xref: /netbsd-src/external/bsd/ntp/dist/ntpd/ntp_control.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /*	$NetBSD: ntp_control.c,v 1.16 2016/05/01 23:32:00 christos Exp $	*/
2 
3 /*
4  * ntp_control.c - respond to mode 6 control messages and send async
5  *		   traps.  Provides service to ntpq and others.
6  */
7 
8 #ifdef HAVE_CONFIG_H
9 # include <config.h>
10 #endif
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <signal.h>
15 #include <sys/stat.h>
16 #ifdef HAVE_NETINET_IN_H
17 # include <netinet/in.h>
18 #endif
19 #include <arpa/inet.h>
20 
21 #include "ntpd.h"
22 #include "ntp_io.h"
23 #include "ntp_refclock.h"
24 #include "ntp_control.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 #include "ntp_config.h"
28 #include "ntp_crypto.h"
29 #include "ntp_assert.h"
30 #include "ntp_leapsec.h"
31 #include "ntp_md5.h"	/* provides OpenSSL digest API */
32 #include "lib_strbuf.h"
33 #include <rc_cmdlength.h>
34 #ifdef KERNEL_PLL
35 # include "ntp_syscall.h"
36 #endif
37 
38 
39 /*
40  * Structure to hold request procedure information
41  */
42 
43 struct ctl_proc {
44 	short control_code;		/* defined request code */
45 #define NO_REQUEST	(-1)
46 	u_short flags;			/* flags word */
47 	/* Only one flag.  Authentication required or not. */
48 #define NOAUTH	0
49 #define AUTH	1
50 	void (*handler) (struct recvbuf *, int); /* handle request */
51 };
52 
53 
54 /*
55  * Request processing routines
56  */
57 static	void	ctl_error	(u_char);
58 #ifdef REFCLOCK
59 static	u_short ctlclkstatus	(struct refclockstat *);
60 #endif
61 static	void	ctl_flushpkt	(u_char);
62 static	void	ctl_putdata	(const char *, unsigned int, int);
63 static	void	ctl_putstr	(const char *, const char *, size_t);
64 static	void	ctl_putdblf	(const char *, int, int, double);
65 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
66 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
67 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
68 					    FPTOD(sfp))
69 static	void	ctl_putuint	(const char *, u_long);
70 static	void	ctl_puthex	(const char *, u_long);
71 static	void	ctl_putint	(const char *, long);
72 static	void	ctl_putts	(const char *, l_fp *);
73 static	void	ctl_putadr	(const char *, u_int32,
74 				 sockaddr_u *);
75 static	void	ctl_putrefid	(const char *, u_int32);
76 static	void	ctl_putarray	(const char *, double *, int);
77 static	void	ctl_putsys	(int);
78 static	void	ctl_putpeer	(int, struct peer *);
79 static	void	ctl_putfs	(const char *, tstamp_t);
80 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
81 #ifdef REFCLOCK
82 static	void	ctl_putclock	(int, struct refclockstat *, int);
83 #endif	/* REFCLOCK */
84 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
85 					  char **);
86 static	u_short	count_var	(const struct ctl_var *);
87 static	void	control_unspec	(struct recvbuf *, int);
88 static	void	read_status	(struct recvbuf *, int);
89 static	void	read_sysvars	(void);
90 static	void	read_peervars	(void);
91 static	void	read_variables	(struct recvbuf *, int);
92 static	void	write_variables (struct recvbuf *, int);
93 static	void	read_clockstatus(struct recvbuf *, int);
94 static	void	write_clockstatus(struct recvbuf *, int);
95 static	void	set_trap	(struct recvbuf *, int);
96 static	void	save_config	(struct recvbuf *, int);
97 static	void	configure	(struct recvbuf *, int);
98 static	void	send_mru_entry	(mon_entry *, int);
99 static	void	send_random_tag_value(int);
100 static	void	read_mru_list	(struct recvbuf *, int);
101 static	void	send_ifstats_entry(endpt *, u_int);
102 static	void	read_ifstats	(struct recvbuf *);
103 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
104 					  restrict_u *, int);
105 static	void	send_restrict_entry(restrict_u *, int, u_int);
106 static	void	send_restrict_list(restrict_u *, int, u_int *);
107 static	void	read_addr_restrictions(struct recvbuf *);
108 static	void	read_ordlist	(struct recvbuf *, int);
109 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
110 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
111 static	int	validate_nonce	(const char *, struct recvbuf *);
112 static	void	req_nonce	(struct recvbuf *, int);
113 static	void	unset_trap	(struct recvbuf *, int);
114 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
115 				     struct interface *);
116 
117 int/*BOOL*/ is_safe_filename(const char * name);
118 
119 static const struct ctl_proc control_codes[] = {
120 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
121 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
122 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
123 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
124 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
125 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
126 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
127 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
128 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
129 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
130 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
131 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
132 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
133 	{ NO_REQUEST,			0,	NULL }
134 };
135 
136 /*
137  * System variables we understand
138  */
139 #define	CS_LEAP			1
140 #define	CS_STRATUM		2
141 #define	CS_PRECISION		3
142 #define	CS_ROOTDELAY		4
143 #define	CS_ROOTDISPERSION	5
144 #define	CS_REFID		6
145 #define	CS_REFTIME		7
146 #define	CS_POLL			8
147 #define	CS_PEERID		9
148 #define	CS_OFFSET		10
149 #define	CS_DRIFT		11
150 #define	CS_JITTER		12
151 #define	CS_ERROR		13
152 #define	CS_CLOCK		14
153 #define	CS_PROCESSOR		15
154 #define	CS_SYSTEM		16
155 #define	CS_VERSION		17
156 #define	CS_STABIL		18
157 #define	CS_VARLIST		19
158 #define	CS_TAI			20
159 #define	CS_LEAPTAB		21
160 #define	CS_LEAPEND		22
161 #define	CS_RATE			23
162 #define	CS_MRU_ENABLED		24
163 #define	CS_MRU_DEPTH		25
164 #define	CS_MRU_DEEPEST		26
165 #define	CS_MRU_MINDEPTH		27
166 #define	CS_MRU_MAXAGE		28
167 #define	CS_MRU_MAXDEPTH		29
168 #define	CS_MRU_MEM		30
169 #define	CS_MRU_MAXMEM		31
170 #define	CS_SS_UPTIME		32
171 #define	CS_SS_RESET		33
172 #define	CS_SS_RECEIVED		34
173 #define	CS_SS_THISVER		35
174 #define	CS_SS_OLDVER		36
175 #define	CS_SS_BADFORMAT		37
176 #define	CS_SS_BADAUTH		38
177 #define	CS_SS_DECLINED		39
178 #define	CS_SS_RESTRICTED	40
179 #define	CS_SS_LIMITED		41
180 #define	CS_SS_KODSENT		42
181 #define	CS_SS_PROCESSED		43
182 #define	CS_PEERADR		44
183 #define	CS_PEERMODE		45
184 #define	CS_BCASTDELAY		46
185 #define	CS_AUTHDELAY		47
186 #define	CS_AUTHKEYS		48
187 #define	CS_AUTHFREEK		49
188 #define	CS_AUTHKLOOKUPS		50
189 #define	CS_AUTHKNOTFOUND	51
190 #define	CS_AUTHKUNCACHED	52
191 #define	CS_AUTHKEXPIRED		53
192 #define	CS_AUTHENCRYPTS		54
193 #define	CS_AUTHDECRYPTS		55
194 #define	CS_AUTHRESET		56
195 #define	CS_K_OFFSET		57
196 #define	CS_K_FREQ		58
197 #define	CS_K_MAXERR		59
198 #define	CS_K_ESTERR		60
199 #define	CS_K_STFLAGS		61
200 #define	CS_K_TIMECONST		62
201 #define	CS_K_PRECISION		63
202 #define	CS_K_FREQTOL		64
203 #define	CS_K_PPS_FREQ		65
204 #define	CS_K_PPS_STABIL		66
205 #define	CS_K_PPS_JITTER		67
206 #define	CS_K_PPS_CALIBDUR	68
207 #define	CS_K_PPS_CALIBS		69
208 #define	CS_K_PPS_CALIBERRS	70
209 #define	CS_K_PPS_JITEXC		71
210 #define	CS_K_PPS_STBEXC		72
211 #define	CS_KERN_FIRST		CS_K_OFFSET
212 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
213 #define	CS_IOSTATS_RESET	73
214 #define	CS_TOTAL_RBUF		74
215 #define	CS_FREE_RBUF		75
216 #define	CS_USED_RBUF		76
217 #define	CS_RBUF_LOWATER		77
218 #define	CS_IO_DROPPED		78
219 #define	CS_IO_IGNORED		79
220 #define	CS_IO_RECEIVED		80
221 #define	CS_IO_SENT		81
222 #define	CS_IO_SENDFAILED	82
223 #define	CS_IO_WAKEUPS		83
224 #define	CS_IO_GOODWAKEUPS	84
225 #define	CS_TIMERSTATS_RESET	85
226 #define	CS_TIMER_OVERRUNS	86
227 #define	CS_TIMER_XMTS		87
228 #define	CS_FUZZ			88
229 #define	CS_WANDER_THRESH	89
230 #define	CS_LEAPSMEARINTV	90
231 #define	CS_LEAPSMEAROFFS	91
232 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
233 #ifdef AUTOKEY
234 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
235 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
236 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
237 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
238 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
239 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
240 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
241 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
242 #define	CS_MAXCODE		CS_DIGEST
243 #else	/* !AUTOKEY follows */
244 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
245 #endif	/* !AUTOKEY */
246 
247 /*
248  * Peer variables we understand
249  */
250 #define	CP_CONFIG		1
251 #define	CP_AUTHENABLE		2
252 #define	CP_AUTHENTIC		3
253 #define	CP_SRCADR		4
254 #define	CP_SRCPORT		5
255 #define	CP_DSTADR		6
256 #define	CP_DSTPORT		7
257 #define	CP_LEAP			8
258 #define	CP_HMODE		9
259 #define	CP_STRATUM		10
260 #define	CP_PPOLL		11
261 #define	CP_HPOLL		12
262 #define	CP_PRECISION		13
263 #define	CP_ROOTDELAY		14
264 #define	CP_ROOTDISPERSION	15
265 #define	CP_REFID		16
266 #define	CP_REFTIME		17
267 #define	CP_ORG			18
268 #define	CP_REC			19
269 #define	CP_XMT			20
270 #define	CP_REACH		21
271 #define	CP_UNREACH		22
272 #define	CP_TIMER		23
273 #define	CP_DELAY		24
274 #define	CP_OFFSET		25
275 #define	CP_JITTER		26
276 #define	CP_DISPERSION		27
277 #define	CP_KEYID		28
278 #define	CP_FILTDELAY		29
279 #define	CP_FILTOFFSET		30
280 #define	CP_PMODE		31
281 #define	CP_RECEIVED		32
282 #define	CP_SENT			33
283 #define	CP_FILTERROR		34
284 #define	CP_FLASH		35
285 #define	CP_TTL			36
286 #define	CP_VARLIST		37
287 #define	CP_IN			38
288 #define	CP_OUT			39
289 #define	CP_RATE			40
290 #define	CP_BIAS			41
291 #define	CP_SRCHOST		42
292 #define	CP_TIMEREC		43
293 #define	CP_TIMEREACH		44
294 #define	CP_BADAUTH		45
295 #define	CP_BOGUSORG		46
296 #define	CP_OLDPKT		47
297 #define	CP_SELDISP		48
298 #define	CP_SELBROKEN		49
299 #define	CP_CANDIDATE		50
300 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
301 #ifdef AUTOKEY
302 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
303 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
304 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
305 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
307 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
308 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
309 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
310 #define	CP_MAXCODE		CP_IDENT
311 #else	/* !AUTOKEY follows */
312 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
313 #endif	/* !AUTOKEY */
314 
315 /*
316  * Clock variables we understand
317  */
318 #define	CC_TYPE		1
319 #define	CC_TIMECODE	2
320 #define	CC_POLL		3
321 #define	CC_NOREPLY	4
322 #define	CC_BADFORMAT	5
323 #define	CC_BADDATA	6
324 #define	CC_FUDGETIME1	7
325 #define	CC_FUDGETIME2	8
326 #define	CC_FUDGEVAL1	9
327 #define	CC_FUDGEVAL2	10
328 #define	CC_FLAGS	11
329 #define	CC_DEVICE	12
330 #define	CC_VARLIST	13
331 #define	CC_MAXCODE	CC_VARLIST
332 
333 /*
334  * System variable values. The array can be indexed by the variable
335  * index to find the textual name.
336  */
337 static const struct ctl_var sys_var[] = {
338 	{ 0,		PADDING, "" },		/* 0 */
339 	{ CS_LEAP,	RW, "leap" },		/* 1 */
340 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
341 	{ CS_PRECISION, RO, "precision" },	/* 3 */
342 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
343 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
344 	{ CS_REFID,	RO, "refid" },		/* 6 */
345 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
346 	{ CS_POLL,	RO, "tc" },		/* 8 */
347 	{ CS_PEERID,	RO, "peer" },		/* 9 */
348 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
349 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
350 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
351 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
352 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
353 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
354 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
355 	{ CS_VERSION,	RO, "version" },	/* 17 */
356 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
357 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
358 	{ CS_TAI,	RO, "tai" },		/* 20 */
359 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
360 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
361 	{ CS_RATE,	RO, "mintc" },		/* 23 */
362 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
363 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
364 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
365 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
366 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
367 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
368 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
369 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
370 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
371 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
372 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
373 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
374 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
375 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
376 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
377 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
378 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
379 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
380 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
381 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
382 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
383 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
384 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
385 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
386 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
387 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
388 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
389 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
390 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
391 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
392 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
393 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
394 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
395 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
396 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
397 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
398 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
399 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
400 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
401 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
402 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
403 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
404 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
405 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
406 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
407 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
408 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
409 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
410 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
411 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
412 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
413 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
414 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
415 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
416 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
417 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
418 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
419 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
420 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
421 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
422 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
423 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
424 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
425 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
426 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
427 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
428 
429 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
430 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
431 
432 #ifdef AUTOKEY
433 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
434 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
435 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
436 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
437 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
438 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
439 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
440 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
441 #endif	/* AUTOKEY */
442 	{ 0,		EOV, "" }		/* 87/95 */
443 };
444 
445 static struct ctl_var *ext_sys_var = NULL;
446 
447 /*
448  * System variables we print by default (in fuzzball order,
449  * more-or-less)
450  */
451 static const u_char def_sys_var[] = {
452 	CS_VERSION,
453 	CS_PROCESSOR,
454 	CS_SYSTEM,
455 	CS_LEAP,
456 	CS_STRATUM,
457 	CS_PRECISION,
458 	CS_ROOTDELAY,
459 	CS_ROOTDISPERSION,
460 	CS_REFID,
461 	CS_REFTIME,
462 	CS_CLOCK,
463 	CS_PEERID,
464 	CS_POLL,
465 	CS_RATE,
466 	CS_OFFSET,
467 	CS_DRIFT,
468 	CS_JITTER,
469 	CS_ERROR,
470 	CS_STABIL,
471 	CS_TAI,
472 	CS_LEAPTAB,
473 	CS_LEAPEND,
474 	CS_LEAPSMEARINTV,
475 	CS_LEAPSMEAROFFS,
476 #ifdef AUTOKEY
477 	CS_HOST,
478 	CS_IDENT,
479 	CS_FLAGS,
480 	CS_DIGEST,
481 	CS_SIGNATURE,
482 	CS_PUBLIC,
483 	CS_CERTIF,
484 #endif	/* AUTOKEY */
485 	0
486 };
487 
488 
489 /*
490  * Peer variable list
491  */
492 static const struct ctl_var peer_var[] = {
493 	{ 0,		PADDING, "" },		/* 0 */
494 	{ CP_CONFIG,	RO, "config" },		/* 1 */
495 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
496 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
497 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
498 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
499 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
500 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
501 	{ CP_LEAP,	RO, "leap" },		/* 8 */
502 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
503 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
504 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
505 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
506 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
507 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
508 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
509 	{ CP_REFID,	RO, "refid" },		/* 16 */
510 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
511 	{ CP_ORG,	RO, "org" },		/* 18 */
512 	{ CP_REC,	RO, "rec" },		/* 19 */
513 	{ CP_XMT,	RO, "xleave" },		/* 20 */
514 	{ CP_REACH,	RO, "reach" },		/* 21 */
515 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
516 	{ CP_TIMER,	RO, "timer" },		/* 23 */
517 	{ CP_DELAY,	RO, "delay" },		/* 24 */
518 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
519 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
520 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
521 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
522 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
523 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
524 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
525 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
526 	{ CP_SENT,	RO, "sent" },		/* 33 */
527 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
528 	{ CP_FLASH,	RO, "flash" },		/* 35 */
529 	{ CP_TTL,	RO, "ttl" },		/* 36 */
530 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
531 	{ CP_IN,	RO, "in" },		/* 38 */
532 	{ CP_OUT,	RO, "out" },		/* 39 */
533 	{ CP_RATE,	RO, "headway" },	/* 40 */
534 	{ CP_BIAS,	RO, "bias" },		/* 41 */
535 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
536 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
537 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
538 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
539 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
540 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
541 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
542 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
543 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
544 #ifdef AUTOKEY
545 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
546 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
547 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
548 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
549 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
550 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
551 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
552 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
553 #endif	/* AUTOKEY */
554 	{ 0,		EOV, "" }		/* 50/58 */
555 };
556 
557 
558 /*
559  * Peer variables we print by default
560  */
561 static const u_char def_peer_var[] = {
562 	CP_SRCADR,
563 	CP_SRCPORT,
564 	CP_SRCHOST,
565 	CP_DSTADR,
566 	CP_DSTPORT,
567 	CP_OUT,
568 	CP_IN,
569 	CP_LEAP,
570 	CP_STRATUM,
571 	CP_PRECISION,
572 	CP_ROOTDELAY,
573 	CP_ROOTDISPERSION,
574 	CP_REFID,
575 	CP_REFTIME,
576 	CP_REC,
577 	CP_REACH,
578 	CP_UNREACH,
579 	CP_HMODE,
580 	CP_PMODE,
581 	CP_HPOLL,
582 	CP_PPOLL,
583 	CP_RATE,
584 	CP_FLASH,
585 	CP_KEYID,
586 	CP_TTL,
587 	CP_OFFSET,
588 	CP_DELAY,
589 	CP_DISPERSION,
590 	CP_JITTER,
591 	CP_XMT,
592 	CP_BIAS,
593 	CP_FILTDELAY,
594 	CP_FILTOFFSET,
595 	CP_FILTERROR,
596 #ifdef AUTOKEY
597 	CP_HOST,
598 	CP_FLAGS,
599 	CP_SIGNATURE,
600 	CP_VALID,
601 	CP_INITSEQ,
602 	CP_IDENT,
603 #endif	/* AUTOKEY */
604 	0
605 };
606 
607 
608 #ifdef REFCLOCK
609 /*
610  * Clock variable list
611  */
612 static const struct ctl_var clock_var[] = {
613 	{ 0,		PADDING, "" },		/* 0 */
614 	{ CC_TYPE,	RO, "type" },		/* 1 */
615 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
616 	{ CC_POLL,	RO, "poll" },		/* 3 */
617 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
618 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
619 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
620 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
621 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
622 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
623 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
624 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
625 	{ CC_DEVICE,	RO, "device" },		/* 12 */
626 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
627 	{ 0,		EOV, ""  }		/* 14 */
628 };
629 
630 
631 /*
632  * Clock variables printed by default
633  */
634 static const u_char def_clock_var[] = {
635 	CC_DEVICE,
636 	CC_TYPE,	/* won't be output if device = known */
637 	CC_TIMECODE,
638 	CC_POLL,
639 	CC_NOREPLY,
640 	CC_BADFORMAT,
641 	CC_BADDATA,
642 	CC_FUDGETIME1,
643 	CC_FUDGETIME2,
644 	CC_FUDGEVAL1,
645 	CC_FUDGEVAL2,
646 	CC_FLAGS,
647 	0
648 };
649 #endif
650 
651 /*
652  * MRU string constants shared by send_mru_entry() and read_mru_list().
653  */
654 static const char addr_fmt[] =		"addr.%d";
655 static const char last_fmt[] =		"last.%d";
656 
657 /*
658  * System and processor definitions.
659  */
660 #ifndef HAVE_UNAME
661 # ifndef STR_SYSTEM
662 #  define		STR_SYSTEM	"UNIX"
663 # endif
664 # ifndef STR_PROCESSOR
665 #  define		STR_PROCESSOR	"unknown"
666 # endif
667 
668 static const char str_system[] = STR_SYSTEM;
669 static const char str_processor[] = STR_PROCESSOR;
670 #else
671 # include <sys/utsname.h>
672 static struct utsname utsnamebuf;
673 #endif /* HAVE_UNAME */
674 
675 /*
676  * Trap structures. We only allow a few of these, and send a copy of
677  * each async message to each live one. Traps time out after an hour, it
678  * is up to the trap receipient to keep resetting it to avoid being
679  * timed out.
680  */
681 /* ntp_request.c */
682 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
683 int num_ctl_traps;
684 
685 /*
686  * Type bits, for ctlsettrap() call.
687  */
688 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
689 #define TRAP_TYPE_PRIO		1	/* priority trap */
690 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
691 
692 
693 /*
694  * List relating reference clock types to control message time sources.
695  * Index by the reference clock type. This list will only be used iff
696  * the reference clock driver doesn't set peer->sstclktype to something
697  * different than CTL_SST_TS_UNSPEC.
698  */
699 #ifdef REFCLOCK
700 static const u_char clocktypes[] = {
701 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
702 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
703 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
704 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
705 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
706 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
707 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
708 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
709 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
710 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
711 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
712 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
713 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
714 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
715 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
716 	CTL_SST_TS_NTP,		/* not used (15) */
717 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
718 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
719 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
720 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
721 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
722 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
723 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
724 	CTL_SST_TS_NTP,		/* not used (23) */
725 	CTL_SST_TS_NTP,		/* not used (24) */
726 	CTL_SST_TS_NTP,		/* not used (25) */
727 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
728 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
729 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
730 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
731 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
732 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
733 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
734 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
735 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
736 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
737 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
738 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
739 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
740 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
741 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
742 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
743 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
744 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
745 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
746 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
747 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
748 };
749 #endif  /* REFCLOCK */
750 
751 
752 /*
753  * Keyid used for authenticating write requests.
754  */
755 keyid_t ctl_auth_keyid;
756 
757 /*
758  * We keep track of the last error reported by the system internally
759  */
760 static	u_char ctl_sys_last_event;
761 static	u_char ctl_sys_num_events;
762 
763 
764 /*
765  * Statistic counters to keep track of requests and responses.
766  */
767 u_long ctltimereset;		/* time stats reset */
768 u_long numctlreq;		/* number of requests we've received */
769 u_long numctlbadpkts;		/* number of bad control packets */
770 u_long numctlresponses;		/* number of resp packets sent with data */
771 u_long numctlfrags;		/* number of fragments sent */
772 u_long numctlerrors;		/* number of error responses sent */
773 u_long numctltooshort;		/* number of too short input packets */
774 u_long numctlinputresp;		/* number of responses on input */
775 u_long numctlinputfrag;		/* number of fragments on input */
776 u_long numctlinputerr;		/* number of input pkts with err bit set */
777 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
778 u_long numctlbadversion;	/* number of input pkts with unknown version */
779 u_long numctldatatooshort;	/* data too short for count */
780 u_long numctlbadop;		/* bad op code found in packet */
781 u_long numasyncmsgs;		/* number of async messages we've sent */
782 
783 /*
784  * Response packet used by these routines. Also some state information
785  * so that we can handle packet formatting within a common set of
786  * subroutines.  Note we try to enter data in place whenever possible,
787  * but the need to set the more bit correctly means we occasionally
788  * use the extra buffer and copy.
789  */
790 static struct ntp_control rpkt;
791 static u_char	res_version;
792 static u_char	res_opcode;
793 static associd_t res_associd;
794 static u_short	res_frags;	/* datagrams in this response */
795 static int	res_offset;	/* offset of payload in response */
796 static u_char * datapt;
797 static u_char * dataend;
798 static int	datalinelen;
799 static int	datasent;	/* flag to avoid initial ", " */
800 static int	datanotbinflag;
801 static sockaddr_u *rmt_addr;
802 static struct interface *lcl_inter;
803 
804 static u_char	res_authenticate;
805 static u_char	res_authokay;
806 static keyid_t	res_keyid;
807 
808 #define MAXDATALINELEN	(72)
809 
810 static u_char	res_async;	/* sending async trap response? */
811 
812 /*
813  * Pointers for saving state when decoding request packets
814  */
815 static	char *reqpt;
816 static	char *reqend;
817 
818 #ifndef MIN
819 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
820 #endif
821 
822 /*
823  * init_control - initialize request data
824  */
825 void
826 init_control(void)
827 {
828 	size_t i;
829 
830 #ifdef HAVE_UNAME
831 	uname(&utsnamebuf);
832 #endif /* HAVE_UNAME */
833 
834 	ctl_clr_stats();
835 
836 	ctl_auth_keyid = 0;
837 	ctl_sys_last_event = EVNT_UNSPEC;
838 	ctl_sys_num_events = 0;
839 
840 	num_ctl_traps = 0;
841 	for (i = 0; i < COUNTOF(ctl_traps); i++)
842 		ctl_traps[i].tr_flags = 0;
843 }
844 
845 
846 /*
847  * ctl_error - send an error response for the current request
848  */
849 static void
850 ctl_error(
851 	u_char errcode
852 	)
853 {
854 	size_t		maclen;
855 
856 	numctlerrors++;
857 	DPRINTF(3, ("sending control error %u\n", errcode));
858 
859 	/*
860 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
861 	 * have already been filled in.
862 	 */
863 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
864 			(res_opcode & CTL_OP_MASK);
865 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
866 	rpkt.count = 0;
867 
868 	/*
869 	 * send packet and bump counters
870 	 */
871 	if (res_authenticate && sys_authenticate) {
872 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
873 				     CTL_HEADER_LEN);
874 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
875 			CTL_HEADER_LEN + maclen);
876 	} else
877 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
878 			CTL_HEADER_LEN);
879 }
880 
881 int/*BOOL*/
882 is_safe_filename(const char * name)
883 {
884 	/* We need a strict validation of filenames we should write: The
885 	 * daemon might run with special permissions and is remote
886 	 * controllable, so we better take care what we allow as file
887 	 * name!
888 	 *
889 	 * The first character must be digit or a letter from the ASCII
890 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
891 	 * must be from [-._+A-Za-z0-9].
892 	 *
893 	 * We do not trust the character classification much here: Since
894 	 * the NTP protocol makes no provisions for UTF-8 or local code
895 	 * pages, we strictly require the 7bit ASCII code page.
896 	 *
897 	 * The following table is a packed bit field of 128 two-bit
898 	 * groups. The LSB in each group tells us if a character is
899 	 * acceptable at the first position, the MSB if the character is
900 	 * accepted at any other position.
901 	 *
902 	 * This does not ensure that the file name is syntactically
903 	 * correct (multiple dots will not work with VMS...) but it will
904 	 * exclude potential globbing bombs and directory traversal. It
905 	 * also rules out drive selection. (For systems that have this
906 	 * notion, like Windows or VMS.)
907 	 */
908 	static const uint32_t chclass[8] = {
909 		0x00000000, 0x00000000,
910 		0x28800000, 0x000FFFFF,
911 		0xFFFFFFFC, 0xC03FFFFF,
912 		0xFFFFFFFC, 0x003FFFFF
913 	};
914 
915 	u_int widx, bidx, mask;
916 	if ( ! (name && *name))
917 		return FALSE;
918 
919 	mask = 1u;
920 	while (0 != (widx = (u_char)*name++)) {
921 		bidx = (widx & 15) << 1;
922 		widx = widx >> 4;
923 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
924 			return FALSE;
925 		if (0 == ((chclass[widx] >> bidx) & mask))
926 			return FALSE;
927 		mask = 2u;
928 	}
929 	return TRUE;
930 }
931 
932 
933 /*
934  * save_config - Implements ntpq -c "saveconfig <filename>"
935  *		 Writes current configuration including any runtime
936  *		 changes by ntpq's :config or config-from-file
937  *
938  * Note: There should be no buffer overflow or truncation in the
939  * processing of file names -- both cause security problems. This is bit
940  * painful to code but essential here.
941  */
942 void
943 save_config(
944 	struct recvbuf *rbufp,
945 	int restrict_mask
946 	)
947 {
948 	/* block directory traversal by searching for characters that
949 	 * indicate directory components in a file path.
950 	 *
951 	 * Conceptually we should be searching for DIRSEP in filename,
952 	 * however Windows actually recognizes both forward and
953 	 * backslashes as equivalent directory separators at the API
954 	 * level.  On POSIX systems we could allow '\\' but such
955 	 * filenames are tricky to manipulate from a shell, so just
956 	 * reject both types of slashes on all platforms.
957 	 */
958 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
959 	static const char * illegal_in_filename =
960 #if defined(VMS)
961 	    ":[]"	/* do not allow drive and path components here */
962 #elif defined(SYS_WINNT)
963 	    ":\\/"	/* path and drive separators */
964 #else
965 	    "\\/"	/* separator and critical char for POSIX */
966 #endif
967 	    ;
968 	char reply[128];
969 #ifdef SAVECONFIG
970 	static const char savedconfig_eq[] = "savedconfig=";
971 
972 	/* Build a safe open mode from the available mode flags. We want
973 	 * to create a new file and write it in text mode (when
974 	 * applicable -- only Windows does this...)
975 	 */
976 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
977 #  if defined(O_EXCL)		/* posix, vms */
978 	    | O_EXCL
979 #  elif defined(_O_EXCL)	/* windows is alway very special... */
980 	    | _O_EXCL
981 #  endif
982 #  if defined(_O_TEXT)		/* windows, again */
983 	    | _O_TEXT
984 #endif
985 	    ;
986 
987 	char filespec[128];
988 	char filename[128];
989 	char fullpath[512];
990 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
991 	time_t now;
992 	int fd;
993 	FILE *fptr;
994 	int prc;
995 	size_t reqlen;
996 #endif
997 
998 	if (RES_NOMODIFY & restrict_mask) {
999 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1000 		ctl_flushpkt(0);
1001 		NLOG(NLOG_SYSINFO)
1002 			msyslog(LOG_NOTICE,
1003 				"saveconfig from %s rejected due to nomodify restriction",
1004 				stoa(&rbufp->recv_srcadr));
1005 		sys_restricted++;
1006 		return;
1007 	}
1008 
1009 #ifdef SAVECONFIG
1010 	if (NULL == saveconfigdir) {
1011 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1012 		ctl_flushpkt(0);
1013 		NLOG(NLOG_SYSINFO)
1014 			msyslog(LOG_NOTICE,
1015 				"saveconfig from %s rejected, no saveconfigdir",
1016 				stoa(&rbufp->recv_srcadr));
1017 		return;
1018 	}
1019 
1020 	/* The length checking stuff gets serious. Do not assume a NUL
1021 	 * byte can be found, but if so, use it to calculate the needed
1022 	 * buffer size. If the available buffer is too short, bail out;
1023 	 * likewise if there is no file spec. (The latter will not
1024 	 * happen when using NTPQ, but there are other ways to craft a
1025 	 * network packet!)
1026 	 */
1027 	reqlen = (size_t)(reqend - reqpt);
1028 	if (0 != reqlen) {
1029 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1030 		if (NULL != nulpos)
1031 			reqlen = (size_t)(nulpos - reqpt);
1032 	}
1033 	if (0 == reqlen)
1034 		return;
1035 	if (reqlen >= sizeof(filespec)) {
1036 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1037 			   (u_int)sizeof(filespec));
1038 		ctl_flushpkt(0);
1039 		msyslog(LOG_NOTICE,
1040 			"saveconfig exceeded maximum raw name length from %s",
1041 			stoa(&rbufp->recv_srcadr));
1042 		return;
1043 	}
1044 
1045 	/* copy data directly as we exactly know the size */
1046 	memcpy(filespec, reqpt, reqlen);
1047 	filespec[reqlen] = '\0';
1048 
1049 	/*
1050 	 * allow timestamping of the saved config filename with
1051 	 * strftime() format such as:
1052 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1053 	 * XXX: Nice feature, but not too safe.
1054 	 * YYY: The check for permitted characters in file names should
1055 	 *      weed out the worst. Let's hope 'strftime()' does not
1056 	 *      develop pathological problems.
1057 	 */
1058 	time(&now);
1059 	if (0 == strftime(filename, sizeof(filename), filespec,
1060 			  localtime(&now)))
1061 	{
1062 		/*
1063 		 * If we arrive here, 'strftime()' balked; most likely
1064 		 * the buffer was too short. (Or it encounterd an empty
1065 		 * format, or just a format that expands to an empty
1066 		 * string.) We try to use the original name, though this
1067 		 * is very likely to fail later if there are format
1068 		 * specs in the string. Note that truncation cannot
1069 		 * happen here as long as both buffers have the same
1070 		 * size!
1071 		 */
1072 		strlcpy(filename, filespec, sizeof(filename));
1073 	}
1074 
1075 	/*
1076 	 * Check the file name for sanity. This might/will rule out file
1077 	 * names that would be legal but problematic, and it blocks
1078 	 * directory traversal.
1079 	 */
1080 	if (!is_safe_filename(filename)) {
1081 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1082 			   filename);
1083 		ctl_flushpkt(0);
1084 		msyslog(LOG_NOTICE,
1085 			"saveconfig rejects unsafe file name from %s",
1086 			stoa(&rbufp->recv_srcadr));
1087 		return;
1088 	}
1089 
1090 	/*
1091 	 * XXX: This next test may not be needed with is_safe_filename()
1092 	 */
1093 
1094 	/* block directory/drive traversal */
1095 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1096 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1097 		snprintf(reply, sizeof(reply),
1098 			 "saveconfig does not allow directory in filename");
1099 		ctl_putdata(reply, strlen(reply), 0);
1100 		ctl_flushpkt(0);
1101 		msyslog(LOG_NOTICE,
1102 			"saveconfig rejects unsafe file name from %s",
1103 			stoa(&rbufp->recv_srcadr));
1104 		return;
1105 	}
1106 
1107 	/* concatenation of directory and path can cause another
1108 	 * truncation...
1109 	 */
1110 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1111 		       saveconfigdir, filename);
1112 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1113 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1114 			   (u_int)sizeof(fullpath));
1115 		ctl_flushpkt(0);
1116 		msyslog(LOG_NOTICE,
1117 			"saveconfig exceeded maximum path length from %s",
1118 			stoa(&rbufp->recv_srcadr));
1119 		return;
1120 	}
1121 
1122 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1123 	if (-1 == fd)
1124 		fptr = NULL;
1125 	else
1126 		fptr = fdopen(fd, "w");
1127 
1128 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1129 		ctl_printf("Unable to save configuration to file '%s': %s",
1130 			   filename, strerror(errno));
1131 		msyslog(LOG_ERR,
1132 			"saveconfig %s from %s failed", filename,
1133 			stoa(&rbufp->recv_srcadr));
1134 	} else {
1135 		ctl_printf("Configuration saved to '%s'", filename);
1136 		msyslog(LOG_NOTICE,
1137 			"Configuration saved to '%s' (requested by %s)",
1138 			fullpath, stoa(&rbufp->recv_srcadr));
1139 		/*
1140 		 * save the output filename in system variable
1141 		 * savedconfig, retrieved with:
1142 		 *   ntpq -c "rv 0 savedconfig"
1143 		 * Note: the way 'savedconfig' is defined makes overflow
1144 		 * checks unnecessary here.
1145 		 */
1146 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1147 			 savedconfig_eq, filename);
1148 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1149 	}
1150 
1151 	if (NULL != fptr)
1152 		fclose(fptr);
1153 #else	/* !SAVECONFIG follows */
1154 	ctl_printf("%s",
1155 		   "saveconfig unavailable, configured with --disable-saveconfig");
1156 #endif
1157 	ctl_flushpkt(0);
1158 }
1159 
1160 
1161 /*
1162  * process_control - process an incoming control message
1163  */
1164 void
1165 process_control(
1166 	struct recvbuf *rbufp,
1167 	int restrict_mask
1168 	)
1169 {
1170 	struct ntp_control *pkt;
1171 	int req_count;
1172 	int req_data;
1173 	const struct ctl_proc *cc;
1174 	keyid_t *pkid;
1175 	int properlen;
1176 	size_t maclen;
1177 
1178 	DPRINTF(3, ("in process_control()\n"));
1179 
1180 	/*
1181 	 * Save the addresses for error responses
1182 	 */
1183 	numctlreq++;
1184 	rmt_addr = &rbufp->recv_srcadr;
1185 	lcl_inter = rbufp->dstadr;
1186 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1187 
1188 	/*
1189 	 * If the length is less than required for the header, or
1190 	 * it is a response or a fragment, ignore this.
1191 	 */
1192 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1193 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1194 	    || pkt->offset != 0) {
1195 		DPRINTF(1, ("invalid format in control packet\n"));
1196 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1197 			numctltooshort++;
1198 		if (CTL_RESPONSE & pkt->r_m_e_op)
1199 			numctlinputresp++;
1200 		if (CTL_MORE & pkt->r_m_e_op)
1201 			numctlinputfrag++;
1202 		if (CTL_ERROR & pkt->r_m_e_op)
1203 			numctlinputerr++;
1204 		if (pkt->offset != 0)
1205 			numctlbadoffset++;
1206 		return;
1207 	}
1208 	res_version = PKT_VERSION(pkt->li_vn_mode);
1209 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1210 		DPRINTF(1, ("unknown version %d in control packet\n",
1211 			    res_version));
1212 		numctlbadversion++;
1213 		return;
1214 	}
1215 
1216 	/*
1217 	 * Pull enough data from the packet to make intelligent
1218 	 * responses
1219 	 */
1220 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1221 					 MODE_CONTROL);
1222 	res_opcode = pkt->r_m_e_op;
1223 	rpkt.sequence = pkt->sequence;
1224 	rpkt.associd = pkt->associd;
1225 	rpkt.status = 0;
1226 	res_frags = 1;
1227 	res_offset = 0;
1228 	res_associd = htons(pkt->associd);
1229 	res_async = FALSE;
1230 	res_authenticate = FALSE;
1231 	res_keyid = 0;
1232 	res_authokay = FALSE;
1233 	req_count = (int)ntohs(pkt->count);
1234 	datanotbinflag = FALSE;
1235 	datalinelen = 0;
1236 	datasent = 0;
1237 	datapt = rpkt.u.data;
1238 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1239 
1240 	if ((rbufp->recv_length & 0x3) != 0)
1241 		DPRINTF(3, ("Control packet length %d unrounded\n",
1242 			    rbufp->recv_length));
1243 
1244 	/*
1245 	 * We're set up now. Make sure we've got at least enough
1246 	 * incoming data space to match the count.
1247 	 */
1248 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1249 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1250 		ctl_error(CERR_BADFMT);
1251 		numctldatatooshort++;
1252 		return;
1253 	}
1254 
1255 	properlen = req_count + CTL_HEADER_LEN;
1256 	/* round up proper len to a 8 octet boundary */
1257 
1258 	properlen = (properlen + 7) & ~7;
1259 	maclen = rbufp->recv_length - properlen;
1260 	if ((rbufp->recv_length & 3) == 0 &&
1261 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1262 	    sys_authenticate) {
1263 		res_authenticate = TRUE;
1264 		pkid = (void *)((char *)pkt + properlen);
1265 		res_keyid = ntohl(*pkid);
1266 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1267 			    rbufp->recv_length, properlen, res_keyid,
1268 			    maclen));
1269 
1270 		if (!authistrusted(res_keyid))
1271 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1272 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1273 				     rbufp->recv_length - maclen,
1274 				     maclen)) {
1275 			res_authokay = TRUE;
1276 			DPRINTF(3, ("authenticated okay\n"));
1277 		} else {
1278 			res_keyid = 0;
1279 			DPRINTF(3, ("authentication failed\n"));
1280 		}
1281 	}
1282 
1283 	/*
1284 	 * Set up translate pointers
1285 	 */
1286 	reqpt = (char *)pkt->u.data;
1287 	reqend = reqpt + req_count;
1288 
1289 	/*
1290 	 * Look for the opcode processor
1291 	 */
1292 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1293 		if (cc->control_code == res_opcode) {
1294 			DPRINTF(3, ("opcode %d, found command handler\n",
1295 				    res_opcode));
1296 			if (cc->flags == AUTH
1297 			    && (!res_authokay
1298 				|| res_keyid != ctl_auth_keyid)) {
1299 				ctl_error(CERR_PERMISSION);
1300 				return;
1301 			}
1302 			(cc->handler)(rbufp, restrict_mask);
1303 			return;
1304 		}
1305 	}
1306 
1307 	/*
1308 	 * Can't find this one, return an error.
1309 	 */
1310 	numctlbadop++;
1311 	ctl_error(CERR_BADOP);
1312 	return;
1313 }
1314 
1315 
1316 /*
1317  * ctlpeerstatus - return a status word for this peer
1318  */
1319 u_short
1320 ctlpeerstatus(
1321 	register struct peer *p
1322 	)
1323 {
1324 	u_short status;
1325 
1326 	status = p->status;
1327 	if (FLAG_CONFIG & p->flags)
1328 		status |= CTL_PST_CONFIG;
1329 	if (p->keyid)
1330 		status |= CTL_PST_AUTHENABLE;
1331 	if (FLAG_AUTHENTIC & p->flags)
1332 		status |= CTL_PST_AUTHENTIC;
1333 	if (p->reach)
1334 		status |= CTL_PST_REACH;
1335 	if (MDF_TXONLY_MASK & p->cast_flags)
1336 		status |= CTL_PST_BCAST;
1337 
1338 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1339 }
1340 
1341 
1342 /*
1343  * ctlclkstatus - return a status word for this clock
1344  */
1345 #ifdef REFCLOCK
1346 static u_short
1347 ctlclkstatus(
1348 	struct refclockstat *pcs
1349 	)
1350 {
1351 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1352 }
1353 #endif
1354 
1355 
1356 /*
1357  * ctlsysstatus - return the system status word
1358  */
1359 u_short
1360 ctlsysstatus(void)
1361 {
1362 	register u_char this_clock;
1363 
1364 	this_clock = CTL_SST_TS_UNSPEC;
1365 #ifdef REFCLOCK
1366 	if (sys_peer != NULL) {
1367 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1368 			this_clock = sys_peer->sstclktype;
1369 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1370 			this_clock = clocktypes[sys_peer->refclktype];
1371 	}
1372 #else /* REFCLOCK */
1373 	if (sys_peer != 0)
1374 		this_clock = CTL_SST_TS_NTP;
1375 #endif /* REFCLOCK */
1376 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1377 			      ctl_sys_last_event);
1378 }
1379 
1380 
1381 /*
1382  * ctl_flushpkt - write out the current packet and prepare
1383  *		  another if necessary.
1384  */
1385 static void
1386 ctl_flushpkt(
1387 	u_char more
1388 	)
1389 {
1390 	size_t i;
1391 	size_t dlen;
1392 	size_t sendlen;
1393 	size_t maclen;
1394 	size_t totlen;
1395 	keyid_t keyid;
1396 
1397 	dlen = datapt - rpkt.u.data;
1398 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1399 		/*
1400 		 * Big hack, output a trailing \r\n
1401 		 */
1402 		*datapt++ = '\r';
1403 		*datapt++ = '\n';
1404 		dlen += 2;
1405 	}
1406 	sendlen = dlen + CTL_HEADER_LEN;
1407 
1408 	/*
1409 	 * Pad to a multiple of 32 bits
1410 	 */
1411 	while (sendlen & 0x3) {
1412 		*datapt++ = '\0';
1413 		sendlen++;
1414 	}
1415 
1416 	/*
1417 	 * Fill in the packet with the current info
1418 	 */
1419 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1420 			(res_opcode & CTL_OP_MASK);
1421 	rpkt.count = htons((u_short)dlen);
1422 	rpkt.offset = htons((u_short)res_offset);
1423 	if (res_async) {
1424 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1425 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1426 				rpkt.li_vn_mode =
1427 				    PKT_LI_VN_MODE(
1428 					sys_leap,
1429 					ctl_traps[i].tr_version,
1430 					MODE_CONTROL);
1431 				rpkt.sequence =
1432 				    htons(ctl_traps[i].tr_sequence);
1433 				sendpkt(&ctl_traps[i].tr_addr,
1434 					ctl_traps[i].tr_localaddr, -4,
1435 					(struct pkt *)&rpkt, sendlen);
1436 				if (!more)
1437 					ctl_traps[i].tr_sequence++;
1438 				numasyncmsgs++;
1439 			}
1440 		}
1441 	} else {
1442 		if (res_authenticate && sys_authenticate) {
1443 			totlen = sendlen;
1444 			/*
1445 			 * If we are going to authenticate, then there
1446 			 * is an additional requirement that the MAC
1447 			 * begin on a 64 bit boundary.
1448 			 */
1449 			while (totlen & 7) {
1450 				*datapt++ = '\0';
1451 				totlen++;
1452 			}
1453 			keyid = htonl(res_keyid);
1454 			memcpy(datapt, &keyid, sizeof(keyid));
1455 			maclen = authencrypt(res_keyid,
1456 					     (u_int32 *)&rpkt, totlen);
1457 			sendpkt(rmt_addr, lcl_inter, -5,
1458 				(struct pkt *)&rpkt, totlen + maclen);
1459 		} else {
1460 			sendpkt(rmt_addr, lcl_inter, -6,
1461 				(struct pkt *)&rpkt, sendlen);
1462 		}
1463 		if (more)
1464 			numctlfrags++;
1465 		else
1466 			numctlresponses++;
1467 	}
1468 
1469 	/*
1470 	 * Set us up for another go around.
1471 	 */
1472 	res_frags++;
1473 	res_offset += dlen;
1474 	datapt = rpkt.u.data;
1475 }
1476 
1477 
1478 /*
1479  * ctl_putdata - write data into the packet, fragmenting and starting
1480  * another if this one is full.
1481  */
1482 static void
1483 ctl_putdata(
1484 	const char *dp,
1485 	unsigned int dlen,
1486 	int bin			/* set to 1 when data is binary */
1487 	)
1488 {
1489 	int overhead;
1490 	unsigned int currentlen;
1491 
1492 	overhead = 0;
1493 	if (!bin) {
1494 		datanotbinflag = TRUE;
1495 		overhead = 3;
1496 		if (datasent) {
1497 			*datapt++ = ',';
1498 			datalinelen++;
1499 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1500 				*datapt++ = '\r';
1501 				*datapt++ = '\n';
1502 				datalinelen = 0;
1503 			} else {
1504 				*datapt++ = ' ';
1505 				datalinelen++;
1506 			}
1507 		}
1508 	}
1509 
1510 	/*
1511 	 * Save room for trailing junk
1512 	 */
1513 	while (dlen + overhead + datapt > dataend) {
1514 		/*
1515 		 * Not enough room in this one, flush it out.
1516 		 */
1517 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1518 
1519 		memcpy(datapt, dp, currentlen);
1520 
1521 		datapt += currentlen;
1522 		dp += currentlen;
1523 		dlen -= currentlen;
1524 		datalinelen += currentlen;
1525 
1526 		ctl_flushpkt(CTL_MORE);
1527 	}
1528 
1529 	memcpy(datapt, dp, dlen);
1530 	datapt += dlen;
1531 	datalinelen += dlen;
1532 	datasent = TRUE;
1533 }
1534 
1535 
1536 /*
1537  * ctl_putstr - write a tagged string into the response packet
1538  *		in the form:
1539  *
1540  *		tag="data"
1541  *
1542  *		len is the data length excluding the NUL terminator,
1543  *		as in ctl_putstr("var", "value", strlen("value"));
1544  */
1545 static void
1546 ctl_putstr(
1547 	const char *	tag,
1548 	const char *	data,
1549 	size_t		len
1550 	)
1551 {
1552 	char buffer[512];
1553 	char *cp;
1554 	size_t tl;
1555 
1556 	tl = strlen(tag);
1557 	memcpy(buffer, tag, tl);
1558 	cp = buffer + tl;
1559 	if (len > 0) {
1560 		INSIST(tl + 3 + len <= sizeof(buffer));
1561 		*cp++ = '=';
1562 		*cp++ = '"';
1563 		memcpy(cp, data, len);
1564 		cp += len;
1565 		*cp++ = '"';
1566 	}
1567 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1568 }
1569 
1570 
1571 /*
1572  * ctl_putunqstr - write a tagged string into the response packet
1573  *		   in the form:
1574  *
1575  *		   tag=data
1576  *
1577  *	len is the data length excluding the NUL terminator.
1578  *	data must not contain a comma or whitespace.
1579  */
1580 static void
1581 ctl_putunqstr(
1582 	const char *	tag,
1583 	const char *	data,
1584 	size_t		len
1585 	)
1586 {
1587 	char buffer[512];
1588 	char *cp;
1589 	size_t tl;
1590 
1591 	tl = strlen(tag);
1592 	memcpy(buffer, tag, tl);
1593 	cp = buffer + tl;
1594 	if (len > 0) {
1595 		INSIST(tl + 1 + len <= sizeof(buffer));
1596 		*cp++ = '=';
1597 		memcpy(cp, data, len);
1598 		cp += len;
1599 	}
1600 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1601 }
1602 
1603 
1604 /*
1605  * ctl_putdblf - write a tagged, signed double into the response packet
1606  */
1607 static void
1608 ctl_putdblf(
1609 	const char *	tag,
1610 	int		use_f,
1611 	int		precision,
1612 	double		d
1613 	)
1614 {
1615 	char *cp;
1616 	const char *cq;
1617 	char buffer[200];
1618 
1619 	cp = buffer;
1620 	cq = tag;
1621 	while (*cq != '\0')
1622 		*cp++ = *cq++;
1623 	*cp++ = '=';
1624 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1625 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1626 	    precision, d);
1627 	cp += strlen(cp);
1628 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1629 }
1630 
1631 /*
1632  * ctl_putuint - write a tagged unsigned integer into the response
1633  */
1634 static void
1635 ctl_putuint(
1636 	const char *tag,
1637 	u_long uval
1638 	)
1639 {
1640 	register char *cp;
1641 	register const char *cq;
1642 	char buffer[200];
1643 
1644 	cp = buffer;
1645 	cq = tag;
1646 	while (*cq != '\0')
1647 		*cp++ = *cq++;
1648 
1649 	*cp++ = '=';
1650 	INSIST((cp - buffer) < (int)sizeof(buffer));
1651 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1652 	cp += strlen(cp);
1653 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1654 }
1655 
1656 /*
1657  * ctl_putcal - write a decoded calendar data into the response
1658  */
1659 static void
1660 ctl_putcal(
1661 	const char *tag,
1662 	const struct calendar *pcal
1663 	)
1664 {
1665 	char buffer[100];
1666 	unsigned numch;
1667 
1668 	numch = snprintf(buffer, sizeof(buffer),
1669 			"%s=%04d%02d%02d%02d%02d",
1670 			tag,
1671 			pcal->year,
1672 			pcal->month,
1673 			pcal->monthday,
1674 			pcal->hour,
1675 			pcal->minute
1676 			);
1677 	INSIST(numch < sizeof(buffer));
1678 	ctl_putdata(buffer, numch, 0);
1679 
1680 	return;
1681 }
1682 
1683 /*
1684  * ctl_putfs - write a decoded filestamp into the response
1685  */
1686 static void
1687 ctl_putfs(
1688 	const char *tag,
1689 	tstamp_t uval
1690 	)
1691 {
1692 	register char *cp;
1693 	register const char *cq;
1694 	char buffer[200];
1695 	struct tm *tm = NULL;
1696 	time_t fstamp;
1697 
1698 	cp = buffer;
1699 	cq = tag;
1700 	while (*cq != '\0')
1701 		*cp++ = *cq++;
1702 
1703 	*cp++ = '=';
1704 	fstamp = uval - JAN_1970;
1705 	tm = gmtime(&fstamp);
1706 	if (NULL ==  tm)
1707 		return;
1708 	INSIST((cp - buffer) < (int)sizeof(buffer));
1709 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1710 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1711 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1712 	cp += strlen(cp);
1713 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1714 }
1715 
1716 
1717 /*
1718  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1719  * response
1720  */
1721 static void
1722 ctl_puthex(
1723 	const char *tag,
1724 	u_long uval
1725 	)
1726 {
1727 	register char *cp;
1728 	register const char *cq;
1729 	char buffer[200];
1730 
1731 	cp = buffer;
1732 	cq = tag;
1733 	while (*cq != '\0')
1734 		*cp++ = *cq++;
1735 
1736 	*cp++ = '=';
1737 	INSIST((cp - buffer) < (int)sizeof(buffer));
1738 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1739 	cp += strlen(cp);
1740 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1741 }
1742 
1743 
1744 /*
1745  * ctl_putint - write a tagged signed integer into the response
1746  */
1747 static void
1748 ctl_putint(
1749 	const char *tag,
1750 	long ival
1751 	)
1752 {
1753 	register char *cp;
1754 	register const char *cq;
1755 	char buffer[200];
1756 
1757 	cp = buffer;
1758 	cq = tag;
1759 	while (*cq != '\0')
1760 		*cp++ = *cq++;
1761 
1762 	*cp++ = '=';
1763 	INSIST((cp - buffer) < (int)sizeof(buffer));
1764 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1765 	cp += strlen(cp);
1766 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1767 }
1768 
1769 
1770 /*
1771  * ctl_putts - write a tagged timestamp, in hex, into the response
1772  */
1773 static void
1774 ctl_putts(
1775 	const char *tag,
1776 	l_fp *ts
1777 	)
1778 {
1779 	register char *cp;
1780 	register const char *cq;
1781 	char buffer[200];
1782 
1783 	cp = buffer;
1784 	cq = tag;
1785 	while (*cq != '\0')
1786 		*cp++ = *cq++;
1787 
1788 	*cp++ = '=';
1789 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1790 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1791 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1792 	cp += strlen(cp);
1793 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1794 }
1795 
1796 
1797 /*
1798  * ctl_putadr - write an IP address into the response
1799  */
1800 static void
1801 ctl_putadr(
1802 	const char *tag,
1803 	u_int32 addr32,
1804 	sockaddr_u *addr
1805 	)
1806 {
1807 	register char *cp;
1808 	register const char *cq;
1809 	char buffer[200];
1810 
1811 	cp = buffer;
1812 	cq = tag;
1813 	while (*cq != '\0')
1814 		*cp++ = *cq++;
1815 
1816 	*cp++ = '=';
1817 	if (NULL == addr)
1818 		cq = numtoa(addr32);
1819 	else
1820 		cq = stoa(addr);
1821 	INSIST((cp - buffer) < (int)sizeof(buffer));
1822 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1823 	cp += strlen(cp);
1824 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1825 }
1826 
1827 
1828 /*
1829  * ctl_putrefid - send a u_int32 refid as printable text
1830  */
1831 static void
1832 ctl_putrefid(
1833 	const char *	tag,
1834 	u_int32		refid
1835 	)
1836 {
1837 	char	output[16];
1838 	char *	optr;
1839 	char *	oplim;
1840 	char *	iptr;
1841 	char *	iplim;
1842 	char *	past_eq;
1843 
1844 	optr = output;
1845 	oplim = output + sizeof(output);
1846 	while (optr < oplim && '\0' != *tag)
1847 		*optr++ = *tag++;
1848 	if (optr < oplim) {
1849 		*optr++ = '=';
1850 		past_eq = optr;
1851 	}
1852 	if (!(optr < oplim))
1853 		return;
1854 	iptr = (char *)&refid;
1855 	iplim = iptr + sizeof(refid);
1856 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1857 	     iptr++, optr++)
1858 		if (isprint((int)*iptr))
1859 			*optr = *iptr;
1860 		else
1861 			*optr = '.';
1862 	if (!(optr <= oplim))
1863 		optr = past_eq;
1864 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1865 }
1866 
1867 
1868 /*
1869  * ctl_putarray - write a tagged eight element double array into the response
1870  */
1871 static void
1872 ctl_putarray(
1873 	const char *tag,
1874 	double *arr,
1875 	int start
1876 	)
1877 {
1878 	register char *cp;
1879 	register const char *cq;
1880 	char buffer[200];
1881 	int i;
1882 	cp = buffer;
1883 	cq = tag;
1884 	while (*cq != '\0')
1885 		*cp++ = *cq++;
1886 	*cp++ = '=';
1887 	i = start;
1888 	do {
1889 		if (i == 0)
1890 			i = NTP_SHIFT;
1891 		i--;
1892 		INSIST((cp - buffer) < (int)sizeof(buffer));
1893 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1894 			 " %.2f", arr[i] * 1e3);
1895 		cp += strlen(cp);
1896 	} while (i != start);
1897 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1898 }
1899 
1900 /*
1901  * ctl_printf - put a formatted string into the data buffer
1902  */
1903 static void
1904 ctl_printf(
1905 	const char * fmt,
1906 	...
1907 	)
1908 {
1909 	static const char * ellipsis = "[...]";
1910 	va_list va;
1911 	char    fmtbuf[128];
1912 	int     rc;
1913 
1914 	va_start(va, fmt);
1915 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1916 	va_end(va);
1917 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1918 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1919 		       ellipsis);
1920 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1921 }
1922 
1923 
1924 /*
1925  * ctl_putsys - output a system variable
1926  */
1927 static void
1928 ctl_putsys(
1929 	int varid
1930 	)
1931 {
1932 	l_fp tmp;
1933 	char str[256];
1934 	u_int u;
1935 	double kb;
1936 	double dtemp;
1937 	const char *ss;
1938 #ifdef AUTOKEY
1939 	struct cert_info *cp;
1940 #endif	/* AUTOKEY */
1941 #ifdef KERNEL_PLL
1942 	static struct timex ntx;
1943 	static u_long ntp_adjtime_time;
1944 
1945 	static const double to_ms =
1946 # ifdef STA_NANO
1947 		1.0e-6; /* nsec to msec */
1948 # else
1949 		1.0e-3; /* usec to msec */
1950 # endif
1951 
1952 	/*
1953 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1954 	 */
1955 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1956 	    current_time != ntp_adjtime_time) {
1957 		ZERO(ntx);
1958 		if (ntp_adjtime(&ntx) < 0)
1959 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1960 		else
1961 			ntp_adjtime_time = current_time;
1962 	}
1963 #endif	/* KERNEL_PLL */
1964 
1965 	switch (varid) {
1966 
1967 	case CS_LEAP:
1968 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1969 		break;
1970 
1971 	case CS_STRATUM:
1972 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1973 		break;
1974 
1975 	case CS_PRECISION:
1976 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1977 		break;
1978 
1979 	case CS_ROOTDELAY:
1980 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1981 			   1e3);
1982 		break;
1983 
1984 	case CS_ROOTDISPERSION:
1985 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1986 			   sys_rootdisp * 1e3);
1987 		break;
1988 
1989 	case CS_REFID:
1990 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1991 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1992 		else
1993 			ctl_putrefid(sys_var[varid].text, sys_refid);
1994 		break;
1995 
1996 	case CS_REFTIME:
1997 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1998 		break;
1999 
2000 	case CS_POLL:
2001 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
2002 		break;
2003 
2004 	case CS_PEERID:
2005 		if (sys_peer == NULL)
2006 			ctl_putuint(sys_var[CS_PEERID].text, 0);
2007 		else
2008 			ctl_putuint(sys_var[CS_PEERID].text,
2009 				    sys_peer->associd);
2010 		break;
2011 
2012 	case CS_PEERADR:
2013 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
2014 			ss = sptoa(&sys_peer->srcadr);
2015 		else
2016 			ss = "0.0.0.0:0";
2017 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
2018 		break;
2019 
2020 	case CS_PEERMODE:
2021 		u = (sys_peer != NULL)
2022 			? sys_peer->hmode
2023 			: MODE_UNSPEC;
2024 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
2025 		break;
2026 
2027 	case CS_OFFSET:
2028 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2029 		break;
2030 
2031 	case CS_DRIFT:
2032 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2033 		break;
2034 
2035 	case CS_JITTER:
2036 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2037 		break;
2038 
2039 	case CS_ERROR:
2040 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2041 		break;
2042 
2043 	case CS_CLOCK:
2044 		get_systime(&tmp);
2045 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2046 		break;
2047 
2048 	case CS_PROCESSOR:
2049 #ifndef HAVE_UNAME
2050 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2051 			   sizeof(str_processor) - 1);
2052 #else
2053 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2054 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2055 #endif /* HAVE_UNAME */
2056 		break;
2057 
2058 	case CS_SYSTEM:
2059 #ifndef HAVE_UNAME
2060 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2061 			   sizeof(str_system) - 1);
2062 #else
2063 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2064 			 utsnamebuf.release);
2065 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2066 #endif /* HAVE_UNAME */
2067 		break;
2068 
2069 	case CS_VERSION:
2070 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2071 			   strlen(Version));
2072 		break;
2073 
2074 	case CS_STABIL:
2075 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2076 			   1e6);
2077 		break;
2078 
2079 	case CS_VARLIST:
2080 	{
2081 		char buf[CTL_MAX_DATA_LEN];
2082 		//buffPointer, firstElementPointer, buffEndPointer
2083 		char *buffp, *buffend;
2084 		int firstVarName;
2085 		const char *ss1;
2086 		int len;
2087 		const struct ctl_var *k;
2088 
2089 		buffp = buf;
2090 		buffend = buf + sizeof(buf);
2091 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
2092 			break;	/* really long var name */
2093 
2094 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2095 		buffp += strlen(buffp);
2096 		firstVarName = TRUE;
2097 		for (k = sys_var; !(k->flags & EOV); k++) {
2098 			if (k->flags & PADDING)
2099 				continue;
2100 			len = strlen(k->text);
2101 			if (buffp + len + 1 >= buffend)
2102 				break;
2103 			if (!firstVarName)
2104 				*buffp++ = ',';
2105 			else
2106 				firstVarName = FALSE;
2107 			memcpy(buffp, k->text, len);
2108 			buffp += len;
2109 		}
2110 
2111 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2112 			if (k->flags & PADDING)
2113 				continue;
2114 			if (NULL == k->text)
2115 				continue;
2116 			ss1 = strchr(k->text, '=');
2117 			if (NULL == ss1)
2118 				len = strlen(k->text);
2119 			else
2120 				len = ss1 - k->text;
2121 			if (buffp + len + 1 >= buffend)
2122 				break;
2123 			if (firstVarName) {
2124 				*buffp++ = ',';
2125 				firstVarName = FALSE;
2126 			}
2127 			memcpy(buffp, k->text,(unsigned)len);
2128 			buffp += len;
2129 		}
2130 		if (buffp + 2 >= buffend)
2131 			break;
2132 
2133 		*buffp++ = '"';
2134 		*buffp = '\0';
2135 
2136 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2137 		break;
2138 	}
2139 
2140 	case CS_TAI:
2141 		if (sys_tai > 0)
2142 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2143 		break;
2144 
2145 	case CS_LEAPTAB:
2146 	{
2147 		leap_signature_t lsig;
2148 		leapsec_getsig(&lsig);
2149 		if (lsig.ttime > 0)
2150 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2151 		break;
2152 	}
2153 
2154 	case CS_LEAPEND:
2155 	{
2156 		leap_signature_t lsig;
2157 		leapsec_getsig(&lsig);
2158 		if (lsig.etime > 0)
2159 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2160 		break;
2161 	}
2162 
2163 #ifdef LEAP_SMEAR
2164 	case CS_LEAPSMEARINTV:
2165 		if (leap_smear_intv > 0)
2166 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2167 		break;
2168 
2169 	case CS_LEAPSMEAROFFS:
2170 		if (leap_smear_intv > 0)
2171 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2172 				   leap_smear.doffset * 1e3);
2173 		break;
2174 #endif	/* LEAP_SMEAR */
2175 
2176 	case CS_RATE:
2177 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2178 		break;
2179 
2180 	case CS_MRU_ENABLED:
2181 		ctl_puthex(sys_var[varid].text, mon_enabled);
2182 		break;
2183 
2184 	case CS_MRU_DEPTH:
2185 		ctl_putuint(sys_var[varid].text, mru_entries);
2186 		break;
2187 
2188 	case CS_MRU_MEM:
2189 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2190 		u = (u_int)kb;
2191 		if (kb - u >= 0.5)
2192 			u++;
2193 		ctl_putuint(sys_var[varid].text, u);
2194 		break;
2195 
2196 	case CS_MRU_DEEPEST:
2197 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2198 		break;
2199 
2200 	case CS_MRU_MINDEPTH:
2201 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2202 		break;
2203 
2204 	case CS_MRU_MAXAGE:
2205 		ctl_putint(sys_var[varid].text, mru_maxage);
2206 		break;
2207 
2208 	case CS_MRU_MAXDEPTH:
2209 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2210 		break;
2211 
2212 	case CS_MRU_MAXMEM:
2213 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2214 		u = (u_int)kb;
2215 		if (kb - u >= 0.5)
2216 			u++;
2217 		ctl_putuint(sys_var[varid].text, u);
2218 		break;
2219 
2220 	case CS_SS_UPTIME:
2221 		ctl_putuint(sys_var[varid].text, current_time);
2222 		break;
2223 
2224 	case CS_SS_RESET:
2225 		ctl_putuint(sys_var[varid].text,
2226 			    current_time - sys_stattime);
2227 		break;
2228 
2229 	case CS_SS_RECEIVED:
2230 		ctl_putuint(sys_var[varid].text, sys_received);
2231 		break;
2232 
2233 	case CS_SS_THISVER:
2234 		ctl_putuint(sys_var[varid].text, sys_newversion);
2235 		break;
2236 
2237 	case CS_SS_OLDVER:
2238 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2239 		break;
2240 
2241 	case CS_SS_BADFORMAT:
2242 		ctl_putuint(sys_var[varid].text, sys_badlength);
2243 		break;
2244 
2245 	case CS_SS_BADAUTH:
2246 		ctl_putuint(sys_var[varid].text, sys_badauth);
2247 		break;
2248 
2249 	case CS_SS_DECLINED:
2250 		ctl_putuint(sys_var[varid].text, sys_declined);
2251 		break;
2252 
2253 	case CS_SS_RESTRICTED:
2254 		ctl_putuint(sys_var[varid].text, sys_restricted);
2255 		break;
2256 
2257 	case CS_SS_LIMITED:
2258 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2259 		break;
2260 
2261 	case CS_SS_KODSENT:
2262 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2263 		break;
2264 
2265 	case CS_SS_PROCESSED:
2266 		ctl_putuint(sys_var[varid].text, sys_processed);
2267 		break;
2268 
2269 	case CS_BCASTDELAY:
2270 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2271 		break;
2272 
2273 	case CS_AUTHDELAY:
2274 		LFPTOD(&sys_authdelay, dtemp);
2275 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2276 		break;
2277 
2278 	case CS_AUTHKEYS:
2279 		ctl_putuint(sys_var[varid].text, authnumkeys);
2280 		break;
2281 
2282 	case CS_AUTHFREEK:
2283 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2284 		break;
2285 
2286 	case CS_AUTHKLOOKUPS:
2287 		ctl_putuint(sys_var[varid].text, authkeylookups);
2288 		break;
2289 
2290 	case CS_AUTHKNOTFOUND:
2291 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2292 		break;
2293 
2294 	case CS_AUTHKUNCACHED:
2295 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2296 		break;
2297 
2298 	case CS_AUTHKEXPIRED:
2299 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2300 		break;
2301 
2302 	case CS_AUTHENCRYPTS:
2303 		ctl_putuint(sys_var[varid].text, authencryptions);
2304 		break;
2305 
2306 	case CS_AUTHDECRYPTS:
2307 		ctl_putuint(sys_var[varid].text, authdecryptions);
2308 		break;
2309 
2310 	case CS_AUTHRESET:
2311 		ctl_putuint(sys_var[varid].text,
2312 			    current_time - auth_timereset);
2313 		break;
2314 
2315 		/*
2316 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2317 		 * unavailable, otherwise calls putfunc with args.
2318 		 */
2319 #ifndef KERNEL_PLL
2320 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2321 		ctl_putint(sys_var[varid].text, 0)
2322 #else
2323 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2324 		putfunc args
2325 #endif
2326 
2327 		/*
2328 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2329 		 * loop is unavailable, or kernel hard PPS is not
2330 		 * active, otherwise calls putfunc with args.
2331 		 */
2332 #ifndef KERNEL_PLL
2333 # define	CTL_IF_KERNPPS(putfunc, args)	\
2334 		ctl_putint(sys_var[varid].text, 0)
2335 #else
2336 # define	CTL_IF_KERNPPS(putfunc, args)			\
2337 		if (0 == ntx.shift)				\
2338 			ctl_putint(sys_var[varid].text, 0);	\
2339 		else						\
2340 			putfunc args	/* no trailing ; */
2341 #endif
2342 
2343 	case CS_K_OFFSET:
2344 		CTL_IF_KERNLOOP(
2345 			ctl_putdblf,
2346 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2347 		);
2348 		break;
2349 
2350 	case CS_K_FREQ:
2351 		CTL_IF_KERNLOOP(
2352 			ctl_putsfp,
2353 			(sys_var[varid].text, ntx.freq)
2354 		);
2355 		break;
2356 
2357 	case CS_K_MAXERR:
2358 		CTL_IF_KERNLOOP(
2359 			ctl_putdblf,
2360 			(sys_var[varid].text, 0, 6,
2361 			 to_ms * ntx.maxerror)
2362 		);
2363 		break;
2364 
2365 	case CS_K_ESTERR:
2366 		CTL_IF_KERNLOOP(
2367 			ctl_putdblf,
2368 			(sys_var[varid].text, 0, 6,
2369 			 to_ms * ntx.esterror)
2370 		);
2371 		break;
2372 
2373 	case CS_K_STFLAGS:
2374 #ifndef KERNEL_PLL
2375 		ss = "";
2376 #else
2377 		ss = k_st_flags(ntx.status);
2378 #endif
2379 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2380 		break;
2381 
2382 	case CS_K_TIMECONST:
2383 		CTL_IF_KERNLOOP(
2384 			ctl_putint,
2385 			(sys_var[varid].text, ntx.constant)
2386 		);
2387 		break;
2388 
2389 	case CS_K_PRECISION:
2390 		CTL_IF_KERNLOOP(
2391 			ctl_putdblf,
2392 			(sys_var[varid].text, 0, 6,
2393 			    to_ms * ntx.precision)
2394 		);
2395 		break;
2396 
2397 	case CS_K_FREQTOL:
2398 		CTL_IF_KERNLOOP(
2399 			ctl_putsfp,
2400 			(sys_var[varid].text, ntx.tolerance)
2401 		);
2402 		break;
2403 
2404 	case CS_K_PPS_FREQ:
2405 		CTL_IF_KERNPPS(
2406 			ctl_putsfp,
2407 			(sys_var[varid].text, ntx.ppsfreq)
2408 		);
2409 		break;
2410 
2411 	case CS_K_PPS_STABIL:
2412 		CTL_IF_KERNPPS(
2413 			ctl_putsfp,
2414 			(sys_var[varid].text, ntx.stabil)
2415 		);
2416 		break;
2417 
2418 	case CS_K_PPS_JITTER:
2419 		CTL_IF_KERNPPS(
2420 			ctl_putdbl,
2421 			(sys_var[varid].text, to_ms * ntx.jitter)
2422 		);
2423 		break;
2424 
2425 	case CS_K_PPS_CALIBDUR:
2426 		CTL_IF_KERNPPS(
2427 			ctl_putint,
2428 			(sys_var[varid].text, 1 << ntx.shift)
2429 		);
2430 		break;
2431 
2432 	case CS_K_PPS_CALIBS:
2433 		CTL_IF_KERNPPS(
2434 			ctl_putint,
2435 			(sys_var[varid].text, ntx.calcnt)
2436 		);
2437 		break;
2438 
2439 	case CS_K_PPS_CALIBERRS:
2440 		CTL_IF_KERNPPS(
2441 			ctl_putint,
2442 			(sys_var[varid].text, ntx.errcnt)
2443 		);
2444 		break;
2445 
2446 	case CS_K_PPS_JITEXC:
2447 		CTL_IF_KERNPPS(
2448 			ctl_putint,
2449 			(sys_var[varid].text, ntx.jitcnt)
2450 		);
2451 		break;
2452 
2453 	case CS_K_PPS_STBEXC:
2454 		CTL_IF_KERNPPS(
2455 			ctl_putint,
2456 			(sys_var[varid].text, ntx.stbcnt)
2457 		);
2458 		break;
2459 
2460 	case CS_IOSTATS_RESET:
2461 		ctl_putuint(sys_var[varid].text,
2462 			    current_time - io_timereset);
2463 		break;
2464 
2465 	case CS_TOTAL_RBUF:
2466 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2467 		break;
2468 
2469 	case CS_FREE_RBUF:
2470 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2471 		break;
2472 
2473 	case CS_USED_RBUF:
2474 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2475 		break;
2476 
2477 	case CS_RBUF_LOWATER:
2478 		ctl_putuint(sys_var[varid].text, lowater_additions());
2479 		break;
2480 
2481 	case CS_IO_DROPPED:
2482 		ctl_putuint(sys_var[varid].text, packets_dropped);
2483 		break;
2484 
2485 	case CS_IO_IGNORED:
2486 		ctl_putuint(sys_var[varid].text, packets_ignored);
2487 		break;
2488 
2489 	case CS_IO_RECEIVED:
2490 		ctl_putuint(sys_var[varid].text, packets_received);
2491 		break;
2492 
2493 	case CS_IO_SENT:
2494 		ctl_putuint(sys_var[varid].text, packets_sent);
2495 		break;
2496 
2497 	case CS_IO_SENDFAILED:
2498 		ctl_putuint(sys_var[varid].text, packets_notsent);
2499 		break;
2500 
2501 	case CS_IO_WAKEUPS:
2502 		ctl_putuint(sys_var[varid].text, handler_calls);
2503 		break;
2504 
2505 	case CS_IO_GOODWAKEUPS:
2506 		ctl_putuint(sys_var[varid].text, handler_pkts);
2507 		break;
2508 
2509 	case CS_TIMERSTATS_RESET:
2510 		ctl_putuint(sys_var[varid].text,
2511 			    current_time - timer_timereset);
2512 		break;
2513 
2514 	case CS_TIMER_OVERRUNS:
2515 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2516 		break;
2517 
2518 	case CS_TIMER_XMTS:
2519 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2520 		break;
2521 
2522 	case CS_FUZZ:
2523 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2524 		break;
2525 	case CS_WANDER_THRESH:
2526 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2527 		break;
2528 #ifdef AUTOKEY
2529 	case CS_FLAGS:
2530 		if (crypto_flags)
2531 			ctl_puthex(sys_var[CS_FLAGS].text,
2532 			    crypto_flags);
2533 		break;
2534 
2535 	case CS_DIGEST:
2536 		if (crypto_flags) {
2537 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2538 			    COUNTOF(str));
2539 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2540 			    strlen(str));
2541 		}
2542 		break;
2543 
2544 	case CS_SIGNATURE:
2545 		if (crypto_flags) {
2546 			const EVP_MD *dp;
2547 
2548 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2549 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2550 			    COUNTOF(str));
2551 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2552 			    strlen(str));
2553 		}
2554 		break;
2555 
2556 	case CS_HOST:
2557 		if (hostval.ptr != NULL)
2558 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2559 			    strlen(hostval.ptr));
2560 		break;
2561 
2562 	case CS_IDENT:
2563 		if (sys_ident != NULL)
2564 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2565 			    strlen(sys_ident));
2566 		break;
2567 
2568 	case CS_CERTIF:
2569 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2570 			snprintf(str, sizeof(str), "%s %s 0x%x",
2571 			    cp->subject, cp->issuer, cp->flags);
2572 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2573 			    strlen(str));
2574 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2575 		}
2576 		break;
2577 
2578 	case CS_PUBLIC:
2579 		if (hostval.tstamp != 0)
2580 			ctl_putfs(sys_var[CS_PUBLIC].text,
2581 			    ntohl(hostval.tstamp));
2582 		break;
2583 #endif	/* AUTOKEY */
2584 
2585 	default:
2586 		break;
2587 	}
2588 }
2589 
2590 
2591 /*
2592  * ctl_putpeer - output a peer variable
2593  */
2594 static void
2595 ctl_putpeer(
2596 	int id,
2597 	struct peer *p
2598 	)
2599 {
2600 	char buf[CTL_MAX_DATA_LEN];
2601 	char *s;
2602 	char *t;
2603 	char *be;
2604 	int i;
2605 	const struct ctl_var *k;
2606 #ifdef AUTOKEY
2607 	struct autokey *ap;
2608 	const EVP_MD *dp;
2609 	const char *str;
2610 #endif	/* AUTOKEY */
2611 
2612 	switch (id) {
2613 
2614 	case CP_CONFIG:
2615 		ctl_putuint(peer_var[id].text,
2616 			    !(FLAG_PREEMPT & p->flags));
2617 		break;
2618 
2619 	case CP_AUTHENABLE:
2620 		ctl_putuint(peer_var[id].text, !(p->keyid));
2621 		break;
2622 
2623 	case CP_AUTHENTIC:
2624 		ctl_putuint(peer_var[id].text,
2625 			    !!(FLAG_AUTHENTIC & p->flags));
2626 		break;
2627 
2628 	case CP_SRCADR:
2629 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2630 		break;
2631 
2632 	case CP_SRCPORT:
2633 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2634 		break;
2635 
2636 	case CP_SRCHOST:
2637 		if (p->hostname != NULL)
2638 			ctl_putstr(peer_var[id].text, p->hostname,
2639 				   strlen(p->hostname));
2640 		break;
2641 
2642 	case CP_DSTADR:
2643 		ctl_putadr(peer_var[id].text, 0,
2644 			   (p->dstadr != NULL)
2645 				? &p->dstadr->sin
2646 				: NULL);
2647 		break;
2648 
2649 	case CP_DSTPORT:
2650 		ctl_putuint(peer_var[id].text,
2651 			    (p->dstadr != NULL)
2652 				? SRCPORT(&p->dstadr->sin)
2653 				: 0);
2654 		break;
2655 
2656 	case CP_IN:
2657 		if (p->r21 > 0.)
2658 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2659 		break;
2660 
2661 	case CP_OUT:
2662 		if (p->r34 > 0.)
2663 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2664 		break;
2665 
2666 	case CP_RATE:
2667 		ctl_putuint(peer_var[id].text, p->throttle);
2668 		break;
2669 
2670 	case CP_LEAP:
2671 		ctl_putuint(peer_var[id].text, p->leap);
2672 		break;
2673 
2674 	case CP_HMODE:
2675 		ctl_putuint(peer_var[id].text, p->hmode);
2676 		break;
2677 
2678 	case CP_STRATUM:
2679 		ctl_putuint(peer_var[id].text, p->stratum);
2680 		break;
2681 
2682 	case CP_PPOLL:
2683 		ctl_putuint(peer_var[id].text, p->ppoll);
2684 		break;
2685 
2686 	case CP_HPOLL:
2687 		ctl_putuint(peer_var[id].text, p->hpoll);
2688 		break;
2689 
2690 	case CP_PRECISION:
2691 		ctl_putint(peer_var[id].text, p->precision);
2692 		break;
2693 
2694 	case CP_ROOTDELAY:
2695 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2696 		break;
2697 
2698 	case CP_ROOTDISPERSION:
2699 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2700 		break;
2701 
2702 	case CP_REFID:
2703 #ifdef REFCLOCK
2704 		if (p->flags & FLAG_REFCLOCK) {
2705 			ctl_putrefid(peer_var[id].text, p->refid);
2706 			break;
2707 		}
2708 #endif
2709 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2710 			ctl_putadr(peer_var[id].text, p->refid,
2711 				   NULL);
2712 		else
2713 			ctl_putrefid(peer_var[id].text, p->refid);
2714 		break;
2715 
2716 	case CP_REFTIME:
2717 		ctl_putts(peer_var[id].text, &p->reftime);
2718 		break;
2719 
2720 	case CP_ORG:
2721 		ctl_putts(peer_var[id].text, &p->aorg);
2722 		break;
2723 
2724 	case CP_REC:
2725 		ctl_putts(peer_var[id].text, &p->dst);
2726 		break;
2727 
2728 	case CP_XMT:
2729 		if (p->xleave)
2730 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2731 		break;
2732 
2733 	case CP_BIAS:
2734 		if (p->bias != 0.)
2735 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2736 		break;
2737 
2738 	case CP_REACH:
2739 		ctl_puthex(peer_var[id].text, p->reach);
2740 		break;
2741 
2742 	case CP_FLASH:
2743 		ctl_puthex(peer_var[id].text, p->flash);
2744 		break;
2745 
2746 	case CP_TTL:
2747 #ifdef REFCLOCK
2748 		if (p->flags & FLAG_REFCLOCK) {
2749 			ctl_putuint(peer_var[id].text, p->ttl);
2750 			break;
2751 		}
2752 #endif
2753 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2754 			ctl_putint(peer_var[id].text,
2755 				   sys_ttl[p->ttl]);
2756 		break;
2757 
2758 	case CP_UNREACH:
2759 		ctl_putuint(peer_var[id].text, p->unreach);
2760 		break;
2761 
2762 	case CP_TIMER:
2763 		ctl_putuint(peer_var[id].text,
2764 			    p->nextdate - current_time);
2765 		break;
2766 
2767 	case CP_DELAY:
2768 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2769 		break;
2770 
2771 	case CP_OFFSET:
2772 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2773 		break;
2774 
2775 	case CP_JITTER:
2776 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2777 		break;
2778 
2779 	case CP_DISPERSION:
2780 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2781 		break;
2782 
2783 	case CP_KEYID:
2784 		if (p->keyid > NTP_MAXKEY)
2785 			ctl_puthex(peer_var[id].text, p->keyid);
2786 		else
2787 			ctl_putuint(peer_var[id].text, p->keyid);
2788 		break;
2789 
2790 	case CP_FILTDELAY:
2791 		ctl_putarray(peer_var[id].text, p->filter_delay,
2792 			     p->filter_nextpt);
2793 		break;
2794 
2795 	case CP_FILTOFFSET:
2796 		ctl_putarray(peer_var[id].text, p->filter_offset,
2797 			     p->filter_nextpt);
2798 		break;
2799 
2800 	case CP_FILTERROR:
2801 		ctl_putarray(peer_var[id].text, p->filter_disp,
2802 			     p->filter_nextpt);
2803 		break;
2804 
2805 	case CP_PMODE:
2806 		ctl_putuint(peer_var[id].text, p->pmode);
2807 		break;
2808 
2809 	case CP_RECEIVED:
2810 		ctl_putuint(peer_var[id].text, p->received);
2811 		break;
2812 
2813 	case CP_SENT:
2814 		ctl_putuint(peer_var[id].text, p->sent);
2815 		break;
2816 
2817 	case CP_VARLIST:
2818 		s = buf;
2819 		be = buf + sizeof(buf);
2820 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2821 			break;	/* really long var name */
2822 
2823 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2824 		s += strlen(s);
2825 		t = s;
2826 		for (k = peer_var; !(EOV & k->flags); k++) {
2827 			if (PADDING & k->flags)
2828 				continue;
2829 			i = strlen(k->text);
2830 			if (s + i + 1 >= be)
2831 				break;
2832 			if (s != t)
2833 				*s++ = ',';
2834 			memcpy(s, k->text, i);
2835 			s += i;
2836 		}
2837 		if (s + 2 < be) {
2838 			*s++ = '"';
2839 			*s = '\0';
2840 			ctl_putdata(buf, (u_int)(s - buf), 0);
2841 		}
2842 		break;
2843 
2844 	case CP_TIMEREC:
2845 		ctl_putuint(peer_var[id].text,
2846 			    current_time - p->timereceived);
2847 		break;
2848 
2849 	case CP_TIMEREACH:
2850 		ctl_putuint(peer_var[id].text,
2851 			    current_time - p->timereachable);
2852 		break;
2853 
2854 	case CP_BADAUTH:
2855 		ctl_putuint(peer_var[id].text, p->badauth);
2856 		break;
2857 
2858 	case CP_BOGUSORG:
2859 		ctl_putuint(peer_var[id].text, p->bogusorg);
2860 		break;
2861 
2862 	case CP_OLDPKT:
2863 		ctl_putuint(peer_var[id].text, p->oldpkt);
2864 		break;
2865 
2866 	case CP_SELDISP:
2867 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2868 		break;
2869 
2870 	case CP_SELBROKEN:
2871 		ctl_putuint(peer_var[id].text, p->selbroken);
2872 		break;
2873 
2874 	case CP_CANDIDATE:
2875 		ctl_putuint(peer_var[id].text, p->status);
2876 		break;
2877 #ifdef AUTOKEY
2878 	case CP_FLAGS:
2879 		if (p->crypto)
2880 			ctl_puthex(peer_var[id].text, p->crypto);
2881 		break;
2882 
2883 	case CP_SIGNATURE:
2884 		if (p->crypto) {
2885 			dp = EVP_get_digestbynid(p->crypto >> 16);
2886 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2887 			ctl_putstr(peer_var[id].text, str, strlen(str));
2888 		}
2889 		break;
2890 
2891 	case CP_HOST:
2892 		if (p->subject != NULL)
2893 			ctl_putstr(peer_var[id].text, p->subject,
2894 			    strlen(p->subject));
2895 		break;
2896 
2897 	case CP_VALID:		/* not used */
2898 		break;
2899 
2900 	case CP_INITSEQ:
2901 		if (NULL == (ap = p->recval.ptr))
2902 			break;
2903 
2904 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2905 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2906 		ctl_putfs(peer_var[CP_INITTSP].text,
2907 			  ntohl(p->recval.tstamp));
2908 		break;
2909 
2910 	case CP_IDENT:
2911 		if (p->ident != NULL)
2912 			ctl_putstr(peer_var[id].text, p->ident,
2913 			    strlen(p->ident));
2914 		break;
2915 
2916 
2917 #endif	/* AUTOKEY */
2918 	}
2919 }
2920 
2921 
2922 #ifdef REFCLOCK
2923 /*
2924  * ctl_putclock - output clock variables
2925  */
2926 static void
2927 ctl_putclock(
2928 	int id,
2929 	struct refclockstat *pcs,
2930 	int mustput
2931 	)
2932 {
2933 	char buf[CTL_MAX_DATA_LEN];
2934 	char *s, *t, *be;
2935 	const char *ss;
2936 	int i;
2937 	const struct ctl_var *k;
2938 
2939 	switch (id) {
2940 
2941 	case CC_TYPE:
2942 		if (mustput || pcs->clockdesc == NULL
2943 		    || *(pcs->clockdesc) == '\0') {
2944 			ctl_putuint(clock_var[id].text, pcs->type);
2945 		}
2946 		break;
2947 	case CC_TIMECODE:
2948 		ctl_putstr(clock_var[id].text,
2949 			   pcs->p_lastcode,
2950 			   (unsigned)pcs->lencode);
2951 		break;
2952 
2953 	case CC_POLL:
2954 		ctl_putuint(clock_var[id].text, pcs->polls);
2955 		break;
2956 
2957 	case CC_NOREPLY:
2958 		ctl_putuint(clock_var[id].text,
2959 			    pcs->noresponse);
2960 		break;
2961 
2962 	case CC_BADFORMAT:
2963 		ctl_putuint(clock_var[id].text,
2964 			    pcs->badformat);
2965 		break;
2966 
2967 	case CC_BADDATA:
2968 		ctl_putuint(clock_var[id].text,
2969 			    pcs->baddata);
2970 		break;
2971 
2972 	case CC_FUDGETIME1:
2973 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2974 			ctl_putdbl(clock_var[id].text,
2975 				   pcs->fudgetime1 * 1e3);
2976 		break;
2977 
2978 	case CC_FUDGETIME2:
2979 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2980 			ctl_putdbl(clock_var[id].text,
2981 				   pcs->fudgetime2 * 1e3);
2982 		break;
2983 
2984 	case CC_FUDGEVAL1:
2985 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2986 			ctl_putint(clock_var[id].text,
2987 				   pcs->fudgeval1);
2988 		break;
2989 
2990 	case CC_FUDGEVAL2:
2991 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2992 			if (pcs->fudgeval1 > 1)
2993 				ctl_putadr(clock_var[id].text,
2994 					   pcs->fudgeval2, NULL);
2995 			else
2996 				ctl_putrefid(clock_var[id].text,
2997 					     pcs->fudgeval2);
2998 		}
2999 		break;
3000 
3001 	case CC_FLAGS:
3002 		ctl_putuint(clock_var[id].text, pcs->flags);
3003 		break;
3004 
3005 	case CC_DEVICE:
3006 		if (pcs->clockdesc == NULL ||
3007 		    *(pcs->clockdesc) == '\0') {
3008 			if (mustput)
3009 				ctl_putstr(clock_var[id].text,
3010 					   "", 0);
3011 		} else {
3012 			ctl_putstr(clock_var[id].text,
3013 				   pcs->clockdesc,
3014 				   strlen(pcs->clockdesc));
3015 		}
3016 		break;
3017 
3018 	case CC_VARLIST:
3019 		s = buf;
3020 		be = buf + sizeof(buf);
3021 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
3022 		    sizeof(buf))
3023 			break;	/* really long var name */
3024 
3025 		snprintf(s, sizeof(buf), "%s=\"",
3026 			 clock_var[CC_VARLIST].text);
3027 		s += strlen(s);
3028 		t = s;
3029 
3030 		for (k = clock_var; !(EOV & k->flags); k++) {
3031 			if (PADDING & k->flags)
3032 				continue;
3033 
3034 			i = strlen(k->text);
3035 			if (s + i + 1 >= be)
3036 				break;
3037 
3038 			if (s != t)
3039 				*s++ = ',';
3040 			memcpy(s, k->text, i);
3041 			s += i;
3042 		}
3043 
3044 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3045 			if (PADDING & k->flags)
3046 				continue;
3047 
3048 			ss = k->text;
3049 			if (NULL == ss)
3050 				continue;
3051 
3052 			while (*ss && *ss != '=')
3053 				ss++;
3054 			i = ss - k->text;
3055 			if (s + i + 1 >= be)
3056 				break;
3057 
3058 			if (s != t)
3059 				*s++ = ',';
3060 			memcpy(s, k->text, (unsigned)i);
3061 			s += i;
3062 			*s = '\0';
3063 		}
3064 		if (s + 2 >= be)
3065 			break;
3066 
3067 		*s++ = '"';
3068 		*s = '\0';
3069 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3070 		break;
3071 	}
3072 }
3073 #endif
3074 
3075 
3076 
3077 /*
3078  * ctl_getitem - get the next data item from the incoming packet
3079  */
3080 static const struct ctl_var *
3081 ctl_getitem(
3082 	const struct ctl_var *var_list,
3083 	char **data
3084 	)
3085 {
3086 	/* [Bug 3008] First check the packet data sanity, then search
3087 	 * the key. This improves the consistency of result values: If
3088 	 * the result is NULL once, it will never be EOV again for this
3089 	 * packet; If it's EOV, it will never be NULL again until the
3090 	 * variable is found and processed in a given 'var_list'. (That
3091 	 * is, a result is returned that is neither NULL nor EOV).
3092 	 */
3093 	static const struct ctl_var eol = { 0, EOV, NULL };
3094 	static char buf[128];
3095 	static u_long quiet_until;
3096 	const struct ctl_var *v;
3097 	char *cp;
3098 	char *tp;
3099 
3100 	/*
3101 	 * Part One: Validate the packet state
3102 	 */
3103 
3104 	/* Delete leading commas and white space */
3105 	while (reqpt < reqend && (*reqpt == ',' ||
3106 				  isspace((unsigned char)*reqpt)))
3107 		reqpt++;
3108 	if (reqpt >= reqend)
3109 		return NULL;
3110 
3111 	/* Scan the string in the packet until we hit comma or
3112 	 * EoB. Register position of first '=' on the fly. */
3113 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3114 		if (*cp == '=' && tp == NULL)
3115 			tp = cp;
3116 		if (*cp == ',')
3117 			break;
3118 	}
3119 
3120 	/* Process payload, if any. */
3121 	*data = NULL;
3122 	if (NULL != tp) {
3123 		/* eventually strip white space from argument. */
3124 		const char *plhead = tp + 1; /* skip the '=' */
3125 		const char *pltail = cp;
3126 		size_t      plsize;
3127 
3128 		while (plhead != pltail && isspace((u_char)plhead[0]))
3129 			++plhead;
3130 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3131 			--pltail;
3132 
3133 		/* check payload size, terminate packet on overflow */
3134 		plsize = (size_t)(pltail - plhead);
3135 		if (plsize >= sizeof(buf))
3136 			goto badpacket;
3137 
3138 		/* copy data, NUL terminate, and set result data ptr */
3139 		memcpy(buf, plhead, plsize);
3140 		buf[plsize] = '\0';
3141 		*data = buf;
3142 	} else {
3143 		/* no payload, current end --> current name termination */
3144 		tp = cp;
3145 	}
3146 
3147 	/* Part Two
3148 	 *
3149 	 * Now we're sure that the packet data itself is sane. Scan the
3150 	 * list now. Make sure a NULL list is properly treated by
3151 	 * returning a synthetic End-Of-Values record. We must not
3152 	 * return NULL pointers after this point, or the behaviour would
3153 	 * become inconsistent if called several times with different
3154 	 * variable lists after an EoV was returned.  (Such a behavior
3155 	 * actually caused Bug 3008.)
3156 	 */
3157 
3158 	if (NULL == var_list)
3159 		return &eol;
3160 
3161 	for (v = var_list; !(EOV & v->flags); ++v)
3162 		if (!(PADDING & v->flags)) {
3163 			/* check if the var name matches the buffer */
3164 			const char *sp1 = reqpt;
3165 			const char *sp2 = v->text;
3166 
3167 			while ((sp1 != tp) && *sp2 && (*sp1 == *sp2)) {
3168 				++sp1;
3169 				++sp2;
3170 			}
3171 			if (sp1 == tp && !*sp2)
3172 				break;
3173 		}
3174 
3175 	/* See if we have found a valid entry or not. If found, advance
3176 	 * the request pointer for the next round; if not, clear the
3177 	 * data pointer so we have no dangling garbage here.
3178 	 */
3179 	if (EOV & v->flags)
3180 		*data = NULL;
3181 	else
3182 		reqpt = cp + (cp != reqend);
3183 	return v;
3184 
3185   badpacket:
3186 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3187 	numctlbadpkts++;
3188 	NLOG(NLOG_SYSEVENT)
3189 	    if (quiet_until <= current_time) {
3190 		    quiet_until = current_time + 300;
3191 		    msyslog(LOG_WARNING,
3192 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3193 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3194 	    }
3195 	reqpt = reqend; /* never again for this packet! */
3196 	return NULL;
3197 }
3198 
3199 
3200 /*
3201  * control_unspec - response to an unspecified op-code
3202  */
3203 /*ARGSUSED*/
3204 static void
3205 control_unspec(
3206 	struct recvbuf *rbufp,
3207 	int restrict_mask
3208 	)
3209 {
3210 	struct peer *peer;
3211 
3212 	/*
3213 	 * What is an appropriate response to an unspecified op-code?
3214 	 * I return no errors and no data, unless a specified assocation
3215 	 * doesn't exist.
3216 	 */
3217 	if (res_associd) {
3218 		peer = findpeerbyassoc(res_associd);
3219 		if (NULL == peer) {
3220 			ctl_error(CERR_BADASSOC);
3221 			return;
3222 		}
3223 		rpkt.status = htons(ctlpeerstatus(peer));
3224 	} else
3225 		rpkt.status = htons(ctlsysstatus());
3226 	ctl_flushpkt(0);
3227 }
3228 
3229 
3230 /*
3231  * read_status - return either a list of associd's, or a particular
3232  * peer's status.
3233  */
3234 /*ARGSUSED*/
3235 static void
3236 read_status(
3237 	struct recvbuf *rbufp,
3238 	int restrict_mask
3239 	)
3240 {
3241 	struct peer *peer;
3242 	const u_char *cp;
3243 	size_t n;
3244 	/* a_st holds association ID, status pairs alternating */
3245 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3246 
3247 #ifdef DEBUG
3248 	if (debug > 2)
3249 		printf("read_status: ID %d\n", res_associd);
3250 #endif
3251 	/*
3252 	 * Two choices here. If the specified association ID is
3253 	 * zero we return all known assocation ID's.  Otherwise
3254 	 * we return a bunch of stuff about the particular peer.
3255 	 */
3256 	if (res_associd) {
3257 		peer = findpeerbyassoc(res_associd);
3258 		if (NULL == peer) {
3259 			ctl_error(CERR_BADASSOC);
3260 			return;
3261 		}
3262 		rpkt.status = htons(ctlpeerstatus(peer));
3263 		if (res_authokay)
3264 			peer->num_events = 0;
3265 		/*
3266 		 * For now, output everything we know about the
3267 		 * peer. May be more selective later.
3268 		 */
3269 		for (cp = def_peer_var; *cp != 0; cp++)
3270 			ctl_putpeer((int)*cp, peer);
3271 		ctl_flushpkt(0);
3272 		return;
3273 	}
3274 	n = 0;
3275 	rpkt.status = htons(ctlsysstatus());
3276 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3277 		a_st[n++] = htons(peer->associd);
3278 		a_st[n++] = htons(ctlpeerstatus(peer));
3279 		/* two entries each loop iteration, so n + 1 */
3280 		if (n + 1 >= COUNTOF(a_st)) {
3281 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3282 				    1);
3283 			n = 0;
3284 		}
3285 	}
3286 	if (n)
3287 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3288 	ctl_flushpkt(0);
3289 }
3290 
3291 
3292 /*
3293  * read_peervars - half of read_variables() implementation
3294  */
3295 static void
3296 read_peervars(void)
3297 {
3298 	const struct ctl_var *v;
3299 	struct peer *peer;
3300 	const u_char *cp;
3301 	size_t i;
3302 	char *	valuep;
3303 	u_char	wants[CP_MAXCODE + 1];
3304 	u_int	gotvar;
3305 
3306 	/*
3307 	 * Wants info for a particular peer. See if we know
3308 	 * the guy.
3309 	 */
3310 	peer = findpeerbyassoc(res_associd);
3311 	if (NULL == peer) {
3312 		ctl_error(CERR_BADASSOC);
3313 		return;
3314 	}
3315 	rpkt.status = htons(ctlpeerstatus(peer));
3316 	if (res_authokay)
3317 		peer->num_events = 0;
3318 	ZERO(wants);
3319 	gotvar = 0;
3320 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3321 		if (v->flags & EOV) {
3322 			ctl_error(CERR_UNKNOWNVAR);
3323 			return;
3324 		}
3325 		INSIST(v->code < COUNTOF(wants));
3326 		wants[v->code] = 1;
3327 		gotvar = 1;
3328 	}
3329 	if (gotvar) {
3330 		for (i = 1; i < COUNTOF(wants); i++)
3331 			if (wants[i])
3332 				ctl_putpeer(i, peer);
3333 	} else
3334 		for (cp = def_peer_var; *cp != 0; cp++)
3335 			ctl_putpeer((int)*cp, peer);
3336 	ctl_flushpkt(0);
3337 }
3338 
3339 
3340 /*
3341  * read_sysvars - half of read_variables() implementation
3342  */
3343 static void
3344 read_sysvars(void)
3345 {
3346 	const struct ctl_var *v;
3347 	struct ctl_var *kv;
3348 	u_int	n;
3349 	u_int	gotvar;
3350 	const u_char *cs;
3351 	char *	valuep;
3352 	const char * pch;
3353 	u_char *wants;
3354 	size_t	wants_count;
3355 
3356 	/*
3357 	 * Wants system variables. Figure out which he wants
3358 	 * and give them to him.
3359 	 */
3360 	rpkt.status = htons(ctlsysstatus());
3361 	if (res_authokay)
3362 		ctl_sys_num_events = 0;
3363 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3364 	wants = emalloc_zero(wants_count);
3365 	gotvar = 0;
3366 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3367 		if (!(EOV & v->flags)) {
3368 			INSIST(v->code < wants_count);
3369 			wants[v->code] = 1;
3370 			gotvar = 1;
3371 		} else {
3372 			v = ctl_getitem(ext_sys_var, &valuep);
3373 			if (NULL == v) {
3374 				ctl_error(CERR_BADVALUE);
3375 				free(wants);
3376 				return;
3377 			}
3378 			if (EOV & v->flags) {
3379 				ctl_error(CERR_UNKNOWNVAR);
3380 				free(wants);
3381 				return;
3382 			}
3383 			n = v->code + CS_MAXCODE + 1;
3384 			INSIST(n < wants_count);
3385 			wants[n] = 1;
3386 			gotvar = 1;
3387 		}
3388 	}
3389 	if (gotvar) {
3390 		for (n = 1; n <= CS_MAXCODE; n++)
3391 			if (wants[n])
3392 				ctl_putsys(n);
3393 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3394 			if (wants[n + CS_MAXCODE + 1]) {
3395 				pch = ext_sys_var[n].text;
3396 				ctl_putdata(pch, strlen(pch), 0);
3397 			}
3398 	} else {
3399 		for (cs = def_sys_var; *cs != 0; cs++)
3400 			ctl_putsys((int)*cs);
3401 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3402 			if (DEF & kv->flags)
3403 				ctl_putdata(kv->text, strlen(kv->text),
3404 					    0);
3405 	}
3406 	free(wants);
3407 	ctl_flushpkt(0);
3408 }
3409 
3410 
3411 /*
3412  * read_variables - return the variables the caller asks for
3413  */
3414 /*ARGSUSED*/
3415 static void
3416 read_variables(
3417 	struct recvbuf *rbufp,
3418 	int restrict_mask
3419 	)
3420 {
3421 	if (res_associd)
3422 		read_peervars();
3423 	else
3424 		read_sysvars();
3425 }
3426 
3427 
3428 /*
3429  * write_variables - write into variables. We only allow leap bit
3430  * writing this way.
3431  */
3432 /*ARGSUSED*/
3433 static void
3434 write_variables(
3435 	struct recvbuf *rbufp,
3436 	int restrict_mask
3437 	)
3438 {
3439 	const struct ctl_var *v;
3440 	int ext_var;
3441 	char *valuep;
3442 	long val;
3443 	size_t octets;
3444 	char *vareqv;
3445 	const char *t;
3446 	char *tt;
3447 
3448 	val = 0;
3449 	/*
3450 	 * If he's trying to write into a peer tell him no way
3451 	 */
3452 	if (res_associd != 0) {
3453 		ctl_error(CERR_PERMISSION);
3454 		return;
3455 	}
3456 
3457 	/*
3458 	 * Set status
3459 	 */
3460 	rpkt.status = htons(ctlsysstatus());
3461 
3462 	/*
3463 	 * Look through the variables. Dump out at the first sign of
3464 	 * trouble.
3465 	 */
3466 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3467 		ext_var = 0;
3468 		if (v->flags & EOV) {
3469 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3470 			    0) {
3471 				if (v->flags & EOV) {
3472 					ctl_error(CERR_UNKNOWNVAR);
3473 					return;
3474 				}
3475 				ext_var = 1;
3476 			} else {
3477 				break;
3478 			}
3479 		}
3480 		if (!(v->flags & CAN_WRITE)) {
3481 			ctl_error(CERR_PERMISSION);
3482 			return;
3483 		}
3484 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3485 							    &val))) {
3486 			ctl_error(CERR_BADFMT);
3487 			return;
3488 		}
3489 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3490 			ctl_error(CERR_BADVALUE);
3491 			return;
3492 		}
3493 
3494 		if (ext_var) {
3495 			octets = strlen(v->text) + strlen(valuep) + 2;
3496 			vareqv = emalloc(octets);
3497 			tt = vareqv;
3498 			t = v->text;
3499 			while (*t && *t != '=')
3500 				*tt++ = *t++;
3501 			*tt++ = '=';
3502 			memcpy(tt, valuep, 1 + strlen(valuep));
3503 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3504 			free(vareqv);
3505 		} else {
3506 			ctl_error(CERR_UNSPEC); /* really */
3507 			return;
3508 		}
3509 	}
3510 
3511 	/*
3512 	 * If we got anything, do it. xxx nothing to do ***
3513 	 */
3514 	/*
3515 	  if (leapind != ~0 || leapwarn != ~0) {
3516 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3517 	  ctl_error(CERR_PERMISSION);
3518 	  return;
3519 	  }
3520 	  }
3521 	*/
3522 	ctl_flushpkt(0);
3523 }
3524 
3525 
3526 /*
3527  * configure() processes ntpq :config/config-from-file, allowing
3528  *		generic runtime reconfiguration.
3529  */
3530 static void configure(
3531 	struct recvbuf *rbufp,
3532 	int restrict_mask
3533 	)
3534 {
3535 	size_t data_count;
3536 	int retval;
3537 
3538 	/* I haven't yet implemented changes to an existing association.
3539 	 * Hence check if the association id is 0
3540 	 */
3541 	if (res_associd != 0) {
3542 		ctl_error(CERR_BADVALUE);
3543 		return;
3544 	}
3545 
3546 	if (RES_NOMODIFY & restrict_mask) {
3547 		snprintf(remote_config.err_msg,
3548 			 sizeof(remote_config.err_msg),
3549 			 "runtime configuration prohibited by restrict ... nomodify");
3550 		ctl_putdata(remote_config.err_msg,
3551 			    strlen(remote_config.err_msg), 0);
3552 		ctl_flushpkt(0);
3553 		NLOG(NLOG_SYSINFO)
3554 			msyslog(LOG_NOTICE,
3555 				"runtime config from %s rejected due to nomodify restriction",
3556 				stoa(&rbufp->recv_srcadr));
3557 		sys_restricted++;
3558 		return;
3559 	}
3560 
3561 	/* Initialize the remote config buffer */
3562 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3563 
3564 	if (data_count > sizeof(remote_config.buffer) - 2) {
3565 		snprintf(remote_config.err_msg,
3566 			 sizeof(remote_config.err_msg),
3567 			 "runtime configuration failed: request too long");
3568 		ctl_putdata(remote_config.err_msg,
3569 			    strlen(remote_config.err_msg), 0);
3570 		ctl_flushpkt(0);
3571 		msyslog(LOG_NOTICE,
3572 			"runtime config from %s rejected: request too long",
3573 			stoa(&rbufp->recv_srcadr));
3574 		return;
3575 	}
3576 	/* Bug 2853 -- check if all characters were acceptable */
3577 	if (data_count != (size_t)(reqend - reqpt)) {
3578 		snprintf(remote_config.err_msg,
3579 			 sizeof(remote_config.err_msg),
3580 			 "runtime configuration failed: request contains an unprintable character");
3581 		ctl_putdata(remote_config.err_msg,
3582 			    strlen(remote_config.err_msg), 0);
3583 		ctl_flushpkt(0);
3584 		msyslog(LOG_NOTICE,
3585 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3586 			stoa(&rbufp->recv_srcadr),
3587 			reqpt[data_count]);
3588 		return;
3589 	}
3590 
3591 	memcpy(remote_config.buffer, reqpt, data_count);
3592 	/* The buffer has no trailing linefeed or NUL right now. For
3593 	 * logging, we do not want a newline, so we do that first after
3594 	 * adding the necessary NUL byte.
3595 	 */
3596 	remote_config.buffer[data_count] = '\0';
3597 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3598 		remote_config.buffer));
3599 	msyslog(LOG_NOTICE, "%s config: %s",
3600 		stoa(&rbufp->recv_srcadr),
3601 		remote_config.buffer);
3602 
3603 	/* Now we have to make sure there is a NL/NUL sequence at the
3604 	 * end of the buffer before we parse it.
3605 	 */
3606 	remote_config.buffer[data_count++] = '\n';
3607 	remote_config.buffer[data_count] = '\0';
3608 	remote_config.pos = 0;
3609 	remote_config.err_pos = 0;
3610 	remote_config.no_errors = 0;
3611 	config_remotely(&rbufp->recv_srcadr);
3612 
3613 	/*
3614 	 * Check if errors were reported. If not, output 'Config
3615 	 * Succeeded'.  Else output the error count.  It would be nice
3616 	 * to output any parser error messages.
3617 	 */
3618 	if (0 == remote_config.no_errors) {
3619 		retval = snprintf(remote_config.err_msg,
3620 				  sizeof(remote_config.err_msg),
3621 				  "Config Succeeded");
3622 		if (retval > 0)
3623 			remote_config.err_pos += retval;
3624 	}
3625 
3626 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3627 	ctl_flushpkt(0);
3628 
3629 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3630 
3631 	if (remote_config.no_errors > 0)
3632 		msyslog(LOG_NOTICE, "%d error in %s config",
3633 			remote_config.no_errors,
3634 			stoa(&rbufp->recv_srcadr));
3635 }
3636 
3637 
3638 /*
3639  * derive_nonce - generate client-address-specific nonce value
3640  *		  associated with a given timestamp.
3641  */
3642 static u_int32 derive_nonce(
3643 	sockaddr_u *	addr,
3644 	u_int32		ts_i,
3645 	u_int32		ts_f
3646 	)
3647 {
3648 	static u_int32	salt[4];
3649 	static u_long	last_salt_update;
3650 	union d_tag {
3651 		u_char	digest[EVP_MAX_MD_SIZE];
3652 		u_int32 extract;
3653 	}		d;
3654 	EVP_MD_CTX	ctx;
3655 	u_int		len;
3656 
3657 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3658 		salt[0] = ntp_random();
3659 		salt[1] = ntp_random();
3660 		salt[2] = ntp_random();
3661 		salt[3] = ntp_random();
3662 		last_salt_update = current_time;
3663 	}
3664 
3665 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3666 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3667 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3668 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3669 	if (IS_IPV4(addr))
3670 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3671 			         sizeof(SOCK_ADDR4(addr)));
3672 	else
3673 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3674 			         sizeof(SOCK_ADDR6(addr)));
3675 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3676 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3677 	EVP_DigestFinal(&ctx, d.digest, &len);
3678 
3679 	return d.extract;
3680 }
3681 
3682 
3683 /*
3684  * generate_nonce - generate client-address-specific nonce string.
3685  */
3686 static void generate_nonce(
3687 	struct recvbuf *	rbufp,
3688 	char *			nonce,
3689 	size_t			nonce_octets
3690 	)
3691 {
3692 	u_int32 derived;
3693 
3694 	derived = derive_nonce(&rbufp->recv_srcadr,
3695 			       rbufp->recv_time.l_ui,
3696 			       rbufp->recv_time.l_uf);
3697 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3698 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3699 }
3700 
3701 
3702 /*
3703  * validate_nonce - validate client-address-specific nonce string.
3704  *
3705  * Returns TRUE if the local calculation of the nonce matches the
3706  * client-provided value and the timestamp is recent enough.
3707  */
3708 static int validate_nonce(
3709 	const char *		pnonce,
3710 	struct recvbuf *	rbufp
3711 	)
3712 {
3713 	u_int	ts_i;
3714 	u_int	ts_f;
3715 	l_fp	ts;
3716 	l_fp	now_delta;
3717 	u_int	supposed;
3718 	u_int	derived;
3719 
3720 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3721 		return FALSE;
3722 
3723 	ts.l_ui = (u_int32)ts_i;
3724 	ts.l_uf = (u_int32)ts_f;
3725 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3726 	get_systime(&now_delta);
3727 	L_SUB(&now_delta, &ts);
3728 
3729 	return (supposed == derived && now_delta.l_ui < 16);
3730 }
3731 
3732 
3733 /*
3734  * send_random_tag_value - send a randomly-generated three character
3735  *			   tag prefix, a '.', an index, a '=' and a
3736  *			   random integer value.
3737  *
3738  * To try to force clients to ignore unrecognized tags in mrulist,
3739  * reslist, and ifstats responses, the first and last rows are spiced
3740  * with randomly-generated tag names with correct .# index.  Make it
3741  * three characters knowing that none of the currently-used subscripted
3742  * tags have that length, avoiding the need to test for
3743  * tag collision.
3744  */
3745 static void
3746 send_random_tag_value(
3747 	int	indx
3748 	)
3749 {
3750 	int	noise;
3751 	char	buf[32];
3752 
3753 	noise = rand() ^ (rand() << 16);
3754 	buf[0] = 'a' + noise % 26;
3755 	noise >>= 5;
3756 	buf[1] = 'a' + noise % 26;
3757 	noise >>= 5;
3758 	buf[2] = 'a' + noise % 26;
3759 	noise >>= 5;
3760 	buf[3] = '.';
3761 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3762 	ctl_putuint(buf, noise);
3763 }
3764 
3765 
3766 /*
3767  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3768  *
3769  * To keep clients honest about not depending on the order of values,
3770  * and thereby avoid being locked into ugly workarounds to maintain
3771  * backward compatibility later as new fields are added to the response,
3772  * the order is random.
3773  */
3774 static void
3775 send_mru_entry(
3776 	mon_entry *	mon,
3777 	int		count
3778 	)
3779 {
3780 	const char first_fmt[] =	"first.%d";
3781 	const char ct_fmt[] =		"ct.%d";
3782 	const char mv_fmt[] =		"mv.%d";
3783 	const char rs_fmt[] =		"rs.%d";
3784 	char	tag[32];
3785 	u_char	sent[6]; /* 6 tag=value pairs */
3786 	u_int32 noise;
3787 	u_int	which;
3788 	u_int	remaining;
3789 	const char * pch;
3790 
3791 	remaining = COUNTOF(sent);
3792 	ZERO(sent);
3793 	noise = (u_int32)(rand() ^ (rand() << 16));
3794 	while (remaining > 0) {
3795 		which = (noise & 7) % COUNTOF(sent);
3796 		noise >>= 3;
3797 		while (sent[which])
3798 			which = (which + 1) % COUNTOF(sent);
3799 
3800 		switch (which) {
3801 
3802 		case 0:
3803 			snprintf(tag, sizeof(tag), addr_fmt, count);
3804 			pch = sptoa(&mon->rmtadr);
3805 			ctl_putunqstr(tag, pch, strlen(pch));
3806 			break;
3807 
3808 		case 1:
3809 			snprintf(tag, sizeof(tag), last_fmt, count);
3810 			ctl_putts(tag, &mon->last);
3811 			break;
3812 
3813 		case 2:
3814 			snprintf(tag, sizeof(tag), first_fmt, count);
3815 			ctl_putts(tag, &mon->first);
3816 			break;
3817 
3818 		case 3:
3819 			snprintf(tag, sizeof(tag), ct_fmt, count);
3820 			ctl_putint(tag, mon->count);
3821 			break;
3822 
3823 		case 4:
3824 			snprintf(tag, sizeof(tag), mv_fmt, count);
3825 			ctl_putuint(tag, mon->vn_mode);
3826 			break;
3827 
3828 		case 5:
3829 			snprintf(tag, sizeof(tag), rs_fmt, count);
3830 			ctl_puthex(tag, mon->flags);
3831 			break;
3832 		}
3833 		sent[which] = TRUE;
3834 		remaining--;
3835 	}
3836 }
3837 
3838 
3839 /*
3840  * read_mru_list - supports ntpq's mrulist command.
3841  *
3842  * The challenge here is to match ntpdc's monlist functionality without
3843  * being limited to hundreds of entries returned total, and without
3844  * requiring state on the server.  If state were required, ntpq's
3845  * mrulist command would require authentication.
3846  *
3847  * The approach was suggested by Ry Jones.  A finite and variable number
3848  * of entries are retrieved per request, to avoid having responses with
3849  * such large numbers of packets that socket buffers are overflowed and
3850  * packets lost.  The entries are retrieved oldest-first, taking into
3851  * account that the MRU list will be changing between each request.  We
3852  * can expect to see duplicate entries for addresses updated in the MRU
3853  * list during the fetch operation.  In the end, the client can assemble
3854  * a close approximation of the MRU list at the point in time the last
3855  * response was sent by ntpd.  The only difference is it may be longer,
3856  * containing some number of oldest entries which have since been
3857  * reclaimed.  If necessary, the protocol could be extended to zap those
3858  * from the client snapshot at the end, but so far that doesn't seem
3859  * useful.
3860  *
3861  * To accomodate the changing MRU list, the starting point for requests
3862  * after the first request is supplied as a series of last seen
3863  * timestamps and associated addresses, the newest ones the client has
3864  * received.  As long as at least one of those entries hasn't been
3865  * bumped to the head of the MRU list, ntpd can pick up at that point.
3866  * Otherwise, the request is failed and it is up to ntpq to back up and
3867  * provide the next newest entry's timestamps and addresses, conceivably
3868  * backing up all the way to the starting point.
3869  *
3870  * input parameters:
3871  *	nonce=		Regurgitated nonce retrieved by the client
3872  *			previously using CTL_OP_REQ_NONCE, demonstrating
3873  *			ability to receive traffic sent to its address.
3874  *	frags=		Limit on datagrams (fragments) in response.  Used
3875  *			by newer ntpq versions instead of limit= when
3876  *			retrieving multiple entries.
3877  *	limit=		Limit on MRU entries returned.  One of frags= or
3878  *			limit= must be provided.
3879  *			limit=1 is a special case:  Instead of fetching
3880  *			beginning with the supplied starting point's
3881  *			newer neighbor, fetch the supplied entry, and
3882  *			in that case the #.last timestamp can be zero.
3883  *			This enables fetching a single entry by IP
3884  *			address.  When limit is not one and frags= is
3885  *			provided, the fragment limit controls.
3886  *	mincount=	(decimal) Return entries with count >= mincount.
3887  *	laddr=		Return entries associated with the server's IP
3888  *			address given.  No port specification is needed,
3889  *			and any supplied is ignored.
3890  *	resall=		0x-prefixed hex restrict bits which must all be
3891  *			lit for an MRU entry to be included.
3892  *			Has precedence over any resany=.
3893  *	resany=		0x-prefixed hex restrict bits, at least one of
3894  *			which must be list for an MRU entry to be
3895  *			included.
3896  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3897  *			which client previously received.
3898  *	addr.0=		text of newest entry's IP address and port,
3899  *			IPv6 addresses in bracketed form: [::]:123
3900  *	last.1=		timestamp of 2nd newest entry client has.
3901  *	addr.1=		address of 2nd newest entry.
3902  *	[...]
3903  *
3904  * ntpq provides as many last/addr pairs as will fit in a single request
3905  * packet, except for the first request in a MRU fetch operation.
3906  *
3907  * The response begins with a new nonce value to be used for any
3908  * followup request.  Following the nonce is the next newer entry than
3909  * referred to by last.0 and addr.0, if the "0" entry has not been
3910  * bumped to the front.  If it has, the first entry returned will be the
3911  * next entry newer than referred to by last.1 and addr.1, and so on.
3912  * If none of the referenced entries remain unchanged, the request fails
3913  * and ntpq backs up to the next earlier set of entries to resync.
3914  *
3915  * Except for the first response, the response begins with confirmation
3916  * of the entry that precedes the first additional entry provided:
3917  *
3918  *	last.older=	hex l_fp timestamp matching one of the input
3919  *			.last timestamps, which entry now precedes the
3920  *			response 0. entry in the MRU list.
3921  *	addr.older=	text of address corresponding to older.last.
3922  *
3923  * And in any case, a successful response contains sets of values
3924  * comprising entries, with the oldest numbered 0 and incrementing from
3925  * there:
3926  *
3927  *	addr.#		text of IPv4 or IPv6 address and port
3928  *	last.#		hex l_fp timestamp of last receipt
3929  *	first.#		hex l_fp timestamp of first receipt
3930  *	ct.#		count of packets received
3931  *	mv.#		mode and version
3932  *	rs.#		restriction mask (RES_* bits)
3933  *
3934  * Note the code currently assumes there are no valid three letter
3935  * tags sent with each row, and needs to be adjusted if that changes.
3936  *
3937  * The client should accept the values in any order, and ignore .#
3938  * values which it does not understand, to allow a smooth path to
3939  * future changes without requiring a new opcode.  Clients can rely
3940  * on all *.0 values preceding any *.1 values, that is all values for
3941  * a given index number are together in the response.
3942  *
3943  * The end of the response list is noted with one or two tag=value
3944  * pairs.  Unconditionally:
3945  *
3946  *	now=		0x-prefixed l_fp timestamp at the server marking
3947  *			the end of the operation.
3948  *
3949  * If any entries were returned, now= is followed by:
3950  *
3951  *	last.newest=	hex l_fp identical to last.# of the prior
3952  *			entry.
3953  */
3954 static void read_mru_list(
3955 	struct recvbuf *rbufp,
3956 	int restrict_mask
3957 	)
3958 {
3959 	const char		nonce_text[] =		"nonce";
3960 	const char		frags_text[] =		"frags";
3961 	const char		limit_text[] =		"limit";
3962 	const char		mincount_text[] =	"mincount";
3963 	const char		resall_text[] =		"resall";
3964 	const char		resany_text[] =		"resany";
3965 	const char		maxlstint_text[] =	"maxlstint";
3966 	const char		laddr_text[] =		"laddr";
3967 	const char		resaxx_fmt[] =		"0x%hx";
3968 	u_int			limit;
3969 	u_short			frags;
3970 	u_short			resall;
3971 	u_short			resany;
3972 	int			mincount;
3973 	u_int			maxlstint;
3974 	sockaddr_u		laddr;
3975 	struct interface *	lcladr;
3976 	u_int			count;
3977 	u_int			ui;
3978 	u_int			uf;
3979 	l_fp			last[16];
3980 	sockaddr_u		addr[COUNTOF(last)];
3981 	char			buf[128];
3982 	struct ctl_var *	in_parms;
3983 	const struct ctl_var *	v;
3984 	char *			val;
3985 	const char *		pch;
3986 	char *			pnonce;
3987 	int			nonce_valid;
3988 	size_t			i;
3989 	int			priors;
3990 	u_short			hash;
3991 	mon_entry *		mon;
3992 	mon_entry *		prior_mon;
3993 	l_fp			now;
3994 
3995 	if (RES_NOMRULIST & restrict_mask) {
3996 		ctl_error(CERR_PERMISSION);
3997 		NLOG(NLOG_SYSINFO)
3998 			msyslog(LOG_NOTICE,
3999 				"mrulist from %s rejected due to nomrulist restriction",
4000 				stoa(&rbufp->recv_srcadr));
4001 		sys_restricted++;
4002 		return;
4003 	}
4004 	/*
4005 	 * fill in_parms var list with all possible input parameters.
4006 	 */
4007 	in_parms = NULL;
4008 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4009 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4010 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4011 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4012 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4013 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4014 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4015 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4016 	for (i = 0; i < COUNTOF(last); i++) {
4017 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4018 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4019 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4020 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4021 	}
4022 
4023 	/* decode input parms */
4024 	pnonce = NULL;
4025 	frags = 0;
4026 	limit = 0;
4027 	mincount = 0;
4028 	resall = 0;
4029 	resany = 0;
4030 	maxlstint = 0;
4031 	lcladr = NULL;
4032 	priors = 0;
4033 	ZERO(last);
4034 	ZERO(addr);
4035 
4036 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
4037 	       !(EOV & v->flags)) {
4038 		int si;
4039 
4040 		if (!strcmp(nonce_text, v->text)) {
4041 			if (NULL != pnonce)
4042 				free(pnonce);
4043 			pnonce = estrdup(val);
4044 		} else if (!strcmp(frags_text, v->text)) {
4045 			sscanf(val, "%hu", &frags);
4046 		} else if (!strcmp(limit_text, v->text)) {
4047 			sscanf(val, "%u", &limit);
4048 		} else if (!strcmp(mincount_text, v->text)) {
4049 			if (1 != sscanf(val, "%d", &mincount) ||
4050 			    mincount < 0)
4051 				mincount = 0;
4052 		} else if (!strcmp(resall_text, v->text)) {
4053 			sscanf(val, resaxx_fmt, &resall);
4054 		} else if (!strcmp(resany_text, v->text)) {
4055 			sscanf(val, resaxx_fmt, &resany);
4056 		} else if (!strcmp(maxlstint_text, v->text)) {
4057 			sscanf(val, "%u", &maxlstint);
4058 		} else if (!strcmp(laddr_text, v->text)) {
4059 			if (decodenetnum(val, &laddr))
4060 				lcladr = getinterface(&laddr, 0);
4061 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4062 			   (size_t)si < COUNTOF(last)) {
4063 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
4064 				last[si].l_ui = ui;
4065 				last[si].l_uf = uf;
4066 				if (!SOCK_UNSPEC(&addr[si]) &&
4067 				    si == priors)
4068 					priors++;
4069 			}
4070 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4071 			   (size_t)si < COUNTOF(addr)) {
4072 			if (decodenetnum(val, &addr[si])
4073 			    && last[si].l_ui && last[si].l_uf &&
4074 			    si == priors)
4075 				priors++;
4076 		}
4077 	}
4078 	free_varlist(in_parms);
4079 	in_parms = NULL;
4080 
4081 	/* return no responses until the nonce is validated */
4082 	if (NULL == pnonce)
4083 		return;
4084 
4085 	nonce_valid = validate_nonce(pnonce, rbufp);
4086 	free(pnonce);
4087 	if (!nonce_valid)
4088 		return;
4089 
4090 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4091 	    frags > MRU_FRAGS_LIMIT) {
4092 		ctl_error(CERR_BADVALUE);
4093 		return;
4094 	}
4095 
4096 	/*
4097 	 * If either frags or limit is not given, use the max.
4098 	 */
4099 	if (0 != frags && 0 == limit)
4100 		limit = UINT_MAX;
4101 	else if (0 != limit && 0 == frags)
4102 		frags = MRU_FRAGS_LIMIT;
4103 
4104 	/*
4105 	 * Find the starting point if one was provided.
4106 	 */
4107 	mon = NULL;
4108 	for (i = 0; i < (size_t)priors; i++) {
4109 		hash = MON_HASH(&addr[i]);
4110 		for (mon = mon_hash[hash];
4111 		     mon != NULL;
4112 		     mon = mon->hash_next)
4113 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4114 				break;
4115 		if (mon != NULL) {
4116 			if (L_ISEQU(&mon->last, &last[i]))
4117 				break;
4118 			mon = NULL;
4119 		}
4120 	}
4121 
4122 	/* If a starting point was provided... */
4123 	if (priors) {
4124 		/* and none could be found unmodified... */
4125 		if (NULL == mon) {
4126 			/* tell ntpq to try again with older entries */
4127 			ctl_error(CERR_UNKNOWNVAR);
4128 			return;
4129 		}
4130 		/* confirm the prior entry used as starting point */
4131 		ctl_putts("last.older", &mon->last);
4132 		pch = sptoa(&mon->rmtadr);
4133 		ctl_putunqstr("addr.older", pch, strlen(pch));
4134 
4135 		/*
4136 		 * Move on to the first entry the client doesn't have,
4137 		 * except in the special case of a limit of one.  In
4138 		 * that case return the starting point entry.
4139 		 */
4140 		if (limit > 1)
4141 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4142 	} else {	/* start with the oldest */
4143 		mon = TAIL_DLIST(mon_mru_list, mru);
4144 	}
4145 
4146 	/*
4147 	 * send up to limit= entries in up to frags= datagrams
4148 	 */
4149 	get_systime(&now);
4150 	generate_nonce(rbufp, buf, sizeof(buf));
4151 	ctl_putunqstr("nonce", buf, strlen(buf));
4152 	prior_mon = NULL;
4153 	for (count = 0;
4154 	     mon != NULL && res_frags < frags && count < limit;
4155 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4156 
4157 		if (mon->count < mincount)
4158 			continue;
4159 		if (resall && resall != (resall & mon->flags))
4160 			continue;
4161 		if (resany && !(resany & mon->flags))
4162 			continue;
4163 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4164 		    maxlstint)
4165 			continue;
4166 		if (lcladr != NULL && mon->lcladr != lcladr)
4167 			continue;
4168 
4169 		send_mru_entry(mon, count);
4170 		if (!count)
4171 			send_random_tag_value(0);
4172 		count++;
4173 		prior_mon = mon;
4174 	}
4175 
4176 	/*
4177 	 * If this batch completes the MRU list, say so explicitly with
4178 	 * a now= l_fp timestamp.
4179 	 */
4180 	if (NULL == mon) {
4181 		if (count > 1)
4182 			send_random_tag_value(count - 1);
4183 		ctl_putts("now", &now);
4184 		/* if any entries were returned confirm the last */
4185 		if (prior_mon != NULL)
4186 			ctl_putts("last.newest", &prior_mon->last);
4187 	}
4188 	ctl_flushpkt(0);
4189 }
4190 
4191 
4192 /*
4193  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4194  *
4195  * To keep clients honest about not depending on the order of values,
4196  * and thereby avoid being locked into ugly workarounds to maintain
4197  * backward compatibility later as new fields are added to the response,
4198  * the order is random.
4199  */
4200 static void
4201 send_ifstats_entry(
4202 	endpt *	la,
4203 	u_int	ifnum
4204 	)
4205 {
4206 	const char addr_fmtu[] =	"addr.%u";
4207 	const char bcast_fmt[] =	"bcast.%u";
4208 	const char en_fmt[] =		"en.%u";	/* enabled */
4209 	const char name_fmt[] =		"name.%u";
4210 	const char flags_fmt[] =	"flags.%u";
4211 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4212 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4213 	const char rx_fmt[] =		"rx.%u";
4214 	const char tx_fmt[] =		"tx.%u";
4215 	const char txerr_fmt[] =	"txerr.%u";
4216 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4217 	const char up_fmt[] =		"up.%u";	/* uptime */
4218 	char	tag[32];
4219 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4220 	int	noisebits;
4221 	u_int32 noise;
4222 	u_int	which;
4223 	u_int	remaining;
4224 	const char *pch;
4225 
4226 	remaining = COUNTOF(sent);
4227 	ZERO(sent);
4228 	noise = 0;
4229 	noisebits = 0;
4230 	while (remaining > 0) {
4231 		if (noisebits < 4) {
4232 			noise = rand() ^ (rand() << 16);
4233 			noisebits = 31;
4234 		}
4235 		which = (noise & 0xf) % COUNTOF(sent);
4236 		noise >>= 4;
4237 		noisebits -= 4;
4238 
4239 		while (sent[which])
4240 			which = (which + 1) % COUNTOF(sent);
4241 
4242 		switch (which) {
4243 
4244 		case 0:
4245 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4246 			pch = sptoa(&la->sin);
4247 			ctl_putunqstr(tag, pch, strlen(pch));
4248 			break;
4249 
4250 		case 1:
4251 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4252 			if (INT_BCASTOPEN & la->flags)
4253 				pch = sptoa(&la->bcast);
4254 			else
4255 				pch = "";
4256 			ctl_putunqstr(tag, pch, strlen(pch));
4257 			break;
4258 
4259 		case 2:
4260 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4261 			ctl_putint(tag, !la->ignore_packets);
4262 			break;
4263 
4264 		case 3:
4265 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4266 			ctl_putstr(tag, la->name, strlen(la->name));
4267 			break;
4268 
4269 		case 4:
4270 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4271 			ctl_puthex(tag, (u_int)la->flags);
4272 			break;
4273 
4274 		case 5:
4275 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4276 			ctl_putint(tag, la->last_ttl);
4277 			break;
4278 
4279 		case 6:
4280 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4281 			ctl_putint(tag, la->num_mcast);
4282 			break;
4283 
4284 		case 7:
4285 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4286 			ctl_putint(tag, la->received);
4287 			break;
4288 
4289 		case 8:
4290 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4291 			ctl_putint(tag, la->sent);
4292 			break;
4293 
4294 		case 9:
4295 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4296 			ctl_putint(tag, la->notsent);
4297 			break;
4298 
4299 		case 10:
4300 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4301 			ctl_putuint(tag, la->peercnt);
4302 			break;
4303 
4304 		case 11:
4305 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4306 			ctl_putuint(tag, current_time - la->starttime);
4307 			break;
4308 		}
4309 		sent[which] = TRUE;
4310 		remaining--;
4311 	}
4312 	send_random_tag_value((int)ifnum);
4313 }
4314 
4315 
4316 /*
4317  * read_ifstats - send statistics for each local address, exposed by
4318  *		  ntpq -c ifstats
4319  */
4320 static void
4321 read_ifstats(
4322 	struct recvbuf *	rbufp
4323 	)
4324 {
4325 	u_int	ifidx;
4326 	endpt *	la;
4327 
4328 	/*
4329 	 * loop over [0..sys_ifnum] searching ep_list for each
4330 	 * ifnum in turn.
4331 	 */
4332 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4333 		for (la = ep_list; la != NULL; la = la->elink)
4334 			if (ifidx == la->ifnum)
4335 				break;
4336 		if (NULL == la)
4337 			continue;
4338 		/* return stats for one local address */
4339 		send_ifstats_entry(la, ifidx);
4340 	}
4341 	ctl_flushpkt(0);
4342 }
4343 
4344 static void
4345 sockaddrs_from_restrict_u(
4346 	sockaddr_u *	psaA,
4347 	sockaddr_u *	psaM,
4348 	restrict_u *	pres,
4349 	int		ipv6
4350 	)
4351 {
4352 	ZERO(*psaA);
4353 	ZERO(*psaM);
4354 	if (!ipv6) {
4355 		psaA->sa.sa_family = AF_INET;
4356 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4357 		psaM->sa.sa_family = AF_INET;
4358 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4359 	} else {
4360 		psaA->sa.sa_family = AF_INET6;
4361 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4362 		       sizeof(psaA->sa6.sin6_addr));
4363 		psaM->sa.sa_family = AF_INET6;
4364 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4365 		       sizeof(psaA->sa6.sin6_addr));
4366 	}
4367 }
4368 
4369 
4370 /*
4371  * Send a restrict entry in response to a "ntpq -c reslist" request.
4372  *
4373  * To keep clients honest about not depending on the order of values,
4374  * and thereby avoid being locked into ugly workarounds to maintain
4375  * backward compatibility later as new fields are added to the response,
4376  * the order is random.
4377  */
4378 static void
4379 send_restrict_entry(
4380 	restrict_u *	pres,
4381 	int		ipv6,
4382 	u_int		idx
4383 	)
4384 {
4385 	const char addr_fmtu[] =	"addr.%u";
4386 	const char mask_fmtu[] =	"mask.%u";
4387 	const char hits_fmt[] =		"hits.%u";
4388 	const char flags_fmt[] =	"flags.%u";
4389 	char		tag[32];
4390 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4391 	int		noisebits;
4392 	u_int32		noise;
4393 	u_int		which;
4394 	u_int		remaining;
4395 	sockaddr_u	addr;
4396 	sockaddr_u	mask;
4397 	const char *	pch;
4398 	char *		buf;
4399 	const char *	match_str;
4400 	const char *	access_str;
4401 
4402 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4403 	remaining = COUNTOF(sent);
4404 	ZERO(sent);
4405 	noise = 0;
4406 	noisebits = 0;
4407 	while (remaining > 0) {
4408 		if (noisebits < 2) {
4409 			noise = rand() ^ (rand() << 16);
4410 			noisebits = 31;
4411 		}
4412 		which = (noise & 0x3) % COUNTOF(sent);
4413 		noise >>= 2;
4414 		noisebits -= 2;
4415 
4416 		while (sent[which])
4417 			which = (which + 1) % COUNTOF(sent);
4418 
4419 		switch (which) {
4420 
4421 		case 0:
4422 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4423 			pch = stoa(&addr);
4424 			ctl_putunqstr(tag, pch, strlen(pch));
4425 			break;
4426 
4427 		case 1:
4428 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4429 			pch = stoa(&mask);
4430 			ctl_putunqstr(tag, pch, strlen(pch));
4431 			break;
4432 
4433 		case 2:
4434 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4435 			ctl_putuint(tag, pres->count);
4436 			break;
4437 
4438 		case 3:
4439 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4440 			match_str = res_match_flags(pres->mflags);
4441 			access_str = res_access_flags(pres->flags);
4442 			if ('\0' == match_str[0]) {
4443 				pch = access_str;
4444 			} else {
4445 				LIB_GETBUF(buf);
4446 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4447 					 match_str, access_str);
4448 				pch = buf;
4449 			}
4450 			ctl_putunqstr(tag, pch, strlen(pch));
4451 			break;
4452 		}
4453 		sent[which] = TRUE;
4454 		remaining--;
4455 	}
4456 	send_random_tag_value((int)idx);
4457 }
4458 
4459 
4460 static void
4461 send_restrict_list(
4462 	restrict_u *	pres,
4463 	int		ipv6,
4464 	u_int *		pidx
4465 	)
4466 {
4467 	for ( ; pres != NULL; pres = pres->link) {
4468 		send_restrict_entry(pres, ipv6, *pidx);
4469 		(*pidx)++;
4470 	}
4471 }
4472 
4473 
4474 /*
4475  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4476  */
4477 static void
4478 read_addr_restrictions(
4479 	struct recvbuf *	rbufp
4480 )
4481 {
4482 	u_int idx;
4483 
4484 	idx = 0;
4485 	send_restrict_list(restrictlist4, FALSE, &idx);
4486 	send_restrict_list(restrictlist6, TRUE, &idx);
4487 	ctl_flushpkt(0);
4488 }
4489 
4490 
4491 /*
4492  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4493  */
4494 static void
4495 read_ordlist(
4496 	struct recvbuf *	rbufp,
4497 	int			restrict_mask
4498 	)
4499 {
4500 	const char ifstats_s[] = "ifstats";
4501 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4502 	const char addr_rst_s[] = "addr_restrictions";
4503 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4504 	struct ntp_control *	cpkt;
4505 	u_short			qdata_octets;
4506 
4507 	/*
4508 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4509 	 * used only for ntpq -c ifstats.  With the addition of reslist
4510 	 * the same opcode was generalized to retrieve ordered lists
4511 	 * which require authentication.  The request data is empty or
4512 	 * contains "ifstats" (not null terminated) to retrieve local
4513 	 * addresses and associated stats.  It is "addr_restrictions"
4514 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4515 	 * which are access control lists.  Other request data return
4516 	 * CERR_UNKNOWNVAR.
4517 	 */
4518 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4519 	qdata_octets = ntohs(cpkt->count);
4520 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4521 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4522 		read_ifstats(rbufp);
4523 		return;
4524 	}
4525 	if (a_r_chars == qdata_octets &&
4526 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4527 		read_addr_restrictions(rbufp);
4528 		return;
4529 	}
4530 	ctl_error(CERR_UNKNOWNVAR);
4531 }
4532 
4533 
4534 /*
4535  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4536  */
4537 static void req_nonce(
4538 	struct recvbuf *	rbufp,
4539 	int			restrict_mask
4540 	)
4541 {
4542 	char	buf[64];
4543 
4544 	generate_nonce(rbufp, buf, sizeof(buf));
4545 	ctl_putunqstr("nonce", buf, strlen(buf));
4546 	ctl_flushpkt(0);
4547 }
4548 
4549 
4550 /*
4551  * read_clockstatus - return clock radio status
4552  */
4553 /*ARGSUSED*/
4554 static void
4555 read_clockstatus(
4556 	struct recvbuf *rbufp,
4557 	int restrict_mask
4558 	)
4559 {
4560 #ifndef REFCLOCK
4561 	/*
4562 	 * If no refclock support, no data to return
4563 	 */
4564 	ctl_error(CERR_BADASSOC);
4565 #else
4566 	const struct ctl_var *	v;
4567 	int			i;
4568 	struct peer *		peer;
4569 	char *			valuep;
4570 	u_char *		wants;
4571 	size_t			wants_alloc;
4572 	int			gotvar;
4573 	const u_char *		cc;
4574 	struct ctl_var *	kv;
4575 	struct refclockstat	cs;
4576 
4577 	if (res_associd != 0) {
4578 		peer = findpeerbyassoc(res_associd);
4579 	} else {
4580 		/*
4581 		 * Find a clock for this jerk.	If the system peer
4582 		 * is a clock use it, else search peer_list for one.
4583 		 */
4584 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4585 		    sys_peer->flags))
4586 			peer = sys_peer;
4587 		else
4588 			for (peer = peer_list;
4589 			     peer != NULL;
4590 			     peer = peer->p_link)
4591 				if (FLAG_REFCLOCK & peer->flags)
4592 					break;
4593 	}
4594 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4595 		ctl_error(CERR_BADASSOC);
4596 		return;
4597 	}
4598 	/*
4599 	 * If we got here we have a peer which is a clock. Get his
4600 	 * status.
4601 	 */
4602 	cs.kv_list = NULL;
4603 	refclock_control(&peer->srcadr, NULL, &cs);
4604 	kv = cs.kv_list;
4605 	/*
4606 	 * Look for variables in the packet.
4607 	 */
4608 	rpkt.status = htons(ctlclkstatus(&cs));
4609 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4610 	wants = emalloc_zero(wants_alloc);
4611 	gotvar = FALSE;
4612 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4613 		if (!(EOV & v->flags)) {
4614 			wants[v->code] = TRUE;
4615 			gotvar = TRUE;
4616 		} else {
4617 			v = ctl_getitem(kv, &valuep);
4618 			if (NULL == v) {
4619 				ctl_error(CERR_BADVALUE);
4620 				free(wants);
4621 				free_varlist(cs.kv_list);
4622 				return;
4623 			}
4624 			if (EOV & v->flags) {
4625 				ctl_error(CERR_UNKNOWNVAR);
4626 				free(wants);
4627 				free_varlist(cs.kv_list);
4628 				return;
4629 			}
4630 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4631 			gotvar = TRUE;
4632 		}
4633 	}
4634 
4635 	if (gotvar) {
4636 		for (i = 1; i <= CC_MAXCODE; i++)
4637 			if (wants[i])
4638 				ctl_putclock(i, &cs, TRUE);
4639 		if (kv != NULL)
4640 			for (i = 0; !(EOV & kv[i].flags); i++)
4641 				if (wants[i + CC_MAXCODE + 1])
4642 					ctl_putdata(kv[i].text,
4643 						    strlen(kv[i].text),
4644 						    FALSE);
4645 	} else {
4646 		for (cc = def_clock_var; *cc != 0; cc++)
4647 			ctl_putclock((int)*cc, &cs, FALSE);
4648 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4649 			if (DEF & kv->flags)
4650 				ctl_putdata(kv->text, strlen(kv->text),
4651 					    FALSE);
4652 	}
4653 
4654 	free(wants);
4655 	free_varlist(cs.kv_list);
4656 
4657 	ctl_flushpkt(0);
4658 #endif
4659 }
4660 
4661 
4662 /*
4663  * write_clockstatus - we don't do this
4664  */
4665 /*ARGSUSED*/
4666 static void
4667 write_clockstatus(
4668 	struct recvbuf *rbufp,
4669 	int restrict_mask
4670 	)
4671 {
4672 	ctl_error(CERR_PERMISSION);
4673 }
4674 
4675 /*
4676  * Trap support from here on down. We send async trap messages when the
4677  * upper levels report trouble. Traps can by set either by control
4678  * messages or by configuration.
4679  */
4680 /*
4681  * set_trap - set a trap in response to a control message
4682  */
4683 static void
4684 set_trap(
4685 	struct recvbuf *rbufp,
4686 	int restrict_mask
4687 	)
4688 {
4689 	int traptype;
4690 
4691 	/*
4692 	 * See if this guy is allowed
4693 	 */
4694 	if (restrict_mask & RES_NOTRAP) {
4695 		ctl_error(CERR_PERMISSION);
4696 		return;
4697 	}
4698 
4699 	/*
4700 	 * Determine his allowed trap type.
4701 	 */
4702 	traptype = TRAP_TYPE_PRIO;
4703 	if (restrict_mask & RES_LPTRAP)
4704 		traptype = TRAP_TYPE_NONPRIO;
4705 
4706 	/*
4707 	 * Call ctlsettrap() to do the work.  Return
4708 	 * an error if it can't assign the trap.
4709 	 */
4710 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4711 			(int)res_version))
4712 		ctl_error(CERR_NORESOURCE);
4713 	ctl_flushpkt(0);
4714 }
4715 
4716 
4717 /*
4718  * unset_trap - unset a trap in response to a control message
4719  */
4720 static void
4721 unset_trap(
4722 	struct recvbuf *rbufp,
4723 	int restrict_mask
4724 	)
4725 {
4726 	int traptype;
4727 
4728 	/*
4729 	 * We don't prevent anyone from removing his own trap unless the
4730 	 * trap is configured. Note we also must be aware of the
4731 	 * possibility that restriction flags were changed since this
4732 	 * guy last set his trap. Set the trap type based on this.
4733 	 */
4734 	traptype = TRAP_TYPE_PRIO;
4735 	if (restrict_mask & RES_LPTRAP)
4736 		traptype = TRAP_TYPE_NONPRIO;
4737 
4738 	/*
4739 	 * Call ctlclrtrap() to clear this out.
4740 	 */
4741 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4742 		ctl_error(CERR_BADASSOC);
4743 	ctl_flushpkt(0);
4744 }
4745 
4746 
4747 /*
4748  * ctlsettrap - called to set a trap
4749  */
4750 int
4751 ctlsettrap(
4752 	sockaddr_u *raddr,
4753 	struct interface *linter,
4754 	int traptype,
4755 	int version
4756 	)
4757 {
4758 	size_t n;
4759 	struct ctl_trap *tp;
4760 	struct ctl_trap *tptouse;
4761 
4762 	/*
4763 	 * See if we can find this trap.  If so, we only need update
4764 	 * the flags and the time.
4765 	 */
4766 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4767 		switch (traptype) {
4768 
4769 		case TRAP_TYPE_CONFIG:
4770 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4771 			break;
4772 
4773 		case TRAP_TYPE_PRIO:
4774 			if (tp->tr_flags & TRAP_CONFIGURED)
4775 				return (1); /* don't change anything */
4776 			tp->tr_flags = TRAP_INUSE;
4777 			break;
4778 
4779 		case TRAP_TYPE_NONPRIO:
4780 			if (tp->tr_flags & TRAP_CONFIGURED)
4781 				return (1); /* don't change anything */
4782 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4783 			break;
4784 		}
4785 		tp->tr_settime = current_time;
4786 		tp->tr_resets++;
4787 		return (1);
4788 	}
4789 
4790 	/*
4791 	 * First we heard of this guy.	Try to find a trap structure
4792 	 * for him to use, clearing out lesser priority guys if we
4793 	 * have to. Clear out anyone who's expired while we're at it.
4794 	 */
4795 	tptouse = NULL;
4796 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4797 		tp = &ctl_traps[n];
4798 		if ((TRAP_INUSE & tp->tr_flags) &&
4799 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4800 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4801 			tp->tr_flags = 0;
4802 			num_ctl_traps--;
4803 		}
4804 		if (!(TRAP_INUSE & tp->tr_flags)) {
4805 			tptouse = tp;
4806 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4807 			switch (traptype) {
4808 
4809 			case TRAP_TYPE_CONFIG:
4810 				if (tptouse == NULL) {
4811 					tptouse = tp;
4812 					break;
4813 				}
4814 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4815 				    !(TRAP_NONPRIO & tp->tr_flags))
4816 					break;
4817 
4818 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4819 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4820 					tptouse = tp;
4821 					break;
4822 				}
4823 				if (tptouse->tr_origtime <
4824 				    tp->tr_origtime)
4825 					tptouse = tp;
4826 				break;
4827 
4828 			case TRAP_TYPE_PRIO:
4829 				if ( TRAP_NONPRIO & tp->tr_flags) {
4830 					if (tptouse == NULL ||
4831 					    ((TRAP_INUSE &
4832 					      tptouse->tr_flags) &&
4833 					     tptouse->tr_origtime <
4834 					     tp->tr_origtime))
4835 						tptouse = tp;
4836 				}
4837 				break;
4838 
4839 			case TRAP_TYPE_NONPRIO:
4840 				break;
4841 			}
4842 		}
4843 	}
4844 
4845 	/*
4846 	 * If we don't have room for him return an error.
4847 	 */
4848 	if (tptouse == NULL)
4849 		return (0);
4850 
4851 	/*
4852 	 * Set up this structure for him.
4853 	 */
4854 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4855 	tptouse->tr_count = tptouse->tr_resets = 0;
4856 	tptouse->tr_sequence = 1;
4857 	tptouse->tr_addr = *raddr;
4858 	tptouse->tr_localaddr = linter;
4859 	tptouse->tr_version = (u_char) version;
4860 	tptouse->tr_flags = TRAP_INUSE;
4861 	if (traptype == TRAP_TYPE_CONFIG)
4862 		tptouse->tr_flags |= TRAP_CONFIGURED;
4863 	else if (traptype == TRAP_TYPE_NONPRIO)
4864 		tptouse->tr_flags |= TRAP_NONPRIO;
4865 	num_ctl_traps++;
4866 	return (1);
4867 }
4868 
4869 
4870 /*
4871  * ctlclrtrap - called to clear a trap
4872  */
4873 int
4874 ctlclrtrap(
4875 	sockaddr_u *raddr,
4876 	struct interface *linter,
4877 	int traptype
4878 	)
4879 {
4880 	register struct ctl_trap *tp;
4881 
4882 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4883 		return (0);
4884 
4885 	if (tp->tr_flags & TRAP_CONFIGURED
4886 	    && traptype != TRAP_TYPE_CONFIG)
4887 		return (0);
4888 
4889 	tp->tr_flags = 0;
4890 	num_ctl_traps--;
4891 	return (1);
4892 }
4893 
4894 
4895 /*
4896  * ctlfindtrap - find a trap given the remote and local addresses
4897  */
4898 static struct ctl_trap *
4899 ctlfindtrap(
4900 	sockaddr_u *raddr,
4901 	struct interface *linter
4902 	)
4903 {
4904 	size_t	n;
4905 
4906 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4907 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4908 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4909 		    && (linter == ctl_traps[n].tr_localaddr))
4910 			return &ctl_traps[n];
4911 
4912 	return NULL;
4913 }
4914 
4915 
4916 /*
4917  * report_event - report an event to the trappers
4918  */
4919 void
4920 report_event(
4921 	int	err,		/* error code */
4922 	struct peer *peer,	/* peer structure pointer */
4923 	const char *str		/* protostats string */
4924 	)
4925 {
4926 	char	statstr[NTP_MAXSTRLEN];
4927 	int	i;
4928 	size_t	len;
4929 
4930 	/*
4931 	 * Report the error to the protostats file, system log and
4932 	 * trappers.
4933 	 */
4934 	if (peer == NULL) {
4935 
4936 		/*
4937 		 * Discard a system report if the number of reports of
4938 		 * the same type exceeds the maximum.
4939 		 */
4940 		if (ctl_sys_last_event != (u_char)err)
4941 			ctl_sys_num_events= 0;
4942 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4943 			return;
4944 
4945 		ctl_sys_last_event = (u_char)err;
4946 		ctl_sys_num_events++;
4947 		snprintf(statstr, sizeof(statstr),
4948 		    "0.0.0.0 %04x %02x %s",
4949 		    ctlsysstatus(), err, eventstr(err));
4950 		if (str != NULL) {
4951 			len = strlen(statstr);
4952 			snprintf(statstr + len, sizeof(statstr) - len,
4953 			    " %s", str);
4954 		}
4955 		NLOG(NLOG_SYSEVENT)
4956 			msyslog(LOG_INFO, "%s", statstr);
4957 	} else {
4958 
4959 		/*
4960 		 * Discard a peer report if the number of reports of
4961 		 * the same type exceeds the maximum for that peer.
4962 		 */
4963 		const char *	src;
4964 		u_char		errlast;
4965 
4966 		errlast = (u_char)err & ~PEER_EVENT;
4967 		if (peer->last_event == errlast)
4968 			peer->num_events = 0;
4969 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4970 			return;
4971 
4972 		peer->last_event = errlast;
4973 		peer->num_events++;
4974 		if (ISREFCLOCKADR(&peer->srcadr))
4975 			src = refnumtoa(&peer->srcadr);
4976 		else
4977 			src = stoa(&peer->srcadr);
4978 
4979 		snprintf(statstr, sizeof(statstr),
4980 		    "%s %04x %02x %s", src,
4981 		    ctlpeerstatus(peer), err, eventstr(err));
4982 		if (str != NULL) {
4983 			len = strlen(statstr);
4984 			snprintf(statstr + len, sizeof(statstr) - len,
4985 			    " %s", str);
4986 		}
4987 		NLOG(NLOG_PEEREVENT)
4988 			msyslog(LOG_INFO, "%s", statstr);
4989 	}
4990 	record_proto_stats(statstr);
4991 #if DEBUG
4992 	if (debug)
4993 		printf("event at %lu %s\n", current_time, statstr);
4994 #endif
4995 
4996 	/*
4997 	 * If no trappers, return.
4998 	 */
4999 	if (num_ctl_traps <= 0)
5000 		return;
5001 
5002 	/*
5003 	 * Set up the outgoing packet variables
5004 	 */
5005 	res_opcode = CTL_OP_ASYNCMSG;
5006 	res_offset = 0;
5007 	res_async = TRUE;
5008 	res_authenticate = FALSE;
5009 	datapt = rpkt.u.data;
5010 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5011 	if (!(err & PEER_EVENT)) {
5012 		rpkt.associd = 0;
5013 		rpkt.status = htons(ctlsysstatus());
5014 
5015 		/* Include the core system variables and the list. */
5016 		for (i = 1; i <= CS_VARLIST; i++)
5017 			ctl_putsys(i);
5018 	} else {
5019 		INSIST(peer != NULL);
5020 		rpkt.associd = htons(peer->associd);
5021 		rpkt.status = htons(ctlpeerstatus(peer));
5022 
5023 		/* Dump it all. Later, maybe less. */
5024 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5025 			ctl_putpeer(i, peer);
5026 #ifdef REFCLOCK
5027 		/*
5028 		 * for clock exception events: add clock variables to
5029 		 * reflect info on exception
5030 		 */
5031 		if (err == PEVNT_CLOCK) {
5032 			struct refclockstat cs;
5033 			struct ctl_var *kv;
5034 
5035 			cs.kv_list = NULL;
5036 			refclock_control(&peer->srcadr, NULL, &cs);
5037 
5038 			ctl_puthex("refclockstatus",
5039 				   ctlclkstatus(&cs));
5040 
5041 			for (i = 1; i <= CC_MAXCODE; i++)
5042 				ctl_putclock(i, &cs, FALSE);
5043 			for (kv = cs.kv_list;
5044 			     kv != NULL && !(EOV & kv->flags);
5045 			     kv++)
5046 				if (DEF & kv->flags)
5047 					ctl_putdata(kv->text,
5048 						    strlen(kv->text),
5049 						    FALSE);
5050 			free_varlist(cs.kv_list);
5051 		}
5052 #endif /* REFCLOCK */
5053 	}
5054 
5055 	/*
5056 	 * We're done, return.
5057 	 */
5058 	ctl_flushpkt(0);
5059 }
5060 
5061 
5062 /*
5063  * mprintf_event - printf-style varargs variant of report_event()
5064  */
5065 int
5066 mprintf_event(
5067 	int		evcode,		/* event code */
5068 	struct peer *	p,		/* may be NULL */
5069 	const char *	fmt,		/* msnprintf format */
5070 	...
5071 	)
5072 {
5073 	va_list	ap;
5074 	int	rc;
5075 	char	msg[512];
5076 
5077 	va_start(ap, fmt);
5078 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5079 	va_end(ap);
5080 	report_event(evcode, p, msg);
5081 
5082 	return rc;
5083 }
5084 
5085 
5086 /*
5087  * ctl_clr_stats - clear stat counters
5088  */
5089 void
5090 ctl_clr_stats(void)
5091 {
5092 	ctltimereset = current_time;
5093 	numctlreq = 0;
5094 	numctlbadpkts = 0;
5095 	numctlresponses = 0;
5096 	numctlfrags = 0;
5097 	numctlerrors = 0;
5098 	numctlfrags = 0;
5099 	numctltooshort = 0;
5100 	numctlinputresp = 0;
5101 	numctlinputfrag = 0;
5102 	numctlinputerr = 0;
5103 	numctlbadoffset = 0;
5104 	numctlbadversion = 0;
5105 	numctldatatooshort = 0;
5106 	numctlbadop = 0;
5107 	numasyncmsgs = 0;
5108 }
5109 
5110 static u_short
5111 count_var(
5112 	const struct ctl_var *k
5113 	)
5114 {
5115 	u_int c;
5116 
5117 	if (NULL == k)
5118 		return 0;
5119 
5120 	c = 0;
5121 	while (!(EOV & (k++)->flags))
5122 		c++;
5123 
5124 	ENSURE(c <= USHRT_MAX);
5125 	return (u_short)c;
5126 }
5127 
5128 
5129 char *
5130 add_var(
5131 	struct ctl_var **kv,
5132 	u_long size,
5133 	u_short def
5134 	)
5135 {
5136 	u_short		c;
5137 	struct ctl_var *k;
5138 	char *		buf;
5139 
5140 	c = count_var(*kv);
5141 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5142 	k = *kv;
5143 	buf = emalloc(size);
5144 	k[c].code  = c;
5145 	k[c].text  = buf;
5146 	k[c].flags = def;
5147 	k[c + 1].code  = 0;
5148 	k[c + 1].text  = NULL;
5149 	k[c + 1].flags = EOV;
5150 
5151 	return buf;
5152 }
5153 
5154 
5155 void
5156 set_var(
5157 	struct ctl_var **kv,
5158 	const char *data,
5159 	u_long size,
5160 	u_short def
5161 	)
5162 {
5163 	struct ctl_var *k;
5164 	const char *s;
5165 	const char *t;
5166 	char *td;
5167 
5168 	if (NULL == data || !size)
5169 		return;
5170 
5171 	k = *kv;
5172 	if (k != NULL) {
5173 		while (!(EOV & k->flags)) {
5174 			if (NULL == k->text)	{
5175 				td = emalloc(size);
5176 				memcpy(td, data, size);
5177 				k->text = td;
5178 				k->flags = def;
5179 				return;
5180 			} else {
5181 				s = data;
5182 				t = k->text;
5183 				while (*t != '=' && *s == *t) {
5184 					s++;
5185 					t++;
5186 				}
5187 				if (*s == *t && ((*t == '=') || !*t)) {
5188 					td = erealloc((void *)(intptr_t)k->text, size);
5189 					memcpy(td, data, size);
5190 					k->text = td;
5191 					k->flags = def;
5192 					return;
5193 				}
5194 			}
5195 			k++;
5196 		}
5197 	}
5198 	td = add_var(kv, size, def);
5199 	memcpy(td, data, size);
5200 }
5201 
5202 
5203 void
5204 set_sys_var(
5205 	const char *data,
5206 	u_long size,
5207 	u_short def
5208 	)
5209 {
5210 	set_var(&ext_sys_var, data, size, def);
5211 }
5212 
5213 
5214 /*
5215  * get_ext_sys_var() retrieves the value of a user-defined variable or
5216  * NULL if the variable has not been setvar'd.
5217  */
5218 const char *
5219 get_ext_sys_var(const char *tag)
5220 {
5221 	struct ctl_var *	v;
5222 	size_t			c;
5223 	const char *		val;
5224 
5225 	val = NULL;
5226 	c = strlen(tag);
5227 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5228 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5229 			if ('=' == v->text[c]) {
5230 				val = v->text + c + 1;
5231 				break;
5232 			} else if ('\0' == v->text[c]) {
5233 				val = "";
5234 				break;
5235 			}
5236 		}
5237 	}
5238 
5239 	return val;
5240 }
5241 
5242 
5243 void
5244 free_varlist(
5245 	struct ctl_var *kv
5246 	)
5247 {
5248 	struct ctl_var *k;
5249 	if (kv) {
5250 		for (k = kv; !(k->flags & EOV); k++)
5251 			free((void *)(intptr_t)k->text);
5252 		free((void *)kv);
5253 	}
5254 }
5255