xref: /netbsd-src/external/bsd/ntp/dist/ntpd/ntp_control.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: ntp_control.c,v 1.8 2014/01/02 21:37:00 joerg Exp $	*/
2 
3 /*
4  * ntp_control.c - respond to mode 6 control messages and send async
5  *		   traps.  Provides service to ntpq and others.
6  */
7 
8 #ifdef HAVE_CONFIG_H
9 # include <config.h>
10 #endif
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <signal.h>
15 #include <sys/stat.h>
16 #ifdef HAVE_NETINET_IN_H
17 # include <netinet/in.h>
18 #endif
19 #include <arpa/inet.h>
20 
21 #include "ntpd.h"
22 #include "ntp_io.h"
23 #include "ntp_refclock.h"
24 #include "ntp_control.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 #include "ntp_config.h"
28 #include "ntp_crypto.h"
29 #include "ntp_assert.h"
30 #include "ntp_leapsec.h"
31 #include "ntp_md5.h"	/* provides OpenSSL digest API */
32 #include "lib_strbuf.h"
33 #ifdef KERNEL_PLL
34 # include "ntp_syscall.h"
35 #endif
36 
37 
38 /*
39  * Structure to hold request procedure information
40  */
41 
42 struct ctl_proc {
43 	short control_code;		/* defined request code */
44 #define NO_REQUEST	(-1)
45 	u_short flags;			/* flags word */
46 	/* Only one flag.  Authentication required or not. */
47 #define NOAUTH	0
48 #define AUTH	1
49 	void (*handler) (struct recvbuf *, int); /* handle request */
50 };
51 
52 
53 /*
54  * Request processing routines
55  */
56 static	void	ctl_error	(u_char);
57 #ifdef REFCLOCK
58 static	u_short ctlclkstatus	(struct refclockstat *);
59 #endif
60 static	void	ctl_flushpkt	(u_char);
61 static	void	ctl_putdata	(const char *, unsigned int, int);
62 static	void	ctl_putstr	(const char *, const char *, size_t);
63 static	void	ctl_putdblf	(const char *, int, int, double);
64 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67 					    FPTOD(sfp))
68 static	void	ctl_putuint	(const char *, u_long);
69 static	void	ctl_puthex	(const char *, u_long);
70 static	void	ctl_putint	(const char *, long);
71 static	void	ctl_putts	(const char *, l_fp *);
72 static	void	ctl_putadr	(const char *, u_int32,
73 				 sockaddr_u *);
74 static	void	ctl_putrefid	(const char *, u_int32);
75 static	void	ctl_putarray	(const char *, double *, int);
76 static	void	ctl_putsys	(int);
77 static	void	ctl_putpeer	(int, struct peer *);
78 static	void	ctl_putfs	(const char *, tstamp_t);
79 #ifdef REFCLOCK
80 static	void	ctl_putclock	(int, struct refclockstat *, int);
81 #endif	/* REFCLOCK */
82 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
83 					  char **);
84 static	u_short	count_var	(const struct ctl_var *);
85 static	void	control_unspec	(struct recvbuf *, int);
86 static	void	read_status	(struct recvbuf *, int);
87 static	void	read_sysvars	(void);
88 static	void	read_peervars	(void);
89 static	void	read_variables	(struct recvbuf *, int);
90 static	void	write_variables (struct recvbuf *, int);
91 static	void	read_clockstatus(struct recvbuf *, int);
92 static	void	write_clockstatus(struct recvbuf *, int);
93 static	void	set_trap	(struct recvbuf *, int);
94 static	void	save_config	(struct recvbuf *, int);
95 static	void	configure	(struct recvbuf *, int);
96 static	void	send_mru_entry	(mon_entry *, int);
97 static	void	send_random_tag_value(int);
98 static	void	read_mru_list	(struct recvbuf *, int);
99 static	void	send_ifstats_entry(endpt *, u_int);
100 static	void	read_ifstats	(struct recvbuf *);
101 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
102 					  restrict_u *, int);
103 static	void	send_restrict_entry(restrict_u *, int, u_int);
104 static	void	send_restrict_list(restrict_u *, int, u_int *);
105 static	void	read_addr_restrictions(struct recvbuf *);
106 static	void	read_ordlist	(struct recvbuf *, int);
107 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
108 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
109 static	int	validate_nonce	(const char *, struct recvbuf *);
110 static	void	req_nonce	(struct recvbuf *, int);
111 static	void	unset_trap	(struct recvbuf *, int);
112 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
113 				     struct interface *);
114 
115 static const struct ctl_proc control_codes[] = {
116 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
117 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
118 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
119 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
120 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
121 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
122 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
123 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
124 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
125 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
126 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
127 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
128 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
129 	{ NO_REQUEST,			0,	NULL }
130 };
131 
132 /*
133  * System variables we understand
134  */
135 #define	CS_LEAP			1
136 #define	CS_STRATUM		2
137 #define	CS_PRECISION		3
138 #define	CS_ROOTDELAY		4
139 #define	CS_ROOTDISPERSION	5
140 #define	CS_REFID		6
141 #define	CS_REFTIME		7
142 #define	CS_POLL			8
143 #define	CS_PEERID		9
144 #define	CS_OFFSET		10
145 #define	CS_DRIFT		11
146 #define	CS_JITTER		12
147 #define	CS_ERROR		13
148 #define	CS_CLOCK		14
149 #define	CS_PROCESSOR		15
150 #define	CS_SYSTEM		16
151 #define	CS_VERSION		17
152 #define	CS_STABIL		18
153 #define	CS_VARLIST		19
154 #define	CS_TAI			20
155 #define	CS_LEAPTAB		21
156 #define	CS_LEAPEND		22
157 #define	CS_RATE			23
158 #define	CS_MRU_ENABLED		24
159 #define	CS_MRU_DEPTH		25
160 #define	CS_MRU_DEEPEST		26
161 #define	CS_MRU_MINDEPTH		27
162 #define	CS_MRU_MAXAGE		28
163 #define	CS_MRU_MAXDEPTH		29
164 #define	CS_MRU_MEM		30
165 #define	CS_MRU_MAXMEM		31
166 #define	CS_SS_UPTIME		32
167 #define	CS_SS_RESET		33
168 #define	CS_SS_RECEIVED		34
169 #define	CS_SS_THISVER		35
170 #define	CS_SS_OLDVER		36
171 #define	CS_SS_BADFORMAT		37
172 #define	CS_SS_BADAUTH		38
173 #define	CS_SS_DECLINED		39
174 #define	CS_SS_RESTRICTED	40
175 #define	CS_SS_LIMITED		41
176 #define	CS_SS_KODSENT		42
177 #define	CS_SS_PROCESSED		43
178 #define	CS_PEERADR		44
179 #define	CS_PEERMODE		45
180 #define	CS_BCASTDELAY		46
181 #define	CS_AUTHDELAY		47
182 #define	CS_AUTHKEYS		48
183 #define	CS_AUTHFREEK		49
184 #define	CS_AUTHKLOOKUPS		50
185 #define	CS_AUTHKNOTFOUND	51
186 #define	CS_AUTHKUNCACHED	52
187 #define	CS_AUTHKEXPIRED		53
188 #define	CS_AUTHENCRYPTS		54
189 #define	CS_AUTHDECRYPTS		55
190 #define	CS_AUTHRESET		56
191 #define	CS_K_OFFSET		57
192 #define	CS_K_FREQ		58
193 #define	CS_K_MAXERR		59
194 #define	CS_K_ESTERR		60
195 #define	CS_K_STFLAGS		61
196 #define	CS_K_TIMECONST		62
197 #define	CS_K_PRECISION		63
198 #define	CS_K_FREQTOL		64
199 #define	CS_K_PPS_FREQ		65
200 #define	CS_K_PPS_STABIL		66
201 #define	CS_K_PPS_JITTER		67
202 #define	CS_K_PPS_CALIBDUR	68
203 #define	CS_K_PPS_CALIBS		69
204 #define	CS_K_PPS_CALIBERRS	70
205 #define	CS_K_PPS_JITEXC		71
206 #define	CS_K_PPS_STBEXC		72
207 #define	CS_KERN_FIRST		CS_K_OFFSET
208 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
209 #define	CS_IOSTATS_RESET	73
210 #define	CS_TOTAL_RBUF		74
211 #define	CS_FREE_RBUF		75
212 #define	CS_USED_RBUF		76
213 #define	CS_RBUF_LOWATER		77
214 #define	CS_IO_DROPPED		78
215 #define	CS_IO_IGNORED		79
216 #define	CS_IO_RECEIVED		80
217 #define	CS_IO_SENT		81
218 #define	CS_IO_SENDFAILED	82
219 #define	CS_IO_WAKEUPS		83
220 #define	CS_IO_GOODWAKEUPS	84
221 #define	CS_TIMERSTATS_RESET	85
222 #define	CS_TIMER_OVERRUNS	86
223 #define	CS_TIMER_XMTS		87
224 #define	CS_FUZZ			88
225 #define	CS_MAX_NOAUTOKEY	CS_FUZZ
226 #ifdef AUTOKEY
227 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
228 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
229 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
230 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
231 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
232 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
233 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
234 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
235 #define	CS_MAXCODE		CS_DIGEST
236 #else	/* !AUTOKEY follows */
237 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
238 #endif	/* !AUTOKEY */
239 
240 /*
241  * Peer variables we understand
242  */
243 #define	CP_CONFIG		1
244 #define	CP_AUTHENABLE		2
245 #define	CP_AUTHENTIC		3
246 #define	CP_SRCADR		4
247 #define	CP_SRCPORT		5
248 #define	CP_DSTADR		6
249 #define	CP_DSTPORT		7
250 #define	CP_LEAP			8
251 #define	CP_HMODE		9
252 #define	CP_STRATUM		10
253 #define	CP_PPOLL		11
254 #define	CP_HPOLL		12
255 #define	CP_PRECISION		13
256 #define	CP_ROOTDELAY		14
257 #define	CP_ROOTDISPERSION	15
258 #define	CP_REFID		16
259 #define	CP_REFTIME		17
260 #define	CP_ORG			18
261 #define	CP_REC			19
262 #define	CP_XMT			20
263 #define	CP_REACH		21
264 #define	CP_UNREACH		22
265 #define	CP_TIMER		23
266 #define	CP_DELAY		24
267 #define	CP_OFFSET		25
268 #define	CP_JITTER		26
269 #define	CP_DISPERSION		27
270 #define	CP_KEYID		28
271 #define	CP_FILTDELAY		29
272 #define	CP_FILTOFFSET		30
273 #define	CP_PMODE		31
274 #define	CP_RECEIVED		32
275 #define	CP_SENT			33
276 #define	CP_FILTERROR		34
277 #define	CP_FLASH		35
278 #define	CP_TTL			36
279 #define	CP_VARLIST		37
280 #define	CP_IN			38
281 #define	CP_OUT			39
282 #define	CP_RATE			40
283 #define	CP_BIAS			41
284 #define	CP_SRCHOST		42
285 #define	CP_TIMEREC		43
286 #define	CP_TIMEREACH		44
287 #define	CP_BADAUTH		45
288 #define	CP_BOGUSORG		46
289 #define	CP_OLDPKT		47
290 #define	CP_SELDISP		48
291 #define	CP_SELBROKEN		49
292 #define	CP_CANDIDATE		50
293 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
294 #ifdef AUTOKEY
295 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
296 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
297 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
298 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
299 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
300 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
301 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
302 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
303 #define	CP_MAXCODE		CP_IDENT
304 #else	/* !AUTOKEY follows */
305 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
306 #endif	/* !AUTOKEY */
307 
308 /*
309  * Clock variables we understand
310  */
311 #define	CC_TYPE		1
312 #define	CC_TIMECODE	2
313 #define	CC_POLL		3
314 #define	CC_NOREPLY	4
315 #define	CC_BADFORMAT	5
316 #define	CC_BADDATA	6
317 #define	CC_FUDGETIME1	7
318 #define	CC_FUDGETIME2	8
319 #define	CC_FUDGEVAL1	9
320 #define	CC_FUDGEVAL2	10
321 #define	CC_FLAGS	11
322 #define	CC_DEVICE	12
323 #define	CC_VARLIST	13
324 #define	CC_MAXCODE	CC_VARLIST
325 
326 /*
327  * System variable values. The array can be indexed by the variable
328  * index to find the textual name.
329  */
330 static const struct ctl_var sys_var[] = {
331 	{ 0,		PADDING, "" },		/* 0 */
332 	{ CS_LEAP,	RW, "leap" },		/* 1 */
333 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
334 	{ CS_PRECISION, RO, "precision" },	/* 3 */
335 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
336 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
337 	{ CS_REFID,	RO, "refid" },		/* 6 */
338 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
339 	{ CS_POLL,	RO, "tc" },		/* 8 */
340 	{ CS_PEERID,	RO, "peer" },		/* 9 */
341 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
342 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
343 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
344 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
345 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
346 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
347 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
348 	{ CS_VERSION,	RO, "version" },	/* 17 */
349 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
350 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
351 	{ CS_TAI,	RO, "tai" },		/* 20 */
352 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
353 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
354 	{ CS_RATE,	RO, "mintc" },		/* 23 */
355 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
356 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
357 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
358 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
359 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
360 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
361 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
362 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
363 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
364 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
365 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
366 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
367 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
368 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
369 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
370 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
371 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
372 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
373 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
374 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
375 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
376 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
377 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
378 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
379 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
380 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
381 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
382 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
383 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
384 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
385 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
386 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
387 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
388 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
389 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
390 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
391 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
392 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
393 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
394 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
395 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
396 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
397 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
398 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
399 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
400 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
401 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
402 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
403 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
404 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
405 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
406 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
407 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
408 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
409 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
410 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
411 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
412 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
413 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
414 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
415 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
416 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
417 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
418 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
419 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
420 #ifdef AUTOKEY
421 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
422 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
423 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
424 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
425 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
426 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
427 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
428 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
429 #endif	/* AUTOKEY */
430 	{ 0,		EOV, "" }		/* 87/95 */
431 };
432 
433 static struct ctl_var *ext_sys_var = NULL;
434 
435 /*
436  * System variables we print by default (in fuzzball order,
437  * more-or-less)
438  */
439 static const u_char def_sys_var[] = {
440 	CS_VERSION,
441 	CS_PROCESSOR,
442 	CS_SYSTEM,
443 	CS_LEAP,
444 	CS_STRATUM,
445 	CS_PRECISION,
446 	CS_ROOTDELAY,
447 	CS_ROOTDISPERSION,
448 	CS_REFID,
449 	CS_REFTIME,
450 	CS_CLOCK,
451 	CS_PEERID,
452 	CS_POLL,
453 	CS_RATE,
454 	CS_OFFSET,
455 	CS_DRIFT,
456 	CS_JITTER,
457 	CS_ERROR,
458 	CS_STABIL,
459 	CS_TAI,
460 	CS_LEAPTAB,
461 	CS_LEAPEND,
462 #ifdef AUTOKEY
463 	CS_HOST,
464 	CS_IDENT,
465 	CS_FLAGS,
466 	CS_DIGEST,
467 	CS_SIGNATURE,
468 	CS_PUBLIC,
469 	CS_CERTIF,
470 #endif	/* AUTOKEY */
471 	0
472 };
473 
474 
475 /*
476  * Peer variable list
477  */
478 static const struct ctl_var peer_var[] = {
479 	{ 0,		PADDING, "" },		/* 0 */
480 	{ CP_CONFIG,	RO, "config" },		/* 1 */
481 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
482 	{ CP_AUTHENTIC, RO, "authentic" }, 	/* 3 */
483 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
484 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
485 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
486 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
487 	{ CP_LEAP,	RO, "leap" },		/* 8 */
488 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
489 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
490 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
491 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
492 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
493 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
494 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
495 	{ CP_REFID,	RO, "refid" },		/* 16 */
496 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
497 	{ CP_ORG,	RO, "org" },		/* 18 */
498 	{ CP_REC,	RO, "rec" },		/* 19 */
499 	{ CP_XMT,	RO, "xleave" },		/* 20 */
500 	{ CP_REACH,	RO, "reach" },		/* 21 */
501 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
502 	{ CP_TIMER,	RO, "timer" },		/* 23 */
503 	{ CP_DELAY,	RO, "delay" },		/* 24 */
504 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
505 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
506 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
507 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
508 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
509 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
510 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
511 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
512 	{ CP_SENT,	RO, "sent" },		/* 33 */
513 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
514 	{ CP_FLASH,	RO, "flash" },		/* 35 */
515 	{ CP_TTL,	RO, "ttl" },		/* 36 */
516 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
517 	{ CP_IN,	RO, "in" },		/* 38 */
518 	{ CP_OUT,	RO, "out" },		/* 39 */
519 	{ CP_RATE,	RO, "headway" },	/* 40 */
520 	{ CP_BIAS,	RO, "bias" },		/* 41 */
521 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
522 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
523 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
524 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
525 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
526 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
527 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
528 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
529 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
530 #ifdef AUTOKEY
531 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
532 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
533 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
534 	{ CP_INITSEQ,	RO, "initsequence" },   /* 4 + CP_MAX_NOAUTOKEY */
535 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
536 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
537 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
538 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
539 #endif	/* AUTOKEY */
540 	{ 0,		EOV, "" }		/* 50/58 */
541 };
542 
543 
544 /*
545  * Peer variables we print by default
546  */
547 static const u_char def_peer_var[] = {
548 	CP_SRCADR,
549 	CP_SRCPORT,
550 	CP_SRCHOST,
551 	CP_DSTADR,
552 	CP_DSTPORT,
553 	CP_OUT,
554 	CP_IN,
555 	CP_LEAP,
556 	CP_STRATUM,
557 	CP_PRECISION,
558 	CP_ROOTDELAY,
559 	CP_ROOTDISPERSION,
560 	CP_REFID,
561 	CP_REFTIME,
562 	CP_REC,
563 	CP_REACH,
564 	CP_UNREACH,
565 	CP_HMODE,
566 	CP_PMODE,
567 	CP_HPOLL,
568 	CP_PPOLL,
569 	CP_RATE,
570 	CP_FLASH,
571 	CP_KEYID,
572 	CP_TTL,
573 	CP_OFFSET,
574 	CP_DELAY,
575 	CP_DISPERSION,
576 	CP_JITTER,
577 	CP_XMT,
578 	CP_BIAS,
579 	CP_FILTDELAY,
580 	CP_FILTOFFSET,
581 	CP_FILTERROR,
582 #ifdef AUTOKEY
583 	CP_HOST,
584 	CP_FLAGS,
585 	CP_SIGNATURE,
586 	CP_VALID,
587 	CP_INITSEQ,
588 	CP_IDENT,
589 #endif	/* AUTOKEY */
590 	0
591 };
592 
593 
594 #ifdef REFCLOCK
595 /*
596  * Clock variable list
597  */
598 static const struct ctl_var clock_var[] = {
599 	{ 0,		PADDING, "" },		/* 0 */
600 	{ CC_TYPE,	RO, "type" },		/* 1 */
601 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
602 	{ CC_POLL,	RO, "poll" },		/* 3 */
603 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
604 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
605 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
606 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
607 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
608 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
609 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
610 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
611 	{ CC_DEVICE,	RO, "device" },		/* 12 */
612 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
613 	{ 0,		EOV, ""  }		/* 14 */
614 };
615 
616 
617 /*
618  * Clock variables printed by default
619  */
620 static const u_char def_clock_var[] = {
621 	CC_DEVICE,
622 	CC_TYPE,	/* won't be output if device = known */
623 	CC_TIMECODE,
624 	CC_POLL,
625 	CC_NOREPLY,
626 	CC_BADFORMAT,
627 	CC_BADDATA,
628 	CC_FUDGETIME1,
629 	CC_FUDGETIME2,
630 	CC_FUDGEVAL1,
631 	CC_FUDGEVAL2,
632 	CC_FLAGS,
633 	0
634 };
635 #endif
636 
637 /*
638  * MRU string constants shared by send_mru_entry() and read_mru_list().
639  */
640 static const char addr_fmt[] =		"addr.%d";
641 static const char last_fmt[] =		"last.%d";
642 
643 /*
644  * System and processor definitions.
645  */
646 #ifndef HAVE_UNAME
647 # ifndef STR_SYSTEM
648 #  define		STR_SYSTEM	"UNIX"
649 # endif
650 # ifndef STR_PROCESSOR
651 #  define		STR_PROCESSOR	"unknown"
652 # endif
653 
654 static const char str_system[] = STR_SYSTEM;
655 static const char str_processor[] = STR_PROCESSOR;
656 #else
657 # include <sys/utsname.h>
658 static struct utsname utsnamebuf;
659 #endif /* HAVE_UNAME */
660 
661 /*
662  * Trap structures. We only allow a few of these, and send a copy of
663  * each async message to each live one. Traps time out after an hour, it
664  * is up to the trap receipient to keep resetting it to avoid being
665  * timed out.
666  */
667 /* ntp_request.c */
668 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
669 int num_ctl_traps;
670 
671 /*
672  * Type bits, for ctlsettrap() call.
673  */
674 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
675 #define TRAP_TYPE_PRIO		1	/* priority trap */
676 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
677 
678 
679 /*
680  * List relating reference clock types to control message time sources.
681  * Index by the reference clock type. This list will only be used iff
682  * the reference clock driver doesn't set peer->sstclktype to something
683  * different than CTL_SST_TS_UNSPEC.
684  */
685 #ifdef REFCLOCK
686 static const u_char clocktypes[] = {
687 	CTL_SST_TS_NTP, 	/* REFCLK_NONE (0) */
688 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
689 	CTL_SST_TS_UHF, 	/* deprecated REFCLK_GPS_TRAK (2) */
690 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
691 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
692 	CTL_SST_TS_UHF, 	/* REFCLK_TRUETIME (5) */
693 	CTL_SST_TS_UHF, 	/* REFCLK_IRIG_AUDIO (6) */
694 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
695 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
696 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
697 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_AS2201 (10) */
698 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_ARBITER (11) */
699 	CTL_SST_TS_UHF, 	/* REFCLK_IRIG_TPRO (12) */
700 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
701 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
702 	CTL_SST_TS_NTP, 	/* not used (15) */
703 	CTL_SST_TS_UHF, 	/* REFCLK_IRIG_BANCOMM (16) */
704 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_DATU (17) */
705 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
706 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
707 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_NMEA (20) */
708 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_VME (21) */
709 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
710 	CTL_SST_TS_NTP,		/* not used (23) */
711 	CTL_SST_TS_NTP,		/* not used (24) */
712 	CTL_SST_TS_NTP, 	/* not used (25) */
713 	CTL_SST_TS_UHF, 	/* REFCLK_GPS_HP (26) */
714 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
715 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
716 	CTL_SST_TS_UHF, 	/* REFCLK_PALISADE (29) */
717 	CTL_SST_TS_UHF, 	/* REFCLK_ONCORE (30) */
718 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
719 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
720 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
721 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
722 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
723 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
724 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
725 	CTL_SST_TS_UHF, 	/* REFCLK_HOPF_SERIAL (38) */
726 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
727 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
728 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
729 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
730 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
731 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
732 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
733 };
734 #endif  /* REFCLOCK */
735 
736 
737 /*
738  * Keyid used for authenticating write requests.
739  */
740 keyid_t ctl_auth_keyid;
741 
742 /*
743  * We keep track of the last error reported by the system internally
744  */
745 static	u_char ctl_sys_last_event;
746 static	u_char ctl_sys_num_events;
747 
748 
749 /*
750  * Statistic counters to keep track of requests and responses.
751  */
752 u_long ctltimereset;		/* time stats reset */
753 u_long numctlreq;		/* number of requests we've received */
754 u_long numctlbadpkts;		/* number of bad control packets */
755 u_long numctlresponses; 	/* number of resp packets sent with data */
756 u_long numctlfrags; 		/* number of fragments sent */
757 u_long numctlerrors;		/* number of error responses sent */
758 u_long numctltooshort;		/* number of too short input packets */
759 u_long numctlinputresp; 	/* number of responses on input */
760 u_long numctlinputfrag; 	/* number of fragments on input */
761 u_long numctlinputerr;		/* number of input pkts with err bit set */
762 u_long numctlbadoffset; 	/* number of input pkts with nonzero offset */
763 u_long numctlbadversion;	/* number of input pkts with unknown version */
764 u_long numctldatatooshort;	/* data too short for count */
765 u_long numctlbadop; 		/* bad op code found in packet */
766 u_long numasyncmsgs;		/* number of async messages we've sent */
767 
768 /*
769  * Response packet used by these routines. Also some state information
770  * so that we can handle packet formatting within a common set of
771  * subroutines.  Note we try to enter data in place whenever possible,
772  * but the need to set the more bit correctly means we occasionally
773  * use the extra buffer and copy.
774  */
775 static struct ntp_control rpkt;
776 static u_char	res_version;
777 static u_char	res_opcode;
778 static associd_t res_associd;
779 static u_short	res_frags;	/* datagrams in this response */
780 static int	res_offset;	/* offset of payload in response */
781 static u_char * datapt;
782 static u_char * dataend;
783 static int	datalinelen;
784 static int	datanotbinflag;
785 static sockaddr_u *rmt_addr;
786 static struct interface *lcl_inter;
787 
788 static u_char	res_authenticate;
789 static u_char	res_authokay;
790 static keyid_t	res_keyid;
791 
792 #define MAXDATALINELEN	(72)
793 
794 static u_char	res_async;	/* sending async trap response? */
795 
796 /*
797  * Pointers for saving state when decoding request packets
798  */
799 static	char *reqpt;
800 static	char *reqend;
801 
802 /*
803  * init_control - initialize request data
804  */
805 void
806 init_control(void)
807 {
808 	size_t i;
809 
810 #ifdef HAVE_UNAME
811 	uname(&utsnamebuf);
812 #endif /* HAVE_UNAME */
813 
814 	ctl_clr_stats();
815 
816 	ctl_auth_keyid = 0;
817 	ctl_sys_last_event = EVNT_UNSPEC;
818 	ctl_sys_num_events = 0;
819 
820 	num_ctl_traps = 0;
821 	for (i = 0; i < COUNTOF(ctl_traps); i++)
822 		ctl_traps[i].tr_flags = 0;
823 }
824 
825 
826 /*
827  * ctl_error - send an error response for the current request
828  */
829 static void
830 ctl_error(
831 	u_char errcode
832 	)
833 {
834 	int		maclen;
835 
836 	numctlerrors++;
837 	DPRINTF(3, ("sending control error %u\n", errcode));
838 
839 	/*
840 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
841 	 * have already been filled in.
842 	 */
843 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
844 			(res_opcode & CTL_OP_MASK);
845 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
846 	rpkt.count = 0;
847 
848 	/*
849 	 * send packet and bump counters
850 	 */
851 	if (res_authenticate && sys_authenticate) {
852 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
853 				     CTL_HEADER_LEN);
854 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
855 			CTL_HEADER_LEN + maclen);
856 	} else
857 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
858 			CTL_HEADER_LEN);
859 }
860 
861 /*
862  * save_config - Implements ntpq -c "saveconfig <filename>"
863  *		 Writes current configuration including any runtime
864  *		 changes by ntpq's :config or config-from-file
865  */
866 void
867 save_config(
868 	struct recvbuf *rbufp,
869 	int restrict_mask
870 	)
871 {
872 	char reply[128];
873 #ifdef SAVECONFIG
874 	char filespec[128];
875 	char filename[128];
876 	char fullpath[512];
877 	const char savedconfig_eq[] = "savedconfig=";
878 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
879 	time_t now;
880 	int fd;
881 	FILE *fptr;
882 #endif
883 
884 	if (RES_NOMODIFY & restrict_mask) {
885 		snprintf(reply, sizeof(reply),
886 			 "saveconfig prohibited by restrict ... nomodify");
887 		ctl_putdata(reply, strlen(reply), 0);
888 		ctl_flushpkt(0);
889 		NLOG(NLOG_SYSINFO)
890 			msyslog(LOG_NOTICE,
891 				"saveconfig from %s rejected due to nomodify restriction",
892 				stoa(&rbufp->recv_srcadr));
893 		sys_restricted++;
894 		return;
895 	}
896 
897 #ifdef SAVECONFIG
898 	if (NULL == saveconfigdir) {
899 		snprintf(reply, sizeof(reply),
900 			 "saveconfig prohibited, no saveconfigdir configured");
901 		ctl_putdata(reply, strlen(reply), 0);
902 		ctl_flushpkt(0);
903 		NLOG(NLOG_SYSINFO)
904 			msyslog(LOG_NOTICE,
905 				"saveconfig from %s rejected, no saveconfigdir",
906 				stoa(&rbufp->recv_srcadr));
907 		return;
908 	}
909 
910 	if (0 == reqend - reqpt)
911 		return;
912 
913 	strlcpy(filespec, reqpt, sizeof(filespec));
914 	time(&now);
915 
916 	/*
917 	 * allow timestamping of the saved config filename with
918 	 * strftime() format such as:
919 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
920 	 * XXX: Nice feature, but not too safe.
921 	 */
922 	if (0 == strftime(filename, sizeof(filename), filespec,
923 			       localtime(&now)))
924 		strlcpy(filename, filespec, sizeof(filename));
925 
926 	/*
927 	 * Conceptually we should be searching for DIRSEP in filename,
928 	 * however Windows actually recognizes both forward and
929 	 * backslashes as equivalent directory separators at the API
930 	 * level.  On POSIX systems we could allow '\\' but such
931 	 * filenames are tricky to manipulate from a shell, so just
932 	 * reject both types of slashes on all platforms.
933 	 */
934 	if (strchr(filename, '\\') || strchr(filename, '/')) {
935 		snprintf(reply, sizeof(reply),
936 			 "saveconfig does not allow directory in filename");
937 		ctl_putdata(reply, strlen(reply), 0);
938 		ctl_flushpkt(0);
939 		msyslog(LOG_NOTICE,
940 			"saveconfig with path from %s rejected",
941 			stoa(&rbufp->recv_srcadr));
942 		return;
943 	}
944 
945 	snprintf(fullpath, sizeof(fullpath), "%s%s",
946 		 saveconfigdir, filename);
947 
948 	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
949 		  S_IRUSR | S_IWUSR);
950 	if (-1 == fd)
951 		fptr = NULL;
952 	else
953 		fptr = fdopen(fd, "w");
954 
955 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
956 		snprintf(reply, sizeof(reply),
957 			 "Unable to save configuration to file %s",
958 			 filename);
959 		msyslog(LOG_ERR,
960 			"saveconfig %s from %s failed", filename,
961 			stoa(&rbufp->recv_srcadr));
962 	} else {
963 		snprintf(reply, sizeof(reply),
964 			 "Configuration saved to %s", filename);
965 		msyslog(LOG_NOTICE,
966 			"Configuration saved to %s (requested by %s)",
967 			fullpath, stoa(&rbufp->recv_srcadr));
968 		/*
969 		 * save the output filename in system variable
970 		 * savedconfig, retrieved with:
971 		 *   ntpq -c "rv 0 savedconfig"
972 		 */
973 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
974 			 savedconfig_eq, filename);
975 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
976 	}
977 
978 	if (NULL != fptr)
979 		fclose(fptr);
980 #else	/* !SAVECONFIG follows */
981 	snprintf(reply, sizeof(reply),
982 		 "saveconfig unavailable, configured with --disable-saveconfig");
983 #endif
984 
985 	ctl_putdata(reply, strlen(reply), 0);
986 	ctl_flushpkt(0);
987 }
988 
989 
990 /*
991  * process_control - process an incoming control message
992  */
993 void
994 process_control(
995 	struct recvbuf *rbufp,
996 	int restrict_mask
997 	)
998 {
999 	struct ntp_control *pkt;
1000 	int req_count;
1001 	int req_data;
1002 	const struct ctl_proc *cc;
1003 	keyid_t *pkid;
1004 	int properlen;
1005 	size_t maclen;
1006 
1007 	DPRINTF(3, ("in process_control()\n"));
1008 
1009 	/*
1010 	 * Save the addresses for error responses
1011 	 */
1012 	numctlreq++;
1013 	rmt_addr = &rbufp->recv_srcadr;
1014 	lcl_inter = rbufp->dstadr;
1015 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1016 
1017 	/*
1018 	 * If the length is less than required for the header, or
1019 	 * it is a response or a fragment, ignore this.
1020 	 */
1021 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1022 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1023 	    || pkt->offset != 0) {
1024 		DPRINTF(1, ("invalid format in control packet\n"));
1025 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1026 			numctltooshort++;
1027 		if (CTL_RESPONSE & pkt->r_m_e_op)
1028 			numctlinputresp++;
1029 		if (CTL_MORE & pkt->r_m_e_op)
1030 			numctlinputfrag++;
1031 		if (CTL_ERROR & pkt->r_m_e_op)
1032 			numctlinputerr++;
1033 		if (pkt->offset != 0)
1034 			numctlbadoffset++;
1035 		return;
1036 	}
1037 	res_version = PKT_VERSION(pkt->li_vn_mode);
1038 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1039 		DPRINTF(1, ("unknown version %d in control packet\n",
1040 			    res_version));
1041 		numctlbadversion++;
1042 		return;
1043 	}
1044 
1045 	/*
1046 	 * Pull enough data from the packet to make intelligent
1047 	 * responses
1048 	 */
1049 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1050 					 MODE_CONTROL);
1051 	res_opcode = pkt->r_m_e_op;
1052 	rpkt.sequence = pkt->sequence;
1053 	rpkt.associd = pkt->associd;
1054 	rpkt.status = 0;
1055 	res_frags = 1;
1056 	res_offset = 0;
1057 	res_associd = htons(pkt->associd);
1058 	res_async = FALSE;
1059 	res_authenticate = FALSE;
1060 	res_keyid = 0;
1061 	res_authokay = FALSE;
1062 	req_count = (int)ntohs(pkt->count);
1063 	datanotbinflag = FALSE;
1064 	datalinelen = 0;
1065 	datapt = rpkt.u.data;
1066 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1067 
1068 	if ((rbufp->recv_length & 0x3) != 0)
1069 		DPRINTF(3, ("Control packet length %d unrounded\n",
1070 			    rbufp->recv_length));
1071 
1072 	/*
1073 	 * We're set up now. Make sure we've got at least enough
1074 	 * incoming data space to match the count.
1075 	 */
1076 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1077 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1078 		ctl_error(CERR_BADFMT);
1079 		numctldatatooshort++;
1080 		return;
1081 	}
1082 
1083 	properlen = req_count + CTL_HEADER_LEN;
1084 	/* round up proper len to a 8 octet boundary */
1085 
1086 	properlen = (properlen + 7) & ~7;
1087 	maclen = rbufp->recv_length - properlen;
1088 	if ((rbufp->recv_length & 3) == 0 &&
1089 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1090 	    sys_authenticate) {
1091 		res_authenticate = TRUE;
1092 		pkid = (void *)((char *)pkt + properlen);
1093 		res_keyid = ntohl(*pkid);
1094 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1095 			    rbufp->recv_length, properlen, res_keyid,
1096 			    maclen));
1097 
1098 		if (!authistrusted(res_keyid))
1099 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1100 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1101 				     rbufp->recv_length - maclen,
1102 				     maclen)) {
1103 			res_authokay = TRUE;
1104 			DPRINTF(3, ("authenticated okay\n"));
1105 		} else {
1106 			res_keyid = 0;
1107 			DPRINTF(3, ("authentication failed\n"));
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * Set up translate pointers
1113 	 */
1114 	reqpt = (char *)pkt->u.data;
1115 	reqend = reqpt + req_count;
1116 
1117 	/*
1118 	 * Look for the opcode processor
1119 	 */
1120 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1121 		if (cc->control_code == res_opcode) {
1122 			DPRINTF(3, ("opcode %d, found command handler\n",
1123 				    res_opcode));
1124 			if (cc->flags == AUTH
1125 			    && (!res_authokay
1126 				|| res_keyid != ctl_auth_keyid)) {
1127 				ctl_error(CERR_PERMISSION);
1128 				return;
1129 			}
1130 			(cc->handler)(rbufp, restrict_mask);
1131 			return;
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * Can't find this one, return an error.
1137 	 */
1138 	numctlbadop++;
1139 	ctl_error(CERR_BADOP);
1140 	return;
1141 }
1142 
1143 
1144 /*
1145  * ctlpeerstatus - return a status word for this peer
1146  */
1147 u_short
1148 ctlpeerstatus(
1149 	register struct peer *p
1150 	)
1151 {
1152 	u_short status;
1153 
1154 	status = p->status;
1155 	if (FLAG_CONFIG & p->flags)
1156 		status |= CTL_PST_CONFIG;
1157 	if (p->keyid)
1158 		status |= CTL_PST_AUTHENABLE;
1159 	if (FLAG_AUTHENTIC & p->flags)
1160 		status |= CTL_PST_AUTHENTIC;
1161 	if (p->reach)
1162 		status |= CTL_PST_REACH;
1163 	if (MDF_TXONLY_MASK & p->cast_flags)
1164 		status |= CTL_PST_BCAST;
1165 
1166 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1167 }
1168 
1169 
1170 /*
1171  * ctlclkstatus - return a status word for this clock
1172  */
1173 #ifdef REFCLOCK
1174 static u_short
1175 ctlclkstatus(
1176 	struct refclockstat *pcs
1177 	)
1178 {
1179 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1180 }
1181 #endif
1182 
1183 
1184 /*
1185  * ctlsysstatus - return the system status word
1186  */
1187 u_short
1188 ctlsysstatus(void)
1189 {
1190 	register u_char this_clock;
1191 
1192 	this_clock = CTL_SST_TS_UNSPEC;
1193 #ifdef REFCLOCK
1194 	if (sys_peer != NULL) {
1195 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1196 			this_clock = sys_peer->sstclktype;
1197 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1198 			this_clock = clocktypes[sys_peer->refclktype];
1199 	}
1200 #else /* REFCLOCK */
1201 	if (sys_peer != 0)
1202 		this_clock = CTL_SST_TS_NTP;
1203 #endif /* REFCLOCK */
1204 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1205 			      ctl_sys_last_event);
1206 }
1207 
1208 
1209 /*
1210  * ctl_flushpkt - write out the current packet and prepare
1211  *		  another if necessary.
1212  */
1213 static void
1214 ctl_flushpkt(
1215 	u_char more
1216 	)
1217 {
1218 	size_t i;
1219 	int dlen;
1220 	int sendlen;
1221 	int maclen;
1222 	int totlen;
1223 	keyid_t keyid;
1224 
1225 	dlen = datapt - rpkt.u.data;
1226 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1227 		/*
1228 		 * Big hack, output a trailing \r\n
1229 		 */
1230 		*datapt++ = '\r';
1231 		*datapt++ = '\n';
1232 		dlen += 2;
1233 	}
1234 	sendlen = dlen + CTL_HEADER_LEN;
1235 
1236 	/*
1237 	 * Pad to a multiple of 32 bits
1238 	 */
1239 	while (sendlen & 0x3) {
1240 		*datapt++ = '\0';
1241 		sendlen++;
1242 	}
1243 
1244 	/*
1245 	 * Fill in the packet with the current info
1246 	 */
1247 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1248 			(res_opcode & CTL_OP_MASK);
1249 	rpkt.count = htons((u_short)dlen);
1250 	rpkt.offset = htons((u_short)res_offset);
1251 	if (res_async) {
1252 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1253 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1254 				rpkt.li_vn_mode =
1255 				    PKT_LI_VN_MODE(
1256 					sys_leap,
1257 					ctl_traps[i].tr_version,
1258 					MODE_CONTROL);
1259 				rpkt.sequence =
1260 				    htons(ctl_traps[i].tr_sequence);
1261 				sendpkt(&ctl_traps[i].tr_addr,
1262 					ctl_traps[i].tr_localaddr, -4,
1263 					(struct pkt *)&rpkt, sendlen);
1264 				if (!more)
1265 					ctl_traps[i].tr_sequence++;
1266 				numasyncmsgs++;
1267 			}
1268 		}
1269 	} else {
1270 		if (res_authenticate && sys_authenticate) {
1271 			totlen = sendlen;
1272 			/*
1273 			 * If we are going to authenticate, then there
1274 			 * is an additional requirement that the MAC
1275 			 * begin on a 64 bit boundary.
1276 			 */
1277 			while (totlen & 7) {
1278 				*datapt++ = '\0';
1279 				totlen++;
1280 			}
1281 			keyid = htonl(res_keyid);
1282 			memcpy(datapt, &keyid, sizeof(keyid));
1283 			maclen = authencrypt(res_keyid,
1284 					     (u_int32 *)&rpkt, totlen);
1285 			sendpkt(rmt_addr, lcl_inter, -5,
1286 				(struct pkt *)&rpkt, totlen + maclen);
1287 		} else {
1288 			sendpkt(rmt_addr, lcl_inter, -6,
1289 				(struct pkt *)&rpkt, sendlen);
1290 		}
1291 		if (more)
1292 			numctlfrags++;
1293 		else
1294 			numctlresponses++;
1295 	}
1296 
1297 	/*
1298 	 * Set us up for another go around.
1299 	 */
1300 	res_frags++;
1301 	res_offset += dlen;
1302 	datapt = rpkt.u.data;
1303 }
1304 
1305 
1306 /*
1307  * ctl_putdata - write data into the packet, fragmenting and starting
1308  * another if this one is full.
1309  */
1310 static void
1311 ctl_putdata(
1312 	const char *dp,
1313 	unsigned int dlen,
1314 	int bin 		/* set to 1 when data is binary */
1315 	)
1316 {
1317 	int overhead;
1318 
1319 	overhead = 0;
1320 	if (!bin) {
1321 		datanotbinflag = TRUE;
1322 		overhead = 3;
1323 		if (datapt != rpkt.u.data) {
1324 			*datapt++ = ',';
1325 			datalinelen++;
1326 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1327 				*datapt++ = '\r';
1328 				*datapt++ = '\n';
1329 				datalinelen = 0;
1330 			} else {
1331 				*datapt++ = ' ';
1332 				datalinelen++;
1333 			}
1334 		}
1335 	}
1336 
1337 	/*
1338 	 * Save room for trailing junk
1339 	 */
1340 	if (dlen + overhead + datapt > dataend) {
1341 		/*
1342 		 * Not enough room in this one, flush it out.
1343 		 */
1344 		ctl_flushpkt(CTL_MORE);
1345 	}
1346 	memcpy(datapt, dp, dlen);
1347 	datapt += dlen;
1348 	datalinelen += dlen;
1349 }
1350 
1351 
1352 /*
1353  * ctl_putstr - write a tagged string into the response packet
1354  *		in the form:
1355  *
1356  *		tag="data"
1357  *
1358  *		len is the data length excluding the NUL terminator,
1359  *		as in ctl_putstr("var", "value", strlen("value"));
1360  */
1361 static void
1362 ctl_putstr(
1363 	const char *	tag,
1364 	const char *	data,
1365 	size_t		len
1366 	)
1367 {
1368 	char buffer[512];
1369 	char *cp;
1370 	size_t tl;
1371 
1372 	tl = strlen(tag);
1373 	memcpy(buffer, tag, tl);
1374 	cp = buffer + tl;
1375 	if (len > 0) {
1376 		NTP_INSIST(tl + 3 + len <= sizeof(buffer));
1377 		*cp++ = '=';
1378 		*cp++ = '"';
1379 		memcpy(cp, data, len);
1380 		cp += len;
1381 		*cp++ = '"';
1382 	}
1383 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1384 }
1385 
1386 
1387 /*
1388  * ctl_putunqstr - write a tagged string into the response packet
1389  *		   in the form:
1390  *
1391  *		   tag=data
1392  *
1393  *	len is the data length excluding the NUL terminator.
1394  *	data must not contain a comma or whitespace.
1395  */
1396 static void
1397 ctl_putunqstr(
1398 	const char *	tag,
1399 	const char *	data,
1400 	size_t		len
1401 	)
1402 {
1403 	char buffer[512];
1404 	char *cp;
1405 	size_t tl;
1406 
1407 	tl = strlen(tag);
1408 	memcpy(buffer, tag, tl);
1409 	cp = buffer + tl;
1410 	if (len > 0) {
1411 		NTP_INSIST(tl + 1 + len <= sizeof(buffer));
1412 		*cp++ = '=';
1413 		memcpy(cp, data, len);
1414 		cp += len;
1415 	}
1416 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1417 }
1418 
1419 
1420 /*
1421  * ctl_putdblf - write a tagged, signed double into the response packet
1422  */
1423 static void
1424 ctl_putdblf(
1425 	const char *	tag,
1426 	int		use_f,
1427 	int		precision,
1428 	double		d
1429 	)
1430 {
1431 	char *cp;
1432 	const char *cq;
1433 	char buffer[200];
1434 
1435 	cp = buffer;
1436 	cq = tag;
1437 	while (*cq != '\0')
1438 		*cp++ = *cq++;
1439 	*cp++ = '=';
1440 	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1441 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1442 	    precision, d);
1443 	cp += strlen(cp);
1444 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1445 }
1446 
1447 /*
1448  * ctl_putuint - write a tagged unsigned integer into the response
1449  */
1450 static void
1451 ctl_putuint(
1452 	const char *tag,
1453 	u_long uval
1454 	)
1455 {
1456 	register char *cp;
1457 	register const char *cq;
1458 	char buffer[200];
1459 
1460 	cp = buffer;
1461 	cq = tag;
1462 	while (*cq != '\0')
1463 		*cp++ = *cq++;
1464 
1465 	*cp++ = '=';
1466 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1467 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1468 	cp += strlen(cp);
1469 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1470 }
1471 
1472 /*
1473  * ctl_putfs - write a decoded filestamp into the response
1474  */
1475 static void
1476 ctl_putfs(
1477 	const char *tag,
1478 	tstamp_t uval
1479 	)
1480 {
1481 	register char *cp;
1482 	register const char *cq;
1483 	char buffer[200];
1484 	struct tm *tm = NULL;
1485 	time_t fstamp;
1486 
1487 	cp = buffer;
1488 	cq = tag;
1489 	while (*cq != '\0')
1490 		*cp++ = *cq++;
1491 
1492 	*cp++ = '=';
1493 	fstamp = uval - JAN_1970;
1494 	tm = gmtime(&fstamp);
1495 	if (NULL ==  tm)
1496 		return;
1497 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1498 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1499 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1500 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1501 	cp += strlen(cp);
1502 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1503 }
1504 
1505 
1506 /*
1507  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1508  * response
1509  */
1510 static void
1511 ctl_puthex(
1512 	const char *tag,
1513 	u_long uval
1514 	)
1515 {
1516 	register char *cp;
1517 	register const char *cq;
1518 	char buffer[200];
1519 
1520 	cp = buffer;
1521 	cq = tag;
1522 	while (*cq != '\0')
1523 		*cp++ = *cq++;
1524 
1525 	*cp++ = '=';
1526 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1527 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1528 	cp += strlen(cp);
1529 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1530 }
1531 
1532 
1533 /*
1534  * ctl_putint - write a tagged signed integer into the response
1535  */
1536 static void
1537 ctl_putint(
1538 	const char *tag,
1539 	long ival
1540 	)
1541 {
1542 	register char *cp;
1543 	register const char *cq;
1544 	char buffer[200];
1545 
1546 	cp = buffer;
1547 	cq = tag;
1548 	while (*cq != '\0')
1549 		*cp++ = *cq++;
1550 
1551 	*cp++ = '=';
1552 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1553 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1554 	cp += strlen(cp);
1555 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1556 }
1557 
1558 
1559 /*
1560  * ctl_putts - write a tagged timestamp, in hex, into the response
1561  */
1562 static void
1563 ctl_putts(
1564 	const char *tag,
1565 	l_fp *ts
1566 	)
1567 {
1568 	register char *cp;
1569 	register const char *cq;
1570 	char buffer[200];
1571 
1572 	cp = buffer;
1573 	cq = tag;
1574 	while (*cq != '\0')
1575 		*cp++ = *cq++;
1576 
1577 	*cp++ = '=';
1578 	NTP_INSIST((size_t)(cp - buffer) < sizeof(buffer));
1579 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1580 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1581 	cp += strlen(cp);
1582 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1583 }
1584 
1585 
1586 /*
1587  * ctl_putadr - write an IP address into the response
1588  */
1589 static void
1590 ctl_putadr(
1591 	const char *tag,
1592 	u_int32 addr32,
1593 	sockaddr_u *addr
1594 	)
1595 {
1596 	register char *cp;
1597 	register const char *cq;
1598 	char buffer[200];
1599 
1600 	cp = buffer;
1601 	cq = tag;
1602 	while (*cq != '\0')
1603 		*cp++ = *cq++;
1604 
1605 	*cp++ = '=';
1606 	if (NULL == addr)
1607 		cq = numtoa(addr32);
1608 	else
1609 		cq = stoa(addr);
1610 	NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1611 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1612 	cp += strlen(cp);
1613 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1614 }
1615 
1616 
1617 /*
1618  * ctl_putrefid - send a u_int32 refid as printable text
1619  */
1620 static void
1621 ctl_putrefid(
1622 	const char *	tag,
1623 	u_int32		refid
1624 	)
1625 {
1626 	char	output[16];
1627 	char *	optr;
1628 	char *	oplim;
1629 	char *	iptr;
1630 	char *	iplim;
1631 	char *	past_eq;
1632 
1633 	optr = output;
1634 	oplim = output + sizeof(output);
1635 	while (optr < oplim && '\0' != *tag)
1636 		*optr++ = *tag++;
1637 	if (optr < oplim) {
1638 		*optr++ = '=';
1639 		past_eq = optr;
1640 	}
1641 	if (!(optr < oplim))
1642 		return;
1643 	iptr = (char *)&refid;
1644 	iplim = iptr + sizeof(refid);
1645 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1646 	     iptr++, optr++)
1647 		if (isprint((int)*iptr))
1648 			*optr = *iptr;
1649 		else
1650 			*optr = '.';
1651 	if (!(optr <= oplim))
1652 		optr = past_eq;
1653 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1654 }
1655 
1656 
1657 /*
1658  * ctl_putarray - write a tagged eight element double array into the response
1659  */
1660 static void
1661 ctl_putarray(
1662 	const char *tag,
1663 	double *arr,
1664 	int start
1665 	)
1666 {
1667 	register char *cp;
1668 	register const char *cq;
1669 	char buffer[200];
1670 	int i;
1671 	cp = buffer;
1672 	cq = tag;
1673 	while (*cq != '\0')
1674 		*cp++ = *cq++;
1675 	*cp++ = '=';
1676 	i = start;
1677 	do {
1678 		if (i == 0)
1679 			i = NTP_SHIFT;
1680 		i--;
1681 		NTP_INSIST((cp - buffer) < (int)sizeof(buffer));
1682 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1683 			 " %.2f", arr[i] * 1e3);
1684 		cp += strlen(cp);
1685 	} while (i != start);
1686 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1687 }
1688 
1689 
1690 /*
1691  * ctl_putsys - output a system variable
1692  */
1693 static void
1694 ctl_putsys(
1695 	int varid
1696 	)
1697 {
1698 	l_fp tmp;
1699 	char str[256];
1700 	u_int u;
1701 	double kb;
1702 	double dtemp;
1703 	const char *ss;
1704 #ifdef AUTOKEY
1705 	struct cert_info *cp;
1706 #endif	/* AUTOKEY */
1707 #ifdef KERNEL_PLL
1708 	static struct timex ntx;
1709 	static u_long ntp_adjtime_time;
1710 
1711 	static const double to_ms =
1712 # ifdef STA_NANO
1713 	    	1.0e-6; /* nsec to msec */
1714 # else
1715 		1.0e-3; /* usec to msec */
1716 # endif
1717 
1718 	/*
1719 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1720 	 */
1721 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1722 	    current_time != ntp_adjtime_time) {
1723 		ZERO(ntx);
1724 		if (ntp_adjtime(&ntx) < 0)
1725 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1726 		else
1727 			ntp_adjtime_time = current_time;
1728 	}
1729 #endif	/* KERNEL_PLL */
1730 
1731 	switch (varid) {
1732 
1733 	case CS_LEAP:
1734 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1735 		break;
1736 
1737 	case CS_STRATUM:
1738 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1739 		break;
1740 
1741 	case CS_PRECISION:
1742 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1743 		break;
1744 
1745 	case CS_ROOTDELAY:
1746 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1747 			   1e3);
1748 		break;
1749 
1750 	case CS_ROOTDISPERSION:
1751 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1752 			   sys_rootdisp * 1e3);
1753 		break;
1754 
1755 	case CS_REFID:
1756 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1757 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1758 		else
1759 			ctl_putrefid(sys_var[varid].text, sys_refid);
1760 		break;
1761 
1762 	case CS_REFTIME:
1763 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1764 		break;
1765 
1766 	case CS_POLL:
1767 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1768 		break;
1769 
1770 	case CS_PEERID:
1771 		if (sys_peer == NULL)
1772 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1773 		else
1774 			ctl_putuint(sys_var[CS_PEERID].text,
1775 				    sys_peer->associd);
1776 		break;
1777 
1778 	case CS_PEERADR:
1779 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1780 			ss = sptoa(&sys_peer->srcadr);
1781 		else
1782 			ss = "0.0.0.0:0";
1783 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1784 		break;
1785 
1786 	case CS_PEERMODE:
1787 		u = (sys_peer != NULL)
1788 			? sys_peer->hmode
1789 			: MODE_UNSPEC;
1790 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1791 		break;
1792 
1793 	case CS_OFFSET:
1794 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1795 		break;
1796 
1797 	case CS_DRIFT:
1798 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1799 		break;
1800 
1801 	case CS_JITTER:
1802 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1803 		break;
1804 
1805 	case CS_ERROR:
1806 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1807 		break;
1808 
1809 	case CS_CLOCK:
1810 		get_systime(&tmp);
1811 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1812 		break;
1813 
1814 	case CS_PROCESSOR:
1815 #ifndef HAVE_UNAME
1816 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1817 			   sizeof(str_processor) - 1);
1818 #else
1819 		ctl_putstr(sys_var[CS_PROCESSOR].text,
1820 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1821 #endif /* HAVE_UNAME */
1822 		break;
1823 
1824 	case CS_SYSTEM:
1825 #ifndef HAVE_UNAME
1826 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1827 			   sizeof(str_system) - 1);
1828 #else
1829 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1830 			 utsnamebuf.release);
1831 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1832 #endif /* HAVE_UNAME */
1833 		break;
1834 
1835 	case CS_VERSION:
1836 		ctl_putstr(sys_var[CS_VERSION].text, Version,
1837 			   strlen(Version));
1838 		break;
1839 
1840 	case CS_STABIL:
1841 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1842 			   1e6);
1843 		break;
1844 
1845 	case CS_VARLIST:
1846 	{
1847 		char buf[CTL_MAX_DATA_LEN];
1848 		//buffPointer, firstElementPointer, buffEndPointer
1849 		char *buffp, *buffend;
1850 		int firstVarName;
1851 		const char *ss1;
1852 		int len;
1853 		const struct ctl_var *k;
1854 
1855 		buffp = buf;
1856 		buffend = buf + sizeof(buf);
1857 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1858 			break;	/* really long var name */
1859 
1860 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1861 		buffp += strlen(buffp);
1862 		firstVarName = TRUE;
1863 		for (k = sys_var; !(k->flags & EOV); k++) {
1864 			if (k->flags & PADDING)
1865 				continue;
1866 			len = strlen(k->text);
1867 			if (buffp + len + 1 >= buffend)
1868 				break;
1869 			if (!firstVarName)
1870 				*buffp++ = ',';
1871 			else
1872 				firstVarName = FALSE;
1873 			memcpy(buffp, k->text, len);
1874 			buffp += len;
1875 		}
1876 
1877 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1878 			if (k->flags & PADDING)
1879 				continue;
1880 			if (NULL == k->text)
1881 				continue;
1882 			ss1 = strchr(k->text, '=');
1883 			if (NULL == ss1)
1884 				len = strlen(k->text);
1885 			else
1886 				len = ss1 - k->text;
1887 			if (buffp + len + 1 >= buffend)
1888 				break;
1889 			if (firstVarName) {
1890 				*buffp++ = ',';
1891 				firstVarName = FALSE;
1892 			}
1893 			memcpy(buffp, k->text,(unsigned)len);
1894 			buffp += len;
1895 		}
1896 		if (buffp + 2 >= buffend)
1897 			break;
1898 
1899 		*buffp++ = '"';
1900 		*buffp = '\0';
1901 
1902 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1903 		break;
1904 	}
1905 
1906 	case CS_TAI:
1907 		if (sys_tai > 0)
1908 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1909 		break;
1910 
1911 	case CS_LEAPTAB:
1912 	{
1913 		leap_signature_t lsig;
1914 		leapsec_getsig(&lsig);
1915 		if (lsig.ttime > 0)
1916 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1917 		break;
1918 	}
1919 
1920 	case CS_LEAPEND:
1921 	{
1922 		leap_signature_t lsig;
1923 		leapsec_getsig(&lsig);
1924 		if (lsig.etime > 0)
1925 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1926 		break;
1927 	}
1928 
1929 	case CS_RATE:
1930 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
1931 		break;
1932 
1933 	case CS_MRU_ENABLED:
1934 		ctl_puthex(sys_var[varid].text, mon_enabled);
1935 		break;
1936 
1937 	case CS_MRU_DEPTH:
1938 		ctl_putuint(sys_var[varid].text, mru_entries);
1939 		break;
1940 
1941 	case CS_MRU_MEM:
1942 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
1943 		u = (u_int)kb;
1944 		if (kb - u >= 0.5)
1945 			u++;
1946 		ctl_putuint(sys_var[varid].text, u);
1947 		break;
1948 
1949 	case CS_MRU_DEEPEST:
1950 		ctl_putuint(sys_var[varid].text, mru_peakentries);
1951 		break;
1952 
1953 	case CS_MRU_MINDEPTH:
1954 		ctl_putuint(sys_var[varid].text, mru_mindepth);
1955 		break;
1956 
1957 	case CS_MRU_MAXAGE:
1958 		ctl_putint(sys_var[varid].text, mru_maxage);
1959 		break;
1960 
1961 	case CS_MRU_MAXDEPTH:
1962 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
1963 		break;
1964 
1965 	case CS_MRU_MAXMEM:
1966 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
1967 		u = (u_int)kb;
1968 		if (kb - u >= 0.5)
1969 			u++;
1970 		ctl_putuint(sys_var[varid].text, u);
1971 		break;
1972 
1973 	case CS_SS_UPTIME:
1974 		ctl_putuint(sys_var[varid].text, current_time);
1975 		break;
1976 
1977 	case CS_SS_RESET:
1978 		ctl_putuint(sys_var[varid].text,
1979 			    current_time - sys_stattime);
1980 		break;
1981 
1982 	case CS_SS_RECEIVED:
1983 		ctl_putuint(sys_var[varid].text, sys_received);
1984 		break;
1985 
1986 	case CS_SS_THISVER:
1987 		ctl_putuint(sys_var[varid].text, sys_newversion);
1988 		break;
1989 
1990 	case CS_SS_OLDVER:
1991 		ctl_putuint(sys_var[varid].text, sys_oldversion);
1992 		break;
1993 
1994 	case CS_SS_BADFORMAT:
1995 		ctl_putuint(sys_var[varid].text, sys_badlength);
1996 		break;
1997 
1998 	case CS_SS_BADAUTH:
1999 		ctl_putuint(sys_var[varid].text, sys_badauth);
2000 		break;
2001 
2002 	case CS_SS_DECLINED:
2003 		ctl_putuint(sys_var[varid].text, sys_declined);
2004 		break;
2005 
2006 	case CS_SS_RESTRICTED:
2007 		ctl_putuint(sys_var[varid].text, sys_restricted);
2008 		break;
2009 
2010 	case CS_SS_LIMITED:
2011 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2012 		break;
2013 
2014 	case CS_SS_KODSENT:
2015 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2016 		break;
2017 
2018 	case CS_SS_PROCESSED:
2019 		ctl_putuint(sys_var[varid].text, sys_processed);
2020 		break;
2021 
2022 	case CS_BCASTDELAY:
2023 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2024 		break;
2025 
2026 	case CS_AUTHDELAY:
2027 		LFPTOD(&sys_authdelay, dtemp);
2028 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2029 		break;
2030 
2031 	case CS_AUTHKEYS:
2032 		ctl_putuint(sys_var[varid].text, authnumkeys);
2033 		break;
2034 
2035 	case CS_AUTHFREEK:
2036 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2037 		break;
2038 
2039 	case CS_AUTHKLOOKUPS:
2040 		ctl_putuint(sys_var[varid].text, authkeylookups);
2041 		break;
2042 
2043 	case CS_AUTHKNOTFOUND:
2044 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2045 		break;
2046 
2047 	case CS_AUTHKUNCACHED:
2048 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2049 		break;
2050 
2051 	case CS_AUTHKEXPIRED:
2052 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2053 		break;
2054 
2055 	case CS_AUTHENCRYPTS:
2056 		ctl_putuint(sys_var[varid].text, authencryptions);
2057 		break;
2058 
2059 	case CS_AUTHDECRYPTS:
2060 		ctl_putuint(sys_var[varid].text, authdecryptions);
2061 		break;
2062 
2063 	case CS_AUTHRESET:
2064 		ctl_putuint(sys_var[varid].text,
2065 			    current_time - auth_timereset);
2066 		break;
2067 
2068 		/*
2069 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2070 		 * unavailable, otherwise calls putfunc with args.
2071 		 */
2072 #ifndef KERNEL_PLL
2073 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2074 		ctl_putint(sys_var[varid].text, 0)
2075 #else
2076 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2077 		putfunc args
2078 #endif
2079 
2080 		/*
2081 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2082 		 * loop is unavailable, or kernel hard PPS is not
2083 		 * active, otherwise calls putfunc with args.
2084 		 */
2085 #ifndef KERNEL_PLL
2086 # define	CTL_IF_KERNPPS(putfunc, args)	\
2087 		ctl_putint(sys_var[varid].text, 0)
2088 #else
2089 # define	CTL_IF_KERNPPS(putfunc, args)			\
2090 		if (0 == ntx.shift)				\
2091 			ctl_putint(sys_var[varid].text, 0);	\
2092 		else						\
2093 			putfunc args	/* no trailing ; */
2094 #endif
2095 
2096 	case CS_K_OFFSET:
2097 		CTL_IF_KERNLOOP(
2098 			ctl_putdblf,
2099 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2100 		);
2101 		break;
2102 
2103 	case CS_K_FREQ:
2104 		CTL_IF_KERNLOOP(
2105 			ctl_putsfp,
2106 			(sys_var[varid].text, ntx.freq)
2107 		);
2108 		break;
2109 
2110 	case CS_K_MAXERR:
2111 		CTL_IF_KERNLOOP(
2112 			ctl_putdblf,
2113 			(sys_var[varid].text, 0, 6,
2114 			 to_ms * ntx.maxerror)
2115 		);
2116 		break;
2117 
2118 	case CS_K_ESTERR:
2119 		CTL_IF_KERNLOOP(
2120 			ctl_putdblf,
2121 			(sys_var[varid].text, 0, 6,
2122 			 to_ms * ntx.esterror)
2123 		);
2124 		break;
2125 
2126 	case CS_K_STFLAGS:
2127 #ifndef KERNEL_PLL
2128 		ss = "";
2129 #else
2130 		ss = k_st_flags(ntx.status);
2131 #endif
2132 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2133 		break;
2134 
2135 	case CS_K_TIMECONST:
2136 		CTL_IF_KERNLOOP(
2137 			ctl_putint,
2138 			(sys_var[varid].text, ntx.constant)
2139 		);
2140 		break;
2141 
2142 	case CS_K_PRECISION:
2143 		CTL_IF_KERNLOOP(
2144 			ctl_putdblf,
2145 			(sys_var[varid].text, 0, 6,
2146 			    to_ms * ntx.precision)
2147 		);
2148 		break;
2149 
2150 	case CS_K_FREQTOL:
2151 		CTL_IF_KERNLOOP(
2152 			ctl_putsfp,
2153 			(sys_var[varid].text, ntx.tolerance)
2154 		);
2155 		break;
2156 
2157 	case CS_K_PPS_FREQ:
2158 		CTL_IF_KERNPPS(
2159 			ctl_putsfp,
2160 			(sys_var[varid].text, ntx.ppsfreq)
2161 		);
2162 		break;
2163 
2164 	case CS_K_PPS_STABIL:
2165 		CTL_IF_KERNPPS(
2166 			ctl_putsfp,
2167 			(sys_var[varid].text, ntx.stabil)
2168 		);
2169 		break;
2170 
2171 	case CS_K_PPS_JITTER:
2172 		CTL_IF_KERNPPS(
2173 			ctl_putdbl,
2174 			(sys_var[varid].text, to_ms * ntx.jitter)
2175 		);
2176 		break;
2177 
2178 	case CS_K_PPS_CALIBDUR:
2179 		CTL_IF_KERNPPS(
2180 			ctl_putint,
2181 			(sys_var[varid].text, 1 << ntx.shift)
2182 		);
2183 		break;
2184 
2185 	case CS_K_PPS_CALIBS:
2186 		CTL_IF_KERNPPS(
2187 			ctl_putint,
2188 			(sys_var[varid].text, ntx.calcnt)
2189 		);
2190 		break;
2191 
2192 	case CS_K_PPS_CALIBERRS:
2193 		CTL_IF_KERNPPS(
2194 			ctl_putint,
2195 			(sys_var[varid].text, ntx.errcnt)
2196 		);
2197 		break;
2198 
2199 	case CS_K_PPS_JITEXC:
2200 		CTL_IF_KERNPPS(
2201 			ctl_putint,
2202 			(sys_var[varid].text, ntx.jitcnt)
2203 		);
2204 		break;
2205 
2206 	case CS_K_PPS_STBEXC:
2207 		CTL_IF_KERNPPS(
2208 			ctl_putint,
2209 			(sys_var[varid].text, ntx.stbcnt)
2210 		);
2211 		break;
2212 
2213 	case CS_IOSTATS_RESET:
2214 		ctl_putuint(sys_var[varid].text,
2215 			    current_time - io_timereset);
2216 		break;
2217 
2218 	case CS_TOTAL_RBUF:
2219 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2220 		break;
2221 
2222 	case CS_FREE_RBUF:
2223 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2224 		break;
2225 
2226 	case CS_USED_RBUF:
2227 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2228 		break;
2229 
2230 	case CS_RBUF_LOWATER:
2231 		ctl_putuint(sys_var[varid].text, lowater_additions());
2232 		break;
2233 
2234 	case CS_IO_DROPPED:
2235 		ctl_putuint(sys_var[varid].text, packets_dropped);
2236 		break;
2237 
2238 	case CS_IO_IGNORED:
2239 		ctl_putuint(sys_var[varid].text, packets_ignored);
2240 		break;
2241 
2242 	case CS_IO_RECEIVED:
2243 		ctl_putuint(sys_var[varid].text, packets_received);
2244 		break;
2245 
2246 	case CS_IO_SENT:
2247 		ctl_putuint(sys_var[varid].text, packets_sent);
2248 		break;
2249 
2250 	case CS_IO_SENDFAILED:
2251 		ctl_putuint(sys_var[varid].text, packets_notsent);
2252 		break;
2253 
2254 	case CS_IO_WAKEUPS:
2255 		ctl_putuint(sys_var[varid].text, handler_calls);
2256 		break;
2257 
2258 	case CS_IO_GOODWAKEUPS:
2259 		ctl_putuint(sys_var[varid].text, handler_pkts);
2260 		break;
2261 
2262 	case CS_TIMERSTATS_RESET:
2263 		ctl_putuint(sys_var[varid].text,
2264 			    current_time - timer_timereset);
2265 		break;
2266 
2267 	case CS_TIMER_OVERRUNS:
2268 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2269 		break;
2270 
2271 	case CS_TIMER_XMTS:
2272 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2273 		break;
2274 
2275 	case CS_FUZZ:
2276 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2277 		break;
2278 #ifdef AUTOKEY
2279 	case CS_FLAGS:
2280 		if (crypto_flags)
2281 			ctl_puthex(sys_var[CS_FLAGS].text,
2282 			    crypto_flags);
2283 		break;
2284 
2285 	case CS_DIGEST:
2286 		if (crypto_flags) {
2287 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2288 			    COUNTOF(str));
2289 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2290 			    strlen(str));
2291 		}
2292 		break;
2293 
2294 	case CS_SIGNATURE:
2295 		if (crypto_flags) {
2296 			const EVP_MD *dp;
2297 
2298 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2299 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2300 			    COUNTOF(str));
2301 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2302 			    strlen(str));
2303 		}
2304 		break;
2305 
2306 	case CS_HOST:
2307 		if (hostval.ptr != NULL)
2308 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2309 			    strlen(hostval.ptr));
2310 		break;
2311 
2312 	case CS_IDENT:
2313 		if (sys_ident != NULL)
2314 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2315 			    strlen(sys_ident));
2316 		break;
2317 
2318 	case CS_CERTIF:
2319 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2320 			snprintf(str, sizeof(str), "%s %s 0x%x",
2321 			    cp->subject, cp->issuer, cp->flags);
2322 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2323 			    strlen(str));
2324 			ctl_putfs(sys_var[CS_REVTIME].text, cp->last);
2325 		}
2326 		break;
2327 
2328 	case CS_PUBLIC:
2329 		if (hostval.tstamp != 0)
2330 			ctl_putfs(sys_var[CS_PUBLIC].text,
2331 			    ntohl(hostval.tstamp));
2332 		break;
2333 #endif	/* AUTOKEY */
2334 	}
2335 }
2336 
2337 
2338 /*
2339  * ctl_putpeer - output a peer variable
2340  */
2341 static void
2342 ctl_putpeer(
2343 	int id,
2344 	struct peer *p
2345 	)
2346 {
2347 	char buf[CTL_MAX_DATA_LEN];
2348 	char *s;
2349 	char *t;
2350 	char *be;
2351 	int i;
2352 	const struct ctl_var *k;
2353 #ifdef AUTOKEY
2354 	struct autokey *ap;
2355 	const EVP_MD *dp;
2356 	const char *str;
2357 #endif	/* AUTOKEY */
2358 
2359 	switch (id) {
2360 
2361 	case CP_CONFIG:
2362 		ctl_putuint(peer_var[id].text,
2363 			    !(FLAG_PREEMPT & p->flags));
2364 		break;
2365 
2366 	case CP_AUTHENABLE:
2367 		ctl_putuint(peer_var[id].text, !(p->keyid));
2368 		break;
2369 
2370 	case CP_AUTHENTIC:
2371 		ctl_putuint(peer_var[id].text,
2372 			    !!(FLAG_AUTHENTIC & p->flags));
2373 		break;
2374 
2375 	case CP_SRCADR:
2376 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2377 		break;
2378 
2379 	case CP_SRCPORT:
2380 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2381 		break;
2382 
2383 	case CP_SRCHOST:
2384 		if (p->hostname != NULL)
2385 			ctl_putstr(peer_var[id].text, p->hostname,
2386 				   strlen(p->hostname));
2387 		break;
2388 
2389 	case CP_DSTADR:
2390 		ctl_putadr(peer_var[id].text, 0,
2391 			   (p->dstadr != NULL)
2392 				? &p->dstadr->sin
2393 				: NULL);
2394 		break;
2395 
2396 	case CP_DSTPORT:
2397 		ctl_putuint(peer_var[id].text,
2398 			    (p->dstadr != NULL)
2399 				? SRCPORT(&p->dstadr->sin)
2400 				: 0);
2401 		break;
2402 
2403 	case CP_IN:
2404 		if (p->r21 > 0.)
2405 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2406 		break;
2407 
2408 	case CP_OUT:
2409 		if (p->r34 > 0.)
2410 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2411 		break;
2412 
2413 	case CP_RATE:
2414 		ctl_putuint(peer_var[id].text, p->throttle);
2415 		break;
2416 
2417 	case CP_LEAP:
2418 		ctl_putuint(peer_var[id].text, p->leap);
2419 		break;
2420 
2421 	case CP_HMODE:
2422 		ctl_putuint(peer_var[id].text, p->hmode);
2423 		break;
2424 
2425 	case CP_STRATUM:
2426 		ctl_putuint(peer_var[id].text, p->stratum);
2427 		break;
2428 
2429 	case CP_PPOLL:
2430 		ctl_putuint(peer_var[id].text, p->ppoll);
2431 		break;
2432 
2433 	case CP_HPOLL:
2434 		ctl_putuint(peer_var[id].text, p->hpoll);
2435 		break;
2436 
2437 	case CP_PRECISION:
2438 		ctl_putint(peer_var[id].text, p->precision);
2439 		break;
2440 
2441 	case CP_ROOTDELAY:
2442 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2443 		break;
2444 
2445 	case CP_ROOTDISPERSION:
2446 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2447 		break;
2448 
2449 	case CP_REFID:
2450 #ifdef REFCLOCK
2451 		if (p->flags & FLAG_REFCLOCK) {
2452 			ctl_putrefid(peer_var[id].text, p->refid);
2453 			break;
2454 		}
2455 #endif
2456 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2457 			ctl_putadr(peer_var[id].text, p->refid,
2458 				   NULL);
2459 		else
2460 			ctl_putrefid(peer_var[id].text, p->refid);
2461 		break;
2462 
2463 	case CP_REFTIME:
2464 		ctl_putts(peer_var[id].text, &p->reftime);
2465 		break;
2466 
2467 	case CP_ORG:
2468 		ctl_putts(peer_var[id].text, &p->aorg);
2469 		break;
2470 
2471 	case CP_REC:
2472 		ctl_putts(peer_var[id].text, &p->dst);
2473 		break;
2474 
2475 	case CP_XMT:
2476 		if (p->xleave)
2477 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2478 		break;
2479 
2480 	case CP_BIAS:
2481 		if (p->bias != 0.)
2482 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2483 		break;
2484 
2485 	case CP_REACH:
2486 		ctl_puthex(peer_var[id].text, p->reach);
2487 		break;
2488 
2489 	case CP_FLASH:
2490 		ctl_puthex(peer_var[id].text, p->flash);
2491 		break;
2492 
2493 	case CP_TTL:
2494 #ifdef REFCLOCK
2495 		if (p->flags & FLAG_REFCLOCK) {
2496 			ctl_putuint(peer_var[id].text, p->ttl);
2497 			break;
2498 		}
2499 #endif
2500 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2501 			ctl_putint(peer_var[id].text,
2502 				   sys_ttl[p->ttl]);
2503 		break;
2504 
2505 	case CP_UNREACH:
2506 		ctl_putuint(peer_var[id].text, p->unreach);
2507 		break;
2508 
2509 	case CP_TIMER:
2510 		ctl_putuint(peer_var[id].text,
2511 			    p->nextdate - current_time);
2512 		break;
2513 
2514 	case CP_DELAY:
2515 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2516 		break;
2517 
2518 	case CP_OFFSET:
2519 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2520 		break;
2521 
2522 	case CP_JITTER:
2523 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2524 		break;
2525 
2526 	case CP_DISPERSION:
2527 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2528 		break;
2529 
2530 	case CP_KEYID:
2531 		if (p->keyid > NTP_MAXKEY)
2532 			ctl_puthex(peer_var[id].text, p->keyid);
2533 		else
2534 			ctl_putuint(peer_var[id].text, p->keyid);
2535 		break;
2536 
2537 	case CP_FILTDELAY:
2538 		ctl_putarray(peer_var[id].text, p->filter_delay,
2539 			     p->filter_nextpt);
2540 		break;
2541 
2542 	case CP_FILTOFFSET:
2543 		ctl_putarray(peer_var[id].text, p->filter_offset,
2544 			     p->filter_nextpt);
2545 		break;
2546 
2547 	case CP_FILTERROR:
2548 		ctl_putarray(peer_var[id].text, p->filter_disp,
2549 			     p->filter_nextpt);
2550 		break;
2551 
2552 	case CP_PMODE:
2553 		ctl_putuint(peer_var[id].text, p->pmode);
2554 		break;
2555 
2556 	case CP_RECEIVED:
2557 		ctl_putuint(peer_var[id].text, p->received);
2558 		break;
2559 
2560 	case CP_SENT:
2561 		ctl_putuint(peer_var[id].text, p->sent);
2562 		break;
2563 
2564 	case CP_VARLIST:
2565 		s = buf;
2566 		be = buf + sizeof(buf);
2567 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2568 			break;	/* really long var name */
2569 
2570 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2571 		s += strlen(s);
2572 		t = s;
2573 		for (k = peer_var; !(EOV & k->flags); k++) {
2574 			if (PADDING & k->flags)
2575 				continue;
2576 			i = strlen(k->text);
2577 			if (s + i + 1 >= be)
2578 				break;
2579 			if (s != t)
2580 				*s++ = ',';
2581 			memcpy(s, k->text, i);
2582 			s += i;
2583 		}
2584 		if (s + 2 < be) {
2585 			*s++ = '"';
2586 			*s = '\0';
2587 			ctl_putdata(buf, (u_int)(s - buf), 0);
2588 		}
2589 		break;
2590 
2591 	case CP_TIMEREC:
2592 		ctl_putuint(peer_var[id].text,
2593 			    current_time - p->timereceived);
2594 		break;
2595 
2596 	case CP_TIMEREACH:
2597 		ctl_putuint(peer_var[id].text,
2598 			    current_time - p->timereachable);
2599 		break;
2600 
2601 	case CP_BADAUTH:
2602 		ctl_putuint(peer_var[id].text, p->badauth);
2603 		break;
2604 
2605 	case CP_BOGUSORG:
2606 		ctl_putuint(peer_var[id].text, p->bogusorg);
2607 		break;
2608 
2609 	case CP_OLDPKT:
2610 		ctl_putuint(peer_var[id].text, p->oldpkt);
2611 		break;
2612 
2613 	case CP_SELDISP:
2614 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2615 		break;
2616 
2617 	case CP_SELBROKEN:
2618 		ctl_putuint(peer_var[id].text, p->selbroken);
2619 		break;
2620 
2621 	case CP_CANDIDATE:
2622 		ctl_putuint(peer_var[id].text, p->status);
2623 		break;
2624 #ifdef AUTOKEY
2625 	case CP_FLAGS:
2626 		if (p->crypto)
2627 			ctl_puthex(peer_var[id].text, p->crypto);
2628 		break;
2629 
2630 	case CP_SIGNATURE:
2631 		if (p->crypto) {
2632 			dp = EVP_get_digestbynid(p->crypto >> 16);
2633 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2634 			ctl_putstr(peer_var[id].text, str, strlen(str));
2635 		}
2636 		break;
2637 
2638 	case CP_HOST:
2639 		if (p->subject != NULL)
2640 			ctl_putstr(peer_var[id].text, p->subject,
2641 			    strlen(p->subject));
2642 		break;
2643 
2644 	case CP_VALID:		/* not used */
2645 		break;
2646 
2647 	case CP_INITSEQ:
2648 		if (NULL == (ap = p->recval.ptr))
2649 			break;
2650 
2651 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2652 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2653 		ctl_putfs(peer_var[CP_INITTSP].text,
2654 			  ntohl(p->recval.tstamp));
2655 		break;
2656 
2657 	case CP_IDENT:
2658 		if (p->ident != NULL)
2659 			ctl_putstr(peer_var[id].text, p->ident,
2660 			    strlen(p->ident));
2661 		break;
2662 
2663 
2664 #endif	/* AUTOKEY */
2665 	}
2666 }
2667 
2668 
2669 #ifdef REFCLOCK
2670 /*
2671  * ctl_putclock - output clock variables
2672  */
2673 static void
2674 ctl_putclock(
2675 	int id,
2676 	struct refclockstat *pcs,
2677 	int mustput
2678 	)
2679 {
2680 	char buf[CTL_MAX_DATA_LEN];
2681 	char *s, *t, *be;
2682 	const char *ss;
2683 	int i;
2684 	const struct ctl_var *k;
2685 
2686 	switch (id) {
2687 
2688 	case CC_TYPE:
2689 		if (mustput || pcs->clockdesc == NULL
2690 		    || *(pcs->clockdesc) == '\0') {
2691 			ctl_putuint(clock_var[id].text, pcs->type);
2692 		}
2693 		break;
2694 	case CC_TIMECODE:
2695 		ctl_putstr(clock_var[id].text,
2696 			   pcs->p_lastcode,
2697 			   (unsigned)pcs->lencode);
2698 		break;
2699 
2700 	case CC_POLL:
2701 		ctl_putuint(clock_var[id].text, pcs->polls);
2702 		break;
2703 
2704 	case CC_NOREPLY:
2705 		ctl_putuint(clock_var[id].text,
2706 			    pcs->noresponse);
2707 		break;
2708 
2709 	case CC_BADFORMAT:
2710 		ctl_putuint(clock_var[id].text,
2711 			    pcs->badformat);
2712 		break;
2713 
2714 	case CC_BADDATA:
2715 		ctl_putuint(clock_var[id].text,
2716 			    pcs->baddata);
2717 		break;
2718 
2719 	case CC_FUDGETIME1:
2720 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2721 			ctl_putdbl(clock_var[id].text,
2722 				   pcs->fudgetime1 * 1e3);
2723 		break;
2724 
2725 	case CC_FUDGETIME2:
2726 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2727 			ctl_putdbl(clock_var[id].text,
2728 				   pcs->fudgetime2 * 1e3);
2729 		break;
2730 
2731 	case CC_FUDGEVAL1:
2732 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2733 			ctl_putint(clock_var[id].text,
2734 				   pcs->fudgeval1);
2735 		break;
2736 
2737 	case CC_FUDGEVAL2:
2738 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2739 			if (pcs->fudgeval1 > 1)
2740 				ctl_putadr(clock_var[id].text,
2741 					   pcs->fudgeval2, NULL);
2742 			else
2743 				ctl_putrefid(clock_var[id].text,
2744 					     pcs->fudgeval2);
2745 		}
2746 		break;
2747 
2748 	case CC_FLAGS:
2749 		ctl_putuint(clock_var[id].text, pcs->flags);
2750 		break;
2751 
2752 	case CC_DEVICE:
2753 		if (pcs->clockdesc == NULL ||
2754 		    *(pcs->clockdesc) == '\0') {
2755 			if (mustput)
2756 				ctl_putstr(clock_var[id].text,
2757 					   "", 0);
2758 		} else {
2759 			ctl_putstr(clock_var[id].text,
2760 				   pcs->clockdesc,
2761 				   strlen(pcs->clockdesc));
2762 		}
2763 		break;
2764 
2765 	case CC_VARLIST:
2766 		s = buf;
2767 		be = buf + sizeof(buf);
2768 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2769 		    sizeof(buf))
2770 			break;	/* really long var name */
2771 
2772 		snprintf(s, sizeof(buf), "%s=\"",
2773 			 clock_var[CC_VARLIST].text);
2774 		s += strlen(s);
2775 		t = s;
2776 
2777 		for (k = clock_var; !(EOV & k->flags); k++) {
2778 			if (PADDING & k->flags)
2779 				continue;
2780 
2781 			i = strlen(k->text);
2782 			if (s + i + 1 >= be)
2783 				break;
2784 
2785 			if (s != t)
2786 				*s++ = ',';
2787 			memcpy(s, k->text, i);
2788 			s += i;
2789 		}
2790 
2791 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2792 			if (PADDING & k->flags)
2793 				continue;
2794 
2795 			ss = k->text;
2796 			if (NULL == ss)
2797 				continue;
2798 
2799 			while (*ss && *ss != '=')
2800 				ss++;
2801 			i = ss - k->text;
2802 			if (s + i + 1 >= be)
2803 				break;
2804 
2805 			if (s != t)
2806 				*s++ = ',';
2807 			memcpy(s, k->text, (unsigned)i);
2808 			s += i;
2809 			*s = '\0';
2810 		}
2811 		if (s + 2 >= be)
2812 			break;
2813 
2814 		*s++ = '"';
2815 		*s = '\0';
2816 		ctl_putdata(buf, (unsigned)(s - buf), 0);
2817 		break;
2818 	}
2819 }
2820 #endif
2821 
2822 
2823 
2824 /*
2825  * ctl_getitem - get the next data item from the incoming packet
2826  */
2827 static const struct ctl_var *
2828 ctl_getitem(
2829 	const struct ctl_var *var_list,
2830 	char **data
2831 	)
2832 {
2833 	static const struct ctl_var eol = { 0, EOV, NULL };
2834 	static char buf[128];
2835 	static u_long quiet_until;
2836 	const struct ctl_var *v;
2837 	const char *pch;
2838 	char *cp;
2839 	char *tp;
2840 
2841 	/*
2842 	 * Delete leading commas and white space
2843 	 */
2844 	while (reqpt < reqend && (*reqpt == ',' ||
2845 				  isspace((unsigned char)*reqpt)))
2846 		reqpt++;
2847 	if (reqpt >= reqend)
2848 		return NULL;
2849 
2850 	if (NULL == var_list)
2851 		return &eol;
2852 
2853 	/*
2854 	 * Look for a first character match on the tag.  If we find
2855 	 * one, see if it is a full match.
2856 	 */
2857 	v = var_list;
2858 	cp = reqpt;
2859 	for (v = var_list; !(EOV & v->flags); v++) {
2860 		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2861 			pch = v->text;
2862 			while ('\0' != *pch && '=' != *pch && cp < reqend
2863 			       && *cp == *pch) {
2864 				cp++;
2865 				pch++;
2866 			}
2867 			if ('\0' == *pch || '=' == *pch) {
2868 				while (cp < reqend && isspace((u_char)*cp))
2869 					cp++;
2870 				if (cp == reqend || ',' == *cp) {
2871 					buf[0] = '\0';
2872 					*data = buf;
2873 					if (cp < reqend)
2874 						cp++;
2875 					reqpt = cp;
2876 					return v;
2877 				}
2878 				if ('=' == *cp) {
2879 					cp++;
2880 					tp = buf;
2881 					while (cp < reqend && isspace((u_char)*cp))
2882 						cp++;
2883 					while (cp < reqend && *cp != ',') {
2884 						*tp++ = *cp++;
2885 						if ((size_t)(tp - buf) >= sizeof(buf)) {
2886 							ctl_error(CERR_BADFMT);
2887 							numctlbadpkts++;
2888 							NLOG(NLOG_SYSEVENT)
2889 								if (quiet_until <= current_time) {
2890 									quiet_until = current_time + 300;
2891 									msyslog(LOG_WARNING,
2892 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2893 								}
2894 							return NULL;
2895 						}
2896 					}
2897 					if (cp < reqend)
2898 						cp++;
2899 					*tp-- = '\0';
2900 					while (tp >= buf && isspace((u_char)*tp))
2901 						*tp-- = '\0';
2902 					reqpt = cp;
2903 					*data = buf;
2904 					return v;
2905 				}
2906 			}
2907 			cp = reqpt;
2908 		}
2909 	}
2910 	return v;
2911 }
2912 
2913 
2914 /*
2915  * control_unspec - response to an unspecified op-code
2916  */
2917 /*ARGSUSED*/
2918 static void
2919 control_unspec(
2920 	struct recvbuf *rbufp,
2921 	int restrict_mask
2922 	)
2923 {
2924 	struct peer *peer;
2925 
2926 	/*
2927 	 * What is an appropriate response to an unspecified op-code?
2928 	 * I return no errors and no data, unless a specified assocation
2929 	 * doesn't exist.
2930 	 */
2931 	if (res_associd) {
2932 		peer = findpeerbyassoc(res_associd);
2933 		if (NULL == peer) {
2934 			ctl_error(CERR_BADASSOC);
2935 			return;
2936 		}
2937 		rpkt.status = htons(ctlpeerstatus(peer));
2938 	} else
2939 		rpkt.status = htons(ctlsysstatus());
2940 	ctl_flushpkt(0);
2941 }
2942 
2943 
2944 /*
2945  * read_status - return either a list of associd's, or a particular
2946  * peer's status.
2947  */
2948 /*ARGSUSED*/
2949 static void
2950 read_status(
2951 	struct recvbuf *rbufp,
2952 	int restrict_mask
2953 	)
2954 {
2955 	struct peer *peer;
2956 	const u_char *cp;
2957 	size_t n;
2958 	/* a_st holds association ID, status pairs alternating */
2959 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
2960 
2961 #ifdef DEBUG
2962 	if (debug > 2)
2963 		printf("read_status: ID %d\n", res_associd);
2964 #endif
2965 	/*
2966 	 * Two choices here. If the specified association ID is
2967 	 * zero we return all known assocation ID's.  Otherwise
2968 	 * we return a bunch of stuff about the particular peer.
2969 	 */
2970 	if (res_associd) {
2971 		peer = findpeerbyassoc(res_associd);
2972 		if (NULL == peer) {
2973 			ctl_error(CERR_BADASSOC);
2974 			return;
2975 		}
2976 		rpkt.status = htons(ctlpeerstatus(peer));
2977 		if (res_authokay)
2978 			peer->num_events = 0;
2979 		/*
2980 		 * For now, output everything we know about the
2981 		 * peer. May be more selective later.
2982 		 */
2983 		for (cp = def_peer_var; *cp != 0; cp++)
2984 			ctl_putpeer((int)*cp, peer);
2985 		ctl_flushpkt(0);
2986 		return;
2987 	}
2988 	n = 0;
2989 	rpkt.status = htons(ctlsysstatus());
2990 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
2991 		a_st[n++] = htons(peer->associd);
2992 		a_st[n++] = htons(ctlpeerstatus(peer));
2993 		/* two entries each loop iteration, so n + 1 */
2994 		if (n + 1 >= COUNTOF(a_st)) {
2995 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
2996 				    1);
2997 			n = 0;
2998 		}
2999 	}
3000 	if (n)
3001 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3002 	ctl_flushpkt(0);
3003 }
3004 
3005 
3006 /*
3007  * read_peervars - half of read_variables() implementation
3008  */
3009 static void
3010 read_peervars(void)
3011 {
3012 	const struct ctl_var *v;
3013 	struct peer *peer;
3014 	const u_char *cp;
3015 	size_t i;
3016 	char *	valuep;
3017 	u_char	wants[CP_MAXCODE + 1];
3018 	u_int	gotvar;
3019 
3020 	/*
3021 	 * Wants info for a particular peer. See if we know
3022 	 * the guy.
3023 	 */
3024 	peer = findpeerbyassoc(res_associd);
3025 	if (NULL == peer) {
3026 		ctl_error(CERR_BADASSOC);
3027 		return;
3028 	}
3029 	rpkt.status = htons(ctlpeerstatus(peer));
3030 	if (res_authokay)
3031 		peer->num_events = 0;
3032 	ZERO(wants);
3033 	gotvar = 0;
3034 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3035 		if (v->flags & EOV) {
3036 			ctl_error(CERR_UNKNOWNVAR);
3037 			return;
3038 		}
3039 		NTP_INSIST(v->code < COUNTOF(wants));
3040 		wants[v->code] = 1;
3041 		gotvar = 1;
3042 	}
3043 	if (gotvar) {
3044 		for (i = 1; i < COUNTOF(wants); i++)
3045 			if (wants[i])
3046 				ctl_putpeer(i, peer);
3047 	} else
3048 		for (cp = def_peer_var; *cp != 0; cp++)
3049 			ctl_putpeer((int)*cp, peer);
3050 	ctl_flushpkt(0);
3051 }
3052 
3053 
3054 /*
3055  * read_sysvars - half of read_variables() implementation
3056  */
3057 static void
3058 read_sysvars(void)
3059 {
3060 	const struct ctl_var *v;
3061 	struct ctl_var *kv;
3062 	u_int	n;
3063 	u_int	gotvar;
3064 	const u_char *cs;
3065 	char *	valuep;
3066 	const char * pch;
3067 	u_char *wants;
3068 	size_t	wants_count;
3069 
3070 	/*
3071 	 * Wants system variables. Figure out which he wants
3072 	 * and give them to him.
3073 	 */
3074 	rpkt.status = htons(ctlsysstatus());
3075 	if (res_authokay)
3076 		ctl_sys_num_events = 0;
3077 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3078 	wants = emalloc_zero(wants_count);
3079 	gotvar = 0;
3080 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3081 		if (!(EOV & v->flags)) {
3082 			NTP_INSIST(v->code < wants_count);
3083 			wants[v->code] = 1;
3084 			gotvar = 1;
3085 		} else {
3086 			v = ctl_getitem(ext_sys_var, &valuep);
3087 			NTP_INSIST(v != NULL);
3088 			if (EOV & v->flags) {
3089 				ctl_error(CERR_UNKNOWNVAR);
3090 				free(wants);
3091 				return;
3092 			}
3093 			n = v->code + CS_MAXCODE + 1;
3094 			NTP_INSIST(n < wants_count);
3095 			wants[n] = 1;
3096 			gotvar = 1;
3097 		}
3098 	}
3099 	if (gotvar) {
3100 		for (n = 1; n <= CS_MAXCODE; n++)
3101 			if (wants[n])
3102 				ctl_putsys(n);
3103 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3104 			if (wants[n + CS_MAXCODE + 1]) {
3105 				pch = ext_sys_var[n].text;
3106 				ctl_putdata(pch, strlen(pch), 0);
3107 			}
3108 	} else {
3109 		for (cs = def_sys_var; *cs != 0; cs++)
3110 			ctl_putsys((int)*cs);
3111 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3112 			if (DEF & kv->flags)
3113 				ctl_putdata(kv->text, strlen(kv->text),
3114 					    0);
3115 	}
3116 	free(wants);
3117 	ctl_flushpkt(0);
3118 }
3119 
3120 
3121 /*
3122  * read_variables - return the variables the caller asks for
3123  */
3124 /*ARGSUSED*/
3125 static void
3126 read_variables(
3127 	struct recvbuf *rbufp,
3128 	int restrict_mask
3129 	)
3130 {
3131 	if (res_associd)
3132 		read_peervars();
3133 	else
3134 		read_sysvars();
3135 }
3136 
3137 
3138 /*
3139  * write_variables - write into variables. We only allow leap bit
3140  * writing this way.
3141  */
3142 /*ARGSUSED*/
3143 static void
3144 write_variables(
3145 	struct recvbuf *rbufp,
3146 	int restrict_mask
3147 	)
3148 {
3149 	const struct ctl_var *v;
3150 	int ext_var;
3151 	char *valuep;
3152 	long val;
3153 	size_t octets;
3154 	char *vareqv;
3155 	const char *t;
3156 	char *tt;
3157 
3158 	val = 0;
3159 	/*
3160 	 * If he's trying to write into a peer tell him no way
3161 	 */
3162 	if (res_associd != 0) {
3163 		ctl_error(CERR_PERMISSION);
3164 		return;
3165 	}
3166 
3167 	/*
3168 	 * Set status
3169 	 */
3170 	rpkt.status = htons(ctlsysstatus());
3171 
3172 	/*
3173 	 * Look through the variables. Dump out at the first sign of
3174 	 * trouble.
3175 	 */
3176 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3177 		ext_var = 0;
3178 		if (v->flags & EOV) {
3179 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3180 			    0) {
3181 				if (v->flags & EOV) {
3182 					ctl_error(CERR_UNKNOWNVAR);
3183 					return;
3184 				}
3185 				ext_var = 1;
3186 			} else {
3187 				break;
3188 			}
3189 		}
3190 		if (!(v->flags & CAN_WRITE)) {
3191 			ctl_error(CERR_PERMISSION);
3192 			return;
3193 		}
3194 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3195 							    &val))) {
3196 			ctl_error(CERR_BADFMT);
3197 			return;
3198 		}
3199 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3200 			ctl_error(CERR_BADVALUE);
3201 			return;
3202 		}
3203 
3204 		if (ext_var) {
3205 			octets = strlen(v->text) + strlen(valuep) + 2;
3206 			vareqv = emalloc(octets);
3207 			tt = vareqv;
3208 			t = v->text;
3209 			while (*t && *t != '=')
3210 				*tt++ = *t++;
3211 			*tt++ = '=';
3212 			memcpy(tt, valuep, 1 + strlen(valuep));
3213 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3214 			free(vareqv);
3215 		} else {
3216 			ctl_error(CERR_UNSPEC); /* really */
3217 			return;
3218 		}
3219 	}
3220 
3221 	/*
3222 	 * If we got anything, do it. xxx nothing to do ***
3223 	 */
3224 	/*
3225 	  if (leapind != ~0 || leapwarn != ~0) {
3226 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3227 	  ctl_error(CERR_PERMISSION);
3228 	  return;
3229 	  }
3230 	  }
3231 	*/
3232 	ctl_flushpkt(0);
3233 }
3234 
3235 /*
3236  * configure() processes ntpq :config/config-from-file, allowing
3237  *		generic runtime reconfiguration.
3238  */
3239 static void configure(
3240 	struct recvbuf *rbufp,
3241 	int restrict_mask
3242 	)
3243 {
3244 	size_t data_count;
3245 	int retval;
3246 	int replace_nl;
3247 
3248 	/* I haven't yet implemented changes to an existing association.
3249 	 * Hence check if the association id is 0
3250 	 */
3251 	if (res_associd != 0) {
3252 		ctl_error(CERR_BADVALUE);
3253 		return;
3254 	}
3255 
3256 	if (RES_NOMODIFY & restrict_mask) {
3257 		snprintf(remote_config.err_msg,
3258 			 sizeof(remote_config.err_msg),
3259 			 "runtime configuration prohibited by restrict ... nomodify");
3260 		ctl_putdata(remote_config.err_msg,
3261 			    strlen(remote_config.err_msg), 0);
3262 		ctl_flushpkt(0);
3263 		NLOG(NLOG_SYSINFO)
3264 			msyslog(LOG_NOTICE,
3265 				"runtime config from %s rejected due to nomodify restriction",
3266 				stoa(&rbufp->recv_srcadr));
3267 		sys_restricted++;
3268 		return;
3269 	}
3270 
3271 	/* Initialize the remote config buffer */
3272 	data_count = reqend - reqpt;
3273 	memcpy(remote_config.buffer, reqpt, data_count);
3274 	if (data_count > 0
3275 	    && '\n' != remote_config.buffer[data_count - 1])
3276 		remote_config.buffer[data_count++] = '\n';
3277 	remote_config.buffer[data_count] = '\0';
3278 	remote_config.pos = 0;
3279 	remote_config.err_pos = 0;
3280 	remote_config.no_errors = 0;
3281 
3282 	/* do not include terminating newline in log */
3283 	if (data_count > 0
3284 	    && '\n' == remote_config.buffer[data_count - 1]) {
3285 		remote_config.buffer[data_count - 1] = '\0';
3286 		replace_nl = TRUE;
3287 	} else {
3288 		replace_nl = FALSE;
3289 	}
3290 
3291 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3292 		remote_config.buffer));
3293 	msyslog(LOG_NOTICE, "%s config: %s",
3294 		stoa(&rbufp->recv_srcadr),
3295 		remote_config.buffer);
3296 
3297 	if (replace_nl)
3298 		remote_config.buffer[data_count - 1] = '\n';
3299 
3300 	config_remotely(&rbufp->recv_srcadr);
3301 
3302 	/*
3303 	 * Check if errors were reported. If not, output 'Config
3304 	 * Succeeded'.  Else output the error count.  It would be nice
3305 	 * to output any parser error messages.
3306 	 */
3307 	if (0 == remote_config.no_errors) {
3308 		retval = snprintf(remote_config.err_msg,
3309 				  sizeof(remote_config.err_msg),
3310 				  "Config Succeeded");
3311 		if (retval > 0)
3312 			remote_config.err_pos += retval;
3313 	}
3314 
3315 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3316 	ctl_flushpkt(0);
3317 
3318 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3319 
3320 	if (remote_config.no_errors > 0)
3321 		msyslog(LOG_NOTICE, "%d error in %s config",
3322 			remote_config.no_errors,
3323 			stoa(&rbufp->recv_srcadr));
3324 }
3325 
3326 
3327 /*
3328  * derive_nonce - generate client-address-specific nonce value
3329  *		  associated with a given timestamp.
3330  */
3331 static u_int32 derive_nonce(
3332 	sockaddr_u *	addr,
3333 	u_int32		ts_i,
3334 	u_int32		ts_f
3335 	)
3336 {
3337 	static u_int32	salt[2];
3338 	union d_tag {
3339 		u_char	digest[EVP_MAX_MD_SIZE];
3340 		u_int32 extract;
3341 	}		d;
3342 	EVP_MD_CTX	ctx;
3343 	u_int		len;
3344 
3345 	while (!salt[0])
3346 		salt[0] = ntp_random();
3347 	salt[1] = conf_file_sum;
3348 
3349 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3350 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3351 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3352 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3353 	if (IS_IPV4(addr))
3354 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3355 			         sizeof(SOCK_ADDR4(addr)));
3356 	else
3357 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3358 			         sizeof(SOCK_ADDR6(addr)));
3359 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3360 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3361 	EVP_DigestFinal(&ctx, d.digest, &len);
3362 
3363 	return d.extract;
3364 }
3365 
3366 
3367 /*
3368  * generate_nonce - generate client-address-specific nonce string.
3369  */
3370 static void generate_nonce(
3371 	struct recvbuf *	rbufp,
3372 	char *			nonce,
3373 	size_t			nonce_octets
3374 	)
3375 {
3376 	u_int32 derived;
3377 
3378 	derived = derive_nonce(&rbufp->recv_srcadr,
3379 			       rbufp->recv_time.l_ui,
3380 			       rbufp->recv_time.l_uf);
3381 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3382 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3383 }
3384 
3385 
3386 /*
3387  * validate_nonce - validate client-address-specific nonce string.
3388  *
3389  * Returns TRUE if the local calculation of the nonce matches the
3390  * client-provided value and the timestamp is recent enough.
3391  */
3392 static int validate_nonce(
3393 	const char *		pnonce,
3394 	struct recvbuf *	rbufp
3395 	)
3396 {
3397 	u_int	ts_i;
3398 	u_int	ts_f;
3399 	l_fp	ts;
3400 	l_fp	now_delta;
3401 	u_int	supposed;
3402 	u_int	derived;
3403 
3404 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3405 		return FALSE;
3406 
3407 	ts.l_ui = (u_int32)ts_i;
3408 	ts.l_uf = (u_int32)ts_f;
3409 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3410 	get_systime(&now_delta);
3411 	L_SUB(&now_delta, &ts);
3412 
3413 	return (supposed == derived && now_delta.l_ui < 16);
3414 }
3415 
3416 
3417 /*
3418  * send_random_tag_value - send a randomly-generated three character
3419  *			   tag prefix, a '.', an index, a '=' and a
3420  *			   random integer value.
3421  *
3422  * To try to force clients to ignore unrecognized tags in mrulist,
3423  * reslist, and ifstats responses, the first and last rows are spiced
3424  * with randomly-generated tag names with correct .# index.  Make it
3425  * three characters knowing that none of the currently-used subscripted
3426  * tags have that length, avoiding the need to test for
3427  * tag collision.
3428  */
3429 static void
3430 send_random_tag_value(
3431 	int	indx
3432 	)
3433 {
3434 	int	noise;
3435 	char	buf[32];
3436 
3437 	noise = rand() ^ (rand() << 16);
3438 	buf[0] = 'a' + noise % 26;
3439 	noise >>= 5;
3440 	buf[1] = 'a' + noise % 26;
3441 	noise >>= 5;
3442 	buf[2] = 'a' + noise % 26;
3443 	noise >>= 5;
3444 	buf[3] = '.';
3445 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3446 	ctl_putuint(buf, noise);
3447 }
3448 
3449 
3450 /*
3451  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3452  *
3453  * To keep clients honest about not depending on the order of values,
3454  * and thereby avoid being locked into ugly workarounds to maintain
3455  * backward compatibility later as new fields are added to the response,
3456  * the order is random.
3457  */
3458 static void
3459 send_mru_entry(
3460 	mon_entry *	mon,
3461 	int		count
3462 	)
3463 {
3464 	const char first_fmt[] =	"first.%d";
3465 	const char ct_fmt[] =		"ct.%d";
3466 	const char mv_fmt[] =		"mv.%d";
3467 	const char rs_fmt[] =		"rs.%d";
3468 	char	tag[32];
3469 	u_char	sent[6]; /* 6 tag=value pairs */
3470 	u_int32 noise;
3471 	u_int	which;
3472 	u_int	remaining;
3473 	const char * pch;
3474 
3475 	remaining = COUNTOF(sent);
3476 	ZERO(sent);
3477 	noise = (u_int32)(rand() ^ (rand() << 16));
3478 	while (remaining > 0) {
3479 		which = (noise & 7) % COUNTOF(sent);
3480 		noise >>= 3;
3481 		while (sent[which])
3482 			which = (which + 1) % COUNTOF(sent);
3483 
3484 		switch (which) {
3485 
3486 		case 0:
3487 			snprintf(tag, sizeof(tag), addr_fmt, count);
3488 			pch = sptoa(&mon->rmtadr);
3489 			ctl_putunqstr(tag, pch, strlen(pch));
3490 			break;
3491 
3492 		case 1:
3493 			snprintf(tag, sizeof(tag), last_fmt, count);
3494 			ctl_putts(tag, &mon->last);
3495 			break;
3496 
3497 		case 2:
3498 			snprintf(tag, sizeof(tag), first_fmt, count);
3499 			ctl_putts(tag, &mon->first);
3500 			break;
3501 
3502 		case 3:
3503 			snprintf(tag, sizeof(tag), ct_fmt, count);
3504 			ctl_putint(tag, mon->count);
3505 			break;
3506 
3507 		case 4:
3508 			snprintf(tag, sizeof(tag), mv_fmt, count);
3509 			ctl_putuint(tag, mon->vn_mode);
3510 			break;
3511 
3512 		case 5:
3513 			snprintf(tag, sizeof(tag), rs_fmt, count);
3514 			ctl_puthex(tag, mon->flags);
3515 			break;
3516 		}
3517 		sent[which] = TRUE;
3518 		remaining--;
3519 	}
3520 }
3521 
3522 
3523 /*
3524  * read_mru_list - supports ntpq's mrulist command.
3525  *
3526  * The challenge here is to match ntpdc's monlist functionality without
3527  * being limited to hundreds of entries returned total, and without
3528  * requiring state on the server.  If state were required, ntpq's
3529  * mrulist command would require authentication.
3530  *
3531  * The approach was suggested by Ry Jones.  A finite and variable number
3532  * of entries are retrieved per request, to avoid having responses with
3533  * such large numbers of packets that socket buffers are overflowed and
3534  * packets lost.  The entries are retrieved oldest-first, taking into
3535  * account that the MRU list will be changing between each request.  We
3536  * can expect to see duplicate entries for addresses updated in the MRU
3537  * list during the fetch operation.  In the end, the client can assemble
3538  * a close approximation of the MRU list at the point in time the last
3539  * response was sent by ntpd.  The only difference is it may be longer,
3540  * containing some number of oldest entries which have since been
3541  * reclaimed.  If necessary, the protocol could be extended to zap those
3542  * from the client snapshot at the end, but so far that doesn't seem
3543  * useful.
3544  *
3545  * To accomodate the changing MRU list, the starting point for requests
3546  * after the first request is supplied as a series of last seen
3547  * timestamps and associated addresses, the newest ones the client has
3548  * received.  As long as at least one of those entries hasn't been
3549  * bumped to the head of the MRU list, ntpd can pick up at that point.
3550  * Otherwise, the request is failed and it is up to ntpq to back up and
3551  * provide the next newest entry's timestamps and addresses, conceivably
3552  * backing up all the way to the starting point.
3553  *
3554  * input parameters:
3555  *	nonce=		Regurgitated nonce retrieved by the client
3556  *			previously using CTL_OP_REQ_NONCE, demonstrating
3557  *			ability to receive traffic sent to its address.
3558  *	frags=		Limit on datagrams (fragments) in response.  Used
3559  *			by newer ntpq versions instead of limit= when
3560  *			retrieving multiple entries.
3561  *	limit=		Limit on MRU entries returned.  One of frags= or
3562  *			limit= must be provided.
3563  *			limit=1 is a special case:  Instead of fetching
3564  *			beginning with the supplied starting point's
3565  *			newer neighbor, fetch the supplied entry, and
3566  *			in that case the #.last timestamp can be zero.
3567  *			This enables fetching a single entry by IP
3568  *			address.  When limit is not one and frags= is
3569  *			provided, the fragment limit controls.
3570  *	mincount=	(decimal) Return entries with count >= mincount.
3571  *	laddr=		Return entries associated with the server's IP
3572  *			address given.  No port specification is needed,
3573  *			and any supplied is ignored.
3574  *	resall=		0x-prefixed hex restrict bits which must all be
3575  *			lit for an MRU entry to be included.
3576  *			Has precedence over any resany=.
3577  *	resany=		0x-prefixed hex restrict bits, at least one of
3578  *			which must be list for an MRU entry to be
3579  *			included.
3580  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3581  *			which client previously received.
3582  *	addr.0=		text of newest entry's IP address and port,
3583  *			IPv6 addresses in bracketed form: [::]:123
3584  *	last.1=		timestamp of 2nd newest entry client has.
3585  *	addr.1=		address of 2nd newest entry.
3586  *	[...]
3587  *
3588  * ntpq provides as many last/addr pairs as will fit in a single request
3589  * packet, except for the first request in a MRU fetch operation.
3590  *
3591  * The response begins with a new nonce value to be used for any
3592  * followup request.  Following the nonce is the next newer entry than
3593  * referred to by last.0 and addr.0, if the "0" entry has not been
3594  * bumped to the front.  If it has, the first entry returned will be the
3595  * next entry newer than referred to by last.1 and addr.1, and so on.
3596  * If none of the referenced entries remain unchanged, the request fails
3597  * and ntpq backs up to the next earlier set of entries to resync.
3598  *
3599  * Except for the first response, the response begins with confirmation
3600  * of the entry that precedes the first additional entry provided:
3601  *
3602  *	last.older=	hex l_fp timestamp matching one of the input
3603  *			.last timestamps, which entry now precedes the
3604  *			response 0. entry in the MRU list.
3605  *	addr.older=	text of address corresponding to older.last.
3606  *
3607  * And in any case, a successful response contains sets of values
3608  * comprising entries, with the oldest numbered 0 and incrementing from
3609  * there:
3610  *
3611  *	addr.#		text of IPv4 or IPv6 address and port
3612  *	last.#		hex l_fp timestamp of last receipt
3613  *	first.#		hex l_fp timestamp of first receipt
3614  *	ct.#		count of packets received
3615  *	mv.#		mode and version
3616  *	rs.#		restriction mask (RES_* bits)
3617  *
3618  * Note the code currently assumes there are no valid three letter
3619  * tags sent with each row, and needs to be adjusted if that changes.
3620  *
3621  * The client should accept the values in any order, and ignore .#
3622  * values which it does not understand, to allow a smooth path to
3623  * future changes without requiring a new opcode.  Clients can rely
3624  * on all *.0 values preceding any *.1 values, that is all values for
3625  * a given index number are together in the response.
3626  *
3627  * The end of the response list is noted with one or two tag=value
3628  * pairs.  Unconditionally:
3629  *
3630  *	now=		0x-prefixed l_fp timestamp at the server marking
3631  *			the end of the operation.
3632  *
3633  * If any entries were returned, now= is followed by:
3634  *
3635  *	last.newest=	hex l_fp identical to last.# of the prior
3636  *			entry.
3637  */
3638 static void read_mru_list(
3639 	struct recvbuf *rbufp,
3640 	int restrict_mask
3641 	)
3642 {
3643 	const char		nonce_text[] =		"nonce";
3644 	const char		frags_text[] =		"frags";
3645 	const char		limit_text[] =		"limit";
3646 	const char		mincount_text[] =	"mincount";
3647 	const char		resall_text[] =		"resall";
3648 	const char		resany_text[] =		"resany";
3649 	const char		maxlstint_text[] =	"maxlstint";
3650 	const char		laddr_text[] =		"laddr";
3651 	const char		resaxx_fmt[] =		"0x%hx";
3652 	u_int			limit;
3653 	u_short			frags;
3654 	u_short			resall;
3655 	u_short			resany;
3656 	int			mincount;
3657 	u_int			maxlstint;
3658 	sockaddr_u		laddr;
3659 	struct interface *	lcladr;
3660 	u_int			count;
3661 	u_int			ui;
3662 	u_int			uf;
3663 	l_fp			last[16];
3664 	sockaddr_u		addr[COUNTOF(last)];
3665 	char			buf[128];
3666 	struct ctl_var *	in_parms;
3667 	const struct ctl_var *	v;
3668 	char *			val;
3669 	const char *		pch;
3670 	char *			pnonce;
3671 	int			nonce_valid;
3672 	size_t			i;
3673 	int			priors;
3674 	u_short			hash;
3675 	mon_entry *		mon;
3676 	mon_entry *		prior_mon;
3677 	l_fp			now;
3678 
3679 	if (RES_NOMRULIST & restrict_mask) {
3680 		ctl_error(CERR_PERMISSION);
3681 		NLOG(NLOG_SYSINFO)
3682 			msyslog(LOG_NOTICE,
3683 				"mrulist from %s rejected due to nomrulist restriction",
3684 				stoa(&rbufp->recv_srcadr));
3685 		sys_restricted++;
3686 		return;
3687 	}
3688 	/*
3689 	 * fill in_parms var list with all possible input parameters.
3690 	 */
3691 	in_parms = NULL;
3692 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3693 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3694 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3695 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3696 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3697 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3698 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3699 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3700 	for (i = 0; i < COUNTOF(last); i++) {
3701 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3702 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3703 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3704 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3705 	}
3706 
3707 	/* decode input parms */
3708 	pnonce = NULL;
3709 	frags = 0;
3710 	limit = 0;
3711 	mincount = 0;
3712 	resall = 0;
3713 	resany = 0;
3714 	maxlstint = 0;
3715 	lcladr = NULL;
3716 	priors = 0;
3717 	ZERO(last);
3718 	ZERO(addr);
3719 
3720 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3721 	       !(EOV & v->flags)) {
3722 	        int si;
3723 
3724 		if (!strcmp(nonce_text, v->text)) {
3725 			if (NULL != pnonce)
3726 				free(pnonce);
3727 			pnonce = estrdup(val);
3728 		} else if (!strcmp(frags_text, v->text)) {
3729 			sscanf(val, "%hu", &frags);
3730 		} else if (!strcmp(limit_text, v->text)) {
3731 			sscanf(val, "%u", &limit);
3732 		} else if (!strcmp(mincount_text, v->text)) {
3733 			if (1 != sscanf(val, "%d", &mincount) ||
3734 			    mincount < 0)
3735 				mincount = 0;
3736 		} else if (!strcmp(resall_text, v->text)) {
3737 			sscanf(val, resaxx_fmt, &resall);
3738 		} else if (!strcmp(resany_text, v->text)) {
3739 			sscanf(val, resaxx_fmt, &resany);
3740 		} else if (!strcmp(maxlstint_text, v->text)) {
3741 			sscanf(val, "%u", &maxlstint);
3742 		} else if (!strcmp(laddr_text, v->text)) {
3743 			if (decodenetnum(val, &laddr))
3744 				lcladr = getinterface(&laddr, 0);
3745 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3746 			   (size_t)si < COUNTOF(last)) {
3747 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3748 				last[si].l_ui = ui;
3749 				last[si].l_uf = uf;
3750 				if (!SOCK_UNSPEC(&addr[si]) &&
3751 				    si == priors)
3752 					priors++;
3753 			}
3754 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3755 			   (size_t)si < COUNTOF(addr)) {
3756 			if (decodenetnum(val, &addr[si])
3757 			    && last[si].l_ui && last[si].l_uf &&
3758 			    si == priors)
3759 				priors++;
3760 		}
3761 	}
3762 	free_varlist(in_parms);
3763 	in_parms = NULL;
3764 
3765 	/* return no responses until the nonce is validated */
3766 	if (NULL == pnonce)
3767 		return;
3768 
3769 	nonce_valid = validate_nonce(pnonce, rbufp);
3770 	free(pnonce);
3771 	if (!nonce_valid)
3772 		return;
3773 
3774 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3775 	    frags > MRU_FRAGS_LIMIT) {
3776 		ctl_error(CERR_BADVALUE);
3777 		return;
3778 	}
3779 
3780 	/*
3781 	 * If either frags or limit is not given, use the max.
3782 	 */
3783 	if (0 != frags && 0 == limit)
3784 		limit = UINT_MAX;
3785 	else if (0 != limit && 0 == frags)
3786 		frags = MRU_FRAGS_LIMIT;
3787 
3788 	/*
3789 	 * Find the starting point if one was provided.
3790 	 */
3791 	mon = NULL;
3792 	for (i = 0; i < (size_t)priors; i++) {
3793 		hash = MON_HASH(&addr[i]);
3794 		for (mon = mon_hash[hash];
3795 		     mon != NULL;
3796 		     mon = mon->hash_next)
3797 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3798 				break;
3799 		if (mon != NULL) {
3800 			if (L_ISEQU(&mon->last, &last[i]))
3801 				break;
3802 			mon = NULL;
3803 		}
3804 	}
3805 
3806 	/* If a starting point was provided... */
3807 	if (priors) {
3808 		/* and none could be found unmodified... */
3809 		if (NULL == mon) {
3810 			/* tell ntpq to try again with older entries */
3811 			ctl_error(CERR_UNKNOWNVAR);
3812 			return;
3813 		}
3814 		/* confirm the prior entry used as starting point */
3815 		ctl_putts("last.older", &mon->last);
3816 		pch = sptoa(&mon->rmtadr);
3817 		ctl_putunqstr("addr.older", pch, strlen(pch));
3818 
3819 		/*
3820 		 * Move on to the first entry the client doesn't have,
3821 		 * except in the special case of a limit of one.  In
3822 		 * that case return the starting point entry.
3823 		 */
3824 		if (limit > 1)
3825 			mon = PREV_DLIST(mon_mru_list, mon, mru);
3826 	} else {	/* start with the oldest */
3827 		mon = TAIL_DLIST(mon_mru_list, mru);
3828 	}
3829 
3830 	/*
3831 	 * send up to limit= entries in up to frags= datagrams
3832 	 */
3833 	get_systime(&now);
3834 	generate_nonce(rbufp, buf, sizeof(buf));
3835 	ctl_putunqstr("nonce", buf, strlen(buf));
3836 	prior_mon = NULL;
3837 	for (count = 0;
3838 	     mon != NULL && res_frags < frags && count < limit;
3839 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3840 
3841 		if (mon->count < mincount)
3842 			continue;
3843 		if (resall && resall != (resall & mon->flags))
3844 			continue;
3845 		if (resany && !(resany & mon->flags))
3846 			continue;
3847 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3848 		    maxlstint)
3849 			continue;
3850 		if (lcladr != NULL && mon->lcladr != lcladr)
3851 			continue;
3852 
3853 		send_mru_entry(mon, count);
3854 		if (!count)
3855 			send_random_tag_value(0);
3856 		count++;
3857 		prior_mon = mon;
3858 	}
3859 
3860 	/*
3861 	 * If this batch completes the MRU list, say so explicitly with
3862 	 * a now= l_fp timestamp.
3863 	 */
3864 	if (NULL == mon) {
3865 		if (count > 1)
3866 			send_random_tag_value(count - 1);
3867 		ctl_putts("now", &now);
3868 		/* if any entries were returned confirm the last */
3869 		if (prior_mon != NULL)
3870 			ctl_putts("last.newest", &prior_mon->last);
3871 	}
3872 	ctl_flushpkt(0);
3873 }
3874 
3875 
3876 /*
3877  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3878  *
3879  * To keep clients honest about not depending on the order of values,
3880  * and thereby avoid being locked into ugly workarounds to maintain
3881  * backward compatibility later as new fields are added to the response,
3882  * the order is random.
3883  */
3884 static void
3885 send_ifstats_entry(
3886 	endpt *	la,
3887 	u_int	ifnum
3888 	)
3889 {
3890 	const char addr_fmtu[] =	"addr.%u";
3891 	const char bcast_fmt[] =	"bcast.%u";
3892 	const char en_fmt[] =		"en.%u";	/* enabled */
3893 	const char name_fmt[] =		"name.%u";
3894 	const char flags_fmt[] =	"flags.%u";
3895 	const char tl_fmt[] =		"tl.%u";	/* ttl */
3896 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
3897 	const char rx_fmt[] =		"rx.%u";
3898 	const char tx_fmt[] =		"tx.%u";
3899 	const char txerr_fmt[] =	"txerr.%u";
3900 	const char pc_fmt[] =		"pc.%u";	/* peer count */
3901 	const char up_fmt[] =		"up.%u";	/* uptime */
3902 	char	tag[32];
3903 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
3904 	int	noisebits;
3905 	u_int32 noise;
3906 	u_int	which;
3907 	u_int	remaining;
3908 	const char *pch;
3909 
3910 	remaining = COUNTOF(sent);
3911 	ZERO(sent);
3912 	noise = 0;
3913 	noisebits = 0;
3914 	while (remaining > 0) {
3915 		if (noisebits < 4) {
3916 			noise = rand() ^ (rand() << 16);
3917 			noisebits = 31;
3918 		}
3919 		which = (noise & 0xf) % COUNTOF(sent);
3920 		noise >>= 4;
3921 		noisebits -= 4;
3922 
3923 		while (sent[which])
3924 			which = (which + 1) % COUNTOF(sent);
3925 
3926 		switch (which) {
3927 
3928 		case 0:
3929 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
3930 			pch = sptoa(&la->sin);
3931 			ctl_putunqstr(tag, pch, strlen(pch));
3932 			break;
3933 
3934 		case 1:
3935 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
3936 			if (INT_BCASTOPEN & la->flags)
3937 				pch = sptoa(&la->bcast);
3938 			else
3939 				pch = "";
3940 			ctl_putunqstr(tag, pch, strlen(pch));
3941 			break;
3942 
3943 		case 2:
3944 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
3945 			ctl_putint(tag, !la->ignore_packets);
3946 			break;
3947 
3948 		case 3:
3949 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
3950 			ctl_putstr(tag, la->name, strlen(la->name));
3951 			break;
3952 
3953 		case 4:
3954 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
3955 			ctl_puthex(tag, (u_int)la->flags);
3956 			break;
3957 
3958 		case 5:
3959 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
3960 			ctl_putint(tag, la->last_ttl);
3961 			break;
3962 
3963 		case 6:
3964 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
3965 			ctl_putint(tag, la->num_mcast);
3966 			break;
3967 
3968 		case 7:
3969 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
3970 			ctl_putint(tag, la->received);
3971 			break;
3972 
3973 		case 8:
3974 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
3975 			ctl_putint(tag, la->sent);
3976 			break;
3977 
3978 		case 9:
3979 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
3980 			ctl_putint(tag, la->notsent);
3981 			break;
3982 
3983 		case 10:
3984 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
3985 			ctl_putuint(tag, la->peercnt);
3986 			break;
3987 
3988 		case 11:
3989 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
3990 			ctl_putuint(tag, current_time - la->starttime);
3991 			break;
3992 		}
3993 		sent[which] = TRUE;
3994 		remaining--;
3995 	}
3996 	send_random_tag_value((int)ifnum);
3997 }
3998 
3999 
4000 /*
4001  * read_ifstats - send statistics for each local address, exposed by
4002  *		  ntpq -c ifstats
4003  */
4004 static void
4005 read_ifstats(
4006 	struct recvbuf *	rbufp
4007 	)
4008 {
4009 	u_int	ifidx;
4010 	endpt *	la;
4011 
4012 	/*
4013 	 * loop over [0..sys_ifnum] searching ep_list for each
4014 	 * ifnum in turn.
4015 	 */
4016 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4017 		for (la = ep_list; la != NULL; la = la->elink)
4018 			if (ifidx == la->ifnum)
4019 				break;
4020 		if (NULL == la)
4021 			continue;
4022 		/* return stats for one local address */
4023 		send_ifstats_entry(la, ifidx);
4024 	}
4025 	ctl_flushpkt(0);
4026 }
4027 
4028 static void
4029 sockaddrs_from_restrict_u(
4030 	sockaddr_u *	psaA,
4031 	sockaddr_u *	psaM,
4032 	restrict_u *	pres,
4033 	int		ipv6
4034 	)
4035 {
4036 	ZERO(*psaA);
4037 	ZERO(*psaM);
4038 	if (!ipv6) {
4039 		psaA->sa.sa_family = AF_INET;
4040 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4041 		psaM->sa.sa_family = AF_INET;
4042 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4043 	} else {
4044 		psaA->sa.sa_family = AF_INET6;
4045 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4046 		       sizeof(psaA->sa6.sin6_addr));
4047 		psaM->sa.sa_family = AF_INET6;
4048 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4049 		       sizeof(psaA->sa6.sin6_addr));
4050 	}
4051 }
4052 
4053 
4054 /*
4055  * Send a restrict entry in response to a "ntpq -c reslist" request.
4056  *
4057  * To keep clients honest about not depending on the order of values,
4058  * and thereby avoid being locked into ugly workarounds to maintain
4059  * backward compatibility later as new fields are added to the response,
4060  * the order is random.
4061  */
4062 static void
4063 send_restrict_entry(
4064 	restrict_u *	pres,
4065 	int		ipv6,
4066 	u_int		idx
4067 	)
4068 {
4069 	const char addr_fmtu[] =	"addr.%u";
4070 	const char mask_fmtu[] =	"mask.%u";
4071 	const char hits_fmt[] =		"hits.%u";
4072 	const char flags_fmt[] =	"flags.%u";
4073 	char		tag[32];
4074 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4075 	int		noisebits;
4076 	u_int32		noise;
4077 	u_int		which;
4078 	u_int		remaining;
4079 	sockaddr_u	addr;
4080 	sockaddr_u	mask;
4081 	const char *	pch;
4082 	char *		buf;
4083 	const char *	match_str;
4084 	const char *	access_str;
4085 
4086 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4087 	remaining = COUNTOF(sent);
4088 	ZERO(sent);
4089 	noise = 0;
4090 	noisebits = 0;
4091 	while (remaining > 0) {
4092 		if (noisebits < 2) {
4093 			noise = rand() ^ (rand() << 16);
4094 			noisebits = 31;
4095 		}
4096 		which = (noise & 0x3) % COUNTOF(sent);
4097 		noise >>= 2;
4098 		noisebits -= 2;
4099 
4100 		while (sent[which])
4101 			which = (which + 1) % COUNTOF(sent);
4102 
4103 		switch (which) {
4104 
4105 		case 0:
4106 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4107 			pch = stoa(&addr);
4108 			ctl_putunqstr(tag, pch, strlen(pch));
4109 			break;
4110 
4111 		case 1:
4112 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4113 			pch = stoa(&mask);
4114 			ctl_putunqstr(tag, pch, strlen(pch));
4115 			break;
4116 
4117 		case 2:
4118 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4119 			ctl_putuint(tag, pres->count);
4120 			break;
4121 
4122 		case 3:
4123 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4124 			match_str = res_match_flags(pres->mflags);
4125 			access_str = res_access_flags(pres->flags);
4126 			if ('\0' == match_str[0]) {
4127 				pch = access_str;
4128 			} else {
4129 				LIB_GETBUF(buf);
4130 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4131 					 match_str, access_str);
4132 				pch = buf;
4133 			}
4134 			ctl_putunqstr(tag, pch, strlen(pch));
4135 			break;
4136 		}
4137 		sent[which] = TRUE;
4138 		remaining--;
4139 	}
4140 	send_random_tag_value((int)idx);
4141 }
4142 
4143 
4144 static void
4145 send_restrict_list(
4146 	restrict_u *	pres,
4147 	int		ipv6,
4148 	u_int *		pidx
4149 	)
4150 {
4151 	for ( ; pres != NULL; pres = pres->link) {
4152 		send_restrict_entry(pres, ipv6, *pidx);
4153 		(*pidx)++;
4154 	}
4155 }
4156 
4157 
4158 /*
4159  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4160  */
4161 static void
4162 read_addr_restrictions(
4163 	struct recvbuf *	rbufp
4164 )
4165 {
4166 	u_int idx;
4167 
4168 	idx = 0;
4169 	send_restrict_list(restrictlist4, FALSE, &idx);
4170 	send_restrict_list(restrictlist6, TRUE, &idx);
4171 	ctl_flushpkt(0);
4172 }
4173 
4174 
4175 /*
4176  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4177  */
4178 static void
4179 read_ordlist(
4180 	struct recvbuf *	rbufp,
4181 	int			restrict_mask
4182 	)
4183 {
4184 	const char ifstats_s[] = "ifstats";
4185 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4186 	const char addr_rst_s[] = "addr_restrictions";
4187 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4188 	struct ntp_control *	cpkt;
4189 	u_short			qdata_octets;
4190 
4191 	/*
4192 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4193 	 * used only for ntpq -c ifstats.  With the addition of reslist
4194 	 * the same opcode was generalized to retrieve ordered lists
4195 	 * which require authentication.  The request data is empty or
4196 	 * contains "ifstats" (not null terminated) to retrieve local
4197 	 * addresses and associated stats.  It is "addr_restrictions"
4198 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4199 	 * which are access control lists.  Other request data return
4200 	 * CERR_UNKNOWNVAR.
4201 	 */
4202 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4203 	qdata_octets = ntohs(cpkt->count);
4204 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4205 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4206 		read_ifstats(rbufp);
4207 		return;
4208 	}
4209 	if (a_r_chars == qdata_octets &&
4210 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4211 		read_addr_restrictions(rbufp);
4212 		return;
4213 	}
4214 	ctl_error(CERR_UNKNOWNVAR);
4215 }
4216 
4217 
4218 /*
4219  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4220  */
4221 static void req_nonce(
4222 	struct recvbuf *	rbufp,
4223 	int			restrict_mask
4224 	)
4225 {
4226 	char	buf[64];
4227 
4228 	generate_nonce(rbufp, buf, sizeof(buf));
4229 	ctl_putunqstr("nonce", buf, strlen(buf));
4230 	ctl_flushpkt(0);
4231 }
4232 
4233 
4234 /*
4235  * read_clockstatus - return clock radio status
4236  */
4237 /*ARGSUSED*/
4238 static void
4239 read_clockstatus(
4240 	struct recvbuf *rbufp,
4241 	int restrict_mask
4242 	)
4243 {
4244 #ifndef REFCLOCK
4245 	/*
4246 	 * If no refclock support, no data to return
4247 	 */
4248 	ctl_error(CERR_BADASSOC);
4249 #else
4250 	const struct ctl_var *	v;
4251 	int			i;
4252 	struct peer *		peer;
4253 	char *			valuep;
4254 	u_char *		wants;
4255 	size_t			wants_alloc;
4256 	int			gotvar;
4257 	const u_char *		cc;
4258 	struct ctl_var *	kv;
4259 	struct refclockstat	cs;
4260 
4261 	if (res_associd != 0) {
4262 		peer = findpeerbyassoc(res_associd);
4263 	} else {
4264 		/*
4265 		 * Find a clock for this jerk.	If the system peer
4266 		 * is a clock use it, else search peer_list for one.
4267 		 */
4268 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4269 		    sys_peer->flags))
4270 			peer = sys_peer;
4271 		else
4272 			for (peer = peer_list;
4273 			     peer != NULL;
4274 			     peer = peer->p_link)
4275 				if (FLAG_REFCLOCK & peer->flags)
4276 					break;
4277 	}
4278 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4279 		ctl_error(CERR_BADASSOC);
4280 		return;
4281 	}
4282 	/*
4283 	 * If we got here we have a peer which is a clock. Get his
4284 	 * status.
4285 	 */
4286 	cs.kv_list = NULL;
4287 	refclock_control(&peer->srcadr, NULL, &cs);
4288 	kv = cs.kv_list;
4289 	/*
4290 	 * Look for variables in the packet.
4291 	 */
4292 	rpkt.status = htons(ctlclkstatus(&cs));
4293 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4294 	wants = emalloc_zero(wants_alloc);
4295 	gotvar = FALSE;
4296 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4297 		if (!(EOV & v->flags)) {
4298 			wants[v->code] = TRUE;
4299 			gotvar = TRUE;
4300 		} else {
4301 			v = ctl_getitem(kv, &valuep);
4302 			NTP_INSIST(NULL != v);
4303 			if (EOV & v->flags) {
4304 				ctl_error(CERR_UNKNOWNVAR);
4305 				free(wants);
4306 				free_varlist(cs.kv_list);
4307 				return;
4308 			}
4309 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4310 			gotvar = TRUE;
4311 		}
4312 	}
4313 
4314 	if (gotvar) {
4315 		for (i = 1; i <= CC_MAXCODE; i++)
4316 			if (wants[i])
4317 				ctl_putclock(i, &cs, TRUE);
4318 		if (kv != NULL)
4319 			for (i = 0; !(EOV & kv[i].flags); i++)
4320 				if (wants[i + CC_MAXCODE + 1])
4321 					ctl_putdata(kv[i].text,
4322 						    strlen(kv[i].text),
4323 						    FALSE);
4324 	} else {
4325 		for (cc = def_clock_var; *cc != 0; cc++)
4326 			ctl_putclock((int)*cc, &cs, FALSE);
4327 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4328 			if (DEF & kv->flags)
4329 				ctl_putdata(kv->text, strlen(kv->text),
4330 					    FALSE);
4331 	}
4332 
4333 	free(wants);
4334 	free_varlist(cs.kv_list);
4335 
4336 	ctl_flushpkt(0);
4337 #endif
4338 }
4339 
4340 
4341 /*
4342  * write_clockstatus - we don't do this
4343  */
4344 /*ARGSUSED*/
4345 static void
4346 write_clockstatus(
4347 	struct recvbuf *rbufp,
4348 	int restrict_mask
4349 	)
4350 {
4351 	ctl_error(CERR_PERMISSION);
4352 }
4353 
4354 /*
4355  * Trap support from here on down. We send async trap messages when the
4356  * upper levels report trouble. Traps can by set either by control
4357  * messages or by configuration.
4358  */
4359 /*
4360  * set_trap - set a trap in response to a control message
4361  */
4362 static void
4363 set_trap(
4364 	struct recvbuf *rbufp,
4365 	int restrict_mask
4366 	)
4367 {
4368 	int traptype;
4369 
4370 	/*
4371 	 * See if this guy is allowed
4372 	 */
4373 	if (restrict_mask & RES_NOTRAP) {
4374 		ctl_error(CERR_PERMISSION);
4375 		return;
4376 	}
4377 
4378 	/*
4379 	 * Determine his allowed trap type.
4380 	 */
4381 	traptype = TRAP_TYPE_PRIO;
4382 	if (restrict_mask & RES_LPTRAP)
4383 		traptype = TRAP_TYPE_NONPRIO;
4384 
4385 	/*
4386 	 * Call ctlsettrap() to do the work.  Return
4387 	 * an error if it can't assign the trap.
4388 	 */
4389 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4390 			(int)res_version))
4391 		ctl_error(CERR_NORESOURCE);
4392 	ctl_flushpkt(0);
4393 }
4394 
4395 
4396 /*
4397  * unset_trap - unset a trap in response to a control message
4398  */
4399 static void
4400 unset_trap(
4401 	struct recvbuf *rbufp,
4402 	int restrict_mask
4403 	)
4404 {
4405 	int traptype;
4406 
4407 	/*
4408 	 * We don't prevent anyone from removing his own trap unless the
4409 	 * trap is configured. Note we also must be aware of the
4410 	 * possibility that restriction flags were changed since this
4411 	 * guy last set his trap. Set the trap type based on this.
4412 	 */
4413 	traptype = TRAP_TYPE_PRIO;
4414 	if (restrict_mask & RES_LPTRAP)
4415 		traptype = TRAP_TYPE_NONPRIO;
4416 
4417 	/*
4418 	 * Call ctlclrtrap() to clear this out.
4419 	 */
4420 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4421 		ctl_error(CERR_BADASSOC);
4422 	ctl_flushpkt(0);
4423 }
4424 
4425 
4426 /*
4427  * ctlsettrap - called to set a trap
4428  */
4429 int
4430 ctlsettrap(
4431 	sockaddr_u *raddr,
4432 	struct interface *linter,
4433 	int traptype,
4434 	int version
4435 	)
4436 {
4437 	size_t n;
4438 	struct ctl_trap *tp;
4439 	struct ctl_trap *tptouse;
4440 
4441 	/*
4442 	 * See if we can find this trap.  If so, we only need update
4443 	 * the flags and the time.
4444 	 */
4445 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4446 		switch (traptype) {
4447 
4448 		case TRAP_TYPE_CONFIG:
4449 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4450 			break;
4451 
4452 		case TRAP_TYPE_PRIO:
4453 			if (tp->tr_flags & TRAP_CONFIGURED)
4454 				return (1); /* don't change anything */
4455 			tp->tr_flags = TRAP_INUSE;
4456 			break;
4457 
4458 		case TRAP_TYPE_NONPRIO:
4459 			if (tp->tr_flags & TRAP_CONFIGURED)
4460 				return (1); /* don't change anything */
4461 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4462 			break;
4463 		}
4464 		tp->tr_settime = current_time;
4465 		tp->tr_resets++;
4466 		return (1);
4467 	}
4468 
4469 	/*
4470 	 * First we heard of this guy.	Try to find a trap structure
4471 	 * for him to use, clearing out lesser priority guys if we
4472 	 * have to. Clear out anyone who's expired while we're at it.
4473 	 */
4474 	tptouse = NULL;
4475 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4476 		tp = &ctl_traps[n];
4477 		if ((TRAP_INUSE & tp->tr_flags) &&
4478 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4479 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4480 			tp->tr_flags = 0;
4481 			num_ctl_traps--;
4482 		}
4483 		if (!(TRAP_INUSE & tp->tr_flags)) {
4484 			tptouse = tp;
4485 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4486 			switch (traptype) {
4487 
4488 			case TRAP_TYPE_CONFIG:
4489 				if (tptouse == NULL) {
4490 					tptouse = tp;
4491 					break;
4492 				}
4493 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4494 				    !(TRAP_NONPRIO & tp->tr_flags))
4495 					break;
4496 
4497 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4498 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4499 					tptouse = tp;
4500 					break;
4501 				}
4502 				if (tptouse->tr_origtime <
4503 				    tp->tr_origtime)
4504 					tptouse = tp;
4505 				break;
4506 
4507 			case TRAP_TYPE_PRIO:
4508 				if ( TRAP_NONPRIO & tp->tr_flags) {
4509 					if (tptouse == NULL ||
4510 					    ((TRAP_INUSE &
4511 					      tptouse->tr_flags) &&
4512 					     tptouse->tr_origtime <
4513 					     tp->tr_origtime))
4514 						tptouse = tp;
4515 				}
4516 				break;
4517 
4518 			case TRAP_TYPE_NONPRIO:
4519 				break;
4520 			}
4521 		}
4522 	}
4523 
4524 	/*
4525 	 * If we don't have room for him return an error.
4526 	 */
4527 	if (tptouse == NULL)
4528 		return (0);
4529 
4530 	/*
4531 	 * Set up this structure for him.
4532 	 */
4533 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4534 	tptouse->tr_count = tptouse->tr_resets = 0;
4535 	tptouse->tr_sequence = 1;
4536 	tptouse->tr_addr = *raddr;
4537 	tptouse->tr_localaddr = linter;
4538 	tptouse->tr_version = (u_char) version;
4539 	tptouse->tr_flags = TRAP_INUSE;
4540 	if (traptype == TRAP_TYPE_CONFIG)
4541 		tptouse->tr_flags |= TRAP_CONFIGURED;
4542 	else if (traptype == TRAP_TYPE_NONPRIO)
4543 		tptouse->tr_flags |= TRAP_NONPRIO;
4544 	num_ctl_traps++;
4545 	return (1);
4546 }
4547 
4548 
4549 /*
4550  * ctlclrtrap - called to clear a trap
4551  */
4552 int
4553 ctlclrtrap(
4554 	sockaddr_u *raddr,
4555 	struct interface *linter,
4556 	int traptype
4557 	)
4558 {
4559 	register struct ctl_trap *tp;
4560 
4561 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4562 		return (0);
4563 
4564 	if (tp->tr_flags & TRAP_CONFIGURED
4565 	    && traptype != TRAP_TYPE_CONFIG)
4566 		return (0);
4567 
4568 	tp->tr_flags = 0;
4569 	num_ctl_traps--;
4570 	return (1);
4571 }
4572 
4573 
4574 /*
4575  * ctlfindtrap - find a trap given the remote and local addresses
4576  */
4577 static struct ctl_trap *
4578 ctlfindtrap(
4579 	sockaddr_u *raddr,
4580 	struct interface *linter
4581 	)
4582 {
4583 	size_t	n;
4584 
4585 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4586 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4587 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4588 	 	    && (linter == ctl_traps[n].tr_localaddr))
4589 			return &ctl_traps[n];
4590 
4591 	return NULL;
4592 }
4593 
4594 
4595 /*
4596  * report_event - report an event to the trappers
4597  */
4598 void
4599 report_event(
4600 	int	err,		/* error code */
4601 	struct peer *peer,	/* peer structure pointer */
4602 	const char *str		/* protostats string */
4603 	)
4604 {
4605 	char	statstr[NTP_MAXSTRLEN];
4606 	int	i;
4607 	size_t	len;
4608 
4609 	/*
4610 	 * Report the error to the protostats file, system log and
4611 	 * trappers.
4612 	 */
4613 	if (peer == NULL) {
4614 
4615 		/*
4616 		 * Discard a system report if the number of reports of
4617 		 * the same type exceeds the maximum.
4618 		 */
4619 		if (ctl_sys_last_event != (u_char)err)
4620 			ctl_sys_num_events= 0;
4621 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4622 			return;
4623 
4624 		ctl_sys_last_event = (u_char)err;
4625 		ctl_sys_num_events++;
4626 		snprintf(statstr, sizeof(statstr),
4627 		    "0.0.0.0 %04x %02x %s",
4628 		    ctlsysstatus(), err, eventstr(err));
4629 		if (str != NULL) {
4630 			len = strlen(statstr);
4631 			snprintf(statstr + len, sizeof(statstr) - len,
4632 			    " %s", str);
4633 		}
4634 		NLOG(NLOG_SYSEVENT)
4635 			msyslog(LOG_INFO, "%s", statstr);
4636 	} else {
4637 
4638 		/*
4639 		 * Discard a peer report if the number of reports of
4640 		 * the same type exceeds the maximum for that peer.
4641 		 */
4642 		const char *	src;
4643 		u_char		errlast;
4644 
4645 		errlast = (u_char)err & ~PEER_EVENT;
4646 		if (peer->last_event == errlast)
4647 			peer->num_events = 0;
4648 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4649 			return;
4650 
4651 		peer->last_event = errlast;
4652 		peer->num_events++;
4653 		if (ISREFCLOCKADR(&peer->srcadr))
4654 			src = refnumtoa(&peer->srcadr);
4655 		else
4656 			src = stoa(&peer->srcadr);
4657 
4658 		snprintf(statstr, sizeof(statstr),
4659 		    "%s %04x %02x %s", src,
4660 		    ctlpeerstatus(peer), err, eventstr(err));
4661 		if (str != NULL) {
4662 			len = strlen(statstr);
4663 			snprintf(statstr + len, sizeof(statstr) - len,
4664 			    " %s", str);
4665 		}
4666 		NLOG(NLOG_PEEREVENT)
4667 			msyslog(LOG_INFO, "%s", statstr);
4668 	}
4669 	record_proto_stats(statstr);
4670 #if DEBUG
4671 	if (debug)
4672 		printf("event at %lu %s\n", current_time, statstr);
4673 #endif
4674 
4675 	/*
4676 	 * If no trappers, return.
4677 	 */
4678 	if (num_ctl_traps <= 0)
4679 		return;
4680 
4681 	/*
4682 	 * Set up the outgoing packet variables
4683 	 */
4684 	res_opcode = CTL_OP_ASYNCMSG;
4685 	res_offset = 0;
4686 	res_async = TRUE;
4687 	res_authenticate = FALSE;
4688 	datapt = rpkt.u.data;
4689 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4690 	if (!(err & PEER_EVENT)) {
4691 		rpkt.associd = 0;
4692 		rpkt.status = htons(ctlsysstatus());
4693 
4694 		/* Include the core system variables and the list. */
4695 		for (i = 1; i <= CS_VARLIST; i++)
4696 			ctl_putsys(i);
4697 	} else {
4698 		NTP_INSIST(peer != NULL);
4699 		rpkt.associd = htons(peer->associd);
4700 		rpkt.status = htons(ctlpeerstatus(peer));
4701 
4702 		/* Dump it all. Later, maybe less. */
4703 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4704 			ctl_putpeer(i, peer);
4705 #ifdef REFCLOCK
4706 		/*
4707 		 * for clock exception events: add clock variables to
4708 		 * reflect info on exception
4709 		 */
4710 		if (err == PEVNT_CLOCK) {
4711 			struct refclockstat cs;
4712 			struct ctl_var *kv;
4713 
4714 			cs.kv_list = NULL;
4715 			refclock_control(&peer->srcadr, NULL, &cs);
4716 
4717 			ctl_puthex("refclockstatus",
4718 				   ctlclkstatus(&cs));
4719 
4720 			for (i = 1; i <= CC_MAXCODE; i++)
4721 				ctl_putclock(i, &cs, FALSE);
4722 			for (kv = cs.kv_list;
4723 			     kv != NULL && !(EOV & kv->flags);
4724 			     kv++)
4725 				if (DEF & kv->flags)
4726 					ctl_putdata(kv->text,
4727 						    strlen(kv->text),
4728 						    FALSE);
4729 			free_varlist(cs.kv_list);
4730 		}
4731 #endif /* REFCLOCK */
4732 	}
4733 
4734 	/*
4735 	 * We're done, return.
4736 	 */
4737 	ctl_flushpkt(0);
4738 }
4739 
4740 
4741 /*
4742  * mprintf_event - printf-style varargs variant of report_event()
4743  */
4744 int
4745 mprintf_event(
4746 	int		evcode,		/* event code */
4747 	struct peer *	p,		/* may be NULL */
4748 	const char *	fmt,		/* msnprintf format */
4749 	...
4750 	)
4751 {
4752 	va_list	ap;
4753 	int	rc;
4754 	char	msg[512];
4755 
4756 	va_start(ap, fmt);
4757 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4758 	va_end(ap);
4759 	report_event(evcode, p, msg);
4760 
4761 	return rc;
4762 }
4763 
4764 
4765 /*
4766  * ctl_clr_stats - clear stat counters
4767  */
4768 void
4769 ctl_clr_stats(void)
4770 {
4771 	ctltimereset = current_time;
4772 	numctlreq = 0;
4773 	numctlbadpkts = 0;
4774 	numctlresponses = 0;
4775 	numctlfrags = 0;
4776 	numctlerrors = 0;
4777 	numctlfrags = 0;
4778 	numctltooshort = 0;
4779 	numctlinputresp = 0;
4780 	numctlinputfrag = 0;
4781 	numctlinputerr = 0;
4782 	numctlbadoffset = 0;
4783 	numctlbadversion = 0;
4784 	numctldatatooshort = 0;
4785 	numctlbadop = 0;
4786 	numasyncmsgs = 0;
4787 }
4788 
4789 static u_short
4790 count_var(
4791 	const struct ctl_var *k
4792 	)
4793 {
4794 	u_int c;
4795 
4796 	if (NULL == k)
4797 		return 0;
4798 
4799 	c = 0;
4800 	while (!(EOV & (k++)->flags))
4801 		c++;
4802 
4803 	NTP_ENSURE(c <= USHRT_MAX);
4804 	return (u_short)c;
4805 }
4806 
4807 
4808 char *
4809 add_var(
4810 	struct ctl_var **kv,
4811 	u_long size,
4812 	u_short def
4813 	)
4814 {
4815 	u_short		c;
4816 	struct ctl_var *k;
4817 	char *		buf;
4818 
4819 	c = count_var(*kv);
4820 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4821 	k = *kv;
4822 	buf = emalloc(size);
4823 	k[c].code  = c;
4824 	k[c].text  = buf;
4825 	k[c].flags = def;
4826 	k[c + 1].code  = 0;
4827 	k[c + 1].text  = NULL;
4828 	k[c + 1].flags = EOV;
4829 
4830 	return buf;
4831 }
4832 
4833 
4834 void
4835 set_var(
4836 	struct ctl_var **kv,
4837 	const char *data,
4838 	u_long size,
4839 	u_short def
4840 	)
4841 {
4842 	struct ctl_var *k;
4843 	const char *s;
4844 	const char *t;
4845 	char *td;
4846 
4847 	if (NULL == data || !size)
4848 		return;
4849 
4850 	k = *kv;
4851 	if (k != NULL) {
4852 		while (!(EOV & k->flags)) {
4853 			if (NULL == k->text)	{
4854 				td = emalloc(size);
4855 				memcpy(td, data, size);
4856 				k->text = td;
4857 				k->flags = def;
4858 				return;
4859 			} else {
4860 				s = data;
4861 				t = k->text;
4862 				while (*t != '=' && *s == *t) {
4863 					s++;
4864 					t++;
4865 				}
4866 				if (*s == *t && ((*t == '=') || !*t)) {
4867 					td = erealloc((void *)(intptr_t)k->text, size);
4868 					memcpy(td, data, size);
4869 					k->text = td;
4870 					k->flags = def;
4871 					return;
4872 				}
4873 			}
4874 			k++;
4875 		}
4876 	}
4877 	td = add_var(kv, size, def);
4878 	memcpy(td, data, size);
4879 }
4880 
4881 
4882 void
4883 set_sys_var(
4884 	const char *data,
4885 	u_long size,
4886 	u_short def
4887 	)
4888 {
4889 	set_var(&ext_sys_var, data, size, def);
4890 }
4891 
4892 
4893 /*
4894  * get_ext_sys_var() retrieves the value of a user-defined variable or
4895  * NULL if the variable has not been setvar'd.
4896  */
4897 const char *
4898 get_ext_sys_var(const char *tag)
4899 {
4900 	struct ctl_var *	v;
4901 	size_t			c;
4902 	const char *		val;
4903 
4904 	val = NULL;
4905 	c = strlen(tag);
4906 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
4907 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
4908 			if ('=' == v->text[c]) {
4909 				val = v->text + c + 1;
4910 				break;
4911 			} else if ('\0' == v->text[c]) {
4912 				val = "";
4913 				break;
4914 			}
4915 		}
4916 	}
4917 
4918 	return val;
4919 }
4920 
4921 
4922 void
4923 free_varlist(
4924 	struct ctl_var *kv
4925 	)
4926 {
4927 	struct ctl_var *k;
4928 	if (kv) {
4929 		for (k = kv; !(k->flags & EOV); k++)
4930 			free((void *)(intptr_t)k->text);
4931 		free((void *)kv);
4932 	}
4933 }
4934