xref: /netbsd-src/external/bsd/ntp/dist/ntpd/ntp_control.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: ntp_control.c,v 1.20 2018/04/07 00:19:52 christos Exp $	*/
2 
3 /*
4  * ntp_control.c - respond to mode 6 control messages and send async
5  *		   traps.  Provides service to ntpq and others.
6  */
7 
8 #ifdef HAVE_CONFIG_H
9 # include <config.h>
10 #endif
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <signal.h>
15 #include <sys/stat.h>
16 #ifdef HAVE_NETINET_IN_H
17 # include <netinet/in.h>
18 #endif
19 #include <arpa/inet.h>
20 
21 #include "ntpd.h"
22 #include "ntp_io.h"
23 #include "ntp_refclock.h"
24 #include "ntp_control.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 #include "ntp_config.h"
28 #include "ntp_crypto.h"
29 #include "ntp_assert.h"
30 #include "ntp_leapsec.h"
31 #include "ntp_md5.h"	/* provides OpenSSL digest API */
32 #include "lib_strbuf.h"
33 #include <rc_cmdlength.h>
34 #ifdef KERNEL_PLL
35 # include "ntp_syscall.h"
36 #endif
37 
38 /*
39  * Structure to hold request procedure information
40  */
41 
42 struct ctl_proc {
43 	short control_code;		/* defined request code */
44 #define NO_REQUEST	(-1)
45 	u_short flags;			/* flags word */
46 	/* Only one flag.  Authentication required or not. */
47 #define NOAUTH	0
48 #define AUTH	1
49 	void (*handler) (struct recvbuf *, int); /* handle request */
50 };
51 
52 
53 /*
54  * Request processing routines
55  */
56 static	void	ctl_error	(u_char);
57 #ifdef REFCLOCK
58 static	u_short ctlclkstatus	(struct refclockstat *);
59 #endif
60 static	void	ctl_flushpkt	(u_char);
61 static	void	ctl_putdata	(const char *, unsigned int, int);
62 static	void	ctl_putstr	(const char *, const char *, size_t);
63 static	void	ctl_putdblf	(const char *, int, int, double);
64 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67 					    FPTOD(sfp))
68 static	void	ctl_putuint	(const char *, u_long);
69 static	void	ctl_puthex	(const char *, u_long);
70 static	void	ctl_putint	(const char *, long);
71 static	void	ctl_putts	(const char *, l_fp *);
72 static	void	ctl_putadr	(const char *, u_int32,
73 				 sockaddr_u *);
74 static	void	ctl_putrefid	(const char *, u_int32);
75 static	void	ctl_putarray	(const char *, double *, int);
76 static	void	ctl_putsys	(int);
77 static	void	ctl_putpeer	(int, struct peer *);
78 static	void	ctl_putfs	(const char *, tstamp_t);
79 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
80 #ifdef REFCLOCK
81 static	void	ctl_putclock	(int, struct refclockstat *, int);
82 #endif	/* REFCLOCK */
83 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84 					  char **);
85 static	u_short	count_var	(const struct ctl_var *);
86 static	void	control_unspec	(struct recvbuf *, int);
87 static	void	read_status	(struct recvbuf *, int);
88 static	void	read_sysvars	(void);
89 static	void	read_peervars	(void);
90 static	void	read_variables	(struct recvbuf *, int);
91 static	void	write_variables (struct recvbuf *, int);
92 static	void	read_clockstatus(struct recvbuf *, int);
93 static	void	write_clockstatus(struct recvbuf *, int);
94 static	void	set_trap	(struct recvbuf *, int);
95 static	void	save_config	(struct recvbuf *, int);
96 static	void	configure	(struct recvbuf *, int);
97 static	void	send_mru_entry	(mon_entry *, int);
98 static	void	send_random_tag_value(int);
99 static	void	read_mru_list	(struct recvbuf *, int);
100 static	void	send_ifstats_entry(endpt *, u_int);
101 static	void	read_ifstats	(struct recvbuf *);
102 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
103 					  restrict_u *, int);
104 static	void	send_restrict_entry(restrict_u *, int, u_int);
105 static	void	send_restrict_list(restrict_u *, int, u_int *);
106 static	void	read_addr_restrictions(struct recvbuf *);
107 static	void	read_ordlist	(struct recvbuf *, int);
108 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
109 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
110 static	int	validate_nonce	(const char *, struct recvbuf *);
111 static	void	req_nonce	(struct recvbuf *, int);
112 static	void	unset_trap	(struct recvbuf *, int);
113 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
114 				     struct interface *);
115 
116 int/*BOOL*/ is_safe_filename(const char * name);
117 
118 static const struct ctl_proc control_codes[] = {
119 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
120 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
121 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
122 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
123 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
124 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
125 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
126 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
127 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
128 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
129 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
130 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
131 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
132 	{ NO_REQUEST,			0,	NULL }
133 };
134 
135 /*
136  * System variables we understand
137  */
138 #define	CS_LEAP			1
139 #define	CS_STRATUM		2
140 #define	CS_PRECISION		3
141 #define	CS_ROOTDELAY		4
142 #define	CS_ROOTDISPERSION	5
143 #define	CS_REFID		6
144 #define	CS_REFTIME		7
145 #define	CS_POLL			8
146 #define	CS_PEERID		9
147 #define	CS_OFFSET		10
148 #define	CS_DRIFT		11
149 #define	CS_JITTER		12
150 #define	CS_ERROR		13
151 #define	CS_CLOCK		14
152 #define	CS_PROCESSOR		15
153 #define	CS_SYSTEM		16
154 #define	CS_VERSION		17
155 #define	CS_STABIL		18
156 #define	CS_VARLIST		19
157 #define	CS_TAI			20
158 #define	CS_LEAPTAB		21
159 #define	CS_LEAPEND		22
160 #define	CS_RATE			23
161 #define	CS_MRU_ENABLED		24
162 #define	CS_MRU_DEPTH		25
163 #define	CS_MRU_DEEPEST		26
164 #define	CS_MRU_MINDEPTH		27
165 #define	CS_MRU_MAXAGE		28
166 #define	CS_MRU_MAXDEPTH		29
167 #define	CS_MRU_MEM		30
168 #define	CS_MRU_MAXMEM		31
169 #define	CS_SS_UPTIME		32
170 #define	CS_SS_RESET		33
171 #define	CS_SS_RECEIVED		34
172 #define	CS_SS_THISVER		35
173 #define	CS_SS_OLDVER		36
174 #define	CS_SS_BADFORMAT		37
175 #define	CS_SS_BADAUTH		38
176 #define	CS_SS_DECLINED		39
177 #define	CS_SS_RESTRICTED	40
178 #define	CS_SS_LIMITED		41
179 #define	CS_SS_KODSENT		42
180 #define	CS_SS_PROCESSED		43
181 #define	CS_SS_LAMPORT		44
182 #define	CS_SS_TSROUNDING	45
183 #define	CS_PEERADR		46
184 #define	CS_PEERMODE		47
185 #define	CS_BCASTDELAY		48
186 #define	CS_AUTHDELAY		49
187 #define	CS_AUTHKEYS		50
188 #define	CS_AUTHFREEK		51
189 #define	CS_AUTHKLOOKUPS		52
190 #define	CS_AUTHKNOTFOUND	53
191 #define	CS_AUTHKUNCACHED	54
192 #define	CS_AUTHKEXPIRED		55
193 #define	CS_AUTHENCRYPTS		56
194 #define	CS_AUTHDECRYPTS		57
195 #define	CS_AUTHRESET		58
196 #define	CS_K_OFFSET		59
197 #define	CS_K_FREQ		60
198 #define	CS_K_MAXERR		61
199 #define	CS_K_ESTERR		62
200 #define	CS_K_STFLAGS		63
201 #define	CS_K_TIMECONST		64
202 #define	CS_K_PRECISION		65
203 #define	CS_K_FREQTOL		66
204 #define	CS_K_PPS_FREQ		67
205 #define	CS_K_PPS_STABIL		68
206 #define	CS_K_PPS_JITTER		69
207 #define	CS_K_PPS_CALIBDUR	70
208 #define	CS_K_PPS_CALIBS		71
209 #define	CS_K_PPS_CALIBERRS	72
210 #define	CS_K_PPS_JITEXC		73
211 #define	CS_K_PPS_STBEXC		74
212 #define	CS_KERN_FIRST		CS_K_OFFSET
213 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
214 #define	CS_IOSTATS_RESET	75
215 #define	CS_TOTAL_RBUF		76
216 #define	CS_FREE_RBUF		77
217 #define	CS_USED_RBUF		78
218 #define	CS_RBUF_LOWATER		79
219 #define	CS_IO_DROPPED		80
220 #define	CS_IO_IGNORED		81
221 #define	CS_IO_RECEIVED		82
222 #define	CS_IO_SENT		83
223 #define	CS_IO_SENDFAILED	84
224 #define	CS_IO_WAKEUPS		85
225 #define	CS_IO_GOODWAKEUPS	86
226 #define	CS_TIMERSTATS_RESET	87
227 #define	CS_TIMER_OVERRUNS	88
228 #define	CS_TIMER_XMTS		89
229 #define	CS_FUZZ			90
230 #define	CS_WANDER_THRESH	91
231 #define	CS_LEAPSMEARINTV	92
232 #define	CS_LEAPSMEAROFFS	93
233 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
234 #ifdef AUTOKEY
235 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
236 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
237 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
238 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
239 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
240 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
241 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
242 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
243 #define	CS_MAXCODE		CS_DIGEST
244 #else	/* !AUTOKEY follows */
245 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
246 #endif	/* !AUTOKEY */
247 
248 /*
249  * Peer variables we understand
250  */
251 #define	CP_CONFIG		1
252 #define	CP_AUTHENABLE		2
253 #define	CP_AUTHENTIC		3
254 #define	CP_SRCADR		4
255 #define	CP_SRCPORT		5
256 #define	CP_DSTADR		6
257 #define	CP_DSTPORT		7
258 #define	CP_LEAP			8
259 #define	CP_HMODE		9
260 #define	CP_STRATUM		10
261 #define	CP_PPOLL		11
262 #define	CP_HPOLL		12
263 #define	CP_PRECISION		13
264 #define	CP_ROOTDELAY		14
265 #define	CP_ROOTDISPERSION	15
266 #define	CP_REFID		16
267 #define	CP_REFTIME		17
268 #define	CP_ORG			18
269 #define	CP_REC			19
270 #define	CP_XMT			20
271 #define	CP_REACH		21
272 #define	CP_UNREACH		22
273 #define	CP_TIMER		23
274 #define	CP_DELAY		24
275 #define	CP_OFFSET		25
276 #define	CP_JITTER		26
277 #define	CP_DISPERSION		27
278 #define	CP_KEYID		28
279 #define	CP_FILTDELAY		29
280 #define	CP_FILTOFFSET		30
281 #define	CP_PMODE		31
282 #define	CP_RECEIVED		32
283 #define	CP_SENT			33
284 #define	CP_FILTERROR		34
285 #define	CP_FLASH		35
286 #define	CP_TTL			36
287 #define	CP_VARLIST		37
288 #define	CP_IN			38
289 #define	CP_OUT			39
290 #define	CP_RATE			40
291 #define	CP_BIAS			41
292 #define	CP_SRCHOST		42
293 #define	CP_TIMEREC		43
294 #define	CP_TIMEREACH		44
295 #define	CP_BADAUTH		45
296 #define	CP_BOGUSORG		46
297 #define	CP_OLDPKT		47
298 #define	CP_SELDISP		48
299 #define	CP_SELBROKEN		49
300 #define	CP_CANDIDATE		50
301 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
302 #ifdef AUTOKEY
303 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
304 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
305 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
307 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
308 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
309 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
310 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
311 #define	CP_MAXCODE		CP_IDENT
312 #else	/* !AUTOKEY follows */
313 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
314 #endif	/* !AUTOKEY */
315 
316 /*
317  * Clock variables we understand
318  */
319 #define	CC_TYPE		1
320 #define	CC_TIMECODE	2
321 #define	CC_POLL		3
322 #define	CC_NOREPLY	4
323 #define	CC_BADFORMAT	5
324 #define	CC_BADDATA	6
325 #define	CC_FUDGETIME1	7
326 #define	CC_FUDGETIME2	8
327 #define	CC_FUDGEVAL1	9
328 #define	CC_FUDGEVAL2	10
329 #define	CC_FLAGS	11
330 #define	CC_DEVICE	12
331 #define	CC_VARLIST	13
332 #define	CC_MAXCODE	CC_VARLIST
333 
334 /*
335  * System variable values. The array can be indexed by the variable
336  * index to find the textual name.
337  */
338 static const struct ctl_var sys_var[] = {
339 	{ 0,		PADDING, "" },		/* 0 */
340 	{ CS_LEAP,	RW, "leap" },		/* 1 */
341 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
342 	{ CS_PRECISION, RO, "precision" },	/* 3 */
343 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
344 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
345 	{ CS_REFID,	RO, "refid" },		/* 6 */
346 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
347 	{ CS_POLL,	RO, "tc" },		/* 8 */
348 	{ CS_PEERID,	RO, "peer" },		/* 9 */
349 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
350 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
351 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
352 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
353 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
354 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
355 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
356 	{ CS_VERSION,	RO, "version" },	/* 17 */
357 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
358 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
359 	{ CS_TAI,	RO, "tai" },		/* 20 */
360 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
361 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
362 	{ CS_RATE,	RO, "mintc" },		/* 23 */
363 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
364 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
365 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
366 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
367 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
368 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
369 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
370 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
371 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
372 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
373 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
374 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
375 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
376 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
377 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
378 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
379 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
380 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
381 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
382 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
383 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
384 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
385 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
386 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
387 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
388 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
389 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
390 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
391 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
392 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
393 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
394 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
395 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
396 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
397 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
398 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
399 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
400 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
401 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
402 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
403 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
404 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
405 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
406 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
407 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
408 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
409 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
410 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
411 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
412 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
413 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
414 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
415 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
416 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
417 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
418 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
419 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
420 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
421 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
422 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
423 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
424 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
425 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
426 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
427 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
428 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
429 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
430 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
431 
432 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
433 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
434 
435 #ifdef AUTOKEY
436 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
437 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
438 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
439 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
440 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
441 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
442 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
443 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
444 #endif	/* AUTOKEY */
445 	{ 0,		EOV, "" }		/* 94/102 */
446 };
447 
448 static struct ctl_var *ext_sys_var = NULL;
449 
450 /*
451  * System variables we print by default (in fuzzball order,
452  * more-or-less)
453  */
454 static const u_char def_sys_var[] = {
455 	CS_VERSION,
456 	CS_PROCESSOR,
457 	CS_SYSTEM,
458 	CS_LEAP,
459 	CS_STRATUM,
460 	CS_PRECISION,
461 	CS_ROOTDELAY,
462 	CS_ROOTDISPERSION,
463 	CS_REFID,
464 	CS_REFTIME,
465 	CS_CLOCK,
466 	CS_PEERID,
467 	CS_POLL,
468 	CS_RATE,
469 	CS_OFFSET,
470 	CS_DRIFT,
471 	CS_JITTER,
472 	CS_ERROR,
473 	CS_STABIL,
474 	CS_TAI,
475 	CS_LEAPTAB,
476 	CS_LEAPEND,
477 	CS_LEAPSMEARINTV,
478 	CS_LEAPSMEAROFFS,
479 #ifdef AUTOKEY
480 	CS_HOST,
481 	CS_IDENT,
482 	CS_FLAGS,
483 	CS_DIGEST,
484 	CS_SIGNATURE,
485 	CS_PUBLIC,
486 	CS_CERTIF,
487 #endif	/* AUTOKEY */
488 	0
489 };
490 
491 
492 /*
493  * Peer variable list
494  */
495 static const struct ctl_var peer_var[] = {
496 	{ 0,		PADDING, "" },		/* 0 */
497 	{ CP_CONFIG,	RO, "config" },		/* 1 */
498 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
499 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
500 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
501 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
502 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
503 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
504 	{ CP_LEAP,	RO, "leap" },		/* 8 */
505 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
506 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
507 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
508 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
509 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
510 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
511 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
512 	{ CP_REFID,	RO, "refid" },		/* 16 */
513 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
514 	{ CP_ORG,	RO, "org" },		/* 18 */
515 	{ CP_REC,	RO, "rec" },		/* 19 */
516 	{ CP_XMT,	RO, "xleave" },		/* 20 */
517 	{ CP_REACH,	RO, "reach" },		/* 21 */
518 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
519 	{ CP_TIMER,	RO, "timer" },		/* 23 */
520 	{ CP_DELAY,	RO, "delay" },		/* 24 */
521 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
522 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
523 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
524 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
525 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
526 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
527 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
528 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
529 	{ CP_SENT,	RO, "sent" },		/* 33 */
530 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
531 	{ CP_FLASH,	RO, "flash" },		/* 35 */
532 	{ CP_TTL,	RO, "ttl" },		/* 36 */
533 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
534 	{ CP_IN,	RO, "in" },		/* 38 */
535 	{ CP_OUT,	RO, "out" },		/* 39 */
536 	{ CP_RATE,	RO, "headway" },	/* 40 */
537 	{ CP_BIAS,	RO, "bias" },		/* 41 */
538 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
539 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
540 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
541 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
542 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
543 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
544 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
545 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
546 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
547 #ifdef AUTOKEY
548 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
549 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
550 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
551 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
552 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
553 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
554 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
555 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
556 #endif	/* AUTOKEY */
557 	{ 0,		EOV, "" }		/* 50/58 */
558 };
559 
560 
561 /*
562  * Peer variables we print by default
563  */
564 static const u_char def_peer_var[] = {
565 	CP_SRCADR,
566 	CP_SRCPORT,
567 	CP_SRCHOST,
568 	CP_DSTADR,
569 	CP_DSTPORT,
570 	CP_OUT,
571 	CP_IN,
572 	CP_LEAP,
573 	CP_STRATUM,
574 	CP_PRECISION,
575 	CP_ROOTDELAY,
576 	CP_ROOTDISPERSION,
577 	CP_REFID,
578 	CP_REFTIME,
579 	CP_REC,
580 	CP_REACH,
581 	CP_UNREACH,
582 	CP_HMODE,
583 	CP_PMODE,
584 	CP_HPOLL,
585 	CP_PPOLL,
586 	CP_RATE,
587 	CP_FLASH,
588 	CP_KEYID,
589 	CP_TTL,
590 	CP_OFFSET,
591 	CP_DELAY,
592 	CP_DISPERSION,
593 	CP_JITTER,
594 	CP_XMT,
595 	CP_BIAS,
596 	CP_FILTDELAY,
597 	CP_FILTOFFSET,
598 	CP_FILTERROR,
599 #ifdef AUTOKEY
600 	CP_HOST,
601 	CP_FLAGS,
602 	CP_SIGNATURE,
603 	CP_VALID,
604 	CP_INITSEQ,
605 	CP_IDENT,
606 #endif	/* AUTOKEY */
607 	0
608 };
609 
610 
611 #ifdef REFCLOCK
612 /*
613  * Clock variable list
614  */
615 static const struct ctl_var clock_var[] = {
616 	{ 0,		PADDING, "" },		/* 0 */
617 	{ CC_TYPE,	RO, "type" },		/* 1 */
618 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
619 	{ CC_POLL,	RO, "poll" },		/* 3 */
620 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
621 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
622 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
623 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
624 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
625 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
626 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
627 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
628 	{ CC_DEVICE,	RO, "device" },		/* 12 */
629 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
630 	{ 0,		EOV, ""  }		/* 14 */
631 };
632 
633 
634 /*
635  * Clock variables printed by default
636  */
637 static const u_char def_clock_var[] = {
638 	CC_DEVICE,
639 	CC_TYPE,	/* won't be output if device = known */
640 	CC_TIMECODE,
641 	CC_POLL,
642 	CC_NOREPLY,
643 	CC_BADFORMAT,
644 	CC_BADDATA,
645 	CC_FUDGETIME1,
646 	CC_FUDGETIME2,
647 	CC_FUDGEVAL1,
648 	CC_FUDGEVAL2,
649 	CC_FLAGS,
650 	0
651 };
652 #endif
653 
654 /*
655  * MRU string constants shared by send_mru_entry() and read_mru_list().
656  */
657 static const char addr_fmt[] =		"addr.%d";
658 static const char last_fmt[] =		"last.%d";
659 
660 /*
661  * System and processor definitions.
662  */
663 #ifndef HAVE_UNAME
664 # ifndef STR_SYSTEM
665 #  define		STR_SYSTEM	"UNIX"
666 # endif
667 # ifndef STR_PROCESSOR
668 #  define		STR_PROCESSOR	"unknown"
669 # endif
670 
671 static const char str_system[] = STR_SYSTEM;
672 static const char str_processor[] = STR_PROCESSOR;
673 #else
674 # include <sys/utsname.h>
675 static struct utsname utsnamebuf;
676 #endif /* HAVE_UNAME */
677 
678 /*
679  * Trap structures. We only allow a few of these, and send a copy of
680  * each async message to each live one. Traps time out after an hour, it
681  * is up to the trap receipient to keep resetting it to avoid being
682  * timed out.
683  */
684 /* ntp_request.c */
685 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
686 int num_ctl_traps;
687 
688 /*
689  * Type bits, for ctlsettrap() call.
690  */
691 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
692 #define TRAP_TYPE_PRIO		1	/* priority trap */
693 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
694 
695 
696 /*
697  * List relating reference clock types to control message time sources.
698  * Index by the reference clock type. This list will only be used iff
699  * the reference clock driver doesn't set peer->sstclktype to something
700  * different than CTL_SST_TS_UNSPEC.
701  */
702 #ifdef REFCLOCK
703 static const u_char clocktypes[] = {
704 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
705 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
706 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
707 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
708 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
709 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
710 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
711 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
712 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
713 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
714 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
715 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
716 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
717 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
718 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
719 	CTL_SST_TS_NTP,		/* not used (15) */
720 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
721 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
722 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
723 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
725 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
726 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
727 	CTL_SST_TS_NTP,		/* not used (23) */
728 	CTL_SST_TS_NTP,		/* not used (24) */
729 	CTL_SST_TS_NTP,		/* not used (25) */
730 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
731 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
732 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
733 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
734 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
735 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
736 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
737 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
738 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
739 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
740 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
741 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
742 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
743 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
744 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
745 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
746 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
747 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
748 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
749 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
750 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
751 };
752 #endif  /* REFCLOCK */
753 
754 
755 /*
756  * Keyid used for authenticating write requests.
757  */
758 keyid_t ctl_auth_keyid;
759 
760 /*
761  * We keep track of the last error reported by the system internally
762  */
763 static	u_char ctl_sys_last_event;
764 static	u_char ctl_sys_num_events;
765 
766 
767 /*
768  * Statistic counters to keep track of requests and responses.
769  */
770 u_long ctltimereset;		/* time stats reset */
771 u_long numctlreq;		/* number of requests we've received */
772 u_long numctlbadpkts;		/* number of bad control packets */
773 u_long numctlresponses;		/* number of resp packets sent with data */
774 u_long numctlfrags;		/* number of fragments sent */
775 u_long numctlerrors;		/* number of error responses sent */
776 u_long numctltooshort;		/* number of too short input packets */
777 u_long numctlinputresp;		/* number of responses on input */
778 u_long numctlinputfrag;		/* number of fragments on input */
779 u_long numctlinputerr;		/* number of input pkts with err bit set */
780 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
781 u_long numctlbadversion;	/* number of input pkts with unknown version */
782 u_long numctldatatooshort;	/* data too short for count */
783 u_long numctlbadop;		/* bad op code found in packet */
784 u_long numasyncmsgs;		/* number of async messages we've sent */
785 
786 /*
787  * Response packet used by these routines. Also some state information
788  * so that we can handle packet formatting within a common set of
789  * subroutines.  Note we try to enter data in place whenever possible,
790  * but the need to set the more bit correctly means we occasionally
791  * use the extra buffer and copy.
792  */
793 static struct ntp_control rpkt;
794 static u_char	res_version;
795 static u_char	res_opcode;
796 static associd_t res_associd;
797 static u_short	res_frags;	/* datagrams in this response */
798 static int	res_offset;	/* offset of payload in response */
799 static u_char * datapt;
800 static u_char * dataend;
801 static int	datalinelen;
802 static int	datasent;	/* flag to avoid initial ", " */
803 static int	datanotbinflag;
804 static sockaddr_u *rmt_addr;
805 static struct interface *lcl_inter;
806 
807 static u_char	res_authenticate;
808 static u_char	res_authokay;
809 static keyid_t	res_keyid;
810 
811 #define MAXDATALINELEN	(72)
812 
813 static u_char	res_async;	/* sending async trap response? */
814 
815 /*
816  * Pointers for saving state when decoding request packets
817  */
818 static	char *reqpt;
819 static	char *reqend;
820 
821 #ifndef MIN
822 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
823 #endif
824 
825 /*
826  * init_control - initialize request data
827  */
828 void
829 init_control(void)
830 {
831 	size_t i;
832 
833 #ifdef HAVE_UNAME
834 	uname(&utsnamebuf);
835 #endif /* HAVE_UNAME */
836 
837 	ctl_clr_stats();
838 
839 	ctl_auth_keyid = 0;
840 	ctl_sys_last_event = EVNT_UNSPEC;
841 	ctl_sys_num_events = 0;
842 
843 	num_ctl_traps = 0;
844 	for (i = 0; i < COUNTOF(ctl_traps); i++)
845 		ctl_traps[i].tr_flags = 0;
846 }
847 
848 
849 /*
850  * ctl_error - send an error response for the current request
851  */
852 static void
853 ctl_error(
854 	u_char errcode
855 	)
856 {
857 	size_t		maclen;
858 
859 	numctlerrors++;
860 	DPRINTF(3, ("sending control error %u\n", errcode));
861 
862 	/*
863 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
864 	 * have already been filled in.
865 	 */
866 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
867 			(res_opcode & CTL_OP_MASK);
868 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
869 	rpkt.count = 0;
870 
871 	/*
872 	 * send packet and bump counters
873 	 */
874 	if (res_authenticate && sys_authenticate) {
875 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
876 				     CTL_HEADER_LEN);
877 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
878 			CTL_HEADER_LEN + maclen);
879 	} else
880 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
881 			CTL_HEADER_LEN);
882 }
883 
884 int/*BOOL*/
885 is_safe_filename(const char * name)
886 {
887 	/* We need a strict validation of filenames we should write: The
888 	 * daemon might run with special permissions and is remote
889 	 * controllable, so we better take care what we allow as file
890 	 * name!
891 	 *
892 	 * The first character must be digit or a letter from the ASCII
893 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
894 	 * must be from [-._+A-Za-z0-9].
895 	 *
896 	 * We do not trust the character classification much here: Since
897 	 * the NTP protocol makes no provisions for UTF-8 or local code
898 	 * pages, we strictly require the 7bit ASCII code page.
899 	 *
900 	 * The following table is a packed bit field of 128 two-bit
901 	 * groups. The LSB in each group tells us if a character is
902 	 * acceptable at the first position, the MSB if the character is
903 	 * accepted at any other position.
904 	 *
905 	 * This does not ensure that the file name is syntactically
906 	 * correct (multiple dots will not work with VMS...) but it will
907 	 * exclude potential globbing bombs and directory traversal. It
908 	 * also rules out drive selection. (For systems that have this
909 	 * notion, like Windows or VMS.)
910 	 */
911 	static const uint32_t chclass[8] = {
912 		0x00000000, 0x00000000,
913 		0x28800000, 0x000FFFFF,
914 		0xFFFFFFFC, 0xC03FFFFF,
915 		0xFFFFFFFC, 0x003FFFFF
916 	};
917 
918 	u_int widx, bidx, mask;
919 	if ( ! (name && *name))
920 		return FALSE;
921 
922 	mask = 1u;
923 	while (0 != (widx = (u_char)*name++)) {
924 		bidx = (widx & 15) << 1;
925 		widx = widx >> 4;
926 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
927 			return FALSE;
928 		if (0 == ((chclass[widx] >> bidx) & mask))
929 			return FALSE;
930 		mask = 2u;
931 	}
932 	return TRUE;
933 }
934 
935 
936 /*
937  * save_config - Implements ntpq -c "saveconfig <filename>"
938  *		 Writes current configuration including any runtime
939  *		 changes by ntpq's :config or config-from-file
940  *
941  * Note: There should be no buffer overflow or truncation in the
942  * processing of file names -- both cause security problems. This is bit
943  * painful to code but essential here.
944  */
945 void
946 save_config(
947 	struct recvbuf *rbufp,
948 	int restrict_mask
949 	)
950 {
951 	/* block directory traversal by searching for characters that
952 	 * indicate directory components in a file path.
953 	 *
954 	 * Conceptually we should be searching for DIRSEP in filename,
955 	 * however Windows actually recognizes both forward and
956 	 * backslashes as equivalent directory separators at the API
957 	 * level.  On POSIX systems we could allow '\\' but such
958 	 * filenames are tricky to manipulate from a shell, so just
959 	 * reject both types of slashes on all platforms.
960 	 */
961 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
962 	static const char * illegal_in_filename =
963 #if defined(VMS)
964 	    ":[]"	/* do not allow drive and path components here */
965 #elif defined(SYS_WINNT)
966 	    ":\\/"	/* path and drive separators */
967 #else
968 	    "\\/"	/* separator and critical char for POSIX */
969 #endif
970 	    ;
971 	char reply[128];
972 #ifdef SAVECONFIG
973 	static const char savedconfig_eq[] = "savedconfig=";
974 
975 	/* Build a safe open mode from the available mode flags. We want
976 	 * to create a new file and write it in text mode (when
977 	 * applicable -- only Windows does this...)
978 	 */
979 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
980 #  if defined(O_EXCL)		/* posix, vms */
981 	    | O_EXCL
982 #  elif defined(_O_EXCL)	/* windows is alway very special... */
983 	    | _O_EXCL
984 #  endif
985 #  if defined(_O_TEXT)		/* windows, again */
986 	    | _O_TEXT
987 #endif
988 	    ;
989 
990 	char filespec[128];
991 	char filename[128];
992 	char fullpath[512];
993 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
994 	time_t now;
995 	int fd;
996 	FILE *fptr;
997 	int prc;
998 	size_t reqlen;
999 #endif
1000 
1001 	if (RES_NOMODIFY & restrict_mask) {
1002 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1003 		ctl_flushpkt(0);
1004 		NLOG(NLOG_SYSINFO)
1005 			msyslog(LOG_NOTICE,
1006 				"saveconfig from %s rejected due to nomodify restriction",
1007 				stoa(&rbufp->recv_srcadr));
1008 		sys_restricted++;
1009 		return;
1010 	}
1011 
1012 #ifdef SAVECONFIG
1013 	if (NULL == saveconfigdir) {
1014 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1015 		ctl_flushpkt(0);
1016 		NLOG(NLOG_SYSINFO)
1017 			msyslog(LOG_NOTICE,
1018 				"saveconfig from %s rejected, no saveconfigdir",
1019 				stoa(&rbufp->recv_srcadr));
1020 		return;
1021 	}
1022 
1023 	/* The length checking stuff gets serious. Do not assume a NUL
1024 	 * byte can be found, but if so, use it to calculate the needed
1025 	 * buffer size. If the available buffer is too short, bail out;
1026 	 * likewise if there is no file spec. (The latter will not
1027 	 * happen when using NTPQ, but there are other ways to craft a
1028 	 * network packet!)
1029 	 */
1030 	reqlen = (size_t)(reqend - reqpt);
1031 	if (0 != reqlen) {
1032 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1033 		if (NULL != nulpos)
1034 			reqlen = (size_t)(nulpos - reqpt);
1035 	}
1036 	if (0 == reqlen)
1037 		return;
1038 	if (reqlen >= sizeof(filespec)) {
1039 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1040 			   (u_int)sizeof(filespec));
1041 		ctl_flushpkt(0);
1042 		msyslog(LOG_NOTICE,
1043 			"saveconfig exceeded maximum raw name length from %s",
1044 			stoa(&rbufp->recv_srcadr));
1045 		return;
1046 	}
1047 
1048 	/* copy data directly as we exactly know the size */
1049 	memcpy(filespec, reqpt, reqlen);
1050 	filespec[reqlen] = '\0';
1051 
1052 	/*
1053 	 * allow timestamping of the saved config filename with
1054 	 * strftime() format such as:
1055 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1056 	 * XXX: Nice feature, but not too safe.
1057 	 * YYY: The check for permitted characters in file names should
1058 	 *      weed out the worst. Let's hope 'strftime()' does not
1059 	 *      develop pathological problems.
1060 	 */
1061 	time(&now);
1062 	if (0 == strftime(filename, sizeof(filename), filespec,
1063 			  localtime(&now)))
1064 	{
1065 		/*
1066 		 * If we arrive here, 'strftime()' balked; most likely
1067 		 * the buffer was too short. (Or it encounterd an empty
1068 		 * format, or just a format that expands to an empty
1069 		 * string.) We try to use the original name, though this
1070 		 * is very likely to fail later if there are format
1071 		 * specs in the string. Note that truncation cannot
1072 		 * happen here as long as both buffers have the same
1073 		 * size!
1074 		 */
1075 		strlcpy(filename, filespec, sizeof(filename));
1076 	}
1077 
1078 	/*
1079 	 * Check the file name for sanity. This might/will rule out file
1080 	 * names that would be legal but problematic, and it blocks
1081 	 * directory traversal.
1082 	 */
1083 	if (!is_safe_filename(filename)) {
1084 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1085 			   filename);
1086 		ctl_flushpkt(0);
1087 		msyslog(LOG_NOTICE,
1088 			"saveconfig rejects unsafe file name from %s",
1089 			stoa(&rbufp->recv_srcadr));
1090 		return;
1091 	}
1092 
1093 	/*
1094 	 * XXX: This next test may not be needed with is_safe_filename()
1095 	 */
1096 
1097 	/* block directory/drive traversal */
1098 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1099 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1100 		snprintf(reply, sizeof(reply),
1101 			 "saveconfig does not allow directory in filename");
1102 		ctl_putdata(reply, strlen(reply), 0);
1103 		ctl_flushpkt(0);
1104 		msyslog(LOG_NOTICE,
1105 			"saveconfig rejects unsafe file name from %s",
1106 			stoa(&rbufp->recv_srcadr));
1107 		return;
1108 	}
1109 
1110 	/* concatenation of directory and path can cause another
1111 	 * truncation...
1112 	 */
1113 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1114 		       saveconfigdir, filename);
1115 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1116 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1117 			   (u_int)sizeof(fullpath));
1118 		ctl_flushpkt(0);
1119 		msyslog(LOG_NOTICE,
1120 			"saveconfig exceeded maximum path length from %s",
1121 			stoa(&rbufp->recv_srcadr));
1122 		return;
1123 	}
1124 
1125 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1126 	if (-1 == fd)
1127 		fptr = NULL;
1128 	else
1129 		fptr = fdopen(fd, "w");
1130 
1131 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1132 		ctl_printf("Unable to save configuration to file '%s': %s",
1133 			   filename, strerror(errno));
1134 		msyslog(LOG_ERR,
1135 			"saveconfig %s from %s failed", filename,
1136 			stoa(&rbufp->recv_srcadr));
1137 	} else {
1138 		ctl_printf("Configuration saved to '%s'", filename);
1139 		msyslog(LOG_NOTICE,
1140 			"Configuration saved to '%s' (requested by %s)",
1141 			fullpath, stoa(&rbufp->recv_srcadr));
1142 		/*
1143 		 * save the output filename in system variable
1144 		 * savedconfig, retrieved with:
1145 		 *   ntpq -c "rv 0 savedconfig"
1146 		 * Note: the way 'savedconfig' is defined makes overflow
1147 		 * checks unnecessary here.
1148 		 */
1149 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1150 			 savedconfig_eq, filename);
1151 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1152 	}
1153 
1154 	if (NULL != fptr)
1155 		fclose(fptr);
1156 #else	/* !SAVECONFIG follows */
1157 	ctl_printf("%s",
1158 		   "saveconfig unavailable, configured with --disable-saveconfig");
1159 #endif
1160 	ctl_flushpkt(0);
1161 }
1162 
1163 
1164 /*
1165  * process_control - process an incoming control message
1166  */
1167 void
1168 process_control(
1169 	struct recvbuf *rbufp,
1170 	int restrict_mask
1171 	)
1172 {
1173 	struct ntp_control *pkt;
1174 	int req_count;
1175 	int req_data;
1176 	const struct ctl_proc *cc;
1177 	keyid_t *pkid;
1178 	int properlen;
1179 	size_t maclen;
1180 
1181 	DPRINTF(3, ("in process_control()\n"));
1182 
1183 	/*
1184 	 * Save the addresses for error responses
1185 	 */
1186 	numctlreq++;
1187 	rmt_addr = &rbufp->recv_srcadr;
1188 	lcl_inter = rbufp->dstadr;
1189 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1190 
1191 	/*
1192 	 * If the length is less than required for the header, or
1193 	 * it is a response or a fragment, ignore this.
1194 	 */
1195 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1196 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1197 	    || pkt->offset != 0) {
1198 		DPRINTF(1, ("invalid format in control packet\n"));
1199 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1200 			numctltooshort++;
1201 		if (CTL_RESPONSE & pkt->r_m_e_op)
1202 			numctlinputresp++;
1203 		if (CTL_MORE & pkt->r_m_e_op)
1204 			numctlinputfrag++;
1205 		if (CTL_ERROR & pkt->r_m_e_op)
1206 			numctlinputerr++;
1207 		if (pkt->offset != 0)
1208 			numctlbadoffset++;
1209 		return;
1210 	}
1211 	res_version = PKT_VERSION(pkt->li_vn_mode);
1212 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1213 		DPRINTF(1, ("unknown version %d in control packet\n",
1214 			    res_version));
1215 		numctlbadversion++;
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * Pull enough data from the packet to make intelligent
1221 	 * responses
1222 	 */
1223 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1224 					 MODE_CONTROL);
1225 	res_opcode = pkt->r_m_e_op;
1226 	rpkt.sequence = pkt->sequence;
1227 	rpkt.associd = pkt->associd;
1228 	rpkt.status = 0;
1229 	res_frags = 1;
1230 	res_offset = 0;
1231 	res_associd = htons(pkt->associd);
1232 	res_async = FALSE;
1233 	res_authenticate = FALSE;
1234 	res_keyid = 0;
1235 	res_authokay = FALSE;
1236 	req_count = (int)ntohs(pkt->count);
1237 	datanotbinflag = FALSE;
1238 	datalinelen = 0;
1239 	datasent = 0;
1240 	datapt = rpkt.u.data;
1241 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1242 
1243 	if ((rbufp->recv_length & 0x3) != 0)
1244 		DPRINTF(3, ("Control packet length %d unrounded\n",
1245 			    rbufp->recv_length));
1246 
1247 	/*
1248 	 * We're set up now. Make sure we've got at least enough
1249 	 * incoming data space to match the count.
1250 	 */
1251 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1252 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1253 		ctl_error(CERR_BADFMT);
1254 		numctldatatooshort++;
1255 		return;
1256 	}
1257 
1258 	properlen = req_count + CTL_HEADER_LEN;
1259 	/* round up proper len to a 8 octet boundary */
1260 
1261 	properlen = (properlen + 7) & ~7;
1262 	maclen = rbufp->recv_length - properlen;
1263 	if ((rbufp->recv_length & 3) == 0 &&
1264 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1265 	    sys_authenticate) {
1266 		res_authenticate = TRUE;
1267 		pkid = (void *)((char *)pkt + properlen);
1268 		res_keyid = ntohl(*pkid);
1269 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1270 			    rbufp->recv_length, properlen, res_keyid,
1271 			    maclen));
1272 
1273 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1274 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1275 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1276 				     rbufp->recv_length - maclen,
1277 				     maclen)) {
1278 			res_authokay = TRUE;
1279 			DPRINTF(3, ("authenticated okay\n"));
1280 		} else {
1281 			res_keyid = 0;
1282 			DPRINTF(3, ("authentication failed\n"));
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * Set up translate pointers
1288 	 */
1289 	reqpt = (char *)pkt->u.data;
1290 	reqend = reqpt + req_count;
1291 
1292 	/*
1293 	 * Look for the opcode processor
1294 	 */
1295 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1296 		if (cc->control_code == res_opcode) {
1297 			DPRINTF(3, ("opcode %d, found command handler\n",
1298 				    res_opcode));
1299 			if (cc->flags == AUTH
1300 			    && (!res_authokay
1301 				|| res_keyid != ctl_auth_keyid)) {
1302 				ctl_error(CERR_PERMISSION);
1303 				return;
1304 			}
1305 			(cc->handler)(rbufp, restrict_mask);
1306 			return;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * Can't find this one, return an error.
1312 	 */
1313 	numctlbadop++;
1314 	ctl_error(CERR_BADOP);
1315 	return;
1316 }
1317 
1318 
1319 /*
1320  * ctlpeerstatus - return a status word for this peer
1321  */
1322 u_short
1323 ctlpeerstatus(
1324 	register struct peer *p
1325 	)
1326 {
1327 	u_short status;
1328 
1329 	status = p->status;
1330 	if (FLAG_CONFIG & p->flags)
1331 		status |= CTL_PST_CONFIG;
1332 	if (p->keyid)
1333 		status |= CTL_PST_AUTHENABLE;
1334 	if (FLAG_AUTHENTIC & p->flags)
1335 		status |= CTL_PST_AUTHENTIC;
1336 	if (p->reach)
1337 		status |= CTL_PST_REACH;
1338 	if (MDF_TXONLY_MASK & p->cast_flags)
1339 		status |= CTL_PST_BCAST;
1340 
1341 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1342 }
1343 
1344 
1345 /*
1346  * ctlclkstatus - return a status word for this clock
1347  */
1348 #ifdef REFCLOCK
1349 static u_short
1350 ctlclkstatus(
1351 	struct refclockstat *pcs
1352 	)
1353 {
1354 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1355 }
1356 #endif
1357 
1358 
1359 /*
1360  * ctlsysstatus - return the system status word
1361  */
1362 u_short
1363 ctlsysstatus(void)
1364 {
1365 	register u_char this_clock;
1366 
1367 	this_clock = CTL_SST_TS_UNSPEC;
1368 #ifdef REFCLOCK
1369 	if (sys_peer != NULL) {
1370 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1371 			this_clock = sys_peer->sstclktype;
1372 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1373 			this_clock = clocktypes[sys_peer->refclktype];
1374 	}
1375 #else /* REFCLOCK */
1376 	if (sys_peer != 0)
1377 		this_clock = CTL_SST_TS_NTP;
1378 #endif /* REFCLOCK */
1379 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1380 			      ctl_sys_last_event);
1381 }
1382 
1383 
1384 /*
1385  * ctl_flushpkt - write out the current packet and prepare
1386  *		  another if necessary.
1387  */
1388 static void
1389 ctl_flushpkt(
1390 	u_char more
1391 	)
1392 {
1393 	size_t i;
1394 	size_t dlen;
1395 	size_t sendlen;
1396 	size_t maclen;
1397 	size_t totlen;
1398 	keyid_t keyid;
1399 
1400 	dlen = datapt - rpkt.u.data;
1401 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1402 		/*
1403 		 * Big hack, output a trailing \r\n
1404 		 */
1405 		*datapt++ = '\r';
1406 		*datapt++ = '\n';
1407 		dlen += 2;
1408 	}
1409 	sendlen = dlen + CTL_HEADER_LEN;
1410 
1411 	/*
1412 	 * Pad to a multiple of 32 bits
1413 	 */
1414 	while (sendlen & 0x3) {
1415 		*datapt++ = '\0';
1416 		sendlen++;
1417 	}
1418 
1419 	/*
1420 	 * Fill in the packet with the current info
1421 	 */
1422 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1423 			(res_opcode & CTL_OP_MASK);
1424 	rpkt.count = htons((u_short)dlen);
1425 	rpkt.offset = htons((u_short)res_offset);
1426 	if (res_async) {
1427 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1428 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1429 				rpkt.li_vn_mode =
1430 				    PKT_LI_VN_MODE(
1431 					sys_leap,
1432 					ctl_traps[i].tr_version,
1433 					MODE_CONTROL);
1434 				rpkt.sequence =
1435 				    htons(ctl_traps[i].tr_sequence);
1436 				sendpkt(&ctl_traps[i].tr_addr,
1437 					ctl_traps[i].tr_localaddr, -4,
1438 					(struct pkt *)&rpkt, sendlen);
1439 				if (!more)
1440 					ctl_traps[i].tr_sequence++;
1441 				numasyncmsgs++;
1442 			}
1443 		}
1444 	} else {
1445 		if (res_authenticate && sys_authenticate) {
1446 			totlen = sendlen;
1447 			/*
1448 			 * If we are going to authenticate, then there
1449 			 * is an additional requirement that the MAC
1450 			 * begin on a 64 bit boundary.
1451 			 */
1452 			while (totlen & 7) {
1453 				*datapt++ = '\0';
1454 				totlen++;
1455 			}
1456 			keyid = htonl(res_keyid);
1457 			memcpy(datapt, &keyid, sizeof(keyid));
1458 			maclen = authencrypt(res_keyid,
1459 					     (u_int32 *)&rpkt, totlen);
1460 			sendpkt(rmt_addr, lcl_inter, -5,
1461 				(struct pkt *)&rpkt, totlen + maclen);
1462 		} else {
1463 			sendpkt(rmt_addr, lcl_inter, -6,
1464 				(struct pkt *)&rpkt, sendlen);
1465 		}
1466 		if (more)
1467 			numctlfrags++;
1468 		else
1469 			numctlresponses++;
1470 	}
1471 
1472 	/*
1473 	 * Set us up for another go around.
1474 	 */
1475 	res_frags++;
1476 	res_offset += dlen;
1477 	datapt = rpkt.u.data;
1478 }
1479 
1480 
1481 /* --------------------------------------------------------------------
1482  * block transfer API -- stream string/data fragments into xmit buffer
1483  * without additional copying
1484  */
1485 
1486 /* buffer descriptor: address & size of fragment
1487  * 'buf' may only be NULL when 'len' is zero!
1488  */
1489 typedef struct {
1490 	const void  *buf;
1491 	size_t       len;
1492 } CtlMemBufT;
1493 
1494 /* put ctl data in a gather-style operation */
1495 static void
1496 ctl_putdata_ex(
1497 	const CtlMemBufT * argv,
1498 	size_t             argc,
1499 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1500 	)
1501 {
1502 	const char * src_ptr;
1503 	size_t       src_len, cur_len, add_len, argi;
1504 
1505 	/* text / binary preprocessing, possibly create new linefeed */
1506 	if (bin) {
1507 		add_len = 0;
1508 	} else {
1509 		datanotbinflag = TRUE;
1510 		add_len = 3;
1511 
1512 		if (datasent) {
1513 			*datapt++ = ',';
1514 			datalinelen++;
1515 
1516 			/* sum up total length */
1517 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1518 				src_len += argv[argi].len;
1519 			/* possibly start a new line, assume no size_t overflow */
1520 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1521 				*datapt++ = '\r';
1522 				*datapt++ = '\n';
1523 				datalinelen = 0;
1524 			} else {
1525 				*datapt++ = ' ';
1526 				datalinelen++;
1527 			}
1528 		}
1529 	}
1530 
1531 	/* now stream out all buffers */
1532 	for (argi = 0; argi < argc; ++argi) {
1533 		src_ptr = argv[argi].buf;
1534 		src_len = argv[argi].len;
1535 
1536 		if ( ! (src_ptr && src_len))
1537 			continue;
1538 
1539 		cur_len = (size_t)(dataend - datapt);
1540 		while ((src_len + add_len) > cur_len) {
1541 			/* Not enough room in this one, flush it out. */
1542 			if (src_len < cur_len)
1543 				cur_len = src_len;
1544 
1545 			memcpy(datapt, src_ptr, cur_len);
1546 			datapt      += cur_len;
1547 			datalinelen += cur_len;
1548 
1549 			src_ptr     += cur_len;
1550 			src_len     -= cur_len;
1551 
1552 			ctl_flushpkt(CTL_MORE);
1553 			cur_len = (size_t)(dataend - datapt);
1554 		}
1555 
1556 		memcpy(datapt, src_ptr, src_len);
1557 		datapt      += src_len;
1558 		datalinelen += src_len;
1559 
1560 		datasent = TRUE;
1561 	}
1562 }
1563 
1564 /*
1565  * ctl_putdata - write data into the packet, fragmenting and starting
1566  * another if this one is full.
1567  */
1568 static void
1569 ctl_putdata(
1570 	const char *dp,
1571 	unsigned int dlen,
1572 	int bin			/* set to 1 when data is binary */
1573 	)
1574 {
1575 	CtlMemBufT args[1];
1576 
1577 	args[0].buf = dp;
1578 	args[0].len = dlen;
1579 	ctl_putdata_ex(args, 1, bin);
1580 }
1581 
1582 /*
1583  * ctl_putstr - write a tagged string into the response packet
1584  *		in the form:
1585  *
1586  *		tag="data"
1587  *
1588  *		len is the data length excluding the NUL terminator,
1589  *		as in ctl_putstr("var", "value", strlen("value"));
1590  */
1591 static void
1592 ctl_putstr(
1593 	const char *	tag,
1594 	const char *	data,
1595 	size_t		len
1596 	)
1597 {
1598 	CtlMemBufT args[4];
1599 
1600 	args[0].buf = tag;
1601 	args[0].len = strlen(tag);
1602 	if (data && len) {
1603 	    args[1].buf = "=\"";
1604 	    args[1].len = 2;
1605 	    args[2].buf = data;
1606 	    args[2].len = len;
1607 	    args[3].buf = "\"";
1608 	    args[3].len = 1;
1609 	    ctl_putdata_ex(args, 4, FALSE);
1610 	} else {
1611 	    ctl_putdata_ex(args, 1, FALSE);
1612 	}
1613 }
1614 
1615 
1616 /*
1617  * ctl_putunqstr - write a tagged string into the response packet
1618  *		   in the form:
1619  *
1620  *		   tag=data
1621  *
1622  *	len is the data length excluding the NUL terminator.
1623  *	data must not contain a comma or whitespace.
1624  */
1625 static void
1626 ctl_putunqstr(
1627 	const char *	tag,
1628 	const char *	data,
1629 	size_t		len
1630 	)
1631 {
1632 	CtlMemBufT args[3];
1633 
1634 	args[0].buf = tag;
1635 	args[0].len = strlen(tag);
1636 	if (data && len) {
1637 	    args[1].buf = "=";
1638 	    args[1].len = 1;
1639 	    args[2].buf = data;
1640 	    args[2].len = len;
1641 	    ctl_putdata_ex(args, 3, FALSE);
1642 	} else {
1643 	    ctl_putdata_ex(args, 1, FALSE);
1644 	}
1645 }
1646 
1647 
1648 /*
1649  * ctl_putdblf - write a tagged, signed double into the response packet
1650  */
1651 static void
1652 ctl_putdblf(
1653 	const char *	tag,
1654 	int		use_f,
1655 	int		precision,
1656 	double		d
1657 	)
1658 {
1659 	char buffer[40];
1660 	int  rc;
1661 
1662 	rc = snprintf(buffer, sizeof(buffer),
1663 		      (use_f ? "%.*f" : "%.*g"),
1664 		      precision, d);
1665 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1666 	ctl_putunqstr(tag, buffer, rc);
1667 }
1668 
1669 /*
1670  * ctl_putuint - write a tagged unsigned integer into the response
1671  */
1672 static void
1673 ctl_putuint(
1674 	const char *tag,
1675 	u_long uval
1676 	)
1677 {
1678 	char buffer[24]; /* needs to fit for 64 bits! */
1679 	int  rc;
1680 
1681 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1682 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1683 	ctl_putunqstr(tag, buffer, rc);
1684 }
1685 
1686 /*
1687  * ctl_putcal - write a decoded calendar data into the response.
1688  * only used with AUTOKEY currently, so compiled conditional
1689  */
1690 #ifdef AUTOKEY
1691 static void
1692 ctl_putcal(
1693 	const char *tag,
1694 	const struct calendar *pcal
1695 	)
1696 {
1697 	char buffer[16];
1698 	int  rc;
1699 
1700 	rc = snprintf(buffer, sizeof(buffer),
1701 		      "%04d%02d%02d%02d%02d",
1702 		      pcal->year, pcal->month, pcal->monthday,
1703 		      pcal->hour, pcal->minute
1704 		);
1705 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1706 	ctl_putunqstr(tag, buffer, rc);
1707 }
1708 #endif
1709 
1710 /*
1711  * ctl_putfs - write a decoded filestamp into the response
1712  */
1713 static void
1714 ctl_putfs(
1715 	const char *tag,
1716 	tstamp_t uval
1717 	)
1718 {
1719 	char buffer[16];
1720 	int  rc;
1721 
1722 	time_t fstamp = (time_t)uval - JAN_1970;
1723 	struct tm *tm = gmtime(&fstamp);
1724 
1725 	if (NULL == tm)
1726 		return;
1727 
1728 	rc = snprintf(buffer, sizeof(buffer),
1729 		      "%04d%02d%02d%02d%02d",
1730 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1731 		      tm->tm_hour, tm->tm_min);
1732 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1733 	ctl_putunqstr(tag, buffer, rc);
1734 }
1735 
1736 
1737 /*
1738  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1739  * response
1740  */
1741 static void
1742 ctl_puthex(
1743 	const char *tag,
1744 	u_long uval
1745 	)
1746 {
1747 	char buffer[24];	/* must fit 64bit int! */
1748 	int  rc;
1749 
1750 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1751 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1752 	ctl_putunqstr(tag, buffer, rc);
1753 }
1754 
1755 
1756 /*
1757  * ctl_putint - write a tagged signed integer into the response
1758  */
1759 static void
1760 ctl_putint(
1761 	const char *tag,
1762 	long ival
1763 	)
1764 {
1765 	char buffer[24];	/*must fit 64bit int */
1766 	int  rc;
1767 
1768 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1769 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1770 	ctl_putunqstr(tag, buffer, rc);
1771 }
1772 
1773 
1774 /*
1775  * ctl_putts - write a tagged timestamp, in hex, into the response
1776  */
1777 static void
1778 ctl_putts(
1779 	const char *tag,
1780 	l_fp *ts
1781 	)
1782 {
1783 	char buffer[24];
1784 	int  rc;
1785 
1786 	rc = snprintf(buffer, sizeof(buffer),
1787 		      "0x%08lx.%08lx",
1788 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1789 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1790 	ctl_putunqstr(tag, buffer, rc);
1791 }
1792 
1793 
1794 /*
1795  * ctl_putadr - write an IP address into the response
1796  */
1797 static void
1798 ctl_putadr(
1799 	const char *tag,
1800 	u_int32 addr32,
1801 	sockaddr_u *addr
1802 	)
1803 {
1804 	const char *cq;
1805 
1806 	if (NULL == addr)
1807 		cq = numtoa(addr32);
1808 	else
1809 		cq = stoa(addr);
1810 	ctl_putunqstr(tag, cq, strlen(cq));
1811 }
1812 
1813 
1814 /*
1815  * ctl_putrefid - send a u_int32 refid as printable text
1816  */
1817 static void
1818 ctl_putrefid(
1819 	const char *	tag,
1820 	u_int32		refid
1821 	)
1822 {
1823 	size_t nc;
1824 
1825 	union {
1826 		uint32_t w;
1827 		uint8_t  b[sizeof(uint32_t)];
1828 	} bytes;
1829 
1830 	bytes.w = refid;
1831 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1832 		if (!isprint(bytes.b[nc]))
1833 			bytes.b[nc] = '.';
1834 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1835 }
1836 
1837 
1838 /*
1839  * ctl_putarray - write a tagged eight element double array into the response
1840  */
1841 static void
1842 ctl_putarray(
1843 	const char *tag,
1844 	double *arr,
1845 	int start
1846 	)
1847 {
1848 	char *cp, *ep;
1849 	char buffer[200];
1850 	int  i, rc;
1851 
1852 	cp = buffer;
1853 	ep = buffer + sizeof(buffer);
1854 	i  = start;
1855 	do {
1856 		if (i == 0)
1857 			i = NTP_SHIFT;
1858 		i--;
1859 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1860 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1861 		cp += rc;
1862 	} while (i != start);
1863 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1864 }
1865 
1866 /*
1867  * ctl_printf - put a formatted string into the data buffer
1868  */
1869 static void
1870 ctl_printf(
1871 	const char * fmt,
1872 	...
1873 	)
1874 {
1875 	static const char * ellipsis = "[...]";
1876 	va_list va;
1877 	char    fmtbuf[128];
1878 	int     rc;
1879 
1880 	va_start(va, fmt);
1881 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1882 	va_end(va);
1883 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1884 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1885 		       ellipsis);
1886 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1887 }
1888 
1889 
1890 /*
1891  * ctl_putsys - output a system variable
1892  */
1893 static void
1894 ctl_putsys(
1895 	int varid
1896 	)
1897 {
1898 	l_fp tmp;
1899 	char str[256];
1900 	u_int u;
1901 	double kb;
1902 	double dtemp;
1903 	const char *ss;
1904 #ifdef AUTOKEY
1905 	struct cert_info *cp;
1906 #endif	/* AUTOKEY */
1907 #ifdef KERNEL_PLL
1908 	static struct timex ntx;
1909 	static u_long ntp_adjtime_time;
1910 
1911 	static const double to_ms =
1912 # ifdef STA_NANO
1913 		1.0e-6; /* nsec to msec */
1914 # else
1915 		1.0e-3; /* usec to msec */
1916 # endif
1917 
1918 	/*
1919 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1920 	 */
1921 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1922 	    current_time != ntp_adjtime_time) {
1923 		ZERO(ntx);
1924 		if (ntp_adjtime(&ntx) < 0)
1925 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1926 		else
1927 			ntp_adjtime_time = current_time;
1928 	}
1929 #endif	/* KERNEL_PLL */
1930 
1931 	switch (varid) {
1932 
1933 	case CS_LEAP:
1934 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1935 		break;
1936 
1937 	case CS_STRATUM:
1938 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1939 		break;
1940 
1941 	case CS_PRECISION:
1942 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1943 		break;
1944 
1945 	case CS_ROOTDELAY:
1946 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1947 			   1e3);
1948 		break;
1949 
1950 	case CS_ROOTDISPERSION:
1951 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1952 			   sys_rootdisp * 1e3);
1953 		break;
1954 
1955 	case CS_REFID:
1956 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1957 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1958 		else
1959 			ctl_putrefid(sys_var[varid].text, sys_refid);
1960 		break;
1961 
1962 	case CS_REFTIME:
1963 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1964 		break;
1965 
1966 	case CS_POLL:
1967 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1968 		break;
1969 
1970 	case CS_PEERID:
1971 		if (sys_peer == NULL)
1972 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1973 		else
1974 			ctl_putuint(sys_var[CS_PEERID].text,
1975 				    sys_peer->associd);
1976 		break;
1977 
1978 	case CS_PEERADR:
1979 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1980 			ss = sptoa(&sys_peer->srcadr);
1981 		else
1982 			ss = "0.0.0.0:0";
1983 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1984 		break;
1985 
1986 	case CS_PEERMODE:
1987 		u = (sys_peer != NULL)
1988 			? sys_peer->hmode
1989 			: MODE_UNSPEC;
1990 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1991 		break;
1992 
1993 	case CS_OFFSET:
1994 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1995 		break;
1996 
1997 	case CS_DRIFT:
1998 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1999 		break;
2000 
2001 	case CS_JITTER:
2002 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2003 		break;
2004 
2005 	case CS_ERROR:
2006 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2007 		break;
2008 
2009 	case CS_CLOCK:
2010 		get_systime(&tmp);
2011 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2012 		break;
2013 
2014 	case CS_PROCESSOR:
2015 #ifndef HAVE_UNAME
2016 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2017 			   sizeof(str_processor) - 1);
2018 #else
2019 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2020 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2021 #endif /* HAVE_UNAME */
2022 		break;
2023 
2024 	case CS_SYSTEM:
2025 #ifndef HAVE_UNAME
2026 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2027 			   sizeof(str_system) - 1);
2028 #else
2029 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2030 			 utsnamebuf.release);
2031 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2032 #endif /* HAVE_UNAME */
2033 		break;
2034 
2035 	case CS_VERSION:
2036 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2037 			   strlen(Version));
2038 		break;
2039 
2040 	case CS_STABIL:
2041 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2042 			   1e6);
2043 		break;
2044 
2045 	case CS_VARLIST:
2046 	{
2047 		char buf[CTL_MAX_DATA_LEN];
2048 		//buffPointer, firstElementPointer, buffEndPointer
2049 		char *buffp, *buffend;
2050 		int firstVarName;
2051 		const char *ss1;
2052 		int len;
2053 		const struct ctl_var *k;
2054 
2055 		buffp = buf;
2056 		buffend = buf + sizeof(buf);
2057 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2058 			break;	/* really long var name */
2059 
2060 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2061 		buffp += strlen(buffp);
2062 		firstVarName = TRUE;
2063 		for (k = sys_var; !(k->flags & EOV); k++) {
2064 			if (k->flags & PADDING)
2065 				continue;
2066 			len = strlen(k->text);
2067 			if (len + 1 >= buffend - buffp)
2068 				break;
2069 			if (!firstVarName)
2070 				*buffp++ = ',';
2071 			else
2072 				firstVarName = FALSE;
2073 			memcpy(buffp, k->text, len);
2074 			buffp += len;
2075 		}
2076 
2077 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2078 			if (k->flags & PADDING)
2079 				continue;
2080 			if (NULL == k->text)
2081 				continue;
2082 			ss1 = strchr(k->text, '=');
2083 			if (NULL == ss1)
2084 				len = strlen(k->text);
2085 			else
2086 				len = ss1 - k->text;
2087 			if (len + 1 >= buffend - buffp)
2088 				break;
2089 			if (firstVarName) {
2090 				*buffp++ = ',';
2091 				firstVarName = FALSE;
2092 			}
2093 			memcpy(buffp, k->text,(unsigned)len);
2094 			buffp += len;
2095 		}
2096 		if (2 >= buffend - buffp)
2097 			break;
2098 
2099 		*buffp++ = '"';
2100 		*buffp = '\0';
2101 
2102 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2103 		break;
2104 	}
2105 
2106 	case CS_TAI:
2107 		if (sys_tai > 0)
2108 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2109 		break;
2110 
2111 	case CS_LEAPTAB:
2112 	{
2113 		leap_signature_t lsig;
2114 		leapsec_getsig(&lsig);
2115 		if (lsig.ttime > 0)
2116 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2117 		break;
2118 	}
2119 
2120 	case CS_LEAPEND:
2121 	{
2122 		leap_signature_t lsig;
2123 		leapsec_getsig(&lsig);
2124 		if (lsig.etime > 0)
2125 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2126 		break;
2127 	}
2128 
2129 #ifdef LEAP_SMEAR
2130 	case CS_LEAPSMEARINTV:
2131 		if (leap_smear_intv > 0)
2132 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2133 		break;
2134 
2135 	case CS_LEAPSMEAROFFS:
2136 		if (leap_smear_intv > 0)
2137 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2138 				   leap_smear.doffset * 1e3);
2139 		break;
2140 #endif	/* LEAP_SMEAR */
2141 
2142 	case CS_RATE:
2143 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2144 		break;
2145 
2146 	case CS_MRU_ENABLED:
2147 		ctl_puthex(sys_var[varid].text, mon_enabled);
2148 		break;
2149 
2150 	case CS_MRU_DEPTH:
2151 		ctl_putuint(sys_var[varid].text, mru_entries);
2152 		break;
2153 
2154 	case CS_MRU_MEM:
2155 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2156 		u = (u_int)kb;
2157 		if (kb - u >= 0.5)
2158 			u++;
2159 		ctl_putuint(sys_var[varid].text, u);
2160 		break;
2161 
2162 	case CS_MRU_DEEPEST:
2163 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2164 		break;
2165 
2166 	case CS_MRU_MINDEPTH:
2167 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2168 		break;
2169 
2170 	case CS_MRU_MAXAGE:
2171 		ctl_putint(sys_var[varid].text, mru_maxage);
2172 		break;
2173 
2174 	case CS_MRU_MAXDEPTH:
2175 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2176 		break;
2177 
2178 	case CS_MRU_MAXMEM:
2179 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2180 		u = (u_int)kb;
2181 		if (kb - u >= 0.5)
2182 			u++;
2183 		ctl_putuint(sys_var[varid].text, u);
2184 		break;
2185 
2186 	case CS_SS_UPTIME:
2187 		ctl_putuint(sys_var[varid].text, current_time);
2188 		break;
2189 
2190 	case CS_SS_RESET:
2191 		ctl_putuint(sys_var[varid].text,
2192 			    current_time - sys_stattime);
2193 		break;
2194 
2195 	case CS_SS_RECEIVED:
2196 		ctl_putuint(sys_var[varid].text, sys_received);
2197 		break;
2198 
2199 	case CS_SS_THISVER:
2200 		ctl_putuint(sys_var[varid].text, sys_newversion);
2201 		break;
2202 
2203 	case CS_SS_OLDVER:
2204 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2205 		break;
2206 
2207 	case CS_SS_BADFORMAT:
2208 		ctl_putuint(sys_var[varid].text, sys_badlength);
2209 		break;
2210 
2211 	case CS_SS_BADAUTH:
2212 		ctl_putuint(sys_var[varid].text, sys_badauth);
2213 		break;
2214 
2215 	case CS_SS_DECLINED:
2216 		ctl_putuint(sys_var[varid].text, sys_declined);
2217 		break;
2218 
2219 	case CS_SS_RESTRICTED:
2220 		ctl_putuint(sys_var[varid].text, sys_restricted);
2221 		break;
2222 
2223 	case CS_SS_LIMITED:
2224 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2225 		break;
2226 
2227 	case CS_SS_LAMPORT:
2228 		ctl_putuint(sys_var[varid].text, sys_lamport);
2229 		break;
2230 
2231 	case CS_SS_TSROUNDING:
2232 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2233 		break;
2234 
2235 	case CS_SS_KODSENT:
2236 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2237 		break;
2238 
2239 	case CS_SS_PROCESSED:
2240 		ctl_putuint(sys_var[varid].text, sys_processed);
2241 		break;
2242 
2243 	case CS_BCASTDELAY:
2244 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2245 		break;
2246 
2247 	case CS_AUTHDELAY:
2248 		LFPTOD(&sys_authdelay, dtemp);
2249 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2250 		break;
2251 
2252 	case CS_AUTHKEYS:
2253 		ctl_putuint(sys_var[varid].text, authnumkeys);
2254 		break;
2255 
2256 	case CS_AUTHFREEK:
2257 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2258 		break;
2259 
2260 	case CS_AUTHKLOOKUPS:
2261 		ctl_putuint(sys_var[varid].text, authkeylookups);
2262 		break;
2263 
2264 	case CS_AUTHKNOTFOUND:
2265 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2266 		break;
2267 
2268 	case CS_AUTHKUNCACHED:
2269 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2270 		break;
2271 
2272 	case CS_AUTHKEXPIRED:
2273 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2274 		break;
2275 
2276 	case CS_AUTHENCRYPTS:
2277 		ctl_putuint(sys_var[varid].text, authencryptions);
2278 		break;
2279 
2280 	case CS_AUTHDECRYPTS:
2281 		ctl_putuint(sys_var[varid].text, authdecryptions);
2282 		break;
2283 
2284 	case CS_AUTHRESET:
2285 		ctl_putuint(sys_var[varid].text,
2286 			    current_time - auth_timereset);
2287 		break;
2288 
2289 		/*
2290 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2291 		 * unavailable, otherwise calls putfunc with args.
2292 		 */
2293 #ifndef KERNEL_PLL
2294 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2295 		ctl_putint(sys_var[varid].text, 0)
2296 #else
2297 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2298 		putfunc args
2299 #endif
2300 
2301 		/*
2302 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2303 		 * loop is unavailable, or kernel hard PPS is not
2304 		 * active, otherwise calls putfunc with args.
2305 		 */
2306 #ifndef KERNEL_PLL
2307 # define	CTL_IF_KERNPPS(putfunc, args)	\
2308 		ctl_putint(sys_var[varid].text, 0)
2309 #else
2310 # define	CTL_IF_KERNPPS(putfunc, args)			\
2311 		if (0 == ntx.shift)				\
2312 			ctl_putint(sys_var[varid].text, 0);	\
2313 		else						\
2314 			putfunc args	/* no trailing ; */
2315 #endif
2316 
2317 	case CS_K_OFFSET:
2318 		CTL_IF_KERNLOOP(
2319 			ctl_putdblf,
2320 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2321 		);
2322 		break;
2323 
2324 	case CS_K_FREQ:
2325 		CTL_IF_KERNLOOP(
2326 			ctl_putsfp,
2327 			(sys_var[varid].text, ntx.freq)
2328 		);
2329 		break;
2330 
2331 	case CS_K_MAXERR:
2332 		CTL_IF_KERNLOOP(
2333 			ctl_putdblf,
2334 			(sys_var[varid].text, 0, 6,
2335 			 to_ms * ntx.maxerror)
2336 		);
2337 		break;
2338 
2339 	case CS_K_ESTERR:
2340 		CTL_IF_KERNLOOP(
2341 			ctl_putdblf,
2342 			(sys_var[varid].text, 0, 6,
2343 			 to_ms * ntx.esterror)
2344 		);
2345 		break;
2346 
2347 	case CS_K_STFLAGS:
2348 #ifndef KERNEL_PLL
2349 		ss = "";
2350 #else
2351 		ss = k_st_flags(ntx.status);
2352 #endif
2353 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2354 		break;
2355 
2356 	case CS_K_TIMECONST:
2357 		CTL_IF_KERNLOOP(
2358 			ctl_putint,
2359 			(sys_var[varid].text, ntx.constant)
2360 		);
2361 		break;
2362 
2363 	case CS_K_PRECISION:
2364 		CTL_IF_KERNLOOP(
2365 			ctl_putdblf,
2366 			(sys_var[varid].text, 0, 6,
2367 			    to_ms * ntx.precision)
2368 		);
2369 		break;
2370 
2371 	case CS_K_FREQTOL:
2372 		CTL_IF_KERNLOOP(
2373 			ctl_putsfp,
2374 			(sys_var[varid].text, ntx.tolerance)
2375 		);
2376 		break;
2377 
2378 	case CS_K_PPS_FREQ:
2379 		CTL_IF_KERNPPS(
2380 			ctl_putsfp,
2381 			(sys_var[varid].text, ntx.ppsfreq)
2382 		);
2383 		break;
2384 
2385 	case CS_K_PPS_STABIL:
2386 		CTL_IF_KERNPPS(
2387 			ctl_putsfp,
2388 			(sys_var[varid].text, ntx.stabil)
2389 		);
2390 		break;
2391 
2392 	case CS_K_PPS_JITTER:
2393 		CTL_IF_KERNPPS(
2394 			ctl_putdbl,
2395 			(sys_var[varid].text, to_ms * ntx.jitter)
2396 		);
2397 		break;
2398 
2399 	case CS_K_PPS_CALIBDUR:
2400 		CTL_IF_KERNPPS(
2401 			ctl_putint,
2402 			(sys_var[varid].text, 1 << ntx.shift)
2403 		);
2404 		break;
2405 
2406 	case CS_K_PPS_CALIBS:
2407 		CTL_IF_KERNPPS(
2408 			ctl_putint,
2409 			(sys_var[varid].text, ntx.calcnt)
2410 		);
2411 		break;
2412 
2413 	case CS_K_PPS_CALIBERRS:
2414 		CTL_IF_KERNPPS(
2415 			ctl_putint,
2416 			(sys_var[varid].text, ntx.errcnt)
2417 		);
2418 		break;
2419 
2420 	case CS_K_PPS_JITEXC:
2421 		CTL_IF_KERNPPS(
2422 			ctl_putint,
2423 			(sys_var[varid].text, ntx.jitcnt)
2424 		);
2425 		break;
2426 
2427 	case CS_K_PPS_STBEXC:
2428 		CTL_IF_KERNPPS(
2429 			ctl_putint,
2430 			(sys_var[varid].text, ntx.stbcnt)
2431 		);
2432 		break;
2433 
2434 	case CS_IOSTATS_RESET:
2435 		ctl_putuint(sys_var[varid].text,
2436 			    current_time - io_timereset);
2437 		break;
2438 
2439 	case CS_TOTAL_RBUF:
2440 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2441 		break;
2442 
2443 	case CS_FREE_RBUF:
2444 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2445 		break;
2446 
2447 	case CS_USED_RBUF:
2448 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2449 		break;
2450 
2451 	case CS_RBUF_LOWATER:
2452 		ctl_putuint(sys_var[varid].text, lowater_additions());
2453 		break;
2454 
2455 	case CS_IO_DROPPED:
2456 		ctl_putuint(sys_var[varid].text, packets_dropped);
2457 		break;
2458 
2459 	case CS_IO_IGNORED:
2460 		ctl_putuint(sys_var[varid].text, packets_ignored);
2461 		break;
2462 
2463 	case CS_IO_RECEIVED:
2464 		ctl_putuint(sys_var[varid].text, packets_received);
2465 		break;
2466 
2467 	case CS_IO_SENT:
2468 		ctl_putuint(sys_var[varid].text, packets_sent);
2469 		break;
2470 
2471 	case CS_IO_SENDFAILED:
2472 		ctl_putuint(sys_var[varid].text, packets_notsent);
2473 		break;
2474 
2475 	case CS_IO_WAKEUPS:
2476 		ctl_putuint(sys_var[varid].text, handler_calls);
2477 		break;
2478 
2479 	case CS_IO_GOODWAKEUPS:
2480 		ctl_putuint(sys_var[varid].text, handler_pkts);
2481 		break;
2482 
2483 	case CS_TIMERSTATS_RESET:
2484 		ctl_putuint(sys_var[varid].text,
2485 			    current_time - timer_timereset);
2486 		break;
2487 
2488 	case CS_TIMER_OVERRUNS:
2489 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2490 		break;
2491 
2492 	case CS_TIMER_XMTS:
2493 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2494 		break;
2495 
2496 	case CS_FUZZ:
2497 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2498 		break;
2499 	case CS_WANDER_THRESH:
2500 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2501 		break;
2502 #ifdef AUTOKEY
2503 	case CS_FLAGS:
2504 		if (crypto_flags)
2505 			ctl_puthex(sys_var[CS_FLAGS].text,
2506 			    crypto_flags);
2507 		break;
2508 
2509 	case CS_DIGEST:
2510 		if (crypto_flags) {
2511 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2512 			    COUNTOF(str));
2513 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2514 			    strlen(str));
2515 		}
2516 		break;
2517 
2518 	case CS_SIGNATURE:
2519 		if (crypto_flags) {
2520 			const EVP_MD *dp;
2521 
2522 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2523 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2524 			    COUNTOF(str));
2525 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2526 			    strlen(str));
2527 		}
2528 		break;
2529 
2530 	case CS_HOST:
2531 		if (hostval.ptr != NULL)
2532 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2533 			    strlen(hostval.ptr));
2534 		break;
2535 
2536 	case CS_IDENT:
2537 		if (sys_ident != NULL)
2538 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2539 			    strlen(sys_ident));
2540 		break;
2541 
2542 	case CS_CERTIF:
2543 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2544 			snprintf(str, sizeof(str), "%s %s 0x%x",
2545 			    cp->subject, cp->issuer, cp->flags);
2546 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2547 			    strlen(str));
2548 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2549 		}
2550 		break;
2551 
2552 	case CS_PUBLIC:
2553 		if (hostval.tstamp != 0)
2554 			ctl_putfs(sys_var[CS_PUBLIC].text,
2555 			    ntohl(hostval.tstamp));
2556 		break;
2557 #endif	/* AUTOKEY */
2558 
2559 	default:
2560 		break;
2561 	}
2562 }
2563 
2564 
2565 /*
2566  * ctl_putpeer - output a peer variable
2567  */
2568 static void
2569 ctl_putpeer(
2570 	int id,
2571 	struct peer *p
2572 	)
2573 {
2574 	char buf[CTL_MAX_DATA_LEN];
2575 	char *s;
2576 	char *t;
2577 	char *be;
2578 	int i;
2579 	const struct ctl_var *k;
2580 #ifdef AUTOKEY
2581 	struct autokey *ap;
2582 	const EVP_MD *dp;
2583 	const char *str;
2584 #endif	/* AUTOKEY */
2585 
2586 	switch (id) {
2587 
2588 	case CP_CONFIG:
2589 		ctl_putuint(peer_var[id].text,
2590 			    !(FLAG_PREEMPT & p->flags));
2591 		break;
2592 
2593 	case CP_AUTHENABLE:
2594 		ctl_putuint(peer_var[id].text, !(p->keyid));
2595 		break;
2596 
2597 	case CP_AUTHENTIC:
2598 		ctl_putuint(peer_var[id].text,
2599 			    !!(FLAG_AUTHENTIC & p->flags));
2600 		break;
2601 
2602 	case CP_SRCADR:
2603 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2604 		break;
2605 
2606 	case CP_SRCPORT:
2607 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2608 		break;
2609 
2610 	case CP_SRCHOST:
2611 		if (p->hostname != NULL)
2612 			ctl_putstr(peer_var[id].text, p->hostname,
2613 				   strlen(p->hostname));
2614 		break;
2615 
2616 	case CP_DSTADR:
2617 		ctl_putadr(peer_var[id].text, 0,
2618 			   (p->dstadr != NULL)
2619 				? &p->dstadr->sin
2620 				: NULL);
2621 		break;
2622 
2623 	case CP_DSTPORT:
2624 		ctl_putuint(peer_var[id].text,
2625 			    (p->dstadr != NULL)
2626 				? SRCPORT(&p->dstadr->sin)
2627 				: 0);
2628 		break;
2629 
2630 	case CP_IN:
2631 		if (p->r21 > 0.)
2632 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2633 		break;
2634 
2635 	case CP_OUT:
2636 		if (p->r34 > 0.)
2637 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2638 		break;
2639 
2640 	case CP_RATE:
2641 		ctl_putuint(peer_var[id].text, p->throttle);
2642 		break;
2643 
2644 	case CP_LEAP:
2645 		ctl_putuint(peer_var[id].text, p->leap);
2646 		break;
2647 
2648 	case CP_HMODE:
2649 		ctl_putuint(peer_var[id].text, p->hmode);
2650 		break;
2651 
2652 	case CP_STRATUM:
2653 		ctl_putuint(peer_var[id].text, p->stratum);
2654 		break;
2655 
2656 	case CP_PPOLL:
2657 		ctl_putuint(peer_var[id].text, p->ppoll);
2658 		break;
2659 
2660 	case CP_HPOLL:
2661 		ctl_putuint(peer_var[id].text, p->hpoll);
2662 		break;
2663 
2664 	case CP_PRECISION:
2665 		ctl_putint(peer_var[id].text, p->precision);
2666 		break;
2667 
2668 	case CP_ROOTDELAY:
2669 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2670 		break;
2671 
2672 	case CP_ROOTDISPERSION:
2673 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2674 		break;
2675 
2676 	case CP_REFID:
2677 #ifdef REFCLOCK
2678 		if (p->flags & FLAG_REFCLOCK) {
2679 			ctl_putrefid(peer_var[id].text, p->refid);
2680 			break;
2681 		}
2682 #endif
2683 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2684 			ctl_putadr(peer_var[id].text, p->refid,
2685 				   NULL);
2686 		else
2687 			ctl_putrefid(peer_var[id].text, p->refid);
2688 		break;
2689 
2690 	case CP_REFTIME:
2691 		ctl_putts(peer_var[id].text, &p->reftime);
2692 		break;
2693 
2694 	case CP_ORG:
2695 		ctl_putts(peer_var[id].text, &p->aorg);
2696 		break;
2697 
2698 	case CP_REC:
2699 		ctl_putts(peer_var[id].text, &p->dst);
2700 		break;
2701 
2702 	case CP_XMT:
2703 		if (p->xleave)
2704 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2705 		break;
2706 
2707 	case CP_BIAS:
2708 		if (p->bias != 0.)
2709 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2710 		break;
2711 
2712 	case CP_REACH:
2713 		ctl_puthex(peer_var[id].text, p->reach);
2714 		break;
2715 
2716 	case CP_FLASH:
2717 		ctl_puthex(peer_var[id].text, p->flash);
2718 		break;
2719 
2720 	case CP_TTL:
2721 #ifdef REFCLOCK
2722 		if (p->flags & FLAG_REFCLOCK) {
2723 			ctl_putuint(peer_var[id].text, p->ttl);
2724 			break;
2725 		}
2726 #endif
2727 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2728 			ctl_putint(peer_var[id].text,
2729 				   sys_ttl[p->ttl]);
2730 		break;
2731 
2732 	case CP_UNREACH:
2733 		ctl_putuint(peer_var[id].text, p->unreach);
2734 		break;
2735 
2736 	case CP_TIMER:
2737 		ctl_putuint(peer_var[id].text,
2738 			    p->nextdate - current_time);
2739 		break;
2740 
2741 	case CP_DELAY:
2742 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2743 		break;
2744 
2745 	case CP_OFFSET:
2746 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2747 		break;
2748 
2749 	case CP_JITTER:
2750 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2751 		break;
2752 
2753 	case CP_DISPERSION:
2754 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2755 		break;
2756 
2757 	case CP_KEYID:
2758 		if (p->keyid > NTP_MAXKEY)
2759 			ctl_puthex(peer_var[id].text, p->keyid);
2760 		else
2761 			ctl_putuint(peer_var[id].text, p->keyid);
2762 		break;
2763 
2764 	case CP_FILTDELAY:
2765 		ctl_putarray(peer_var[id].text, p->filter_delay,
2766 			     p->filter_nextpt);
2767 		break;
2768 
2769 	case CP_FILTOFFSET:
2770 		ctl_putarray(peer_var[id].text, p->filter_offset,
2771 			     p->filter_nextpt);
2772 		break;
2773 
2774 	case CP_FILTERROR:
2775 		ctl_putarray(peer_var[id].text, p->filter_disp,
2776 			     p->filter_nextpt);
2777 		break;
2778 
2779 	case CP_PMODE:
2780 		ctl_putuint(peer_var[id].text, p->pmode);
2781 		break;
2782 
2783 	case CP_RECEIVED:
2784 		ctl_putuint(peer_var[id].text, p->received);
2785 		break;
2786 
2787 	case CP_SENT:
2788 		ctl_putuint(peer_var[id].text, p->sent);
2789 		break;
2790 
2791 	case CP_VARLIST:
2792 		s = buf;
2793 		be = buf + sizeof(buf);
2794 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2795 			break;	/* really long var name */
2796 
2797 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2798 		s += strlen(s);
2799 		t = s;
2800 		for (k = peer_var; !(EOV & k->flags); k++) {
2801 			if (PADDING & k->flags)
2802 				continue;
2803 			i = strlen(k->text);
2804 			if (s + i + 1 >= be)
2805 				break;
2806 			if (s != t)
2807 				*s++ = ',';
2808 			memcpy(s, k->text, i);
2809 			s += i;
2810 		}
2811 		if (s + 2 < be) {
2812 			*s++ = '"';
2813 			*s = '\0';
2814 			ctl_putdata(buf, (u_int)(s - buf), 0);
2815 		}
2816 		break;
2817 
2818 	case CP_TIMEREC:
2819 		ctl_putuint(peer_var[id].text,
2820 			    current_time - p->timereceived);
2821 		break;
2822 
2823 	case CP_TIMEREACH:
2824 		ctl_putuint(peer_var[id].text,
2825 			    current_time - p->timereachable);
2826 		break;
2827 
2828 	case CP_BADAUTH:
2829 		ctl_putuint(peer_var[id].text, p->badauth);
2830 		break;
2831 
2832 	case CP_BOGUSORG:
2833 		ctl_putuint(peer_var[id].text, p->bogusorg);
2834 		break;
2835 
2836 	case CP_OLDPKT:
2837 		ctl_putuint(peer_var[id].text, p->oldpkt);
2838 		break;
2839 
2840 	case CP_SELDISP:
2841 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2842 		break;
2843 
2844 	case CP_SELBROKEN:
2845 		ctl_putuint(peer_var[id].text, p->selbroken);
2846 		break;
2847 
2848 	case CP_CANDIDATE:
2849 		ctl_putuint(peer_var[id].text, p->status);
2850 		break;
2851 #ifdef AUTOKEY
2852 	case CP_FLAGS:
2853 		if (p->crypto)
2854 			ctl_puthex(peer_var[id].text, p->crypto);
2855 		break;
2856 
2857 	case CP_SIGNATURE:
2858 		if (p->crypto) {
2859 			dp = EVP_get_digestbynid(p->crypto >> 16);
2860 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2861 			ctl_putstr(peer_var[id].text, str, strlen(str));
2862 		}
2863 		break;
2864 
2865 	case CP_HOST:
2866 		if (p->subject != NULL)
2867 			ctl_putstr(peer_var[id].text, p->subject,
2868 			    strlen(p->subject));
2869 		break;
2870 
2871 	case CP_VALID:		/* not used */
2872 		break;
2873 
2874 	case CP_INITSEQ:
2875 		if (NULL == (ap = p->recval.ptr))
2876 			break;
2877 
2878 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2879 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2880 		ctl_putfs(peer_var[CP_INITTSP].text,
2881 			  ntohl(p->recval.tstamp));
2882 		break;
2883 
2884 	case CP_IDENT:
2885 		if (p->ident != NULL)
2886 			ctl_putstr(peer_var[id].text, p->ident,
2887 			    strlen(p->ident));
2888 		break;
2889 
2890 
2891 #endif	/* AUTOKEY */
2892 	}
2893 }
2894 
2895 
2896 #ifdef REFCLOCK
2897 /*
2898  * ctl_putclock - output clock variables
2899  */
2900 static void
2901 ctl_putclock(
2902 	int id,
2903 	struct refclockstat *pcs,
2904 	int mustput
2905 	)
2906 {
2907 	char buf[CTL_MAX_DATA_LEN];
2908 	char *s, *t, *be;
2909 	const char *ss;
2910 	int i;
2911 	const struct ctl_var *k;
2912 
2913 	switch (id) {
2914 
2915 	case CC_TYPE:
2916 		if (mustput || pcs->clockdesc == NULL
2917 		    || *(pcs->clockdesc) == '\0') {
2918 			ctl_putuint(clock_var[id].text, pcs->type);
2919 		}
2920 		break;
2921 	case CC_TIMECODE:
2922 		ctl_putstr(clock_var[id].text,
2923 			   pcs->p_lastcode,
2924 			   (unsigned)pcs->lencode);
2925 		break;
2926 
2927 	case CC_POLL:
2928 		ctl_putuint(clock_var[id].text, pcs->polls);
2929 		break;
2930 
2931 	case CC_NOREPLY:
2932 		ctl_putuint(clock_var[id].text,
2933 			    pcs->noresponse);
2934 		break;
2935 
2936 	case CC_BADFORMAT:
2937 		ctl_putuint(clock_var[id].text,
2938 			    pcs->badformat);
2939 		break;
2940 
2941 	case CC_BADDATA:
2942 		ctl_putuint(clock_var[id].text,
2943 			    pcs->baddata);
2944 		break;
2945 
2946 	case CC_FUDGETIME1:
2947 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2948 			ctl_putdbl(clock_var[id].text,
2949 				   pcs->fudgetime1 * 1e3);
2950 		break;
2951 
2952 	case CC_FUDGETIME2:
2953 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2954 			ctl_putdbl(clock_var[id].text,
2955 				   pcs->fudgetime2 * 1e3);
2956 		break;
2957 
2958 	case CC_FUDGEVAL1:
2959 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2960 			ctl_putint(clock_var[id].text,
2961 				   pcs->fudgeval1);
2962 		break;
2963 
2964 	case CC_FUDGEVAL2:
2965 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2966 			if (pcs->fudgeval1 > 1)
2967 				ctl_putadr(clock_var[id].text,
2968 					   pcs->fudgeval2, NULL);
2969 			else
2970 				ctl_putrefid(clock_var[id].text,
2971 					     pcs->fudgeval2);
2972 		}
2973 		break;
2974 
2975 	case CC_FLAGS:
2976 		ctl_putuint(clock_var[id].text, pcs->flags);
2977 		break;
2978 
2979 	case CC_DEVICE:
2980 		if (pcs->clockdesc == NULL ||
2981 		    *(pcs->clockdesc) == '\0') {
2982 			if (mustput)
2983 				ctl_putstr(clock_var[id].text,
2984 					   "", 0);
2985 		} else {
2986 			ctl_putstr(clock_var[id].text,
2987 				   pcs->clockdesc,
2988 				   strlen(pcs->clockdesc));
2989 		}
2990 		break;
2991 
2992 	case CC_VARLIST:
2993 		s = buf;
2994 		be = buf + sizeof(buf);
2995 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2996 		    sizeof(buf))
2997 			break;	/* really long var name */
2998 
2999 		snprintf(s, sizeof(buf), "%s=\"",
3000 			 clock_var[CC_VARLIST].text);
3001 		s += strlen(s);
3002 		t = s;
3003 
3004 		for (k = clock_var; !(EOV & k->flags); k++) {
3005 			if (PADDING & k->flags)
3006 				continue;
3007 
3008 			i = strlen(k->text);
3009 			if (s + i + 1 >= be)
3010 				break;
3011 
3012 			if (s != t)
3013 				*s++ = ',';
3014 			memcpy(s, k->text, i);
3015 			s += i;
3016 		}
3017 
3018 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3019 			if (PADDING & k->flags)
3020 				continue;
3021 
3022 			ss = k->text;
3023 			if (NULL == ss)
3024 				continue;
3025 
3026 			while (*ss && *ss != '=')
3027 				ss++;
3028 			i = ss - k->text;
3029 			if (s + i + 1 >= be)
3030 				break;
3031 
3032 			if (s != t)
3033 				*s++ = ',';
3034 			memcpy(s, k->text, (unsigned)i);
3035 			s += i;
3036 			*s = '\0';
3037 		}
3038 		if (s + 2 >= be)
3039 			break;
3040 
3041 		*s++ = '"';
3042 		*s = '\0';
3043 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3044 		break;
3045 	}
3046 }
3047 #endif
3048 
3049 
3050 
3051 /*
3052  * ctl_getitem - get the next data item from the incoming packet
3053  */
3054 static const struct ctl_var *
3055 ctl_getitem(
3056 	const struct ctl_var *var_list,
3057 	char **data
3058 	)
3059 {
3060 	/* [Bug 3008] First check the packet data sanity, then search
3061 	 * the key. This improves the consistency of result values: If
3062 	 * the result is NULL once, it will never be EOV again for this
3063 	 * packet; If it's EOV, it will never be NULL again until the
3064 	 * variable is found and processed in a given 'var_list'. (That
3065 	 * is, a result is returned that is neither NULL nor EOV).
3066 	 */
3067 	static const struct ctl_var eol = { 0, EOV, NULL };
3068 	static char buf[128];
3069 	static u_long quiet_until;
3070 	const struct ctl_var *v;
3071 	char *cp;
3072 	char *tp;
3073 
3074 	/*
3075 	 * Part One: Validate the packet state
3076 	 */
3077 
3078 	/* Delete leading commas and white space */
3079 	while (reqpt < reqend && (*reqpt == ',' ||
3080 				  isspace((unsigned char)*reqpt)))
3081 		reqpt++;
3082 	if (reqpt >= reqend)
3083 		return NULL;
3084 
3085 	/* Scan the string in the packet until we hit comma or
3086 	 * EoB. Register position of first '=' on the fly. */
3087 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3088 		if (*cp == '=' && tp == NULL)
3089 			tp = cp;
3090 		if (*cp == ',')
3091 			break;
3092 	}
3093 
3094 	/* Process payload, if any. */
3095 	*data = NULL;
3096 	if (NULL != tp) {
3097 		/* eventually strip white space from argument. */
3098 		const char *plhead = tp + 1; /* skip the '=' */
3099 		const char *pltail = cp;
3100 		size_t      plsize;
3101 
3102 		while (plhead != pltail && isspace((u_char)plhead[0]))
3103 			++plhead;
3104 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3105 			--pltail;
3106 
3107 		/* check payload size, terminate packet on overflow */
3108 		plsize = (size_t)(pltail - plhead);
3109 		if (plsize >= sizeof(buf))
3110 			goto badpacket;
3111 
3112 		/* copy data, NUL terminate, and set result data ptr */
3113 		memcpy(buf, plhead, plsize);
3114 		buf[plsize] = '\0';
3115 		*data = buf;
3116 	} else {
3117 		/* no payload, current end --> current name termination */
3118 		tp = cp;
3119 	}
3120 
3121 	/* Part Two
3122 	 *
3123 	 * Now we're sure that the packet data itself is sane. Scan the
3124 	 * list now. Make sure a NULL list is properly treated by
3125 	 * returning a synthetic End-Of-Values record. We must not
3126 	 * return NULL pointers after this point, or the behaviour would
3127 	 * become inconsistent if called several times with different
3128 	 * variable lists after an EoV was returned.  (Such a behavior
3129 	 * actually caused Bug 3008.)
3130 	 */
3131 
3132 	if (NULL == var_list)
3133 		return &eol;
3134 
3135 	for (v = var_list; !(EOV & v->flags); ++v)
3136 		if (!(PADDING & v->flags)) {
3137 			/* Check if the var name matches the buffer. The
3138 			 * name is bracketed by [reqpt..tp] and not NUL
3139 			 * terminated, and it contains no '=' char. The
3140 			 * lookup value IS NUL-terminated but might
3141 			 * include a '='... We have to look out for
3142 			 * that!
3143 			 */
3144 			const char *sp1 = reqpt;
3145 			const char *sp2 = v->text;
3146 
3147 			/* [Bug 3412] do not compare past NUL byte in name */
3148 			while (   (sp1 != tp)
3149 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3150 				++sp1;
3151 				++sp2;
3152 			}
3153 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3154 				break;
3155 		}
3156 
3157 	/* See if we have found a valid entry or not. If found, advance
3158 	 * the request pointer for the next round; if not, clear the
3159 	 * data pointer so we have no dangling garbage here.
3160 	 */
3161 	if (EOV & v->flags)
3162 		*data = NULL;
3163 	else
3164 		reqpt = cp + (cp != reqend);
3165 	return v;
3166 
3167   badpacket:
3168 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3169 	numctlbadpkts++;
3170 	NLOG(NLOG_SYSEVENT)
3171 	    if (quiet_until <= current_time) {
3172 		    quiet_until = current_time + 300;
3173 		    msyslog(LOG_WARNING,
3174 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3175 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3176 	    }
3177 	reqpt = reqend; /* never again for this packet! */
3178 	return NULL;
3179 }
3180 
3181 
3182 /*
3183  * control_unspec - response to an unspecified op-code
3184  */
3185 /*ARGSUSED*/
3186 static void
3187 control_unspec(
3188 	struct recvbuf *rbufp,
3189 	int restrict_mask
3190 	)
3191 {
3192 	struct peer *peer;
3193 
3194 	/*
3195 	 * What is an appropriate response to an unspecified op-code?
3196 	 * I return no errors and no data, unless a specified assocation
3197 	 * doesn't exist.
3198 	 */
3199 	if (res_associd) {
3200 		peer = findpeerbyassoc(res_associd);
3201 		if (NULL == peer) {
3202 			ctl_error(CERR_BADASSOC);
3203 			return;
3204 		}
3205 		rpkt.status = htons(ctlpeerstatus(peer));
3206 	} else
3207 		rpkt.status = htons(ctlsysstatus());
3208 	ctl_flushpkt(0);
3209 }
3210 
3211 
3212 /*
3213  * read_status - return either a list of associd's, or a particular
3214  * peer's status.
3215  */
3216 /*ARGSUSED*/
3217 static void
3218 read_status(
3219 	struct recvbuf *rbufp,
3220 	int restrict_mask
3221 	)
3222 {
3223 	struct peer *peer;
3224 	const u_char *cp;
3225 	size_t n;
3226 	/* a_st holds association ID, status pairs alternating */
3227 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3228 
3229 #ifdef DEBUG
3230 	if (debug > 2)
3231 		printf("read_status: ID %d\n", res_associd);
3232 #endif
3233 	/*
3234 	 * Two choices here. If the specified association ID is
3235 	 * zero we return all known assocation ID's.  Otherwise
3236 	 * we return a bunch of stuff about the particular peer.
3237 	 */
3238 	if (res_associd) {
3239 		peer = findpeerbyassoc(res_associd);
3240 		if (NULL == peer) {
3241 			ctl_error(CERR_BADASSOC);
3242 			return;
3243 		}
3244 		rpkt.status = htons(ctlpeerstatus(peer));
3245 		if (res_authokay)
3246 			peer->num_events = 0;
3247 		/*
3248 		 * For now, output everything we know about the
3249 		 * peer. May be more selective later.
3250 		 */
3251 		for (cp = def_peer_var; *cp != 0; cp++)
3252 			ctl_putpeer((int)*cp, peer);
3253 		ctl_flushpkt(0);
3254 		return;
3255 	}
3256 	n = 0;
3257 	rpkt.status = htons(ctlsysstatus());
3258 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3259 		a_st[n++] = htons(peer->associd);
3260 		a_st[n++] = htons(ctlpeerstatus(peer));
3261 		/* two entries each loop iteration, so n + 1 */
3262 		if (n + 1 >= COUNTOF(a_st)) {
3263 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3264 				    1);
3265 			n = 0;
3266 		}
3267 	}
3268 	if (n)
3269 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3270 	ctl_flushpkt(0);
3271 }
3272 
3273 
3274 /*
3275  * read_peervars - half of read_variables() implementation
3276  */
3277 static void
3278 read_peervars(void)
3279 {
3280 	const struct ctl_var *v;
3281 	struct peer *peer;
3282 	const u_char *cp;
3283 	size_t i;
3284 	char *	valuep;
3285 	u_char	wants[CP_MAXCODE + 1];
3286 	u_int	gotvar;
3287 
3288 	/*
3289 	 * Wants info for a particular peer. See if we know
3290 	 * the guy.
3291 	 */
3292 	peer = findpeerbyassoc(res_associd);
3293 	if (NULL == peer) {
3294 		ctl_error(CERR_BADASSOC);
3295 		return;
3296 	}
3297 	rpkt.status = htons(ctlpeerstatus(peer));
3298 	if (res_authokay)
3299 		peer->num_events = 0;
3300 	ZERO(wants);
3301 	gotvar = 0;
3302 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3303 		if (v->flags & EOV) {
3304 			ctl_error(CERR_UNKNOWNVAR);
3305 			return;
3306 		}
3307 		INSIST(v->code < COUNTOF(wants));
3308 		wants[v->code] = 1;
3309 		gotvar = 1;
3310 	}
3311 	if (gotvar) {
3312 		for (i = 1; i < COUNTOF(wants); i++)
3313 			if (wants[i])
3314 				ctl_putpeer(i, peer);
3315 	} else
3316 		for (cp = def_peer_var; *cp != 0; cp++)
3317 			ctl_putpeer((int)*cp, peer);
3318 	ctl_flushpkt(0);
3319 }
3320 
3321 
3322 /*
3323  * read_sysvars - half of read_variables() implementation
3324  */
3325 static void
3326 read_sysvars(void)
3327 {
3328 	const struct ctl_var *v;
3329 	struct ctl_var *kv;
3330 	u_int	n;
3331 	u_int	gotvar;
3332 	const u_char *cs;
3333 	char *	valuep;
3334 	const char * pch;
3335 	u_char *wants;
3336 	size_t	wants_count;
3337 
3338 	/*
3339 	 * Wants system variables. Figure out which he wants
3340 	 * and give them to him.
3341 	 */
3342 	rpkt.status = htons(ctlsysstatus());
3343 	if (res_authokay)
3344 		ctl_sys_num_events = 0;
3345 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3346 	wants = emalloc_zero(wants_count);
3347 	gotvar = 0;
3348 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3349 		if (!(EOV & v->flags)) {
3350 			INSIST(v->code < wants_count);
3351 			wants[v->code] = 1;
3352 			gotvar = 1;
3353 		} else {
3354 			v = ctl_getitem(ext_sys_var, &valuep);
3355 			if (NULL == v) {
3356 				ctl_error(CERR_BADVALUE);
3357 				free(wants);
3358 				return;
3359 			}
3360 			if (EOV & v->flags) {
3361 				ctl_error(CERR_UNKNOWNVAR);
3362 				free(wants);
3363 				return;
3364 			}
3365 			n = v->code + CS_MAXCODE + 1;
3366 			INSIST(n < wants_count);
3367 			wants[n] = 1;
3368 			gotvar = 1;
3369 		}
3370 	}
3371 	if (gotvar) {
3372 		for (n = 1; n <= CS_MAXCODE; n++)
3373 			if (wants[n])
3374 				ctl_putsys(n);
3375 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3376 			if (wants[n + CS_MAXCODE + 1]) {
3377 				pch = ext_sys_var[n].text;
3378 				ctl_putdata(pch, strlen(pch), 0);
3379 			}
3380 	} else {
3381 		for (cs = def_sys_var; *cs != 0; cs++)
3382 			ctl_putsys((int)*cs);
3383 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3384 			if (DEF & kv->flags)
3385 				ctl_putdata(kv->text, strlen(kv->text),
3386 					    0);
3387 	}
3388 	free(wants);
3389 	ctl_flushpkt(0);
3390 }
3391 
3392 
3393 /*
3394  * read_variables - return the variables the caller asks for
3395  */
3396 /*ARGSUSED*/
3397 static void
3398 read_variables(
3399 	struct recvbuf *rbufp,
3400 	int restrict_mask
3401 	)
3402 {
3403 	if (res_associd)
3404 		read_peervars();
3405 	else
3406 		read_sysvars();
3407 }
3408 
3409 
3410 /*
3411  * write_variables - write into variables. We only allow leap bit
3412  * writing this way.
3413  */
3414 /*ARGSUSED*/
3415 static void
3416 write_variables(
3417 	struct recvbuf *rbufp,
3418 	int restrict_mask
3419 	)
3420 {
3421 	const struct ctl_var *v;
3422 	int ext_var;
3423 	char *valuep;
3424 	long val;
3425 	size_t octets;
3426 	char *vareqv;
3427 	const char *t;
3428 	char *tt;
3429 
3430 	val = 0;
3431 	/*
3432 	 * If he's trying to write into a peer tell him no way
3433 	 */
3434 	if (res_associd != 0) {
3435 		ctl_error(CERR_PERMISSION);
3436 		return;
3437 	}
3438 
3439 	/*
3440 	 * Set status
3441 	 */
3442 	rpkt.status = htons(ctlsysstatus());
3443 
3444 	/*
3445 	 * Look through the variables. Dump out at the first sign of
3446 	 * trouble.
3447 	 */
3448 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3449 		ext_var = 0;
3450 		if (v->flags & EOV) {
3451 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3452 			    0) {
3453 				if (v->flags & EOV) {
3454 					ctl_error(CERR_UNKNOWNVAR);
3455 					return;
3456 				}
3457 				ext_var = 1;
3458 			} else {
3459 				break;
3460 			}
3461 		}
3462 		if (!(v->flags & CAN_WRITE)) {
3463 			ctl_error(CERR_PERMISSION);
3464 			return;
3465 		}
3466 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3467 							    &val))) {
3468 			ctl_error(CERR_BADFMT);
3469 			return;
3470 		}
3471 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3472 			ctl_error(CERR_BADVALUE);
3473 			return;
3474 		}
3475 
3476 		if (ext_var) {
3477 			octets = strlen(v->text) + strlen(valuep) + 2;
3478 			vareqv = emalloc(octets);
3479 			tt = vareqv;
3480 			t = v->text;
3481 			while (*t && *t != '=')
3482 				*tt++ = *t++;
3483 			*tt++ = '=';
3484 			memcpy(tt, valuep, 1 + strlen(valuep));
3485 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3486 			free(vareqv);
3487 		} else {
3488 			ctl_error(CERR_UNSPEC); /* really */
3489 			return;
3490 		}
3491 	}
3492 
3493 	/*
3494 	 * If we got anything, do it. xxx nothing to do ***
3495 	 */
3496 	/*
3497 	  if (leapind != ~0 || leapwarn != ~0) {
3498 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3499 	  ctl_error(CERR_PERMISSION);
3500 	  return;
3501 	  }
3502 	  }
3503 	*/
3504 	ctl_flushpkt(0);
3505 }
3506 
3507 
3508 /*
3509  * configure() processes ntpq :config/config-from-file, allowing
3510  *		generic runtime reconfiguration.
3511  */
3512 static void configure(
3513 	struct recvbuf *rbufp,
3514 	int restrict_mask
3515 	)
3516 {
3517 	size_t data_count;
3518 	int retval;
3519 
3520 	/* I haven't yet implemented changes to an existing association.
3521 	 * Hence check if the association id is 0
3522 	 */
3523 	if (res_associd != 0) {
3524 		ctl_error(CERR_BADVALUE);
3525 		return;
3526 	}
3527 
3528 	if (RES_NOMODIFY & restrict_mask) {
3529 		snprintf(remote_config.err_msg,
3530 			 sizeof(remote_config.err_msg),
3531 			 "runtime configuration prohibited by restrict ... nomodify");
3532 		ctl_putdata(remote_config.err_msg,
3533 			    strlen(remote_config.err_msg), 0);
3534 		ctl_flushpkt(0);
3535 		NLOG(NLOG_SYSINFO)
3536 			msyslog(LOG_NOTICE,
3537 				"runtime config from %s rejected due to nomodify restriction",
3538 				stoa(&rbufp->recv_srcadr));
3539 		sys_restricted++;
3540 		return;
3541 	}
3542 
3543 	/* Initialize the remote config buffer */
3544 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3545 
3546 	if (data_count > sizeof(remote_config.buffer) - 2) {
3547 		snprintf(remote_config.err_msg,
3548 			 sizeof(remote_config.err_msg),
3549 			 "runtime configuration failed: request too long");
3550 		ctl_putdata(remote_config.err_msg,
3551 			    strlen(remote_config.err_msg), 0);
3552 		ctl_flushpkt(0);
3553 		msyslog(LOG_NOTICE,
3554 			"runtime config from %s rejected: request too long",
3555 			stoa(&rbufp->recv_srcadr));
3556 		return;
3557 	}
3558 	/* Bug 2853 -- check if all characters were acceptable */
3559 	if (data_count != (size_t)(reqend - reqpt)) {
3560 		snprintf(remote_config.err_msg,
3561 			 sizeof(remote_config.err_msg),
3562 			 "runtime configuration failed: request contains an unprintable character");
3563 		ctl_putdata(remote_config.err_msg,
3564 			    strlen(remote_config.err_msg), 0);
3565 		ctl_flushpkt(0);
3566 		msyslog(LOG_NOTICE,
3567 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3568 			stoa(&rbufp->recv_srcadr),
3569 			reqpt[data_count]);
3570 		return;
3571 	}
3572 
3573 	memcpy(remote_config.buffer, reqpt, data_count);
3574 	/* The buffer has no trailing linefeed or NUL right now. For
3575 	 * logging, we do not want a newline, so we do that first after
3576 	 * adding the necessary NUL byte.
3577 	 */
3578 	remote_config.buffer[data_count] = '\0';
3579 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3580 		remote_config.buffer));
3581 	msyslog(LOG_NOTICE, "%s config: %s",
3582 		stoa(&rbufp->recv_srcadr),
3583 		remote_config.buffer);
3584 
3585 	/* Now we have to make sure there is a NL/NUL sequence at the
3586 	 * end of the buffer before we parse it.
3587 	 */
3588 	remote_config.buffer[data_count++] = '\n';
3589 	remote_config.buffer[data_count] = '\0';
3590 	remote_config.pos = 0;
3591 	remote_config.err_pos = 0;
3592 	remote_config.no_errors = 0;
3593 	config_remotely(&rbufp->recv_srcadr);
3594 
3595 	/*
3596 	 * Check if errors were reported. If not, output 'Config
3597 	 * Succeeded'.  Else output the error count.  It would be nice
3598 	 * to output any parser error messages.
3599 	 */
3600 	if (0 == remote_config.no_errors) {
3601 		retval = snprintf(remote_config.err_msg,
3602 				  sizeof(remote_config.err_msg),
3603 				  "Config Succeeded");
3604 		if (retval > 0)
3605 			remote_config.err_pos += retval;
3606 	}
3607 
3608 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3609 	ctl_flushpkt(0);
3610 
3611 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3612 
3613 	if (remote_config.no_errors > 0)
3614 		msyslog(LOG_NOTICE, "%d error in %s config",
3615 			remote_config.no_errors,
3616 			stoa(&rbufp->recv_srcadr));
3617 }
3618 
3619 
3620 /*
3621  * derive_nonce - generate client-address-specific nonce value
3622  *		  associated with a given timestamp.
3623  */
3624 static u_int32 derive_nonce(
3625 	sockaddr_u *	addr,
3626 	u_int32		ts_i,
3627 	u_int32		ts_f
3628 	)
3629 {
3630 	static u_int32	salt[4];
3631 	static u_long	last_salt_update;
3632 	union d_tag {
3633 		u_char	digest[EVP_MAX_MD_SIZE];
3634 		u_int32 extract;
3635 	}		d;
3636 	EVP_MD_CTX	*ctx;
3637 	u_int		len;
3638 
3639 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3640 		salt[0] = ntp_random();
3641 		salt[1] = ntp_random();
3642 		salt[2] = ntp_random();
3643 		salt[3] = ntp_random();
3644 		last_salt_update = current_time;
3645 	}
3646 
3647 	ctx = EVP_MD_CTX_new();
3648 #   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3649 	/* [Bug 3457] set flags and don't kill them again */
3650 	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3651 	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3652 #   else
3653 	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3654 #   endif
3655 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3656 	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3657 	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3658 	if (IS_IPV4(addr))
3659 		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3660 			         sizeof(SOCK_ADDR4(addr)));
3661 	else
3662 		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3663 			         sizeof(SOCK_ADDR6(addr)));
3664 	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3665 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3666 	EVP_DigestFinal(ctx, d.digest, &len);
3667 	EVP_MD_CTX_free(ctx);
3668 
3669 	return d.extract;
3670 }
3671 
3672 
3673 /*
3674  * generate_nonce - generate client-address-specific nonce string.
3675  */
3676 static void generate_nonce(
3677 	struct recvbuf *	rbufp,
3678 	char *			nonce,
3679 	size_t			nonce_octets
3680 	)
3681 {
3682 	u_int32 derived;
3683 
3684 	derived = derive_nonce(&rbufp->recv_srcadr,
3685 			       rbufp->recv_time.l_ui,
3686 			       rbufp->recv_time.l_uf);
3687 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3688 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3689 }
3690 
3691 
3692 /*
3693  * validate_nonce - validate client-address-specific nonce string.
3694  *
3695  * Returns TRUE if the local calculation of the nonce matches the
3696  * client-provided value and the timestamp is recent enough.
3697  */
3698 static int validate_nonce(
3699 	const char *		pnonce,
3700 	struct recvbuf *	rbufp
3701 	)
3702 {
3703 	u_int	ts_i;
3704 	u_int	ts_f;
3705 	l_fp	ts;
3706 	l_fp	now_delta;
3707 	u_int	supposed;
3708 	u_int	derived;
3709 
3710 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3711 		return FALSE;
3712 
3713 	ts.l_ui = (u_int32)ts_i;
3714 	ts.l_uf = (u_int32)ts_f;
3715 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3716 	get_systime(&now_delta);
3717 	L_SUB(&now_delta, &ts);
3718 
3719 	return (supposed == derived && now_delta.l_ui < 16);
3720 }
3721 
3722 
3723 /*
3724  * send_random_tag_value - send a randomly-generated three character
3725  *			   tag prefix, a '.', an index, a '=' and a
3726  *			   random integer value.
3727  *
3728  * To try to force clients to ignore unrecognized tags in mrulist,
3729  * reslist, and ifstats responses, the first and last rows are spiced
3730  * with randomly-generated tag names with correct .# index.  Make it
3731  * three characters knowing that none of the currently-used subscripted
3732  * tags have that length, avoiding the need to test for
3733  * tag collision.
3734  */
3735 static void
3736 send_random_tag_value(
3737 	int	indx
3738 	)
3739 {
3740 	int	noise;
3741 	char	buf[32];
3742 
3743 	noise = rand() ^ (rand() << 16);
3744 	buf[0] = 'a' + noise % 26;
3745 	noise >>= 5;
3746 	buf[1] = 'a' + noise % 26;
3747 	noise >>= 5;
3748 	buf[2] = 'a' + noise % 26;
3749 	noise >>= 5;
3750 	buf[3] = '.';
3751 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3752 	ctl_putuint(buf, noise);
3753 }
3754 
3755 
3756 /*
3757  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3758  *
3759  * To keep clients honest about not depending on the order of values,
3760  * and thereby avoid being locked into ugly workarounds to maintain
3761  * backward compatibility later as new fields are added to the response,
3762  * the order is random.
3763  */
3764 static void
3765 send_mru_entry(
3766 	mon_entry *	mon,
3767 	int		count
3768 	)
3769 {
3770 	const char first_fmt[] =	"first.%d";
3771 	const char ct_fmt[] =		"ct.%d";
3772 	const char mv_fmt[] =		"mv.%d";
3773 	const char rs_fmt[] =		"rs.%d";
3774 	char	tag[32];
3775 	u_char	sent[6]; /* 6 tag=value pairs */
3776 	u_int32 noise;
3777 	u_int	which;
3778 	u_int	remaining;
3779 	const char * pch;
3780 
3781 	remaining = COUNTOF(sent);
3782 	ZERO(sent);
3783 	noise = (u_int32)(rand() ^ (rand() << 16));
3784 	while (remaining > 0) {
3785 		which = (noise & 7) % COUNTOF(sent);
3786 		noise >>= 3;
3787 		while (sent[which])
3788 			which = (which + 1) % COUNTOF(sent);
3789 
3790 		switch (which) {
3791 
3792 		case 0:
3793 			snprintf(tag, sizeof(tag), addr_fmt, count);
3794 			pch = sptoa(&mon->rmtadr);
3795 			ctl_putunqstr(tag, pch, strlen(pch));
3796 			break;
3797 
3798 		case 1:
3799 			snprintf(tag, sizeof(tag), last_fmt, count);
3800 			ctl_putts(tag, &mon->last);
3801 			break;
3802 
3803 		case 2:
3804 			snprintf(tag, sizeof(tag), first_fmt, count);
3805 			ctl_putts(tag, &mon->first);
3806 			break;
3807 
3808 		case 3:
3809 			snprintf(tag, sizeof(tag), ct_fmt, count);
3810 			ctl_putint(tag, mon->count);
3811 			break;
3812 
3813 		case 4:
3814 			snprintf(tag, sizeof(tag), mv_fmt, count);
3815 			ctl_putuint(tag, mon->vn_mode);
3816 			break;
3817 
3818 		case 5:
3819 			snprintf(tag, sizeof(tag), rs_fmt, count);
3820 			ctl_puthex(tag, mon->flags);
3821 			break;
3822 		}
3823 		sent[which] = TRUE;
3824 		remaining--;
3825 	}
3826 }
3827 
3828 
3829 /*
3830  * read_mru_list - supports ntpq's mrulist command.
3831  *
3832  * The challenge here is to match ntpdc's monlist functionality without
3833  * being limited to hundreds of entries returned total, and without
3834  * requiring state on the server.  If state were required, ntpq's
3835  * mrulist command would require authentication.
3836  *
3837  * The approach was suggested by Ry Jones.  A finite and variable number
3838  * of entries are retrieved per request, to avoid having responses with
3839  * such large numbers of packets that socket buffers are overflowed and
3840  * packets lost.  The entries are retrieved oldest-first, taking into
3841  * account that the MRU list will be changing between each request.  We
3842  * can expect to see duplicate entries for addresses updated in the MRU
3843  * list during the fetch operation.  In the end, the client can assemble
3844  * a close approximation of the MRU list at the point in time the last
3845  * response was sent by ntpd.  The only difference is it may be longer,
3846  * containing some number of oldest entries which have since been
3847  * reclaimed.  If necessary, the protocol could be extended to zap those
3848  * from the client snapshot at the end, but so far that doesn't seem
3849  * useful.
3850  *
3851  * To accomodate the changing MRU list, the starting point for requests
3852  * after the first request is supplied as a series of last seen
3853  * timestamps and associated addresses, the newest ones the client has
3854  * received.  As long as at least one of those entries hasn't been
3855  * bumped to the head of the MRU list, ntpd can pick up at that point.
3856  * Otherwise, the request is failed and it is up to ntpq to back up and
3857  * provide the next newest entry's timestamps and addresses, conceivably
3858  * backing up all the way to the starting point.
3859  *
3860  * input parameters:
3861  *	nonce=		Regurgitated nonce retrieved by the client
3862  *			previously using CTL_OP_REQ_NONCE, demonstrating
3863  *			ability to receive traffic sent to its address.
3864  *	frags=		Limit on datagrams (fragments) in response.  Used
3865  *			by newer ntpq versions instead of limit= when
3866  *			retrieving multiple entries.
3867  *	limit=		Limit on MRU entries returned.  One of frags= or
3868  *			limit= must be provided.
3869  *			limit=1 is a special case:  Instead of fetching
3870  *			beginning with the supplied starting point's
3871  *			newer neighbor, fetch the supplied entry, and
3872  *			in that case the #.last timestamp can be zero.
3873  *			This enables fetching a single entry by IP
3874  *			address.  When limit is not one and frags= is
3875  *			provided, the fragment limit controls.
3876  *	mincount=	(decimal) Return entries with count >= mincount.
3877  *	laddr=		Return entries associated with the server's IP
3878  *			address given.  No port specification is needed,
3879  *			and any supplied is ignored.
3880  *	resall=		0x-prefixed hex restrict bits which must all be
3881  *			lit for an MRU entry to be included.
3882  *			Has precedence over any resany=.
3883  *	resany=		0x-prefixed hex restrict bits, at least one of
3884  *			which must be list for an MRU entry to be
3885  *			included.
3886  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3887  *			which client previously received.
3888  *	addr.0=		text of newest entry's IP address and port,
3889  *			IPv6 addresses in bracketed form: [::]:123
3890  *	last.1=		timestamp of 2nd newest entry client has.
3891  *	addr.1=		address of 2nd newest entry.
3892  *	[...]
3893  *
3894  * ntpq provides as many last/addr pairs as will fit in a single request
3895  * packet, except for the first request in a MRU fetch operation.
3896  *
3897  * The response begins with a new nonce value to be used for any
3898  * followup request.  Following the nonce is the next newer entry than
3899  * referred to by last.0 and addr.0, if the "0" entry has not been
3900  * bumped to the front.  If it has, the first entry returned will be the
3901  * next entry newer than referred to by last.1 and addr.1, and so on.
3902  * If none of the referenced entries remain unchanged, the request fails
3903  * and ntpq backs up to the next earlier set of entries to resync.
3904  *
3905  * Except for the first response, the response begins with confirmation
3906  * of the entry that precedes the first additional entry provided:
3907  *
3908  *	last.older=	hex l_fp timestamp matching one of the input
3909  *			.last timestamps, which entry now precedes the
3910  *			response 0. entry in the MRU list.
3911  *	addr.older=	text of address corresponding to older.last.
3912  *
3913  * And in any case, a successful response contains sets of values
3914  * comprising entries, with the oldest numbered 0 and incrementing from
3915  * there:
3916  *
3917  *	addr.#		text of IPv4 or IPv6 address and port
3918  *	last.#		hex l_fp timestamp of last receipt
3919  *	first.#		hex l_fp timestamp of first receipt
3920  *	ct.#		count of packets received
3921  *	mv.#		mode and version
3922  *	rs.#		restriction mask (RES_* bits)
3923  *
3924  * Note the code currently assumes there are no valid three letter
3925  * tags sent with each row, and needs to be adjusted if that changes.
3926  *
3927  * The client should accept the values in any order, and ignore .#
3928  * values which it does not understand, to allow a smooth path to
3929  * future changes without requiring a new opcode.  Clients can rely
3930  * on all *.0 values preceding any *.1 values, that is all values for
3931  * a given index number are together in the response.
3932  *
3933  * The end of the response list is noted with one or two tag=value
3934  * pairs.  Unconditionally:
3935  *
3936  *	now=		0x-prefixed l_fp timestamp at the server marking
3937  *			the end of the operation.
3938  *
3939  * If any entries were returned, now= is followed by:
3940  *
3941  *	last.newest=	hex l_fp identical to last.# of the prior
3942  *			entry.
3943  */
3944 static void read_mru_list(
3945 	struct recvbuf *rbufp,
3946 	int restrict_mask
3947 	)
3948 {
3949 	static const char	nulltxt[1] = 		{ '\0' };
3950 	static const char	nonce_text[] =		"nonce";
3951 	static const char	frags_text[] =		"frags";
3952 	static const char	limit_text[] =		"limit";
3953 	static const char	mincount_text[] =	"mincount";
3954 	static const char	resall_text[] =		"resall";
3955 	static const char	resany_text[] =		"resany";
3956 	static const char	maxlstint_text[] =	"maxlstint";
3957 	static const char	laddr_text[] =		"laddr";
3958 	static const char	resaxx_fmt[] =		"0x%hx";
3959 
3960 	u_int			limit;
3961 	u_short			frags;
3962 	u_short			resall;
3963 	u_short			resany;
3964 	int			mincount;
3965 	u_int			maxlstint;
3966 	sockaddr_u		laddr;
3967 	struct interface *	lcladr;
3968 	u_int			count;
3969 	u_int			ui;
3970 	u_int			uf;
3971 	l_fp			last[16];
3972 	sockaddr_u		addr[COUNTOF(last)];
3973 	char			buf[128];
3974 	struct ctl_var *	in_parms;
3975 	const struct ctl_var *	v;
3976 	const char *		val;
3977 	const char *		pch;
3978 	char *			pnonce;
3979 	int			nonce_valid;
3980 	size_t			i;
3981 	int			priors;
3982 	u_short			hash;
3983 	mon_entry *		mon;
3984 	mon_entry *		prior_mon;
3985 	l_fp			now;
3986 
3987 	if (RES_NOMRULIST & restrict_mask) {
3988 		ctl_error(CERR_PERMISSION);
3989 		NLOG(NLOG_SYSINFO)
3990 			msyslog(LOG_NOTICE,
3991 				"mrulist from %s rejected due to nomrulist restriction",
3992 				stoa(&rbufp->recv_srcadr));
3993 		sys_restricted++;
3994 		return;
3995 	}
3996 	/*
3997 	 * fill in_parms var list with all possible input parameters.
3998 	 */
3999 	in_parms = NULL;
4000 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4001 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4002 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4003 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4004 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4005 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4006 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4007 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4008 	for (i = 0; i < COUNTOF(last); i++) {
4009 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4010 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4011 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4012 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4013 	}
4014 
4015 	/* decode input parms */
4016 	pnonce = NULL;
4017 	frags = 0;
4018 	limit = 0;
4019 	mincount = 0;
4020 	resall = 0;
4021 	resany = 0;
4022 	maxlstint = 0;
4023 	lcladr = NULL;
4024 	priors = 0;
4025 	ZERO(last);
4026 	ZERO(addr);
4027 
4028 	/* have to go through '(void*)' to drop 'const' property from pointer.
4029 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4030 	 */
4031 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4032 	       !(EOV & v->flags)) {
4033 		int si;
4034 
4035 		if (NULL == val)
4036 			val = nulltxt;
4037 
4038 		if (!strcmp(nonce_text, v->text)) {
4039 			free(pnonce);
4040 			pnonce = (*val) ? estrdup(val) : NULL;
4041 		} else if (!strcmp(frags_text, v->text)) {
4042 			if (1 != sscanf(val, "%hu", &frags))
4043 				goto blooper;
4044 		} else if (!strcmp(limit_text, v->text)) {
4045 			if (1 != sscanf(val, "%u", &limit))
4046 				goto blooper;
4047 		} else if (!strcmp(mincount_text, v->text)) {
4048 			if (1 != sscanf(val, "%d", &mincount))
4049 				goto blooper;
4050 			if (mincount < 0)
4051 				mincount = 0;
4052 		} else if (!strcmp(resall_text, v->text)) {
4053 			if (1 != sscanf(val, resaxx_fmt, &resall))
4054 				goto blooper;
4055 		} else if (!strcmp(resany_text, v->text)) {
4056 			if (1 != sscanf(val, resaxx_fmt, &resany))
4057 				goto blooper;
4058 		} else if (!strcmp(maxlstint_text, v->text)) {
4059 			if (1 != sscanf(val, "%u", &maxlstint))
4060 				goto blooper;
4061 		} else if (!strcmp(laddr_text, v->text)) {
4062 			if (!decodenetnum(val, &laddr))
4063 				goto blooper;
4064 			lcladr = getinterface(&laddr, 0);
4065 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4066 			   (size_t)si < COUNTOF(last)) {
4067 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4068 				goto blooper;
4069 			last[si].l_ui = ui;
4070 			last[si].l_uf = uf;
4071 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4072 				priors++;
4073 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4074 			   (size_t)si < COUNTOF(addr)) {
4075 			if (!decodenetnum(val, &addr[si]))
4076 				goto blooper;
4077 			if (last[si].l_ui && last[si].l_uf && si == priors)
4078 				priors++;
4079 		} else {
4080 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4081 				    v->text));
4082 			continue;
4083 
4084 		blooper:
4085 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4086 				    v->text, val));
4087 			free(pnonce);
4088 			pnonce = NULL;
4089 			break;
4090 		}
4091 	}
4092 	free_varlist(in_parms);
4093 	in_parms = NULL;
4094 
4095 	/* return no responses until the nonce is validated */
4096 	if (NULL == pnonce)
4097 		return;
4098 
4099 	nonce_valid = validate_nonce(pnonce, rbufp);
4100 	free(pnonce);
4101 	if (!nonce_valid)
4102 		return;
4103 
4104 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4105 	    frags > MRU_FRAGS_LIMIT) {
4106 		ctl_error(CERR_BADVALUE);
4107 		return;
4108 	}
4109 
4110 	/*
4111 	 * If either frags or limit is not given, use the max.
4112 	 */
4113 	if (0 != frags && 0 == limit)
4114 		limit = UINT_MAX;
4115 	else if (0 != limit && 0 == frags)
4116 		frags = MRU_FRAGS_LIMIT;
4117 
4118 	/*
4119 	 * Find the starting point if one was provided.
4120 	 */
4121 	mon = NULL;
4122 	for (i = 0; i < (size_t)priors; i++) {
4123 		hash = MON_HASH(&addr[i]);
4124 		for (mon = mon_hash[hash];
4125 		     mon != NULL;
4126 		     mon = mon->hash_next)
4127 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4128 				break;
4129 		if (mon != NULL) {
4130 			if (L_ISEQU(&mon->last, &last[i]))
4131 				break;
4132 			mon = NULL;
4133 		}
4134 	}
4135 
4136 	/* If a starting point was provided... */
4137 	if (priors) {
4138 		/* and none could be found unmodified... */
4139 		if (NULL == mon) {
4140 			/* tell ntpq to try again with older entries */
4141 			ctl_error(CERR_UNKNOWNVAR);
4142 			return;
4143 		}
4144 		/* confirm the prior entry used as starting point */
4145 		ctl_putts("last.older", &mon->last);
4146 		pch = sptoa(&mon->rmtadr);
4147 		ctl_putunqstr("addr.older", pch, strlen(pch));
4148 
4149 		/*
4150 		 * Move on to the first entry the client doesn't have,
4151 		 * except in the special case of a limit of one.  In
4152 		 * that case return the starting point entry.
4153 		 */
4154 		if (limit > 1)
4155 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4156 	} else {	/* start with the oldest */
4157 		mon = TAIL_DLIST(mon_mru_list, mru);
4158 	}
4159 
4160 	/*
4161 	 * send up to limit= entries in up to frags= datagrams
4162 	 */
4163 	get_systime(&now);
4164 	generate_nonce(rbufp, buf, sizeof(buf));
4165 	ctl_putunqstr("nonce", buf, strlen(buf));
4166 	prior_mon = NULL;
4167 	for (count = 0;
4168 	     mon != NULL && res_frags < frags && count < limit;
4169 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4170 
4171 		if (mon->count < mincount)
4172 			continue;
4173 		if (resall && resall != (resall & mon->flags))
4174 			continue;
4175 		if (resany && !(resany & mon->flags))
4176 			continue;
4177 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4178 		    maxlstint)
4179 			continue;
4180 		if (lcladr != NULL && mon->lcladr != lcladr)
4181 			continue;
4182 
4183 		send_mru_entry(mon, count);
4184 		if (!count)
4185 			send_random_tag_value(0);
4186 		count++;
4187 		prior_mon = mon;
4188 	}
4189 
4190 	/*
4191 	 * If this batch completes the MRU list, say so explicitly with
4192 	 * a now= l_fp timestamp.
4193 	 */
4194 	if (NULL == mon) {
4195 		if (count > 1)
4196 			send_random_tag_value(count - 1);
4197 		ctl_putts("now", &now);
4198 		/* if any entries were returned confirm the last */
4199 		if (prior_mon != NULL)
4200 			ctl_putts("last.newest", &prior_mon->last);
4201 	}
4202 	ctl_flushpkt(0);
4203 }
4204 
4205 
4206 /*
4207  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4208  *
4209  * To keep clients honest about not depending on the order of values,
4210  * and thereby avoid being locked into ugly workarounds to maintain
4211  * backward compatibility later as new fields are added to the response,
4212  * the order is random.
4213  */
4214 static void
4215 send_ifstats_entry(
4216 	endpt *	la,
4217 	u_int	ifnum
4218 	)
4219 {
4220 	const char addr_fmtu[] =	"addr.%u";
4221 	const char bcast_fmt[] =	"bcast.%u";
4222 	const char en_fmt[] =		"en.%u";	/* enabled */
4223 	const char name_fmt[] =		"name.%u";
4224 	const char flags_fmt[] =	"flags.%u";
4225 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4226 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4227 	const char rx_fmt[] =		"rx.%u";
4228 	const char tx_fmt[] =		"tx.%u";
4229 	const char txerr_fmt[] =	"txerr.%u";
4230 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4231 	const char up_fmt[] =		"up.%u";	/* uptime */
4232 	char	tag[32];
4233 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4234 	int	noisebits;
4235 	u_int32 noise;
4236 	u_int	which;
4237 	u_int	remaining;
4238 	const char *pch;
4239 
4240 	remaining = COUNTOF(sent);
4241 	ZERO(sent);
4242 	noise = 0;
4243 	noisebits = 0;
4244 	while (remaining > 0) {
4245 		if (noisebits < 4) {
4246 			noise = rand() ^ (rand() << 16);
4247 			noisebits = 31;
4248 		}
4249 		which = (noise & 0xf) % COUNTOF(sent);
4250 		noise >>= 4;
4251 		noisebits -= 4;
4252 
4253 		while (sent[which])
4254 			which = (which + 1) % COUNTOF(sent);
4255 
4256 		switch (which) {
4257 
4258 		case 0:
4259 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4260 			pch = sptoa(&la->sin);
4261 			ctl_putunqstr(tag, pch, strlen(pch));
4262 			break;
4263 
4264 		case 1:
4265 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4266 			if (INT_BCASTOPEN & la->flags)
4267 				pch = sptoa(&la->bcast);
4268 			else
4269 				pch = "";
4270 			ctl_putunqstr(tag, pch, strlen(pch));
4271 			break;
4272 
4273 		case 2:
4274 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4275 			ctl_putint(tag, !la->ignore_packets);
4276 			break;
4277 
4278 		case 3:
4279 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4280 			ctl_putstr(tag, la->name, strlen(la->name));
4281 			break;
4282 
4283 		case 4:
4284 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4285 			ctl_puthex(tag, (u_int)la->flags);
4286 			break;
4287 
4288 		case 5:
4289 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4290 			ctl_putint(tag, la->last_ttl);
4291 			break;
4292 
4293 		case 6:
4294 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4295 			ctl_putint(tag, la->num_mcast);
4296 			break;
4297 
4298 		case 7:
4299 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4300 			ctl_putint(tag, la->received);
4301 			break;
4302 
4303 		case 8:
4304 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4305 			ctl_putint(tag, la->sent);
4306 			break;
4307 
4308 		case 9:
4309 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4310 			ctl_putint(tag, la->notsent);
4311 			break;
4312 
4313 		case 10:
4314 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4315 			ctl_putuint(tag, la->peercnt);
4316 			break;
4317 
4318 		case 11:
4319 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4320 			ctl_putuint(tag, current_time - la->starttime);
4321 			break;
4322 		}
4323 		sent[which] = TRUE;
4324 		remaining--;
4325 	}
4326 	send_random_tag_value((int)ifnum);
4327 }
4328 
4329 
4330 /*
4331  * read_ifstats - send statistics for each local address, exposed by
4332  *		  ntpq -c ifstats
4333  */
4334 static void
4335 read_ifstats(
4336 	struct recvbuf *	rbufp
4337 	)
4338 {
4339 	u_int	ifidx;
4340 	endpt *	la;
4341 
4342 	/*
4343 	 * loop over [0..sys_ifnum] searching ep_list for each
4344 	 * ifnum in turn.
4345 	 */
4346 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4347 		for (la = ep_list; la != NULL; la = la->elink)
4348 			if (ifidx == la->ifnum)
4349 				break;
4350 		if (NULL == la)
4351 			continue;
4352 		/* return stats for one local address */
4353 		send_ifstats_entry(la, ifidx);
4354 	}
4355 	ctl_flushpkt(0);
4356 }
4357 
4358 static void
4359 sockaddrs_from_restrict_u(
4360 	sockaddr_u *	psaA,
4361 	sockaddr_u *	psaM,
4362 	restrict_u *	pres,
4363 	int		ipv6
4364 	)
4365 {
4366 	ZERO(*psaA);
4367 	ZERO(*psaM);
4368 	if (!ipv6) {
4369 		psaA->sa.sa_family = AF_INET;
4370 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4371 		psaM->sa.sa_family = AF_INET;
4372 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4373 	} else {
4374 		psaA->sa.sa_family = AF_INET6;
4375 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4376 		       sizeof(psaA->sa6.sin6_addr));
4377 		psaM->sa.sa_family = AF_INET6;
4378 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4379 		       sizeof(psaA->sa6.sin6_addr));
4380 	}
4381 }
4382 
4383 
4384 /*
4385  * Send a restrict entry in response to a "ntpq -c reslist" request.
4386  *
4387  * To keep clients honest about not depending on the order of values,
4388  * and thereby avoid being locked into ugly workarounds to maintain
4389  * backward compatibility later as new fields are added to the response,
4390  * the order is random.
4391  */
4392 static void
4393 send_restrict_entry(
4394 	restrict_u *	pres,
4395 	int		ipv6,
4396 	u_int		idx
4397 	)
4398 {
4399 	const char addr_fmtu[] =	"addr.%u";
4400 	const char mask_fmtu[] =	"mask.%u";
4401 	const char hits_fmt[] =		"hits.%u";
4402 	const char flags_fmt[] =	"flags.%u";
4403 	char		tag[32];
4404 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4405 	int		noisebits;
4406 	u_int32		noise;
4407 	u_int		which;
4408 	u_int		remaining;
4409 	sockaddr_u	addr;
4410 	sockaddr_u	mask;
4411 	const char *	pch;
4412 	char *		buf;
4413 	const char *	match_str;
4414 	const char *	access_str;
4415 
4416 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4417 	remaining = COUNTOF(sent);
4418 	ZERO(sent);
4419 	noise = 0;
4420 	noisebits = 0;
4421 	while (remaining > 0) {
4422 		if (noisebits < 2) {
4423 			noise = rand() ^ (rand() << 16);
4424 			noisebits = 31;
4425 		}
4426 		which = (noise & 0x3) % COUNTOF(sent);
4427 		noise >>= 2;
4428 		noisebits -= 2;
4429 
4430 		while (sent[which])
4431 			which = (which + 1) % COUNTOF(sent);
4432 
4433 		/* XXX: Numbers?  Really? */
4434 		switch (which) {
4435 
4436 		case 0:
4437 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4438 			pch = stoa(&addr);
4439 			ctl_putunqstr(tag, pch, strlen(pch));
4440 			break;
4441 
4442 		case 1:
4443 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4444 			pch = stoa(&mask);
4445 			ctl_putunqstr(tag, pch, strlen(pch));
4446 			break;
4447 
4448 		case 2:
4449 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4450 			ctl_putuint(tag, pres->count);
4451 			break;
4452 
4453 		case 3:
4454 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4455 			match_str = res_match_flags(pres->mflags);
4456 			access_str = res_access_flags(pres->rflags);
4457 			if ('\0' == match_str[0]) {
4458 				pch = access_str;
4459 			} else {
4460 				LIB_GETBUF(buf);
4461 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4462 					 match_str, access_str);
4463 				pch = buf;
4464 			}
4465 			ctl_putunqstr(tag, pch, strlen(pch));
4466 			break;
4467 		}
4468 		sent[which] = TRUE;
4469 		remaining--;
4470 	}
4471 	send_random_tag_value((int)idx);
4472 }
4473 
4474 
4475 static void
4476 send_restrict_list(
4477 	restrict_u *	pres,
4478 	int		ipv6,
4479 	u_int *		pidx
4480 	)
4481 {
4482 	for ( ; pres != NULL; pres = pres->link) {
4483 		send_restrict_entry(pres, ipv6, *pidx);
4484 		(*pidx)++;
4485 	}
4486 }
4487 
4488 
4489 /*
4490  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4491  */
4492 static void
4493 read_addr_restrictions(
4494 	struct recvbuf *	rbufp
4495 )
4496 {
4497 	u_int idx;
4498 
4499 	idx = 0;
4500 	send_restrict_list(restrictlist4, FALSE, &idx);
4501 	send_restrict_list(restrictlist6, TRUE, &idx);
4502 	ctl_flushpkt(0);
4503 }
4504 
4505 
4506 /*
4507  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4508  */
4509 static void
4510 read_ordlist(
4511 	struct recvbuf *	rbufp,
4512 	int			restrict_mask
4513 	)
4514 {
4515 	const char ifstats_s[] = "ifstats";
4516 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4517 	const char addr_rst_s[] = "addr_restrictions";
4518 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4519 	struct ntp_control *	cpkt;
4520 	u_short			qdata_octets;
4521 
4522 	/*
4523 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4524 	 * used only for ntpq -c ifstats.  With the addition of reslist
4525 	 * the same opcode was generalized to retrieve ordered lists
4526 	 * which require authentication.  The request data is empty or
4527 	 * contains "ifstats" (not null terminated) to retrieve local
4528 	 * addresses and associated stats.  It is "addr_restrictions"
4529 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4530 	 * which are access control lists.  Other request data return
4531 	 * CERR_UNKNOWNVAR.
4532 	 */
4533 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4534 	qdata_octets = ntohs(cpkt->count);
4535 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4536 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4537 		read_ifstats(rbufp);
4538 		return;
4539 	}
4540 	if (a_r_chars == qdata_octets &&
4541 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4542 		read_addr_restrictions(rbufp);
4543 		return;
4544 	}
4545 	ctl_error(CERR_UNKNOWNVAR);
4546 }
4547 
4548 
4549 /*
4550  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4551  */
4552 static void req_nonce(
4553 	struct recvbuf *	rbufp,
4554 	int			restrict_mask
4555 	)
4556 {
4557 	char	buf[64];
4558 
4559 	generate_nonce(rbufp, buf, sizeof(buf));
4560 	ctl_putunqstr("nonce", buf, strlen(buf));
4561 	ctl_flushpkt(0);
4562 }
4563 
4564 
4565 /*
4566  * read_clockstatus - return clock radio status
4567  */
4568 /*ARGSUSED*/
4569 static void
4570 read_clockstatus(
4571 	struct recvbuf *rbufp,
4572 	int restrict_mask
4573 	)
4574 {
4575 #ifndef REFCLOCK
4576 	/*
4577 	 * If no refclock support, no data to return
4578 	 */
4579 	ctl_error(CERR_BADASSOC);
4580 #else
4581 	const struct ctl_var *	v;
4582 	int			i;
4583 	struct peer *		peer;
4584 	char *			valuep;
4585 	u_char *		wants;
4586 	size_t			wants_alloc;
4587 	int			gotvar;
4588 	const u_char *		cc;
4589 	struct ctl_var *	kv;
4590 	struct refclockstat	cs;
4591 
4592 	if (res_associd != 0) {
4593 		peer = findpeerbyassoc(res_associd);
4594 	} else {
4595 		/*
4596 		 * Find a clock for this jerk.	If the system peer
4597 		 * is a clock use it, else search peer_list for one.
4598 		 */
4599 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4600 		    sys_peer->flags))
4601 			peer = sys_peer;
4602 		else
4603 			for (peer = peer_list;
4604 			     peer != NULL;
4605 			     peer = peer->p_link)
4606 				if (FLAG_REFCLOCK & peer->flags)
4607 					break;
4608 	}
4609 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4610 		ctl_error(CERR_BADASSOC);
4611 		return;
4612 	}
4613 	/*
4614 	 * If we got here we have a peer which is a clock. Get his
4615 	 * status.
4616 	 */
4617 	cs.kv_list = NULL;
4618 	refclock_control(&peer->srcadr, NULL, &cs);
4619 	kv = cs.kv_list;
4620 	/*
4621 	 * Look for variables in the packet.
4622 	 */
4623 	rpkt.status = htons(ctlclkstatus(&cs));
4624 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4625 	wants = emalloc_zero(wants_alloc);
4626 	gotvar = FALSE;
4627 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4628 		if (!(EOV & v->flags)) {
4629 			wants[v->code] = TRUE;
4630 			gotvar = TRUE;
4631 		} else {
4632 			v = ctl_getitem(kv, &valuep);
4633 			if (NULL == v) {
4634 				ctl_error(CERR_BADVALUE);
4635 				free(wants);
4636 				free_varlist(cs.kv_list);
4637 				return;
4638 			}
4639 			if (EOV & v->flags) {
4640 				ctl_error(CERR_UNKNOWNVAR);
4641 				free(wants);
4642 				free_varlist(cs.kv_list);
4643 				return;
4644 			}
4645 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4646 			gotvar = TRUE;
4647 		}
4648 	}
4649 
4650 	if (gotvar) {
4651 		for (i = 1; i <= CC_MAXCODE; i++)
4652 			if (wants[i])
4653 				ctl_putclock(i, &cs, TRUE);
4654 		if (kv != NULL)
4655 			for (i = 0; !(EOV & kv[i].flags); i++)
4656 				if (wants[i + CC_MAXCODE + 1])
4657 					ctl_putdata(kv[i].text,
4658 						    strlen(kv[i].text),
4659 						    FALSE);
4660 	} else {
4661 		for (cc = def_clock_var; *cc != 0; cc++)
4662 			ctl_putclock((int)*cc, &cs, FALSE);
4663 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4664 			if (DEF & kv->flags)
4665 				ctl_putdata(kv->text, strlen(kv->text),
4666 					    FALSE);
4667 	}
4668 
4669 	free(wants);
4670 	free_varlist(cs.kv_list);
4671 
4672 	ctl_flushpkt(0);
4673 #endif
4674 }
4675 
4676 
4677 /*
4678  * write_clockstatus - we don't do this
4679  */
4680 /*ARGSUSED*/
4681 static void
4682 write_clockstatus(
4683 	struct recvbuf *rbufp,
4684 	int restrict_mask
4685 	)
4686 {
4687 	ctl_error(CERR_PERMISSION);
4688 }
4689 
4690 /*
4691  * Trap support from here on down. We send async trap messages when the
4692  * upper levels report trouble. Traps can by set either by control
4693  * messages or by configuration.
4694  */
4695 /*
4696  * set_trap - set a trap in response to a control message
4697  */
4698 static void
4699 set_trap(
4700 	struct recvbuf *rbufp,
4701 	int restrict_mask
4702 	)
4703 {
4704 	int traptype;
4705 
4706 	/*
4707 	 * See if this guy is allowed
4708 	 */
4709 	if (restrict_mask & RES_NOTRAP) {
4710 		ctl_error(CERR_PERMISSION);
4711 		return;
4712 	}
4713 
4714 	/*
4715 	 * Determine his allowed trap type.
4716 	 */
4717 	traptype = TRAP_TYPE_PRIO;
4718 	if (restrict_mask & RES_LPTRAP)
4719 		traptype = TRAP_TYPE_NONPRIO;
4720 
4721 	/*
4722 	 * Call ctlsettrap() to do the work.  Return
4723 	 * an error if it can't assign the trap.
4724 	 */
4725 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4726 			(int)res_version))
4727 		ctl_error(CERR_NORESOURCE);
4728 	ctl_flushpkt(0);
4729 }
4730 
4731 
4732 /*
4733  * unset_trap - unset a trap in response to a control message
4734  */
4735 static void
4736 unset_trap(
4737 	struct recvbuf *rbufp,
4738 	int restrict_mask
4739 	)
4740 {
4741 	int traptype;
4742 
4743 	/*
4744 	 * We don't prevent anyone from removing his own trap unless the
4745 	 * trap is configured. Note we also must be aware of the
4746 	 * possibility that restriction flags were changed since this
4747 	 * guy last set his trap. Set the trap type based on this.
4748 	 */
4749 	traptype = TRAP_TYPE_PRIO;
4750 	if (restrict_mask & RES_LPTRAP)
4751 		traptype = TRAP_TYPE_NONPRIO;
4752 
4753 	/*
4754 	 * Call ctlclrtrap() to clear this out.
4755 	 */
4756 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4757 		ctl_error(CERR_BADASSOC);
4758 	ctl_flushpkt(0);
4759 }
4760 
4761 
4762 /*
4763  * ctlsettrap - called to set a trap
4764  */
4765 int
4766 ctlsettrap(
4767 	sockaddr_u *raddr,
4768 	struct interface *linter,
4769 	int traptype,
4770 	int version
4771 	)
4772 {
4773 	size_t n;
4774 	struct ctl_trap *tp;
4775 	struct ctl_trap *tptouse;
4776 
4777 	/*
4778 	 * See if we can find this trap.  If so, we only need update
4779 	 * the flags and the time.
4780 	 */
4781 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4782 		switch (traptype) {
4783 
4784 		case TRAP_TYPE_CONFIG:
4785 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4786 			break;
4787 
4788 		case TRAP_TYPE_PRIO:
4789 			if (tp->tr_flags & TRAP_CONFIGURED)
4790 				return (1); /* don't change anything */
4791 			tp->tr_flags = TRAP_INUSE;
4792 			break;
4793 
4794 		case TRAP_TYPE_NONPRIO:
4795 			if (tp->tr_flags & TRAP_CONFIGURED)
4796 				return (1); /* don't change anything */
4797 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4798 			break;
4799 		}
4800 		tp->tr_settime = current_time;
4801 		tp->tr_resets++;
4802 		return (1);
4803 	}
4804 
4805 	/*
4806 	 * First we heard of this guy.	Try to find a trap structure
4807 	 * for him to use, clearing out lesser priority guys if we
4808 	 * have to. Clear out anyone who's expired while we're at it.
4809 	 */
4810 	tptouse = NULL;
4811 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4812 		tp = &ctl_traps[n];
4813 		if ((TRAP_INUSE & tp->tr_flags) &&
4814 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4815 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4816 			tp->tr_flags = 0;
4817 			num_ctl_traps--;
4818 		}
4819 		if (!(TRAP_INUSE & tp->tr_flags)) {
4820 			tptouse = tp;
4821 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4822 			switch (traptype) {
4823 
4824 			case TRAP_TYPE_CONFIG:
4825 				if (tptouse == NULL) {
4826 					tptouse = tp;
4827 					break;
4828 				}
4829 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4830 				    !(TRAP_NONPRIO & tp->tr_flags))
4831 					break;
4832 
4833 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4834 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4835 					tptouse = tp;
4836 					break;
4837 				}
4838 				if (tptouse->tr_origtime <
4839 				    tp->tr_origtime)
4840 					tptouse = tp;
4841 				break;
4842 
4843 			case TRAP_TYPE_PRIO:
4844 				if ( TRAP_NONPRIO & tp->tr_flags) {
4845 					if (tptouse == NULL ||
4846 					    ((TRAP_INUSE &
4847 					      tptouse->tr_flags) &&
4848 					     tptouse->tr_origtime <
4849 					     tp->tr_origtime))
4850 						tptouse = tp;
4851 				}
4852 				break;
4853 
4854 			case TRAP_TYPE_NONPRIO:
4855 				break;
4856 			}
4857 		}
4858 	}
4859 
4860 	/*
4861 	 * If we don't have room for him return an error.
4862 	 */
4863 	if (tptouse == NULL)
4864 		return (0);
4865 
4866 	/*
4867 	 * Set up this structure for him.
4868 	 */
4869 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4870 	tptouse->tr_count = tptouse->tr_resets = 0;
4871 	tptouse->tr_sequence = 1;
4872 	tptouse->tr_addr = *raddr;
4873 	tptouse->tr_localaddr = linter;
4874 	tptouse->tr_version = (u_char) version;
4875 	tptouse->tr_flags = TRAP_INUSE;
4876 	if (traptype == TRAP_TYPE_CONFIG)
4877 		tptouse->tr_flags |= TRAP_CONFIGURED;
4878 	else if (traptype == TRAP_TYPE_NONPRIO)
4879 		tptouse->tr_flags |= TRAP_NONPRIO;
4880 	num_ctl_traps++;
4881 	return (1);
4882 }
4883 
4884 
4885 /*
4886  * ctlclrtrap - called to clear a trap
4887  */
4888 int
4889 ctlclrtrap(
4890 	sockaddr_u *raddr,
4891 	struct interface *linter,
4892 	int traptype
4893 	)
4894 {
4895 	register struct ctl_trap *tp;
4896 
4897 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4898 		return (0);
4899 
4900 	if (tp->tr_flags & TRAP_CONFIGURED
4901 	    && traptype != TRAP_TYPE_CONFIG)
4902 		return (0);
4903 
4904 	tp->tr_flags = 0;
4905 	num_ctl_traps--;
4906 	return (1);
4907 }
4908 
4909 
4910 /*
4911  * ctlfindtrap - find a trap given the remote and local addresses
4912  */
4913 static struct ctl_trap *
4914 ctlfindtrap(
4915 	sockaddr_u *raddr,
4916 	struct interface *linter
4917 	)
4918 {
4919 	size_t	n;
4920 
4921 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4922 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4923 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4924 		    && (linter == ctl_traps[n].tr_localaddr))
4925 			return &ctl_traps[n];
4926 
4927 	return NULL;
4928 }
4929 
4930 
4931 /*
4932  * report_event - report an event to the trappers
4933  */
4934 void
4935 report_event(
4936 	int	err,		/* error code */
4937 	struct peer *peer,	/* peer structure pointer */
4938 	const char *str		/* protostats string */
4939 	)
4940 {
4941 	char	statstr[NTP_MAXSTRLEN];
4942 	int	i;
4943 	size_t	len;
4944 
4945 	/*
4946 	 * Report the error to the protostats file, system log and
4947 	 * trappers.
4948 	 */
4949 	if (peer == NULL) {
4950 
4951 		/*
4952 		 * Discard a system report if the number of reports of
4953 		 * the same type exceeds the maximum.
4954 		 */
4955 		if (ctl_sys_last_event != (u_char)err)
4956 			ctl_sys_num_events= 0;
4957 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4958 			return;
4959 
4960 		ctl_sys_last_event = (u_char)err;
4961 		ctl_sys_num_events++;
4962 		snprintf(statstr, sizeof(statstr),
4963 		    "0.0.0.0 %04x %02x %s",
4964 		    ctlsysstatus(), err, eventstr(err));
4965 		if (str != NULL) {
4966 			len = strlen(statstr);
4967 			snprintf(statstr + len, sizeof(statstr) - len,
4968 			    " %s", str);
4969 		}
4970 		NLOG(NLOG_SYSEVENT)
4971 			msyslog(LOG_INFO, "%s", statstr);
4972 	} else {
4973 
4974 		/*
4975 		 * Discard a peer report if the number of reports of
4976 		 * the same type exceeds the maximum for that peer.
4977 		 */
4978 		const char *	src;
4979 		u_char		errlast;
4980 
4981 		errlast = (u_char)err & ~PEER_EVENT;
4982 		if (peer->last_event != errlast)
4983 			peer->num_events = 0;
4984 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4985 			return;
4986 
4987 		peer->last_event = errlast;
4988 		peer->num_events++;
4989 		if (ISREFCLOCKADR(&peer->srcadr))
4990 			src = refnumtoa(&peer->srcadr);
4991 		else
4992 			src = stoa(&peer->srcadr);
4993 
4994 		snprintf(statstr, sizeof(statstr),
4995 		    "%s %04x %02x %s", src,
4996 		    ctlpeerstatus(peer), err, eventstr(err));
4997 		if (str != NULL) {
4998 			len = strlen(statstr);
4999 			snprintf(statstr + len, sizeof(statstr) - len,
5000 			    " %s", str);
5001 		}
5002 		NLOG(NLOG_PEEREVENT)
5003 			msyslog(LOG_INFO, "%s", statstr);
5004 	}
5005 	record_proto_stats(statstr);
5006 #if DEBUG
5007 	if (debug)
5008 		printf("event at %lu %s\n", current_time, statstr);
5009 #endif
5010 
5011 	/*
5012 	 * If no trappers, return.
5013 	 */
5014 	if (num_ctl_traps <= 0)
5015 		return;
5016 
5017 	/* [Bug 3119]
5018 	 * Peer Events should be associated with a peer -- hence the
5019 	 * name. But there are instances where this function is called
5020 	 * *without* a valid peer. This happens e.g. with an unsolicited
5021 	 * CryptoNAK, or when a leap second alarm is going off while
5022 	 * currently without a system peer.
5023 	 *
5024 	 * The most sensible approach to this seems to bail out here if
5025 	 * this happens. Avoiding to call this function would also
5026 	 * bypass the log reporting in the first part of this function,
5027 	 * and this is probably not the best of all options.
5028 	 *   -*-perlinger@ntp.org-*-
5029 	 */
5030 	if ((err & PEER_EVENT) && !peer)
5031 		return;
5032 
5033 	/*
5034 	 * Set up the outgoing packet variables
5035 	 */
5036 	res_opcode = CTL_OP_ASYNCMSG;
5037 	res_offset = 0;
5038 	res_async = TRUE;
5039 	res_authenticate = FALSE;
5040 	datapt = rpkt.u.data;
5041 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5042 	if (!(err & PEER_EVENT)) {
5043 		rpkt.associd = 0;
5044 		rpkt.status = htons(ctlsysstatus());
5045 
5046 		/* Include the core system variables and the list. */
5047 		for (i = 1; i <= CS_VARLIST; i++)
5048 			ctl_putsys(i);
5049 	} else if (NULL != peer) { /* paranoia -- skip output */
5050 		rpkt.associd = htons(peer->associd);
5051 		rpkt.status = htons(ctlpeerstatus(peer));
5052 
5053 		/* Dump it all. Later, maybe less. */
5054 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5055 			ctl_putpeer(i, peer);
5056 #	    ifdef REFCLOCK
5057 		/*
5058 		 * for clock exception events: add clock variables to
5059 		 * reflect info on exception
5060 		 */
5061 		if (err == PEVNT_CLOCK) {
5062 			struct refclockstat cs;
5063 			struct ctl_var *kv;
5064 
5065 			cs.kv_list = NULL;
5066 			refclock_control(&peer->srcadr, NULL, &cs);
5067 
5068 			ctl_puthex("refclockstatus",
5069 				   ctlclkstatus(&cs));
5070 
5071 			for (i = 1; i <= CC_MAXCODE; i++)
5072 				ctl_putclock(i, &cs, FALSE);
5073 			for (kv = cs.kv_list;
5074 			     kv != NULL && !(EOV & kv->flags);
5075 			     kv++)
5076 				if (DEF & kv->flags)
5077 					ctl_putdata(kv->text,
5078 						    strlen(kv->text),
5079 						    FALSE);
5080 			free_varlist(cs.kv_list);
5081 		}
5082 #	    endif /* REFCLOCK */
5083 	}
5084 
5085 	/*
5086 	 * We're done, return.
5087 	 */
5088 	ctl_flushpkt(0);
5089 }
5090 
5091 
5092 /*
5093  * mprintf_event - printf-style varargs variant of report_event()
5094  */
5095 int
5096 mprintf_event(
5097 	int		evcode,		/* event code */
5098 	struct peer *	p,		/* may be NULL */
5099 	const char *	fmt,		/* msnprintf format */
5100 	...
5101 	)
5102 {
5103 	va_list	ap;
5104 	int	rc;
5105 	char	msg[512];
5106 
5107 	va_start(ap, fmt);
5108 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5109 	va_end(ap);
5110 	report_event(evcode, p, msg);
5111 
5112 	return rc;
5113 }
5114 
5115 
5116 /*
5117  * ctl_clr_stats - clear stat counters
5118  */
5119 void
5120 ctl_clr_stats(void)
5121 {
5122 	ctltimereset = current_time;
5123 	numctlreq = 0;
5124 	numctlbadpkts = 0;
5125 	numctlresponses = 0;
5126 	numctlfrags = 0;
5127 	numctlerrors = 0;
5128 	numctlfrags = 0;
5129 	numctltooshort = 0;
5130 	numctlinputresp = 0;
5131 	numctlinputfrag = 0;
5132 	numctlinputerr = 0;
5133 	numctlbadoffset = 0;
5134 	numctlbadversion = 0;
5135 	numctldatatooshort = 0;
5136 	numctlbadop = 0;
5137 	numasyncmsgs = 0;
5138 }
5139 
5140 static u_short
5141 count_var(
5142 	const struct ctl_var *k
5143 	)
5144 {
5145 	u_int c;
5146 
5147 	if (NULL == k)
5148 		return 0;
5149 
5150 	c = 0;
5151 	while (!(EOV & (k++)->flags))
5152 		c++;
5153 
5154 	ENSURE(c <= USHRT_MAX);
5155 	return (u_short)c;
5156 }
5157 
5158 
5159 char *
5160 add_var(
5161 	struct ctl_var **kv,
5162 	u_long size,
5163 	u_short def
5164 	)
5165 {
5166 	u_short		c;
5167 	struct ctl_var *k;
5168 	char *		buf;
5169 
5170 	c = count_var(*kv);
5171 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5172 	k = *kv;
5173 	buf = emalloc(size);
5174 	k[c].code  = c;
5175 	k[c].text  = buf;
5176 	k[c].flags = def;
5177 	k[c + 1].code  = 0;
5178 	k[c + 1].text  = NULL;
5179 	k[c + 1].flags = EOV;
5180 
5181 	return buf;
5182 }
5183 
5184 
5185 void
5186 set_var(
5187 	struct ctl_var **kv,
5188 	const char *data,
5189 	u_long size,
5190 	u_short def
5191 	)
5192 {
5193 	struct ctl_var *k;
5194 	const char *s;
5195 	const char *t;
5196 	char *td;
5197 
5198 	if (NULL == data || !size)
5199 		return;
5200 
5201 	k = *kv;
5202 	if (k != NULL) {
5203 		while (!(EOV & k->flags)) {
5204 			if (NULL == k->text)	{
5205 				td = emalloc(size);
5206 				memcpy(td, data, size);
5207 				k->text = td;
5208 				k->flags = def;
5209 				return;
5210 			} else {
5211 				s = data;
5212 				t = k->text;
5213 				while (*t != '=' && *s == *t) {
5214 					s++;
5215 					t++;
5216 				}
5217 				if (*s == *t && ((*t == '=') || !*t)) {
5218 					td = erealloc((void *)(intptr_t)k->text, size);
5219 					memcpy(td, data, size);
5220 					k->text = td;
5221 					k->flags = def;
5222 					return;
5223 				}
5224 			}
5225 			k++;
5226 		}
5227 	}
5228 	td = add_var(kv, size, def);
5229 	memcpy(td, data, size);
5230 }
5231 
5232 
5233 void
5234 set_sys_var(
5235 	const char *data,
5236 	u_long size,
5237 	u_short def
5238 	)
5239 {
5240 	set_var(&ext_sys_var, data, size, def);
5241 }
5242 
5243 
5244 /*
5245  * get_ext_sys_var() retrieves the value of a user-defined variable or
5246  * NULL if the variable has not been setvar'd.
5247  */
5248 const char *
5249 get_ext_sys_var(const char *tag)
5250 {
5251 	struct ctl_var *	v;
5252 	size_t			c;
5253 	const char *		val;
5254 
5255 	val = NULL;
5256 	c = strlen(tag);
5257 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5258 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5259 			if ('=' == v->text[c]) {
5260 				val = v->text + c + 1;
5261 				break;
5262 			} else if ('\0' == v->text[c]) {
5263 				val = "";
5264 				break;
5265 			}
5266 		}
5267 	}
5268 
5269 	return val;
5270 }
5271 
5272 
5273 void
5274 free_varlist(
5275 	struct ctl_var *kv
5276 	)
5277 {
5278 	struct ctl_var *k;
5279 	if (kv) {
5280 		for (k = kv; !(k->flags & EOV); k++)
5281 			free((void *)(intptr_t)k->text);
5282 		free((void *)kv);
5283 	}
5284 }
5285