformat" }, /* 5 */ 625 { CC_BADDATA, RO, "baddata" }, /* 6 */ 626 { CC_FUDGETIME1, RO, "fudgetime1" }, /* 7 */ 627 { CC_FUDGETIME2, RO, "fudgetime2" }, /* 8 */ 628 { CC_FUDGEVAL1, RO, "stratum" }, /* 9 */ 629 { CC_FUDGEVAL2, RO, "refid" }, /* 10 */ 630 { CC_FLAGS, RO, "flags" }, /* 11 */ 631 { CC_DEVICE, RO, "device" }, /* 12 */ 632 { CC_VARLIST, RO, "clock_var_list" }, /* 13 */ 633 { CC_FUDGEMINJIT, RO, "minjitter" }, /* 14 */ 634 { 0, EOV, "" } /* 15 */ 635 }; 636 637 638 /* 639 * Clock variables printed by default 640 */ 641 static const u_char def_clock_var[] = { 642 CC_DEVICE, 643 CC_TYPE, /* won't be output if device = known */ 644 CC_TIMECODE, 645 CC_POLL, 646 CC_NOREPLY, 647 CC_BADFORMAT, 648 CC_BADDATA, 649 CC_FUDGEMINJIT, 650 CC_FUDGETIME1, 651 CC_FUDGETIME2, 652 CC_FUDGEVAL1, 653 CC_FUDGEVAL2, 654 CC_FLAGS, 655 0 656 }; 657 #endif 658 659 /* 660 * MRU string constants shared by send_mru_entry() and read_mru_list(). 661 */ 662 static const char addr_fmt[] = "addr.%d"; 663 static const char last_fmt[] = "last.%d"; 664 665 /* 666 * System and processor definitions. 667 */ 668 #ifndef HAVE_UNAME 669 # ifndef STR_SYSTEM 670 # define STR_SYSTEM "UNIX" 671 # endif 672 # ifndef STR_PROCESSOR 673 # define STR_PROCESSOR "unknown" 674 # endif 675 676 static const char str_system[] = STR_SYSTEM; 677 static const char str_processor[] = STR_PROCESSOR; 678 #else 679 # include <sys/utsname.h> 680 static struct utsname utsnamebuf; 681 #endif /* HAVE_UNAME */ 682 683 /* 684 * Trap structures. We only allow a few of these, and send a copy of 685 * each async message to each live one. Traps time out after an hour, it 686 * is up to the trap receipient to keep resetting it to avoid being 687 * timed out. 688 */ 689 /* ntp_request.c */ 690 struct ctl_trap ctl_traps[CTL_MAXTRAPS]; 691 int num_ctl_traps; 692 693 /* 694 * Type bits, for ctlsettrap() call. 695 */ 696 #define TRAP_TYPE_CONFIG 0 /* used by configuration code */ 697 #define TRAP_TYPE_PRIO 1 /* priority trap */ 698 #define TRAP_TYPE_NONPRIO 2 /* nonpriority trap */ 699 700 701 /* 702 * List relating reference clock types to control message time sources. 703 * Index by the reference clock type. This list will only be used iff 704 * the reference clock driver doesn't set peer->sstclktype to something 705 * different than CTL_SST_TS_UNSPEC. 706 */ 707 #ifdef REFCLOCK 708 static const u_char clocktypes[] = { 709 CTL_SST_TS_NTP, /* REFCLK_NONE (0) */ 710 CTL_SST_TS_LOCAL, /* REFCLK_LOCALCLOCK (1) */ 711 CTL_SST_TS_UHF, /* deprecated REFCLK_GPS_TRAK (2) */ 712 CTL_SST_TS_HF, /* REFCLK_WWV_PST (3) */ 713 CTL_SST_TS_LF, /* REFCLK_WWVB_SPECTRACOM (4) */ 714 CTL_SST_TS_UHF, /* REFCLK_TRUETIME (5) */ 715 CTL_SST_TS_UHF, /* REFCLK_IRIG_AUDIO (6) */ 716 CTL_SST_TS_HF, /* REFCLK_CHU (7) */ 717 CTL_SST_TS_LF, /* REFCLOCK_PARSE (default) (8) */ 718 CTL_SST_TS_LF, /* REFCLK_GPS_MX4200 (9) */ 719 CTL_SST_TS_UHF, /* REFCLK_GPS_AS2201 (10) */ 720 CTL_SST_TS_UHF, /* REFCLK_GPS_ARBITER (11) */ 721 CTL_SST_TS_UHF, /* REFCLK_IRIG_TPRO (12) */ 722 CTL_SST_TS_ATOM, /* REFCLK_ATOM_LEITCH (13) */ 723 CTL_SST_TS_LF, /* deprecated REFCLK_MSF_EES (14) */ 724 CTL_SST_TS_NTP, /* not used (15) */ 725 CTL_SST_TS_UHF, /* REFCLK_IRIG_BANCOMM (16) */ 726 CTL_SST_TS_UHF, /* REFCLK_GPS_DATU (17) */ 727 CTL_SST_TS_TELEPHONE, /* REFCLK_NIST_ACTS (18) */ 728 CTL_SST_TS_HF, /* REFCLK_WWV_HEATH (19) */ 729 CTL_SST_TS_UHF, /* REFCLK_GPS_NMEA (20) */ 730 CTL_SST_TS_UHF, /* REFCLK_GPS_VME (21) */ 731 CTL_SST_TS_ATOM, /* REFCLK_ATOM_PPS (22) */ 732 CTL_SST_TS_NTP, /* not used (23) */ 733 CTL_SST_TS_NTP, /* not used (24) */ 734 CTL_SST_TS_NTP, /* not used (25) */ 735 CTL_SST_TS_UHF, /* REFCLK_GPS_HP (26) */ 736 CTL_SST_TS_LF, /* REFCLK_ARCRON_MSF (27) */ 737 CTL_SST_TS_UHF, /* REFCLK_SHM (28) */ 738 CTL_SST_TS_UHF, /* REFCLK_PALISADE (29) */ 739 CTL_SST_TS_UHF, /* REFCLK_ONCORE (30) */ 740 CTL_SST_TS_UHF, /* REFCLK_JUPITER (31) */ 741 CTL_SST_TS_LF, /* REFCLK_CHRONOLOG (32) */ 742 CTL_SST_TS_LF, /* REFCLK_DUMBCLOCK (33) */ 743 CTL_SST_TS_LF, /* REFCLK_ULINK (34) */ 744 CTL_SST_TS_LF, /* REFCLK_PCF (35) */ 745 CTL_SST_TS_HF, /* REFCLK_WWV (36) */ 746 CTL_SST_TS_LF, /* REFCLK_FG (37) */ 747 CTL_SST_TS_UHF, /* REFCLK_HOPF_SERIAL (38) */ 748 CTL_SST_TS_UHF, /* REFCLK_HOPF_PCI (39) */ 749 CTL_SST_TS_LF, /* REFCLK_JJY (40) */ 750 CTL_SST_TS_UHF, /* REFCLK_TT560 (41) */ 751 CTL_SST_TS_UHF, /* REFCLK_ZYFER (42) */ 752 CTL_SST_TS_UHF, /* REFCLK_RIPENCC (43) */ 753 CTL_SST_TS_UHF, /* REFCLK_NEOCLOCK4X (44) */ 754 CTL_SST_TS_UHF, /* REFCLK_TSYNCPCI (45) */ 755 CTL_SST_TS_UHF /* REFCLK_GPSDJSON (46) */ 756 }; 757 #endif /* REFCLOCK */ 758 759 760 /* 761 * Keyid used for authenticating write requests. 762 */ 763 keyid_t ctl_auth_keyid; 764 765 /* 766 * We keep track of the last error reported by the system internally 767 */ 768 static u_char ctl_sys_last_event; 769 static u_char ctl_sys_num_events; 770 771 772 /* 773 * Statistic counters to keep track of requests and responses. 774 */ 775 u_long ctltimereset; /* time stats reset */ 776 u_long numctlreq; /* number of requests we've received */ 777 u_long numctlbadpkts; /* number of bad control packets */ 778 u_long numctlresponses; /* number of resp packets sent with data */ 779 u_long numctlfrags; /* number of fragments sent */ 780 u_long numctlerrors; /* number of error responses sent */ 781 u_long numctltooshort; /* number of too short input packets */ 782 u_long numctlinputresp; /* number of responses on input */ 783 u_long numctlinputfrag; /* number of fragments on input */ 784 u_long numctlinputerr; /* number of input pkts with err bit set */ 785 u_long numctlbadoffset; /* number of input pkts with nonzero offset */ 786 u_long numctlbadversion; /* number of input pkts with unknown version */ 787 u_long numctldatatooshort; /* data too short for count */ 788 u_long numctlbadop; /* bad op code found in packet */ 789 u_long numasyncmsgs; /* number of async messages we've sent */ 790 791 /* 792 * Response packet used by these routines. Also some state information 793 * so that we can handle packet formatting within a common set of 794 * subroutines. Note we try to enter data in place whenever possible, 795 * but the need to set the more bit correctly means we occasionally 796 * use the extra buffer and copy. 797 */ 798 static struct ntp_control rpkt; 799 static u_char res_version; 800 static u_char res_opcode; 801 static associd_t res_associd; 802 static u_short res_frags; /* datagrams in this response */ 803 static int res_offset; /* offset of payload in response */ 804 static u_char * datapt; 805 static u_char * dataend; 806 static int datalinelen; 807 static int datasent; /* flag to avoid initial ", " */ 808 static int datanotbinflag; 809 static sockaddr_u *rmt_addr; 810 static struct interface *lcl_inter; 811 812 static u_char res_authenticate; 813 static u_char res_authokay; 814 static keyid_t res_keyid; 815 816 #define MAXDATALINELEN (72) 817 818 static u_char res_async; /* sending async trap response? */ 819 820 /* 821 * Pointers for saving state when decoding request packets 822 */ 823 static char *reqpt; 824 static char *reqend; 825 826 #ifndef MIN 827 #define MIN(a, b) (((a) <= (b)) ? (a) : (b)) 828 #endif 829 830 /* 831 * init_control - initialize request data 832 */ 833 void 834 init_control(void) 835 { 836 size_t i; 837 838 #ifdef HAVE_UNAME 839 uname(&utsnamebuf); 840 #endif /* HAVE_UNAME */ 841 842 ctl_clr_stats(); 843 844 ctl_auth_keyid = 0; 845 ctl_sys_last_event = EVNT_UNSPEC; 846 ctl_sys_num_events = 0; 847 848 num_ctl_traps = 0; 849 for (i = 0; i < COUNTOF(ctl_traps); i++) 850 ctl_traps[i].tr_flags = 0; 851 } 852 853 854 /* 855 * ctl_error - send an error response for the current request 856 */ 857 static void 858 ctl_error( 859 u_char errcode 860 ) 861 { 862 size_t maclen; 863 864 numctlerrors++; 865 DPRINTF(3, ("sending control error %u\n", errcode)); 866 867 /* 868 * Fill in the fields. We assume rpkt.sequence and rpkt.associd 869 * have already been filled in. 870 */ 871 rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR | 872 (res_opcode & CTL_OP_MASK); 873 rpkt.status = htons((u_short)(errcode << 8) & 0xff00); 874 rpkt.count = 0; 875 876 /* 877 * send packet and bump counters 878 */ 879 if (res_authenticate && sys_authenticate) { 880 maclen = authencrypt(res_keyid, (u_int32 *)&rpkt, 881 CTL_HEADER_LEN); 882 sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt, 883 CTL_HEADER_LEN + maclen); 884 } else 885 sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt, 886 CTL_HEADER_LEN); 887 } 888 889 int/*BOOL*/ 890 is_safe_filename(const char * name) 891 { 892 /* We need a strict validation of filenames we should write: The 893 * daemon might run with special permissions and is remote 894 * controllable, so we better take care what we allow as file 895 * name! 896 * 897 * The first character must be digit or a letter from the ASCII 898 * base plane or a '_' ([_A-Za-z0-9]), the following characters 899 * must be from [-._+A-Za-z0-9]. 900 * 901 * We do not trust the character classification much here: Since 902 * the NTP protocol makes no provisions for UTF-8 or local code 903 * pages, we strictly require the 7bit ASCII code page. 904 * 905 * The following table is a packed bit field of 128 two-bit 906 * groups. The LSB in each group tells us if a character is 907 * acceptable at the first position, the MSB if the character is 908 * accepted at any other position. 909 * 910 * This does not ensure that the file name is syntactically 911 * correct (multiple dots will not work with VMS...) but it will 912 * exclude potential globbing bombs and directory traversal. It 913 * also rules out drive selection. (For systems that have this 914 * notion, like Windows or VMS.) 915 */ 916 static const uint32_t chclass[8] = { 917 0x00000000, 0x00000000, 918 0x28800000, 0x000FFFFF, 919 0xFFFFFFFC, 0xC03FFFFF, 920 0xFFFFFFFC, 0x003FFFFF 921 }; 922 923 u_int widx, bidx, mask; 924 if ( ! (name && *name)) 925 return FALSE; 926 927 mask = 1u; 928 while (0 != (widx = (u_char)*name++)) { 929 bidx = (widx & 15) << 1; 930 widx = widx >> 4; 931 if (widx >= sizeof(chclass)/sizeof(chclass[0])) 932 return FALSE; 933 if (0 == ((chclass[widx] >> bidx) & mask)) 934 return FALSE; 935 mask = 2u; 936 } 937 return TRUE; 938 } 939 940 941 /* 942 * save_config - Implements ntpq -c "saveconfig <filename>" 943 * Writes current configuration including any runtime 944 * changes by ntpq's :config or config-from-file 945 * 946 * Note: There should be no buffer overflow or truncation in the 947 * processing of file names -- both cause security problems. This is bit 948 * painful to code but essential here. 949 */ 950 void 951 save_config( 952 struct recvbuf *rbufp, 953 int restrict_mask 954 ) 955 { 956 /* block directory traversal by searching for characters that 957 * indicate directory components in a file path. 958 * 959 * Conceptually we should be searching for DIRSEP in filename, 960 * however Windows actually recognizes both forward and 961 * backslashes as equivalent directory separators at the API 962 * level. On POSIX systems we could allow '\\' but such 963 * filenames are tricky to manipulate from a shell, so just 964 * reject both types of slashes on all platforms. 965 */ 966 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 967 static const char * illegal_in_filename = 968 #if defined(VMS) 969 ":[]" /* do not allow drive and path components here */ 970 #elif defined(SYS_WINNT) 971 ":\\/" /* path and drive separators */ 972 #else 973 "\\/" /* separator and critical char for POSIX */ 974 #endif 975 ; 976 char reply[128]; 977 #ifdef SAVECONFIG 978 static const char savedconfig_eq[] = "savedconfig="; 979 980 /* Build a safe open mode from the available mode flags. We want 981 * to create a new file and write it in text mode (when 982 * applicable -- only Windows does this...) 983 */ 984 static const int openmode = O_CREAT | O_TRUNC | O_WRONLY 985 # if defined(O_EXCL) /* posix, vms */ 986 | O_EXCL 987 # elif defined(_O_EXCL) /* windows is alway very special... */ 988 | _O_EXCL 989 # endif 990 # if defined(_O_TEXT) /* windows, again */ 991 | _O_TEXT 992 #endif 993 ; 994 995 char filespec[128]; 996 char filename[128]; 997 char fullpath[512]; 998 char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)]; 999 time_t now; 1000 int fd; 1001 FILE *fptr; 1002 int prc; 1003 size_t reqlen; 1004 #endif 1005 1006 if (RES_NOMODIFY & restrict_mask) { 1007 ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify"); 1008 ctl_flushpkt(0); 1009 NLOG(NLOG_SYSINFO) 1010 msyslog(LOG_NOTICE, 1011 "saveconfig from %s rejected due to nomodify restriction", 1012 stoa(&rbufp->recv_srcadr)); 1013 sys_restricted++; 1014 return; 1015 } 1016 1017 #ifdef SAVECONFIG 1018 if (NULL == saveconfigdir) { 1019 ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured"); 1020 ctl_flushpkt(0); 1021 NLOG(NLOG_SYSINFO) 1022 msyslog(LOG_NOTICE, 1023 "saveconfig from %s rejected, no saveconfigdir", 1024 stoa(&rbufp->recv_srcadr)); 1025 return; 1026 } 1027 1028 /* The length checking stuff gets serious. Do not assume a NUL 1029 * byte can be found, but if so, use it to calculate the needed 1030 * buffer size. If the available buffer is too short, bail out; 1031 * likewise if there is no file spec. (The latter will not 1032 * happen when using NTPQ, but there are other ways to craft a 1033 * network packet!) 1034 */ 1035 reqlen = (size_t)(reqend - reqpt); 1036 if (0 != reqlen) { 1037 char * nulpos = (char*)memchr(reqpt, 0, reqlen); 1038 if (NULL != nulpos) 1039 reqlen = (size_t)(nulpos - reqpt); 1040 } 1041 if (0 == reqlen) 1042 return; 1043 if (reqlen >= sizeof(filespec)) { 1044 ctl_printf("saveconfig exceeded maximum raw name length (%u)", 1045 (u_int)sizeof(filespec)); 1046 ctl_flushpkt(0); 1047 msyslog(LOG_NOTICE, 1048 "saveconfig exceeded maximum raw name length from %s", 1049 stoa(&rbufp->recv_srcadr)); 1050 return; 1051 } 1052 1053 /* copy data directly as we exactly know the size */ 1054 memcpy(filespec, reqpt, reqlen); 1055 filespec[reqlen] = '\0'; 1056 1057 /* 1058 * allow timestamping of the saved config filename with 1059 * strftime() format such as: 1060 * ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf" 1061 * XXX: Nice feature, but not too safe. 1062 * YYY: The check for permitted characters in file names should 1063 * weed out the worst. Let's hope 'strftime()' does not 1064 * develop pathological problems. 1065 */ 1066 time(&now); 1067 if (0 == strftime(filename, sizeof(filename), filespec, 1068 localtime(&now))) 1069 { 1070 /* 1071 * If we arrive here, 'strftime()' balked; most likely 1072 * the buffer was too short. (Or it encounterd an empty 1073 * format, or just a format that expands to an empty 1074 * string.) We try to use the original name, though this 1075 * is very likely to fail later if there are format 1076 * specs in the string. Note that truncation cannot 1077 * happen here as long as both buffers have the same 1078 * size! 1079 */ 1080 strlcpy(filename, filespec, sizeof(filename)); 1081 } 1082 1083 /* 1084 * Check the file name for sanity. This might/will rule out file 1085 * names that would be legal but problematic, and it blocks 1086 * directory traversal. 1087 */ 1088 if (!is_safe_filename(filename)) { 1089 ctl_printf("saveconfig rejects unsafe file name '%s'", 1090 filename); 1091 ctl_flushpkt(0); 1092 msyslog(LOG_NOTICE, 1093 "saveconfig rejects unsafe file name from %s", 1094 stoa(&rbufp->recv_srcadr)); 1095 return; 1096 } 1097 1098 /* 1099 * XXX: This next test may not be needed with is_safe_filename() 1100 */ 1101 1102 /* block directory/drive traversal */ 1103 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 1104 if (NULL != strpbrk(filename, illegal_in_filename)) { 1105 snprintf(reply, sizeof(reply), 1106 "saveconfig does not allow directory in filename"); 1107 ctl_putdata(reply, strlen(reply), 0); 1108 ctl_flushpkt(0); 1109 msyslog(LOG_NOTICE, 1110 "saveconfig rejects unsafe file name from %s", 1111 stoa(&rbufp->recv_srcadr)); 1112 return; 1113 } 1114 1115 /* concatenation of directory and path can cause another 1116 * truncation... 1117 */ 1118 prc = snprintf(fullpath, sizeof(fullpath), "%s%s", 1119 saveconfigdir, filename); 1120 if (prc < 0 || (size_t)prc >= sizeof(fullpath)) { 1121 ctl_printf("saveconfig exceeded maximum path length (%u)", 1122 (u_int)sizeof(fullpath)); 1123 ctl_flushpkt(0); 1124 msyslog(LOG_NOTICE, 1125 "saveconfig exceeded maximum path length from %s", 1126 stoa(&rbufp->recv_srcadr)); 1127 return; 1128 } 1129 1130 fd = open(fullpath, openmode, S_IRUSR | S_IWUSR); 1131 if (-1 == fd) 1132 fptr = NULL; 1133 else 1134 fptr = fdopen(fd, "w"); 1135 1136 if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) { 1137 ctl_printf("Unable to save configuration to file '%s': %s", 1138 filename, strerror(errno)); 1139 msyslog(LOG_ERR, 1140 "saveconfig %s from %s failed", filename, 1141 stoa(&rbufp->recv_srcadr)); 1142 } else { 1143 ctl_printf("Configuration saved to '%s'", filename); 1144 msyslog(LOG_NOTICE, 1145 "Configuration saved to '%s' (requested by %s)", 1146 fullpath, stoa(&rbufp->recv_srcadr)); 1147 /* 1148 * save the output filename in system variable 1149 * savedconfig, retrieved with: 1150 * ntpq -c "rv 0 savedconfig" 1151 * Note: the way 'savedconfig' is defined makes overflow 1152 * checks unnecessary here. 1153 */ 1154 snprintf(savedconfig, sizeof(savedconfig), "%s%s", 1155 savedconfig_eq, filename); 1156 set_sys_var(savedconfig, strlen(savedconfig) + 1, RO); 1157 } 1158 1159 if (NULL != fptr) 1160 fclose(fptr); 1161 #else /* !SAVECONFIG follows */ 1162 ctl_printf("%s", 1163 "saveconfig unavailable, configured with --disable-saveconfig"); 1164 #endif 1165 ctl_flushpkt(0); 1166 } 1167 1168 1169 /* 1170 * process_control - process an incoming control message 1171 */ 1172 void 1173 process_control( 1174 struct recvbuf *rbufp, 1175 int restrict_mask 1176 ) 1177 { 1178 struct ntp_control *pkt; 1179 int req_count; 1180 int req_data; 1181 const struct ctl_proc *cc; 1182 keyid_t *pkid; 1183 int properlen; 1184 size_t maclen; 1185 1186 DPRINTF(3, ("in process_control()\n")); 1187 1188 /* 1189 * Save the addresses for error responses 1190 */ 1191 numctlreq++; 1192 rmt_addr = &rbufp->recv_srcadr; 1193 lcl_inter = rbufp->dstadr; 1194 pkt = (struct ntp_control *)&rbufp->recv_pkt; 1195 1196 /* 1197 * If the length is less than required for the header, 1198 * ignore it. 1199 */ 1200 if (rbufp->recv_length < (int)CTL_HEADER_LEN) { 1201 DPRINTF(1, ("Short control packet\n")); 1202 numctltooshort++; 1203 return; 1204 } 1205 1206 /* 1207 * If this packet is a response or a fragment, ignore it. 1208 */ 1209 if ( (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op 1210 || pkt->offset != 0) { 1211 DPRINTF(1, ("invalid format in control packet\n")); 1212 if (CTL_RESPONSE & pkt->r_m_e_op) 1213 numctlinputresp++; 1214 if (CTL_MORE & pkt->r_m_e_op) 1215 numctlinputfrag++; 1216 if (CTL_ERROR & pkt->r_m_e_op) 1217 numctlinputerr++; 1218 if (pkt->offset != 0) 1219 numctlbadoffset++; 1220 return; 1221 } 1222 1223 res_version = PKT_VERSION(pkt->li_vn_mode); 1224 if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) { 1225 DPRINTF(1, ("unknown version %d in control packet\n", 1226 res_version)); 1227 numctlbadversion++; 1228 return; 1229 } 1230 1231 /* 1232 * Pull enough data from the packet to make intelligent 1233 * responses 1234 */ 1235 rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version, 1236 MODE_CONTROL); 1237 res_opcode = pkt->r_m_e_op; 1238 rpkt.sequence = pkt->sequence; 1239 rpkt.associd = pkt->associd; 1240 rpkt.status = 0; 1241 res_frags = 1; 1242 res_offset = 0; 1243 res_associd = htons(pkt->associd); 1244 res_async = FALSE; 1245 res_authenticate = FALSE; 1246 res_keyid = 0; 1247 res_authokay = FALSE; 1248 req_count = (int)ntohs(pkt->count); 1249 datanotbinflag = FALSE; 1250 datalinelen = 0; 1251 datasent = 0; 1252 datapt = rpkt.u.data; 1253 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 1254 1255 if ((rbufp->recv_length & 0x3) != 0) 1256 DPRINTF(3, ("Control packet length %d unrounded\n", 1257 rbufp->recv_length)); 1258 1259 /* 1260 * We're set up now. Make sure we've got at least enough 1261 * incoming data space to match the count. 1262 */ 1263 req_data = rbufp->recv_length - CTL_HEADER_LEN; 1264 if (req_data < req_count || rbufp->recv_length & 0x3) { 1265 ctl_error(CERR_BADFMT); 1266 numctldatatooshort++; 1267 return; 1268 } 1269 1270 properlen = req_count + CTL_HEADER_LEN; 1271 /* round up proper len to a 8 octet boundary */ 1272 1273 properlen = (properlen + 7) & ~7; 1274 maclen = rbufp->recv_length - properlen; 1275 if ((rbufp->recv_length & 3) == 0 && 1276 maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN && 1277 sys_authenticate) { 1278 res_authenticate = TRUE; 1279 pkid = (void *)((char *)pkt + properlen); 1280 res_keyid = ntohl(*pkid); 1281 DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n", 1282 rbufp->recv_length, properlen, res_keyid, 1283 maclen)); 1284 1285 if (!authistrustedip(res_keyid, &rbufp->recv_srcadr)) 1286 DPRINTF(3, ("invalid keyid %08x\n", res_keyid)); 1287 else if (authdecrypt(res_keyid, (u_int32 *)pkt, 1288 rbufp->recv_length - maclen, 1289 maclen)) { 1290 res_authokay = TRUE; 1291 DPRINTF(3, ("authenticated okay\n")); 1292 } else { 1293 res_keyid = 0; 1294 DPRINTF(3, ("authentication failed\n")); 1295 } 1296 } 1297 1298 /* 1299 * Set up translate pointers 1300 */ 1301 reqpt = (char *)pkt->u.data; 1302 reqend = reqpt + req_count; 1303 1304 /* 1305 * Look for the opcode processor 1306 */ 1307 for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) { 1308 if (cc->control_code == res_opcode) { 1309 DPRINTF(3, ("opcode %d, found command handler\n", 1310 res_opcode)); 1311 if (cc->flags == AUTH 1312 && (!res_authokay 1313 || res_keyid != ctl_auth_keyid)) { 1314 ctl_error(CERR_PERMISSION); 1315 return; 1316 } 1317 (cc->handler)(rbufp, restrict_mask); 1318 return; 1319 } 1320 } 1321 1322 /* 1323 * Can't find this one, return an error. 1324 */ 1325 numctlbadop++; 1326 ctl_error(CERR_BADOP); 1327 return; 1328 } 1329 1330 1331 /* 1332 * ctlpeerstatus - return a status word for this peer 1333 */ 1334 u_short 1335 ctlpeerstatus( 1336 register struct peer *p 1337 ) 1338 { 1339 u_short status; 1340 1341 status = p->status; 1342 if (FLAG_CONFIG & p->flags) 1343 status |= CTL_PST_CONFIG; 1344 if (p->keyid) 1345 status |= CTL_PST_AUTHENABLE; 1346 if (FLAG_AUTHENTIC & p->flags) 1347 status |= CTL_PST_AUTHENTIC; 1348 if (p->reach) 1349 status |= CTL_PST_REACH; 1350 if (MDF_TXONLY_MASK & p->cast_flags) 1351 status |= CTL_PST_BCAST; 1352 1353 return CTL_PEER_STATUS(status, p->num_events, p->last_event); 1354 } 1355 1356 1357 /* 1358 * ctlclkstatus - return a status word for this clock 1359 */ 1360 #ifdef REFCLOCK 1361 static u_short 1362 ctlclkstatus( 1363 struct refclockstat *pcs 1364 ) 1365 { 1366 return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus); 1367 } 1368 #endif 1369 1370 1371 /* 1372 * ctlsysstatus - return the system status word 1373 */ 1374 u_short 1375 ctlsysstatus(void) 1376 { 1377 register u_char this_clock; 1378 1379 this_clock = CTL_SST_TS_UNSPEC; 1380 #ifdef REFCLOCK 1381 if (sys_peer != NULL) { 1382 if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype) 1383 this_clock = sys_peer->sstclktype; 1384 else if (sys_peer->refclktype < COUNTOF(clocktypes)) 1385 this_clock = clocktypes[sys_peer->refclktype]; 1386 } 1387 #else /* REFCLOCK */ 1388 if (sys_peer != 0) 1389 this_clock = CTL_SST_TS_NTP; 1390 #endif /* REFCLOCK */ 1391 return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events, 1392 ctl_sys_last_event); 1393 } 1394 1395 1396 /* 1397 * ctl_flushpkt - write out the current packet and prepare 1398 * another if necessary. 1399 */ 1400 static void 1401 ctl_flushpkt( 1402 u_char more 1403 ) 1404 { 1405 size_t i; 1406 size_t dlen; 1407 size_t sendlen; 1408 size_t maclen; 1409 size_t totlen; 1410 keyid_t keyid; 1411 1412 dlen = datapt - rpkt.u.data; 1413 if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) { 1414 /* 1415 * Big hack, output a trailing \r\n 1416 */ 1417 *datapt++ = '\r'; 1418 *datapt++ = '\n'; 1419 dlen += 2; 1420 } 1421 sendlen = dlen + CTL_HEADER_LEN; 1422 1423 /* 1424 * Pad to a multiple of 32 bits 1425 */ 1426 while (sendlen & 0x3) { 1427 *datapt++ = '\0'; 1428 sendlen++; 1429 } 1430 1431 /* 1432 * Fill in the packet with the current info 1433 */ 1434 rpkt.r_m_e_op = CTL_RESPONSE | more | 1435 (res_opcode & CTL_OP_MASK); 1436 rpkt.count = htons((u_short)dlen); 1437 rpkt.offset = htons((u_short)res_offset); 1438 if (res_async) { 1439 for (i = 0; i < COUNTOF(ctl_traps); i++) { 1440 if (TRAP_INUSE & ctl_traps[i].tr_flags) { 1441 rpkt.li_vn_mode = 1442 PKT_LI_VN_MODE( 1443 sys_leap, 1444 ctl_traps[i].tr_version, 1445 MODE_CONTROL); 1446 rpkt.sequence = 1447 htons(ctl_traps[i].tr_sequence); 1448 sendpkt(&ctl_traps[i].tr_addr, 1449 ctl_traps[i].tr_localaddr, -4, 1450 (struct pkt *)&rpkt, sendlen); 1451 if (!more) 1452 ctl_traps[i].tr_sequence++; 1453 numasyncmsgs++; 1454 } 1455 } 1456 } else { 1457 if (res_authenticate && sys_authenticate) { 1458 totlen = sendlen; 1459 /* 1460 * If we are going to authenticate, then there 1461 * is an additional requirement that the MAC 1462 * begin on a 64 bit boundary. 1463 */ 1464 while (totlen & 7) { 1465 *datapt++ = '\0'; 1466 totlen++; 1467 } 1468 keyid = htonl(res_keyid); 1469 memcpy(datapt, &keyid, sizeof(keyid)); 1470 maclen = authencrypt(res_keyid, 1471 (u_int32 *)&rpkt, totlen); 1472 sendpkt(rmt_addr, lcl_inter, -5, 1473 (struct pkt *)&rpkt, totlen + maclen); 1474 } else { 1475 sendpkt(rmt_addr, lcl_inter, -6, 1476 (struct pkt *)&rpkt, sendlen); 1477 } 1478 if (more) 1479 numctlfrags++; 1480 else 1481 numctlresponses++; 1482 } 1483 1484 /* 1485 * Set us up for another go around. 1486 */ 1487 res_frags++; 1488 res_offset += dlen; 1489 datapt = rpkt.u.data; 1490 } 1491 1492 1493 /* -------------------------------------------------------------------- 1494 * block transfer API -- stream string/data fragments into xmit buffer 1495 * without additional copying 1496 */ 1497 1498 /* buffer descriptor: address & size of fragment 1499 * 'buf' may only be NULL when 'len' is zero! 1500 */ 1501 typedef struct { 1502 const void *buf; 1503 size_t len; 1504 } CtlMemBufT; 1505 1506 /* put ctl data in a gather-style operation */ 1507 static void 1508 ctl_putdata_ex( 1509 const CtlMemBufT * argv, 1510 size_t argc, 1511 int/*BOOL*/ bin /* set to 1 when data is binary */ 1512 ) 1513 { 1514 const char * src_ptr; 1515 size_t src_len, cur_len, add_len, argi; 1516 1517 /* text / binary preprocessing, possibly create new linefeed */ 1518 if (bin) { 1519 add_len = 0; 1520 } else { 1521 datanotbinflag = TRUE; 1522 add_len = 3; 1523 1524 if (datasent) { 1525 *datapt++ = ','; 1526 datalinelen++; 1527 1528 /* sum up total length */ 1529 for (argi = 0, src_len = 0; argi < argc; ++argi) 1530 src_len += argv[argi].len; 1531 /* possibly start a new line, assume no size_t overflow */ 1532 if ((src_len + datalinelen + 1) >= MAXDATALINELEN) { 1533 *datapt++ = '\r'; 1534 *datapt++ = '\n'; 1535 datalinelen = 0; 1536 } else { 1537 *datapt++ = ' '; 1538 datalinelen++; 1539 } 1540 } 1541 } 1542 1543 /* now stream out all buffers */ 1544 for (argi = 0; argi < argc; ++argi) { 1545 src_ptr = argv[argi].buf; 1546 src_len = argv[argi].len; 1547 1548 if ( ! (src_ptr && src_len)) 1549 continue; 1550 1551 cur_len = (size_t)(dataend - datapt); 1552 while ((src_len + add_len) > cur_len) { 1553 /* Not enough room in this one, flush it out. */ 1554 if (src_len < cur_len) 1555 cur_len = src_len; 1556 1557 memcpy(datapt, src_ptr, cur_len); 1558 datapt += cur_len; 1559 datalinelen += cur_len; 1560 1561 src_ptr += cur_len; 1562 src_len -= cur_len; 1563 1564 ctl_flushpkt(CTL_MORE); 1565 cur_len = (size_t)(dataend - datapt); 1566 } 1567 1568 memcpy(datapt, src_ptr, src_len); 1569 datapt += src_len; 1570 datalinelen += src_len; 1571 1572 datasent = TRUE; 1573 } 1574 } 1575 1576 /* 1577 * ctl_putdata - write data into the packet, fragmenting and starting 1578 * another if this one is full. 1579 */ 1580 static void 1581 ctl_putdata( 1582 const char *dp, 1583 unsigned int dlen, 1584 int bin /* set to 1 when data is binary */ 1585 ) 1586 { 1587 CtlMemBufT args[1]; 1588 1589 args[0].buf = dp; 1590 args[0].len = dlen; 1591 ctl_putdata_ex(args, 1, bin); 1592 } 1593 1594 /* 1595 * ctl_putstr - write a tagged string into the response packet 1596 * in the form: 1597 * 1598 * tag="data" 1599 * 1600 * len is the data length excluding the NUL terminator, 1601 * as in ctl_putstr("var", "value", strlen("value")); 1602 */ 1603 static void 1604 ctl_putstr( 1605 const char * tag, 1606 const char * data, 1607 size_t len 1608 ) 1609 { 1610 CtlMemBufT args[4]; 1611 1612 args[0].buf = tag; 1613 args[0].len = strlen(tag); 1614 if (data && len) { 1615 args[1].buf = "=\""; 1616 args[1].len = 2; 1617 args[2].buf = data; 1618 args[2].len = len; 1619 args[3].buf = "\""; 1620 args[3].len = 1; 1621 ctl_putdata_ex(args, 4, FALSE); 1622 } else { 1623 args[1].buf = "=\"\""; 1624 args[1].len = 3; 1625 ctl_putdata_ex(args, 2, FALSE); 1626 } 1627 } 1628 1629 1630 /* 1631 * ctl_putunqstr - write a tagged string into the response packet 1632 * in the form: 1633 * 1634 * tag=data 1635 * 1636 * len is the data length excluding the NUL terminator. 1637 * data must not contain a comma or whitespace. 1638 */ 1639 static void 1640 ctl_putunqstr( 1641 const char * tag, 1642 const char * data, 1643 size_t len 1644 ) 1645 { 1646 CtlMemBufT args[3]; 1647 1648 args[0].buf = tag; 1649 args[0].len = strlen(tag); 1650 args[1].buf = "="; 1651 args[1].len = 1; 1652 if (data && len) { 1653 args[2].buf = data; 1654 args[2].len = len; 1655 ctl_putdata_ex(args, 3, FALSE); 1656 } else { 1657 ctl_putdata_ex(args, 2, FALSE); 1658 } 1659 } 1660 1661 1662 /* 1663 * ctl_putdblf - write a tagged, signed double into the response packet 1664 */ 1665 static void 1666 ctl_putdblf( 1667 const char * tag, 1668 int use_f, 1669 int precision, 1670 double d 1671 ) 1672 { 1673 char buffer[40]; 1674 int rc; 1675 1676 rc = snprintf(buffer, sizeof(buffer), 1677 (use_f ? "%.*f" : "%.*g"), 1678 precision, d); 1679 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1680 ctl_putunqstr(tag, buffer, rc); 1681 } 1682 1683 /* 1684 * ctl_putuint - write a tagged unsigned integer into the response 1685 */ 1686 static void 1687 ctl_putuint( 1688 const char *tag, 1689 u_long uval 1690 ) 1691 { 1692 char buffer[24]; /* needs to fit for 64 bits! */ 1693 int rc; 1694 1695 rc = snprintf(buffer, sizeof(buffer), "%lu", uval); 1696 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1697 ctl_putunqstr(tag, buffer, rc); 1698 } 1699 1700 /* 1701 * ctl_putcal - write a decoded calendar data into the response. 1702 * only used with AUTOKEY currently, so compiled conditional 1703 */ 1704 #ifdef AUTOKEY 1705 static void 1706 ctl_putcal( 1707 const char *tag, 1708 const struct calendar *pcal 1709 ) 1710 { 1711 char buffer[16]; 1712 int rc; 1713 1714 rc = snprintf(buffer, sizeof(buffer), 1715 "%04d%02d%02d%02d%02d", 1716 pcal->year, pcal->month, pcal->monthday, 1717 pcal->hour, pcal->minute 1718 ); 1719 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1720 ctl_putunqstr(tag, buffer, rc); 1721 } 1722 #endif 1723 1724 /* 1725 * ctl_putfs - write a decoded filestamp into the response 1726 */ 1727 static void 1728 ctl_putfs( 1729 const char *tag, 1730 tstamp_t uval 1731 ) 1732 { 1733 char buffer[16]; 1734 int rc; 1735 1736 time_t fstamp = (time_t)uval - JAN_1970; 1737 struct tm *tm = gmtime(&fstamp); 1738 1739 if (NULL == tm) 1740 return; 1741 1742 rc = snprintf(buffer, sizeof(buffer), 1743 "%04d%02d%02d%02d%02d", 1744 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, 1745 tm->tm_hour, tm->tm_min); 1746 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1747 ctl_putunqstr(tag, buffer, rc); 1748 } 1749 1750 1751 /* 1752 * ctl_puthex - write a tagged unsigned integer, in hex, into the 1753 * response 1754 */ 1755 static void 1756 ctl_puthex( 1757 const char *tag, 1758 u_long uval 1759 ) 1760 { 1761 char buffer[24]; /* must fit 64bit int! */ 1762 int rc; 1763 1764 rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval); 1765 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1766 ctl_putunqstr(tag, buffer, rc); 1767 } 1768 1769 1770 /* 1771 * ctl_putint - write a tagged signed integer into the response 1772 */ 1773 static void 1774 ctl_putint( 1775 const char *tag, 1776 long ival 1777 ) 1778 { 1779 char buffer[24]; /*must fit 64bit int */ 1780 int rc; 1781 1782 rc = snprintf(buffer, sizeof(buffer), "%ld", ival); 1783 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1784 ctl_putunqstr(tag, buffer, rc); 1785 } 1786 1787 1788 /* 1789 * ctl_putts - write a tagged timestamp, in hex, into the response 1790 */ 1791 static void 1792 ctl_putts( 1793 const char *tag, 1794 l_fp *ts 1795 ) 1796 { 1797 char buffer[24]; 1798 int rc; 1799 1800 rc = snprintf(buffer, sizeof(buffer), 1801 "0x%08lx.%08lx", 1802 (u_long)ts->l_ui, (u_long)ts->l_uf); 1803 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1804 ctl_putunqstr(tag, buffer, rc); 1805 } 1806 1807 1808 /* 1809 * ctl_putadr - write an IP address into the response 1810 */ 1811 static void 1812 ctl_putadr( 1813 const char *tag, 1814 u_int32 addr32, 1815 sockaddr_u *addr 1816 ) 1817 { 1818 const char *cq; 1819 1820 if (NULL == addr) 1821 cq = numtoa(addr32); 1822 else 1823 cq = stoa(addr); 1824 ctl_putunqstr(tag, cq, strlen(cq)); 1825 } 1826 1827 1828 /* 1829 * ctl_putrefid - send a u_int32 refid as printable text 1830 */ 1831 static void 1832 ctl_putrefid( 1833 const char * tag, 1834 u_int32 refid 1835 ) 1836 { 1837 size_t nc; 1838 1839 union { 1840 uint32_t w; 1841 uint8_t b[sizeof(uint32_t)]; 1842 } bytes; 1843 1844 bytes.w = refid; 1845 for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc) 1846 if ( !isprint(bytes.b[nc]) 1847 || isspace(bytes.b[nc]) 1848 || bytes.b[nc] == ',' ) 1849 bytes.b[nc] = '.'; 1850 ctl_putunqstr(tag, (const char*)bytes.b, nc); 1851 } 1852 1853 1854 /* 1855 * ctl_putarray - write a tagged eight element double array into the response 1856 */ 1857 static void 1858 ctl_putarray( 1859 const char *tag, 1860 double *arr, 1861 int start 1862 ) 1863 { 1864 char *cp, *ep; 1865 char buffer[200]; 1866 int i, rc; 1867 1868 cp = buffer; 1869 ep = buffer + sizeof(buffer); 1870 i = start; 1871 do { 1872 if (i == 0) 1873 i = NTP_SHIFT; 1874 i--; 1875 rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3); 1876 INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp)); 1877 cp += rc; 1878 } while (i != start); 1879 ctl_putunqstr(tag, buffer, (size_t)(cp - buffer)); 1880 } 1881 1882 /* 1883 * ctl_printf - put a formatted string into the data buffer 1884 */ 1885 static void 1886 ctl_printf( 1887 const char * fmt, 1888 ... 1889 ) 1890 { 1891 static const char * ellipsis = "[...]"; 1892 va_list va; 1893 char fmtbuf[128]; 1894 int rc; 1895 1896 va_start(va, fmt); 1897 rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va); 1898 va_end(va); 1899 if (rc < 0 || (size_t)rc >= sizeof(fmtbuf)) 1900 strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1, 1901 ellipsis); 1902 ctl_putdata(fmtbuf, strlen(fmtbuf), 0); 1903 } 1904 1905 1906 /* 1907 * ctl_putsys - output a system variable 1908 */ 1909 static void 1910 ctl_putsys( 1911 int varid 1912 ) 1913 { 1914 l_fp tmp; 1915 #ifndef HAVE_UNAME 1916 char str[256]; 1917 #else 1918 char str[sizeof utsnamebuf.sysname + sizeof utsnamebuf.release]; 1919 #endif 1920 u_int u; 1921 double kb; 1922 double dtemp; 1923 const char *ss; 1924 #ifdef AUTOKEY 1925 struct cert_info *cp; 1926 #endif /* AUTOKEY */ 1927 #ifdef KERNEL_PLL 1928 static struct timex ntx; 1929 static u_long ntp_adjtime_time; 1930 1931 /* 1932 * CS_K_* variables depend on up-to-date output of ntp_adjtime() 1933 */ 1934 if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST && 1935 current_time != ntp_adjtime_time) { 1936 ZERO(ntx); 1937 if (ntp_adjtime(&ntx) < 0) 1938 msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m"); 1939 else 1940 ntp_adjtime_time = current_time; 1941 } 1942 #endif /* KERNEL_PLL */ 1943 1944 switch (varid) { 1945 1946 case CS_LEAP: 1947 ctl_putuint(sys_var[CS_LEAP].text, sys_leap); 1948 break; 1949 1950 case CS_STRATUM: 1951 ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum); 1952 break; 1953 1954 case CS_PRECISION: 1955 ctl_putint(sys_var[CS_PRECISION].text, sys_precision); 1956 break; 1957 1958 case CS_ROOTDELAY: 1959 ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay * 1960 1e3); 1961 break; 1962 1963 case CS_ROOTDISPERSION: 1964 ctl_putdbl(sys_var[CS_ROOTDISPERSION].text, 1965 sys_rootdisp * 1e3); 1966 break; 1967 1968 case CS_REFID: 1969 if (REFID_ISTEXT(sys_stratum)) 1970 ctl_putrefid(sys_var[varid].text, sys_refid); 1971 else 1972 ctl_putadr(sys_var[varid].text, sys_refid, NULL); 1973 break; 1974 1975 case CS_REFTIME: 1976 ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime); 1977 break; 1978 1979 case CS_POLL: 1980 ctl_putuint(sys_var[CS_POLL].text, sys_poll); 1981 break; 1982 1983 case CS_PEERID: 1984 if (sys_peer == NULL) 1985 ctl_putuint(sys_var[CS_PEERID].text, 0); 1986 else 1987 ctl_putuint(sys_var[CS_PEERID].text, 1988 sys_peer->associd); 1989 break; 1990 1991 case CS_PEERADR: 1992 if (sys_peer != NULL && sys_peer->dstadr != NULL) 1993 ss = sptoa(&sys_peer->srcadr); 1994 else 1995 ss = "0.0.0.0:0"; 1996 ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss)); 1997 break; 1998 1999 case CS_PEERMODE: 2000 u = (sys_peer != NULL) 2001 ? sys_peer->hmode 2002 : MODE_UNSPEC; 2003 ctl_putuint(sys_var[CS_PEERMODE].text, u); 2004 break; 2005 2006 case CS_OFFSET: 2007 ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3); 2008 break; 2009 2010 case CS_DRIFT: 2011 ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6); 2012 break; 2013 2014 case CS_JITTER: 2015 ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3); 2016 break; 2017 2018 case CS_ERROR: 2019 ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3); 2020 break; 2021 2022 case CS_CLOCK: 2023 get_systime(&tmp); 2024 ctl_putts(sys_var[CS_CLOCK].text, &tmp); 2025 break; 2026 2027 case CS_PROCESSOR: 2028 #ifndef HAVE_UNAME 2029 ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor, 2030 sizeof(str_processor) - 1); 2031 #else 2032 ctl_putstr(sys_var[CS_PROCESSOR].text, 2033 utsnamebuf.machine, strlen(utsnamebuf.machine)); 2034 #endif /* HAVE_UNAME */ 2035 break; 2036 2037 case CS_SYSTEM: 2038 #ifndef HAVE_UNAME 2039 ctl_putstr(sys_var[CS_SYSTEM].text, str_system, 2040 sizeof(str_system) - 1); 2041 #else 2042 snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname, 2043 utsnamebuf.release); 2044 ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str)); 2045 #endif /* HAVE_UNAME */ 2046 break; 2047 2048 case CS_VERSION: 2049 ctl_putstr(sys_var[CS_VERSION].text, Version, 2050 strlen(Version)); 2051 break; 2052 2053 case CS_STABIL: 2054 ctl_putdbl(sys_var[CS_STABIL].text, clock_stability * 2055 1e6); 2056 break; 2057 2058 case CS_VARLIST: 2059 { 2060 char buf[CTL_MAX_DATA_LEN]; 2061 //buffPointer, firstElementPointer, buffEndPointer 2062 char *buffp, *buffend; 2063 int firstVarName; 2064 const char *ss1; 2065 int len; 2066 const struct ctl_var *k; 2067 2068 buffp = buf; 2069 buffend = buf + sizeof(buf); 2070 if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4)) 2071 break; /* really long var name */ 2072 2073 snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text); 2074 buffp += strlen(buffp); 2075 firstVarName = TRUE; 2076 for (k = sys_var; !(k->flags & EOV); k++) { 2077 if (k->flags & PADDING) 2078 continue; 2079 len = strlen(k->text); 2080 if (len + 1 >= buffend - buffp) 2081 break; 2082 if (!firstVarName) 2083 *buffp++ = ','; 2084 else 2085 firstVarName = FALSE; 2086 memcpy(buffp, k->text, len); 2087 buffp += len; 2088 } 2089 2090 for (k = ext_sys_var; k && !(k->flags & EOV); k++) { 2091 if (k->flags & PADDING) 2092 continue; 2093 if (NULL == k->text) 2094 continue; 2095 ss1 = strchr(k->text, '='); 2096 if (NULL == ss1) 2097 len = strlen(k->text); 2098 else 2099 len = ss1 - k->text; 2100 if (len + 1 >= buffend - buffp) 2101 break; 2102 if (firstVarName) { 2103 *buffp++ = ','; 2104 firstVarName = FALSE; 2105 } 2106 memcpy(buffp, k->text,(unsigned)len); 2107 buffp += len; 2108 } 2109 if (2 >= buffend - buffp) 2110 break; 2111 2112 *buffp++ = '"'; 2113 *buffp = '\0'; 2114 2115 ctl_putdata(buf, (unsigned)( buffp - buf ), 0); 2116 break; 2117 } 2118 2119 case CS_TAI: 2120 if (sys_tai > 0) 2121 ctl_putuint(sys_var[CS_TAI].text, sys_tai); 2122 break; 2123 2124 case CS_LEAPTAB: 2125 { 2126 leap_signature_t lsig; 2127 leapsec_getsig(&lsig); 2128 if (lsig.ttime > 0) 2129 ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime); 2130 break; 2131 } 2132 2133 case CS_LEAPEND: 2134 { 2135 leap_signature_t lsig; 2136 leapsec_getsig(&lsig); 2137 if (lsig.etime > 0) 2138 ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime); 2139 break; 2140 } 2141 2142 #ifdef LEAP_SMEAR 2143 case CS_LEAPSMEARINTV: 2144 if (leap_smear_intv > 0) 2145 ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv); 2146 break; 2147 2148 case CS_LEAPSMEAROFFS: 2149 if (leap_smear_intv > 0) 2150 ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text, 2151 leap_smear.doffset * 1e3); 2152 break; 2153 #endif /* LEAP_SMEAR */ 2154 2155 case CS_RATE: 2156 ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll); 2157 break; 2158 2159 case CS_MRU_ENABLED: 2160 ctl_puthex(sys_var[varid].text, mon_enabled); 2161 break; 2162 2163 case CS_MRU_DEPTH: 2164 ctl_putuint(sys_var[varid].text, mru_entries); 2165 break; 2166 2167 case CS_MRU_MEM: 2168 kb = mru_entries * (sizeof(mon_entry) / 1024.); 2169 u = (u_int)kb; 2170 if (kb - u >= 0.5) 2171 u++; 2172 ctl_putuint(sys_var[varid].text, u); 2173 break; 2174 2175 case CS_MRU_DEEPEST: 2176 ctl_putuint(sys_var[varid].text, mru_peakentries); 2177 break; 2178 2179 case CS_MRU_MINDEPTH: 2180 ctl_putuint(sys_var[varid].text, mru_mindepth); 2181 break; 2182 2183 case CS_MRU_MAXAGE: 2184 ctl_putint(sys_var[varid].text, mru_maxage); 2185 break; 2186 2187 case CS_MRU_MAXDEPTH: 2188 ctl_putuint(sys_var[varid].text, mru_maxdepth); 2189 break; 2190 2191 case CS_MRU_MAXMEM: 2192 kb = mru_maxdepth * (sizeof(mon_entry) / 1024.); 2193 u = (u_int)kb; 2194 if (kb - u >= 0.5) 2195 u++; 2196 ctl_putuint(sys_var[varid].text, u); 2197 break; 2198 2199 case CS_SS_UPTIME: 2200 ctl_putuint(sys_var[varid].text, current_time); 2201 break; 2202 2203 case CS_SS_RESET: 2204 ctl_putuint(sys_var[varid].text, 2205 current_time - sys_stattime); 2206 break; 2207 2208 case CS_SS_RECEIVED: 2209 ctl_putuint(sys_var[varid].text, sys_received); 2210 break; 2211 2212 case CS_SS_THISVER: 2213 ctl_putuint(sys_var[varid].text, sys_newversion); 2214 break; 2215 2216 case CS_SS_OLDVER: 2217 ctl_putuint(sys_var[varid].text, sys_oldversion); 2218 break; 2219 2220 case CS_SS_BADFORMAT: 2221 ctl_putuint(sys_var[varid].text, sys_badlength); 2222 break; 2223 2224 case CS_SS_BADAUTH: 2225 ctl_putuint(sys_var[varid].text, sys_badauth); 2226 break; 2227 2228 case CS_SS_DECLINED: 2229 ctl_putuint(sys_var[varid].text, sys_declined); 2230 break; 2231 2232 case CS_SS_RESTRICTED: 2233 ctl_putuint(sys_var[varid].text, sys_restricted); 2234 break; 2235 2236 case CS_SS_LIMITED: 2237 ctl_putuint(sys_var[varid].text, sys_limitrejected); 2238 break; 2239 2240 case CS_SS_LAMPORT: 2241 ctl_putuint(sys_var[varid].text, sys_lamport); 2242 break; 2243 2244 case CS_SS_TSROUNDING: 2245 ctl_putuint(sys_var[varid].text, sys_tsrounding); 2246 break; 2247 2248 case CS_SS_KODSENT: 2249 ctl_putuint(sys_var[varid].text, sys_kodsent); 2250 break; 2251 2252 case CS_SS_PROCESSED: 2253 ctl_putuint(sys_var[varid].text, sys_processed); 2254 break; 2255 2256 case CS_BCASTDELAY: 2257 ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3); 2258 break; 2259 2260 case CS_AUTHDELAY: 2261 LFPTOD(&sys_authdelay, dtemp); 2262 ctl_putdbl(sys_var[varid].text, dtemp * 1e3); 2263 break; 2264 2265 case CS_AUTHKEYS: 2266 ctl_putuint(sys_var[varid].text, authnumkeys); 2267 break; 2268 2269 case CS_AUTHFREEK: 2270 ctl_putuint(sys_var[varid].text, authnumfreekeys); 2271 break; 2272 2273 case CS_AUTHKLOOKUPS: 2274 ctl_putuint(sys_var[varid].text, authkeylookups); 2275 break; 2276 2277 case CS_AUTHKNOTFOUND: 2278 ctl_putuint(sys_var[varid].text, authkeynotfound); 2279 break; 2280 2281 case CS_AUTHKUNCACHED: 2282 ctl_putuint(sys_var[varid].text, authkeyuncached); 2283 break; 2284 2285 case CS_AUTHKEXPIRED: 2286 ctl_putuint(sys_var[varid].text, authkeyexpired); 2287 break; 2288 2289 case CS_AUTHENCRYPTS: 2290 ctl_putuint(sys_var[varid].text, authencryptions); 2291 break; 2292 2293 case CS_AUTHDECRYPTS: 2294 ctl_putuint(sys_var[varid].text, authdecryptions); 2295 break; 2296 2297 case CS_AUTHRESET: 2298 ctl_putuint(sys_var[varid].text, 2299 current_time - auth_timereset); 2300 break; 2301 2302 /* 2303 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is 2304 * unavailable, otherwise calls putfunc with args. 2305 */ 2306 #ifndef KERNEL_PLL 2307 # define CTL_IF_KERNLOOP(putfunc, args) \ 2308 ctl_putint(sys_var[varid].text, 0) 2309 #else 2310 # define CTL_IF_KERNLOOP(putfunc, args) \ 2311 putfunc args 2312 #endif 2313 2314 /* 2315 * CTL_IF_KERNPPS() puts a zero if either the kernel 2316 * loop is unavailable, or kernel hard PPS is not 2317 * active, otherwise calls putfunc with args. 2318 */ 2319 #ifndef KERNEL_PLL 2320 # define CTL_IF_KERNPPS(putfunc, args) \ 2321 ctl_putint(sys_var[varid].text, 0) 2322 #else 2323 # define CTL_IF_KERNPPS(putfunc, args) \ 2324 if (0 == ntx.shift) \ 2325 ctl_putint(sys_var[varid].text, 0); \ 2326 else \ 2327 putfunc args /* no trailing ; */ 2328 #endif 2329 2330 case CS_K_OFFSET: 2331 CTL_IF_KERNLOOP( 2332 ctl_putdblf, 2333 (sys_var[varid].text, 0, -1, 2334 1000 * dbl_from_var_long(ntx.offset, ntx.status)) 2335 ); 2336 break; 2337 2338 case CS_K_FREQ: 2339 CTL_IF_KERNLOOP( 2340 ctl_putsfp, 2341 (sys_var[varid].text, ntx.freq) 2342 ); 2343 break; 2344 2345 case CS_K_MAXERR: 2346 CTL_IF_KERNLOOP( 2347 ctl_putdblf, 2348 (sys_var[varid].text, 0, 6, 2349 1000 * dbl_from_usec_long(ntx.maxerror)) 2350 ); 2351 break; 2352 2353 case CS_K_ESTERR: 2354 CTL_IF_KERNLOOP( 2355 ctl_putdblf, 2356 (sys_var[varid].text, 0, 6, 2357 1000 * dbl_from_usec_long(ntx.esterror)) 2358 ); 2359 break; 2360 2361 case CS_K_STFLAGS: 2362 #ifndef KERNEL_PLL 2363 ss = ""; 2364 #else 2365 ss = k_st_flags(ntx.status); 2366 #endif 2367 ctl_putstr(sys_var[varid].text, ss, strlen(ss)); 2368 break; 2369 2370 case CS_K_TIMECONST: 2371 CTL_IF_KERNLOOP( 2372 ctl_putint, 2373 (sys_var[varid].text, ntx.constant) 2374 ); 2375 break; 2376 2377 case CS_K_PRECISION: 2378 CTL_IF_KERNLOOP( 2379 ctl_putdblf, 2380 (sys_var[varid].text, 0, 6, 2381 1000 * dbl_from_var_long(ntx.precision, ntx.status)) 2382 ); 2383 break; 2384 2385 case CS_K_FREQTOL: 2386 CTL_IF_KERNLOOP( 2387 ctl_putsfp, 2388 (sys_var[varid].text, ntx.tolerance) 2389 ); 2390 break; 2391 2392 case CS_K_PPS_FREQ: 2393 CTL_IF_KERNPPS( 2394 ctl_putsfp, 2395 (sys_var[varid].text, ntx.ppsfreq) 2396 ); 2397 break; 2398 2399 case CS_K_PPS_STABIL: 2400 CTL_IF_KERNPPS( 2401 ctl_putsfp, 2402 (sys_var[varid].text, ntx.stabil) 2403 ); 2404 break; 2405 2406 case CS_K_PPS_JITTER: 2407 CTL_IF_KERNPPS( 2408 ctl_putdbl, 2409 (sys_var[varid].text, 2410 1000 * dbl_from_var_long(ntx.jitter, ntx.status)) 2411 ); 2412 break; 2413 2414 case CS_K_PPS_CALIBDUR: 2415 CTL_IF_KERNPPS( 2416 ctl_putint, 2417 (sys_var[varid].text, 1 << ntx.shift) 2418 ); 2419 break; 2420 2421 case CS_K_PPS_CALIBS: 2422 CTL_IF_KERNPPS( 2423 ctl_putint, 2424 (sys_var[varid].text, ntx.calcnt) 2425 ); 2426 break; 2427 2428 case CS_K_PPS_CALIBERRS: 2429 CTL_IF_KERNPPS( 2430 ctl_putint, 2431 (sys_var[varid].text, ntx.errcnt) 2432 ); 2433 break; 2434 2435 case CS_K_PPS_JITEXC: 2436 CTL_IF_KERNPPS( 2437 ctl_putint, 2438 (sys_var[varid].text, ntx.jitcnt) 2439 ); 2440 break; 2441 2442 case CS_K_PPS_STBEXC: 2443 CTL_IF_KERNPPS( 2444 ctl_putint, 2445 (sys_var[varid].text, ntx.stbcnt) 2446 ); 2447 break; 2448 2449 case CS_IOSTATS_RESET: 2450 ctl_putuint(sys_var[varid].text, 2451 current_time - io_timereset); 2452 break; 2453 2454 case CS_TOTAL_RBUF: 2455 ctl_putuint(sys_var[varid].text, total_recvbuffs()); 2456 break; 2457 2458 case CS_FREE_RBUF: 2459 ctl_putuint(sys_var[varid].text, free_recvbuffs()); 2460 break; 2461 2462 case CS_USED_RBUF: 2463 ctl_putuint(sys_var[varid].text, full_recvbuffs()); 2464 break; 2465 2466 case CS_RBUF_LOWATER: 2467 ctl_putuint(sys_var[varid].text, lowater_additions()); 2468 break; 2469 2470 case CS_IO_DROPPED: 2471 ctl_putuint(sys_var[varid].text, packets_dropped); 2472 break; 2473 2474 case CS_IO_IGNORED: 2475 ctl_putuint(sys_var[varid].text, packets_ignored); 2476 break; 2477 2478 case CS_IO_RECEIVED: 2479 ctl_putuint(sys_var[varid].text, packets_received); 2480 break; 2481 2482 case CS_IO_SENT: 2483 ctl_putuint(sys_var[varid].text, packets_sent); 2484 break; 2485 2486 case CS_IO_SENDFAILED: 2487 ctl_putuint(sys_var[varid].text, packets_notsent); 2488 break; 2489 2490 case CS_IO_WAKEUPS: 2491 ctl_putuint(sys_var[varid].text, handler_calls); 2492 break; 2493 2494 case CS_IO_GOODWAKEUPS: 2495 ctl_putuint(sys_var[varid].text, handler_pkts); 2496 break; 2497 2498 case CS_TIMERSTATS_RESET: 2499 ctl_putuint(sys_var[varid].text, 2500 current_time - timer_timereset); 2501 break; 2502 2503 case CS_TIMER_OVERRUNS: 2504 ctl_putuint(sys_var[varid].text, alarm_overflow); 2505 break; 2506 2507 case CS_TIMER_XMTS: 2508 ctl_putuint(sys_var[varid].text, timer_xmtcalls); 2509 break; 2510 2511 case CS_FUZZ: 2512 ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3); 2513 break; 2514 case CS_WANDER_THRESH: 2515 ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6); 2516 break; 2517 #ifdef AUTOKEY 2518 case CS_FLAGS: 2519 if (crypto_flags) 2520 ctl_puthex(sys_var[CS_FLAGS].text, 2521 crypto_flags); 2522 break; 2523 2524 case CS_DIGEST: 2525 if (crypto_flags) { 2526 strlcpy(str, OBJ_nid2ln(crypto_nid), 2527 COUNTOF(str)); 2528 ctl_putstr(sys_var[CS_DIGEST].text, str, 2529 strlen(str)); 2530 } 2531 break; 2532 2533 case CS_SIGNATURE: 2534 if (crypto_flags) { 2535 const EVP_MD *dp; 2536 2537 dp = EVP_get_digestbynid(crypto_flags >> 16); 2538 strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)), 2539 COUNTOF(str)); 2540 ctl_putstr(sys_var[CS_SIGNATURE].text, str, 2541 strlen(str)); 2542 } 2543 break; 2544 2545 case CS_HOST: 2546 if (hostval.ptr != NULL) 2547 ctl_putstr(sys_var[CS_HOST].text, hostval.ptr, 2548 strlen(hostval.ptr)); 2549 break; 2550 2551 case CS_IDENT: 2552 if (sys_ident != NULL) 2553 ctl_putstr(sys_var[CS_IDENT].text, sys_ident, 2554 strlen(sys_ident)); 2555 break; 2556 2557 case CS_CERTIF: 2558 for (cp = cinfo; cp != NULL; cp = cp->link) { 2559 snprintf(str, sizeof(str), "%s %s 0x%x", 2560 cp->subject, cp->issuer, cp->flags); 2561 ctl_putstr(sys_var[CS_CERTIF].text, str, 2562 strlen(str)); 2563 ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last)); 2564 } 2565 break; 2566 2567 case CS_PUBLIC: 2568 if (hostval.tstamp != 0) 2569 ctl_putfs(sys_var[CS_PUBLIC].text, 2570 ntohl(hostval.tstamp)); 2571 break; 2572 #endif /* AUTOKEY */ 2573 2574 default: 2575 break; 2576 } 2577 } 2578 2579 2580 /* 2581 * ctl_putpeer - output a peer variable 2582 */ 2583 static void 2584 ctl_putpeer( 2585 int id, 2586 struct peer *p 2587 ) 2588 { 2589 char buf[CTL_MAX_DATA_LEN]; 2590 char *s; 2591 char *t; 2592 char *be; 2593 int i; 2594 const struct ctl_var *k; 2595 #ifdef AUTOKEY 2596 struct autokey *ap; 2597 const EVP_MD *dp; 2598 const char *str; 2599 #endif /* AUTOKEY */ 2600 2601 switch (id) { 2602 2603 case CP_CONFIG: 2604 ctl_putuint(peer_var[id].text, 2605 !(FLAG_PREEMPT & p->flags)); 2606 break; 2607 2608 case CP_AUTHENABLE: 2609 ctl_putuint(peer_var[id].text, !(p->keyid)); 2610 break; 2611 2612 case CP_AUTHENTIC: 2613 ctl_putuint(peer_var[id].text, 2614 !!(FLAG_AUTHENTIC & p->flags)); 2615 break; 2616 2617 case CP_SRCADR: 2618 ctl_putadr(peer_var[id].text, 0, &p->srcadr); 2619 break; 2620 2621 case CP_SRCPORT: 2622 ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr)); 2623 break; 2624 2625 case CP_SRCHOST: 2626 if (p->hostname != NULL) 2627 ctl_putstr(peer_var[id].text, p->hostname, 2628 strlen(p->hostname)); 2629 break; 2630 2631 case CP_DSTADR: 2632 ctl_putadr(peer_var[id].text, 0, 2633 (p->dstadr != NULL) 2634 ? &p->dstadr->sin 2635 : NULL); 2636 break; 2637 2638 case CP_DSTPORT: 2639 ctl_putuint(peer_var[id].text, 2640 (p->dstadr != NULL) 2641 ? SRCPORT(&p->dstadr->sin) 2642 : 0); 2643 break; 2644 2645 case CP_IN: 2646 if (p->r21 > 0.) 2647 ctl_putdbl(peer_var[id].text, p->r21 / 1e3); 2648 break; 2649 2650 case CP_OUT: 2651 if (p->r34 > 0.) 2652 ctl_putdbl(peer_var[id].text, p->r34 / 1e3); 2653 break; 2654 2655 case CP_RATE: 2656 ctl_putuint(peer_var[id].text, p->throttle); 2657 break; 2658 2659 case CP_LEAP: 2660 ctl_putuint(peer_var[id].text, p->leap); 2661 break; 2662 2663 case CP_HMODE: 2664 ctl_putuint(peer_var[id].text, p->hmode); 2665 break; 2666 2667 case CP_STRATUM: 2668 ctl_putuint(peer_var[id].text, p->stratum); 2669 break; 2670 2671 case CP_PPOLL: 2672 ctl_putuint(peer_var[id].text, p->ppoll); 2673 break; 2674 2675 case CP_HPOLL: 2676 ctl_putuint(peer_var[id].text, p->hpoll); 2677 break; 2678 2679 case CP_PRECISION: 2680 ctl_putint(peer_var[id].text, p->precision); 2681 break; 2682 2683 case CP_ROOTDELAY: 2684 ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3); 2685 break; 2686 2687 case CP_ROOTDISPERSION: 2688 ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3); 2689 break; 2690 2691 case CP_REFID: 2692 #ifdef REFCLOCK 2693 if (p->flags & FLAG_REFCLOCK) { 2694 ctl_putrefid(peer_var[id].text, p->refid); 2695 break; 2696 } 2697 #endif 2698 if (REFID_ISTEXT(p->stratum)) 2699 ctl_putrefid(peer_var[id].text, p->refid); 2700 else 2701 ctl_putadr(peer_var[id].text, p->refid, NULL); 2702 break; 2703 2704 case CP_REFTIME: 2705 ctl_putts(peer_var[id].text, &p->reftime); 2706 break; 2707 2708 case CP_ORG: 2709 ctl_putts(peer_var[id].text, &p->aorg); 2710 break; 2711 2712 case CP_REC: 2713 ctl_putts(peer_var[id].text, &p->dst); 2714 break; 2715 2716 case CP_XMT: 2717 if (p->xleave) 2718 ctl_putdbl(peer_var[id].text, p->xleave * 1e3); 2719 break; 2720 2721 case CP_BIAS: 2722 if (p->bias != 0.) 2723 ctl_putdbl(peer_var[id].text, p->bias * 1e3); 2724 break; 2725 2726 case CP_REACH: 2727 ctl_puthex(peer_var[id].text, p->reach); 2728 break; 2729 2730 case CP_FLASH: 2731 ctl_puthex(peer_var[id].text, p->flash); 2732 break; 2733 2734 case CP_TTL: 2735 #ifdef REFCLOCK 2736 if (p->flags & FLAG_REFCLOCK) { 2737 ctl_putuint(peer_var[id].text, p->ttl); 2738 break; 2739 } 2740 #endif 2741 if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl)) 2742 ctl_putint(peer_var[id].text, 2743 sys_ttl[p->ttl]); 2744 break; 2745 2746 case CP_UNREACH: 2747 ctl_putuint(peer_var[id].text, p->unreach); 2748 break; 2749 2750 case CP_TIMER: 2751 ctl_putuint(peer_var[id].text, 2752 p->nextdate - current_time); 2753 break; 2754 2755 case CP_DELAY: 2756 ctl_putdbl(peer_var[id].text, p->delay * 1e3); 2757 break; 2758 2759 case CP_OFFSET: 2760 ctl_putdbl(peer_var[id].text, p->offset * 1e3); 2761 break; 2762 2763 case CP_JITTER: 2764 ctl_putdbl(peer_var[id].text, p->jitter * 1e3); 2765 break; 2766 2767 case CP_DISPERSION: 2768 ctl_putdbl(peer_var[id].text, p->disp * 1e3); 2769 break; 2770 2771 case CP_KEYID: 2772 if (p->keyid > NTP_MAXKEY) 2773 ctl_puthex(peer_var[id].text, p->keyid); 2774 else 2775 ctl_putuint(peer_var[id].text, p->keyid); 2776 break; 2777 2778 case CP_FILTDELAY: 2779 ctl_putarray(peer_var[id].text, p->filter_delay, 2780 p->filter_nextpt); 2781 break; 2782 2783 case CP_FILTOFFSET: 2784 ctl_putarray(peer_var[id].text, p->filter_offset, 2785 p->filter_nextpt); 2786 break; 2787 2788 case CP_FILTERROR: 2789 ctl_putarray(peer_var[id].text, p->filter_disp, 2790 p->filter_nextpt); 2791 break; 2792 2793 case CP_PMODE: 2794 ctl_putuint(peer_var[id].text, p->pmode); 2795 break; 2796 2797 case CP_RECEIVED: 2798 ctl_putuint(peer_var[id].text, p->received); 2799 break; 2800 2801 case CP_SENT: 2802 ctl_putuint(peer_var[id].text, p->sent); 2803 break; 2804 2805 case CP_VARLIST: 2806 s = buf; 2807 be = buf + sizeof(buf); 2808 if (strlen(peer_var[id].text) + 4 > sizeof(buf)) 2809 break; /* really long var name */ 2810 2811 snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text); 2812 s += strlen(s); 2813 t = s; 2814 for (k = peer_var; !(EOV & k->flags); k++) { 2815 if (PADDING & k->flags) 2816 continue; 2817 i = strlen(k->text); 2818 if (s + i + 1 >= be) 2819 break; 2820 if (s != t) 2821 *s++ = ','; 2822 memcpy(s, k->text, i); 2823 s += i; 2824 } 2825 if (s + 2 < be) { 2826 *s++ = '"'; 2827 *s = '\0'; 2828 ctl_putdata(buf, (u_int)(s - buf), 0); 2829 } 2830 break; 2831 2832 case CP_TIMEREC: 2833 ctl_putuint(peer_var[id].text, 2834 current_time - p->timereceived); 2835 break; 2836 2837 case CP_TIMEREACH: 2838 ctl_putuint(peer_var[id].text, 2839 current_time - p->timereachable); 2840 break; 2841 2842 case CP_BADAUTH: 2843 ctl_putuint(peer_var[id].text, p->badauth); 2844 break; 2845 2846 case CP_BOGUSORG: 2847 ctl_putuint(peer_var[id].text, p->bogusorg); 2848 break; 2849 2850 case CP_OLDPKT: 2851 ctl_putuint(peer_var[id].text, p->oldpkt); 2852 break; 2853 2854 case CP_SELDISP: 2855 ctl_putuint(peer_var[id].text, p->seldisptoolarge); 2856 break; 2857 2858 case CP_SELBROKEN: 2859 ctl_putuint(peer_var[id].text, p->selbroken); 2860 break; 2861 2862 case CP_CANDIDATE: 2863 ctl_putuint(peer_var[id].text, p->status); 2864 break; 2865 #ifdef AUTOKEY 2866 case CP_FLAGS: 2867 if (p->crypto) 2868 ctl_puthex(peer_var[id].text, p->crypto); 2869 break; 2870 2871 case CP_SIGNATURE: 2872 if (p->crypto) { 2873 dp = EVP_get_digestbynid(p->crypto >> 16); 2874 str = OBJ_nid2ln(EVP_MD_pkey_type(dp)); 2875 ctl_putstr(peer_var[id].text, str, strlen(str)); 2876 } 2877 break; 2878 2879 case CP_HOST: 2880 if (p->subject != NULL) 2881 ctl_putstr(peer_var[id].text, p->subject, 2882 strlen(p->subject)); 2883 break; 2884 2885 case CP_VALID: /* not used */ 2886 break; 2887 2888 case CP_INITSEQ: 2889 if (NULL == (ap = p->recval.ptr)) 2890 break; 2891 2892 ctl_putint(peer_var[CP_INITSEQ].text, ap->seq); 2893 ctl_puthex(peer_var[CP_INITKEY].text, ap->key); 2894 ctl_putfs(peer_var[CP_INITTSP].text, 2895 ntohl(p->recval.tstamp)); 2896 break; 2897 2898 case CP_IDENT: 2899 if (p->ident != NULL) 2900 ctl_putstr(peer_var[id].text, p->ident, 2901 strlen(p->ident)); 2902 break; 2903 2904 2905 #endif /* AUTOKEY */ 2906 } 2907 } 2908 2909 2910 #ifdef REFCLOCK 2911 /* 2912 * ctl_putclock - output clock variables 2913 */ 2914 static void 2915 ctl_putclock( 2916 int id, 2917 struct refclockstat *pcs, 2918 int mustput 2919 ) 2920 { 2921 char buf[CTL_MAX_DATA_LEN]; 2922 char *s, *t, *be; 2923 const char *ss; 2924 int i; 2925 const struct ctl_var *k; 2926 2927 switch (id) { 2928 2929 case CC_TYPE: 2930 if (mustput || pcs->clockdesc == NULL 2931 || *(pcs->clockdesc) == '\0') { 2932 ctl_putuint(clock_var[id].text, pcs->type); 2933 } 2934 break; 2935 case CC_TIMECODE: 2936 ctl_putstr(clock_var[id].text, 2937 pcs->p_lastcode, 2938 (unsigned)pcs->lencode); 2939 break; 2940 2941 case CC_POLL: 2942 ctl_putuint(clock_var[id].text, pcs->polls); 2943 break; 2944 2945 case CC_NOREPLY: 2946 ctl_putuint(clock_var[id].text, 2947 pcs->noresponse); 2948 break; 2949 2950 case CC_BADFORMAT: 2951 ctl_putuint(clock_var[id].text, 2952 pcs->badformat); 2953 break; 2954 2955 case CC_BADDATA: 2956 ctl_putuint(clock_var[id].text, 2957 pcs->baddata); 2958 break; 2959 2960 case CC_FUDGETIME1: 2961 if (mustput || (pcs->haveflags & CLK_HAVETIME1)) 2962 ctl_putdbl(clock_var[id].text, 2963 pcs->fudgetime1 * 1e3); 2964 break; 2965 2966 case CC_FUDGETIME2: 2967 if (mustput || (pcs->haveflags & CLK_HAVETIME2)) 2968 ctl_putdbl(clock_var[id].text, 2969 pcs->fudgetime2 * 1e3); 2970 break; 2971 2972 case CC_FUDGEVAL1: 2973 if (mustput || (pcs->haveflags & CLK_HAVEVAL1)) 2974 ctl_putint(clock_var[id].text, 2975 pcs->fudgeval1); 2976 break; 2977 2978 case CC_FUDGEVAL2: 2979 /* RefID of clocks are always text even if stratum is fudged */ 2980 if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) 2981 ctl_putrefid(clock_var[id].text, pcs->fudgeval2); 2982 break; 2983 2984 case CC_FLAGS: 2985 ctl_putuint(clock_var[id].text, pcs->flags); 2986 break; 2987 2988 case CC_DEVICE: 2989 if (pcs->clockdesc == NULL || 2990 *(pcs->clockdesc) == '\0') { 2991 if (mustput) 2992 ctl_putstr(clock_var[id].text, 2993 "", 0); 2994 } else { 2995 ctl_putstr(clock_var[id].text, 2996 pcs->clockdesc, 2997 strlen(pcs->clockdesc)); 2998 } 2999 break; 3000 3001 case CC_VARLIST: 3002 s = buf; 3003 be = buf + sizeof(buf); 3004 if (strlen(clock_var[CC_VARLIST].text) + 4 > 3005 sizeof(buf)) 3006 break; /* really long var name */ 3007 3008 snprintf(s, sizeof(buf), "%s=\"", 3009 clock_var[CC_VARLIST].text); 3010 s += strlen(s); 3011 t = s; 3012 3013 for (k = clock_var; !(EOV & k->flags); k++) { 3014 if (PADDING & k->flags) 3015 continue; 3016 3017 i = strlen(k->text); 3018 if (s + i + 1 >= be) 3019 break; 3020 3021 if (s != t) 3022 *s++ = ','; 3023 memcpy(s, k->text, i); 3024 s += i; 3025 } 3026 3027 for (k = pcs->kv_list; k && !(EOV & k->flags); k++) { 3028 if (PADDING & k->flags) 3029 continue; 3030 3031 ss = k->text; 3032 if (NULL == ss) 3033 continue; 3034 3035 while (*ss && *ss != '=') 3036 ss++; 3037 i = ss - k->text; 3038 if (s + i + 1 >= be) 3039 break; 3040 3041 if (s != t) 3042 *s++ = ','; 3043 memcpy(s, k->text, (unsigned)i); 3044 s += i; 3045 *s = '\0'; 3046 } 3047 if (s + 2 >= be) 3048 break; 3049 3050 *s++ = '"'; 3051 *s = '\0'; 3052 ctl_putdata(buf, (unsigned)(s - buf), 0); 3053 break; 3054 3055 case CC_FUDGEMINJIT: 3056 if (mustput || (pcs->haveflags & CLK_HAVEMINJIT)) 3057 ctl_putdbl(clock_var[id].text, 3058 pcs->fudgeminjitter * 1e3); 3059 break; 3060 3061 default: 3062 break; 3063 3064 } 3065 } 3066 #endif 3067 3068 3069 3070 /* 3071 * ctl_getitem - get the next data item from the incoming packet 3072 */ 3073 static const struct ctl_var * 3074 ctl_getitem( 3075 const struct ctl_var *var_list, 3076 char **data 3077 ) 3078 { 3079 /* [Bug 3008] First check the packet data sanity, then search 3080 * the key. This improves the consistency of result values: If 3081 * the result is NULL once, it will never be EOV again for this 3082 * packet; If it's EOV, it will never be NULL again until the 3083 * variable is found and processed in a given 'var_list'. (That 3084 * is, a result is returned that is neither NULL nor EOV). 3085 */ 3086 static const struct ctl_var eol = { 0, EOV, NULL }; 3087 static char buf[128]; 3088 static u_long quiet_until; 3089 const struct ctl_var *v; 3090 char *cp; 3091 char *tp; 3092 3093 /* 3094 * Part One: Validate the packet state 3095 */ 3096 3097 /* Delete leading commas and white space */ 3098 while (reqpt < reqend && (*reqpt == ',' || 3099 isspace((unsigned char)*reqpt))) 3100 reqpt++; 3101 if (reqpt >= reqend) 3102 return NULL; 3103 3104 /* Scan the string in the packet until we hit comma or 3105 * EoB. Register position of first '=' on the fly. */ 3106 for (tp = NULL, cp = reqpt; cp != reqend; ++cp) { 3107 if (*cp == '=' && tp == NULL) 3108 tp = cp; 3109 if (*cp == ',') 3110 break; 3111 } 3112 3113 /* Process payload, if any. */ 3114 *data = NULL; 3115 if (NULL != tp) { 3116 /* eventually strip white space from argument. */ 3117 const char *plhead = tp + 1; /* skip the '=' */ 3118 const char *pltail = cp; 3119 size_t plsize; 3120 3121 while (plhead != pltail && isspace((u_char)plhead[0])) 3122 ++plhead; 3123 while (plhead != pltail && isspace((u_char)pltail[-1])) 3124 --pltail; 3125 3126 /* check payload size, terminate packet on overflow */ 3127 plsize = (size_t)(pltail - plhead); 3128 if (plsize >= sizeof(buf)) 3129 goto badpacket; 3130 3131 /* copy data, NUL terminate, and set result data ptr */ 3132 memcpy(buf, plhead, plsize); 3133 buf[plsize] = '\0'; 3134 *data = buf; 3135 } else { 3136 /* no payload, current end --> current name termination */ 3137 tp = cp; 3138 } 3139 3140 /* Part Two 3141 * 3142 * Now we're sure that the packet data itself is sane. Scan the 3143 * list now. Make sure a NULL list is properly treated by 3144 * returning a synthetic End-Of-Values record. We must not 3145 * return NULL pointers after this point, or the behaviour would 3146 * become inconsistent if called several times with different 3147 * variable lists after an EoV was returned. (Such a behavior 3148 * actually caused Bug 3008.) 3149 */ 3150 3151 if (NULL == var_list) 3152 return &eol; 3153 3154 for (v = var_list; !(EOV & v->flags); ++v) 3155 if (!(PADDING & v->flags)) { 3156 /* Check if the var name matches the buffer. The 3157 * name is bracketed by [reqpt..tp] and not NUL 3158 * terminated, and it contains no '=' char. The 3159 * lookup value IS NUL-terminated but might 3160 * include a '='... We have to look out for 3161 * that! 3162 */ 3163 const char *sp1 = reqpt; 3164 const char *sp2 = v->text; 3165 3166 /* [Bug 3412] do not compare past NUL byte in name */ 3167 while ( (sp1 != tp) 3168 && ('\0' != *sp2) && (*sp1 == *sp2)) { 3169 ++sp1; 3170 ++sp2; 3171 } 3172 if (sp1 == tp && (*sp2 == '\0' || *sp2 == '=')) 3173 break; 3174 } 3175 3176 /* See if we have found a valid entry or not. If found, advance 3177 * the request pointer for the next round; if not, clear the 3178 * data pointer so we have no dangling garbage here. 3179 */ 3180 if (EOV & v->flags) 3181 *data = NULL; 3182 else 3183 reqpt = cp + (cp != reqend); 3184 return v; 3185 3186 badpacket: 3187 /*TODO? somehow indicate this packet was bad, apart from syslog? */ 3188 numctlbadpkts++; 3189 NLOG(NLOG_SYSEVENT) 3190 if (quiet_until <= current_time) { 3191 quiet_until = current_time + 300; 3192 msyslog(LOG_WARNING, 3193 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", 3194 stoa(rmt_addr), SRCPORT(rmt_addr)); 3195 } 3196 reqpt = reqend; /* never again for this packet! */ 3197 return NULL; 3198 } 3199 3200 3201 /* 3202 * control_unspec - response to an unspecified op-code 3203 */ 3204 /*ARGSUSED*/ 3205 static void 3206 control_unspec( 3207 struct recvbuf *rbufp, 3208 int restrict_mask 3209 ) 3210 { 3211 struct peer *peer; 3212 3213 /* 3214 * What is an appropriate response to an unspecified op-code? 3215 * I return no errors and no data, unless a specified assocation 3216 * doesn't exist. 3217 */ 3218 if (res_associd) { 3219 peer = findpeerbyassoc(res_associd); 3220 if (NULL == peer) { 3221 ctl_error(CERR_BADASSOC); 3222 return; 3223 } 3224 rpkt.status = htons(ctlpeerstatus(peer)); 3225 } else 3226 rpkt.status = htons(ctlsysstatus()); 3227 ctl_flushpkt(0); 3228 } 3229 3230 3231 /* 3232 * read_status - return either a list of associd's, or a particular 3233 * peer's status. 3234 */ 3235 /*ARGSUSED*/ 3236 static void 3237 read_status( 3238 struct recvbuf *rbufp, 3239 int restrict_mask 3240 ) 3241 { 3242 struct peer *peer; 3243 const u_char *cp; 3244 size_t n; 3245 /* a_st holds association ID, status pairs alternating */ 3246 u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)]; 3247 3248 #ifdef DEBUG 3249 if (debug > 2) 3250 printf("read_status: ID %d\n", res_associd); 3251 #endif 3252 /* 3253 * Two choices here. If the specified association ID is 3254 * zero we return all known assocation ID's. Otherwise 3255 * we return a bunch of stuff about the particular peer. 3256 */ 3257 if (res_associd) { 3258 peer = findpeerbyassoc(res_associd); 3259 if (NULL == peer) { 3260 ctl_error(CERR_BADASSOC); 3261 return; 3262 } 3263 rpkt.status = htons(ctlpeerstatus(peer)); 3264 if (res_authokay) 3265 peer->num_events = 0; 3266 /* 3267 * For now, output everything we know about the 3268 * peer. May be more selective later. 3269 */ 3270 for (cp = def_peer_var; *cp != 0; cp++) 3271 ctl_putpeer((int)*cp, peer); 3272 ctl_flushpkt(0); 3273 return; 3274 } 3275 n = 0; 3276 rpkt.status = htons(ctlsysstatus()); 3277 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3278 a_st[n++] = htons(peer->associd); 3279 a_st[n++] = htons(ctlpeerstatus(peer)); 3280 /* two entries each loop iteration, so n + 1 */ 3281 if (n + 1 >= COUNTOF(a_st)) { 3282 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 3283 1); 3284 n = 0; 3285 } 3286 } 3287 if (n) 3288 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1); 3289 ctl_flushpkt(0); 3290 } 3291 3292 3293 /* 3294 * read_peervars - half of read_variables() implementation 3295 */ 3296 static void 3297 read_peervars(void) 3298 { 3299 const struct ctl_var *v; 3300 struct peer *peer; 3301 const u_char *cp; 3302 size_t i; 3303 char * valuep; 3304 u_char wants[CP_MAXCODE + 1]; 3305 u_int gotvar; 3306 3307 /* 3308 * Wants info for a particular peer. See if we know 3309 * the guy. 3310 */ 3311 peer = findpeerbyassoc(res_associd); 3312 if (NULL == peer) { 3313 ctl_error(CERR_BADASSOC); 3314 return; 3315 } 3316 rpkt.status = htons(ctlpeerstatus(peer)); 3317 if (res_authokay) 3318 peer->num_events = 0; 3319 ZERO(wants); 3320 gotvar = 0; 3321 while (NULL != (v = ctl_getitem(peer_var, &valuep))) { 3322 if (v->flags & EOV) { 3323 ctl_error(CERR_UNKNOWNVAR); 3324 return; 3325 } 3326 INSIST(v->code < COUNTOF(wants)); 3327 wants[v->code] = 1; 3328 gotvar = 1; 3329 } 3330 if (gotvar) { 3331 for (i = 1; i < COUNTOF(wants); i++) 3332 if (wants[i]) 3333 ctl_putpeer(i, peer); 3334 } else 3335 for (cp = def_peer_var; *cp != 0; cp++) 3336 ctl_putpeer((int)*cp, peer); 3337 ctl_flushpkt(0); 3338 } 3339 3340 3341 /* 3342 * read_sysvars - half of read_variables() implementation 3343 */ 3344 static void 3345 read_sysvars(void) 3346 { 3347 const struct ctl_var *v; 3348 struct ctl_var *kv; 3349 u_int n; 3350 u_int gotvar; 3351 const u_char *cs; 3352 char * valuep; 3353 const char * pch; 3354 u_char *wants; 3355 size_t wants_count; 3356 3357 /* 3358 * Wants system variables. Figure out which he wants 3359 * and give them to him. 3360 */ 3361 rpkt.status = htons(ctlsysstatus()); 3362 if (res_authokay) 3363 ctl_sys_num_events = 0; 3364 wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var); 3365 wants = emalloc_zero(wants_count); 3366 gotvar = 0; 3367 while (NULL != (v = ctl_getitem(sys_var, &valuep))) { 3368 if (!(EOV & v->flags)) { 3369 INSIST(v->code < wants_count); 3370 wants[v->code] = 1; 3371 gotvar = 1; 3372 } else { 3373 v = ctl_getitem(ext_sys_var, &valuep); 3374 if (NULL == v) { 3375 ctl_error(CERR_BADVALUE); 3376 free(wants); 3377 return; 3378 } 3379 if (EOV & v->flags) { 3380 ctl_error(CERR_UNKNOWNVAR); 3381 free(wants); 3382 return; 3383 } 3384 n = v->code + CS_MAXCODE + 1; 3385 INSIST(n < wants_count); 3386 wants[n] = 1; 3387 gotvar = 1; 3388 } 3389 } 3390 if (gotvar) { 3391 for (n = 1; n <= CS_MAXCODE; n++) 3392 if (wants[n]) 3393 ctl_putsys(n); 3394 for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++) 3395 if (wants[n + CS_MAXCODE + 1]) { 3396 pch = ext_sys_var[n].text; 3397 ctl_putdata(pch, strlen(pch), 0); 3398 } 3399 } else { 3400 for (cs = def_sys_var; *cs != 0; cs++) 3401 ctl_putsys((int)*cs); 3402 for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++) 3403 if (DEF & kv->flags) 3404 ctl_putdata(kv->text, strlen(kv->text), 3405 0); 3406 } 3407 free(wants); 3408 ctl_flushpkt(0); 3409 } 3410 3411 3412 /* 3413 * read_variables - return the variables the caller asks for 3414 */ 3415 /*ARGSUSED*/ 3416 static void 3417 read_variables( 3418 struct recvbuf *rbufp, 3419 int restrict_mask 3420 ) 3421 { 3422 if (res_associd) 3423 read_peervars(); 3424 else 3425 read_sysvars(); 3426 } 3427 3428 3429 /* 3430 * write_variables - write into variables. We only allow leap bit 3431 * writing this way. 3432 */ 3433 /*ARGSUSED*/ 3434 static void 3435 write_variables( 3436 struct recvbuf *rbufp, 3437 int restrict_mask 3438 ) 3439 { 3440 const struct ctl_var *v; 3441 int ext_var; 3442 char *valuep; 3443 long val; 3444 size_t octets; 3445 char *vareqv; 3446 const char *t; 3447 char *tt; 3448 3449 val = 0; 3450 /* 3451 * If he's trying to write into a peer tell him no way 3452 */ 3453 if (res_associd != 0) { 3454 ctl_error(CERR_PERMISSION); 3455 return; 3456 } 3457 3458 /* 3459 * Set status 3460 */ 3461 rpkt.status = htons(ctlsysstatus()); 3462 3463 /* 3464 * Look through the variables. Dump out at the first sign of 3465 * trouble. 3466 */ 3467 while ((v = ctl_getitem(sys_var, &valuep)) != NULL) { 3468 ext_var = 0; 3469 if (v->flags & EOV) { 3470 v = ctl_getitem(ext_sys_var, &valuep); 3471 if (v != NULL) { 3472 if (v->flags & EOV) { 3473 ctl_error(CERR_UNKNOWNVAR); 3474 return; 3475 } 3476 ext_var = 1; 3477 } else { 3478 break; 3479 } 3480 } 3481 if (!(v->flags & CAN_WRITE)) { 3482 ctl_error(CERR_PERMISSION); 3483 return; 3484 } 3485 /* [bug 3565] writing makes sense only if we *have* a 3486 * value in the packet! 3487 */ 3488 if (valuep == NULL) { 3489 ctl_error(CERR_BADFMT); 3490 return; 3491 } 3492 if (!ext_var) { 3493 if ( !(*valuep && atoint(valuep, &val))) { 3494 ctl_error(CERR_BADFMT); 3495 return; 3496 } 3497 if ((val & ~LEAP_NOTINSYNC) != 0) { 3498 ctl_error(CERR_BADVALUE); 3499 return; 3500 } 3501 } 3502 3503 if (ext_var) { 3504 octets = strlen(v->text) + strlen(valuep) + 2; 3505 vareqv = emalloc(octets); 3506 tt = vareqv; 3507 t = v->text; 3508 while (*t && *t != '=') 3509 *tt++ = *t++; 3510 *tt++ = '='; 3511 memcpy(tt, valuep, 1 + strlen(valuep)); 3512 set_sys_var(vareqv, 1 + strlen(vareqv), v->flags); 3513 free(vareqv); 3514 } else { 3515 ctl_error(CERR_UNSPEC); /* really */ 3516 return; 3517 } 3518 } 3519 3520 /* 3521 * If we got anything, do it. xxx nothing to do *** 3522 */ 3523 /* 3524 if (leapind != ~0 || leapwarn != ~0) { 3525 if (!leap_setleap((int)leapind, (int)leapwarn)) { 3526 ctl_error(CERR_PERMISSION); 3527 return; 3528 } 3529 } 3530 */ 3531 ctl_flushpkt(0); 3532 } 3533 3534 3535 /* 3536 * configure() processes ntpq :config/config-from-file, allowing 3537 * generic runtime reconfiguration. 3538 */ 3539 static void configure( 3540 struct recvbuf *rbufp, 3541 int restrict_mask 3542 ) 3543 { 3544 size_t data_count; 3545 int retval; 3546 3547 /* I haven't yet implemented changes to an existing association. 3548 * Hence check if the association id is 0 3549 */ 3550 if (res_associd != 0) { 3551 ctl_error(CERR_BADVALUE); 3552 return; 3553 } 3554 3555 if (RES_NOMODIFY & restrict_mask) { 3556 snprintf(remote_config.err_msg, 3557 sizeof(remote_config.err_msg), 3558 "runtime configuration prohibited by restrict ... nomodify"); 3559 ctl_putdata(remote_config.err_msg, 3560 strlen(remote_config.err_msg), 0); 3561 ctl_flushpkt(0); 3562 NLOG(NLOG_SYSINFO) 3563 msyslog(LOG_NOTICE, 3564 "runtime config from %s rejected due to nomodify restriction", 3565 stoa(&rbufp->recv_srcadr)); 3566 sys_restricted++; 3567 return; 3568 } 3569 3570 /* Initialize the remote config buffer */ 3571 data_count = remoteconfig_cmdlength(reqpt, reqend); 3572 3573 if (data_count > sizeof(remote_config.buffer) - 2) { 3574 snprintf(remote_config.err_msg, 3575 sizeof(remote_config.err_msg), 3576 "runtime configuration failed: request too long"); 3577 ctl_putdata(remote_config.err_msg, 3578 strlen(remote_config.err_msg), 0); 3579 ctl_flushpkt(0); 3580 msyslog(LOG_NOTICE, 3581 "runtime config from %s rejected: request too long", 3582 stoa(&rbufp->recv_srcadr)); 3583 return; 3584 } 3585 /* Bug 2853 -- check if all characters were acceptable */ 3586 if (data_count != (size_t)(reqend - reqpt)) { 3587 snprintf(remote_config.err_msg, 3588 sizeof(remote_config.err_msg), 3589 "runtime configuration failed: request contains an unprintable character"); 3590 ctl_putdata(remote_config.err_msg, 3591 strlen(remote_config.err_msg), 0); 3592 ctl_flushpkt(0); 3593 msyslog(LOG_NOTICE, 3594 "runtime config from %s rejected: request contains an unprintable character: %0x", 3595 stoa(&rbufp->recv_srcadr), 3596 reqpt[data_count]); 3597 return; 3598 } 3599 3600 memcpy(remote_config.buffer, reqpt, data_count); 3601 /* The buffer has no trailing linefeed or NUL right now. For 3602 * logging, we do not want a newline, so we do that first after 3603 * adding the necessary NUL byte. 3604 */ 3605 remote_config.buffer[data_count] = '\0'; 3606 DPRINTF(1, ("Got Remote Configuration Command: %s\n", 3607 remote_config.buffer)); 3608 msyslog(LOG_NOTICE, "%s config: %s", 3609 stoa(&rbufp->recv_srcadr), 3610 remote_config.buffer); 3611 3612 /* Now we have to make sure there is a NL/NUL sequence at the 3613 * end of the buffer before we parse it. 3614 */ 3615 remote_config.buffer[data_count++] = '\n'; 3616 remote_config.buffer[data_count] = '\0'; 3617 remote_config.pos = 0; 3618 remote_config.err_pos = 0; 3619 remote_config.no_errors = 0; 3620 config_remotely(&rbufp->recv_srcadr); 3621 3622 /* 3623 * Check if errors were reported. If not, output 'Config 3624 * Succeeded'. Else output the error count. It would be nice 3625 * to output any parser error messages. 3626 */ 3627 if (0 == remote_config.no_errors) { 3628 retval = snprintf(remote_config.err_msg, 3629 sizeof(remote_config.err_msg), 3630 "Config Succeeded"); 3631 if (retval > 0) 3632 remote_config.err_pos += retval; 3633 } 3634 3635 ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0); 3636 ctl_flushpkt(0); 3637 3638 DPRINTF(1, ("Reply: %s\n", remote_config.err_msg)); 3639 3640 if (remote_config.no_errors > 0) 3641 msyslog(LOG_NOTICE, "%d error in %s config", 3642 remote_config.no_errors, 3643 stoa(&rbufp->recv_srcadr)); 3644 } 3645 3646 3647 /* 3648 * derive_nonce - generate client-address-specific nonce value 3649 * associated with a given timestamp. 3650 */ 3651 static u_int32 derive_nonce( 3652 sockaddr_u * addr, 3653 u_int32 ts_i, 3654 u_int32 ts_f 3655 ) 3656 { 3657 static u_int32 salt[4]; 3658 static u_long last_salt_update; 3659 union d_tag { 3660 u_char digest[EVP_MAX_MD_SIZE]; 3661 u_int32 extract; 3662 } d; 3663 EVP_MD_CTX *ctx; 3664 u_int len; 3665 3666 while (!salt[0] || current_time - last_salt_update >= 3600) { 3667 salt[0] = ntp_random(); 3668 salt[1] = ntp_random(); 3669 salt[2] = ntp_random(); 3670 salt[3] = ntp_random(); 3671 last_salt_update = current_time; 3672 } 3673 3674 ctx = EVP_MD_CTX_new(); 3675 # if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) 3676 /* [Bug 3457] set flags and don't kill them again */ 3677 EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 3678 EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL); 3679 # else 3680 EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5)); 3681 # endif 3682 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3683 EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i)); 3684 EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f)); 3685 if (IS_IPV4(addr)) 3686 EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr), 3687 sizeof(SOCK_ADDR4(addr))); 3688 else 3689 EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr), 3690 sizeof(SOCK_ADDR6(addr))); 3691 EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr))); 3692 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3693 EVP_DigestFinal(ctx, d.digest, &len); 3694 EVP_MD_CTX_free(ctx); 3695 3696 return d.extract; 3697 } 3698 3699 3700 /* 3701 * generate_nonce - generate client-address-specific nonce string. 3702 */ 3703 static void generate_nonce( 3704 struct recvbuf * rbufp, 3705 char * nonce, 3706 size_t nonce_octets 3707 ) 3708 { 3709 u_int32 derived; 3710 3711 derived = derive_nonce(&rbufp->recv_srcadr, 3712 rbufp->recv_time.l_ui, 3713 rbufp->recv_time.l_uf); 3714 snprintf(nonce, nonce_octets, "%08x%08x%08x", 3715 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived); 3716 } 3717 3718 3719 /* 3720 * validate_nonce - validate client-address-specific nonce string. 3721 * 3722 * Returns TRUE if the local calculation of the nonce matches the 3723 * client-provided value and the timestamp is recent enough. 3724 */ 3725 static int validate_nonce( 3726 const char * pnonce, 3727 struct recvbuf * rbufp 3728 ) 3729 { 3730 u_int ts_i; 3731 u_int ts_f; 3732 l_fp ts; 3733 l_fp now_delta; 3734 u_int supposed; 3735 u_int derived; 3736 3737 if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed)) 3738 return FALSE; 3739 3740 ts.l_ui = (u_int32)ts_i; 3741 ts.l_uf = (u_int32)ts_f; 3742 derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf); 3743 get_systime(&now_delta); 3744 L_SUB(&now_delta, &ts); 3745 3746 return (supposed == derived && now_delta.l_ui < 16); 3747 } 3748 3749 3750 /* 3751 * send_random_tag_value - send a randomly-generated three character 3752 * tag prefix, a '.', an index, a '=' and a 3753 * random integer value. 3754 * 3755 * To try to force clients to ignore unrecognized tags in mrulist, 3756 * reslist, and ifstats responses, the first and last rows are spiced 3757 * with randomly-generated tag names with correct .# index. Make it 3758 * three characters knowing that none of the currently-used subscripted 3759 * tags have that length, avoiding the need to test for 3760 * tag collision. 3761 */ 3762 static void 3763 send_random_tag_value( 3764 int indx 3765 ) 3766 { 3767 int noise; 3768 char buf[32]; 3769 3770 noise = rand() ^ (rand() << 16); 3771 buf[0] = 'a' + noise % 26; 3772 noise >>= 5; 3773 buf[1] = 'a' + noise % 26; 3774 noise >>= 5; 3775 buf[2] = 'a' + noise % 26; 3776 noise >>= 5; 3777 buf[3] = '.'; 3778 snprintf(&buf[4], sizeof(buf) - 4, "%d", indx); 3779 ctl_putuint(buf, noise); 3780 } 3781 3782 3783 /* 3784 * Send a MRU list entry in response to a "ntpq -c mrulist" operation. 3785 * 3786 * To keep clients honest about not depending on the order of values, 3787 * and thereby avoid being locked into ugly workarounds to maintain 3788 * backward compatibility later as new fields are added to the response, 3789 * the order is random. 3790 */ 3791 static void 3792 send_mru_entry( 3793 mon_entry * mon, 3794 int count 3795 ) 3796 { 3797 const char first_fmt[] = "first.%d"; 3798 const char ct_fmt[] = "ct.%d"; 3799 const char mv_fmt[] = "mv.%d"; 3800 const char rs_fmt[] = "rs.%d"; 3801 char tag[32]; 3802 u_char sent[6]; /* 6 tag=value pairs */ 3803 u_int32 noise; 3804 u_int which; 3805 u_int remaining; 3806 const char * pch; 3807 3808 remaining = COUNTOF(sent); 3809 ZERO(sent); 3810 noise = (u_int32)(rand() ^ (rand() << 16)); 3811 while (remaining > 0) { 3812 which = (noise & 7) % COUNTOF(sent); 3813 noise >>= 3; 3814 while (sent[which]) 3815 which = (which + 1) % COUNTOF(sent); 3816 3817 switch (which) { 3818 3819 case 0: 3820 snprintf(tag, sizeof(tag), addr_fmt, count); 3821 pch = sptoa(&mon->rmtadr); 3822 ctl_putunqstr(tag, pch, strlen(pch)); 3823 break; 3824 3825 case 1: 3826 snprintf(tag, sizeof(tag), last_fmt, count); 3827 ctl_putts(tag, &mon->last); 3828 break; 3829 3830 case 2: 3831 snprintf(tag, sizeof(tag), first_fmt, count); 3832 ctl_putts(tag, &mon->first); 3833 break; 3834 3835 case 3: 3836 snprintf(tag, sizeof(tag), ct_fmt, count); 3837 ctl_putint(tag, mon->count); 3838 break; 3839 3840 case 4: 3841 snprintf(tag, sizeof(tag), mv_fmt, count); 3842 ctl_putuint(tag, mon->vn_mode); 3843 break; 3844 3845 case 5: 3846 snprintf(tag, sizeof(tag), rs_fmt, count); 3847 ctl_puthex(tag, mon->flags); 3848 break; 3849 } 3850 sent[which] = TRUE; 3851 remaining--; 3852 } 3853 } 3854 3855 3856 /* 3857 * read_mru_list - supports ntpq's mrulist command. 3858 * 3859 * The challenge here is to match ntpdc's monlist functionality without 3860 * being limited to hundreds of entries returned total, and without 3861 * requiring state on the server. If state were required, ntpq's 3862 * mrulist command would require authentication. 3863 * 3864 * The approach was suggested by Ry Jones. A finite and variable number 3865 * of entries are retrieved per request, to avoid having responses with 3866 * such large numbers of packets that socket buffers are overflowed and 3867 * packets lost. The entries are retrieved oldest-first, taking into 3868 * account that the MRU list will be changing between each request. We 3869 * can expect to see duplicate entries for addresses updated in the MRU 3870 * list during the fetch operation. In the end, the client can assemble 3871 * a close approximation of the MRU list at the point in time the last 3872 * response was sent by ntpd. The only difference is it may be longer, 3873 * containing some number of oldest entries which have since been 3874 * reclaimed. If necessary, the protocol could be extended to zap those 3875 * from the client snapshot at the end, but so far that doesn't seem 3876 * useful. 3877 * 3878 * To accomodate the changing MRU list, the starting point for requests 3879 * after the first request is supplied as a series of last seen 3880 * timestamps and associated addresses, the newest ones the client has 3881 * received. As long as at least one of those entries hasn't been 3882 * bumped to the head of the MRU list, ntpd can pick up at that point. 3883 * Otherwise, the request is failed and it is up to ntpq to back up and 3884 * provide the next newest entry's timestamps and addresses, conceivably 3885 * backing up all the way to the starting point. 3886 * 3887 * input parameters: 3888 * nonce= Regurgitated nonce retrieved by the client 3889 * previously using CTL_OP_REQ_NONCE, demonstrating 3890 * ability to receive traffic sent to its address. 3891 * frags= Limit on datagrams (fragments) in response. Used 3892 * by newer ntpq versions instead of limit= when 3893 * retrieving multiple entries. 3894 * limit= Limit on MRU entries returned. One of frags= or 3895 * limit= must be provided. 3896 * limit=1 is a special case: Instead of fetching 3897 * beginning with the supplied starting point's 3898 * newer neighbor, fetch the supplied entry, and 3899 * in that case the #.last timestamp can be zero. 3900 * This enables fetching a single entry by IP 3901 * address. When limit is not one and frags= is 3902 * provided, the fragment limit controls. 3903 * mincount= (decimal) Return entries with count >= mincount. 3904 * laddr= Return entries associated with the server's IP 3905 * address given. No port specification is needed, 3906 * and any supplied is ignored. 3907 * resall= 0x-prefixed hex restrict bits which must all be 3908 * lit for an MRU entry to be included. 3909 * Has precedence over any resany=. 3910 * resany= 0x-prefixed hex restrict bits, at least one of 3911 * which must be list for an MRU entry to be 3912 * included. 3913 * last.0= 0x-prefixed hex l_fp timestamp of newest entry 3914 * which client previously received. 3915 * addr.0= text of newest entry's IP address and port, 3916 * IPv6 addresses in bracketed form: [::]:123 3917 * last.1= timestamp of 2nd newest entry client has. 3918 * addr.1= address of 2nd newest entry. 3919 * [...] 3920 * 3921 * ntpq provides as many last/addr pairs as will fit in a single request 3922 * packet, except for the first request in a MRU fetch operation. 3923 * 3924 * The response begins with a new nonce value to be used for any 3925 * followup request. Following the nonce is the next newer entry than 3926 * referred to by last.0 and addr.0, if the "0" entry has not been 3927 * bumped to the front. If it has, the first entry returned will be the 3928 * next entry newer than referred to by last.1 and addr.1, and so on. 3929 * If none of the referenced entries remain unchanged, the request fails 3930 * and ntpq backs up to the next earlier set of entries to resync. 3931 * 3932 * Except for the first response, the response begins with confirmation 3933 * of the entry that precedes the first additional entry provided: 3934 * 3935 * last.older= hex l_fp timestamp matching one of the input 3936 * .last timestamps, which entry now precedes the 3937 * response 0. entry in the MRU list. 3938 * addr.older= text of address corresponding to older.last. 3939 * 3940 * And in any case, a successful response contains sets of values 3941 * comprising entries, with the oldest numbered 0 and incrementing from 3942 * there: 3943 * 3944 * addr.# text of IPv4 or IPv6 address and port 3945 * last.# hex l_fp timestamp of last receipt 3946 * first.# hex l_fp timestamp of first receipt 3947 * ct.# count of packets received 3948 * mv.# mode and version 3949 * rs.# restriction mask (RES_* bits) 3950 * 3951 * Note the code currently assumes there are no valid three letter 3952 * tags sent with each row, and needs to be adjusted if that changes. 3953 * 3954 * The client should accept the values in any order, and ignore .# 3955 * values which it does not understand, to allow a smooth path to 3956 * future changes without requiring a new opcode. Clients can rely 3957 * on all *.0 values preceding any *.1 values, that is all values for 3958 * a given index number are together in the response. 3959 * 3960 * The end of the response list is noted with one or two tag=value 3961 * pairs. Unconditionally: 3962 * 3963 * now= 0x-prefixed l_fp timestamp at the server marking 3964 * the end of the operation. 3965 * 3966 * If any entries were returned, now= is followed by: 3967 * 3968 * last.newest= hex l_fp identical to last.# of the prior 3969 * entry. 3970 */ 3971 static void read_mru_list( 3972 struct recvbuf *rbufp, 3973 int restrict_mask 3974 ) 3975 { 3976 static const char nulltxt[1] = { '\0' }; 3977 static const char nonce_text[] = "nonce"; 3978 static const char frags_text[] = "frags"; 3979 static const char limit_text[] = "limit"; 3980 static const char mincount_text[] = "mincount"; 3981 static const char resall_text[] = "resall"; 3982 static const char resany_text[] = "resany"; 3983 static const char maxlstint_text[] = "maxlstint"; 3984 static const char laddr_text[] = "laddr"; 3985 static const char resaxx_fmt[] = "0x%hx"; 3986 3987 u_int limit; 3988 u_short frags; 3989 u_short resall; 3990 u_short resany; 3991 int mincount; 3992 u_int maxlstint; 3993 sockaddr_u laddr; 3994 struct interface * lcladr; 3995 u_int count; 3996 u_int ui; 3997 u_int uf; 3998 l_fp last[16]; 3999 sockaddr_u addr[COUNTOF(last)]; 4000 char buf[128]; 4001 struct ctl_var * in_parms; 4002 const struct ctl_var * v; 4003 const char * val; 4004 const char * pch; 4005 char * pnonce; 4006 int nonce_valid; 4007 size_t i; 4008 int priors; 4009 u_short hash; 4010 mon_entry * mon; 4011 mon_entry * prior_mon; 4012 l_fp now; 4013 4014 if (RES_NOMRULIST & restrict_mask) { 4015 ctl_error(CERR_PERMISSION); 4016 NLOG(NLOG_SYSINFO) 4017 msyslog(LOG_NOTICE, 4018 "mrulist from %s rejected due to nomrulist restriction", 4019 stoa(&rbufp->recv_srcadr)); 4020 sys_restricted++; 4021 return; 4022 } 4023 /* 4024 * fill in_parms var list with all possible input parameters. 4025 */ 4026 in_parms = NULL; 4027 set_var(&in_parms, nonce_text, sizeof(nonce_text), 0); 4028 set_var(&in_parms, frags_text, sizeof(frags_text), 0); 4029 set_var(&in_parms, limit_text, sizeof(limit_text), 0); 4030 set_var(&in_parms, mincount_text, sizeof(mincount_text), 0); 4031 set_var(&in_parms, resall_text, sizeof(resall_text), 0); 4032 set_var(&in_parms, resany_text, sizeof(resany_text), 0); 4033 set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0); 4034 set_var(&in_parms, laddr_text, sizeof(laddr_text), 0); 4035 for (i = 0; i < COUNTOF(last); i++) { 4036 snprintf(buf, sizeof(buf), last_fmt, (int)i); 4037 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4038 snprintf(buf, sizeof(buf), addr_fmt, (int)i); 4039 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4040 } 4041 4042 /* decode input parms */ 4043 pnonce = NULL; 4044 frags = 0; 4045 limit = 0; 4046 mincount = 0; 4047 resall = 0; 4048 resany = 0; 4049 maxlstint = 0; 4050 lcladr = NULL; 4051 priors = 0; 4052 ZERO(last); 4053 ZERO(addr); 4054 4055 /* have to go through '(void*)' to drop 'const' property from pointer. 4056 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org 4057 */ 4058 while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) && 4059 !(EOV & v->flags)) { 4060 int si; 4061 4062 if (NULL == val) 4063 val = nulltxt; 4064 4065 if (!strcmp(nonce_text, v->text)) { 4066 free(pnonce); 4067 pnonce = (*val) ? estrdup(val) : NULL; 4068 } else if (!strcmp(frags_text, v->text)) { 4069 if (1 != sscanf(val, "%hu", &frags)) 4070 goto blooper; 4071 } else if (!strcmp(limit_text, v->text)) { 4072 if (1 != sscanf(val, "%u", &limit)) 4073 goto blooper; 4074 } else if (!strcmp(mincount_text, v->text)) { 4075 if (1 != sscanf(val, "%d", &mincount)) 4076 goto blooper; 4077 if (mincount < 0) 4078 mincount = 0; 4079 } else if (!strcmp(resall_text, v->text)) { 4080 if (1 != sscanf(val, resaxx_fmt, &resall)) 4081 goto blooper; 4082 } else if (!strcmp(resany_text, v->text)) { 4083 if (1 != sscanf(val, resaxx_fmt, &resany)) 4084 goto blooper; 4085 } else if (!strcmp(maxlstint_text, v->text)) { 4086 if (1 != sscanf(val, "%u", &maxlstint)) 4087 goto blooper; 4088 } else if (!strcmp(laddr_text, v->text)) { 4089 if (!decodenetnum(val, &laddr)) 4090 goto blooper; 4091 lcladr = getinterface(&laddr, 0); 4092 } else if (1 == sscanf(v->text, last_fmt, &si) && 4093 (size_t)si < COUNTOF(last)) { 4094 if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf)) 4095 goto blooper; 4096 last[si].l_ui = ui; 4097 last[si].l_uf = uf; 4098 if (!SOCK_UNSPEC(&addr[si]) && si == priors) 4099 priors++; 4100 } else if (1 == sscanf(v->text, addr_fmt, &si) && 4101 (size_t)si < COUNTOF(addr)) { 4102 if (!decodenetnum(val, &addr[si])) 4103 goto blooper; 4104 if (last[si].l_ui && last[si].l_uf && si == priors) 4105 priors++; 4106 } else { 4107 DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n", 4108 v->text)); 4109 continue; 4110 4111 blooper: 4112 DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n", 4113 v->text, val)); 4114 free(pnonce); 4115 pnonce = NULL; 4116 break; 4117 } 4118 } 4119 free_varlist(in_parms); 4120 in_parms = NULL; 4121 4122 /* return no responses until the nonce is validated */ 4123 if (NULL == pnonce) 4124 return; 4125 4126 nonce_valid = validate_nonce(pnonce, rbufp); 4127 free(pnonce); 4128 if (!nonce_valid) 4129 return; 4130 4131 if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) || 4132 frags > MRU_FRAGS_LIMIT) { 4133 ctl_error(CERR_BADVALUE); 4134 return; 4135 } 4136 4137 /* 4138 * If either frags or limit is not given, use the max. 4139 */ 4140 if (0 != frags && 0 == limit) 4141 limit = UINT_MAX; 4142 else if (0 != limit && 0 == frags) 4143 frags = MRU_FRAGS_LIMIT; 4144 4145 /* 4146 * Find the starting point if one was provided. 4147 */ 4148 mon = NULL; 4149 for (i = 0; i < (size_t)priors; i++) { 4150 hash = MON_HASH(&addr[i]); 4151 for (mon = mon_hash[hash]; 4152 mon != NULL; 4153 mon = mon->hash_next) 4154 if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i])) 4155 break; 4156 if (mon != NULL) { 4157 if (L_ISEQU(&mon->last, &last[i])) 4158 break; 4159 mon = NULL; 4160 } 4161 } 4162 4163 /* If a starting point was provided... */ 4164 if (priors) { 4165 /* and none could be found unmodified... */ 4166 if (NULL == mon) { 4167 /* tell ntpq to try again with older entries */ 4168 ctl_error(CERR_UNKNOWNVAR); 4169 return; 4170 } 4171 /* confirm the prior entry used as starting point */ 4172 ctl_putts("last.older", &mon->last); 4173 pch = sptoa(&mon->rmtadr); 4174 ctl_putunqstr("addr.older", pch, strlen(pch)); 4175 4176 /* 4177 * Move on to the first entry the client doesn't have, 4178 * except in the special case of a limit of one. In 4179 * that case return the starting point entry. 4180 */ 4181 if (limit > 1) 4182 mon = PREV_DLIST(mon_mru_list, mon, mru); 4183 } else { /* start with the oldest */ 4184 mon = TAIL_DLIST(mon_mru_list, mru); 4185 } 4186 4187 /* 4188 * send up to limit= entries in up to frags= datagrams 4189 */ 4190 get_systime(&now); 4191 generate_nonce(rbufp, buf, sizeof(buf)); 4192 ctl_putunqstr("nonce", buf, strlen(buf)); 4193 prior_mon = NULL; 4194 for (count = 0; 4195 mon != NULL && res_frags < frags && count < limit; 4196 mon = PREV_DLIST(mon_mru_list, mon, mru)) { 4197 4198 if (mon->count < mincount) 4199 continue; 4200 if (resall && resall != (resall & mon->flags)) 4201 continue; 4202 if (resany && !(resany & mon->flags)) 4203 continue; 4204 if (maxlstint > 0 && now.l_ui - mon->last.l_ui > 4205 maxlstint) 4206 continue; 4207 if (lcladr != NULL && mon->lcladr != lcladr) 4208 continue; 4209 4210 send_mru_entry(mon, count); 4211 if (!count) 4212 send_random_tag_value(0); 4213 count++; 4214 prior_mon = mon; 4215 } 4216 4217 /* 4218 * If this batch completes the MRU list, say so explicitly with 4219 * a now= l_fp timestamp. 4220 */ 4221 if (NULL == mon) { 4222 if (count > 1) 4223 send_random_tag_value(count - 1); 4224 ctl_putts("now", &now); 4225 /* if any entries were returned confirm the last */ 4226 if (prior_mon != NULL) 4227 ctl_putts("last.newest", &prior_mon->last); 4228 } 4229 ctl_flushpkt(0); 4230 } 4231 4232 4233 /* 4234 * Send a ifstats entry in response to a "ntpq -c ifstats" request. 4235 * 4236 * To keep clients honest about not depending on the order of values, 4237 * and thereby avoid being locked into ugly workarounds to maintain 4238 * backward compatibility later as new fields are added to the response, 4239 * the order is random. 4240 */ 4241 static void 4242 send_ifstats_entry( 4243 endpt * la, 4244 u_int ifnum 4245 ) 4246 { 4247 const char addr_fmtu[] = "addr.%u"; 4248 const char bcast_fmt[] = "bcast.%u"; 4249 const char en_fmt[] = "en.%u"; /* enabled */ 4250 const char name_fmt[] = "name.%u"; 4251 const char flags_fmt[] = "flags.%u"; 4252 const char tl_fmt[] = "tl.%u"; /* ttl */ 4253 const char mc_fmt[] = "mc.%u"; /* mcast count */ 4254 const char rx_fmt[] = "rx.%u"; 4255 const char tx_fmt[] = "tx.%u"; 4256 const char txerr_fmt[] = "txerr.%u"; 4257 const char pc_fmt[] = "pc.%u"; /* peer count */ 4258 const char up_fmt[] = "up.%u"; /* uptime */ 4259 char tag[32]; 4260 u_char sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */ 4261 int noisebits; 4262 u_int32 noise; 4263 u_int which; 4264 u_int remaining; 4265 const char *pch; 4266 4267 remaining = COUNTOF(sent); 4268 ZERO(sent); 4269 noise = 0; 4270 noisebits = 0; 4271 while (remaining > 0) { 4272 if (noisebits < 4) { 4273 noise = rand() ^ (rand() << 16); 4274 noisebits = 31; 4275 } 4276 which = (noise & 0xf) % COUNTOF(sent); 4277 noise >>= 4; 4278 noisebits -= 4; 4279 4280 while (sent[which]) 4281 which = (which + 1) % COUNTOF(sent); 4282 4283 switch (which) { 4284 4285 case 0: 4286 snprintf(tag, sizeof(tag), addr_fmtu, ifnum); 4287 pch = sptoa(&la->sin); 4288 ctl_putunqstr(tag, pch, strlen(pch)); 4289 break; 4290 4291 case 1: 4292 snprintf(tag, sizeof(tag), bcast_fmt, ifnum); 4293 if (INT_BCASTOPEN & la->flags) 4294 pch = sptoa(&la->bcast); 4295 else 4296 pch = ""; 4297 ctl_putunqstr(tag, pch, strlen(pch)); 4298 break; 4299 4300 case 2: 4301 snprintf(tag, sizeof(tag), en_fmt, ifnum); 4302 ctl_putint(tag, !la->ignore_packets); 4303 break; 4304 4305 case 3: 4306 snprintf(tag, sizeof(tag), name_fmt, ifnum); 4307 ctl_putstr(tag, la->name, strlen(la->name)); 4308 break; 4309 4310 case 4: 4311 snprintf(tag, sizeof(tag), flags_fmt, ifnum); 4312 ctl_puthex(tag, (u_int)la->flags); 4313 break; 4314 4315 case 5: 4316 snprintf(tag, sizeof(tag), tl_fmt, ifnum); 4317 ctl_putint(tag, la->last_ttl); 4318 break; 4319 4320 case 6: 4321 snprintf(tag, sizeof(tag), mc_fmt, ifnum); 4322 ctl_putint(tag, la->num_mcast); 4323 break; 4324 4325 case 7: 4326 snprintf(tag, sizeof(tag), rx_fmt, ifnum); 4327 ctl_putint(tag, la->received); 4328 break; 4329 4330 case 8: 4331 snprintf(tag, sizeof(tag), tx_fmt, ifnum); 4332 ctl_putint(tag, la->sent); 4333 break; 4334 4335 case 9: 4336 snprintf(tag, sizeof(tag), txerr_fmt, ifnum); 4337 ctl_putint(tag, la->notsent); 4338 break; 4339 4340 case 10: 4341 snprintf(tag, sizeof(tag), pc_fmt, ifnum); 4342 ctl_putuint(tag, la->peercnt); 4343 break; 4344 4345 case 11: 4346 snprintf(tag, sizeof(tag), up_fmt, ifnum); 4347 ctl_putuint(tag, current_time - la->starttime); 4348 break; 4349 } 4350 sent[which] = TRUE; 4351 remaining--; 4352 } 4353 send_random_tag_value((int)ifnum); 4354 } 4355 4356 4357 /* 4358 * read_ifstats - send statistics for each local address, exposed by 4359 * ntpq -c ifstats 4360 */ 4361 static void 4362 read_ifstats( 4363 struct recvbuf * rbufp 4364 ) 4365 { 4366 u_int ifidx; 4367 endpt * la; 4368 4369 /* 4370 * loop over [0..sys_ifnum] searching ep_list for each 4371 * ifnum in turn. 4372 */ 4373 for (ifidx = 0; ifidx < sys_ifnum; ifidx++) { 4374 for (la = ep_list; la != NULL; la = la->elink) 4375 if (ifidx == la->ifnum) 4376 break; 4377 if (NULL == la) 4378 continue; 4379 /* return stats for one local address */ 4380 send_ifstats_entry(la, ifidx); 4381 } 4382 ctl_flushpkt(0); 4383 } 4384 4385 static void 4386 sockaddrs_from_restrict_u( 4387 sockaddr_u * psaA, 4388 sockaddr_u * psaM, 4389 restrict_u * pres, 4390 int ipv6 4391 ) 4392 { 4393 ZERO(*psaA); 4394 ZERO(*psaM); 4395 if (!ipv6) { 4396 psaA->sa.sa_family = AF_INET; 4397 psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr); 4398 psaM->sa.sa_family = AF_INET; 4399 psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask); 4400 } else { 4401 psaA->sa.sa_family = AF_INET6; 4402 memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr, 4403 sizeof(psaA->sa6.sin6_addr)); 4404 psaM->sa.sa_family = AF_INET6; 4405 memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask, 4406 sizeof(psaA->sa6.sin6_addr)); 4407 } 4408 } 4409 4410 4411 /* 4412 * Send a restrict entry in response to a "ntpq -c reslist" request. 4413 * 4414 * To keep clients honest about not depending on the order of values, 4415 * and thereby avoid being locked into ugly workarounds to maintain 4416 * backward compatibility later as new fields are added to the response, 4417 * the order is random. 4418 */ 4419 static void 4420 send_restrict_entry( 4421 restrict_u * pres, 4422 int ipv6, 4423 u_int idx 4424 ) 4425 { 4426 const char addr_fmtu[] = "addr.%u"; 4427 const char mask_fmtu[] = "mask.%u"; 4428 const char hits_fmt[] = "hits.%u"; 4429 const char flags_fmt[] = "flags.%u"; 4430 char tag[32]; 4431 u_char sent[RESLIST_FIELDS]; /* 4 tag=value pairs */ 4432 int noisebits; 4433 u_int32 noise; 4434 u_int which; 4435 u_int remaining; 4436 sockaddr_u addr; 4437 sockaddr_u mask; 4438 const char * pch; 4439 char * buf; 4440 const char * match_str; 4441 const char * access_str; 4442 4443 sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6); 4444 remaining = COUNTOF(sent); 4445 ZERO(sent); 4446 noise = 0; 4447 noisebits = 0; 4448 while (remaining > 0) { 4449 if (noisebits < 2) { 4450 noise = rand() ^ (rand() << 16); 4451 noisebits = 31; 4452 } 4453 which = (noise & 0x3) % COUNTOF(sent); 4454 noise >>= 2; 4455 noisebits -= 2; 4456 4457 while (sent[which]) 4458 which = (which + 1) % COUNTOF(sent); 4459 4460 /* XXX: Numbers? Really? */ 4461 switch (which) { 4462 4463 case 0: 4464 snprintf(tag, sizeof(tag), addr_fmtu, idx); 4465 pch = stoa(&addr); 4466 ctl_putunqstr(tag, pch, strlen(pch)); 4467 break; 4468 4469 case 1: 4470 snprintf(tag, sizeof(tag), mask_fmtu, idx); 4471 pch = stoa(&mask); 4472 ctl_putunqstr(tag, pch, strlen(pch)); 4473 break; 4474 4475 case 2: 4476 snprintf(tag, sizeof(tag), hits_fmt, idx); 4477 ctl_putuint(tag, pres->count); 4478 break; 4479 4480 case 3: 4481 snprintf(tag, sizeof(tag), flags_fmt, idx); 4482 match_str = res_match_flags(pres->mflags); 4483 access_str = res_access_flags(pres->rflags); 4484 if ('\0' == match_str[0]) { 4485 pch = access_str; 4486 } else { 4487 LIB_GETBUF(buf); 4488 snprintf(buf, LIB_BUFLENGTH, "%s %s", 4489 match_str, access_str); 4490 pch = buf; 4491 } 4492 ctl_putunqstr(tag, pch, strlen(pch)); 4493 break; 4494 } 4495 sent[which] = TRUE; 4496 remaining--; 4497 } 4498 send_random_tag_value((int)idx); 4499 } 4500 4501 4502 static void 4503 send_restrict_list( 4504 restrict_u * pres, 4505 int ipv6, 4506 u_int * pidx 4507 ) 4508 { 4509 for ( ; pres != NULL; pres = pres->link) { 4510 send_restrict_entry(pres, ipv6, *pidx); 4511 (*pidx)++; 4512 } 4513 } 4514 4515 4516 /* 4517 * read_addr_restrictions - returns IPv4 and IPv6 access control lists 4518 */ 4519 static void 4520 read_addr_restrictions( 4521 struct recvbuf * rbufp 4522 ) 4523 { 4524 u_int idx; 4525 4526 idx = 0; 4527 send_restrict_list(restrictlist4, FALSE, &idx); 4528 send_restrict_list(restrictlist6, TRUE, &idx); 4529 ctl_flushpkt(0); 4530 } 4531 4532 4533 /* 4534 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist 4535 */ 4536 static void 4537 read_ordlist( 4538 struct recvbuf * rbufp, 4539 int restrict_mask 4540 ) 4541 { 4542 const char ifstats_s[] = "ifstats"; 4543 const size_t ifstats_chars = COUNTOF(ifstats_s) - 1; 4544 const char addr_rst_s[] = "addr_restrictions"; 4545 const size_t a_r_chars = COUNTOF(addr_rst_s) - 1; 4546 struct ntp_control * cpkt; 4547 u_short qdata_octets; 4548 4549 /* 4550 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and 4551 * used only for ntpq -c ifstats. With the addition of reslist 4552 * the same opcode was generalized to retrieve ordered lists 4553 * which require authentication. The request data is empty or 4554 * contains "ifstats" (not null terminated) to retrieve local 4555 * addresses and associated stats. It is "addr_restrictions" 4556 * to retrieve the IPv4 then IPv6 remote address restrictions, 4557 * which are access control lists. Other request data return 4558 * CERR_UNKNOWNVAR. 4559 */ 4560 cpkt = (struct ntp_control *)&rbufp->recv_pkt; 4561 qdata_octets = ntohs(cpkt->count); 4562 if (0 == qdata_octets || (ifstats_chars == qdata_octets && 4563 !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) { 4564 read_ifstats(rbufp); 4565 return; 4566 } 4567 if (a_r_chars == qdata_octets && 4568 !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) { 4569 read_addr_restrictions(rbufp); 4570 return; 4571 } 4572 ctl_error(CERR_UNKNOWNVAR); 4573 } 4574 4575 4576 /* 4577 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite. 4578 */ 4579 static void req_nonce( 4580 struct recvbuf * rbufp, 4581 int restrict_mask 4582 ) 4583 { 4584 char buf[64]; 4585 4586 generate_nonce(rbufp, buf, sizeof(buf)); 4587 ctl_putunqstr("nonce", buf, strlen(buf)); 4588 ctl_flushpkt(0); 4589 } 4590 4591 4592 /* 4593 * read_clockstatus - return clock radio status 4594 */ 4595 /*ARGSUSED*/ 4596 static void 4597 read_clockstatus( 4598 struct recvbuf *rbufp, 4599 int restrict_mask 4600 ) 4601 { 4602 #ifndef REFCLOCK 4603 /* 4604 * If no refclock support, no data to return 4605 */ 4606 ctl_error(CERR_BADASSOC); 4607 #else 4608 const struct ctl_var * v; 4609 int i; 4610 struct peer * peer; 4611 char * valuep; 4612 u_char * wants; 4613 size_t wants_alloc; 4614 int gotvar; 4615 const u_char * cc; 4616 struct ctl_var * kv; 4617 struct refclockstat cs; 4618 4619 if (res_associd != 0) { 4620 peer = findpeerbyassoc(res_associd); 4621 } else { 4622 /* 4623 * Find a clock for this jerk. If the system peer 4624 * is a clock use it, else search peer_list for one. 4625 */ 4626 if (sys_peer != NULL && (FLAG_REFCLOCK & 4627 sys_peer->flags)) 4628 peer = sys_peer; 4629 else 4630 for (peer = peer_list; 4631 peer != NULL; 4632 peer = peer->p_link) 4633 if (FLAG_REFCLOCK & peer->flags) 4634 break; 4635 } 4636 if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) { 4637 ctl_error(CERR_BADASSOC); 4638 return; 4639 } 4640 /* 4641 * If we got here we have a peer which is a clock. Get his 4642 * status. 4643 */ 4644 cs.kv_list = NULL; 4645 refclock_control(&peer->srcadr, NULL, &cs); 4646 kv = cs.kv_list; 4647 /* 4648 * Look for variables in the packet. 4649 */ 4650 rpkt.status = htons(ctlclkstatus(&cs)); 4651 wants_alloc = CC_MAXCODE + 1 + count_var(kv); 4652 wants = emalloc_zero(wants_alloc); 4653 gotvar = FALSE; 4654 while (NULL != (v = ctl_getitem(clock_var, &valuep))) { 4655 if (!(EOV & v->flags)) { 4656 wants[v->code] = TRUE; 4657 gotvar = TRUE; 4658 } else { 4659 v = ctl_getitem(kv, &valuep); 4660 if (NULL == v) { 4661 ctl_error(CERR_BADVALUE); 4662 free(wants); 4663 free_varlist(cs.kv_list); 4664 return; 4665 } 4666 if (EOV & v->flags) { 4667 ctl_error(CERR_UNKNOWNVAR); 4668 free(wants); 4669 free_varlist(cs.kv_list); 4670 return; 4671 } 4672 wants[CC_MAXCODE + 1 + v->code] = TRUE; 4673 gotvar = TRUE; 4674 } 4675 } 4676 4677 if (gotvar) { 4678 for (i = 1; i <= CC_MAXCODE; i++) 4679 if (wants[i]) 4680 ctl_putclock(i, &cs, TRUE); 4681 if (kv != NULL) 4682 for (i = 0; !(EOV & kv[i].flags); i++) 4683 if (wants[i + CC_MAXCODE + 1]) 4684 ctl_putdata(kv[i].text, 4685 strlen(kv[i].text), 4686 FALSE); 4687 } else { 4688 for (cc = def_clock_var; *cc != 0; cc++) 4689 ctl_putclock((int)*cc, &cs, FALSE); 4690 for ( ; kv != NULL && !(EOV & kv->flags); kv++) 4691 if (DEF & kv->flags) 4692 ctl_putdata(kv->text, strlen(kv->text), 4693 FALSE); 4694 } 4695 4696 free(wants); 4697 free_varlist(cs.kv_list); 4698 4699 ctl_flushpkt(0); 4700 #endif 4701 } 4702 4703 4704 /* 4705 * write_clockstatus - we don't do this 4706 */ 4707 /*ARGSUSED*/ 4708 static void 4709 write_clockstatus( 4710 struct recvbuf *rbufp, 4711 int restrict_mask 4712 ) 4713 { 4714 ctl_error(CERR_PERMISSION); 4715 } 4716 4717 /* 4718 * Trap support from here on down. We send async trap messages when the 4719 * upper levels report trouble. Traps can by set either by control 4720 * messages or by configuration. 4721 */ 4722 /* 4723 * set_trap - set a trap in response to a control message 4724 */ 4725 static void 4726 set_trap( 4727 struct recvbuf *rbufp, 4728 int restrict_mask 4729 ) 4730 { 4731 int traptype; 4732 4733 /* 4734 * See if this guy is allowed 4735 */ 4736 if (restrict_mask & RES_NOTRAP) { 4737 ctl_error(CERR_PERMISSION); 4738 return; 4739 } 4740 4741 /* 4742 * Determine his allowed trap type. 4743 */ 4744 traptype = TRAP_TYPE_PRIO; 4745 if (restrict_mask & RES_LPTRAP) 4746 traptype = TRAP_TYPE_NONPRIO; 4747 4748 /* 4749 * Call ctlsettrap() to do the work. Return 4750 * an error if it can't assign the trap. 4751 */ 4752 if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype, 4753 (int)res_version)) 4754 ctl_error(CERR_NORESOURCE); 4755 ctl_flushpkt(0); 4756 } 4757 4758 4759 /* 4760 * unset_trap - unset a trap in response to a control message 4761 */ 4762 static void 4763 unset_trap( 4764 struct recvbuf *rbufp, 4765 int restrict_mask 4766 ) 4767 { 4768 int traptype; 4769 4770 /* 4771 * We don't prevent anyone from removing his own trap unless the 4772 * trap is configured. Note we also must be aware of the 4773 * possibility that restriction flags were changed since this 4774 * guy last set his trap. Set the trap type based on this. 4775 */ 4776 traptype = TRAP_TYPE_PRIO; 4777 if (restrict_mask & RES_LPTRAP) 4778 traptype = TRAP_TYPE_NONPRIO; 4779 4780 /* 4781 * Call ctlclrtrap() to clear this out. 4782 */ 4783 if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype)) 4784 ctl_error(CERR_BADASSOC); 4785 ctl_flushpkt(0); 4786 } 4787 4788 4789 /* 4790 * ctlsettrap - called to set a trap 4791 */ 4792 int 4793 ctlsettrap( 4794 sockaddr_u *raddr, 4795 struct interface *linter, 4796 int traptype, 4797 int version 4798 ) 4799 { 4800 size_t n; 4801 struct ctl_trap *tp; 4802 struct ctl_trap *tptouse; 4803 4804 /* 4805 * See if we can find this trap. If so, we only need update 4806 * the flags and the time. 4807 */ 4808 if ((tp = ctlfindtrap(raddr, linter)) != NULL) { 4809 switch (traptype) { 4810 4811 case TRAP_TYPE_CONFIG: 4812 tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED; 4813 break; 4814 4815 case TRAP_TYPE_PRIO: 4816 if (tp->tr_flags & TRAP_CONFIGURED) 4817 return (1); /* don't change anything */ 4818 tp->tr_flags = TRAP_INUSE; 4819 break; 4820 4821 case TRAP_TYPE_NONPRIO: 4822 if (tp->tr_flags & TRAP_CONFIGURED) 4823 return (1); /* don't change anything */ 4824 tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO; 4825 break; 4826 } 4827 tp->tr_settime = current_time; 4828 tp->tr_resets++; 4829 return (1); 4830 } 4831 4832 /* 4833 * First we heard of this guy. Try to find a trap structure 4834 * for him to use, clearing out lesser priority guys if we 4835 * have to. Clear out anyone who's expired while we're at it. 4836 */ 4837 tptouse = NULL; 4838 for (n = 0; n < COUNTOF(ctl_traps); n++) { 4839 tp = &ctl_traps[n]; 4840 if ((TRAP_INUSE & tp->tr_flags) && 4841 !(TRAP_CONFIGURED & tp->tr_flags) && 4842 ((tp->tr_settime + CTL_TRAPTIME) > current_time)) { 4843 tp->tr_flags = 0; 4844 num_ctl_traps--; 4845 } 4846 if (!(TRAP_INUSE & tp->tr_flags)) { 4847 tptouse = tp; 4848 } else if (!(TRAP_CONFIGURED & tp->tr_flags)) { 4849 switch (traptype) { 4850 4851 case TRAP_TYPE_CONFIG: 4852 if (tptouse == NULL) { 4853 tptouse = tp; 4854 break; 4855 } 4856 if ((TRAP_NONPRIO & tptouse->tr_flags) && 4857 !(TRAP_NONPRIO & tp->tr_flags)) 4858 break; 4859 4860 if (!(TRAP_NONPRIO & tptouse->tr_flags) 4861 && (TRAP_NONPRIO & tp->tr_flags)) { 4862 tptouse = tp; 4863 break; 4864 } 4865 if (tptouse->tr_origtime < 4866 tp->tr_origtime) 4867 tptouse = tp; 4868 break; 4869 4870 case TRAP_TYPE_PRIO: 4871 if ( TRAP_NONPRIO & tp->tr_flags) { 4872 if (tptouse == NULL || 4873 ((TRAP_INUSE & 4874 tptouse->tr_flags) && 4875 tptouse->tr_origtime < 4876 tp->tr_origtime)) 4877 tptouse = tp; 4878 } 4879 break; 4880 4881 case TRAP_TYPE_NONPRIO: 4882 break; 4883 } 4884 } 4885 } 4886 4887 /* 4888 * If we don't have room for him return an error. 4889 */ 4890 if (tptouse == NULL) 4891 return (0); 4892 4893 /* 4894 * Set up this structure for him. 4895 */ 4896 tptouse->tr_settime = tptouse->tr_origtime = current_time; 4897 tptouse->tr_count = tptouse->tr_resets = 0; 4898 tptouse->tr_sequence = 1; 4899 tptouse->tr_addr = *raddr; 4900 tptouse->tr_localaddr = linter; 4901 tptouse->tr_version = (u_char) version; 4902 tptouse->tr_flags = TRAP_INUSE; 4903 if (traptype == TRAP_TYPE_CONFIG) 4904 tptouse->tr_flags |= TRAP_CONFIGURED; 4905 else if (traptype == TRAP_TYPE_NONPRIO) 4906 tptouse->tr_flags |= TRAP_NONPRIO; 4907 num_ctl_traps++; 4908 return (1); 4909 } 4910 4911 4912 /* 4913 * ctlclrtrap - called to clear a trap 4914 */ 4915 int 4916 ctlclrtrap( 4917 sockaddr_u *raddr, 4918 struct interface *linter, 4919 int traptype 4920 ) 4921 { 4922 register struct ctl_trap *tp; 4923 4924 if ((tp = ctlfindtrap(raddr, linter)) == NULL) 4925 return (0); 4926 4927 if (tp->tr_flags & TRAP_CONFIGURED 4928 && traptype != TRAP_TYPE_CONFIG) 4929 return (0); 4930 4931 tp->tr_flags = 0; 4932 num_ctl_traps--; 4933 return (1); 4934 } 4935 4936 4937 /* 4938 * ctlfindtrap - find a trap given the remote and local addresses 4939 */ 4940 static struct ctl_trap * 4941 ctlfindtrap( 4942 sockaddr_u *raddr, 4943 struct interface *linter 4944 ) 4945 { 4946 size_t n; 4947 4948 for (n = 0; n < COUNTOF(ctl_traps); n++) 4949 if ((ctl_traps[n].tr_flags & TRAP_INUSE) 4950 && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr) 4951 && (linter == ctl_traps[n].tr_localaddr)) 4952 return &ctl_traps[n]; 4953 4954 return NULL; 4955 } 4956 4957 4958 /* 4959 * report_event - report an event to the trappers 4960 */ 4961 void 4962 report_event( 4963 int err, /* error code */ 4964 struct peer *peer, /* peer structure pointer */ 4965 const char *str /* protostats string */ 4966 ) 4967 { 4968 char statstr[NTP_MAXSTRLEN]; 4969 int i; 4970 size_t len; 4971 4972 /* 4973 * Report the error to the protostats file, system log and 4974 * trappers. 4975 */ 4976 if (peer == NULL) { 4977 4978 /* 4979 * Discard a system report if the number of reports of 4980 * the same type exceeds the maximum. 4981 */ 4982 if (ctl_sys_last_event != (u_char)err) 4983 ctl_sys_num_events= 0; 4984 if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS) 4985 return; 4986 4987 ctl_sys_last_event = (u_char)err; 4988 ctl_sys_num_events++; 4989 snprintf(statstr, sizeof(statstr), 4990 "0.0.0.0 %04x %02x %s", 4991 ctlsysstatus(), err, eventstr(err)); 4992 if (str != NULL) { 4993 len = strlen(statstr); 4994 snprintf(statstr + len, sizeof(statstr) - len, 4995 " %s", str); 4996 } 4997 NLOG(NLOG_SYSEVENT) 4998 msyslog(LOG_INFO, "%s", statstr); 4999 } else { 5000 5001 /* 5002 * Discard a peer report if the number of reports of 5003 * the same type exceeds the maximum for that peer. 5004 */ 5005 const char * src; 5006 u_char errlast; 5007 5008 errlast = (u_char)err & ~PEER_EVENT; 5009 if (peer->last_event != errlast) 5010 peer->num_events = 0; 5011 if (peer->num_events >= CTL_PEER_MAXEVENTS) 5012 return; 5013 5014 peer->last_event = errlast; 5015 peer->num_events++; 5016 if (ISREFCLOCKADR(&peer->srcadr)) 5017 src = refnumtoa(&peer->srcadr); 5018 else 5019 src = stoa(&peer->srcadr); 5020 5021 snprintf(statstr, sizeof(statstr), 5022 "%s %04x %02x %s", src, 5023 ctlpeerstatus(peer), err, eventstr(err)); 5024 if (str != NULL) { 5025 len = strlen(statstr); 5026 snprintf(statstr + len, sizeof(statstr) - len, 5027 " %s", str); 5028 } 5029 NLOG(NLOG_PEEREVENT) 5030 msyslog(LOG_INFO, "%s", statstr); 5031 } 5032 record_proto_stats(statstr); 5033 #if DEBUG 5034 if (debug) 5035 printf("event at %lu %s\n", current_time, statstr); 5036 #endif 5037 5038 /* 5039 * If no trappers, return. 5040 */ 5041 if (num_ctl_traps <= 0) 5042 return; 5043 5044 /* [Bug 3119] 5045 * Peer Events should be associated with a peer -- hence the 5046 * name. But there are instances where this function is called 5047 * *without* a valid peer. This happens e.g. with an unsolicited 5048 * CryptoNAK, or when a leap second alarm is going off while 5049 * currently without a system peer. 5050 * 5051 * The most sensible approach to this seems to bail out here if 5052 * this happens. Avoiding to call this function would also 5053 * bypass the log reporting in the first part of this function, 5054 * and this is probably not the best of all options. 5055 * -*-perlinger@ntp.org-*- 5056 */ 5057 if ((err & PEER_EVENT) && !peer) 5058 return; 5059 5060 /* 5061 * Set up the outgoing packet variables 5062 */ 5063 res_opcode = CTL_OP_ASYNCMSG; 5064 res_offset = 0; 5065 res_async = TRUE; 5066 res_authenticate = FALSE; 5067 datapt = rpkt.u.data; 5068 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 5069 if (!(err & PEER_EVENT)) { 5070 rpkt.associd = 0; 5071 rpkt.status = htons(ctlsysstatus()); 5072 5073 /* Include the core system variables and the list. */ 5074 for (i = 1; i <= CS_VARLIST; i++) 5075 ctl_putsys(i); 5076 } else if (NULL != peer) { /* paranoia -- skip output */ 5077 rpkt.associd = htons(peer->associd); 5078 rpkt.status = htons(ctlpeerstatus(peer)); 5079 5080 /* Dump it all. Later, maybe less. */ 5081 for (i = 1; i <= CP_MAX_NOAUTOKEY; i++) 5082 ctl_putpeer(i, peer); 5083 # ifdef REFCLOCK 5084 /* 5085 * for clock exception events: add clock variables to 5086 * reflect info on exception 5087 */ 5088 if (err == PEVNT_CLOCK) { 5089 struct refclockstat cs; 5090 struct ctl_var *kv; 5091 5092 cs.kv_list = NULL; 5093 refclock_control(&peer->srcadr, NULL, &cs); 5094 5095 ctl_puthex("refclockstatus", 5096 ctlclkstatus(&cs)); 5097 5098 for (i = 1; i <= CC_MAXCODE; i++) 5099 ctl_putclock(i, &cs, FALSE); 5100 for (kv = cs.kv_list; 5101 kv != NULL && !(EOV & kv->flags); 5102 kv++) 5103 if (DEF & kv->flags) 5104 ctl_putdata(kv->text, 5105 strlen(kv->text), 5106 FALSE); 5107 free_varlist(cs.kv_list); 5108 } 5109 # endif /* REFCLOCK */ 5110 } 5111 5112 /* 5113 * We're done, return. 5114 */ 5115 ctl_flushpkt(0); 5116 } 5117 5118 5119 /* 5120 * mprintf_event - printf-style varargs variant of report_event() 5121 */ 5122 int 5123 mprintf_event( 5124 int evcode, /* event code */ 5125 struct peer * p, /* may be NULL */ 5126 const char * fmt, /* msnprintf format */ 5127 ... 5128 ) 5129 { 5130 va_list ap; 5131 int rc; 5132 char msg[512]; 5133 5134 va_start(ap, fmt); 5135 rc = mvsnprintf(msg, sizeof(msg), fmt, ap); 5136 va_end(ap); 5137 report_event(evcode, p, msg); 5138 5139 return rc; 5140 } 5141 5142 5143 /* 5144 * ctl_clr_stats - clear stat counters 5145 */ 5146 void 5147 ctl_clr_stats(void) 5148 { 5149 ctltimereset = current_time; 5150 numctlreq = 0; 5151 numctlbadpkts = 0; 5152 numctlresponses = 0; 5153 numctlfrags = 0; 5154 numctlerrors = 0; 5155 numctlfrags = 0; 5156 numctltooshort = 0; 5157 numctlinputresp = 0; 5158 numctlinputfrag = 0; 5159 numctlinputerr = 0; 5160 numctlbadoffset = 0; 5161 numctlbadversion = 0; 5162 numctldatatooshort = 0; 5163 numctlbadop = 0; 5164 numasyncmsgs = 0; 5165 } 5166 5167 static u_short 5168 count_var( 5169 const struct ctl_var *k 5170 ) 5171 { 5172 u_int c; 5173 5174 if (NULL == k) 5175 return 0; 5176 5177 c = 0; 5178 while (!(EOV & (k++)->flags)) 5179 c++; 5180 5181 ENSURE(c <= USHRT_MAX); 5182 return (u_short)c; 5183 } 5184 5185 5186 char * 5187 add_var( 5188 struct ctl_var **kv, 5189 u_long size, 5190 u_short def 5191 ) 5192 { 5193 u_short c; 5194 struct ctl_var *k; 5195 char * buf; 5196 5197 c = count_var(*kv); 5198 *kv = erealloc(*kv, (c + 2) * sizeof(**kv)); 5199 k = *kv; 5200 buf = emalloc(size); 5201 k[c].code = c; 5202 k[c].text = buf; 5203 k[c].flags = def; 5204 k[c + 1].code = 0; 5205 k[c + 1].text = NULL; 5206 k[c + 1].flags = EOV; 5207 5208 return buf; 5209 } 5210 5211 5212 void 5213 set_var( 5214 struct ctl_var **kv, 5215 const char *data, 5216 u_long size, 5217 u_short def 5218 ) 5219 { 5220 struct ctl_var *k; 5221 const char *s; 5222 const char *t; 5223 char *td; 5224 5225 if (NULL == data || !size) 5226 return; 5227 5228 k = *kv; 5229 if (k != NULL) { 5230 while (!(EOV & k->flags)) { 5231 if (NULL == k->text) { 5232 td = emalloc(size); 5233 memcpy(td, data, size); 5234 k->text = td; 5235 k->flags = def; 5236 return; 5237 } else { 5238 s = data; 5239 t = k->text; 5240 while (*t != '=' && *s == *t) { 5241 s++; 5242 t++; 5243 } 5244 if (*s == *t && ((*t == '=') || !*t)) { 5245 td = erealloc((void *)(intptr_t)k->text, size); 5246 memcpy(td, data, size); 5247 k->text = td; 5248 k->flags = def; 5249 return; 5250 } 5251 } 5252 k++; 5253 } 5254 } 5255 td = add_var(kv, size, def); 5256 memcpy(td, data, size); 5257 } 5258 5259 5260 void 5261 set_sys_var( 5262 const char *data, 5263 u_long size, 5264 u_short def 5265 ) 5266 { 5267 set_var(&ext_sys_var, data, size, def); 5268 } 5269 5270 5271 /* 5272 * get_ext_sys_var() retrieves the value of a user-defined variable or 5273 * NULL if the variable has not been setvar'd. 5274 */ 5275 const char * 5276 get_ext_sys_var(const char *tag) 5277 { 5278 struct ctl_var * v; 5279 size_t c; 5280 const char * val; 5281 5282 val = NULL; 5283 c = strlen(tag); 5284 for (v = ext_sys_var; !(EOV & v->flags); v++) { 5285 if (NULL != v->text && !memcmp(tag, v->text, c)) { 5286 if ('=' == v->text[c]) { 5287 val = v->text + c + 1; 5288 break; 5289 } else if ('\0' == v->text[c]) { 5290 val = ""; 5291 break; 5292 } 5293 } 5294 } 5295 5296 return val; 5297 } 5298 5299 5300 void 5301 free_varlist( 5302 struct ctl_var *kv 5303 ) 5304 { 5305 struct ctl_var *k; 5306 if (kv) { 5307 for (k = kv; !(k->flags & EOV); k++) 5308 free((void *)(intptr_t)k->text); 5309 free((void *)kv); 5310 } 5311 } 5312