1 /* $NetBSD: ntp_control.c,v 1.20 2018/04/07 00:19:52 christos Exp $ */ 2 3 /* 4 * ntp_control.c - respond to mode 6 control messages and send async 5 * traps. Provides service to ntpq and others. 6 */ 7 8 #ifdef HAVE_CONFIG_H 9 # include <config.h> 10 #endif 11 12 #include <stdio.h> 13 #include <ctype.h> 14 #include <signal.h> 15 #include <sys/stat.h> 16 #ifdef HAVE_NETINET_IN_H 17 # include <netinet/in.h> 18 #endif 19 #include <arpa/inet.h> 20 21 #include "ntpd.h" 22 #include "ntp_io.h" 23 #include "ntp_refclock.h" 24 #include "ntp_control.h" 25 #include "ntp_unixtime.h" 26 #include "ntp_stdlib.h" 27 #include "ntp_config.h" 28 #include "ntp_crypto.h" 29 #include "ntp_assert.h" 30 #include "ntp_leapsec.h" 31 #include "ntp_md5.h" /* provides OpenSSL digest API */ 32 #include "lib_strbuf.h" 33 #include <rc_cmdlength.h> 34 #ifdef KERNEL_PLL 35 # include "ntp_syscall.h" 36 #endif 37 38 /* 39 * Structure to hold request procedure information 40 */ 41 42 struct ctl_proc { 43 short control_code; /* defined request code */ 44 #define NO_REQUEST (-1) 45 u_short flags; /* flags word */ 46 /* Only one flag. Authentication required or not. */ 47 #define NOAUTH 0 48 #define AUTH 1 49 void (*handler) (struct recvbuf *, int); /* handle request */ 50 }; 51 52 53 /* 54 * Request processing routines 55 */ 56 static void ctl_error (u_char); 57 #ifdef REFCLOCK 58 static u_short ctlclkstatus (struct refclockstat *); 59 #endif 60 static void ctl_flushpkt (u_char); 61 static void ctl_putdata (const char *, unsigned int, int); 62 static void ctl_putstr (const char *, const char *, size_t); 63 static void ctl_putdblf (const char *, int, int, double); 64 #define ctl_putdbl(tag, d) ctl_putdblf(tag, 1, 3, d) 65 #define ctl_putdbl6(tag, d) ctl_putdblf(tag, 1, 6, d) 66 #define ctl_putsfp(tag, sfp) ctl_putdblf(tag, 0, -1, \ 67 FPTOD(sfp)) 68 static void ctl_putuint (const char *, u_long); 69 static void ctl_puthex (const char *, u_long); 70 static void ctl_putint (const char *, long); 71 static void ctl_putts (const char *, l_fp *); 72 static void ctl_putadr (const char *, u_int32, 73 sockaddr_u *); 74 static void ctl_putrefid (const char *, u_int32); 75 static void ctl_putarray (const char *, double *, int); 76 static void ctl_putsys (int); 77 static void ctl_putpeer (int, struct peer *); 78 static void ctl_putfs (const char *, tstamp_t); 79 static void ctl_printf (const char *, ...) NTP_PRINTF(1, 2); 80 #ifdef REFCLOCK 81 static void ctl_putclock (int, struct refclockstat *, int); 82 #endif /* REFCLOCK */ 83 static const struct ctl_var *ctl_getitem(const struct ctl_var *, 84 char **); 85 static u_short count_var (const struct ctl_var *); 86 static void control_unspec (struct recvbuf *, int); 87 static void read_status (struct recvbuf *, int); 88 static void read_sysvars (void); 89 static void read_peervars (void); 90 static void read_variables (struct recvbuf *, int); 91 static void write_variables (struct recvbuf *, int); 92 static void read_clockstatus(struct recvbuf *, int); 93 static void write_clockstatus(struct recvbuf *, int); 94 static void set_trap (struct recvbuf *, int); 95 static void save_config (struct recvbuf *, int); 96 static void configure (struct recvbuf *, int); 97 static void send_mru_entry (mon_entry *, int); 98 static void send_random_tag_value(int); 99 static void read_mru_list (struct recvbuf *, int); 100 static void send_ifstats_entry(endpt *, u_int); 101 static void read_ifstats (struct recvbuf *); 102 static void sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *, 103 restrict_u *, int); 104 static void send_restrict_entry(restrict_u *, int, u_int); 105 static void send_restrict_list(restrict_u *, int, u_int *); 106 static void read_addr_restrictions(struct recvbuf *); 107 static void read_ordlist (struct recvbuf *, int); 108 static u_int32 derive_nonce (sockaddr_u *, u_int32, u_int32); 109 static void generate_nonce (struct recvbuf *, char *, size_t); 110 static int validate_nonce (const char *, struct recvbuf *); 111 static void req_nonce (struct recvbuf *, int); 112 static void unset_trap (struct recvbuf *, int); 113 static struct ctl_trap *ctlfindtrap(sockaddr_u *, 114 struct interface *); 115 116 int/*BOOL*/ is_safe_filename(const char * name); 117 118 static const struct ctl_proc control_codes[] = { 119 { CTL_OP_UNSPEC, NOAUTH, control_unspec }, 120 { CTL_OP_READSTAT, NOAUTH, read_status }, 121 { CTL_OP_READVAR, NOAUTH, read_variables }, 122 { CTL_OP_WRITEVAR, AUTH, write_variables }, 123 { CTL_OP_READCLOCK, NOAUTH, read_clockstatus }, 124 { CTL_OP_WRITECLOCK, AUTH, write_clockstatus }, 125 { CTL_OP_SETTRAP, AUTH, set_trap }, 126 { CTL_OP_CONFIGURE, AUTH, configure }, 127 { CTL_OP_SAVECONFIG, AUTH, save_config }, 128 { CTL_OP_READ_MRU, NOAUTH, read_mru_list }, 129 { CTL_OP_READ_ORDLIST_A, AUTH, read_ordlist }, 130 { CTL_OP_REQ_NONCE, NOAUTH, req_nonce }, 131 { CTL_OP_UNSETTRAP, AUTH, unset_trap }, 132 { NO_REQUEST, 0, NULL } 133 }; 134 135 /* 136 * System variables we understand 137 */ 138 #define CS_LEAP 1 139 #define CS_STRATUM 2 140 #define CS_PRECISION 3 141 #define CS_ROOTDELAY 4 142 #define CS_ROOTDISPERSION 5 143 #define CS_REFID 6 144 #define CS_REFTIME 7 145 #define CS_POLL 8 146 #define CS_PEERID 9 147 #define CS_OFFSET 10 148 #define CS_DRIFT 11 149 #define CS_JITTER 12 150 #define CS_ERROR 13 151 #define CS_CLOCK 14 152 #define CS_PROCESSOR 15 153 #define CS_SYSTEM 16 154 #define CS_VERSION 17 155 #define CS_STABIL 18 156 #define CS_VARLIST 19 157 #define CS_TAI 20 158 #define CS_LEAPTAB 21 159 #define CS_LEAPEND 22 160 #define CS_RATE 23 161 #define CS_MRU_ENABLED 24 162 #define CS_MRU_DEPTH 25 163 #define CS_MRU_DEEPEST 26 164 #define CS_MRU_MINDEPTH 27 165 #define CS_MRU_MAXAGE 28 166 #define CS_MRU_MAXDEPTH 29 167 #define CS_MRU_MEM 30 168 #define CS_MRU_MAXMEM 31 169 #define CS_SS_UPTIME 32 170 #define CS_SS_RESET 33 171 #define CS_SS_RECEIVED 34 172 #define CS_SS_THISVER 35 173 #define CS_SS_OLDVER 36 174 #define CS_SS_BADFORMAT 37 175 #define CS_SS_BADAUTH 38 176 #define CS_SS_DECLINED 39 177 #define CS_SS_RESTRICTED 40 178 #define CS_SS_LIMITED 41 179 #define CS_SS_KODSENT 42 180 #define CS_SS_PROCESSED 43 181 #define CS_SS_LAMPORT 44 182 #define CS_SS_TSROUNDING 45 183 #define CS_PEERADR 46 184 #define CS_PEERMODE 47 185 #define CS_BCASTDELAY 48 186 #define CS_AUTHDELAY 49 187 #define CS_AUTHKEYS 50 188 #define CS_AUTHFREEK 51 189 #define CS_AUTHKLOOKUPS 52 190 #define CS_AUTHKNOTFOUND 53 191 #define CS_AUTHKUNCACHED 54 192 #define CS_AUTHKEXPIRED 55 193 #define CS_AUTHENCRYPTS 56 194 #define CS_AUTHDECRYPTS 57 195 #define CS_AUTHRESET 58 196 #define CS_K_OFFSET 59 197 #define CS_K_FREQ 60 198 #define CS_K_MAXERR 61 199 #define CS_K_ESTERR 62 200 #define CS_K_STFLAGS 63 201 #define CS_K_TIMECONST 64 202 #define CS_K_PRECISION 65 203 #define CS_K_FREQTOL 66 204 #define CS_K_PPS_FREQ 67 205 #define CS_K_PPS_STABIL 68 206 #define CS_K_PPS_JITTER 69 207 #define CS_K_PPS_CALIBDUR 70 208 #define CS_K_PPS_CALIBS 71 209 #define CS_K_PPS_CALIBERRS 72 210 #define CS_K_PPS_JITEXC 73 211 #define CS_K_PPS_STBEXC 74 212 #define CS_KERN_FIRST CS_K_OFFSET 213 #define CS_KERN_LAST CS_K_PPS_STBEXC 214 #define CS_IOSTATS_RESET 75 215 #define CS_TOTAL_RBUF 76 216 #define CS_FREE_RBUF 77 217 #define CS_USED_RBUF 78 218 #define CS_RBUF_LOWATER 79 219 #define CS_IO_DROPPED 80 220 #define CS_IO_IGNORED 81 221 #define CS_IO_RECEIVED 82 222 #define CS_IO_SENT 83 223 #define CS_IO_SENDFAILED 84 224 #define CS_IO_WAKEUPS 85 225 #define CS_IO_GOODWAKEUPS 86 226 #define CS_TIMERSTATS_RESET 87 227 #define CS_TIMER_OVERRUNS 88 228 #define CS_TIMER_XMTS 89 229 #define CS_FUZZ 90 230 #define CS_WANDER_THRESH 91 231 #define CS_LEAPSMEARINTV 92 232 #define CS_LEAPSMEAROFFS 93 233 #define CS_MAX_NOAUTOKEY CS_LEAPSMEAROFFS 234 #ifdef AUTOKEY 235 #define CS_FLAGS (1 + CS_MAX_NOAUTOKEY) 236 #define CS_HOST (2 + CS_MAX_NOAUTOKEY) 237 #define CS_PUBLIC (3 + CS_MAX_NOAUTOKEY) 238 #define CS_CERTIF (4 + CS_MAX_NOAUTOKEY) 239 #define CS_SIGNATURE (5 + CS_MAX_NOAUTOKEY) 240 #define CS_REVTIME (6 + CS_MAX_NOAUTOKEY) 241 #define CS_IDENT (7 + CS_MAX_NOAUTOKEY) 242 #define CS_DIGEST (8 + CS_MAX_NOAUTOKEY) 243 #define CS_MAXCODE CS_DIGEST 244 #else /* !AUTOKEY follows */ 245 #define CS_MAXCODE CS_MAX_NOAUTOKEY 246 #endif /* !AUTOKEY */ 247 248 /* 249 * Peer variables we understand 250 */ 251 #define CP_CONFIG 1 252 #define CP_AUTHENABLE 2 253 #define CP_AUTHENTIC 3 254 #define CP_SRCADR 4 255 #define CP_SRCPORT 5 256 #define CP_DSTADR 6 257 #define CP_DSTPORT 7 258 #define CP_LEAP 8 259 #define CP_HMODE 9 260 #define CP_STRATUM 10 261 #define CP_PPOLL 11 262 #define CP_HPOLL 12 263 #define CP_PRECISION 13 264 #define CP_ROOTDELAY 14 265 #define CP_ROOTDISPERSION 15 266 #define CP_REFID 16 267 #define CP_REFTIME 17 268 #define CP_ORG 18 269 #define CP_REC 19 270 #define CP_XMT 20 271 #define CP_REACH 21 272 #define CP_UNREACH 22 273 #define CP_TIMER 23 274 #define CP_DELAY 24 275 #define CP_OFFSET 25 276 #define CP_JITTER 26 277 #define CP_DISPERSION 27 278 #define CP_KEYID 28 279 #define CP_FILTDELAY 29 280 #define CP_FILTOFFSET 30 281 #define CP_PMODE 31 282 #define CP_RECEIVED 32 283 #define CP_SENT 33 284 #define CP_FILTERROR 34 285 #define CP_FLASH 35 286 #define CP_TTL 36 287 #define CP_VARLIST 37 288 #define CP_IN 38 289 #define CP_OUT 39 290 #define CP_RATE 40 291 #define CP_BIAS 41 292 #define CP_SRCHOST 42 293 #define CP_TIMEREC 43 294 #define CP_TIMEREACH 44 295 #define CP_BADAUTH 45 296 #define CP_BOGUSORG 46 297 #define CP_OLDPKT 47 298 #define CP_SELDISP 48 299 #define CP_SELBROKEN 49 300 #define CP_CANDIDATE 50 301 #define CP_MAX_NOAUTOKEY CP_CANDIDATE 302 #ifdef AUTOKEY 303 #define CP_FLAGS (1 + CP_MAX_NOAUTOKEY) 304 #define CP_HOST (2 + CP_MAX_NOAUTOKEY) 305 #define CP_VALID (3 + CP_MAX_NOAUTOKEY) 306 #define CP_INITSEQ (4 + CP_MAX_NOAUTOKEY) 307 #define CP_INITKEY (5 + CP_MAX_NOAUTOKEY) 308 #define CP_INITTSP (6 + CP_MAX_NOAUTOKEY) 309 #define CP_SIGNATURE (7 + CP_MAX_NOAUTOKEY) 310 #define CP_IDENT (8 + CP_MAX_NOAUTOKEY) 311 #define CP_MAXCODE CP_IDENT 312 #else /* !AUTOKEY follows */ 313 #define CP_MAXCODE CP_MAX_NOAUTOKEY 314 #endif /* !AUTOKEY */ 315 316 /* 317 * Clock variables we understand 318 */ 319 #define CC_TYPE 1 320 #define CC_TIMECODE 2 321 #define CC_POLL 3 322 #define CC_NOREPLY 4 323 #define CC_BADFORMAT 5 324 #define CC_BADDATA 6 325 #define CC_FUDGETIME1 7 326 #define CC_FUDGETIME2 8 327 #define CC_FUDGEVAL1 9 328 #define CC_FUDGEVAL2 10 329 #define CC_FLAGS 11 330 #define CC_DEVICE 12 331 #define CC_VARLIST 13 332 #define CC_MAXCODE CC_VARLIST 333 334 /* 335 * System variable values. The array can be indexed by the variable 336 * index to find the textual name. 337 */ 338 static const struct ctl_var sys_var[] = { 339 { 0, PADDING, "" }, /* 0 */ 340 { CS_LEAP, RW, "leap" }, /* 1 */ 341 { CS_STRATUM, RO, "stratum" }, /* 2 */ 342 { CS_PRECISION, RO, "precision" }, /* 3 */ 343 { CS_ROOTDELAY, RO, "rootdelay" }, /* 4 */ 344 { CS_ROOTDISPERSION, RO, "rootdisp" }, /* 5 */ 345 { CS_REFID, RO, "refid" }, /* 6 */ 346 { CS_REFTIME, RO, "reftime" }, /* 7 */ 347 { CS_POLL, RO, "tc" }, /* 8 */ 348 { CS_PEERID, RO, "peer" }, /* 9 */ 349 { CS_OFFSET, RO, "offset" }, /* 10 */ 350 { CS_DRIFT, RO, "frequency" }, /* 11 */ 351 { CS_JITTER, RO, "sys_jitter" }, /* 12 */ 352 { CS_ERROR, RO, "clk_jitter" }, /* 13 */ 353 { CS_CLOCK, RO, "clock" }, /* 14 */ 354 { CS_PROCESSOR, RO, "processor" }, /* 15 */ 355 { CS_SYSTEM, RO, "system" }, /* 16 */ 356 { CS_VERSION, RO, "version" }, /* 17 */ 357 { CS_STABIL, RO, "clk_wander" }, /* 18 */ 358 { CS_VARLIST, RO, "sys_var_list" }, /* 19 */ 359 { CS_TAI, RO, "tai" }, /* 20 */ 360 { CS_LEAPTAB, RO, "leapsec" }, /* 21 */ 361 { CS_LEAPEND, RO, "expire" }, /* 22 */ 362 { CS_RATE, RO, "mintc" }, /* 23 */ 363 { CS_MRU_ENABLED, RO, "mru_enabled" }, /* 24 */ 364 { CS_MRU_DEPTH, RO, "mru_depth" }, /* 25 */ 365 { CS_MRU_DEEPEST, RO, "mru_deepest" }, /* 26 */ 366 { CS_MRU_MINDEPTH, RO, "mru_mindepth" }, /* 27 */ 367 { CS_MRU_MAXAGE, RO, "mru_maxage" }, /* 28 */ 368 { CS_MRU_MAXDEPTH, RO, "mru_maxdepth" }, /* 29 */ 369 { CS_MRU_MEM, RO, "mru_mem" }, /* 30 */ 370 { CS_MRU_MAXMEM, RO, "mru_maxmem" }, /* 31 */ 371 { CS_SS_UPTIME, RO, "ss_uptime" }, /* 32 */ 372 { CS_SS_RESET, RO, "ss_reset" }, /* 33 */ 373 { CS_SS_RECEIVED, RO, "ss_received" }, /* 34 */ 374 { CS_SS_THISVER, RO, "ss_thisver" }, /* 35 */ 375 { CS_SS_OLDVER, RO, "ss_oldver" }, /* 36 */ 376 { CS_SS_BADFORMAT, RO, "ss_badformat" }, /* 37 */ 377 { CS_SS_BADAUTH, RO, "ss_badauth" }, /* 38 */ 378 { CS_SS_DECLINED, RO, "ss_declined" }, /* 39 */ 379 { CS_SS_RESTRICTED, RO, "ss_restricted" }, /* 40 */ 380 { CS_SS_LIMITED, RO, "ss_limited" }, /* 41 */ 381 { CS_SS_KODSENT, RO, "ss_kodsent" }, /* 42 */ 382 { CS_SS_PROCESSED, RO, "ss_processed" }, /* 43 */ 383 { CS_SS_LAMPORT, RO, "ss_lamport" }, /* 44 */ 384 { CS_SS_TSROUNDING, RO, "ss_tsrounding" }, /* 45 */ 385 { CS_PEERADR, RO, "peeradr" }, /* 46 */ 386 { CS_PEERMODE, RO, "peermode" }, /* 47 */ 387 { CS_BCASTDELAY, RO, "bcastdelay" }, /* 48 */ 388 { CS_AUTHDELAY, RO, "authdelay" }, /* 49 */ 389 { CS_AUTHKEYS, RO, "authkeys" }, /* 50 */ 390 { CS_AUTHFREEK, RO, "authfreek" }, /* 51 */ 391 { CS_AUTHKLOOKUPS, RO, "authklookups" }, /* 52 */ 392 { CS_AUTHKNOTFOUND, RO, "authknotfound" }, /* 53 */ 393 { CS_AUTHKUNCACHED, RO, "authkuncached" }, /* 54 */ 394 { CS_AUTHKEXPIRED, RO, "authkexpired" }, /* 55 */ 395 { CS_AUTHENCRYPTS, RO, "authencrypts" }, /* 56 */ 396 { CS_AUTHDECRYPTS, RO, "authdecrypts" }, /* 57 */ 397 { CS_AUTHRESET, RO, "authreset" }, /* 58 */ 398 { CS_K_OFFSET, RO, "koffset" }, /* 59 */ 399 { CS_K_FREQ, RO, "kfreq" }, /* 60 */ 400 { CS_K_MAXERR, RO, "kmaxerr" }, /* 61 */ 401 { CS_K_ESTERR, RO, "kesterr" }, /* 62 */ 402 { CS_K_STFLAGS, RO, "kstflags" }, /* 63 */ 403 { CS_K_TIMECONST, RO, "ktimeconst" }, /* 64 */ 404 { CS_K_PRECISION, RO, "kprecis" }, /* 65 */ 405 { CS_K_FREQTOL, RO, "kfreqtol" }, /* 66 */ 406 { CS_K_PPS_FREQ, RO, "kppsfreq" }, /* 67 */ 407 { CS_K_PPS_STABIL, RO, "kppsstab" }, /* 68 */ 408 { CS_K_PPS_JITTER, RO, "kppsjitter" }, /* 69 */ 409 { CS_K_PPS_CALIBDUR, RO, "kppscalibdur" }, /* 70 */ 410 { CS_K_PPS_CALIBS, RO, "kppscalibs" }, /* 71 */ 411 { CS_K_PPS_CALIBERRS, RO, "kppscaliberrs" }, /* 72 */ 412 { CS_K_PPS_JITEXC, RO, "kppsjitexc" }, /* 73 */ 413 { CS_K_PPS_STBEXC, RO, "kppsstbexc" }, /* 74 */ 414 { CS_IOSTATS_RESET, RO, "iostats_reset" }, /* 75 */ 415 { CS_TOTAL_RBUF, RO, "total_rbuf" }, /* 76 */ 416 { CS_FREE_RBUF, RO, "free_rbuf" }, /* 77 */ 417 { CS_USED_RBUF, RO, "used_rbuf" }, /* 78 */ 418 { CS_RBUF_LOWATER, RO, "rbuf_lowater" }, /* 79 */ 419 { CS_IO_DROPPED, RO, "io_dropped" }, /* 80 */ 420 { CS_IO_IGNORED, RO, "io_ignored" }, /* 81 */ 421 { CS_IO_RECEIVED, RO, "io_received" }, /* 82 */ 422 { CS_IO_SENT, RO, "io_sent" }, /* 83 */ 423 { CS_IO_SENDFAILED, RO, "io_sendfailed" }, /* 84 */ 424 { CS_IO_WAKEUPS, RO, "io_wakeups" }, /* 85 */ 425 { CS_IO_GOODWAKEUPS, RO, "io_goodwakeups" }, /* 86 */ 426 { CS_TIMERSTATS_RESET, RO, "timerstats_reset" },/* 87 */ 427 { CS_TIMER_OVERRUNS, RO, "timer_overruns" }, /* 88 */ 428 { CS_TIMER_XMTS, RO, "timer_xmts" }, /* 89 */ 429 { CS_FUZZ, RO, "fuzz" }, /* 90 */ 430 { CS_WANDER_THRESH, RO, "clk_wander_threshold" }, /* 91 */ 431 432 { CS_LEAPSMEARINTV, RO, "leapsmearinterval" }, /* 92 */ 433 { CS_LEAPSMEAROFFS, RO, "leapsmearoffset" }, /* 93 */ 434 435 #ifdef AUTOKEY 436 { CS_FLAGS, RO, "flags" }, /* 1 + CS_MAX_NOAUTOKEY */ 437 { CS_HOST, RO, "host" }, /* 2 + CS_MAX_NOAUTOKEY */ 438 { CS_PUBLIC, RO, "update" }, /* 3 + CS_MAX_NOAUTOKEY */ 439 { CS_CERTIF, RO, "cert" }, /* 4 + CS_MAX_NOAUTOKEY */ 440 { CS_SIGNATURE, RO, "signature" }, /* 5 + CS_MAX_NOAUTOKEY */ 441 { CS_REVTIME, RO, "until" }, /* 6 + CS_MAX_NOAUTOKEY */ 442 { CS_IDENT, RO, "ident" }, /* 7 + CS_MAX_NOAUTOKEY */ 443 { CS_DIGEST, RO, "digest" }, /* 8 + CS_MAX_NOAUTOKEY */ 444 #endif /* AUTOKEY */ 445 { 0, EOV, "" } /* 94/102 */ 446 }; 447 448 static struct ctl_var *ext_sys_var = NULL; 449 450 /* 451 * System variables we print by default (in fuzzball order, 452 * more-or-less) 453 */ 454 static const u_char def_sys_var[] = { 455 CS_VERSION, 456 CS_PROCESSOR, 457 CS_SYSTEM, 458 CS_LEAP, 459 CS_STRATUM, 460 CS_PRECISION, 461 CS_ROOTDELAY, 462 CS_ROOTDISPERSION, 463 CS_REFID, 464 CS_REFTIME, 465 CS_CLOCK, 466 CS_PEERID, 467 CS_POLL, 468 CS_RATE, 469 CS_OFFSET, 470 CS_DRIFT, 471 CS_JITTER, 472 CS_ERROR, 473 CS_STABIL, 474 CS_TAI, 475 CS_LEAPTAB, 476 CS_LEAPEND, 477 CS_LEAPSMEARINTV, 478 CS_LEAPSMEAROFFS, 479 #ifdef AUTOKEY 480 CS_HOST, 481 CS_IDENT, 482 CS_FLAGS, 483 CS_DIGEST, 484 CS_SIGNATURE, 485 CS_PUBLIC, 486 CS_CERTIF, 487 #endif /* AUTOKEY */ 488 0 489 }; 490 491 492 /* 493 * Peer variable list 494 */ 495 static const struct ctl_var peer_var[] = { 496 { 0, PADDING, "" }, /* 0 */ 497 { CP_CONFIG, RO, "config" }, /* 1 */ 498 { CP_AUTHENABLE, RO, "authenable" }, /* 2 */ 499 { CP_AUTHENTIC, RO, "authentic" }, /* 3 */ 500 { CP_SRCADR, RO, "srcadr" }, /* 4 */ 501 { CP_SRCPORT, RO, "srcport" }, /* 5 */ 502 { CP_DSTADR, RO, "dstadr" }, /* 6 */ 503 { CP_DSTPORT, RO, "dstport" }, /* 7 */ 504 { CP_LEAP, RO, "leap" }, /* 8 */ 505 { CP_HMODE, RO, "hmode" }, /* 9 */ 506 { CP_STRATUM, RO, "stratum" }, /* 10 */ 507 { CP_PPOLL, RO, "ppoll" }, /* 11 */ 508 { CP_HPOLL, RO, "hpoll" }, /* 12 */ 509 { CP_PRECISION, RO, "precision" }, /* 13 */ 510 { CP_ROOTDELAY, RO, "rootdelay" }, /* 14 */ 511 { CP_ROOTDISPERSION, RO, "rootdisp" }, /* 15 */ 512 { CP_REFID, RO, "refid" }, /* 16 */ 513 { CP_REFTIME, RO, "reftime" }, /* 17 */ 514 { CP_ORG, RO, "org" }, /* 18 */ 515 { CP_REC, RO, "rec" }, /* 19 */ 516 { CP_XMT, RO, "xleave" }, /* 20 */ 517 { CP_REACH, RO, "reach" }, /* 21 */ 518 { CP_UNREACH, RO, "unreach" }, /* 22 */ 519 { CP_TIMER, RO, "timer" }, /* 23 */ 520 { CP_DELAY, RO, "delay" }, /* 24 */ 521 { CP_OFFSET, RO, "offset" }, /* 25 */ 522 { CP_JITTER, RO, "jitter" }, /* 26 */ 523 { CP_DISPERSION, RO, "dispersion" }, /* 27 */ 524 { CP_KEYID, RO, "keyid" }, /* 28 */ 525 { CP_FILTDELAY, RO, "filtdelay" }, /* 29 */ 526 { CP_FILTOFFSET, RO, "filtoffset" }, /* 30 */ 527 { CP_PMODE, RO, "pmode" }, /* 31 */ 528 { CP_RECEIVED, RO, "received"}, /* 32 */ 529 { CP_SENT, RO, "sent" }, /* 33 */ 530 { CP_FILTERROR, RO, "filtdisp" }, /* 34 */ 531 { CP_FLASH, RO, "flash" }, /* 35 */ 532 { CP_TTL, RO, "ttl" }, /* 36 */ 533 { CP_VARLIST, RO, "peer_var_list" }, /* 37 */ 534 { CP_IN, RO, "in" }, /* 38 */ 535 { CP_OUT, RO, "out" }, /* 39 */ 536 { CP_RATE, RO, "headway" }, /* 40 */ 537 { CP_BIAS, RO, "bias" }, /* 41 */ 538 { CP_SRCHOST, RO, "srchost" }, /* 42 */ 539 { CP_TIMEREC, RO, "timerec" }, /* 43 */ 540 { CP_TIMEREACH, RO, "timereach" }, /* 44 */ 541 { CP_BADAUTH, RO, "badauth" }, /* 45 */ 542 { CP_BOGUSORG, RO, "bogusorg" }, /* 46 */ 543 { CP_OLDPKT, RO, "oldpkt" }, /* 47 */ 544 { CP_SELDISP, RO, "seldisp" }, /* 48 */ 545 { CP_SELBROKEN, RO, "selbroken" }, /* 49 */ 546 { CP_CANDIDATE, RO, "candidate" }, /* 50 */ 547 #ifdef AUTOKEY 548 { CP_FLAGS, RO, "flags" }, /* 1 + CP_MAX_NOAUTOKEY */ 549 { CP_HOST, RO, "host" }, /* 2 + CP_MAX_NOAUTOKEY */ 550 { CP_VALID, RO, "valid" }, /* 3 + CP_MAX_NOAUTOKEY */ 551 { CP_INITSEQ, RO, "initsequence" }, /* 4 + CP_MAX_NOAUTOKEY */ 552 { CP_INITKEY, RO, "initkey" }, /* 5 + CP_MAX_NOAUTOKEY */ 553 { CP_INITTSP, RO, "timestamp" }, /* 6 + CP_MAX_NOAUTOKEY */ 554 { CP_SIGNATURE, RO, "signature" }, /* 7 + CP_MAX_NOAUTOKEY */ 555 { CP_IDENT, RO, "ident" }, /* 8 + CP_MAX_NOAUTOKEY */ 556 #endif /* AUTOKEY */ 557 { 0, EOV, "" } /* 50/58 */ 558 }; 559 560 561 /* 562 * Peer variables we print by default 563 */ 564 static const u_char def_peer_var[] = { 565 CP_SRCADR, 566 CP_SRCPORT, 567 CP_SRCHOST, 568 CP_DSTADR, 569 CP_DSTPORT, 570 CP_OUT, 571 CP_IN, 572 CP_LEAP, 573 CP_STRATUM, 574 CP_PRECISION, 575 CP_ROOTDELAY, 576 CP_ROOTDISPERSION, 577 CP_REFID, 578 CP_REFTIME, 579 CP_REC, 580 CP_REACH, 581 CP_UNREACH, 582 CP_HMODE, 583 CP_PMODE, 584 CP_HPOLL, 585 CP_PPOLL, 586 CP_RATE, 587 CP_FLASH, 588 CP_KEYID, 589 CP_TTL, 590 CP_OFFSET, 591 CP_DELAY, 592 CP_DISPERSION, 593 CP_JITTER, 594 CP_XMT, 595 CP_BIAS, 596 CP_FILTDELAY, 597 CP_FILTOFFSET, 598 CP_FILTERROR, 599 #ifdef AUTOKEY 600 CP_HOST, 601 CP_FLAGS, 602 CP_SIGNATURE, 603 CP_VALID, 604 CP_INITSEQ, 605 CP_IDENT, 606 #endif /* AUTOKEY */ 607 0 608 }; 609 610 611 #ifdef REFCLOCK 612 /* 613 * Clock variable list 614 */ 615 static const struct ctl_var clock_var[] = { 616 { 0, PADDING, "" }, /* 0 */ 617 { CC_TYPE, RO, "type" }, /* 1 */ 618 { CC_TIMECODE, RO, "timecode" }, /* 2 */ 619 { CC_POLL, RO, "poll" }, /* 3 */ 620 { CC_NOREPLY, RO, "noreply" }, /* 4 */ 621 { CC_BADFORMAT, RO, "badformat" }, /* 5 */ 622 { CC_BADDATA, RO, "baddata" }, /* 6 */ 623 { CC_FUDGETIME1, RO, "fudgetime1" }, /* 7 */ 624 { CC_FUDGETIME2, RO, "fudgetime2" }, /* 8 */ 625 { CC_FUDGEVAL1, RO, "stratum" }, /* 9 */ 626 { CC_FUDGEVAL2, RO, "refid" }, /* 10 */ 627 { CC_FLAGS, RO, "flags" }, /* 11 */ 628 { CC_DEVICE, RO, "device" }, /* 12 */ 629 { CC_VARLIST, RO, "clock_var_list" }, /* 13 */ 630 { 0, EOV, "" } /* 14 */ 631 }; 632 633 634 /* 635 * Clock variables printed by default 636 */ 637 static const u_char def_clock_var[] = { 638 CC_DEVICE, 639 CC_TYPE, /* won't be output if device = known */ 640 CC_TIMECODE, 641 CC_POLL, 642 CC_NOREPLY, 643 CC_BADFORMAT, 644 CC_BADDATA, 645 CC_FUDGETIME1, 646 CC_FUDGETIME2, 647 CC_FUDGEVAL1, 648 CC_FUDGEVAL2, 649 CC_FLAGS, 650 0 651 }; 652 #endif 653 654 /* 655 * MRU string constants shared by send_mru_entry() and read_mru_list(). 656 */ 657 static const char addr_fmt[] = "addr.%d"; 658 static const char last_fmt[] = "last.%d"; 659 660 /* 661 * System and processor definitions. 662 */ 663 #ifndef HAVE_UNAME 664 # ifndef STR_SYSTEM 665 # define STR_SYSTEM "UNIX" 666 # endif 667 # ifndef STR_PROCESSOR 668 # define STR_PROCESSOR "unknown" 669 # endif 670 671 static const char str_system[] = STR_SYSTEM; 672 static const char str_processor[] = STR_PROCESSOR; 673 #else 674 # include <sys/utsname.h> 675 static struct utsname utsnamebuf; 676 #endif /* HAVE_UNAME */ 677 678 /* 679 * Trap structures. We only allow a few of these, and send a copy of 680 * each async message to each live one. Traps time out after an hour, it 681 * is up to the trap receipient to keep resetting it to avoid being 682 * timed out. 683 */ 684 /* ntp_request.c */ 685 struct ctl_trap ctl_traps[CTL_MAXTRAPS]; 686 int num_ctl_traps; 687 688 /* 689 * Type bits, for ctlsettrap() call. 690 */ 691 #define TRAP_TYPE_CONFIG 0 /* used by configuration code */ 692 #define TRAP_TYPE_PRIO 1 /* priority trap */ 693 #define TRAP_TYPE_NONPRIO 2 /* nonpriority trap */ 694 695 696 /* 697 * List relating reference clock types to control message time sources. 698 * Index by the reference clock type. This list will only be used iff 699 * the reference clock driver doesn't set peer->sstclktype to something 700 * different than CTL_SST_TS_UNSPEC. 701 */ 702 #ifdef REFCLOCK 703 static const u_char clocktypes[] = { 704 CTL_SST_TS_NTP, /* REFCLK_NONE (0) */ 705 CTL_SST_TS_LOCAL, /* REFCLK_LOCALCLOCK (1) */ 706 CTL_SST_TS_UHF, /* deprecated REFCLK_GPS_TRAK (2) */ 707 CTL_SST_TS_HF, /* REFCLK_WWV_PST (3) */ 708 CTL_SST_TS_LF, /* REFCLK_WWVB_SPECTRACOM (4) */ 709 CTL_SST_TS_UHF, /* REFCLK_TRUETIME (5) */ 710 CTL_SST_TS_UHF, /* REFCLK_IRIG_AUDIO (6) */ 711 CTL_SST_TS_HF, /* REFCLK_CHU (7) */ 712 CTL_SST_TS_LF, /* REFCLOCK_PARSE (default) (8) */ 713 CTL_SST_TS_LF, /* REFCLK_GPS_MX4200 (9) */ 714 CTL_SST_TS_UHF, /* REFCLK_GPS_AS2201 (10) */ 715 CTL_SST_TS_UHF, /* REFCLK_GPS_ARBITER (11) */ 716 CTL_SST_TS_UHF, /* REFCLK_IRIG_TPRO (12) */ 717 CTL_SST_TS_ATOM, /* REFCLK_ATOM_LEITCH (13) */ 718 CTL_SST_TS_LF, /* deprecated REFCLK_MSF_EES (14) */ 719 CTL_SST_TS_NTP, /* not used (15) */ 720 CTL_SST_TS_UHF, /* REFCLK_IRIG_BANCOMM (16) */ 721 CTL_SST_TS_UHF, /* REFCLK_GPS_DATU (17) */ 722 CTL_SST_TS_TELEPHONE, /* REFCLK_NIST_ACTS (18) */ 723 CTL_SST_TS_HF, /* REFCLK_WWV_HEATH (19) */ 724 CTL_SST_TS_UHF, /* REFCLK_GPS_NMEA (20) */ 725 CTL_SST_TS_UHF, /* REFCLK_GPS_VME (21) */ 726 CTL_SST_TS_ATOM, /* REFCLK_ATOM_PPS (22) */ 727 CTL_SST_TS_NTP, /* not used (23) */ 728 CTL_SST_TS_NTP, /* not used (24) */ 729 CTL_SST_TS_NTP, /* not used (25) */ 730 CTL_SST_TS_UHF, /* REFCLK_GPS_HP (26) */ 731 CTL_SST_TS_LF, /* REFCLK_ARCRON_MSF (27) */ 732 CTL_SST_TS_UHF, /* REFCLK_SHM (28) */ 733 CTL_SST_TS_UHF, /* REFCLK_PALISADE (29) */ 734 CTL_SST_TS_UHF, /* REFCLK_ONCORE (30) */ 735 CTL_SST_TS_UHF, /* REFCLK_JUPITER (31) */ 736 CTL_SST_TS_LF, /* REFCLK_CHRONOLOG (32) */ 737 CTL_SST_TS_LF, /* REFCLK_DUMBCLOCK (33) */ 738 CTL_SST_TS_LF, /* REFCLK_ULINK (34) */ 739 CTL_SST_TS_LF, /* REFCLK_PCF (35) */ 740 CTL_SST_TS_HF, /* REFCLK_WWV (36) */ 741 CTL_SST_TS_LF, /* REFCLK_FG (37) */ 742 CTL_SST_TS_UHF, /* REFCLK_HOPF_SERIAL (38) */ 743 CTL_SST_TS_UHF, /* REFCLK_HOPF_PCI (39) */ 744 CTL_SST_TS_LF, /* REFCLK_JJY (40) */ 745 CTL_SST_TS_UHF, /* REFCLK_TT560 (41) */ 746 CTL_SST_TS_UHF, /* REFCLK_ZYFER (42) */ 747 CTL_SST_TS_UHF, /* REFCLK_RIPENCC (43) */ 748 CTL_SST_TS_UHF, /* REFCLK_NEOCLOCK4X (44) */ 749 CTL_SST_TS_UHF, /* REFCLK_TSYNCPCI (45) */ 750 CTL_SST_TS_UHF /* REFCLK_GPSDJSON (46) */ 751 }; 752 #endif /* REFCLOCK */ 753 754 755 /* 756 * Keyid used for authenticating write requests. 757 */ 758 keyid_t ctl_auth_keyid; 759 760 /* 761 * We keep track of the last error reported by the system internally 762 */ 763 static u_char ctl_sys_last_event; 764 static u_char ctl_sys_num_events; 765 766 767 /* 768 * Statistic counters to keep track of requests and responses. 769 */ 770 u_long ctltimereset; /* time stats reset */ 771 u_long numctlreq; /* number of requests we've received */ 772 u_long numctlbadpkts; /* number of bad control packets */ 773 u_long numctlresponses; /* number of resp packets sent with data */ 774 u_long numctlfrags; /* number of fragments sent */ 775 u_long numctlerrors; /* number of error responses sent */ 776 u_long numctltooshort; /* number of too short input packets */ 777 u_long numctlinputresp; /* number of responses on input */ 778 u_long numctlinputfrag; /* number of fragments on input */ 779 u_long numctlinputerr; /* number of input pkts with err bit set */ 780 u_long numctlbadoffset; /* number of input pkts with nonzero offset */ 781 u_long numctlbadversion; /* number of input pkts with unknown version */ 782 u_long numctldatatooshort; /* data too short for count */ 783 u_long numctlbadop; /* bad op code found in packet */ 784 u_long numasyncmsgs; /* number of async messages we've sent */ 785 786 /* 787 * Response packet used by these routines. Also some state information 788 * so that we can handle packet formatting within a common set of 789 * subroutines. Note we try to enter data in place whenever possible, 790 * but the need to set the more bit correctly means we occasionally 791 * use the extra buffer and copy. 792 */ 793 static struct ntp_control rpkt; 794 static u_char res_version; 795 static u_char res_opcode; 796 static associd_t res_associd; 797 static u_short res_frags; /* datagrams in this response */ 798 static int res_offset; /* offset of payload in response */ 799 static u_char * datapt; 800 static u_char * dataend; 801 static int datalinelen; 802 static int datasent; /* flag to avoid initial ", " */ 803 static int datanotbinflag; 804 static sockaddr_u *rmt_addr; 805 static struct interface *lcl_inter; 806 807 static u_char res_authenticate; 808 static u_char res_authokay; 809 static keyid_t res_keyid; 810 811 #define MAXDATALINELEN (72) 812 813 static u_char res_async; /* sending async trap response? */ 814 815 /* 816 * Pointers for saving state when decoding request packets 817 */ 818 static char *reqpt; 819 static char *reqend; 820 821 #ifndef MIN 822 #define MIN(a, b) (((a) <= (b)) ? (a) : (b)) 823 #endif 824 825 /* 826 * init_control - initialize request data 827 */ 828 void 829 init_control(void) 830 { 831 size_t i; 832 833 #ifdef HAVE_UNAME 834 uname(&utsnamebuf); 835 #endif /* HAVE_UNAME */ 836 837 ctl_clr_stats(); 838 839 ctl_auth_keyid = 0; 840 ctl_sys_last_event = EVNT_UNSPEC; 841 ctl_sys_num_events = 0; 842 843 num_ctl_traps = 0; 844 for (i = 0; i < COUNTOF(ctl_traps); i++) 845 ctl_traps[i].tr_flags = 0; 846 } 847 848 849 /* 850 * ctl_error - send an error response for the current request 851 */ 852 static void 853 ctl_error( 854 u_char errcode 855 ) 856 { 857 size_t maclen; 858 859 numctlerrors++; 860 DPRINTF(3, ("sending control error %u\n", errcode)); 861 862 /* 863 * Fill in the fields. We assume rpkt.sequence and rpkt.associd 864 * have already been filled in. 865 */ 866 rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR | 867 (res_opcode & CTL_OP_MASK); 868 rpkt.status = htons((u_short)(errcode << 8) & 0xff00); 869 rpkt.count = 0; 870 871 /* 872 * send packet and bump counters 873 */ 874 if (res_authenticate && sys_authenticate) { 875 maclen = authencrypt(res_keyid, (u_int32 *)&rpkt, 876 CTL_HEADER_LEN); 877 sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt, 878 CTL_HEADER_LEN + maclen); 879 } else 880 sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt, 881 CTL_HEADER_LEN); 882 } 883 884 int/*BOOL*/ 885 is_safe_filename(const char * name) 886 { 887 /* We need a strict validation of filenames we should write: The 888 * daemon might run with special permissions and is remote 889 * controllable, so we better take care what we allow as file 890 * name! 891 * 892 * The first character must be digit or a letter from the ASCII 893 * base plane or a '_' ([_A-Za-z0-9]), the following characters 894 * must be from [-._+A-Za-z0-9]. 895 * 896 * We do not trust the character classification much here: Since 897 * the NTP protocol makes no provisions for UTF-8 or local code 898 * pages, we strictly require the 7bit ASCII code page. 899 * 900 * The following table is a packed bit field of 128 two-bit 901 * groups. The LSB in each group tells us if a character is 902 * acceptable at the first position, the MSB if the character is 903 * accepted at any other position. 904 * 905 * This does not ensure that the file name is syntactically 906 * correct (multiple dots will not work with VMS...) but it will 907 * exclude potential globbing bombs and directory traversal. It 908 * also rules out drive selection. (For systems that have this 909 * notion, like Windows or VMS.) 910 */ 911 static const uint32_t chclass[8] = { 912 0x00000000, 0x00000000, 913 0x28800000, 0x000FFFFF, 914 0xFFFFFFFC, 0xC03FFFFF, 915 0xFFFFFFFC, 0x003FFFFF 916 }; 917 918 u_int widx, bidx, mask; 919 if ( ! (name && *name)) 920 return FALSE; 921 922 mask = 1u; 923 while (0 != (widx = (u_char)*name++)) { 924 bidx = (widx & 15) << 1; 925 widx = widx >> 4; 926 if (widx >= sizeof(chclass)/sizeof(chclass[0])) 927 return FALSE; 928 if (0 == ((chclass[widx] >> bidx) & mask)) 929 return FALSE; 930 mask = 2u; 931 } 932 return TRUE; 933 } 934 935 936 /* 937 * save_config - Implements ntpq -c "saveconfig <filename>" 938 * Writes current configuration including any runtime 939 * changes by ntpq's :config or config-from-file 940 * 941 * Note: There should be no buffer overflow or truncation in the 942 * processing of file names -- both cause security problems. This is bit 943 * painful to code but essential here. 944 */ 945 void 946 save_config( 947 struct recvbuf *rbufp, 948 int restrict_mask 949 ) 950 { 951 /* block directory traversal by searching for characters that 952 * indicate directory components in a file path. 953 * 954 * Conceptually we should be searching for DIRSEP in filename, 955 * however Windows actually recognizes both forward and 956 * backslashes as equivalent directory separators at the API 957 * level. On POSIX systems we could allow '\\' but such 958 * filenames are tricky to manipulate from a shell, so just 959 * reject both types of slashes on all platforms. 960 */ 961 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 962 static const char * illegal_in_filename = 963 #if defined(VMS) 964 ":[]" /* do not allow drive and path components here */ 965 #elif defined(SYS_WINNT) 966 ":\\/" /* path and drive separators */ 967 #else 968 "\\/" /* separator and critical char for POSIX */ 969 #endif 970 ; 971 char reply[128]; 972 #ifdef SAVECONFIG 973 static const char savedconfig_eq[] = "savedconfig="; 974 975 /* Build a safe open mode from the available mode flags. We want 976 * to create a new file and write it in text mode (when 977 * applicable -- only Windows does this...) 978 */ 979 static const int openmode = O_CREAT | O_TRUNC | O_WRONLY 980 # if defined(O_EXCL) /* posix, vms */ 981 | O_EXCL 982 # elif defined(_O_EXCL) /* windows is alway very special... */ 983 | _O_EXCL 984 # endif 985 # if defined(_O_TEXT) /* windows, again */ 986 | _O_TEXT 987 #endif 988 ; 989 990 char filespec[128]; 991 char filename[128]; 992 char fullpath[512]; 993 char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)]; 994 time_t now; 995 int fd; 996 FILE *fptr; 997 int prc; 998 size_t reqlen; 999 #endif 1000 1001 if (RES_NOMODIFY & restrict_mask) { 1002 ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify"); 1003 ctl_flushpkt(0); 1004 NLOG(NLOG_SYSINFO) 1005 msyslog(LOG_NOTICE, 1006 "saveconfig from %s rejected due to nomodify restriction", 1007 stoa(&rbufp->recv_srcadr)); 1008 sys_restricted++; 1009 return; 1010 } 1011 1012 #ifdef SAVECONFIG 1013 if (NULL == saveconfigdir) { 1014 ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured"); 1015 ctl_flushpkt(0); 1016 NLOG(NLOG_SYSINFO) 1017 msyslog(LOG_NOTICE, 1018 "saveconfig from %s rejected, no saveconfigdir", 1019 stoa(&rbufp->recv_srcadr)); 1020 return; 1021 } 1022 1023 /* The length checking stuff gets serious. Do not assume a NUL 1024 * byte can be found, but if so, use it to calculate the needed 1025 * buffer size. If the available buffer is too short, bail out; 1026 * likewise if there is no file spec. (The latter will not 1027 * happen when using NTPQ, but there are other ways to craft a 1028 * network packet!) 1029 */ 1030 reqlen = (size_t)(reqend - reqpt); 1031 if (0 != reqlen) { 1032 char * nulpos = (char*)memchr(reqpt, 0, reqlen); 1033 if (NULL != nulpos) 1034 reqlen = (size_t)(nulpos - reqpt); 1035 } 1036 if (0 == reqlen) 1037 return; 1038 if (reqlen >= sizeof(filespec)) { 1039 ctl_printf("saveconfig exceeded maximum raw name length (%u)", 1040 (u_int)sizeof(filespec)); 1041 ctl_flushpkt(0); 1042 msyslog(LOG_NOTICE, 1043 "saveconfig exceeded maximum raw name length from %s", 1044 stoa(&rbufp->recv_srcadr)); 1045 return; 1046 } 1047 1048 /* copy data directly as we exactly know the size */ 1049 memcpy(filespec, reqpt, reqlen); 1050 filespec[reqlen] = '\0'; 1051 1052 /* 1053 * allow timestamping of the saved config filename with 1054 * strftime() format such as: 1055 * ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf" 1056 * XXX: Nice feature, but not too safe. 1057 * YYY: The check for permitted characters in file names should 1058 * weed out the worst. Let's hope 'strftime()' does not 1059 * develop pathological problems. 1060 */ 1061 time(&now); 1062 if (0 == strftime(filename, sizeof(filename), filespec, 1063 localtime(&now))) 1064 { 1065 /* 1066 * If we arrive here, 'strftime()' balked; most likely 1067 * the buffer was too short. (Or it encounterd an empty 1068 * format, or just a format that expands to an empty 1069 * string.) We try to use the original name, though this 1070 * is very likely to fail later if there are format 1071 * specs in the string. Note that truncation cannot 1072 * happen here as long as both buffers have the same 1073 * size! 1074 */ 1075 strlcpy(filename, filespec, sizeof(filename)); 1076 } 1077 1078 /* 1079 * Check the file name for sanity. This might/will rule out file 1080 * names that would be legal but problematic, and it blocks 1081 * directory traversal. 1082 */ 1083 if (!is_safe_filename(filename)) { 1084 ctl_printf("saveconfig rejects unsafe file name '%s'", 1085 filename); 1086 ctl_flushpkt(0); 1087 msyslog(LOG_NOTICE, 1088 "saveconfig rejects unsafe file name from %s", 1089 stoa(&rbufp->recv_srcadr)); 1090 return; 1091 } 1092 1093 /* 1094 * XXX: This next test may not be needed with is_safe_filename() 1095 */ 1096 1097 /* block directory/drive traversal */ 1098 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 1099 if (NULL != strpbrk(filename, illegal_in_filename)) { 1100 snprintf(reply, sizeof(reply), 1101 "saveconfig does not allow directory in filename"); 1102 ctl_putdata(reply, strlen(reply), 0); 1103 ctl_flushpkt(0); 1104 msyslog(LOG_NOTICE, 1105 "saveconfig rejects unsafe file name from %s", 1106 stoa(&rbufp->recv_srcadr)); 1107 return; 1108 } 1109 1110 /* concatenation of directory and path can cause another 1111 * truncation... 1112 */ 1113 prc = snprintf(fullpath, sizeof(fullpath), "%s%s", 1114 saveconfigdir, filename); 1115 if (prc < 0 || (size_t)prc >= sizeof(fullpath)) { 1116 ctl_printf("saveconfig exceeded maximum path length (%u)", 1117 (u_int)sizeof(fullpath)); 1118 ctl_flushpkt(0); 1119 msyslog(LOG_NOTICE, 1120 "saveconfig exceeded maximum path length from %s", 1121 stoa(&rbufp->recv_srcadr)); 1122 return; 1123 } 1124 1125 fd = open(fullpath, openmode, S_IRUSR | S_IWUSR); 1126 if (-1 == fd) 1127 fptr = NULL; 1128 else 1129 fptr = fdopen(fd, "w"); 1130 1131 if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) { 1132 ctl_printf("Unable to save configuration to file '%s': %s", 1133 filename, strerror(errno)); 1134 msyslog(LOG_ERR, 1135 "saveconfig %s from %s failed", filename, 1136 stoa(&rbufp->recv_srcadr)); 1137 } else { 1138 ctl_printf("Configuration saved to '%s'", filename); 1139 msyslog(LOG_NOTICE, 1140 "Configuration saved to '%s' (requested by %s)", 1141 fullpath, stoa(&rbufp->recv_srcadr)); 1142 /* 1143 * save the output filename in system variable 1144 * savedconfig, retrieved with: 1145 * ntpq -c "rv 0 savedconfig" 1146 * Note: the way 'savedconfig' is defined makes overflow 1147 * checks unnecessary here. 1148 */ 1149 snprintf(savedconfig, sizeof(savedconfig), "%s%s", 1150 savedconfig_eq, filename); 1151 set_sys_var(savedconfig, strlen(savedconfig) + 1, RO); 1152 } 1153 1154 if (NULL != fptr) 1155 fclose(fptr); 1156 #else /* !SAVECONFIG follows */ 1157 ctl_printf("%s", 1158 "saveconfig unavailable, configured with --disable-saveconfig"); 1159 #endif 1160 ctl_flushpkt(0); 1161 } 1162 1163 1164 /* 1165 * process_control - process an incoming control message 1166 */ 1167 void 1168 process_control( 1169 struct recvbuf *rbufp, 1170 int restrict_mask 1171 ) 1172 { 1173 struct ntp_control *pkt; 1174 int req_count; 1175 int req_data; 1176 const struct ctl_proc *cc; 1177 keyid_t *pkid; 1178 int properlen; 1179 size_t maclen; 1180 1181 DPRINTF(3, ("in process_control()\n")); 1182 1183 /* 1184 * Save the addresses for error responses 1185 */ 1186 numctlreq++; 1187 rmt_addr = &rbufp->recv_srcadr; 1188 lcl_inter = rbufp->dstadr; 1189 pkt = (struct ntp_control *)&rbufp->recv_pkt; 1190 1191 /* 1192 * If the length is less than required for the header, or 1193 * it is a response or a fragment, ignore this. 1194 */ 1195 if (rbufp->recv_length < (int)CTL_HEADER_LEN 1196 || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op 1197 || pkt->offset != 0) { 1198 DPRINTF(1, ("invalid format in control packet\n")); 1199 if (rbufp->recv_length < (int)CTL_HEADER_LEN) 1200 numctltooshort++; 1201 if (CTL_RESPONSE & pkt->r_m_e_op) 1202 numctlinputresp++; 1203 if (CTL_MORE & pkt->r_m_e_op) 1204 numctlinputfrag++; 1205 if (CTL_ERROR & pkt->r_m_e_op) 1206 numctlinputerr++; 1207 if (pkt->offset != 0) 1208 numctlbadoffset++; 1209 return; 1210 } 1211 res_version = PKT_VERSION(pkt->li_vn_mode); 1212 if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) { 1213 DPRINTF(1, ("unknown version %d in control packet\n", 1214 res_version)); 1215 numctlbadversion++; 1216 return; 1217 } 1218 1219 /* 1220 * Pull enough data from the packet to make intelligent 1221 * responses 1222 */ 1223 rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version, 1224 MODE_CONTROL); 1225 res_opcode = pkt->r_m_e_op; 1226 rpkt.sequence = pkt->sequence; 1227 rpkt.associd = pkt->associd; 1228 rpkt.status = 0; 1229 res_frags = 1; 1230 res_offset = 0; 1231 res_associd = htons(pkt->associd); 1232 res_async = FALSE; 1233 res_authenticate = FALSE; 1234 res_keyid = 0; 1235 res_authokay = FALSE; 1236 req_count = (int)ntohs(pkt->count); 1237 datanotbinflag = FALSE; 1238 datalinelen = 0; 1239 datasent = 0; 1240 datapt = rpkt.u.data; 1241 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 1242 1243 if ((rbufp->recv_length & 0x3) != 0) 1244 DPRINTF(3, ("Control packet length %d unrounded\n", 1245 rbufp->recv_length)); 1246 1247 /* 1248 * We're set up now. Make sure we've got at least enough 1249 * incoming data space to match the count. 1250 */ 1251 req_data = rbufp->recv_length - CTL_HEADER_LEN; 1252 if (req_data < req_count || rbufp->recv_length & 0x3) { 1253 ctl_error(CERR_BADFMT); 1254 numctldatatooshort++; 1255 return; 1256 } 1257 1258 properlen = req_count + CTL_HEADER_LEN; 1259 /* round up proper len to a 8 octet boundary */ 1260 1261 properlen = (properlen + 7) & ~7; 1262 maclen = rbufp->recv_length - properlen; 1263 if ((rbufp->recv_length & 3) == 0 && 1264 maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN && 1265 sys_authenticate) { 1266 res_authenticate = TRUE; 1267 pkid = (void *)((char *)pkt + properlen); 1268 res_keyid = ntohl(*pkid); 1269 DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n", 1270 rbufp->recv_length, properlen, res_keyid, 1271 maclen)); 1272 1273 if (!authistrustedip(res_keyid, &rbufp->recv_srcadr)) 1274 DPRINTF(3, ("invalid keyid %08x\n", res_keyid)); 1275 else if (authdecrypt(res_keyid, (u_int32 *)pkt, 1276 rbufp->recv_length - maclen, 1277 maclen)) { 1278 res_authokay = TRUE; 1279 DPRINTF(3, ("authenticated okay\n")); 1280 } else { 1281 res_keyid = 0; 1282 DPRINTF(3, ("authentication failed\n")); 1283 } 1284 } 1285 1286 /* 1287 * Set up translate pointers 1288 */ 1289 reqpt = (char *)pkt->u.data; 1290 reqend = reqpt + req_count; 1291 1292 /* 1293 * Look for the opcode processor 1294 */ 1295 for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) { 1296 if (cc->control_code == res_opcode) { 1297 DPRINTF(3, ("opcode %d, found command handler\n", 1298 res_opcode)); 1299 if (cc->flags == AUTH 1300 && (!res_authokay 1301 || res_keyid != ctl_auth_keyid)) { 1302 ctl_error(CERR_PERMISSION); 1303 return; 1304 } 1305 (cc->handler)(rbufp, restrict_mask); 1306 return; 1307 } 1308 } 1309 1310 /* 1311 * Can't find this one, return an error. 1312 */ 1313 numctlbadop++; 1314 ctl_error(CERR_BADOP); 1315 return; 1316 } 1317 1318 1319 /* 1320 * ctlpeerstatus - return a status word for this peer 1321 */ 1322 u_short 1323 ctlpeerstatus( 1324 register struct peer *p 1325 ) 1326 { 1327 u_short status; 1328 1329 status = p->status; 1330 if (FLAG_CONFIG & p->flags) 1331 status |= CTL_PST_CONFIG; 1332 if (p->keyid) 1333 status |= CTL_PST_AUTHENABLE; 1334 if (FLAG_AUTHENTIC & p->flags) 1335 status |= CTL_PST_AUTHENTIC; 1336 if (p->reach) 1337 status |= CTL_PST_REACH; 1338 if (MDF_TXONLY_MASK & p->cast_flags) 1339 status |= CTL_PST_BCAST; 1340 1341 return CTL_PEER_STATUS(status, p->num_events, p->last_event); 1342 } 1343 1344 1345 /* 1346 * ctlclkstatus - return a status word for this clock 1347 */ 1348 #ifdef REFCLOCK 1349 static u_short 1350 ctlclkstatus( 1351 struct refclockstat *pcs 1352 ) 1353 { 1354 return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus); 1355 } 1356 #endif 1357 1358 1359 /* 1360 * ctlsysstatus - return the system status word 1361 */ 1362 u_short 1363 ctlsysstatus(void) 1364 { 1365 register u_char this_clock; 1366 1367 this_clock = CTL_SST_TS_UNSPEC; 1368 #ifdef REFCLOCK 1369 if (sys_peer != NULL) { 1370 if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype) 1371 this_clock = sys_peer->sstclktype; 1372 else if (sys_peer->refclktype < COUNTOF(clocktypes)) 1373 this_clock = clocktypes[sys_peer->refclktype]; 1374 } 1375 #else /* REFCLOCK */ 1376 if (sys_peer != 0) 1377 this_clock = CTL_SST_TS_NTP; 1378 #endif /* REFCLOCK */ 1379 return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events, 1380 ctl_sys_last_event); 1381 } 1382 1383 1384 /* 1385 * ctl_flushpkt - write out the current packet and prepare 1386 * another if necessary. 1387 */ 1388 static void 1389 ctl_flushpkt( 1390 u_char more 1391 ) 1392 { 1393 size_t i; 1394 size_t dlen; 1395 size_t sendlen; 1396 size_t maclen; 1397 size_t totlen; 1398 keyid_t keyid; 1399 1400 dlen = datapt - rpkt.u.data; 1401 if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) { 1402 /* 1403 * Big hack, output a trailing \r\n 1404 */ 1405 *datapt++ = '\r'; 1406 *datapt++ = '\n'; 1407 dlen += 2; 1408 } 1409 sendlen = dlen + CTL_HEADER_LEN; 1410 1411 /* 1412 * Pad to a multiple of 32 bits 1413 */ 1414 while (sendlen & 0x3) { 1415 *datapt++ = '\0'; 1416 sendlen++; 1417 } 1418 1419 /* 1420 * Fill in the packet with the current info 1421 */ 1422 rpkt.r_m_e_op = CTL_RESPONSE | more | 1423 (res_opcode & CTL_OP_MASK); 1424 rpkt.count = htons((u_short)dlen); 1425 rpkt.offset = htons((u_short)res_offset); 1426 if (res_async) { 1427 for (i = 0; i < COUNTOF(ctl_traps); i++) { 1428 if (TRAP_INUSE & ctl_traps[i].tr_flags) { 1429 rpkt.li_vn_mode = 1430 PKT_LI_VN_MODE( 1431 sys_leap, 1432 ctl_traps[i].tr_version, 1433 MODE_CONTROL); 1434 rpkt.sequence = 1435 htons(ctl_traps[i].tr_sequence); 1436 sendpkt(&ctl_traps[i].tr_addr, 1437 ctl_traps[i].tr_localaddr, -4, 1438 (struct pkt *)&rpkt, sendlen); 1439 if (!more) 1440 ctl_traps[i].tr_sequence++; 1441 numasyncmsgs++; 1442 } 1443 } 1444 } else { 1445 if (res_authenticate && sys_authenticate) { 1446 totlen = sendlen; 1447 /* 1448 * If we are going to authenticate, then there 1449 * is an additional requirement that the MAC 1450 * begin on a 64 bit boundary. 1451 */ 1452 while (totlen & 7) { 1453 *datapt++ = '\0'; 1454 totlen++; 1455 } 1456 keyid = htonl(res_keyid); 1457 memcpy(datapt, &keyid, sizeof(keyid)); 1458 maclen = authencrypt(res_keyid, 1459 (u_int32 *)&rpkt, totlen); 1460 sendpkt(rmt_addr, lcl_inter, -5, 1461 (struct pkt *)&rpkt, totlen + maclen); 1462 } else { 1463 sendpkt(rmt_addr, lcl_inter, -6, 1464 (struct pkt *)&rpkt, sendlen); 1465 } 1466 if (more) 1467 numctlfrags++; 1468 else 1469 numctlresponses++; 1470 } 1471 1472 /* 1473 * Set us up for another go around. 1474 */ 1475 res_frags++; 1476 res_offset += dlen; 1477 datapt = rpkt.u.data; 1478 } 1479 1480 1481 /* -------------------------------------------------------------------- 1482 * block transfer API -- stream string/data fragments into xmit buffer 1483 * without additional copying 1484 */ 1485 1486 /* buffer descriptor: address & size of fragment 1487 * 'buf' may only be NULL when 'len' is zero! 1488 */ 1489 typedef struct { 1490 const void *buf; 1491 size_t len; 1492 } CtlMemBufT; 1493 1494 /* put ctl data in a gather-style operation */ 1495 static void 1496 ctl_putdata_ex( 1497 const CtlMemBufT * argv, 1498 size_t argc, 1499 int/*BOOL*/ bin /* set to 1 when data is binary */ 1500 ) 1501 { 1502 const char * src_ptr; 1503 size_t src_len, cur_len, add_len, argi; 1504 1505 /* text / binary preprocessing, possibly create new linefeed */ 1506 if (bin) { 1507 add_len = 0; 1508 } else { 1509 datanotbinflag = TRUE; 1510 add_len = 3; 1511 1512 if (datasent) { 1513 *datapt++ = ','; 1514 datalinelen++; 1515 1516 /* sum up total length */ 1517 for (argi = 0, src_len = 0; argi < argc; ++argi) 1518 src_len += argv[argi].len; 1519 /* possibly start a new line, assume no size_t overflow */ 1520 if ((src_len + datalinelen + 1) >= MAXDATALINELEN) { 1521 *datapt++ = '\r'; 1522 *datapt++ = '\n'; 1523 datalinelen = 0; 1524 } else { 1525 *datapt++ = ' '; 1526 datalinelen++; 1527 } 1528 } 1529 } 1530 1531 /* now stream out all buffers */ 1532 for (argi = 0; argi < argc; ++argi) { 1533 src_ptr = argv[argi].buf; 1534 src_len = argv[argi].len; 1535 1536 if ( ! (src_ptr && src_len)) 1537 continue; 1538 1539 cur_len = (size_t)(dataend - datapt); 1540 while ((src_len + add_len) > cur_len) { 1541 /* Not enough room in this one, flush it out. */ 1542 if (src_len < cur_len) 1543 cur_len = src_len; 1544 1545 memcpy(datapt, src_ptr, cur_len); 1546 datapt += cur_len; 1547 datalinelen += cur_len; 1548 1549 src_ptr += cur_len; 1550 src_len -= cur_len; 1551 1552 ctl_flushpkt(CTL_MORE); 1553 cur_len = (size_t)(dataend - datapt); 1554 } 1555 1556 memcpy(datapt, src_ptr, src_len); 1557 datapt += src_len; 1558 datalinelen += src_len; 1559 1560 datasent = TRUE; 1561 } 1562 } 1563 1564 /* 1565 * ctl_putdata - write data into the packet, fragmenting and starting 1566 * another if this one is full. 1567 */ 1568 static void 1569 ctl_putdata( 1570 const char *dp, 1571 unsigned int dlen, 1572 int bin /* set to 1 when data is binary */ 1573 ) 1574 { 1575 CtlMemBufT args[1]; 1576 1577 args[0].buf = dp; 1578 args[0].len = dlen; 1579 ctl_putdata_ex(args, 1, bin); 1580 } 1581 1582 /* 1583 * ctl_putstr - write a tagged string into the response packet 1584 * in the form: 1585 * 1586 * tag="data" 1587 * 1588 * len is the data length excluding the NUL terminator, 1589 * as in ctl_putstr("var", "value", strlen("value")); 1590 */ 1591 static void 1592 ctl_putstr( 1593 const char * tag, 1594 const char * data, 1595 size_t len 1596 ) 1597 { 1598 CtlMemBufT args[4]; 1599 1600 args[0].buf = tag; 1601 args[0].len = strlen(tag); 1602 if (data && len) { 1603 args[1].buf = "=\""; 1604 args[1].len = 2; 1605 args[2].buf = data; 1606 args[2].len = len; 1607 args[3].buf = "\""; 1608 args[3].len = 1; 1609 ctl_putdata_ex(args, 4, FALSE); 1610 } else { 1611 ctl_putdata_ex(args, 1, FALSE); 1612 } 1613 } 1614 1615 1616 /* 1617 * ctl_putunqstr - write a tagged string into the response packet 1618 * in the form: 1619 * 1620 * tag=data 1621 * 1622 * len is the data length excluding the NUL terminator. 1623 * data must not contain a comma or whitespace. 1624 */ 1625 static void 1626 ctl_putunqstr( 1627 const char * tag, 1628 const char * data, 1629 size_t len 1630 ) 1631 { 1632 CtlMemBufT args[3]; 1633 1634 args[0].buf = tag; 1635 args[0].len = strlen(tag); 1636 if (data && len) { 1637 args[1].buf = "="; 1638 args[1].len = 1; 1639 args[2].buf = data; 1640 args[2].len = len; 1641 ctl_putdata_ex(args, 3, FALSE); 1642 } else { 1643 ctl_putdata_ex(args, 1, FALSE); 1644 } 1645 } 1646 1647 1648 /* 1649 * ctl_putdblf - write a tagged, signed double into the response packet 1650 */ 1651 static void 1652 ctl_putdblf( 1653 const char * tag, 1654 int use_f, 1655 int precision, 1656 double d 1657 ) 1658 { 1659 char buffer[40]; 1660 int rc; 1661 1662 rc = snprintf(buffer, sizeof(buffer), 1663 (use_f ? "%.*f" : "%.*g"), 1664 precision, d); 1665 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1666 ctl_putunqstr(tag, buffer, rc); 1667 } 1668 1669 /* 1670 * ctl_putuint - write a tagged unsigned integer into the response 1671 */ 1672 static void 1673 ctl_putuint( 1674 const char *tag, 1675 u_long uval 1676 ) 1677 { 1678 char buffer[24]; /* needs to fit for 64 bits! */ 1679 int rc; 1680 1681 rc = snprintf(buffer, sizeof(buffer), "%lu", uval); 1682 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1683 ctl_putunqstr(tag, buffer, rc); 1684 } 1685 1686 /* 1687 * ctl_putcal - write a decoded calendar data into the response. 1688 * only used with AUTOKEY currently, so compiled conditional 1689 */ 1690 #ifdef AUTOKEY 1691 static void 1692 ctl_putcal( 1693 const char *tag, 1694 const struct calendar *pcal 1695 ) 1696 { 1697 char buffer[16]; 1698 int rc; 1699 1700 rc = snprintf(buffer, sizeof(buffer), 1701 "%04d%02d%02d%02d%02d", 1702 pcal->year, pcal->month, pcal->monthday, 1703 pcal->hour, pcal->minute 1704 ); 1705 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1706 ctl_putunqstr(tag, buffer, rc); 1707 } 1708 #endif 1709 1710 /* 1711 * ctl_putfs - write a decoded filestamp into the response 1712 */ 1713 static void 1714 ctl_putfs( 1715 const char *tag, 1716 tstamp_t uval 1717 ) 1718 { 1719 char buffer[16]; 1720 int rc; 1721 1722 time_t fstamp = (time_t)uval - JAN_1970; 1723 struct tm *tm = gmtime(&fstamp); 1724 1725 if (NULL == tm) 1726 return; 1727 1728 rc = snprintf(buffer, sizeof(buffer), 1729 "%04d%02d%02d%02d%02d", 1730 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, 1731 tm->tm_hour, tm->tm_min); 1732 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1733 ctl_putunqstr(tag, buffer, rc); 1734 } 1735 1736 1737 /* 1738 * ctl_puthex - write a tagged unsigned integer, in hex, into the 1739 * response 1740 */ 1741 static void 1742 ctl_puthex( 1743 const char *tag, 1744 u_long uval 1745 ) 1746 { 1747 char buffer[24]; /* must fit 64bit int! */ 1748 int rc; 1749 1750 rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval); 1751 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1752 ctl_putunqstr(tag, buffer, rc); 1753 } 1754 1755 1756 /* 1757 * ctl_putint - write a tagged signed integer into the response 1758 */ 1759 static void 1760 ctl_putint( 1761 const char *tag, 1762 long ival 1763 ) 1764 { 1765 char buffer[24]; /*must fit 64bit int */ 1766 int rc; 1767 1768 rc = snprintf(buffer, sizeof(buffer), "%ld", ival); 1769 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1770 ctl_putunqstr(tag, buffer, rc); 1771 } 1772 1773 1774 /* 1775 * ctl_putts - write a tagged timestamp, in hex, into the response 1776 */ 1777 static void 1778 ctl_putts( 1779 const char *tag, 1780 l_fp *ts 1781 ) 1782 { 1783 char buffer[24]; 1784 int rc; 1785 1786 rc = snprintf(buffer, sizeof(buffer), 1787 "0x%08lx.%08lx", 1788 (u_long)ts->l_ui, (u_long)ts->l_uf); 1789 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1790 ctl_putunqstr(tag, buffer, rc); 1791 } 1792 1793 1794 /* 1795 * ctl_putadr - write an IP address into the response 1796 */ 1797 static void 1798 ctl_putadr( 1799 const char *tag, 1800 u_int32 addr32, 1801 sockaddr_u *addr 1802 ) 1803 { 1804 const char *cq; 1805 1806 if (NULL == addr) 1807 cq = numtoa(addr32); 1808 else 1809 cq = stoa(addr); 1810 ctl_putunqstr(tag, cq, strlen(cq)); 1811 } 1812 1813 1814 /* 1815 * ctl_putrefid - send a u_int32 refid as printable text 1816 */ 1817 static void 1818 ctl_putrefid( 1819 const char * tag, 1820 u_int32 refid 1821 ) 1822 { 1823 size_t nc; 1824 1825 union { 1826 uint32_t w; 1827 uint8_t b[sizeof(uint32_t)]; 1828 } bytes; 1829 1830 bytes.w = refid; 1831 for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc) 1832 if (!isprint(bytes.b[nc])) 1833 bytes.b[nc] = '.'; 1834 ctl_putunqstr(tag, (const char*)bytes.b, nc); 1835 } 1836 1837 1838 /* 1839 * ctl_putarray - write a tagged eight element double array into the response 1840 */ 1841 static void 1842 ctl_putarray( 1843 const char *tag, 1844 double *arr, 1845 int start 1846 ) 1847 { 1848 char *cp, *ep; 1849 char buffer[200]; 1850 int i, rc; 1851 1852 cp = buffer; 1853 ep = buffer + sizeof(buffer); 1854 i = start; 1855 do { 1856 if (i == 0) 1857 i = NTP_SHIFT; 1858 i--; 1859 rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3); 1860 INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp)); 1861 cp += rc; 1862 } while (i != start); 1863 ctl_putunqstr(tag, buffer, (size_t)(cp - buffer)); 1864 } 1865 1866 /* 1867 * ctl_printf - put a formatted string into the data buffer 1868 */ 1869 static void 1870 ctl_printf( 1871 const char * fmt, 1872 ... 1873 ) 1874 { 1875 static const char * ellipsis = "[...]"; 1876 va_list va; 1877 char fmtbuf[128]; 1878 int rc; 1879 1880 va_start(va, fmt); 1881 rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va); 1882 va_end(va); 1883 if (rc < 0 || (size_t)rc >= sizeof(fmtbuf)) 1884 strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1, 1885 ellipsis); 1886 ctl_putdata(fmtbuf, strlen(fmtbuf), 0); 1887 } 1888 1889 1890 /* 1891 * ctl_putsys - output a system variable 1892 */ 1893 static void 1894 ctl_putsys( 1895 int varid 1896 ) 1897 { 1898 l_fp tmp; 1899 char str[256]; 1900 u_int u; 1901 double kb; 1902 double dtemp; 1903 const char *ss; 1904 #ifdef AUTOKEY 1905 struct cert_info *cp; 1906 #endif /* AUTOKEY */ 1907 #ifdef KERNEL_PLL 1908 static struct timex ntx; 1909 static u_long ntp_adjtime_time; 1910 1911 static const double to_ms = 1912 # ifdef STA_NANO 1913 1.0e-6; /* nsec to msec */ 1914 # else 1915 1.0e-3; /* usec to msec */ 1916 # endif 1917 1918 /* 1919 * CS_K_* variables depend on up-to-date output of ntp_adjtime() 1920 */ 1921 if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST && 1922 current_time != ntp_adjtime_time) { 1923 ZERO(ntx); 1924 if (ntp_adjtime(&ntx) < 0) 1925 msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m"); 1926 else 1927 ntp_adjtime_time = current_time; 1928 } 1929 #endif /* KERNEL_PLL */ 1930 1931 switch (varid) { 1932 1933 case CS_LEAP: 1934 ctl_putuint(sys_var[CS_LEAP].text, sys_leap); 1935 break; 1936 1937 case CS_STRATUM: 1938 ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum); 1939 break; 1940 1941 case CS_PRECISION: 1942 ctl_putint(sys_var[CS_PRECISION].text, sys_precision); 1943 break; 1944 1945 case CS_ROOTDELAY: 1946 ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay * 1947 1e3); 1948 break; 1949 1950 case CS_ROOTDISPERSION: 1951 ctl_putdbl(sys_var[CS_ROOTDISPERSION].text, 1952 sys_rootdisp * 1e3); 1953 break; 1954 1955 case CS_REFID: 1956 if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC) 1957 ctl_putadr(sys_var[varid].text, sys_refid, NULL); 1958 else 1959 ctl_putrefid(sys_var[varid].text, sys_refid); 1960 break; 1961 1962 case CS_REFTIME: 1963 ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime); 1964 break; 1965 1966 case CS_POLL: 1967 ctl_putuint(sys_var[CS_POLL].text, sys_poll); 1968 break; 1969 1970 case CS_PEERID: 1971 if (sys_peer == NULL) 1972 ctl_putuint(sys_var[CS_PEERID].text, 0); 1973 else 1974 ctl_putuint(sys_var[CS_PEERID].text, 1975 sys_peer->associd); 1976 break; 1977 1978 case CS_PEERADR: 1979 if (sys_peer != NULL && sys_peer->dstadr != NULL) 1980 ss = sptoa(&sys_peer->srcadr); 1981 else 1982 ss = "0.0.0.0:0"; 1983 ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss)); 1984 break; 1985 1986 case CS_PEERMODE: 1987 u = (sys_peer != NULL) 1988 ? sys_peer->hmode 1989 : MODE_UNSPEC; 1990 ctl_putuint(sys_var[CS_PEERMODE].text, u); 1991 break; 1992 1993 case CS_OFFSET: 1994 ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3); 1995 break; 1996 1997 case CS_DRIFT: 1998 ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6); 1999 break; 2000 2001 case CS_JITTER: 2002 ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3); 2003 break; 2004 2005 case CS_ERROR: 2006 ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3); 2007 break; 2008 2009 case CS_CLOCK: 2010 get_systime(&tmp); 2011 ctl_putts(sys_var[CS_CLOCK].text, &tmp); 2012 break; 2013 2014 case CS_PROCESSOR: 2015 #ifndef HAVE_UNAME 2016 ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor, 2017 sizeof(str_processor) - 1); 2018 #else 2019 ctl_putstr(sys_var[CS_PROCESSOR].text, 2020 utsnamebuf.machine, strlen(utsnamebuf.machine)); 2021 #endif /* HAVE_UNAME */ 2022 break; 2023 2024 case CS_SYSTEM: 2025 #ifndef HAVE_UNAME 2026 ctl_putstr(sys_var[CS_SYSTEM].text, str_system, 2027 sizeof(str_system) - 1); 2028 #else 2029 snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname, 2030 utsnamebuf.release); 2031 ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str)); 2032 #endif /* HAVE_UNAME */ 2033 break; 2034 2035 case CS_VERSION: 2036 ctl_putstr(sys_var[CS_VERSION].text, Version, 2037 strlen(Version)); 2038 break; 2039 2040 case CS_STABIL: 2041 ctl_putdbl(sys_var[CS_STABIL].text, clock_stability * 2042 1e6); 2043 break; 2044 2045 case CS_VARLIST: 2046 { 2047 char buf[CTL_MAX_DATA_LEN]; 2048 //buffPointer, firstElementPointer, buffEndPointer 2049 char *buffp, *buffend; 2050 int firstVarName; 2051 const char *ss1; 2052 int len; 2053 const struct ctl_var *k; 2054 2055 buffp = buf; 2056 buffend = buf + sizeof(buf); 2057 if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4)) 2058 break; /* really long var name */ 2059 2060 snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text); 2061 buffp += strlen(buffp); 2062 firstVarName = TRUE; 2063 for (k = sys_var; !(k->flags & EOV); k++) { 2064 if (k->flags & PADDING) 2065 continue; 2066 len = strlen(k->text); 2067 if (len + 1 >= buffend - buffp) 2068 break; 2069 if (!firstVarName) 2070 *buffp++ = ','; 2071 else 2072 firstVarName = FALSE; 2073 memcpy(buffp, k->text, len); 2074 buffp += len; 2075 } 2076 2077 for (k = ext_sys_var; k && !(k->flags & EOV); k++) { 2078 if (k->flags & PADDING) 2079 continue; 2080 if (NULL == k->text) 2081 continue; 2082 ss1 = strchr(k->text, '='); 2083 if (NULL == ss1) 2084 len = strlen(k->text); 2085 else 2086 len = ss1 - k->text; 2087 if (len + 1 >= buffend - buffp) 2088 break; 2089 if (firstVarName) { 2090 *buffp++ = ','; 2091 firstVarName = FALSE; 2092 } 2093 memcpy(buffp, k->text,(unsigned)len); 2094 buffp += len; 2095 } 2096 if (2 >= buffend - buffp) 2097 break; 2098 2099 *buffp++ = '"'; 2100 *buffp = '\0'; 2101 2102 ctl_putdata(buf, (unsigned)( buffp - buf ), 0); 2103 break; 2104 } 2105 2106 case CS_TAI: 2107 if (sys_tai > 0) 2108 ctl_putuint(sys_var[CS_TAI].text, sys_tai); 2109 break; 2110 2111 case CS_LEAPTAB: 2112 { 2113 leap_signature_t lsig; 2114 leapsec_getsig(&lsig); 2115 if (lsig.ttime > 0) 2116 ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime); 2117 break; 2118 } 2119 2120 case CS_LEAPEND: 2121 { 2122 leap_signature_t lsig; 2123 leapsec_getsig(&lsig); 2124 if (lsig.etime > 0) 2125 ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime); 2126 break; 2127 } 2128 2129 #ifdef LEAP_SMEAR 2130 case CS_LEAPSMEARINTV: 2131 if (leap_smear_intv > 0) 2132 ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv); 2133 break; 2134 2135 case CS_LEAPSMEAROFFS: 2136 if (leap_smear_intv > 0) 2137 ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text, 2138 leap_smear.doffset * 1e3); 2139 break; 2140 #endif /* LEAP_SMEAR */ 2141 2142 case CS_RATE: 2143 ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll); 2144 break; 2145 2146 case CS_MRU_ENABLED: 2147 ctl_puthex(sys_var[varid].text, mon_enabled); 2148 break; 2149 2150 case CS_MRU_DEPTH: 2151 ctl_putuint(sys_var[varid].text, mru_entries); 2152 break; 2153 2154 case CS_MRU_MEM: 2155 kb = mru_entries * (sizeof(mon_entry) / 1024.); 2156 u = (u_int)kb; 2157 if (kb - u >= 0.5) 2158 u++; 2159 ctl_putuint(sys_var[varid].text, u); 2160 break; 2161 2162 case CS_MRU_DEEPEST: 2163 ctl_putuint(sys_var[varid].text, mru_peakentries); 2164 break; 2165 2166 case CS_MRU_MINDEPTH: 2167 ctl_putuint(sys_var[varid].text, mru_mindepth); 2168 break; 2169 2170 case CS_MRU_MAXAGE: 2171 ctl_putint(sys_var[varid].text, mru_maxage); 2172 break; 2173 2174 case CS_MRU_MAXDEPTH: 2175 ctl_putuint(sys_var[varid].text, mru_maxdepth); 2176 break; 2177 2178 case CS_MRU_MAXMEM: 2179 kb = mru_maxdepth * (sizeof(mon_entry) / 1024.); 2180 u = (u_int)kb; 2181 if (kb - u >= 0.5) 2182 u++; 2183 ctl_putuint(sys_var[varid].text, u); 2184 break; 2185 2186 case CS_SS_UPTIME: 2187 ctl_putuint(sys_var[varid].text, current_time); 2188 break; 2189 2190 case CS_SS_RESET: 2191 ctl_putuint(sys_var[varid].text, 2192 current_time - sys_stattime); 2193 break; 2194 2195 case CS_SS_RECEIVED: 2196 ctl_putuint(sys_var[varid].text, sys_received); 2197 break; 2198 2199 case CS_SS_THISVER: 2200 ctl_putuint(sys_var[varid].text, sys_newversion); 2201 break; 2202 2203 case CS_SS_OLDVER: 2204 ctl_putuint(sys_var[varid].text, sys_oldversion); 2205 break; 2206 2207 case CS_SS_BADFORMAT: 2208 ctl_putuint(sys_var[varid].text, sys_badlength); 2209 break; 2210 2211 case CS_SS_BADAUTH: 2212 ctl_putuint(sys_var[varid].text, sys_badauth); 2213 break; 2214 2215 case CS_SS_DECLINED: 2216 ctl_putuint(sys_var[varid].text, sys_declined); 2217 break; 2218 2219 case CS_SS_RESTRICTED: 2220 ctl_putuint(sys_var[varid].text, sys_restricted); 2221 break; 2222 2223 case CS_SS_LIMITED: 2224 ctl_putuint(sys_var[varid].text, sys_limitrejected); 2225 break; 2226 2227 case CS_SS_LAMPORT: 2228 ctl_putuint(sys_var[varid].text, sys_lamport); 2229 break; 2230 2231 case CS_SS_TSROUNDING: 2232 ctl_putuint(sys_var[varid].text, sys_tsrounding); 2233 break; 2234 2235 case CS_SS_KODSENT: 2236 ctl_putuint(sys_var[varid].text, sys_kodsent); 2237 break; 2238 2239 case CS_SS_PROCESSED: 2240 ctl_putuint(sys_var[varid].text, sys_processed); 2241 break; 2242 2243 case CS_BCASTDELAY: 2244 ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3); 2245 break; 2246 2247 case CS_AUTHDELAY: 2248 LFPTOD(&sys_authdelay, dtemp); 2249 ctl_putdbl(sys_var[varid].text, dtemp * 1e3); 2250 break; 2251 2252 case CS_AUTHKEYS: 2253 ctl_putuint(sys_var[varid].text, authnumkeys); 2254 break; 2255 2256 case CS_AUTHFREEK: 2257 ctl_putuint(sys_var[varid].text, authnumfreekeys); 2258 break; 2259 2260 case CS_AUTHKLOOKUPS: 2261 ctl_putuint(sys_var[varid].text, authkeylookups); 2262 break; 2263 2264 case CS_AUTHKNOTFOUND: 2265 ctl_putuint(sys_var[varid].text, authkeynotfound); 2266 break; 2267 2268 case CS_AUTHKUNCACHED: 2269 ctl_putuint(sys_var[varid].text, authkeyuncached); 2270 break; 2271 2272 case CS_AUTHKEXPIRED: 2273 ctl_putuint(sys_var[varid].text, authkeyexpired); 2274 break; 2275 2276 case CS_AUTHENCRYPTS: 2277 ctl_putuint(sys_var[varid].text, authencryptions); 2278 break; 2279 2280 case CS_AUTHDECRYPTS: 2281 ctl_putuint(sys_var[varid].text, authdecryptions); 2282 break; 2283 2284 case CS_AUTHRESET: 2285 ctl_putuint(sys_var[varid].text, 2286 current_time - auth_timereset); 2287 break; 2288 2289 /* 2290 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is 2291 * unavailable, otherwise calls putfunc with args. 2292 */ 2293 #ifndef KERNEL_PLL 2294 # define CTL_IF_KERNLOOP(putfunc, args) \ 2295 ctl_putint(sys_var[varid].text, 0) 2296 #else 2297 # define CTL_IF_KERNLOOP(putfunc, args) \ 2298 putfunc args 2299 #endif 2300 2301 /* 2302 * CTL_IF_KERNPPS() puts a zero if either the kernel 2303 * loop is unavailable, or kernel hard PPS is not 2304 * active, otherwise calls putfunc with args. 2305 */ 2306 #ifndef KERNEL_PLL 2307 # define CTL_IF_KERNPPS(putfunc, args) \ 2308 ctl_putint(sys_var[varid].text, 0) 2309 #else 2310 # define CTL_IF_KERNPPS(putfunc, args) \ 2311 if (0 == ntx.shift) \ 2312 ctl_putint(sys_var[varid].text, 0); \ 2313 else \ 2314 putfunc args /* no trailing ; */ 2315 #endif 2316 2317 case CS_K_OFFSET: 2318 CTL_IF_KERNLOOP( 2319 ctl_putdblf, 2320 (sys_var[varid].text, 0, -1, to_ms * ntx.offset) 2321 ); 2322 break; 2323 2324 case CS_K_FREQ: 2325 CTL_IF_KERNLOOP( 2326 ctl_putsfp, 2327 (sys_var[varid].text, ntx.freq) 2328 ); 2329 break; 2330 2331 case CS_K_MAXERR: 2332 CTL_IF_KERNLOOP( 2333 ctl_putdblf, 2334 (sys_var[varid].text, 0, 6, 2335 to_ms * ntx.maxerror) 2336 ); 2337 break; 2338 2339 case CS_K_ESTERR: 2340 CTL_IF_KERNLOOP( 2341 ctl_putdblf, 2342 (sys_var[varid].text, 0, 6, 2343 to_ms * ntx.esterror) 2344 ); 2345 break; 2346 2347 case CS_K_STFLAGS: 2348 #ifndef KERNEL_PLL 2349 ss = ""; 2350 #else 2351 ss = k_st_flags(ntx.status); 2352 #endif 2353 ctl_putstr(sys_var[varid].text, ss, strlen(ss)); 2354 break; 2355 2356 case CS_K_TIMECONST: 2357 CTL_IF_KERNLOOP( 2358 ctl_putint, 2359 (sys_var[varid].text, ntx.constant) 2360 ); 2361 break; 2362 2363 case CS_K_PRECISION: 2364 CTL_IF_KERNLOOP( 2365 ctl_putdblf, 2366 (sys_var[varid].text, 0, 6, 2367 to_ms * ntx.precision) 2368 ); 2369 break; 2370 2371 case CS_K_FREQTOL: 2372 CTL_IF_KERNLOOP( 2373 ctl_putsfp, 2374 (sys_var[varid].text, ntx.tolerance) 2375 ); 2376 break; 2377 2378 case CS_K_PPS_FREQ: 2379 CTL_IF_KERNPPS( 2380 ctl_putsfp, 2381 (sys_var[varid].text, ntx.ppsfreq) 2382 ); 2383 break; 2384 2385 case CS_K_PPS_STABIL: 2386 CTL_IF_KERNPPS( 2387 ctl_putsfp, 2388 (sys_var[varid].text, ntx.stabil) 2389 ); 2390 break; 2391 2392 case CS_K_PPS_JITTER: 2393 CTL_IF_KERNPPS( 2394 ctl_putdbl, 2395 (sys_var[varid].text, to_ms * ntx.jitter) 2396 ); 2397 break; 2398 2399 case CS_K_PPS_CALIBDUR: 2400 CTL_IF_KERNPPS( 2401 ctl_putint, 2402 (sys_var[varid].text, 1 << ntx.shift) 2403 ); 2404 break; 2405 2406 case CS_K_PPS_CALIBS: 2407 CTL_IF_KERNPPS( 2408 ctl_putint, 2409 (sys_var[varid].text, ntx.calcnt) 2410 ); 2411 break; 2412 2413 case CS_K_PPS_CALIBERRS: 2414 CTL_IF_KERNPPS( 2415 ctl_putint, 2416 (sys_var[varid].text, ntx.errcnt) 2417 ); 2418 break; 2419 2420 case CS_K_PPS_JITEXC: 2421 CTL_IF_KERNPPS( 2422 ctl_putint, 2423 (sys_var[varid].text, ntx.jitcnt) 2424 ); 2425 break; 2426 2427 case CS_K_PPS_STBEXC: 2428 CTL_IF_KERNPPS( 2429 ctl_putint, 2430 (sys_var[varid].text, ntx.stbcnt) 2431 ); 2432 break; 2433 2434 case CS_IOSTATS_RESET: 2435 ctl_putuint(sys_var[varid].text, 2436 current_time - io_timereset); 2437 break; 2438 2439 case CS_TOTAL_RBUF: 2440 ctl_putuint(sys_var[varid].text, total_recvbuffs()); 2441 break; 2442 2443 case CS_FREE_RBUF: 2444 ctl_putuint(sys_var[varid].text, free_recvbuffs()); 2445 break; 2446 2447 case CS_USED_RBUF: 2448 ctl_putuint(sys_var[varid].text, full_recvbuffs()); 2449 break; 2450 2451 case CS_RBUF_LOWATER: 2452 ctl_putuint(sys_var[varid].text, lowater_additions()); 2453 break; 2454 2455 case CS_IO_DROPPED: 2456 ctl_putuint(sys_var[varid].text, packets_dropped); 2457 break; 2458 2459 case CS_IO_IGNORED: 2460 ctl_putuint(sys_var[varid].text, packets_ignored); 2461 break; 2462 2463 case CS_IO_RECEIVED: 2464 ctl_putuint(sys_var[varid].text, packets_received); 2465 break; 2466 2467 case CS_IO_SENT: 2468 ctl_putuint(sys_var[varid].text, packets_sent); 2469 break; 2470 2471 case CS_IO_SENDFAILED: 2472 ctl_putuint(sys_var[varid].text, packets_notsent); 2473 break; 2474 2475 case CS_IO_WAKEUPS: 2476 ctl_putuint(sys_var[varid].text, handler_calls); 2477 break; 2478 2479 case CS_IO_GOODWAKEUPS: 2480 ctl_putuint(sys_var[varid].text, handler_pkts); 2481 break; 2482 2483 case CS_TIMERSTATS_RESET: 2484 ctl_putuint(sys_var[varid].text, 2485 current_time - timer_timereset); 2486 break; 2487 2488 case CS_TIMER_OVERRUNS: 2489 ctl_putuint(sys_var[varid].text, alarm_overflow); 2490 break; 2491 2492 case CS_TIMER_XMTS: 2493 ctl_putuint(sys_var[varid].text, timer_xmtcalls); 2494 break; 2495 2496 case CS_FUZZ: 2497 ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3); 2498 break; 2499 case CS_WANDER_THRESH: 2500 ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6); 2501 break; 2502 #ifdef AUTOKEY 2503 case CS_FLAGS: 2504 if (crypto_flags) 2505 ctl_puthex(sys_var[CS_FLAGS].text, 2506 crypto_flags); 2507 break; 2508 2509 case CS_DIGEST: 2510 if (crypto_flags) { 2511 strlcpy(str, OBJ_nid2ln(crypto_nid), 2512 COUNTOF(str)); 2513 ctl_putstr(sys_var[CS_DIGEST].text, str, 2514 strlen(str)); 2515 } 2516 break; 2517 2518 case CS_SIGNATURE: 2519 if (crypto_flags) { 2520 const EVP_MD *dp; 2521 2522 dp = EVP_get_digestbynid(crypto_flags >> 16); 2523 strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)), 2524 COUNTOF(str)); 2525 ctl_putstr(sys_var[CS_SIGNATURE].text, str, 2526 strlen(str)); 2527 } 2528 break; 2529 2530 case CS_HOST: 2531 if (hostval.ptr != NULL) 2532 ctl_putstr(sys_var[CS_HOST].text, hostval.ptr, 2533 strlen(hostval.ptr)); 2534 break; 2535 2536 case CS_IDENT: 2537 if (sys_ident != NULL) 2538 ctl_putstr(sys_var[CS_IDENT].text, sys_ident, 2539 strlen(sys_ident)); 2540 break; 2541 2542 case CS_CERTIF: 2543 for (cp = cinfo; cp != NULL; cp = cp->link) { 2544 snprintf(str, sizeof(str), "%s %s 0x%x", 2545 cp->subject, cp->issuer, cp->flags); 2546 ctl_putstr(sys_var[CS_CERTIF].text, str, 2547 strlen(str)); 2548 ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last)); 2549 } 2550 break; 2551 2552 case CS_PUBLIC: 2553 if (hostval.tstamp != 0) 2554 ctl_putfs(sys_var[CS_PUBLIC].text, 2555 ntohl(hostval.tstamp)); 2556 break; 2557 #endif /* AUTOKEY */ 2558 2559 default: 2560 break; 2561 } 2562 } 2563 2564 2565 /* 2566 * ctl_putpeer - output a peer variable 2567 */ 2568 static void 2569 ctl_putpeer( 2570 int id, 2571 struct peer *p 2572 ) 2573 { 2574 char buf[CTL_MAX_DATA_LEN]; 2575 char *s; 2576 char *t; 2577 char *be; 2578 int i; 2579 const struct ctl_var *k; 2580 #ifdef AUTOKEY 2581 struct autokey *ap; 2582 const EVP_MD *dp; 2583 const char *str; 2584 #endif /* AUTOKEY */ 2585 2586 switch (id) { 2587 2588 case CP_CONFIG: 2589 ctl_putuint(peer_var[id].text, 2590 !(FLAG_PREEMPT & p->flags)); 2591 break; 2592 2593 case CP_AUTHENABLE: 2594 ctl_putuint(peer_var[id].text, !(p->keyid)); 2595 break; 2596 2597 case CP_AUTHENTIC: 2598 ctl_putuint(peer_var[id].text, 2599 !!(FLAG_AUTHENTIC & p->flags)); 2600 break; 2601 2602 case CP_SRCADR: 2603 ctl_putadr(peer_var[id].text, 0, &p->srcadr); 2604 break; 2605 2606 case CP_SRCPORT: 2607 ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr)); 2608 break; 2609 2610 case CP_SRCHOST: 2611 if (p->hostname != NULL) 2612 ctl_putstr(peer_var[id].text, p->hostname, 2613 strlen(p->hostname)); 2614 break; 2615 2616 case CP_DSTADR: 2617 ctl_putadr(peer_var[id].text, 0, 2618 (p->dstadr != NULL) 2619 ? &p->dstadr->sin 2620 : NULL); 2621 break; 2622 2623 case CP_DSTPORT: 2624 ctl_putuint(peer_var[id].text, 2625 (p->dstadr != NULL) 2626 ? SRCPORT(&p->dstadr->sin) 2627 : 0); 2628 break; 2629 2630 case CP_IN: 2631 if (p->r21 > 0.) 2632 ctl_putdbl(peer_var[id].text, p->r21 / 1e3); 2633 break; 2634 2635 case CP_OUT: 2636 if (p->r34 > 0.) 2637 ctl_putdbl(peer_var[id].text, p->r34 / 1e3); 2638 break; 2639 2640 case CP_RATE: 2641 ctl_putuint(peer_var[id].text, p->throttle); 2642 break; 2643 2644 case CP_LEAP: 2645 ctl_putuint(peer_var[id].text, p->leap); 2646 break; 2647 2648 case CP_HMODE: 2649 ctl_putuint(peer_var[id].text, p->hmode); 2650 break; 2651 2652 case CP_STRATUM: 2653 ctl_putuint(peer_var[id].text, p->stratum); 2654 break; 2655 2656 case CP_PPOLL: 2657 ctl_putuint(peer_var[id].text, p->ppoll); 2658 break; 2659 2660 case CP_HPOLL: 2661 ctl_putuint(peer_var[id].text, p->hpoll); 2662 break; 2663 2664 case CP_PRECISION: 2665 ctl_putint(peer_var[id].text, p->precision); 2666 break; 2667 2668 case CP_ROOTDELAY: 2669 ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3); 2670 break; 2671 2672 case CP_ROOTDISPERSION: 2673 ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3); 2674 break; 2675 2676 case CP_REFID: 2677 #ifdef REFCLOCK 2678 if (p->flags & FLAG_REFCLOCK) { 2679 ctl_putrefid(peer_var[id].text, p->refid); 2680 break; 2681 } 2682 #endif 2683 if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC) 2684 ctl_putadr(peer_var[id].text, p->refid, 2685 NULL); 2686 else 2687 ctl_putrefid(peer_var[id].text, p->refid); 2688 break; 2689 2690 case CP_REFTIME: 2691 ctl_putts(peer_var[id].text, &p->reftime); 2692 break; 2693 2694 case CP_ORG: 2695 ctl_putts(peer_var[id].text, &p->aorg); 2696 break; 2697 2698 case CP_REC: 2699 ctl_putts(peer_var[id].text, &p->dst); 2700 break; 2701 2702 case CP_XMT: 2703 if (p->xleave) 2704 ctl_putdbl(peer_var[id].text, p->xleave * 1e3); 2705 break; 2706 2707 case CP_BIAS: 2708 if (p->bias != 0.) 2709 ctl_putdbl(peer_var[id].text, p->bias * 1e3); 2710 break; 2711 2712 case CP_REACH: 2713 ctl_puthex(peer_var[id].text, p->reach); 2714 break; 2715 2716 case CP_FLASH: 2717 ctl_puthex(peer_var[id].text, p->flash); 2718 break; 2719 2720 case CP_TTL: 2721 #ifdef REFCLOCK 2722 if (p->flags & FLAG_REFCLOCK) { 2723 ctl_putuint(peer_var[id].text, p->ttl); 2724 break; 2725 } 2726 #endif 2727 if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl)) 2728 ctl_putint(peer_var[id].text, 2729 sys_ttl[p->ttl]); 2730 break; 2731 2732 case CP_UNREACH: 2733 ctl_putuint(peer_var[id].text, p->unreach); 2734 break; 2735 2736 case CP_TIMER: 2737 ctl_putuint(peer_var[id].text, 2738 p->nextdate - current_time); 2739 break; 2740 2741 case CP_DELAY: 2742 ctl_putdbl(peer_var[id].text, p->delay * 1e3); 2743 break; 2744 2745 case CP_OFFSET: 2746 ctl_putdbl(peer_var[id].text, p->offset * 1e3); 2747 break; 2748 2749 case CP_JITTER: 2750 ctl_putdbl(peer_var[id].text, p->jitter * 1e3); 2751 break; 2752 2753 case CP_DISPERSION: 2754 ctl_putdbl(peer_var[id].text, p->disp * 1e3); 2755 break; 2756 2757 case CP_KEYID: 2758 if (p->keyid > NTP_MAXKEY) 2759 ctl_puthex(peer_var[id].text, p->keyid); 2760 else 2761 ctl_putuint(peer_var[id].text, p->keyid); 2762 break; 2763 2764 case CP_FILTDELAY: 2765 ctl_putarray(peer_var[id].text, p->filter_delay, 2766 p->filter_nextpt); 2767 break; 2768 2769 case CP_FILTOFFSET: 2770 ctl_putarray(peer_var[id].text, p->filter_offset, 2771 p->filter_nextpt); 2772 break; 2773 2774 case CP_FILTERROR: 2775 ctl_putarray(peer_var[id].text, p->filter_disp, 2776 p->filter_nextpt); 2777 break; 2778 2779 case CP_PMODE: 2780 ctl_putuint(peer_var[id].text, p->pmode); 2781 break; 2782 2783 case CP_RECEIVED: 2784 ctl_putuint(peer_var[id].text, p->received); 2785 break; 2786 2787 case CP_SENT: 2788 ctl_putuint(peer_var[id].text, p->sent); 2789 break; 2790 2791 case CP_VARLIST: 2792 s = buf; 2793 be = buf + sizeof(buf); 2794 if (strlen(peer_var[id].text) + 4 > sizeof(buf)) 2795 break; /* really long var name */ 2796 2797 snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text); 2798 s += strlen(s); 2799 t = s; 2800 for (k = peer_var; !(EOV & k->flags); k++) { 2801 if (PADDING & k->flags) 2802 continue; 2803 i = strlen(k->text); 2804 if (s + i + 1 >= be) 2805 break; 2806 if (s != t) 2807 *s++ = ','; 2808 memcpy(s, k->text, i); 2809 s += i; 2810 } 2811 if (s + 2 < be) { 2812 *s++ = '"'; 2813 *s = '\0'; 2814 ctl_putdata(buf, (u_int)(s - buf), 0); 2815 } 2816 break; 2817 2818 case CP_TIMEREC: 2819 ctl_putuint(peer_var[id].text, 2820 current_time - p->timereceived); 2821 break; 2822 2823 case CP_TIMEREACH: 2824 ctl_putuint(peer_var[id].text, 2825 current_time - p->timereachable); 2826 break; 2827 2828 case CP_BADAUTH: 2829 ctl_putuint(peer_var[id].text, p->badauth); 2830 break; 2831 2832 case CP_BOGUSORG: 2833 ctl_putuint(peer_var[id].text, p->bogusorg); 2834 break; 2835 2836 case CP_OLDPKT: 2837 ctl_putuint(peer_var[id].text, p->oldpkt); 2838 break; 2839 2840 case CP_SELDISP: 2841 ctl_putuint(peer_var[id].text, p->seldisptoolarge); 2842 break; 2843 2844 case CP_SELBROKEN: 2845 ctl_putuint(peer_var[id].text, p->selbroken); 2846 break; 2847 2848 case CP_CANDIDATE: 2849 ctl_putuint(peer_var[id].text, p->status); 2850 break; 2851 #ifdef AUTOKEY 2852 case CP_FLAGS: 2853 if (p->crypto) 2854 ctl_puthex(peer_var[id].text, p->crypto); 2855 break; 2856 2857 case CP_SIGNATURE: 2858 if (p->crypto) { 2859 dp = EVP_get_digestbynid(p->crypto >> 16); 2860 str = OBJ_nid2ln(EVP_MD_pkey_type(dp)); 2861 ctl_putstr(peer_var[id].text, str, strlen(str)); 2862 } 2863 break; 2864 2865 case CP_HOST: 2866 if (p->subject != NULL) 2867 ctl_putstr(peer_var[id].text, p->subject, 2868 strlen(p->subject)); 2869 break; 2870 2871 case CP_VALID: /* not used */ 2872 break; 2873 2874 case CP_INITSEQ: 2875 if (NULL == (ap = p->recval.ptr)) 2876 break; 2877 2878 ctl_putint(peer_var[CP_INITSEQ].text, ap->seq); 2879 ctl_puthex(peer_var[CP_INITKEY].text, ap->key); 2880 ctl_putfs(peer_var[CP_INITTSP].text, 2881 ntohl(p->recval.tstamp)); 2882 break; 2883 2884 case CP_IDENT: 2885 if (p->ident != NULL) 2886 ctl_putstr(peer_var[id].text, p->ident, 2887 strlen(p->ident)); 2888 break; 2889 2890 2891 #endif /* AUTOKEY */ 2892 } 2893 } 2894 2895 2896 #ifdef REFCLOCK 2897 /* 2898 * ctl_putclock - output clock variables 2899 */ 2900 static void 2901 ctl_putclock( 2902 int id, 2903 struct refclockstat *pcs, 2904 int mustput 2905 ) 2906 { 2907 char buf[CTL_MAX_DATA_LEN]; 2908 char *s, *t, *be; 2909 const char *ss; 2910 int i; 2911 const struct ctl_var *k; 2912 2913 switch (id) { 2914 2915 case CC_TYPE: 2916 if (mustput || pcs->clockdesc == NULL 2917 || *(pcs->clockdesc) == '\0') { 2918 ctl_putuint(clock_var[id].text, pcs->type); 2919 } 2920 break; 2921 case CC_TIMECODE: 2922 ctl_putstr(clock_var[id].text, 2923 pcs->p_lastcode, 2924 (unsigned)pcs->lencode); 2925 break; 2926 2927 case CC_POLL: 2928 ctl_putuint(clock_var[id].text, pcs->polls); 2929 break; 2930 2931 case CC_NOREPLY: 2932 ctl_putuint(clock_var[id].text, 2933 pcs->noresponse); 2934 break; 2935 2936 case CC_BADFORMAT: 2937 ctl_putuint(clock_var[id].text, 2938 pcs->badformat); 2939 break; 2940 2941 case CC_BADDATA: 2942 ctl_putuint(clock_var[id].text, 2943 pcs->baddata); 2944 break; 2945 2946 case CC_FUDGETIME1: 2947 if (mustput || (pcs->haveflags & CLK_HAVETIME1)) 2948 ctl_putdbl(clock_var[id].text, 2949 pcs->fudgetime1 * 1e3); 2950 break; 2951 2952 case CC_FUDGETIME2: 2953 if (mustput || (pcs->haveflags & CLK_HAVETIME2)) 2954 ctl_putdbl(clock_var[id].text, 2955 pcs->fudgetime2 * 1e3); 2956 break; 2957 2958 case CC_FUDGEVAL1: 2959 if (mustput || (pcs->haveflags & CLK_HAVEVAL1)) 2960 ctl_putint(clock_var[id].text, 2961 pcs->fudgeval1); 2962 break; 2963 2964 case CC_FUDGEVAL2: 2965 if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) { 2966 if (pcs->fudgeval1 > 1) 2967 ctl_putadr(clock_var[id].text, 2968 pcs->fudgeval2, NULL); 2969 else 2970 ctl_putrefid(clock_var[id].text, 2971 pcs->fudgeval2); 2972 } 2973 break; 2974 2975 case CC_FLAGS: 2976 ctl_putuint(clock_var[id].text, pcs->flags); 2977 break; 2978 2979 case CC_DEVICE: 2980 if (pcs->clockdesc == NULL || 2981 *(pcs->clockdesc) == '\0') { 2982 if (mustput) 2983 ctl_putstr(clock_var[id].text, 2984 "", 0); 2985 } else { 2986 ctl_putstr(clock_var[id].text, 2987 pcs->clockdesc, 2988 strlen(pcs->clockdesc)); 2989 } 2990 break; 2991 2992 case CC_VARLIST: 2993 s = buf; 2994 be = buf + sizeof(buf); 2995 if (strlen(clock_var[CC_VARLIST].text) + 4 > 2996 sizeof(buf)) 2997 break; /* really long var name */ 2998 2999 snprintf(s, sizeof(buf), "%s=\"", 3000 clock_var[CC_VARLIST].text); 3001 s += strlen(s); 3002 t = s; 3003 3004 for (k = clock_var; !(EOV & k->flags); k++) { 3005 if (PADDING & k->flags) 3006 continue; 3007 3008 i = strlen(k->text); 3009 if (s + i + 1 >= be) 3010 break; 3011 3012 if (s != t) 3013 *s++ = ','; 3014 memcpy(s, k->text, i); 3015 s += i; 3016 } 3017 3018 for (k = pcs->kv_list; k && !(EOV & k->flags); k++) { 3019 if (PADDING & k->flags) 3020 continue; 3021 3022 ss = k->text; 3023 if (NULL == ss) 3024 continue; 3025 3026 while (*ss && *ss != '=') 3027 ss++; 3028 i = ss - k->text; 3029 if (s + i + 1 >= be) 3030 break; 3031 3032 if (s != t) 3033 *s++ = ','; 3034 memcpy(s, k->text, (unsigned)i); 3035 s += i; 3036 *s = '\0'; 3037 } 3038 if (s + 2 >= be) 3039 break; 3040 3041 *s++ = '"'; 3042 *s = '\0'; 3043 ctl_putdata(buf, (unsigned)(s - buf), 0); 3044 break; 3045 } 3046 } 3047 #endif 3048 3049 3050 3051 /* 3052 * ctl_getitem - get the next data item from the incoming packet 3053 */ 3054 static const struct ctl_var * 3055 ctl_getitem( 3056 const struct ctl_var *var_list, 3057 char **data 3058 ) 3059 { 3060 /* [Bug 3008] First check the packet data sanity, then search 3061 * the key. This improves the consistency of result values: If 3062 * the result is NULL once, it will never be EOV again for this 3063 * packet; If it's EOV, it will never be NULL again until the 3064 * variable is found and processed in a given 'var_list'. (That 3065 * is, a result is returned that is neither NULL nor EOV). 3066 */ 3067 static const struct ctl_var eol = { 0, EOV, NULL }; 3068 static char buf[128]; 3069 static u_long quiet_until; 3070 const struct ctl_var *v; 3071 char *cp; 3072 char *tp; 3073 3074 /* 3075 * Part One: Validate the packet state 3076 */ 3077 3078 /* Delete leading commas and white space */ 3079 while (reqpt < reqend && (*reqpt == ',' || 3080 isspace((unsigned char)*reqpt))) 3081 reqpt++; 3082 if (reqpt >= reqend) 3083 return NULL; 3084 3085 /* Scan the string in the packet until we hit comma or 3086 * EoB. Register position of first '=' on the fly. */ 3087 for (tp = NULL, cp = reqpt; cp != reqend; ++cp) { 3088 if (*cp == '=' && tp == NULL) 3089 tp = cp; 3090 if (*cp == ',') 3091 break; 3092 } 3093 3094 /* Process payload, if any. */ 3095 *data = NULL; 3096 if (NULL != tp) { 3097 /* eventually strip white space from argument. */ 3098 const char *plhead = tp + 1; /* skip the '=' */ 3099 const char *pltail = cp; 3100 size_t plsize; 3101 3102 while (plhead != pltail && isspace((u_char)plhead[0])) 3103 ++plhead; 3104 while (plhead != pltail && isspace((u_char)pltail[-1])) 3105 --pltail; 3106 3107 /* check payload size, terminate packet on overflow */ 3108 plsize = (size_t)(pltail - plhead); 3109 if (plsize >= sizeof(buf)) 3110 goto badpacket; 3111 3112 /* copy data, NUL terminate, and set result data ptr */ 3113 memcpy(buf, plhead, plsize); 3114 buf[plsize] = '\0'; 3115 *data = buf; 3116 } else { 3117 /* no payload, current end --> current name termination */ 3118 tp = cp; 3119 } 3120 3121 /* Part Two 3122 * 3123 * Now we're sure that the packet data itself is sane. Scan the 3124 * list now. Make sure a NULL list is properly treated by 3125 * returning a synthetic End-Of-Values record. We must not 3126 * return NULL pointers after this point, or the behaviour would 3127 * become inconsistent if called several times with different 3128 * variable lists after an EoV was returned. (Such a behavior 3129 * actually caused Bug 3008.) 3130 */ 3131 3132 if (NULL == var_list) 3133 return &eol; 3134 3135 for (v = var_list; !(EOV & v->flags); ++v) 3136 if (!(PADDING & v->flags)) { 3137 /* Check if the var name matches the buffer. The 3138 * name is bracketed by [reqpt..tp] and not NUL 3139 * terminated, and it contains no '=' char. The 3140 * lookup value IS NUL-terminated but might 3141 * include a '='... We have to look out for 3142 * that! 3143 */ 3144 const char *sp1 = reqpt; 3145 const char *sp2 = v->text; 3146 3147 /* [Bug 3412] do not compare past NUL byte in name */ 3148 while ( (sp1 != tp) 3149 && ('\0' != *sp2) && (*sp1 == *sp2)) { 3150 ++sp1; 3151 ++sp2; 3152 } 3153 if (sp1 == tp && (*sp2 == '\0' || *sp2 == '=')) 3154 break; 3155 } 3156 3157 /* See if we have found a valid entry or not. If found, advance 3158 * the request pointer for the next round; if not, clear the 3159 * data pointer so we have no dangling garbage here. 3160 */ 3161 if (EOV & v->flags) 3162 *data = NULL; 3163 else 3164 reqpt = cp + (cp != reqend); 3165 return v; 3166 3167 badpacket: 3168 /*TODO? somehow indicate this packet was bad, apart from syslog? */ 3169 numctlbadpkts++; 3170 NLOG(NLOG_SYSEVENT) 3171 if (quiet_until <= current_time) { 3172 quiet_until = current_time + 300; 3173 msyslog(LOG_WARNING, 3174 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", 3175 stoa(rmt_addr), SRCPORT(rmt_addr)); 3176 } 3177 reqpt = reqend; /* never again for this packet! */ 3178 return NULL; 3179 } 3180 3181 3182 /* 3183 * control_unspec - response to an unspecified op-code 3184 */ 3185 /*ARGSUSED*/ 3186 static void 3187 control_unspec( 3188 struct recvbuf *rbufp, 3189 int restrict_mask 3190 ) 3191 { 3192 struct peer *peer; 3193 3194 /* 3195 * What is an appropriate response to an unspecified op-code? 3196 * I return no errors and no data, unless a specified assocation 3197 * doesn't exist. 3198 */ 3199 if (res_associd) { 3200 peer = findpeerbyassoc(res_associd); 3201 if (NULL == peer) { 3202 ctl_error(CERR_BADASSOC); 3203 return; 3204 } 3205 rpkt.status = htons(ctlpeerstatus(peer)); 3206 } else 3207 rpkt.status = htons(ctlsysstatus()); 3208 ctl_flushpkt(0); 3209 } 3210 3211 3212 /* 3213 * read_status - return either a list of associd's, or a particular 3214 * peer's status. 3215 */ 3216 /*ARGSUSED*/ 3217 static void 3218 read_status( 3219 struct recvbuf *rbufp, 3220 int restrict_mask 3221 ) 3222 { 3223 struct peer *peer; 3224 const u_char *cp; 3225 size_t n; 3226 /* a_st holds association ID, status pairs alternating */ 3227 u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)]; 3228 3229 #ifdef DEBUG 3230 if (debug > 2) 3231 printf("read_status: ID %d\n", res_associd); 3232 #endif 3233 /* 3234 * Two choices here. If the specified association ID is 3235 * zero we return all known assocation ID's. Otherwise 3236 * we return a bunch of stuff about the particular peer. 3237 */ 3238 if (res_associd) { 3239 peer = findpeerbyassoc(res_associd); 3240 if (NULL == peer) { 3241 ctl_error(CERR_BADASSOC); 3242 return; 3243 } 3244 rpkt.status = htons(ctlpeerstatus(peer)); 3245 if (res_authokay) 3246 peer->num_events = 0; 3247 /* 3248 * For now, output everything we know about the 3249 * peer. May be more selective later. 3250 */ 3251 for (cp = def_peer_var; *cp != 0; cp++) 3252 ctl_putpeer((int)*cp, peer); 3253 ctl_flushpkt(0); 3254 return; 3255 } 3256 n = 0; 3257 rpkt.status = htons(ctlsysstatus()); 3258 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3259 a_st[n++] = htons(peer->associd); 3260 a_st[n++] = htons(ctlpeerstatus(peer)); 3261 /* two entries each loop iteration, so n + 1 */ 3262 if (n + 1 >= COUNTOF(a_st)) { 3263 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 3264 1); 3265 n = 0; 3266 } 3267 } 3268 if (n) 3269 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1); 3270 ctl_flushpkt(0); 3271 } 3272 3273 3274 /* 3275 * read_peervars - half of read_variables() implementation 3276 */ 3277 static void 3278 read_peervars(void) 3279 { 3280 const struct ctl_var *v; 3281 struct peer *peer; 3282 const u_char *cp; 3283 size_t i; 3284 char * valuep; 3285 u_char wants[CP_MAXCODE + 1]; 3286 u_int gotvar; 3287 3288 /* 3289 * Wants info for a particular peer. See if we know 3290 * the guy. 3291 */ 3292 peer = findpeerbyassoc(res_associd); 3293 if (NULL == peer) { 3294 ctl_error(CERR_BADASSOC); 3295 return; 3296 } 3297 rpkt.status = htons(ctlpeerstatus(peer)); 3298 if (res_authokay) 3299 peer->num_events = 0; 3300 ZERO(wants); 3301 gotvar = 0; 3302 while (NULL != (v = ctl_getitem(peer_var, &valuep))) { 3303 if (v->flags & EOV) { 3304 ctl_error(CERR_UNKNOWNVAR); 3305 return; 3306 } 3307 INSIST(v->code < COUNTOF(wants)); 3308 wants[v->code] = 1; 3309 gotvar = 1; 3310 } 3311 if (gotvar) { 3312 for (i = 1; i < COUNTOF(wants); i++) 3313 if (wants[i]) 3314 ctl_putpeer(i, peer); 3315 } else 3316 for (cp = def_peer_var; *cp != 0; cp++) 3317 ctl_putpeer((int)*cp, peer); 3318 ctl_flushpkt(0); 3319 } 3320 3321 3322 /* 3323 * read_sysvars - half of read_variables() implementation 3324 */ 3325 static void 3326 read_sysvars(void) 3327 { 3328 const struct ctl_var *v; 3329 struct ctl_var *kv; 3330 u_int n; 3331 u_int gotvar; 3332 const u_char *cs; 3333 char * valuep; 3334 const char * pch; 3335 u_char *wants; 3336 size_t wants_count; 3337 3338 /* 3339 * Wants system variables. Figure out which he wants 3340 * and give them to him. 3341 */ 3342 rpkt.status = htons(ctlsysstatus()); 3343 if (res_authokay) 3344 ctl_sys_num_events = 0; 3345 wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var); 3346 wants = emalloc_zero(wants_count); 3347 gotvar = 0; 3348 while (NULL != (v = ctl_getitem(sys_var, &valuep))) { 3349 if (!(EOV & v->flags)) { 3350 INSIST(v->code < wants_count); 3351 wants[v->code] = 1; 3352 gotvar = 1; 3353 } else { 3354 v = ctl_getitem(ext_sys_var, &valuep); 3355 if (NULL == v) { 3356 ctl_error(CERR_BADVALUE); 3357 free(wants); 3358 return; 3359 } 3360 if (EOV & v->flags) { 3361 ctl_error(CERR_UNKNOWNVAR); 3362 free(wants); 3363 return; 3364 } 3365 n = v->code + CS_MAXCODE + 1; 3366 INSIST(n < wants_count); 3367 wants[n] = 1; 3368 gotvar = 1; 3369 } 3370 } 3371 if (gotvar) { 3372 for (n = 1; n <= CS_MAXCODE; n++) 3373 if (wants[n]) 3374 ctl_putsys(n); 3375 for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++) 3376 if (wants[n + CS_MAXCODE + 1]) { 3377 pch = ext_sys_var[n].text; 3378 ctl_putdata(pch, strlen(pch), 0); 3379 } 3380 } else { 3381 for (cs = def_sys_var; *cs != 0; cs++) 3382 ctl_putsys((int)*cs); 3383 for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++) 3384 if (DEF & kv->flags) 3385 ctl_putdata(kv->text, strlen(kv->text), 3386 0); 3387 } 3388 free(wants); 3389 ctl_flushpkt(0); 3390 } 3391 3392 3393 /* 3394 * read_variables - return the variables the caller asks for 3395 */ 3396 /*ARGSUSED*/ 3397 static void 3398 read_variables( 3399 struct recvbuf *rbufp, 3400 int restrict_mask 3401 ) 3402 { 3403 if (res_associd) 3404 read_peervars(); 3405 else 3406 read_sysvars(); 3407 } 3408 3409 3410 /* 3411 * write_variables - write into variables. We only allow leap bit 3412 * writing this way. 3413 */ 3414 /*ARGSUSED*/ 3415 static void 3416 write_variables( 3417 struct recvbuf *rbufp, 3418 int restrict_mask 3419 ) 3420 { 3421 const struct ctl_var *v; 3422 int ext_var; 3423 char *valuep; 3424 long val; 3425 size_t octets; 3426 char *vareqv; 3427 const char *t; 3428 char *tt; 3429 3430 val = 0; 3431 /* 3432 * If he's trying to write into a peer tell him no way 3433 */ 3434 if (res_associd != 0) { 3435 ctl_error(CERR_PERMISSION); 3436 return; 3437 } 3438 3439 /* 3440 * Set status 3441 */ 3442 rpkt.status = htons(ctlsysstatus()); 3443 3444 /* 3445 * Look through the variables. Dump out at the first sign of 3446 * trouble. 3447 */ 3448 while ((v = ctl_getitem(sys_var, &valuep)) != 0) { 3449 ext_var = 0; 3450 if (v->flags & EOV) { 3451 if ((v = ctl_getitem(ext_sys_var, &valuep)) != 3452 0) { 3453 if (v->flags & EOV) { 3454 ctl_error(CERR_UNKNOWNVAR); 3455 return; 3456 } 3457 ext_var = 1; 3458 } else { 3459 break; 3460 } 3461 } 3462 if (!(v->flags & CAN_WRITE)) { 3463 ctl_error(CERR_PERMISSION); 3464 return; 3465 } 3466 if (!ext_var && (*valuep == '\0' || !atoint(valuep, 3467 &val))) { 3468 ctl_error(CERR_BADFMT); 3469 return; 3470 } 3471 if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) { 3472 ctl_error(CERR_BADVALUE); 3473 return; 3474 } 3475 3476 if (ext_var) { 3477 octets = strlen(v->text) + strlen(valuep) + 2; 3478 vareqv = emalloc(octets); 3479 tt = vareqv; 3480 t = v->text; 3481 while (*t && *t != '=') 3482 *tt++ = *t++; 3483 *tt++ = '='; 3484 memcpy(tt, valuep, 1 + strlen(valuep)); 3485 set_sys_var(vareqv, 1 + strlen(vareqv), v->flags); 3486 free(vareqv); 3487 } else { 3488 ctl_error(CERR_UNSPEC); /* really */ 3489 return; 3490 } 3491 } 3492 3493 /* 3494 * If we got anything, do it. xxx nothing to do *** 3495 */ 3496 /* 3497 if (leapind != ~0 || leapwarn != ~0) { 3498 if (!leap_setleap((int)leapind, (int)leapwarn)) { 3499 ctl_error(CERR_PERMISSION); 3500 return; 3501 } 3502 } 3503 */ 3504 ctl_flushpkt(0); 3505 } 3506 3507 3508 /* 3509 * configure() processes ntpq :config/config-from-file, allowing 3510 * generic runtime reconfiguration. 3511 */ 3512 static void configure( 3513 struct recvbuf *rbufp, 3514 int restrict_mask 3515 ) 3516 { 3517 size_t data_count; 3518 int retval; 3519 3520 /* I haven't yet implemented changes to an existing association. 3521 * Hence check if the association id is 0 3522 */ 3523 if (res_associd != 0) { 3524 ctl_error(CERR_BADVALUE); 3525 return; 3526 } 3527 3528 if (RES_NOMODIFY & restrict_mask) { 3529 snprintf(remote_config.err_msg, 3530 sizeof(remote_config.err_msg), 3531 "runtime configuration prohibited by restrict ... nomodify"); 3532 ctl_putdata(remote_config.err_msg, 3533 strlen(remote_config.err_msg), 0); 3534 ctl_flushpkt(0); 3535 NLOG(NLOG_SYSINFO) 3536 msyslog(LOG_NOTICE, 3537 "runtime config from %s rejected due to nomodify restriction", 3538 stoa(&rbufp->recv_srcadr)); 3539 sys_restricted++; 3540 return; 3541 } 3542 3543 /* Initialize the remote config buffer */ 3544 data_count = remoteconfig_cmdlength(reqpt, reqend); 3545 3546 if (data_count > sizeof(remote_config.buffer) - 2) { 3547 snprintf(remote_config.err_msg, 3548 sizeof(remote_config.err_msg), 3549 "runtime configuration failed: request too long"); 3550 ctl_putdata(remote_config.err_msg, 3551 strlen(remote_config.err_msg), 0); 3552 ctl_flushpkt(0); 3553 msyslog(LOG_NOTICE, 3554 "runtime config from %s rejected: request too long", 3555 stoa(&rbufp->recv_srcadr)); 3556 return; 3557 } 3558 /* Bug 2853 -- check if all characters were acceptable */ 3559 if (data_count != (size_t)(reqend - reqpt)) { 3560 snprintf(remote_config.err_msg, 3561 sizeof(remote_config.err_msg), 3562 "runtime configuration failed: request contains an unprintable character"); 3563 ctl_putdata(remote_config.err_msg, 3564 strlen(remote_config.err_msg), 0); 3565 ctl_flushpkt(0); 3566 msyslog(LOG_NOTICE, 3567 "runtime config from %s rejected: request contains an unprintable character: %0x", 3568 stoa(&rbufp->recv_srcadr), 3569 reqpt[data_count]); 3570 return; 3571 } 3572 3573 memcpy(remote_config.buffer, reqpt, data_count); 3574 /* The buffer has no trailing linefeed or NUL right now. For 3575 * logging, we do not want a newline, so we do that first after 3576 * adding the necessary NUL byte. 3577 */ 3578 remote_config.buffer[data_count] = '\0'; 3579 DPRINTF(1, ("Got Remote Configuration Command: %s\n", 3580 remote_config.buffer)); 3581 msyslog(LOG_NOTICE, "%s config: %s", 3582 stoa(&rbufp->recv_srcadr), 3583 remote_config.buffer); 3584 3585 /* Now we have to make sure there is a NL/NUL sequence at the 3586 * end of the buffer before we parse it. 3587 */ 3588 remote_config.buffer[data_count++] = '\n'; 3589 remote_config.buffer[data_count] = '\0'; 3590 remote_config.pos = 0; 3591 remote_config.err_pos = 0; 3592 remote_config.no_errors = 0; 3593 config_remotely(&rbufp->recv_srcadr); 3594 3595 /* 3596 * Check if errors were reported. If not, output 'Config 3597 * Succeeded'. Else output the error count. It would be nice 3598 * to output any parser error messages. 3599 */ 3600 if (0 == remote_config.no_errors) { 3601 retval = snprintf(remote_config.err_msg, 3602 sizeof(remote_config.err_msg), 3603 "Config Succeeded"); 3604 if (retval > 0) 3605 remote_config.err_pos += retval; 3606 } 3607 3608 ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0); 3609 ctl_flushpkt(0); 3610 3611 DPRINTF(1, ("Reply: %s\n", remote_config.err_msg)); 3612 3613 if (remote_config.no_errors > 0) 3614 msyslog(LOG_NOTICE, "%d error in %s config", 3615 remote_config.no_errors, 3616 stoa(&rbufp->recv_srcadr)); 3617 } 3618 3619 3620 /* 3621 * derive_nonce - generate client-address-specific nonce value 3622 * associated with a given timestamp. 3623 */ 3624 static u_int32 derive_nonce( 3625 sockaddr_u * addr, 3626 u_int32 ts_i, 3627 u_int32 ts_f 3628 ) 3629 { 3630 static u_int32 salt[4]; 3631 static u_long last_salt_update; 3632 union d_tag { 3633 u_char digest[EVP_MAX_MD_SIZE]; 3634 u_int32 extract; 3635 } d; 3636 EVP_MD_CTX *ctx; 3637 u_int len; 3638 3639 while (!salt[0] || current_time - last_salt_update >= 3600) { 3640 salt[0] = ntp_random(); 3641 salt[1] = ntp_random(); 3642 salt[2] = ntp_random(); 3643 salt[3] = ntp_random(); 3644 last_salt_update = current_time; 3645 } 3646 3647 ctx = EVP_MD_CTX_new(); 3648 # if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) 3649 /* [Bug 3457] set flags and don't kill them again */ 3650 EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 3651 EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL); 3652 # else 3653 EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5)); 3654 # endif 3655 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3656 EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i)); 3657 EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f)); 3658 if (IS_IPV4(addr)) 3659 EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr), 3660 sizeof(SOCK_ADDR4(addr))); 3661 else 3662 EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr), 3663 sizeof(SOCK_ADDR6(addr))); 3664 EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr))); 3665 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3666 EVP_DigestFinal(ctx, d.digest, &len); 3667 EVP_MD_CTX_free(ctx); 3668 3669 return d.extract; 3670 } 3671 3672 3673 /* 3674 * generate_nonce - generate client-address-specific nonce string. 3675 */ 3676 static void generate_nonce( 3677 struct recvbuf * rbufp, 3678 char * nonce, 3679 size_t nonce_octets 3680 ) 3681 { 3682 u_int32 derived; 3683 3684 derived = derive_nonce(&rbufp->recv_srcadr, 3685 rbufp->recv_time.l_ui, 3686 rbufp->recv_time.l_uf); 3687 snprintf(nonce, nonce_octets, "%08x%08x%08x", 3688 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived); 3689 } 3690 3691 3692 /* 3693 * validate_nonce - validate client-address-specific nonce string. 3694 * 3695 * Returns TRUE if the local calculation of the nonce matches the 3696 * client-provided value and the timestamp is recent enough. 3697 */ 3698 static int validate_nonce( 3699 const char * pnonce, 3700 struct recvbuf * rbufp 3701 ) 3702 { 3703 u_int ts_i; 3704 u_int ts_f; 3705 l_fp ts; 3706 l_fp now_delta; 3707 u_int supposed; 3708 u_int derived; 3709 3710 if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed)) 3711 return FALSE; 3712 3713 ts.l_ui = (u_int32)ts_i; 3714 ts.l_uf = (u_int32)ts_f; 3715 derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf); 3716 get_systime(&now_delta); 3717 L_SUB(&now_delta, &ts); 3718 3719 return (supposed == derived && now_delta.l_ui < 16); 3720 } 3721 3722 3723 /* 3724 * send_random_tag_value - send a randomly-generated three character 3725 * tag prefix, a '.', an index, a '=' and a 3726 * random integer value. 3727 * 3728 * To try to force clients to ignore unrecognized tags in mrulist, 3729 * reslist, and ifstats responses, the first and last rows are spiced 3730 * with randomly-generated tag names with correct .# index. Make it 3731 * three characters knowing that none of the currently-used subscripted 3732 * tags have that length, avoiding the need to test for 3733 * tag collision. 3734 */ 3735 static void 3736 send_random_tag_value( 3737 int indx 3738 ) 3739 { 3740 int noise; 3741 char buf[32]; 3742 3743 noise = rand() ^ (rand() << 16); 3744 buf[0] = 'a' + noise % 26; 3745 noise >>= 5; 3746 buf[1] = 'a' + noise % 26; 3747 noise >>= 5; 3748 buf[2] = 'a' + noise % 26; 3749 noise >>= 5; 3750 buf[3] = '.'; 3751 snprintf(&buf[4], sizeof(buf) - 4, "%d", indx); 3752 ctl_putuint(buf, noise); 3753 } 3754 3755 3756 /* 3757 * Send a MRU list entry in response to a "ntpq -c mrulist" operation. 3758 * 3759 * To keep clients honest about not depending on the order of values, 3760 * and thereby avoid being locked into ugly workarounds to maintain 3761 * backward compatibility later as new fields are added to the response, 3762 * the order is random. 3763 */ 3764 static void 3765 send_mru_entry( 3766 mon_entry * mon, 3767 int count 3768 ) 3769 { 3770 const char first_fmt[] = "first.%d"; 3771 const char ct_fmt[] = "ct.%d"; 3772 const char mv_fmt[] = "mv.%d"; 3773 const char rs_fmt[] = "rs.%d"; 3774 char tag[32]; 3775 u_char sent[6]; /* 6 tag=value pairs */ 3776 u_int32 noise; 3777 u_int which; 3778 u_int remaining; 3779 const char * pch; 3780 3781 remaining = COUNTOF(sent); 3782 ZERO(sent); 3783 noise = (u_int32)(rand() ^ (rand() << 16)); 3784 while (remaining > 0) { 3785 which = (noise & 7) % COUNTOF(sent); 3786 noise >>= 3; 3787 while (sent[which]) 3788 which = (which + 1) % COUNTOF(sent); 3789 3790 switch (which) { 3791 3792 case 0: 3793 snprintf(tag, sizeof(tag), addr_fmt, count); 3794 pch = sptoa(&mon->rmtadr); 3795 ctl_putunqstr(tag, pch, strlen(pch)); 3796 break; 3797 3798 case 1: 3799 snprintf(tag, sizeof(tag), last_fmt, count); 3800 ctl_putts(tag, &mon->last); 3801 break; 3802 3803 case 2: 3804 snprintf(tag, sizeof(tag), first_fmt, count); 3805 ctl_putts(tag, &mon->first); 3806 break; 3807 3808 case 3: 3809 snprintf(tag, sizeof(tag), ct_fmt, count); 3810 ctl_putint(tag, mon->count); 3811 break; 3812 3813 case 4: 3814 snprintf(tag, sizeof(tag), mv_fmt, count); 3815 ctl_putuint(tag, mon->vn_mode); 3816 break; 3817 3818 case 5: 3819 snprintf(tag, sizeof(tag), rs_fmt, count); 3820 ctl_puthex(tag, mon->flags); 3821 break; 3822 } 3823 sent[which] = TRUE; 3824 remaining--; 3825 } 3826 } 3827 3828 3829 /* 3830 * read_mru_list - supports ntpq's mrulist command. 3831 * 3832 * The challenge here is to match ntpdc's monlist functionality without 3833 * being limited to hundreds of entries returned total, and without 3834 * requiring state on the server. If state were required, ntpq's 3835 * mrulist command would require authentication. 3836 * 3837 * The approach was suggested by Ry Jones. A finite and variable number 3838 * of entries are retrieved per request, to avoid having responses with 3839 * such large numbers of packets that socket buffers are overflowed and 3840 * packets lost. The entries are retrieved oldest-first, taking into 3841 * account that the MRU list will be changing between each request. We 3842 * can expect to see duplicate entries for addresses updated in the MRU 3843 * list during the fetch operation. In the end, the client can assemble 3844 * a close approximation of the MRU list at the point in time the last 3845 * response was sent by ntpd. The only difference is it may be longer, 3846 * containing some number of oldest entries which have since been 3847 * reclaimed. If necessary, the protocol could be extended to zap those 3848 * from the client snapshot at the end, but so far that doesn't seem 3849 * useful. 3850 * 3851 * To accomodate the changing MRU list, the starting point for requests 3852 * after the first request is supplied as a series of last seen 3853 * timestamps and associated addresses, the newest ones the client has 3854 * received. As long as at least one of those entries hasn't been 3855 * bumped to the head of the MRU list, ntpd can pick up at that point. 3856 * Otherwise, the request is failed and it is up to ntpq to back up and 3857 * provide the next newest entry's timestamps and addresses, conceivably 3858 * backing up all the way to the starting point. 3859 * 3860 * input parameters: 3861 * nonce= Regurgitated nonce retrieved by the client 3862 * previously using CTL_OP_REQ_NONCE, demonstrating 3863 * ability to receive traffic sent to its address. 3864 * frags= Limit on datagrams (fragments) in response. Used 3865 * by newer ntpq versions instead of limit= when 3866 * retrieving multiple entries. 3867 * limit= Limit on MRU entries returned. One of frags= or 3868 * limit= must be provided. 3869 * limit=1 is a special case: Instead of fetching 3870 * beginning with the supplied starting point's 3871 * newer neighbor, fetch the supplied entry, and 3872 * in that case the #.last timestamp can be zero. 3873 * This enables fetching a single entry by IP 3874 * address. When limit is not one and frags= is 3875 * provided, the fragment limit controls. 3876 * mincount= (decimal) Return entries with count >= mincount. 3877 * laddr= Return entries associated with the server's IP 3878 * address given. No port specification is needed, 3879 * and any supplied is ignored. 3880 * resall= 0x-prefixed hex restrict bits which must all be 3881 * lit for an MRU entry to be included. 3882 * Has precedence over any resany=. 3883 * resany= 0x-prefixed hex restrict bits, at least one of 3884 * which must be list for an MRU entry to be 3885 * included. 3886 * last.0= 0x-prefixed hex l_fp timestamp of newest entry 3887 * which client previously received. 3888 * addr.0= text of newest entry's IP address and port, 3889 * IPv6 addresses in bracketed form: [::]:123 3890 * last.1= timestamp of 2nd newest entry client has. 3891 * addr.1= address of 2nd newest entry. 3892 * [...] 3893 * 3894 * ntpq provides as many last/addr pairs as will fit in a single request 3895 * packet, except for the first request in a MRU fetch operation. 3896 * 3897 * The response begins with a new nonce value to be used for any 3898 * followup request. Following the nonce is the next newer entry than 3899 * referred to by last.0 and addr.0, if the "0" entry has not been 3900 * bumped to the front. If it has, the first entry returned will be the 3901 * next entry newer than referred to by last.1 and addr.1, and so on. 3902 * If none of the referenced entries remain unchanged, the request fails 3903 * and ntpq backs up to the next earlier set of entries to resync. 3904 * 3905 * Except for the first response, the response begins with confirmation 3906 * of the entry that precedes the first additional entry provided: 3907 * 3908 * last.older= hex l_fp timestamp matching one of the input 3909 * .last timestamps, which entry now precedes the 3910 * response 0. entry in the MRU list. 3911 * addr.older= text of address corresponding to older.last. 3912 * 3913 * And in any case, a successful response contains sets of values 3914 * comprising entries, with the oldest numbered 0 and incrementing from 3915 * there: 3916 * 3917 * addr.# text of IPv4 or IPv6 address and port 3918 * last.# hex l_fp timestamp of last receipt 3919 * first.# hex l_fp timestamp of first receipt 3920 * ct.# count of packets received 3921 * mv.# mode and version 3922 * rs.# restriction mask (RES_* bits) 3923 * 3924 * Note the code currently assumes there are no valid three letter 3925 * tags sent with each row, and needs to be adjusted if that changes. 3926 * 3927 * The client should accept the values in any order, and ignore .# 3928 * values which it does not understand, to allow a smooth path to 3929 * future changes without requiring a new opcode. Clients can rely 3930 * on all *.0 values preceding any *.1 values, that is all values for 3931 * a given index number are together in the response. 3932 * 3933 * The end of the response list is noted with one or two tag=value 3934 * pairs. Unconditionally: 3935 * 3936 * now= 0x-prefixed l_fp timestamp at the server marking 3937 * the end of the operation. 3938 * 3939 * If any entries were returned, now= is followed by: 3940 * 3941 * last.newest= hex l_fp identical to last.# of the prior 3942 * entry. 3943 */ 3944 static void read_mru_list( 3945 struct recvbuf *rbufp, 3946 int restrict_mask 3947 ) 3948 { 3949 static const char nulltxt[1] = { '\0' }; 3950 static const char nonce_text[] = "nonce"; 3951 static const char frags_text[] = "frags"; 3952 static const char limit_text[] = "limit"; 3953 static const char mincount_text[] = "mincount"; 3954 static const char resall_text[] = "resall"; 3955 static const char resany_text[] = "resany"; 3956 static const char maxlstint_text[] = "maxlstint"; 3957 static const char laddr_text[] = "laddr"; 3958 static const char resaxx_fmt[] = "0x%hx"; 3959 3960 u_int limit; 3961 u_short frags; 3962 u_short resall; 3963 u_short resany; 3964 int mincount; 3965 u_int maxlstint; 3966 sockaddr_u laddr; 3967 struct interface * lcladr; 3968 u_int count; 3969 u_int ui; 3970 u_int uf; 3971 l_fp last[16]; 3972 sockaddr_u addr[COUNTOF(last)]; 3973 char buf[128]; 3974 struct ctl_var * in_parms; 3975 const struct ctl_var * v; 3976 const char * val; 3977 const char * pch; 3978 char * pnonce; 3979 int nonce_valid; 3980 size_t i; 3981 int priors; 3982 u_short hash; 3983 mon_entry * mon; 3984 mon_entry * prior_mon; 3985 l_fp now; 3986 3987 if (RES_NOMRULIST & restrict_mask) { 3988 ctl_error(CERR_PERMISSION); 3989 NLOG(NLOG_SYSINFO) 3990 msyslog(LOG_NOTICE, 3991 "mrulist from %s rejected due to nomrulist restriction", 3992 stoa(&rbufp->recv_srcadr)); 3993 sys_restricted++; 3994 return; 3995 } 3996 /* 3997 * fill in_parms var list with all possible input parameters. 3998 */ 3999 in_parms = NULL; 4000 set_var(&in_parms, nonce_text, sizeof(nonce_text), 0); 4001 set_var(&in_parms, frags_text, sizeof(frags_text), 0); 4002 set_var(&in_parms, limit_text, sizeof(limit_text), 0); 4003 set_var(&in_parms, mincount_text, sizeof(mincount_text), 0); 4004 set_var(&in_parms, resall_text, sizeof(resall_text), 0); 4005 set_var(&in_parms, resany_text, sizeof(resany_text), 0); 4006 set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0); 4007 set_var(&in_parms, laddr_text, sizeof(laddr_text), 0); 4008 for (i = 0; i < COUNTOF(last); i++) { 4009 snprintf(buf, sizeof(buf), last_fmt, (int)i); 4010 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4011 snprintf(buf, sizeof(buf), addr_fmt, (int)i); 4012 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4013 } 4014 4015 /* decode input parms */ 4016 pnonce = NULL; 4017 frags = 0; 4018 limit = 0; 4019 mincount = 0; 4020 resall = 0; 4021 resany = 0; 4022 maxlstint = 0; 4023 lcladr = NULL; 4024 priors = 0; 4025 ZERO(last); 4026 ZERO(addr); 4027 4028 /* have to go through '(void*)' to drop 'const' property from pointer. 4029 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org 4030 */ 4031 while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) && 4032 !(EOV & v->flags)) { 4033 int si; 4034 4035 if (NULL == val) 4036 val = nulltxt; 4037 4038 if (!strcmp(nonce_text, v->text)) { 4039 free(pnonce); 4040 pnonce = (*val) ? estrdup(val) : NULL; 4041 } else if (!strcmp(frags_text, v->text)) { 4042 if (1 != sscanf(val, "%hu", &frags)) 4043 goto blooper; 4044 } else if (!strcmp(limit_text, v->text)) { 4045 if (1 != sscanf(val, "%u", &limit)) 4046 goto blooper; 4047 } else if (!strcmp(mincount_text, v->text)) { 4048 if (1 != sscanf(val, "%d", &mincount)) 4049 goto blooper; 4050 if (mincount < 0) 4051 mincount = 0; 4052 } else if (!strcmp(resall_text, v->text)) { 4053 if (1 != sscanf(val, resaxx_fmt, &resall)) 4054 goto blooper; 4055 } else if (!strcmp(resany_text, v->text)) { 4056 if (1 != sscanf(val, resaxx_fmt, &resany)) 4057 goto blooper; 4058 } else if (!strcmp(maxlstint_text, v->text)) { 4059 if (1 != sscanf(val, "%u", &maxlstint)) 4060 goto blooper; 4061 } else if (!strcmp(laddr_text, v->text)) { 4062 if (!decodenetnum(val, &laddr)) 4063 goto blooper; 4064 lcladr = getinterface(&laddr, 0); 4065 } else if (1 == sscanf(v->text, last_fmt, &si) && 4066 (size_t)si < COUNTOF(last)) { 4067 if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf)) 4068 goto blooper; 4069 last[si].l_ui = ui; 4070 last[si].l_uf = uf; 4071 if (!SOCK_UNSPEC(&addr[si]) && si == priors) 4072 priors++; 4073 } else if (1 == sscanf(v->text, addr_fmt, &si) && 4074 (size_t)si < COUNTOF(addr)) { 4075 if (!decodenetnum(val, &addr[si])) 4076 goto blooper; 4077 if (last[si].l_ui && last[si].l_uf && si == priors) 4078 priors++; 4079 } else { 4080 DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n", 4081 v->text)); 4082 continue; 4083 4084 blooper: 4085 DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n", 4086 v->text, val)); 4087 free(pnonce); 4088 pnonce = NULL; 4089 break; 4090 } 4091 } 4092 free_varlist(in_parms); 4093 in_parms = NULL; 4094 4095 /* return no responses until the nonce is validated */ 4096 if (NULL == pnonce) 4097 return; 4098 4099 nonce_valid = validate_nonce(pnonce, rbufp); 4100 free(pnonce); 4101 if (!nonce_valid) 4102 return; 4103 4104 if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) || 4105 frags > MRU_FRAGS_LIMIT) { 4106 ctl_error(CERR_BADVALUE); 4107 return; 4108 } 4109 4110 /* 4111 * If either frags or limit is not given, use the max. 4112 */ 4113 if (0 != frags && 0 == limit) 4114 limit = UINT_MAX; 4115 else if (0 != limit && 0 == frags) 4116 frags = MRU_FRAGS_LIMIT; 4117 4118 /* 4119 * Find the starting point if one was provided. 4120 */ 4121 mon = NULL; 4122 for (i = 0; i < (size_t)priors; i++) { 4123 hash = MON_HASH(&addr[i]); 4124 for (mon = mon_hash[hash]; 4125 mon != NULL; 4126 mon = mon->hash_next) 4127 if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i])) 4128 break; 4129 if (mon != NULL) { 4130 if (L_ISEQU(&mon->last, &last[i])) 4131 break; 4132 mon = NULL; 4133 } 4134 } 4135 4136 /* If a starting point was provided... */ 4137 if (priors) { 4138 /* and none could be found unmodified... */ 4139 if (NULL == mon) { 4140 /* tell ntpq to try again with older entries */ 4141 ctl_error(CERR_UNKNOWNVAR); 4142 return; 4143 } 4144 /* confirm the prior entry used as starting point */ 4145 ctl_putts("last.older", &mon->last); 4146 pch = sptoa(&mon->rmtadr); 4147 ctl_putunqstr("addr.older", pch, strlen(pch)); 4148 4149 /* 4150 * Move on to the first entry the client doesn't have, 4151 * except in the special case of a limit of one. In 4152 * that case return the starting point entry. 4153 */ 4154 if (limit > 1) 4155 mon = PREV_DLIST(mon_mru_list, mon, mru); 4156 } else { /* start with the oldest */ 4157 mon = TAIL_DLIST(mon_mru_list, mru); 4158 } 4159 4160 /* 4161 * send up to limit= entries in up to frags= datagrams 4162 */ 4163 get_systime(&now); 4164 generate_nonce(rbufp, buf, sizeof(buf)); 4165 ctl_putunqstr("nonce", buf, strlen(buf)); 4166 prior_mon = NULL; 4167 for (count = 0; 4168 mon != NULL && res_frags < frags && count < limit; 4169 mon = PREV_DLIST(mon_mru_list, mon, mru)) { 4170 4171 if (mon->count < mincount) 4172 continue; 4173 if (resall && resall != (resall & mon->flags)) 4174 continue; 4175 if (resany && !(resany & mon->flags)) 4176 continue; 4177 if (maxlstint > 0 && now.l_ui - mon->last.l_ui > 4178 maxlstint) 4179 continue; 4180 if (lcladr != NULL && mon->lcladr != lcladr) 4181 continue; 4182 4183 send_mru_entry(mon, count); 4184 if (!count) 4185 send_random_tag_value(0); 4186 count++; 4187 prior_mon = mon; 4188 } 4189 4190 /* 4191 * If this batch completes the MRU list, say so explicitly with 4192 * a now= l_fp timestamp. 4193 */ 4194 if (NULL == mon) { 4195 if (count > 1) 4196 send_random_tag_value(count - 1); 4197 ctl_putts("now", &now); 4198 /* if any entries were returned confirm the last */ 4199 if (prior_mon != NULL) 4200 ctl_putts("last.newest", &prior_mon->last); 4201 } 4202 ctl_flushpkt(0); 4203 } 4204 4205 4206 /* 4207 * Send a ifstats entry in response to a "ntpq -c ifstats" request. 4208 * 4209 * To keep clients honest about not depending on the order of values, 4210 * and thereby avoid being locked into ugly workarounds to maintain 4211 * backward compatibility later as new fields are added to the response, 4212 * the order is random. 4213 */ 4214 static void 4215 send_ifstats_entry( 4216 endpt * la, 4217 u_int ifnum 4218 ) 4219 { 4220 const char addr_fmtu[] = "addr.%u"; 4221 const char bcast_fmt[] = "bcast.%u"; 4222 const char en_fmt[] = "en.%u"; /* enabled */ 4223 const char name_fmt[] = "name.%u"; 4224 const char flags_fmt[] = "flags.%u"; 4225 const char tl_fmt[] = "tl.%u"; /* ttl */ 4226 const char mc_fmt[] = "mc.%u"; /* mcast count */ 4227 const char rx_fmt[] = "rx.%u"; 4228 const char tx_fmt[] = "tx.%u"; 4229 const char txerr_fmt[] = "txerr.%u"; 4230 const char pc_fmt[] = "pc.%u"; /* peer count */ 4231 const char up_fmt[] = "up.%u"; /* uptime */ 4232 char tag[32]; 4233 u_char sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */ 4234 int noisebits; 4235 u_int32 noise; 4236 u_int which; 4237 u_int remaining; 4238 const char *pch; 4239 4240 remaining = COUNTOF(sent); 4241 ZERO(sent); 4242 noise = 0; 4243 noisebits = 0; 4244 while (remaining > 0) { 4245 if (noisebits < 4) { 4246 noise = rand() ^ (rand() << 16); 4247 noisebits = 31; 4248 } 4249 which = (noise & 0xf) % COUNTOF(sent); 4250 noise >>= 4; 4251 noisebits -= 4; 4252 4253 while (sent[which]) 4254 which = (which + 1) % COUNTOF(sent); 4255 4256 switch (which) { 4257 4258 case 0: 4259 snprintf(tag, sizeof(tag), addr_fmtu, ifnum); 4260 pch = sptoa(&la->sin); 4261 ctl_putunqstr(tag, pch, strlen(pch)); 4262 break; 4263 4264 case 1: 4265 snprintf(tag, sizeof(tag), bcast_fmt, ifnum); 4266 if (INT_BCASTOPEN & la->flags) 4267 pch = sptoa(&la->bcast); 4268 else 4269 pch = ""; 4270 ctl_putunqstr(tag, pch, strlen(pch)); 4271 break; 4272 4273 case 2: 4274 snprintf(tag, sizeof(tag), en_fmt, ifnum); 4275 ctl_putint(tag, !la->ignore_packets); 4276 break; 4277 4278 case 3: 4279 snprintf(tag, sizeof(tag), name_fmt, ifnum); 4280 ctl_putstr(tag, la->name, strlen(la->name)); 4281 break; 4282 4283 case 4: 4284 snprintf(tag, sizeof(tag), flags_fmt, ifnum); 4285 ctl_puthex(tag, (u_int)la->flags); 4286 break; 4287 4288 case 5: 4289 snprintf(tag, sizeof(tag), tl_fmt, ifnum); 4290 ctl_putint(tag, la->last_ttl); 4291 break; 4292 4293 case 6: 4294 snprintf(tag, sizeof(tag), mc_fmt, ifnum); 4295 ctl_putint(tag, la->num_mcast); 4296 break; 4297 4298 case 7: 4299 snprintf(tag, sizeof(tag), rx_fmt, ifnum); 4300 ctl_putint(tag, la->received); 4301 break; 4302 4303 case 8: 4304 snprintf(tag, sizeof(tag), tx_fmt, ifnum); 4305 ctl_putint(tag, la->sent); 4306 break; 4307 4308 case 9: 4309 snprintf(tag, sizeof(tag), txerr_fmt, ifnum); 4310 ctl_putint(tag, la->notsent); 4311 break; 4312 4313 case 10: 4314 snprintf(tag, sizeof(tag), pc_fmt, ifnum); 4315 ctl_putuint(tag, la->peercnt); 4316 break; 4317 4318 case 11: 4319 snprintf(tag, sizeof(tag), up_fmt, ifnum); 4320 ctl_putuint(tag, current_time - la->starttime); 4321 break; 4322 } 4323 sent[which] = TRUE; 4324 remaining--; 4325 } 4326 send_random_tag_value((int)ifnum); 4327 } 4328 4329 4330 /* 4331 * read_ifstats - send statistics for each local address, exposed by 4332 * ntpq -c ifstats 4333 */ 4334 static void 4335 read_ifstats( 4336 struct recvbuf * rbufp 4337 ) 4338 { 4339 u_int ifidx; 4340 endpt * la; 4341 4342 /* 4343 * loop over [0..sys_ifnum] searching ep_list for each 4344 * ifnum in turn. 4345 */ 4346 for (ifidx = 0; ifidx < sys_ifnum; ifidx++) { 4347 for (la = ep_list; la != NULL; la = la->elink) 4348 if (ifidx == la->ifnum) 4349 break; 4350 if (NULL == la) 4351 continue; 4352 /* return stats for one local address */ 4353 send_ifstats_entry(la, ifidx); 4354 } 4355 ctl_flushpkt(0); 4356 } 4357 4358 static void 4359 sockaddrs_from_restrict_u( 4360 sockaddr_u * psaA, 4361 sockaddr_u * psaM, 4362 restrict_u * pres, 4363 int ipv6 4364 ) 4365 { 4366 ZERO(*psaA); 4367 ZERO(*psaM); 4368 if (!ipv6) { 4369 psaA->sa.sa_family = AF_INET; 4370 psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr); 4371 psaM->sa.sa_family = AF_INET; 4372 psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask); 4373 } else { 4374 psaA->sa.sa_family = AF_INET6; 4375 memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr, 4376 sizeof(psaA->sa6.sin6_addr)); 4377 psaM->sa.sa_family = AF_INET6; 4378 memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask, 4379 sizeof(psaA->sa6.sin6_addr)); 4380 } 4381 } 4382 4383 4384 /* 4385 * Send a restrict entry in response to a "ntpq -c reslist" request. 4386 * 4387 * To keep clients honest about not depending on the order of values, 4388 * and thereby avoid being locked into ugly workarounds to maintain 4389 * backward compatibility later as new fields are added to the response, 4390 * the order is random. 4391 */ 4392 static void 4393 send_restrict_entry( 4394 restrict_u * pres, 4395 int ipv6, 4396 u_int idx 4397 ) 4398 { 4399 const char addr_fmtu[] = "addr.%u"; 4400 const char mask_fmtu[] = "mask.%u"; 4401 const char hits_fmt[] = "hits.%u"; 4402 const char flags_fmt[] = "flags.%u"; 4403 char tag[32]; 4404 u_char sent[RESLIST_FIELDS]; /* 4 tag=value pairs */ 4405 int noisebits; 4406 u_int32 noise; 4407 u_int which; 4408 u_int remaining; 4409 sockaddr_u addr; 4410 sockaddr_u mask; 4411 const char * pch; 4412 char * buf; 4413 const char * match_str; 4414 const char * access_str; 4415 4416 sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6); 4417 remaining = COUNTOF(sent); 4418 ZERO(sent); 4419 noise = 0; 4420 noisebits = 0; 4421 while (remaining > 0) { 4422 if (noisebits < 2) { 4423 noise = rand() ^ (rand() << 16); 4424 noisebits = 31; 4425 } 4426 which = (noise & 0x3) % COUNTOF(sent); 4427 noise >>= 2; 4428 noisebits -= 2; 4429 4430 while (sent[which]) 4431 which = (which + 1) % COUNTOF(sent); 4432 4433 /* XXX: Numbers? Really? */ 4434 switch (which) { 4435 4436 case 0: 4437 snprintf(tag, sizeof(tag), addr_fmtu, idx); 4438 pch = stoa(&addr); 4439 ctl_putunqstr(tag, pch, strlen(pch)); 4440 break; 4441 4442 case 1: 4443 snprintf(tag, sizeof(tag), mask_fmtu, idx); 4444 pch = stoa(&mask); 4445 ctl_putunqstr(tag, pch, strlen(pch)); 4446 break; 4447 4448 case 2: 4449 snprintf(tag, sizeof(tag), hits_fmt, idx); 4450 ctl_putuint(tag, pres->count); 4451 break; 4452 4453 case 3: 4454 snprintf(tag, sizeof(tag), flags_fmt, idx); 4455 match_str = res_match_flags(pres->mflags); 4456 access_str = res_access_flags(pres->rflags); 4457 if ('\0' == match_str[0]) { 4458 pch = access_str; 4459 } else { 4460 LIB_GETBUF(buf); 4461 snprintf(buf, LIB_BUFLENGTH, "%s %s", 4462 match_str, access_str); 4463 pch = buf; 4464 } 4465 ctl_putunqstr(tag, pch, strlen(pch)); 4466 break; 4467 } 4468 sent[which] = TRUE; 4469 remaining--; 4470 } 4471 send_random_tag_value((int)idx); 4472 } 4473 4474 4475 static void 4476 send_restrict_list( 4477 restrict_u * pres, 4478 int ipv6, 4479 u_int * pidx 4480 ) 4481 { 4482 for ( ; pres != NULL; pres = pres->link) { 4483 send_restrict_entry(pres, ipv6, *pidx); 4484 (*pidx)++; 4485 } 4486 } 4487 4488 4489 /* 4490 * read_addr_restrictions - returns IPv4 and IPv6 access control lists 4491 */ 4492 static void 4493 read_addr_restrictions( 4494 struct recvbuf * rbufp 4495 ) 4496 { 4497 u_int idx; 4498 4499 idx = 0; 4500 send_restrict_list(restrictlist4, FALSE, &idx); 4501 send_restrict_list(restrictlist6, TRUE, &idx); 4502 ctl_flushpkt(0); 4503 } 4504 4505 4506 /* 4507 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist 4508 */ 4509 static void 4510 read_ordlist( 4511 struct recvbuf * rbufp, 4512 int restrict_mask 4513 ) 4514 { 4515 const char ifstats_s[] = "ifstats"; 4516 const size_t ifstats_chars = COUNTOF(ifstats_s) - 1; 4517 const char addr_rst_s[] = "addr_restrictions"; 4518 const size_t a_r_chars = COUNTOF(addr_rst_s) - 1; 4519 struct ntp_control * cpkt; 4520 u_short qdata_octets; 4521 4522 /* 4523 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and 4524 * used only for ntpq -c ifstats. With the addition of reslist 4525 * the same opcode was generalized to retrieve ordered lists 4526 * which require authentication. The request data is empty or 4527 * contains "ifstats" (not null terminated) to retrieve local 4528 * addresses and associated stats. It is "addr_restrictions" 4529 * to retrieve the IPv4 then IPv6 remote address restrictions, 4530 * which are access control lists. Other request data return 4531 * CERR_UNKNOWNVAR. 4532 */ 4533 cpkt = (struct ntp_control *)&rbufp->recv_pkt; 4534 qdata_octets = ntohs(cpkt->count); 4535 if (0 == qdata_octets || (ifstats_chars == qdata_octets && 4536 !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) { 4537 read_ifstats(rbufp); 4538 return; 4539 } 4540 if (a_r_chars == qdata_octets && 4541 !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) { 4542 read_addr_restrictions(rbufp); 4543 return; 4544 } 4545 ctl_error(CERR_UNKNOWNVAR); 4546 } 4547 4548 4549 /* 4550 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite. 4551 */ 4552 static void req_nonce( 4553 struct recvbuf * rbufp, 4554 int restrict_mask 4555 ) 4556 { 4557 char buf[64]; 4558 4559 generate_nonce(rbufp, buf, sizeof(buf)); 4560 ctl_putunqstr("nonce", buf, strlen(buf)); 4561 ctl_flushpkt(0); 4562 } 4563 4564 4565 /* 4566 * read_clockstatus - return clock radio status 4567 */ 4568 /*ARGSUSED*/ 4569 static void 4570 read_clockstatus( 4571 struct recvbuf *rbufp, 4572 int restrict_mask 4573 ) 4574 { 4575 #ifndef REFCLOCK 4576 /* 4577 * If no refclock support, no data to return 4578 */ 4579 ctl_error(CERR_BADASSOC); 4580 #else 4581 const struct ctl_var * v; 4582 int i; 4583 struct peer * peer; 4584 char * valuep; 4585 u_char * wants; 4586 size_t wants_alloc; 4587 int gotvar; 4588 const u_char * cc; 4589 struct ctl_var * kv; 4590 struct refclockstat cs; 4591 4592 if (res_associd != 0) { 4593 peer = findpeerbyassoc(res_associd); 4594 } else { 4595 /* 4596 * Find a clock for this jerk. If the system peer 4597 * is a clock use it, else search peer_list for one. 4598 */ 4599 if (sys_peer != NULL && (FLAG_REFCLOCK & 4600 sys_peer->flags)) 4601 peer = sys_peer; 4602 else 4603 for (peer = peer_list; 4604 peer != NULL; 4605 peer = peer->p_link) 4606 if (FLAG_REFCLOCK & peer->flags) 4607 break; 4608 } 4609 if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) { 4610 ctl_error(CERR_BADASSOC); 4611 return; 4612 } 4613 /* 4614 * If we got here we have a peer which is a clock. Get his 4615 * status. 4616 */ 4617 cs.kv_list = NULL; 4618 refclock_control(&peer->srcadr, NULL, &cs); 4619 kv = cs.kv_list; 4620 /* 4621 * Look for variables in the packet. 4622 */ 4623 rpkt.status = htons(ctlclkstatus(&cs)); 4624 wants_alloc = CC_MAXCODE + 1 + count_var(kv); 4625 wants = emalloc_zero(wants_alloc); 4626 gotvar = FALSE; 4627 while (NULL != (v = ctl_getitem(clock_var, &valuep))) { 4628 if (!(EOV & v->flags)) { 4629 wants[v->code] = TRUE; 4630 gotvar = TRUE; 4631 } else { 4632 v = ctl_getitem(kv, &valuep); 4633 if (NULL == v) { 4634 ctl_error(CERR_BADVALUE); 4635 free(wants); 4636 free_varlist(cs.kv_list); 4637 return; 4638 } 4639 if (EOV & v->flags) { 4640 ctl_error(CERR_UNKNOWNVAR); 4641 free(wants); 4642 free_varlist(cs.kv_list); 4643 return; 4644 } 4645 wants[CC_MAXCODE + 1 + v->code] = TRUE; 4646 gotvar = TRUE; 4647 } 4648 } 4649 4650 if (gotvar) { 4651 for (i = 1; i <= CC_MAXCODE; i++) 4652 if (wants[i]) 4653 ctl_putclock(i, &cs, TRUE); 4654 if (kv != NULL) 4655 for (i = 0; !(EOV & kv[i].flags); i++) 4656 if (wants[i + CC_MAXCODE + 1]) 4657 ctl_putdata(kv[i].text, 4658 strlen(kv[i].text), 4659 FALSE); 4660 } else { 4661 for (cc = def_clock_var; *cc != 0; cc++) 4662 ctl_putclock((int)*cc, &cs, FALSE); 4663 for ( ; kv != NULL && !(EOV & kv->flags); kv++) 4664 if (DEF & kv->flags) 4665 ctl_putdata(kv->text, strlen(kv->text), 4666 FALSE); 4667 } 4668 4669 free(wants); 4670 free_varlist(cs.kv_list); 4671 4672 ctl_flushpkt(0); 4673 #endif 4674 } 4675 4676 4677 /* 4678 * write_clockstatus - we don't do this 4679 */ 4680 /*ARGSUSED*/ 4681 static void 4682 write_clockstatus( 4683 struct recvbuf *rbufp, 4684 int restrict_mask 4685 ) 4686 { 4687 ctl_error(CERR_PERMISSION); 4688 } 4689 4690 /* 4691 * Trap support from here on down. We send async trap messages when the 4692 * upper levels report trouble. Traps can by set either by control 4693 * messages or by configuration. 4694 */ 4695 /* 4696 * set_trap - set a trap in response to a control message 4697 */ 4698 static void 4699 set_trap( 4700 struct recvbuf *rbufp, 4701 int restrict_mask 4702 ) 4703 { 4704 int traptype; 4705 4706 /* 4707 * See if this guy is allowed 4708 */ 4709 if (restrict_mask & RES_NOTRAP) { 4710 ctl_error(CERR_PERMISSION); 4711 return; 4712 } 4713 4714 /* 4715 * Determine his allowed trap type. 4716 */ 4717 traptype = TRAP_TYPE_PRIO; 4718 if (restrict_mask & RES_LPTRAP) 4719 traptype = TRAP_TYPE_NONPRIO; 4720 4721 /* 4722 * Call ctlsettrap() to do the work. Return 4723 * an error if it can't assign the trap. 4724 */ 4725 if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype, 4726 (int)res_version)) 4727 ctl_error(CERR_NORESOURCE); 4728 ctl_flushpkt(0); 4729 } 4730 4731 4732 /* 4733 * unset_trap - unset a trap in response to a control message 4734 */ 4735 static void 4736 unset_trap( 4737 struct recvbuf *rbufp, 4738 int restrict_mask 4739 ) 4740 { 4741 int traptype; 4742 4743 /* 4744 * We don't prevent anyone from removing his own trap unless the 4745 * trap is configured. Note we also must be aware of the 4746 * possibility that restriction flags were changed since this 4747 * guy last set his trap. Set the trap type based on this. 4748 */ 4749 traptype = TRAP_TYPE_PRIO; 4750 if (restrict_mask & RES_LPTRAP) 4751 traptype = TRAP_TYPE_NONPRIO; 4752 4753 /* 4754 * Call ctlclrtrap() to clear this out. 4755 */ 4756 if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype)) 4757 ctl_error(CERR_BADASSOC); 4758 ctl_flushpkt(0); 4759 } 4760 4761 4762 /* 4763 * ctlsettrap - called to set a trap 4764 */ 4765 int 4766 ctlsettrap( 4767 sockaddr_u *raddr, 4768 struct interface *linter, 4769 int traptype, 4770 int version 4771 ) 4772 { 4773 size_t n; 4774 struct ctl_trap *tp; 4775 struct ctl_trap *tptouse; 4776 4777 /* 4778 * See if we can find this trap. If so, we only need update 4779 * the flags and the time. 4780 */ 4781 if ((tp = ctlfindtrap(raddr, linter)) != NULL) { 4782 switch (traptype) { 4783 4784 case TRAP_TYPE_CONFIG: 4785 tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED; 4786 break; 4787 4788 case TRAP_TYPE_PRIO: 4789 if (tp->tr_flags & TRAP_CONFIGURED) 4790 return (1); /* don't change anything */ 4791 tp->tr_flags = TRAP_INUSE; 4792 break; 4793 4794 case TRAP_TYPE_NONPRIO: 4795 if (tp->tr_flags & TRAP_CONFIGURED) 4796 return (1); /* don't change anything */ 4797 tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO; 4798 break; 4799 } 4800 tp->tr_settime = current_time; 4801 tp->tr_resets++; 4802 return (1); 4803 } 4804 4805 /* 4806 * First we heard of this guy. Try to find a trap structure 4807 * for him to use, clearing out lesser priority guys if we 4808 * have to. Clear out anyone who's expired while we're at it. 4809 */ 4810 tptouse = NULL; 4811 for (n = 0; n < COUNTOF(ctl_traps); n++) { 4812 tp = &ctl_traps[n]; 4813 if ((TRAP_INUSE & tp->tr_flags) && 4814 !(TRAP_CONFIGURED & tp->tr_flags) && 4815 ((tp->tr_settime + CTL_TRAPTIME) > current_time)) { 4816 tp->tr_flags = 0; 4817 num_ctl_traps--; 4818 } 4819 if (!(TRAP_INUSE & tp->tr_flags)) { 4820 tptouse = tp; 4821 } else if (!(TRAP_CONFIGURED & tp->tr_flags)) { 4822 switch (traptype) { 4823 4824 case TRAP_TYPE_CONFIG: 4825 if (tptouse == NULL) { 4826 tptouse = tp; 4827 break; 4828 } 4829 if ((TRAP_NONPRIO & tptouse->tr_flags) && 4830 !(TRAP_NONPRIO & tp->tr_flags)) 4831 break; 4832 4833 if (!(TRAP_NONPRIO & tptouse->tr_flags) 4834 && (TRAP_NONPRIO & tp->tr_flags)) { 4835 tptouse = tp; 4836 break; 4837 } 4838 if (tptouse->tr_origtime < 4839 tp->tr_origtime) 4840 tptouse = tp; 4841 break; 4842 4843 case TRAP_TYPE_PRIO: 4844 if ( TRAP_NONPRIO & tp->tr_flags) { 4845 if (tptouse == NULL || 4846 ((TRAP_INUSE & 4847 tptouse->tr_flags) && 4848 tptouse->tr_origtime < 4849 tp->tr_origtime)) 4850 tptouse = tp; 4851 } 4852 break; 4853 4854 case TRAP_TYPE_NONPRIO: 4855 break; 4856 } 4857 } 4858 } 4859 4860 /* 4861 * If we don't have room for him return an error. 4862 */ 4863 if (tptouse == NULL) 4864 return (0); 4865 4866 /* 4867 * Set up this structure for him. 4868 */ 4869 tptouse->tr_settime = tptouse->tr_origtime = current_time; 4870 tptouse->tr_count = tptouse->tr_resets = 0; 4871 tptouse->tr_sequence = 1; 4872 tptouse->tr_addr = *raddr; 4873 tptouse->tr_localaddr = linter; 4874 tptouse->tr_version = (u_char) version; 4875 tptouse->tr_flags = TRAP_INUSE; 4876 if (traptype == TRAP_TYPE_CONFIG) 4877 tptouse->tr_flags |= TRAP_CONFIGURED; 4878 else if (traptype == TRAP_TYPE_NONPRIO) 4879 tptouse->tr_flags |= TRAP_NONPRIO; 4880 num_ctl_traps++; 4881 return (1); 4882 } 4883 4884 4885 /* 4886 * ctlclrtrap - called to clear a trap 4887 */ 4888 int 4889 ctlclrtrap( 4890 sockaddr_u *raddr, 4891 struct interface *linter, 4892 int traptype 4893 ) 4894 { 4895 register struct ctl_trap *tp; 4896 4897 if ((tp = ctlfindtrap(raddr, linter)) == NULL) 4898 return (0); 4899 4900 if (tp->tr_flags & TRAP_CONFIGURED 4901 && traptype != TRAP_TYPE_CONFIG) 4902 return (0); 4903 4904 tp->tr_flags = 0; 4905 num_ctl_traps--; 4906 return (1); 4907 } 4908 4909 4910 /* 4911 * ctlfindtrap - find a trap given the remote and local addresses 4912 */ 4913 static struct ctl_trap * 4914 ctlfindtrap( 4915 sockaddr_u *raddr, 4916 struct interface *linter 4917 ) 4918 { 4919 size_t n; 4920 4921 for (n = 0; n < COUNTOF(ctl_traps); n++) 4922 if ((ctl_traps[n].tr_flags & TRAP_INUSE) 4923 && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr) 4924 && (linter == ctl_traps[n].tr_localaddr)) 4925 return &ctl_traps[n]; 4926 4927 return NULL; 4928 } 4929 4930 4931 /* 4932 * report_event - report an event to the trappers 4933 */ 4934 void 4935 report_event( 4936 int err, /* error code */ 4937 struct peer *peer, /* peer structure pointer */ 4938 const char *str /* protostats string */ 4939 ) 4940 { 4941 char statstr[NTP_MAXSTRLEN]; 4942 int i; 4943 size_t len; 4944 4945 /* 4946 * Report the error to the protostats file, system log and 4947 * trappers. 4948 */ 4949 if (peer == NULL) { 4950 4951 /* 4952 * Discard a system report if the number of reports of 4953 * the same type exceeds the maximum. 4954 */ 4955 if (ctl_sys_last_event != (u_char)err) 4956 ctl_sys_num_events= 0; 4957 if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS) 4958 return; 4959 4960 ctl_sys_last_event = (u_char)err; 4961 ctl_sys_num_events++; 4962 snprintf(statstr, sizeof(statstr), 4963 "0.0.0.0 %04x %02x %s", 4964 ctlsysstatus(), err, eventstr(err)); 4965 if (str != NULL) { 4966 len = strlen(statstr); 4967 snprintf(statstr + len, sizeof(statstr) - len, 4968 " %s", str); 4969 } 4970 NLOG(NLOG_SYSEVENT) 4971 msyslog(LOG_INFO, "%s", statstr); 4972 } else { 4973 4974 /* 4975 * Discard a peer report if the number of reports of 4976 * the same type exceeds the maximum for that peer. 4977 */ 4978 const char * src; 4979 u_char errlast; 4980 4981 errlast = (u_char)err & ~PEER_EVENT; 4982 if (peer->last_event != errlast) 4983 peer->num_events = 0; 4984 if (peer->num_events >= CTL_PEER_MAXEVENTS) 4985 return; 4986 4987 peer->last_event = errlast; 4988 peer->num_events++; 4989 if (ISREFCLOCKADR(&peer->srcadr)) 4990 src = refnumtoa(&peer->srcadr); 4991 else 4992 src = stoa(&peer->srcadr); 4993 4994 snprintf(statstr, sizeof(statstr), 4995 "%s %04x %02x %s", src, 4996 ctlpeerstatus(peer), err, eventstr(err)); 4997 if (str != NULL) { 4998 len = strlen(statstr); 4999 snprintf(statstr + len, sizeof(statstr) - len, 5000 " %s", str); 5001 } 5002 NLOG(NLOG_PEEREVENT) 5003 msyslog(LOG_INFO, "%s", statstr); 5004 } 5005 record_proto_stats(statstr); 5006 #if DEBUG 5007 if (debug) 5008 printf("event at %lu %s\n", current_time, statstr); 5009 #endif 5010 5011 /* 5012 * If no trappers, return. 5013 */ 5014 if (num_ctl_traps <= 0) 5015 return; 5016 5017 /* [Bug 3119] 5018 * Peer Events should be associated with a peer -- hence the 5019 * name. But there are instances where this function is called 5020 * *without* a valid peer. This happens e.g. with an unsolicited 5021 * CryptoNAK, or when a leap second alarm is going off while 5022 * currently without a system peer. 5023 * 5024 * The most sensible approach to this seems to bail out here if 5025 * this happens. Avoiding to call this function would also 5026 * bypass the log reporting in the first part of this function, 5027 * and this is probably not the best of all options. 5028 * -*-perlinger@ntp.org-*- 5029 */ 5030 if ((err & PEER_EVENT) && !peer) 5031 return; 5032 5033 /* 5034 * Set up the outgoing packet variables 5035 */ 5036 res_opcode = CTL_OP_ASYNCMSG; 5037 res_offset = 0; 5038 res_async = TRUE; 5039 res_authenticate = FALSE; 5040 datapt = rpkt.u.data; 5041 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 5042 if (!(err & PEER_EVENT)) { 5043 rpkt.associd = 0; 5044 rpkt.status = htons(ctlsysstatus()); 5045 5046 /* Include the core system variables and the list. */ 5047 for (i = 1; i <= CS_VARLIST; i++) 5048 ctl_putsys(i); 5049 } else if (NULL != peer) { /* paranoia -- skip output */ 5050 rpkt.associd = htons(peer->associd); 5051 rpkt.status = htons(ctlpeerstatus(peer)); 5052 5053 /* Dump it all. Later, maybe less. */ 5054 for (i = 1; i <= CP_MAX_NOAUTOKEY; i++) 5055 ctl_putpeer(i, peer); 5056 # ifdef REFCLOCK 5057 /* 5058 * for clock exception events: add clock variables to 5059 * reflect info on exception 5060 */ 5061 if (err == PEVNT_CLOCK) { 5062 struct refclockstat cs; 5063 struct ctl_var *kv; 5064 5065 cs.kv_list = NULL; 5066 refclock_control(&peer->srcadr, NULL, &cs); 5067 5068 ctl_puthex("refclockstatus", 5069 ctlclkstatus(&cs)); 5070 5071 for (i = 1; i <= CC_MAXCODE; i++) 5072 ctl_putclock(i, &cs, FALSE); 5073 for (kv = cs.kv_list; 5074 kv != NULL && !(EOV & kv->flags); 5075 kv++) 5076 if (DEF & kv->flags) 5077 ctl_putdata(kv->text, 5078 strlen(kv->text), 5079 FALSE); 5080 free_varlist(cs.kv_list); 5081 } 5082 # endif /* REFCLOCK */ 5083 } 5084 5085 /* 5086 * We're done, return. 5087 */ 5088 ctl_flushpkt(0); 5089 } 5090 5091 5092 /* 5093 * mprintf_event - printf-style varargs variant of report_event() 5094 */ 5095 int 5096 mprintf_event( 5097 int evcode, /* event code */ 5098 struct peer * p, /* may be NULL */ 5099 const char * fmt, /* msnprintf format */ 5100 ... 5101 ) 5102 { 5103 va_list ap; 5104 int rc; 5105 char msg[512]; 5106 5107 va_start(ap, fmt); 5108 rc = mvsnprintf(msg, sizeof(msg), fmt, ap); 5109 va_end(ap); 5110 report_event(evcode, p, msg); 5111 5112 return rc; 5113 } 5114 5115 5116 /* 5117 * ctl_clr_stats - clear stat counters 5118 */ 5119 void 5120 ctl_clr_stats(void) 5121 { 5122 ctltimereset = current_time; 5123 numctlreq = 0; 5124 numctlbadpkts = 0; 5125 numctlresponses = 0; 5126 numctlfrags = 0; 5127 numctlerrors = 0; 5128 numctlfrags = 0; 5129 numctltooshort = 0; 5130 numctlinputresp = 0; 5131 numctlinputfrag = 0; 5132 numctlinputerr = 0; 5133 numctlbadoffset = 0; 5134 numctlbadversion = 0; 5135 numctldatatooshort = 0; 5136 numctlbadop = 0; 5137 numasyncmsgs = 0; 5138 } 5139 5140 static u_short 5141 count_var( 5142 const struct ctl_var *k 5143 ) 5144 { 5145 u_int c; 5146 5147 if (NULL == k) 5148 return 0; 5149 5150 c = 0; 5151 while (!(EOV & (k++)->flags)) 5152 c++; 5153 5154 ENSURE(c <= USHRT_MAX); 5155 return (u_short)c; 5156 } 5157 5158 5159 char * 5160 add_var( 5161 struct ctl_var **kv, 5162 u_long size, 5163 u_short def 5164 ) 5165 { 5166 u_short c; 5167 struct ctl_var *k; 5168 char * buf; 5169 5170 c = count_var(*kv); 5171 *kv = erealloc(*kv, (c + 2) * sizeof(**kv)); 5172 k = *kv; 5173 buf = emalloc(size); 5174 k[c].code = c; 5175 k[c].text = buf; 5176 k[c].flags = def; 5177 k[c + 1].code = 0; 5178 k[c + 1].text = NULL; 5179 k[c + 1].flags = EOV; 5180 5181 return buf; 5182 } 5183 5184 5185 void 5186 set_var( 5187 struct ctl_var **kv, 5188 const char *data, 5189 u_long size, 5190 u_short def 5191 ) 5192 { 5193 struct ctl_var *k; 5194 const char *s; 5195 const char *t; 5196 char *td; 5197 5198 if (NULL == data || !size) 5199 return; 5200 5201 k = *kv; 5202 if (k != NULL) { 5203 while (!(EOV & k->flags)) { 5204 if (NULL == k->text) { 5205 td = emalloc(size); 5206 memcpy(td, data, size); 5207 k->text = td; 5208 k->flags = def; 5209 return; 5210 } else { 5211 s = data; 5212 t = k->text; 5213 while (*t != '=' && *s == *t) { 5214 s++; 5215 t++; 5216 } 5217 if (*s == *t && ((*t == '=') || !*t)) { 5218 td = erealloc((void *)(intptr_t)k->text, size); 5219 memcpy(td, data, size); 5220 k->text = td; 5221 k->flags = def; 5222 return; 5223 } 5224 } 5225 k++; 5226 } 5227 } 5228 td = add_var(kv, size, def); 5229 memcpy(td, data, size); 5230 } 5231 5232 5233 void 5234 set_sys_var( 5235 const char *data, 5236 u_long size, 5237 u_short def 5238 ) 5239 { 5240 set_var(&ext_sys_var, data, size, def); 5241 } 5242 5243 5244 /* 5245 * get_ext_sys_var() retrieves the value of a user-defined variable or 5246 * NULL if the variable has not been setvar'd. 5247 */ 5248 const char * 5249 get_ext_sys_var(const char *tag) 5250 { 5251 struct ctl_var * v; 5252 size_t c; 5253 const char * val; 5254 5255 val = NULL; 5256 c = strlen(tag); 5257 for (v = ext_sys_var; !(EOV & v->flags); v++) { 5258 if (NULL != v->text && !memcmp(tag, v->text, c)) { 5259 if ('=' == v->text[c]) { 5260 val = v->text + c + 1; 5261 break; 5262 } else if ('\0' == v->text[c]) { 5263 val = ""; 5264 break; 5265 } 5266 } 5267 } 5268 5269 return val; 5270 } 5271 5272 5273 void 5274 free_varlist( 5275 struct ctl_var *kv 5276 ) 5277 { 5278 struct ctl_var *k; 5279 if (kv) { 5280 for (k = kv; !(k->flags & EOV); k++) 5281 free((void *)(intptr_t)k->text); 5282 free((void *)kv); 5283 } 5284 } 5285