xref: /netbsd-src/external/bsd/ntp/dist/ntpd/ntp_control.c (revision 8e33eff89e26cf71871ead62f0d5063e1313c33a)
1 /*	$NetBSD: ntp_control.c,v 1.24 2024/08/18 20:47:17 christos Exp $	*/
2 
3 /*
4  * ntp_control.c - respond to mode 6 control messages and send async
5  *		   traps.  Provides service to ntpq and others.
6  */
7 
8 #ifdef HAVE_CONFIG_H
9 # include <config.h>
10 #endif
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <signal.h>
15 #include <sys/stat.h>
16 #ifdef HAVE_NETINET_IN_H
17 # include <netinet/in.h>
18 #endif
19 #include <arpa/inet.h>
20 
21 #include "ntpd.h"
22 #include "ntp_io.h"
23 #include "ntp_refclock.h"
24 #include "ntp_control.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 #include "ntp_config.h"
28 #include "ntp_crypto.h"
29 #include "ntp_assert.h"
30 #include "ntp_leapsec.h"
31 #include "timexsup.h"
32 
33 #include <rc_cmdlength.h>
34 #ifdef KERNEL_PLL
35 # include "ntp_syscall.h"
36 #endif
37 
38 /*
39  * Structure to hold request procedure information
40  */
41 
42 struct ctl_proc {
43 	short control_code;		/* defined request code */
44 #define NO_REQUEST	(-1)
45 	u_short flags;			/* flags word */
46 	/* Only one flag.  Authentication required or not. */
47 #define NOAUTH	0
48 #define AUTH	1
49 	void (*handler) (struct recvbuf *, int); /* handle request */
50 };
51 
52 
53 /*
54  * Request processing routines
55  */
56 static	void	ctl_error	(u_char);
57 #ifdef REFCLOCK
58 static	u_short ctlclkstatus	(struct refclockstat *);
59 #endif
60 static	void	ctl_flushpkt	(u_char);
61 static	void	ctl_putdata	(const char *, unsigned int, int);
62 static	void	ctl_putstr	(const char *, const char *, size_t);
63 static	void	ctl_putdblf	(const char *, int, int, double);
64 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67 					    FPTOD(sfp))
68 static	void	ctl_putuint	(const char *, u_long);
69 static	void	ctl_puthex	(const char *, u_long);
70 static	void	ctl_putint	(const char *, long);
71 static	void	ctl_putts	(const char *, l_fp *);
72 static	void	ctl_putadr	(const char *, u_int32,
73 				 sockaddr_u *);
74 static	void	ctl_putrefid	(const char *, u_int32);
75 static	void	ctl_putarray	(const char *, double *, int);
76 static	void	ctl_putsys	(int);
77 static	void	ctl_putpeer	(int, struct peer *);
78 static	void	ctl_putfs	(const char *, tstamp_t);
79 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
80 #ifdef REFCLOCK
81 static	void	ctl_putclock	(int, struct refclockstat *, int);
82 #endif	/* REFCLOCK */
83 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84 					  char **);
85 static	u_short	count_var	(const struct ctl_var *);
86 static	void	control_unspec	(struct recvbuf *, int);
87 static	void	read_status	(struct recvbuf *, int);
88 static	void	read_sysvars	(void);
89 static	void	read_peervars	(void);
90 static	void	read_variables	(struct recvbuf *, int);
91 static	void	write_variables (struct recvbuf *, int);
92 static	void	read_clockstatus(struct recvbuf *, int);
93 static	void	write_clockstatus(struct recvbuf *, int);
94 static	void	set_trap	(struct recvbuf *, int);
95 static	void	save_config	(struct recvbuf *, int);
96 static	void	configure	(struct recvbuf *, int);
97 static	void	send_mru_entry	(mon_entry *, int);
98 static	void	send_random_tag_value(int);
99 static	void	read_mru_list	(struct recvbuf *, int);
100 static	void	send_ifstats_entry(endpt *, u_int);
101 static	void	read_ifstats	(struct recvbuf *);
102 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
103 					  restrict_u *, int);
104 static	void	send_restrict_entry(restrict_u *, int, u_int);
105 static	void	send_restrict_list(restrict_u *, int, u_int *);
106 static	void	read_addr_restrictions(struct recvbuf *);
107 static	void	read_ordlist	(struct recvbuf *, int);
108 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
109 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
110 static	int	validate_nonce	(const char *, struct recvbuf *);
111 static	void	req_nonce	(struct recvbuf *, int);
112 static	void	unset_trap	(struct recvbuf *, int);
113 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
114 				     endpt *);
115 
116 int/*BOOL*/ is_safe_filename(const char * name);
117 
118 static const struct ctl_proc control_codes[] = {
119 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
120 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
121 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
122 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
123 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
124 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
125 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
126 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
127 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
128 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
129 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
130 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
131 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
132 	{ NO_REQUEST,			0,	NULL }
133 };
134 
135 /*
136  * System variables we understand
137  */
138 #define	CS_LEAP			1
139 #define	CS_STRATUM		2
140 #define	CS_PRECISION		3
141 #define	CS_ROOTDELAY		4
142 #define	CS_ROOTDISPERSION	5
143 #define	CS_REFID		6
144 #define	CS_REFTIME		7
145 #define	CS_POLL			8
146 #define	CS_PEERID		9
147 #define	CS_OFFSET		10
148 #define	CS_DRIFT		11
149 #define	CS_JITTER		12
150 #define	CS_ERROR		13
151 #define	CS_CLOCK		14
152 #define	CS_PROCESSOR		15
153 #define	CS_SYSTEM		16
154 #define	CS_VERSION		17
155 #define	CS_STABIL		18
156 #define	CS_VARLIST		19
157 #define	CS_TAI			20
158 #define	CS_LEAPTAB		21
159 #define	CS_LEAPEND		22
160 #define	CS_RATE			23
161 #define	CS_MRU_ENABLED		24
162 #define	CS_MRU_DEPTH		25
163 #define	CS_MRU_DEEPEST		26
164 #define	CS_MRU_MINDEPTH		27
165 #define	CS_MRU_MAXAGE		28
166 #define	CS_MRU_MAXDEPTH		29
167 #define	CS_MRU_MEM		30
168 #define	CS_MRU_MAXMEM		31
169 #define	CS_SS_UPTIME		32
170 #define	CS_SS_RESET		33
171 #define	CS_SS_RECEIVED		34
172 #define	CS_SS_THISVER		35
173 #define	CS_SS_OLDVER		36
174 #define	CS_SS_BADFORMAT		37
175 #define	CS_SS_BADAUTH		38
176 #define	CS_SS_DECLINED		39
177 #define	CS_SS_RESTRICTED	40
178 #define	CS_SS_LIMITED		41
179 #define	CS_SS_KODSENT		42
180 #define	CS_SS_PROCESSED		43
181 #define	CS_SS_LAMPORT		44
182 #define	CS_SS_TSROUNDING	45
183 #define	CS_PEERADR		46
184 #define	CS_PEERMODE		47
185 #define	CS_BCASTDELAY		48
186 #define	CS_AUTHDELAY		49
187 #define	CS_AUTHKEYS		50
188 #define	CS_AUTHFREEK		51
189 #define	CS_AUTHKLOOKUPS		52
190 #define	CS_AUTHKNOTFOUND	53
191 #define	CS_AUTHKUNCACHED	54
192 #define	CS_AUTHKEXPIRED		55
193 #define	CS_AUTHENCRYPTS		56
194 #define	CS_AUTHDECRYPTS		57
195 #define	CS_AUTHRESET		58
196 #define	CS_K_OFFSET		59
197 #define	CS_K_FREQ		60
198 #define	CS_K_MAXERR		61
199 #define	CS_K_ESTERR		62
200 #define	CS_K_STFLAGS		63
201 #define	CS_K_TIMECONST		64
202 #define	CS_K_PRECISION		65
203 #define	CS_K_FREQTOL		66
204 #define	CS_K_PPS_FREQ		67
205 #define	CS_K_PPS_STABIL		68
206 #define	CS_K_PPS_JITTER		69
207 #define	CS_K_PPS_CALIBDUR	70
208 #define	CS_K_PPS_CALIBS		71
209 #define	CS_K_PPS_CALIBERRS	72
210 #define	CS_K_PPS_JITEXC		73
211 #define	CS_K_PPS_STBEXC		74
212 #define	CS_KERN_FIRST		CS_K_OFFSET
213 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
214 #define	CS_IOSTATS_RESET	75
215 #define	CS_TOTAL_RBUF		76
216 #define	CS_FREE_RBUF		77
217 #define	CS_USED_RBUF		78
218 #define	CS_RBUF_LOWATER		79
219 #define	CS_IO_DROPPED		80
220 #define	CS_IO_IGNORED		81
221 #define	CS_IO_RECEIVED		82
222 #define	CS_IO_SENT		83
223 #define	CS_IO_SENDFAILED	84
224 #define	CS_IO_WAKEUPS		85
225 #define	CS_IO_GOODWAKEUPS	86
226 #define	CS_TIMERSTATS_RESET	87
227 #define	CS_TIMER_OVERRUNS	88
228 #define	CS_TIMER_XMTS		89
229 #define	CS_FUZZ			90
230 #define	CS_WANDER_THRESH	91
231 #define	CS_LEAPSMEARINTV	92
232 #define	CS_LEAPSMEAROFFS	93
233 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
234 #ifdef AUTOKEY
235 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
236 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
237 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
238 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
239 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
240 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
241 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
242 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
243 #define	CS_MAXCODE		CS_DIGEST
244 #else	/* !AUTOKEY follows */
245 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
246 #endif	/* !AUTOKEY */
247 
248 /*
249  * Peer variables we understand
250  */
251 #define	CP_CONFIG		1
252 #define	CP_AUTHENABLE		2
253 #define	CP_AUTHENTIC		3
254 #define	CP_SRCADR		4
255 #define	CP_SRCPORT		5
256 #define	CP_DSTADR		6
257 #define	CP_DSTPORT		7
258 #define	CP_LEAP			8
259 #define	CP_HMODE		9
260 #define	CP_STRATUM		10
261 #define	CP_PPOLL		11
262 #define	CP_HPOLL		12
263 #define	CP_PRECISION		13
264 #define	CP_ROOTDELAY		14
265 #define	CP_ROOTDISPERSION	15
266 #define	CP_REFID		16
267 #define	CP_REFTIME		17
268 #define	CP_ORG			18
269 #define	CP_REC			19
270 #define	CP_XMT			20
271 #define	CP_REACH		21
272 #define	CP_UNREACH		22
273 #define	CP_TIMER		23
274 #define	CP_DELAY		24
275 #define	CP_OFFSET		25
276 #define	CP_JITTER		26
277 #define	CP_DISPERSION		27
278 #define	CP_KEYID		28
279 #define	CP_FILTDELAY		29
280 #define	CP_FILTOFFSET		30
281 #define	CP_PMODE		31
282 #define	CP_RECEIVED		32
283 #define	CP_SENT			33
284 #define	CP_FILTERROR		34
285 #define	CP_FLASH		35
286 #define	CP_TTL			36
287 #define	CP_VARLIST		37
288 #define	CP_IN			38
289 #define	CP_OUT			39
290 #define	CP_RATE			40
291 #define	CP_BIAS			41
292 #define	CP_SRCHOST		42
293 #define	CP_TIMEREC		43
294 #define	CP_TIMEREACH		44
295 #define	CP_BADAUTH		45
296 #define	CP_BOGUSORG		46
297 #define	CP_OLDPKT		47
298 #define	CP_SELDISP		48
299 #define	CP_SELBROKEN		49
300 #define	CP_CANDIDATE		50
301 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
302 #ifdef AUTOKEY
303 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
304 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
305 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
307 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
308 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
309 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
310 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
311 #define	CP_MAXCODE		CP_IDENT
312 #else	/* !AUTOKEY follows */
313 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
314 #endif	/* !AUTOKEY */
315 
316 /*
317  * Clock variables we understand
318  */
319 #define	CC_TYPE		1
320 #define	CC_TIMECODE	2
321 #define	CC_POLL		3
322 #define	CC_NOREPLY	4
323 #define	CC_BADFORMAT	5
324 #define	CC_BADDATA	6
325 #define	CC_FUDGETIME1	7
326 #define	CC_FUDGETIME2	8
327 #define	CC_FUDGEVAL1	9
328 #define	CC_FUDGEVAL2	10
329 #define	CC_FLAGS	11
330 #define	CC_DEVICE	12
331 #define	CC_VARLIST	13
332 #define	CC_FUDGEMINJIT	14
333 #define	CC_MAXCODE	CC_FUDGEMINJIT
334 
335 /*
336  * System variable values. The array can be indexed by the variable
337  * index to find the textual name.
338  */
339 static const struct ctl_var sys_var[] = {
340 	{ 0,		PADDING, "" },		/* 0 */
341 	{ CS_LEAP,	RW, "leap" },		/* 1 */
342 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
343 	{ CS_PRECISION, RO, "precision" },	/* 3 */
344 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
345 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
346 	{ CS_REFID,	RO, "refid" },		/* 6 */
347 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
348 	{ CS_POLL,	RO, "tc" },		/* 8 */
349 	{ CS_PEERID,	RO, "peer" },		/* 9 */
350 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
351 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
352 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
353 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
354 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
355 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
356 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
357 	{ CS_VERSION,	RO, "version" },	/* 17 */
358 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
359 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
360 	{ CS_TAI,	RO, "tai" },		/* 20 */
361 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
362 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
363 	{ CS_RATE,	RO, "mintc" },		/* 23 */
364 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
365 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
366 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
367 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
368 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
369 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
370 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
371 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
372 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
373 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
374 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
375 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
376 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
377 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
378 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
379 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
380 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
381 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
382 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
383 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
384 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
385 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
386 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
387 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
388 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
389 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
390 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
391 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
392 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
393 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
394 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
395 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
396 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
397 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
398 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
399 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
400 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
401 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
402 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
403 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
404 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
405 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
406 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
407 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
408 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
409 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
410 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
411 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
412 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
413 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
414 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
415 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
416 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
417 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
418 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
419 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
420 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
421 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
422 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
423 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
424 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
425 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
426 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
427 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
428 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
429 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
430 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
431 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
432 
433 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
434 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
435 
436 #ifdef AUTOKEY
437 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
438 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
439 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
440 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
441 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
442 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
443 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
444 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
445 #endif	/* AUTOKEY */
446 	{ 0,		EOV, "" }		/* 94/102 */
447 };
448 
449 static struct ctl_var *ext_sys_var = NULL;
450 
451 /*
452  * System variables we print by default (in fuzzball order,
453  * more-or-less)
454  */
455 static const u_char def_sys_var[] = {
456 	CS_VERSION,
457 	CS_PROCESSOR,
458 	CS_SYSTEM,
459 	CS_LEAP,
460 	CS_STRATUM,
461 	CS_PRECISION,
462 	CS_ROOTDELAY,
463 	CS_ROOTDISPERSION,
464 	CS_REFID,
465 	CS_REFTIME,
466 	CS_CLOCK,
467 	CS_PEERID,
468 	CS_POLL,
469 	CS_RATE,
470 	CS_OFFSET,
471 	CS_DRIFT,
472 	CS_JITTER,
473 	CS_ERROR,
474 	CS_STABIL,
475 	CS_TAI,
476 	CS_LEAPTAB,
477 	CS_LEAPEND,
478 	CS_LEAPSMEARINTV,
479 	CS_LEAPSMEAROFFS,
480 #ifdef AUTOKEY
481 	CS_HOST,
482 	CS_IDENT,
483 	CS_FLAGS,
484 	CS_DIGEST,
485 	CS_SIGNATURE,
486 	CS_PUBLIC,
487 	CS_CERTIF,
488 #endif	/* AUTOKEY */
489 	0
490 };
491 
492 
493 /*
494  * Peer variable list
495  */
496 static const struct ctl_var peer_var[] = {
497 	{ 0,		PADDING, "" },		/* 0 */
498 	{ CP_CONFIG,	RO, "config" },		/* 1 */
499 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
500 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
501 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
502 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
503 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
504 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
505 	{ CP_LEAP,	RO, "leap" },		/* 8 */
506 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
507 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
508 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
509 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
510 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
511 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
512 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
513 	{ CP_REFID,	RO, "refid" },		/* 16 */
514 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
515 	{ CP_ORG,	RO, "org" },		/* 18 */
516 	{ CP_REC,	RO, "rec" },		/* 19 */
517 	{ CP_XMT,	RO, "xleave" },		/* 20 */
518 	{ CP_REACH,	RO, "reach" },		/* 21 */
519 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
520 	{ CP_TIMER,	RO, "timer" },		/* 23 */
521 	{ CP_DELAY,	RO, "delay" },		/* 24 */
522 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
523 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
524 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
525 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
526 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
527 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
528 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
529 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
530 	{ CP_SENT,	RO, "sent" },		/* 33 */
531 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
532 	{ CP_FLASH,	RO, "flash" },		/* 35 */
533 	{ CP_TTL,	RO, "ttl" },		/* 36 */
534 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
535 	{ CP_IN,	RO, "in" },		/* 38 */
536 	{ CP_OUT,	RO, "out" },		/* 39 */
537 	{ CP_RATE,	RO, "headway" },	/* 40 */
538 	{ CP_BIAS,	RO, "bias" },		/* 41 */
539 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
540 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
541 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
542 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
543 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
544 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
545 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
546 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
547 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
548 #ifdef AUTOKEY
549 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
550 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
551 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
552 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
553 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
554 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
555 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
556 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
557 #endif	/* AUTOKEY */
558 	{ 0,		EOV, "" }		/* 50/58 */
559 };
560 
561 
562 /*
563  * Peer variables we print by default
564  */
565 static const u_char def_peer_var[] = {
566 	CP_SRCADR,
567 	CP_SRCPORT,
568 	CP_SRCHOST,
569 	CP_DSTADR,
570 	CP_DSTPORT,
571 	CP_OUT,
572 	CP_IN,
573 	CP_LEAP,
574 	CP_STRATUM,
575 	CP_PRECISION,
576 	CP_ROOTDELAY,
577 	CP_ROOTDISPERSION,
578 	CP_REFID,
579 	CP_REFTIME,
580 	CP_REC,
581 	CP_REACH,
582 	CP_UNREACH,
583 	CP_HMODE,
584 	CP_PMODE,
585 	CP_HPOLL,
586 	CP_PPOLL,
587 	CP_RATE,
588 	CP_FLASH,
589 	CP_KEYID,
590 	CP_TTL,
591 	CP_OFFSET,
592 	CP_DELAY,
593 	CP_DISPERSION,
594 	CP_JITTER,
595 	CP_XMT,
596 	CP_BIAS,
597 	CP_FILTDELAY,
598 	CP_FILTOFFSET,
599 	CP_FILTERROR,
600 #ifdef AUTOKEY
601 	CP_HOST,
602 	CP_FLAGS,
603 	CP_SIGNATURE,
604 	CP_VALID,
605 	CP_INITSEQ,
606 	CP_IDENT,
607 #endif	/* AUTOKEY */
608 	0
609 };
610 
611 
612 #ifdef REFCLOCK
613 /*
614  * Clock variable list
615  */
616 static const struct ctl_var clock_var[] = {
617 	{ 0,		PADDING, "" },		/* 0 */
618 	{ CC_TYPE,	RO, "type" },		/* 1 */
619 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
620 	{ CC_POLL,	RO, "poll" },		/* 3 */
621 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
622 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
623 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
624 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
625 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
626 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
627 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
628 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
629 	{ CC_DEVICE,	RO, "device" },		/* 12 */
630 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
631 	{ CC_FUDGEMINJIT, RO, "minjitter" },	/* 14 */
632 	{ 0,		EOV, ""  }		/* 15 */
633 };
634 
635 
636 /*
637  * Clock variables printed by default
638  */
639 static const u_char def_clock_var[] = {
640 	CC_DEVICE,
641 	CC_TYPE,	/* won't be output if device = known */
642 	CC_TIMECODE,
643 	CC_POLL,
644 	CC_NOREPLY,
645 	CC_BADFORMAT,
646 	CC_BADDATA,
647 	CC_FUDGEMINJIT,
648 	CC_FUDGETIME1,
649 	CC_FUDGETIME2,
650 	CC_FUDGEVAL1,
651 	CC_FUDGEVAL2,
652 	CC_FLAGS,
653 	0
654 };
655 #endif
656 
657 /*
658  * MRU string constants shared by send_mru_entry() and read_mru_list().
659  */
660 static const char addr_fmt[] =		"addr.%d";
661 static const char last_fmt[] =		"last.%d";
662 
663 /*
664  * System and processor definitions.
665  */
666 #ifndef HAVE_UNAME
667 # ifndef STR_SYSTEM
668 #  define		STR_SYSTEM	"UNIX"
669 # endif
670 # ifndef STR_PROCESSOR
671 #  define		STR_PROCESSOR	"unknown"
672 # endif
673 
674 static const char str_system[] = STR_SYSTEM;
675 static const char str_processor[] = STR_PROCESSOR;
676 #else
677 # include <sys/utsname.h>
678 static struct utsname utsnamebuf;
679 #endif /* HAVE_UNAME */
680 
681 /*
682  * Trap structures. We only allow a few of these, and send a copy of
683  * each async message to each live one. Traps time out after an hour, it
684  * is up to the trap receipient to keep resetting it to avoid being
685  * timed out.
686  */
687 /* ntp_request.c */
688 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
689 int num_ctl_traps;
690 
691 /*
692  * Type bits, for ctlsettrap() call.
693  */
694 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
695 #define TRAP_TYPE_PRIO		1	/* priority trap */
696 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
697 
698 
699 /*
700  * List relating reference clock types to control message time sources.
701  * Index by the reference clock type. This list will only be used iff
702  * the reference clock driver doesn't set peer->sstclktype to something
703  * different than CTL_SST_TS_UNSPEC.
704  */
705 #ifdef REFCLOCK
706 static const u_char clocktypes[] = {
707 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
708 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
709 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
710 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
711 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
712 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
713 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
714 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
715 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
716 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
717 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
718 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
719 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
720 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
721 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
722 	CTL_SST_TS_NTP,		/* not used (15) */
723 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
725 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
726 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
727 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
728 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
729 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
730 	CTL_SST_TS_NTP,		/* not used (23) */
731 	CTL_SST_TS_NTP,		/* not used (24) */
732 	CTL_SST_TS_NTP,		/* not used (25) */
733 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
734 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
735 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
736 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
737 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
738 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
739 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
740 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
741 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
742 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
743 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
744 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
745 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
746 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
747 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
748 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
749 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
750 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
751 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
752 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
753 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
754 };
755 #endif  /* REFCLOCK */
756 
757 
758 /*
759  * Keyid used for authenticating write requests.
760  */
761 keyid_t ctl_auth_keyid;
762 
763 /*
764  * We keep track of the last error reported by the system internally
765  */
766 static	u_char ctl_sys_last_event;
767 static	u_char ctl_sys_num_events;
768 
769 
770 /*
771  * Statistic counters to keep track of requests and responses.
772  */
773 u_long ctltimereset;		/* time stats reset */
774 u_long numctlreq;		/* number of requests we've received */
775 u_long numctlbadpkts;		/* number of bad control packets */
776 u_long numctlresponses;		/* number of resp packets sent with data */
777 u_long numctlfrags;		/* number of fragments sent */
778 u_long numctlerrors;		/* number of error responses sent */
779 u_long numctltooshort;		/* number of too short input packets */
780 u_long numctlinputresp;		/* number of responses on input */
781 u_long numctlinputfrag;		/* number of fragments on input */
782 u_long numctlinputerr;		/* number of input pkts with err bit set */
783 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
784 u_long numctlbadversion;	/* number of input pkts with unknown version */
785 u_long numctldatatooshort;	/* data too short for count */
786 u_long numctlbadop;		/* bad op code found in packet */
787 u_long numasyncmsgs;		/* number of async messages we've sent */
788 
789 /*
790  * Response packet used by these routines. Also some state information
791  * so that we can handle packet formatting within a common set of
792  * subroutines.  Note we try to enter data in place whenever possible,
793  * but the need to set the more bit correctly means we occasionally
794  * use the extra buffer and copy.
795  */
796 static struct ntp_control rpkt;
797 static u_char	res_version;
798 static u_char	res_opcode;
799 static associd_t res_associd;
800 static u_short	res_frags;	/* datagrams in this response */
801 static int	res_offset;	/* offset of payload in response */
802 static u_char * datapt;
803 static u_char * dataend;
804 static int	datalinelen;
805 static int	datasent;	/* flag to avoid initial ", " */
806 static int	datanotbinflag;
807 static sockaddr_u *rmt_addr;
808 static endpt *lcl_inter;
809 
810 static u_char	res_authenticate;
811 static u_char	res_authokay;
812 static keyid_t	res_keyid;
813 
814 #define MAXDATALINELEN	(72)
815 
816 static u_char	res_async;	/* sending async trap response? */
817 
818 /*
819  * Pointers for saving state when decoding request packets
820  */
821 static	char *reqpt;
822 static	char *reqend;
823 
824 /*
825  * init_control - initialize request data
826  */
827 void
828 init_control(void)
829 {
830 	size_t i;
831 
832 #ifdef HAVE_UNAME
833 	uname(&utsnamebuf);
834 #endif /* HAVE_UNAME */
835 
836 	ctl_clr_stats();
837 
838 	ctl_auth_keyid = 0;
839 	ctl_sys_last_event = EVNT_UNSPEC;
840 	ctl_sys_num_events = 0;
841 
842 	num_ctl_traps = 0;
843 	for (i = 0; i < COUNTOF(ctl_traps); i++)
844 		ctl_traps[i].tr_flags = 0;
845 }
846 
847 
848 /*
849  * ctl_error - send an error response for the current request
850  */
851 static void
852 ctl_error(
853 	u_char errcode
854 	)
855 {
856 	size_t		maclen;
857 
858 	numctlerrors++;
859 	DPRINTF(3, ("sending control error %u\n", errcode));
860 
861 	/*
862 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
863 	 * have already been filled in.
864 	 */
865 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
866 			(res_opcode & CTL_OP_MASK);
867 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
868 	rpkt.count = 0;
869 
870 	/*
871 	 * send packet and bump counters
872 	 */
873 	if (res_authenticate && sys_authenticate) {
874 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
875 				     CTL_HEADER_LEN);
876 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
877 			CTL_HEADER_LEN + maclen);
878 	} else
879 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
880 			CTL_HEADER_LEN);
881 }
882 
883 int/*BOOL*/
884 is_safe_filename(const char * name)
885 {
886 	/* We need a strict validation of filenames we should write: The
887 	 * daemon might run with special permissions and is remote
888 	 * controllable, so we better take care what we allow as file
889 	 * name!
890 	 *
891 	 * The first character must be digit or a letter from the ASCII
892 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
893 	 * must be from [-._+A-Za-z0-9].
894 	 *
895 	 * We do not trust the character classification much here: Since
896 	 * the NTP protocol makes no provisions for UTF-8 or local code
897 	 * pages, we strictly require the 7bit ASCII code page.
898 	 *
899 	 * The following table is a packed bit field of 128 two-bit
900 	 * groups. The LSB in each group tells us if a character is
901 	 * acceptable at the first position, the MSB if the character is
902 	 * accepted at any other position.
903 	 *
904 	 * This does not ensure that the file name is syntactically
905 	 * correct (multiple dots will not work with VMS...) but it will
906 	 * exclude potential globbing bombs and directory traversal. It
907 	 * also rules out drive selection. (For systems that have this
908 	 * notion, like Windows or VMS.)
909 	 */
910 	static const uint32_t chclass[8] = {
911 		0x00000000, 0x00000000,
912 		0x28800000, 0x000FFFFF,
913 		0xFFFFFFFC, 0xC03FFFFF,
914 		0xFFFFFFFC, 0x003FFFFF
915 	};
916 
917 	u_int widx, bidx, mask;
918 	if ( ! (name && *name))
919 		return FALSE;
920 
921 	mask = 1u;
922 	while (0 != (widx = (u_char)*name++)) {
923 		bidx = (widx & 15) << 1;
924 		widx = widx >> 4;
925 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
926 			return FALSE;
927 		if (0 == ((chclass[widx] >> bidx) & mask))
928 			return FALSE;
929 		mask = 2u;
930 	}
931 	return TRUE;
932 }
933 
934 
935 /*
936  * save_config - Implements ntpq -c "saveconfig <filename>"
937  *		 Writes current configuration including any runtime
938  *		 changes by ntpq's :config or config-from-file
939  *
940  * Note: There should be no buffer overflow or truncation in the
941  * processing of file names -- both cause security problems. This is bit
942  * painful to code but essential here.
943  */
944 void
945 save_config(
946 	struct recvbuf *rbufp,
947 	int restrict_mask
948 	)
949 {
950 	/* block directory traversal by searching for characters that
951 	 * indicate directory components in a file path.
952 	 *
953 	 * Conceptually we should be searching for DIRSEP in filename,
954 	 * however Windows actually recognizes both forward and
955 	 * backslashes as equivalent directory separators at the API
956 	 * level.  On POSIX systems we could allow '\\' but such
957 	 * filenames are tricky to manipulate from a shell, so just
958 	 * reject both types of slashes on all platforms.
959 	 */
960 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
961 	static const char * illegal_in_filename =
962 #if defined(VMS)
963 	    ":[]"	/* do not allow drive and path components here */
964 #elif defined(SYS_WINNT)
965 	    ":\\/"	/* path and drive separators */
966 #else
967 	    "\\/"	/* separator and critical char for POSIX */
968 #endif
969 	    ;
970 	char reply[128];
971 #ifdef SAVECONFIG
972 	static const char savedconfig_eq[] = "savedconfig=";
973 
974 	/* Build a safe open mode from the available mode flags. We want
975 	 * to create a new file and write it in text mode (when
976 	 * applicable -- only Windows does this...)
977 	 */
978 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
979 #  if defined(O_EXCL)		/* posix, vms */
980 	    | O_EXCL
981 #  elif defined(_O_EXCL)	/* windows is alway very special... */
982 	    | _O_EXCL
983 #  endif
984 #  if defined(_O_TEXT)		/* windows, again */
985 	    | _O_TEXT
986 #endif
987 	    ;
988 
989 	char filespec[128];
990 	char filename[128];
991 	char fullpath[512];
992 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
993 	time_t now;
994 	int fd;
995 	FILE *fptr;
996 	int prc;
997 	size_t reqlen;
998 #endif
999 
1000 	if (RES_NOMODIFY & restrict_mask) {
1001 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1002 		ctl_flushpkt(0);
1003 		NLOG(NLOG_SYSINFO)
1004 			msyslog(LOG_NOTICE,
1005 				"saveconfig from %s rejected due to nomodify restriction",
1006 				stoa(&rbufp->recv_srcadr));
1007 		sys_restricted++;
1008 		return;
1009 	}
1010 
1011 #ifdef SAVECONFIG
1012 	if (NULL == saveconfigdir) {
1013 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1014 		ctl_flushpkt(0);
1015 		NLOG(NLOG_SYSINFO)
1016 			msyslog(LOG_NOTICE,
1017 				"saveconfig from %s rejected, no saveconfigdir",
1018 				stoa(&rbufp->recv_srcadr));
1019 		return;
1020 	}
1021 
1022 	/* The length checking stuff gets serious. Do not assume a NUL
1023 	 * byte can be found, but if so, use it to calculate the needed
1024 	 * buffer size. If the available buffer is too short, bail out;
1025 	 * likewise if there is no file spec. (The latter will not
1026 	 * happen when using NTPQ, but there are other ways to craft a
1027 	 * network packet!)
1028 	 */
1029 	reqlen = (size_t)(reqend - reqpt);
1030 	if (0 != reqlen) {
1031 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1032 		if (NULL != nulpos)
1033 			reqlen = (size_t)(nulpos - reqpt);
1034 	}
1035 	if (0 == reqlen)
1036 		return;
1037 	if (reqlen >= sizeof(filespec)) {
1038 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1039 			   (u_int)sizeof(filespec));
1040 		ctl_flushpkt(0);
1041 		msyslog(LOG_NOTICE,
1042 			"saveconfig exceeded maximum raw name length from %s",
1043 			stoa(&rbufp->recv_srcadr));
1044 		return;
1045 	}
1046 
1047 	/* copy data directly as we exactly know the size */
1048 	memcpy(filespec, reqpt, reqlen);
1049 	filespec[reqlen] = '\0';
1050 
1051 	/*
1052 	 * allow timestamping of the saved config filename with
1053 	 * strftime() format such as:
1054 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1055 	 * XXX: Nice feature, but not too safe.
1056 	 * YYY: The check for permitted characters in file names should
1057 	 *      weed out the worst. Let's hope 'strftime()' does not
1058 	 *      develop pathological problems.
1059 	 */
1060 	time(&now);
1061 	if (0 == strftime(filename, sizeof(filename), filespec,
1062 			  localtime(&now)))
1063 	{
1064 		/*
1065 		 * If we arrive here, 'strftime()' balked; most likely
1066 		 * the buffer was too short. (Or it encounterd an empty
1067 		 * format, or just a format that expands to an empty
1068 		 * string.) We try to use the original name, though this
1069 		 * is very likely to fail later if there are format
1070 		 * specs in the string. Note that truncation cannot
1071 		 * happen here as long as both buffers have the same
1072 		 * size!
1073 		 */
1074 		strlcpy(filename, filespec, sizeof(filename));
1075 	}
1076 
1077 	/*
1078 	 * Check the file name for sanity. This might/will rule out file
1079 	 * names that would be legal but problematic, and it blocks
1080 	 * directory traversal.
1081 	 */
1082 	if (!is_safe_filename(filename)) {
1083 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1084 			   filename);
1085 		ctl_flushpkt(0);
1086 		msyslog(LOG_NOTICE,
1087 			"saveconfig rejects unsafe file name from %s",
1088 			stoa(&rbufp->recv_srcadr));
1089 		return;
1090 	}
1091 
1092 	/*
1093 	 * XXX: This next test may not be needed with is_safe_filename()
1094 	 */
1095 
1096 	/* block directory/drive traversal */
1097 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1098 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1099 		snprintf(reply, sizeof(reply),
1100 			 "saveconfig does not allow directory in filename");
1101 		ctl_putdata(reply, strlen(reply), 0);
1102 		ctl_flushpkt(0);
1103 		msyslog(LOG_NOTICE,
1104 			"saveconfig rejects unsafe file name from %s",
1105 			stoa(&rbufp->recv_srcadr));
1106 		return;
1107 	}
1108 
1109 	/* concatenation of directory and path can cause another
1110 	 * truncation...
1111 	 */
1112 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1113 		       saveconfigdir, filename);
1114 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1115 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1116 			   (u_int)sizeof(fullpath));
1117 		ctl_flushpkt(0);
1118 		msyslog(LOG_NOTICE,
1119 			"saveconfig exceeded maximum path length from %s",
1120 			stoa(&rbufp->recv_srcadr));
1121 		return;
1122 	}
1123 
1124 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1125 	if (-1 == fd)
1126 		fptr = NULL;
1127 	else
1128 		fptr = fdopen(fd, "w");
1129 
1130 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1131 		ctl_printf("Unable to save configuration to file '%s': %s",
1132 			   filename, strerror(errno));
1133 		msyslog(LOG_ERR,
1134 			"saveconfig %s from %s failed", filename,
1135 			stoa(&rbufp->recv_srcadr));
1136 	} else {
1137 		ctl_printf("Configuration saved to '%s'", filename);
1138 		msyslog(LOG_NOTICE,
1139 			"Configuration saved to '%s' (requested by %s)",
1140 			fullpath, stoa(&rbufp->recv_srcadr));
1141 		/*
1142 		 * save the output filename in system variable
1143 		 * savedconfig, retrieved with:
1144 		 *   ntpq -c "rv 0 savedconfig"
1145 		 * Note: the way 'savedconfig' is defined makes overflow
1146 		 * checks unnecessary here.
1147 		 */
1148 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1149 			 savedconfig_eq, filename);
1150 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1151 	}
1152 
1153 	if (NULL != fptr)
1154 		fclose(fptr);
1155 #else	/* !SAVECONFIG follows */
1156 	ctl_printf("%s",
1157 		   "saveconfig unavailable, configured with --disable-saveconfig");
1158 #endif
1159 	ctl_flushpkt(0);
1160 }
1161 
1162 
1163 /*
1164  * process_control - process an incoming control message
1165  */
1166 void
1167 process_control(
1168 	struct recvbuf *rbufp,
1169 	int restrict_mask
1170 	)
1171 {
1172 	struct ntp_control *pkt;
1173 	int req_count;
1174 	int req_data;
1175 	const struct ctl_proc *cc;
1176 	keyid_t *pkid;
1177 	int properlen;
1178 	size_t maclen;
1179 
1180 	DPRINTF(3, ("in process_control()\n"));
1181 
1182 	/*
1183 	 * Save the addresses for error responses
1184 	 */
1185 	numctlreq++;
1186 	rmt_addr = &rbufp->recv_srcadr;
1187 	lcl_inter = rbufp->dstadr;
1188 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1189 
1190 	/*
1191 	 * If the length is less than required for the header,
1192 	 * ignore it.
1193 	 */
1194 	if (rbufp->recv_length < (int)CTL_HEADER_LEN) {
1195 		DPRINTF(1, ("Short control packet\n"));
1196 		numctltooshort++;
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * If this packet is a response or a fragment, ignore it.
1202 	 */
1203 	if (   (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1204 	    || pkt->offset != 0) {
1205 		DPRINTF(1, ("invalid format in control packet\n"));
1206 		if (CTL_RESPONSE & pkt->r_m_e_op)
1207 			numctlinputresp++;
1208 		if (CTL_MORE & pkt->r_m_e_op)
1209 			numctlinputfrag++;
1210 		if (CTL_ERROR & pkt->r_m_e_op)
1211 			numctlinputerr++;
1212 		if (pkt->offset != 0)
1213 			numctlbadoffset++;
1214 		return;
1215 	}
1216 
1217 	res_version = PKT_VERSION(pkt->li_vn_mode);
1218 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1219 		DPRINTF(1, ("unknown version %d in control packet\n",
1220 			    res_version));
1221 		numctlbadversion++;
1222 		return;
1223 	}
1224 
1225 	/*
1226 	 * Pull enough data from the packet to make intelligent
1227 	 * responses
1228 	 */
1229 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1230 					 MODE_CONTROL);
1231 	res_opcode = pkt->r_m_e_op;
1232 	rpkt.sequence = pkt->sequence;
1233 	rpkt.associd = pkt->associd;
1234 	rpkt.status = 0;
1235 	res_frags = 1;
1236 	res_offset = 0;
1237 	res_associd = htons(pkt->associd);
1238 	res_async = FALSE;
1239 	res_authenticate = FALSE;
1240 	res_keyid = 0;
1241 	res_authokay = FALSE;
1242 	req_count = (int)ntohs(pkt->count);
1243 	datanotbinflag = FALSE;
1244 	datalinelen = 0;
1245 	datasent = 0;
1246 	datapt = rpkt.u.data;
1247 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1248 
1249 	if ((rbufp->recv_length & 0x3) != 0)
1250 		DPRINTF(3, ("Control packet length %d unrounded\n",
1251 			    rbufp->recv_length));
1252 
1253 	/*
1254 	 * We're set up now. Make sure we've got at least enough
1255 	 * incoming data space to match the count.
1256 	 */
1257 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1258 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1259 		ctl_error(CERR_BADFMT);
1260 		numctldatatooshort++;
1261 		return;
1262 	}
1263 
1264 	properlen = req_count + CTL_HEADER_LEN;
1265 	/* round up proper len to a 8 octet boundary */
1266 
1267 	properlen = (properlen + 7) & ~7;
1268 	maclen = rbufp->recv_length - properlen;
1269 	if ((rbufp->recv_length & 3) == 0 &&
1270 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1271 	    sys_authenticate) {
1272 		res_authenticate = TRUE;
1273 		pkid = (void *)((char *)pkt + properlen);
1274 		res_keyid = ntohl(*pkid);
1275 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1276 			    rbufp->recv_length, properlen, res_keyid,
1277 			    maclen));
1278 
1279 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1280 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1281 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1282 				     rbufp->recv_length - maclen,
1283 				     maclen)) {
1284 			res_authokay = TRUE;
1285 			DPRINTF(3, ("authenticated okay\n"));
1286 		} else {
1287 			res_keyid = 0;
1288 			DPRINTF(3, ("authentication failed\n"));
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * Set up translate pointers
1294 	 */
1295 	reqpt = (char *)pkt->u.data;
1296 	reqend = reqpt + req_count;
1297 
1298 	/*
1299 	 * Look for the opcode processor
1300 	 */
1301 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1302 		if (cc->control_code == res_opcode) {
1303 			DPRINTF(3, ("opcode %d, found command handler\n",
1304 				    res_opcode));
1305 			if (cc->flags == AUTH
1306 			    && (!res_authokay
1307 				|| res_keyid != ctl_auth_keyid)) {
1308 				ctl_error(CERR_PERMISSION);
1309 				return;
1310 			}
1311 			(cc->handler)(rbufp, restrict_mask);
1312 			return;
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * Can't find this one, return an error.
1318 	 */
1319 	numctlbadop++;
1320 	ctl_error(CERR_BADOP);
1321 	return;
1322 }
1323 
1324 
1325 /*
1326  * ctlpeerstatus - return a status word for this peer
1327  */
1328 u_short
1329 ctlpeerstatus(
1330 	register struct peer *p
1331 	)
1332 {
1333 	u_short status;
1334 
1335 	status = p->status;
1336 	if (FLAG_CONFIG & p->flags)
1337 		status |= CTL_PST_CONFIG;
1338 	if (p->keyid)
1339 		status |= CTL_PST_AUTHENABLE;
1340 	if (FLAG_AUTHENTIC & p->flags)
1341 		status |= CTL_PST_AUTHENTIC;
1342 	if (p->reach)
1343 		status |= CTL_PST_REACH;
1344 	if (MDF_TXONLY_MASK & p->cast_flags)
1345 		status |= CTL_PST_BCAST;
1346 
1347 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1348 }
1349 
1350 
1351 /*
1352  * ctlclkstatus - return a status word for this clock
1353  */
1354 #ifdef REFCLOCK
1355 static u_short
1356 ctlclkstatus(
1357 	struct refclockstat *pcs
1358 	)
1359 {
1360 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1361 }
1362 #endif
1363 
1364 
1365 /*
1366  * ctlsysstatus - return the system status word
1367  */
1368 u_short
1369 ctlsysstatus(void)
1370 {
1371 	register u_char this_clock;
1372 
1373 	this_clock = CTL_SST_TS_UNSPEC;
1374 #ifdef REFCLOCK
1375 	if (sys_peer != NULL) {
1376 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1377 			this_clock = sys_peer->sstclktype;
1378 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1379 			this_clock = clocktypes[sys_peer->refclktype];
1380 	}
1381 #else /* REFCLOCK */
1382 	if (sys_peer != 0)
1383 		this_clock = CTL_SST_TS_NTP;
1384 #endif /* REFCLOCK */
1385 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1386 			      ctl_sys_last_event);
1387 }
1388 
1389 
1390 /*
1391  * ctl_flushpkt - write out the current packet and prepare
1392  *		  another if necessary.
1393  */
1394 static void
1395 ctl_flushpkt(
1396 	u_char more
1397 	)
1398 {
1399 	size_t i;
1400 	size_t dlen;
1401 	size_t sendlen;
1402 	size_t maclen;
1403 	size_t totlen;
1404 	keyid_t keyid;
1405 
1406 	dlen = datapt - rpkt.u.data;
1407 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1408 		/*
1409 		 * Big hack, output a trailing \r\n
1410 		 */
1411 		*datapt++ = '\r';
1412 		*datapt++ = '\n';
1413 		dlen += 2;
1414 	}
1415 	sendlen = dlen + CTL_HEADER_LEN;
1416 
1417 	/*
1418 	 * Pad to a multiple of 32 bits
1419 	 */
1420 	while (sendlen & 0x3) {
1421 		*datapt++ = '\0';
1422 		sendlen++;
1423 	}
1424 
1425 	/*
1426 	 * Fill in the packet with the current info
1427 	 */
1428 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1429 			(res_opcode & CTL_OP_MASK);
1430 	rpkt.count = htons((u_short)dlen);
1431 	rpkt.offset = htons((u_short)res_offset);
1432 	if (res_async) {
1433 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1434 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1435 				rpkt.li_vn_mode =
1436 				    PKT_LI_VN_MODE(
1437 					sys_leap,
1438 					ctl_traps[i].tr_version,
1439 					MODE_CONTROL);
1440 				rpkt.sequence =
1441 				    htons(ctl_traps[i].tr_sequence);
1442 				sendpkt(&ctl_traps[i].tr_addr,
1443 					ctl_traps[i].tr_localaddr, -4,
1444 					(struct pkt *)&rpkt, sendlen);
1445 				if (!more)
1446 					ctl_traps[i].tr_sequence++;
1447 				numasyncmsgs++;
1448 			}
1449 		}
1450 	} else {
1451 		if (res_authenticate && sys_authenticate) {
1452 			totlen = sendlen;
1453 			/*
1454 			 * If we are going to authenticate, then there
1455 			 * is an additional requirement that the MAC
1456 			 * begin on a 64 bit boundary.
1457 			 */
1458 			while (totlen & 7) {
1459 				*datapt++ = '\0';
1460 				totlen++;
1461 			}
1462 			keyid = htonl(res_keyid);
1463 			memcpy(datapt, &keyid, sizeof(keyid));
1464 			maclen = authencrypt(res_keyid,
1465 					     (u_int32 *)&rpkt, totlen);
1466 			sendpkt(rmt_addr, lcl_inter, -5,
1467 				(struct pkt *)&rpkt, totlen + maclen);
1468 		} else {
1469 			sendpkt(rmt_addr, lcl_inter, -6,
1470 				(struct pkt *)&rpkt, sendlen);
1471 		}
1472 		if (more)
1473 			numctlfrags++;
1474 		else
1475 			numctlresponses++;
1476 	}
1477 
1478 	/*
1479 	 * Set us up for another go around.
1480 	 */
1481 	res_frags++;
1482 	res_offset += dlen;
1483 	datapt = rpkt.u.data;
1484 }
1485 
1486 
1487 /* --------------------------------------------------------------------
1488  * block transfer API -- stream string/data fragments into xmit buffer
1489  * without additional copying
1490  */
1491 
1492 /* buffer descriptor: address & size of fragment
1493  * 'buf' may only be NULL when 'len' is zero!
1494  */
1495 typedef struct {
1496 	const void  *buf;
1497 	size_t       len;
1498 } CtlMemBufT;
1499 
1500 /* put ctl data in a gather-style operation */
1501 static void
1502 ctl_putdata_ex(
1503 	const CtlMemBufT * argv,
1504 	size_t             argc,
1505 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1506 	)
1507 {
1508 	const char * src_ptr;
1509 	size_t       src_len, cur_len, add_len, argi;
1510 
1511 	/* text / binary preprocessing, possibly create new linefeed */
1512 	if (bin) {
1513 		add_len = 0;
1514 	} else {
1515 		datanotbinflag = TRUE;
1516 		add_len = 3;
1517 
1518 		if (datasent) {
1519 			*datapt++ = ',';
1520 			datalinelen++;
1521 
1522 			/* sum up total length */
1523 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1524 				src_len += argv[argi].len;
1525 			/* possibly start a new line, assume no size_t overflow */
1526 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1527 				*datapt++ = '\r';
1528 				*datapt++ = '\n';
1529 				datalinelen = 0;
1530 			} else {
1531 				*datapt++ = ' ';
1532 				datalinelen++;
1533 			}
1534 		}
1535 	}
1536 
1537 	/* now stream out all buffers */
1538 	for (argi = 0; argi < argc; ++argi) {
1539 		src_ptr = argv[argi].buf;
1540 		src_len = argv[argi].len;
1541 
1542 		if ( ! (src_ptr && src_len))
1543 			continue;
1544 
1545 		cur_len = (size_t)(dataend - datapt);
1546 		while ((src_len + add_len) > cur_len) {
1547 			/* Not enough room in this one, flush it out. */
1548 			if (src_len < cur_len)
1549 				cur_len = src_len;
1550 
1551 			memcpy(datapt, src_ptr, cur_len);
1552 			datapt      += cur_len;
1553 			datalinelen += cur_len;
1554 
1555 			src_ptr     += cur_len;
1556 			src_len     -= cur_len;
1557 
1558 			ctl_flushpkt(CTL_MORE);
1559 			cur_len = (size_t)(dataend - datapt);
1560 		}
1561 
1562 		memcpy(datapt, src_ptr, src_len);
1563 		datapt      += src_len;
1564 		datalinelen += src_len;
1565 
1566 		datasent = TRUE;
1567 	}
1568 }
1569 
1570 /*
1571  * ctl_putdata - write data into the packet, fragmenting and starting
1572  * another if this one is full.
1573  */
1574 static void
1575 ctl_putdata(
1576 	const char *dp,
1577 	unsigned int dlen,
1578 	int bin			/* set to 1 when data is binary */
1579 	)
1580 {
1581 	CtlMemBufT args[1];
1582 
1583 	args[0].buf = dp;
1584 	args[0].len = dlen;
1585 	ctl_putdata_ex(args, 1, bin);
1586 }
1587 
1588 /*
1589  * ctl_putstr - write a tagged string into the response packet
1590  *		in the form:
1591  *
1592  *		tag="data"
1593  *
1594  *		len is the data length excluding the NUL terminator,
1595  *		as in ctl_putstr("var", "value", strlen("value"));
1596  */
1597 static void
1598 ctl_putstr(
1599 	const char *	tag,
1600 	const char *	data,
1601 	size_t		len
1602 	)
1603 {
1604 	CtlMemBufT args[4];
1605 
1606 	args[0].buf = tag;
1607 	args[0].len = strlen(tag);
1608 	if (data && len) {
1609 	    args[1].buf = "=\"";
1610 	    args[1].len = 2;
1611 	    args[2].buf = data;
1612 	    args[2].len = len;
1613 	    args[3].buf = "\"";
1614 	    args[3].len = 1;
1615 	    ctl_putdata_ex(args, 4, FALSE);
1616 	} else {
1617 	    args[1].buf = "=\"\"";
1618 	    args[1].len = 3;
1619 	    ctl_putdata_ex(args, 2, FALSE);
1620 	}
1621 }
1622 
1623 
1624 /*
1625  * ctl_putunqstr - write a tagged string into the response packet
1626  *		   in the form:
1627  *
1628  *		   tag=data
1629  *
1630  *	len is the data length excluding the NUL terminator.
1631  *	data must not contain a comma or whitespace.
1632  */
1633 static void
1634 ctl_putunqstr(
1635 	const char *	tag,
1636 	const char *	data,
1637 	size_t		len
1638 	)
1639 {
1640 	CtlMemBufT args[3];
1641 
1642 	args[0].buf = tag;
1643 	args[0].len = strlen(tag);
1644 	args[1].buf = "=";
1645 	args[1].len = 1;
1646 	if (data && len) {
1647 		args[2].buf = data;
1648 		args[2].len = len;
1649 		ctl_putdata_ex(args, 3, FALSE);
1650 	} else {
1651 		ctl_putdata_ex(args, 2, FALSE);
1652 	}
1653 }
1654 
1655 
1656 /*
1657  * ctl_putdblf - write a tagged, signed double into the response packet
1658  */
1659 static void
1660 ctl_putdblf(
1661 	const char *	tag,
1662 	int		use_f,
1663 	int		precision,
1664 	double		d
1665 	)
1666 {
1667 	char buffer[40];
1668 	int  rc;
1669 
1670 	rc = snprintf(buffer, sizeof(buffer),
1671 		      (use_f ? "%.*f" : "%.*g"),
1672 		      precision, d);
1673 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1674 	ctl_putunqstr(tag, buffer, rc);
1675 }
1676 
1677 /*
1678  * ctl_putuint - write a tagged unsigned integer into the response
1679  */
1680 static void
1681 ctl_putuint(
1682 	const char *tag,
1683 	u_long uval
1684 	)
1685 {
1686 	char buffer[24]; /* needs to fit for 64 bits! */
1687 	int  rc;
1688 
1689 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1690 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1691 	ctl_putunqstr(tag, buffer, rc);
1692 }
1693 
1694 /*
1695  * ctl_putcal - write a decoded calendar data into the response.
1696  * only used with AUTOKEY currently, so compiled conditional
1697  */
1698 #ifdef AUTOKEY
1699 static void
1700 ctl_putcal(
1701 	const char *tag,
1702 	const struct calendar *pcal
1703 	)
1704 {
1705 	char buffer[16];
1706 	int  rc;
1707 
1708 	rc = snprintf(buffer, sizeof(buffer),
1709 		      "%04d%02d%02d%02d%02d",
1710 		      pcal->year, pcal->month, pcal->monthday,
1711 		      pcal->hour, pcal->minute
1712 		);
1713 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1714 	ctl_putunqstr(tag, buffer, rc);
1715 }
1716 #endif
1717 
1718 /*
1719  * ctl_putfs - write a decoded filestamp into the response
1720  */
1721 static void
1722 ctl_putfs(
1723 	const char *tag,
1724 	tstamp_t uval
1725 	)
1726 {
1727 	char buffer[16];
1728 	int  rc;
1729 
1730 	time_t fstamp = (time_t)uval - JAN_1970;
1731 	struct tm *tm = gmtime(&fstamp);
1732 
1733 	if (NULL == tm)
1734 		return;
1735 
1736 	rc = snprintf(buffer, sizeof(buffer),
1737 		      "%04d%02d%02d%02d%02d",
1738 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1739 		      tm->tm_hour, tm->tm_min);
1740 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1741 	ctl_putunqstr(tag, buffer, rc);
1742 }
1743 
1744 
1745 /*
1746  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1747  * response
1748  */
1749 static void
1750 ctl_puthex(
1751 	const char *tag,
1752 	u_long uval
1753 	)
1754 {
1755 	char buffer[24];	/* must fit 64bit int! */
1756 	int  rc;
1757 
1758 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1759 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1760 	ctl_putunqstr(tag, buffer, rc);
1761 }
1762 
1763 
1764 /*
1765  * ctl_putint - write a tagged signed integer into the response
1766  */
1767 static void
1768 ctl_putint(
1769 	const char *tag,
1770 	long ival
1771 	)
1772 {
1773 	char buffer[24];	/*must fit 64bit int */
1774 	int  rc;
1775 
1776 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1777 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1778 	ctl_putunqstr(tag, buffer, rc);
1779 }
1780 
1781 
1782 /*
1783  * ctl_putts - write a tagged timestamp, in hex, into the response
1784  */
1785 static void
1786 ctl_putts(
1787 	const char *tag,
1788 	l_fp *ts
1789 	)
1790 {
1791 	char buffer[24];
1792 	int  rc;
1793 
1794 	rc = snprintf(buffer, sizeof(buffer),
1795 		      "0x%08lx.%08lx",
1796 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1797 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1798 	ctl_putunqstr(tag, buffer, rc);
1799 }
1800 
1801 
1802 /*
1803  * ctl_putadr - write an IP address into the response
1804  */
1805 static void
1806 ctl_putadr(
1807 	const char *tag,
1808 	u_int32 addr32,
1809 	sockaddr_u *addr
1810 	)
1811 {
1812 	const char *cq;
1813 
1814 	if (NULL == addr)
1815 		cq = numtoa(addr32);
1816 	else
1817 		cq = stoa(addr);
1818 	ctl_putunqstr(tag, cq, strlen(cq));
1819 }
1820 
1821 
1822 /*
1823  * ctl_putrefid - send a u_int32 refid as printable text
1824  */
1825 static void
1826 ctl_putrefid(
1827 	const char *	tag,
1828 	u_int32		refid
1829 	)
1830 {
1831 	size_t nc;
1832 
1833 	union {
1834 		uint32_t w;
1835 		uint8_t  b[sizeof(uint32_t)];
1836 	} bytes;
1837 
1838 	bytes.w = refid;
1839 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1840 		if (  !isprint(bytes.b[nc])
1841 		    || isspace(bytes.b[nc])
1842 		    || bytes.b[nc] == ','  )
1843 			bytes.b[nc] = '.';
1844 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1845 }
1846 
1847 
1848 /*
1849  * ctl_putarray - write a tagged eight element double array into the response
1850  */
1851 static void
1852 ctl_putarray(
1853 	const char *tag,
1854 	double *arr,
1855 	int start
1856 	)
1857 {
1858 	char *cp, *ep;
1859 	char buffer[200];
1860 	int  i, rc;
1861 
1862 	cp = buffer;
1863 	ep = buffer + sizeof(buffer);
1864 	i  = start;
1865 	do {
1866 		if (i == 0)
1867 			i = NTP_SHIFT;
1868 		i--;
1869 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1870 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1871 		cp += rc;
1872 	} while (i != start);
1873 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1874 }
1875 
1876 /*
1877  * ctl_printf - put a formatted string into the data buffer
1878  */
1879 static void
1880 ctl_printf(
1881 	const char * fmt,
1882 	...
1883 	)
1884 {
1885 	static const char * ellipsis = "[...]";
1886 	va_list va;
1887 	char    fmtbuf[128];
1888 	int     rc;
1889 
1890 	va_start(va, fmt);
1891 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1892 	va_end(va);
1893 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1894 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1895 		       ellipsis);
1896 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1897 }
1898 
1899 
1900 /*
1901  * ctl_putsys - output a system variable
1902  */
1903 static void
1904 ctl_putsys(
1905 	int varid
1906 	)
1907 {
1908 	l_fp tmp;
1909 #ifndef HAVE_UNAME
1910 	char str[256];
1911 #else
1912 	char str[sizeof utsnamebuf.sysname + sizeof utsnamebuf.release];
1913 #endif
1914 	u_int u;
1915 	double kb;
1916 	double dtemp;
1917 	const char *ss;
1918 #ifdef AUTOKEY
1919 	struct cert_info *cp;
1920 #endif	/* AUTOKEY */
1921 #ifdef KERNEL_PLL
1922 	static struct timex ntx;
1923 	static u_long ntp_adjtime_time;
1924 
1925 	/*
1926 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1927 	 */
1928 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1929 	    current_time != ntp_adjtime_time) {
1930 		ZERO(ntx);
1931 		if (ntp_adjtime(&ntx) < 0)
1932 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1933 		else
1934 			ntp_adjtime_time = current_time;
1935 	}
1936 #endif	/* KERNEL_PLL */
1937 
1938 	switch (varid) {
1939 
1940 	case CS_LEAP:
1941 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1942 		break;
1943 
1944 	case CS_STRATUM:
1945 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1946 		break;
1947 
1948 	case CS_PRECISION:
1949 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1950 		break;
1951 
1952 	case CS_ROOTDELAY:
1953 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1954 			   1e3);
1955 		break;
1956 
1957 	case CS_ROOTDISPERSION:
1958 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1959 			   sys_rootdisp * 1e3);
1960 		break;
1961 
1962 	case CS_REFID:
1963 		if (REFID_ISTEXT(sys_stratum))
1964 			ctl_putrefid(sys_var[varid].text, sys_refid);
1965 		else
1966 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1967 		break;
1968 
1969 	case CS_REFTIME:
1970 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1971 		break;
1972 
1973 	case CS_POLL:
1974 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1975 		break;
1976 
1977 	case CS_PEERID:
1978 		if (sys_peer == NULL)
1979 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1980 		else
1981 			ctl_putuint(sys_var[CS_PEERID].text,
1982 				    sys_peer->associd);
1983 		break;
1984 
1985 	case CS_PEERADR:
1986 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1987 			ss = sptoa(&sys_peer->srcadr);
1988 		else
1989 			ss = "0.0.0.0:0";
1990 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1991 		break;
1992 
1993 	case CS_PEERMODE:
1994 		u = (sys_peer != NULL)
1995 			? sys_peer->hmode
1996 			: MODE_UNSPEC;
1997 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1998 		break;
1999 
2000 	case CS_OFFSET:
2001 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2002 		break;
2003 
2004 	case CS_DRIFT:
2005 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2006 		break;
2007 
2008 	case CS_JITTER:
2009 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2010 		break;
2011 
2012 	case CS_ERROR:
2013 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2014 		break;
2015 
2016 	case CS_CLOCK:
2017 		get_systime(&tmp);
2018 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2019 		break;
2020 
2021 	case CS_PROCESSOR:
2022 #ifndef HAVE_UNAME
2023 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2024 			   sizeof(str_processor) - 1);
2025 #else
2026 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2027 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2028 #endif /* HAVE_UNAME */
2029 		break;
2030 
2031 	case CS_SYSTEM:
2032 #ifndef HAVE_UNAME
2033 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2034 			   sizeof(str_system) - 1);
2035 #else
2036 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2037 			 utsnamebuf.release);
2038 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2039 #endif /* HAVE_UNAME */
2040 		break;
2041 
2042 	case CS_VERSION:
2043 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2044 			   strlen(Version));
2045 		break;
2046 
2047 	case CS_STABIL:
2048 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2049 			   1e6);
2050 		break;
2051 
2052 	case CS_VARLIST:
2053 	{
2054 		char buf[CTL_MAX_DATA_LEN];
2055 		//buffPointer, firstElementPointer, buffEndPointer
2056 		char *buffp, *buffend;
2057 		int firstVarName;
2058 		const char *ss1;
2059 		int len;
2060 		const struct ctl_var *k;
2061 
2062 		buffp = buf;
2063 		buffend = buf + sizeof(buf);
2064 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2065 			break;	/* really long var name */
2066 
2067 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2068 		buffp += strlen(buffp);
2069 		firstVarName = TRUE;
2070 		for (k = sys_var; !(k->flags & EOV); k++) {
2071 			if (k->flags & PADDING)
2072 				continue;
2073 			len = strlen(k->text);
2074 			if (len + 1 >= buffend - buffp)
2075 				break;
2076 			if (!firstVarName)
2077 				*buffp++ = ',';
2078 			else
2079 				firstVarName = FALSE;
2080 			memcpy(buffp, k->text, len);
2081 			buffp += len;
2082 		}
2083 
2084 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2085 			if (k->flags & PADDING)
2086 				continue;
2087 			if (NULL == k->text)
2088 				continue;
2089 			ss1 = strchr(k->text, '=');
2090 			if (NULL == ss1)
2091 				len = strlen(k->text);
2092 			else
2093 				len = ss1 - k->text;
2094 			if (len + 1 >= buffend - buffp)
2095 				break;
2096 			if (firstVarName) {
2097 				*buffp++ = ',';
2098 				firstVarName = FALSE;
2099 			}
2100 			memcpy(buffp, k->text,(unsigned)len);
2101 			buffp += len;
2102 		}
2103 		if (2 >= buffend - buffp)
2104 			break;
2105 
2106 		*buffp++ = '"';
2107 		*buffp = '\0';
2108 
2109 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2110 		break;
2111 	}
2112 
2113 	case CS_TAI:
2114 		if (sys_tai > 0)
2115 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2116 		break;
2117 
2118 	case CS_LEAPTAB:
2119 	{
2120 		leap_signature_t lsig;
2121 		leapsec_getsig(&lsig);
2122 		if (lsig.ttime > 0)
2123 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2124 		break;
2125 	}
2126 
2127 	case CS_LEAPEND:
2128 	{
2129 		leap_signature_t lsig;
2130 		leapsec_getsig(&lsig);
2131 		if (lsig.etime > 0)
2132 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2133 		break;
2134 	}
2135 
2136 #ifdef LEAP_SMEAR
2137 	case CS_LEAPSMEARINTV:
2138 		if (leap_smear_intv > 0)
2139 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2140 		break;
2141 
2142 	case CS_LEAPSMEAROFFS:
2143 		if (leap_smear_intv > 0)
2144 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2145 				   leap_smear.doffset * 1e3);
2146 		break;
2147 #endif	/* LEAP_SMEAR */
2148 
2149 	case CS_RATE:
2150 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2151 		break;
2152 
2153 	case CS_MRU_ENABLED:
2154 		ctl_puthex(sys_var[varid].text, mon_enabled);
2155 		break;
2156 
2157 	case CS_MRU_DEPTH:
2158 		ctl_putuint(sys_var[varid].text, mru_entries);
2159 		break;
2160 
2161 	case CS_MRU_MEM:
2162 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2163 		u = (u_int)kb;
2164 		if (kb - u >= 0.5)
2165 			u++;
2166 		ctl_putuint(sys_var[varid].text, u);
2167 		break;
2168 
2169 	case CS_MRU_DEEPEST:
2170 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2171 		break;
2172 
2173 	case CS_MRU_MINDEPTH:
2174 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2175 		break;
2176 
2177 	case CS_MRU_MAXAGE:
2178 		ctl_putint(sys_var[varid].text, mru_maxage);
2179 		break;
2180 
2181 	case CS_MRU_MAXDEPTH:
2182 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2183 		break;
2184 
2185 	case CS_MRU_MAXMEM:
2186 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2187 		u = (u_int)kb;
2188 		if (kb - u >= 0.5)
2189 			u++;
2190 		ctl_putuint(sys_var[varid].text, u);
2191 		break;
2192 
2193 	case CS_SS_UPTIME:
2194 		ctl_putuint(sys_var[varid].text, current_time);
2195 		break;
2196 
2197 	case CS_SS_RESET:
2198 		ctl_putuint(sys_var[varid].text,
2199 			    current_time - sys_stattime);
2200 		break;
2201 
2202 	case CS_SS_RECEIVED:
2203 		ctl_putuint(sys_var[varid].text, sys_received);
2204 		break;
2205 
2206 	case CS_SS_THISVER:
2207 		ctl_putuint(sys_var[varid].text, sys_newversion);
2208 		break;
2209 
2210 	case CS_SS_OLDVER:
2211 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2212 		break;
2213 
2214 	case CS_SS_BADFORMAT:
2215 		ctl_putuint(sys_var[varid].text, sys_badlength);
2216 		break;
2217 
2218 	case CS_SS_BADAUTH:
2219 		ctl_putuint(sys_var[varid].text, sys_badauth);
2220 		break;
2221 
2222 	case CS_SS_DECLINED:
2223 		ctl_putuint(sys_var[varid].text, sys_declined);
2224 		break;
2225 
2226 	case CS_SS_RESTRICTED:
2227 		ctl_putuint(sys_var[varid].text, sys_restricted);
2228 		break;
2229 
2230 	case CS_SS_LIMITED:
2231 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2232 		break;
2233 
2234 	case CS_SS_LAMPORT:
2235 		ctl_putuint(sys_var[varid].text, sys_lamport);
2236 		break;
2237 
2238 	case CS_SS_TSROUNDING:
2239 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2240 		break;
2241 
2242 	case CS_SS_KODSENT:
2243 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2244 		break;
2245 
2246 	case CS_SS_PROCESSED:
2247 		ctl_putuint(sys_var[varid].text, sys_processed);
2248 		break;
2249 
2250 	case CS_BCASTDELAY:
2251 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2252 		break;
2253 
2254 	case CS_AUTHDELAY:
2255 		LFPTOD(&sys_authdelay, dtemp);
2256 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2257 		break;
2258 
2259 	case CS_AUTHKEYS:
2260 		ctl_putuint(sys_var[varid].text, authnumkeys);
2261 		break;
2262 
2263 	case CS_AUTHFREEK:
2264 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2265 		break;
2266 
2267 	case CS_AUTHKLOOKUPS:
2268 		ctl_putuint(sys_var[varid].text, authkeylookups);
2269 		break;
2270 
2271 	case CS_AUTHKNOTFOUND:
2272 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2273 		break;
2274 
2275 	case CS_AUTHKUNCACHED:
2276 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2277 		break;
2278 
2279 	case CS_AUTHKEXPIRED:
2280 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2281 		break;
2282 
2283 	case CS_AUTHENCRYPTS:
2284 		ctl_putuint(sys_var[varid].text, authencryptions);
2285 		break;
2286 
2287 	case CS_AUTHDECRYPTS:
2288 		ctl_putuint(sys_var[varid].text, authdecryptions);
2289 		break;
2290 
2291 	case CS_AUTHRESET:
2292 		ctl_putuint(sys_var[varid].text,
2293 			    current_time - auth_timereset);
2294 		break;
2295 
2296 		/*
2297 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2298 		 * unavailable, otherwise calls putfunc with args.
2299 		 */
2300 #ifndef KERNEL_PLL
2301 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2302 		ctl_putint(sys_var[varid].text, 0)
2303 #else
2304 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2305 		putfunc args
2306 #endif
2307 
2308 		/*
2309 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2310 		 * loop is unavailable, or kernel hard PPS is not
2311 		 * active, otherwise calls putfunc with args.
2312 		 */
2313 #ifndef KERNEL_PLL
2314 # define	CTL_IF_KERNPPS(putfunc, args)	\
2315 		ctl_putint(sys_var[varid].text, 0)
2316 #else
2317 # define	CTL_IF_KERNPPS(putfunc, args)			\
2318 		if (0 == ntx.shift)				\
2319 			ctl_putint(sys_var[varid].text, 0);	\
2320 		else						\
2321 			putfunc args	/* no trailing ; */
2322 #endif
2323 
2324 	case CS_K_OFFSET:
2325 		CTL_IF_KERNLOOP(
2326 			ctl_putdblf,
2327 			(sys_var[varid].text, 0, -1,
2328 			 1000 * dbl_from_var_long(ntx.offset, ntx.status))
2329 		);
2330 		break;
2331 
2332 	case CS_K_FREQ:
2333 		CTL_IF_KERNLOOP(
2334 			ctl_putsfp,
2335 			(sys_var[varid].text, ntx.freq)
2336 		);
2337 		break;
2338 
2339 	case CS_K_MAXERR:
2340 		CTL_IF_KERNLOOP(
2341 			ctl_putdblf,
2342 			(sys_var[varid].text, 0, 6,
2343 			 1000 * dbl_from_usec_long(ntx.maxerror))
2344 		);
2345 		break;
2346 
2347 	case CS_K_ESTERR:
2348 		CTL_IF_KERNLOOP(
2349 			ctl_putdblf,
2350 			(sys_var[varid].text, 0, 6,
2351 			 1000 * dbl_from_usec_long(ntx.esterror))
2352 		);
2353 		break;
2354 
2355 	case CS_K_STFLAGS:
2356 #ifndef KERNEL_PLL
2357 		ss = "";
2358 #else
2359 		ss = k_st_flags(ntx.status);
2360 #endif
2361 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2362 		break;
2363 
2364 	case CS_K_TIMECONST:
2365 		CTL_IF_KERNLOOP(
2366 			ctl_putint,
2367 			(sys_var[varid].text, ntx.constant)
2368 		);
2369 		break;
2370 
2371 	case CS_K_PRECISION:
2372 		CTL_IF_KERNLOOP(
2373 			ctl_putdblf,
2374 			(sys_var[varid].text, 0, 6,
2375 			 1000 * dbl_from_var_long(ntx.precision, ntx.status))
2376 		);
2377 		break;
2378 
2379 	case CS_K_FREQTOL:
2380 		CTL_IF_KERNLOOP(
2381 			ctl_putsfp,
2382 			(sys_var[varid].text, ntx.tolerance)
2383 		);
2384 		break;
2385 
2386 	case CS_K_PPS_FREQ:
2387 		CTL_IF_KERNPPS(
2388 			ctl_putsfp,
2389 			(sys_var[varid].text, ntx.ppsfreq)
2390 		);
2391 		break;
2392 
2393 	case CS_K_PPS_STABIL:
2394 		CTL_IF_KERNPPS(
2395 			ctl_putsfp,
2396 			(sys_var[varid].text, ntx.stabil)
2397 		);
2398 		break;
2399 
2400 	case CS_K_PPS_JITTER:
2401 		CTL_IF_KERNPPS(
2402 			ctl_putdbl,
2403 			(sys_var[varid].text,
2404 			 1000 * dbl_from_var_long(ntx.jitter, ntx.status))
2405 		);
2406 		break;
2407 
2408 	case CS_K_PPS_CALIBDUR:
2409 		CTL_IF_KERNPPS(
2410 			ctl_putint,
2411 			(sys_var[varid].text, 1 << ntx.shift)
2412 		);
2413 		break;
2414 
2415 	case CS_K_PPS_CALIBS:
2416 		CTL_IF_KERNPPS(
2417 			ctl_putint,
2418 			(sys_var[varid].text, ntx.calcnt)
2419 		);
2420 		break;
2421 
2422 	case CS_K_PPS_CALIBERRS:
2423 		CTL_IF_KERNPPS(
2424 			ctl_putint,
2425 			(sys_var[varid].text, ntx.errcnt)
2426 		);
2427 		break;
2428 
2429 	case CS_K_PPS_JITEXC:
2430 		CTL_IF_KERNPPS(
2431 			ctl_putint,
2432 			(sys_var[varid].text, ntx.jitcnt)
2433 		);
2434 		break;
2435 
2436 	case CS_K_PPS_STBEXC:
2437 		CTL_IF_KERNPPS(
2438 			ctl_putint,
2439 			(sys_var[varid].text, ntx.stbcnt)
2440 		);
2441 		break;
2442 
2443 	case CS_IOSTATS_RESET:
2444 		ctl_putuint(sys_var[varid].text,
2445 			    current_time - io_timereset);
2446 		break;
2447 
2448 	case CS_TOTAL_RBUF:
2449 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2450 		break;
2451 
2452 	case CS_FREE_RBUF:
2453 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2454 		break;
2455 
2456 	case CS_USED_RBUF:
2457 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2458 		break;
2459 
2460 	case CS_RBUF_LOWATER:
2461 		ctl_putuint(sys_var[varid].text, lowater_additions());
2462 		break;
2463 
2464 	case CS_IO_DROPPED:
2465 		ctl_putuint(sys_var[varid].text, packets_dropped);
2466 		break;
2467 
2468 	case CS_IO_IGNORED:
2469 		ctl_putuint(sys_var[varid].text, packets_ignored);
2470 		break;
2471 
2472 	case CS_IO_RECEIVED:
2473 		ctl_putuint(sys_var[varid].text, packets_received);
2474 		break;
2475 
2476 	case CS_IO_SENT:
2477 		ctl_putuint(sys_var[varid].text, packets_sent);
2478 		break;
2479 
2480 	case CS_IO_SENDFAILED:
2481 		ctl_putuint(sys_var[varid].text, packets_notsent);
2482 		break;
2483 
2484 	case CS_IO_WAKEUPS:
2485 		ctl_putuint(sys_var[varid].text, handler_calls);
2486 		break;
2487 
2488 	case CS_IO_GOODWAKEUPS:
2489 		ctl_putuint(sys_var[varid].text, handler_pkts);
2490 		break;
2491 
2492 	case CS_TIMERSTATS_RESET:
2493 		ctl_putuint(sys_var[varid].text,
2494 			    current_time - timer_timereset);
2495 		break;
2496 
2497 	case CS_TIMER_OVERRUNS:
2498 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2499 		break;
2500 
2501 	case CS_TIMER_XMTS:
2502 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2503 		break;
2504 
2505 	case CS_FUZZ:
2506 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2507 		break;
2508 	case CS_WANDER_THRESH:
2509 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2510 		break;
2511 #ifdef AUTOKEY
2512 	case CS_FLAGS:
2513 		if (crypto_flags)
2514 			ctl_puthex(sys_var[CS_FLAGS].text,
2515 			    crypto_flags);
2516 		break;
2517 
2518 	case CS_DIGEST:
2519 		if (crypto_flags) {
2520 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2521 			    COUNTOF(str));
2522 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2523 			    strlen(str));
2524 		}
2525 		break;
2526 
2527 	case CS_SIGNATURE:
2528 		if (crypto_flags) {
2529 			const EVP_MD *dp;
2530 
2531 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2532 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2533 			    COUNTOF(str));
2534 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2535 			    strlen(str));
2536 		}
2537 		break;
2538 
2539 	case CS_HOST:
2540 		if (hostval.ptr != NULL)
2541 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2542 			    strlen(hostval.ptr));
2543 		break;
2544 
2545 	case CS_IDENT:
2546 		if (sys_ident != NULL)
2547 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2548 			    strlen(sys_ident));
2549 		break;
2550 
2551 	case CS_CERTIF:
2552 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2553 			snprintf(str, sizeof(str), "%s %s 0x%x",
2554 			    cp->subject, cp->issuer, cp->flags);
2555 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2556 			    strlen(str));
2557 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2558 		}
2559 		break;
2560 
2561 	case CS_PUBLIC:
2562 		if (hostval.tstamp != 0)
2563 			ctl_putfs(sys_var[CS_PUBLIC].text,
2564 			    ntohl(hostval.tstamp));
2565 		break;
2566 #endif	/* AUTOKEY */
2567 
2568 	default:
2569 		break;
2570 	}
2571 }
2572 
2573 
2574 /*
2575  * ctl_putpeer - output a peer variable
2576  */
2577 static void
2578 ctl_putpeer(
2579 	int id,
2580 	struct peer *p
2581 	)
2582 {
2583 	char buf[CTL_MAX_DATA_LEN];
2584 	char *s;
2585 	char *t;
2586 	char *be;
2587 	int i;
2588 	const struct ctl_var *k;
2589 #ifdef AUTOKEY
2590 	struct autokey *ap;
2591 	const EVP_MD *dp;
2592 	const char *str;
2593 #endif	/* AUTOKEY */
2594 
2595 	switch (id) {
2596 
2597 	case CP_CONFIG:
2598 		ctl_putuint(peer_var[id].text,
2599 			    !(FLAG_PREEMPT & p->flags));
2600 		break;
2601 
2602 	case CP_AUTHENABLE:
2603 		ctl_putuint(peer_var[id].text, !(p->keyid));
2604 		break;
2605 
2606 	case CP_AUTHENTIC:
2607 		ctl_putuint(peer_var[id].text,
2608 			    !!(FLAG_AUTHENTIC & p->flags));
2609 		break;
2610 
2611 	case CP_SRCADR:
2612 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2613 		break;
2614 
2615 	case CP_SRCPORT:
2616 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2617 		break;
2618 
2619 	case CP_SRCHOST:
2620 		if (p->hostname != NULL)
2621 			ctl_putstr(peer_var[id].text, p->hostname,
2622 				   strlen(p->hostname));
2623 		break;
2624 
2625 	case CP_DSTADR:
2626 		ctl_putadr(peer_var[id].text, 0,
2627 			   (p->dstadr != NULL)
2628 				? &p->dstadr->sin
2629 				: NULL);
2630 		break;
2631 
2632 	case CP_DSTPORT:
2633 		ctl_putuint(peer_var[id].text,
2634 			    (p->dstadr != NULL)
2635 				? SRCPORT(&p->dstadr->sin)
2636 				: 0);
2637 		break;
2638 
2639 	case CP_IN:
2640 		if (p->r21 > 0.)
2641 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2642 		break;
2643 
2644 	case CP_OUT:
2645 		if (p->r34 > 0.)
2646 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2647 		break;
2648 
2649 	case CP_RATE:
2650 		ctl_putuint(peer_var[id].text, p->throttle);
2651 		break;
2652 
2653 	case CP_LEAP:
2654 		ctl_putuint(peer_var[id].text, p->leap);
2655 		break;
2656 
2657 	case CP_HMODE:
2658 		ctl_putuint(peer_var[id].text, p->hmode);
2659 		break;
2660 
2661 	case CP_STRATUM:
2662 		ctl_putuint(peer_var[id].text, p->stratum);
2663 		break;
2664 
2665 	case CP_PPOLL:
2666 		ctl_putuint(peer_var[id].text, p->ppoll);
2667 		break;
2668 
2669 	case CP_HPOLL:
2670 		ctl_putuint(peer_var[id].text, p->hpoll);
2671 		break;
2672 
2673 	case CP_PRECISION:
2674 		ctl_putint(peer_var[id].text, p->precision);
2675 		break;
2676 
2677 	case CP_ROOTDELAY:
2678 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2679 		break;
2680 
2681 	case CP_ROOTDISPERSION:
2682 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2683 		break;
2684 
2685 	case CP_REFID:
2686 #ifdef REFCLOCK
2687 		if (p->flags & FLAG_REFCLOCK) {
2688 			ctl_putrefid(peer_var[id].text, p->refid);
2689 			break;
2690 		}
2691 #endif
2692 		if (REFID_ISTEXT(p->stratum))
2693 			ctl_putrefid(peer_var[id].text, p->refid);
2694 		else
2695 			ctl_putadr(peer_var[id].text, p->refid, NULL);
2696 		break;
2697 
2698 	case CP_REFTIME:
2699 		ctl_putts(peer_var[id].text, &p->reftime);
2700 		break;
2701 
2702 	case CP_ORG:
2703 		ctl_putts(peer_var[id].text, &p->aorg);
2704 		break;
2705 
2706 	case CP_REC:
2707 		ctl_putts(peer_var[id].text, &p->dst);
2708 		break;
2709 
2710 	case CP_XMT:
2711 		if (p->xleave)
2712 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2713 		break;
2714 
2715 	case CP_BIAS:
2716 		if (p->bias != 0.)
2717 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2718 		break;
2719 
2720 	case CP_REACH:
2721 		ctl_puthex(peer_var[id].text, p->reach);
2722 		break;
2723 
2724 	case CP_FLASH:
2725 		ctl_puthex(peer_var[id].text, p->flash);
2726 		break;
2727 
2728 	case CP_TTL:
2729 #ifdef REFCLOCK
2730 		if (p->flags & FLAG_REFCLOCK) {
2731 			ctl_putuint(peer_var[id].text, p->ttl);
2732 			break;
2733 		}
2734 #endif
2735 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2736 			ctl_putint(peer_var[id].text,
2737 				   sys_ttl[p->ttl]);
2738 		break;
2739 
2740 	case CP_UNREACH:
2741 		ctl_putuint(peer_var[id].text, p->unreach);
2742 		break;
2743 
2744 	case CP_TIMER:
2745 		ctl_putuint(peer_var[id].text,
2746 			    p->nextdate - current_time);
2747 		break;
2748 
2749 	case CP_DELAY:
2750 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2751 		break;
2752 
2753 	case CP_OFFSET:
2754 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2755 		break;
2756 
2757 	case CP_JITTER:
2758 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2759 		break;
2760 
2761 	case CP_DISPERSION:
2762 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2763 		break;
2764 
2765 	case CP_KEYID:
2766 		if (p->keyid > NTP_MAXKEY)
2767 			ctl_puthex(peer_var[id].text, p->keyid);
2768 		else
2769 			ctl_putuint(peer_var[id].text, p->keyid);
2770 		break;
2771 
2772 	case CP_FILTDELAY:
2773 		ctl_putarray(peer_var[id].text, p->filter_delay,
2774 			     p->filter_nextpt);
2775 		break;
2776 
2777 	case CP_FILTOFFSET:
2778 		ctl_putarray(peer_var[id].text, p->filter_offset,
2779 			     p->filter_nextpt);
2780 		break;
2781 
2782 	case CP_FILTERROR:
2783 		ctl_putarray(peer_var[id].text, p->filter_disp,
2784 			     p->filter_nextpt);
2785 		break;
2786 
2787 	case CP_PMODE:
2788 		ctl_putuint(peer_var[id].text, p->pmode);
2789 		break;
2790 
2791 	case CP_RECEIVED:
2792 		ctl_putuint(peer_var[id].text, p->received);
2793 		break;
2794 
2795 	case CP_SENT:
2796 		ctl_putuint(peer_var[id].text, p->sent);
2797 		break;
2798 
2799 	case CP_VARLIST:
2800 		s = buf;
2801 		be = buf + sizeof(buf);
2802 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2803 			break;	/* really long var name */
2804 
2805 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2806 		s += strlen(s);
2807 		t = s;
2808 		for (k = peer_var; !(EOV & k->flags); k++) {
2809 			if (PADDING & k->flags)
2810 				continue;
2811 			i = strlen(k->text);
2812 			if (s + i + 1 >= be)
2813 				break;
2814 			if (s != t)
2815 				*s++ = ',';
2816 			memcpy(s, k->text, i);
2817 			s += i;
2818 		}
2819 		if (s + 2 < be) {
2820 			*s++ = '"';
2821 			*s = '\0';
2822 			ctl_putdata(buf, (u_int)(s - buf), 0);
2823 		}
2824 		break;
2825 
2826 	case CP_TIMEREC:
2827 		ctl_putuint(peer_var[id].text,
2828 			    current_time - p->timereceived);
2829 		break;
2830 
2831 	case CP_TIMEREACH:
2832 		ctl_putuint(peer_var[id].text,
2833 			    current_time - p->timereachable);
2834 		break;
2835 
2836 	case CP_BADAUTH:
2837 		ctl_putuint(peer_var[id].text, p->badauth);
2838 		break;
2839 
2840 	case CP_BOGUSORG:
2841 		ctl_putuint(peer_var[id].text, p->bogusorg);
2842 		break;
2843 
2844 	case CP_OLDPKT:
2845 		ctl_putuint(peer_var[id].text, p->oldpkt);
2846 		break;
2847 
2848 	case CP_SELDISP:
2849 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2850 		break;
2851 
2852 	case CP_SELBROKEN:
2853 		ctl_putuint(peer_var[id].text, p->selbroken);
2854 		break;
2855 
2856 	case CP_CANDIDATE:
2857 		ctl_putuint(peer_var[id].text, p->status);
2858 		break;
2859 #ifdef AUTOKEY
2860 	case CP_FLAGS:
2861 		if (p->crypto)
2862 			ctl_puthex(peer_var[id].text, p->crypto);
2863 		break;
2864 
2865 	case CP_SIGNATURE:
2866 		if (p->crypto) {
2867 			dp = EVP_get_digestbynid(p->crypto >> 16);
2868 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2869 			ctl_putstr(peer_var[id].text, str, strlen(str));
2870 		}
2871 		break;
2872 
2873 	case CP_HOST:
2874 		if (p->subject != NULL)
2875 			ctl_putstr(peer_var[id].text, p->subject,
2876 			    strlen(p->subject));
2877 		break;
2878 
2879 	case CP_VALID:		/* not used */
2880 		break;
2881 
2882 	case CP_INITSEQ:
2883 		if (NULL == (ap = p->recval.ptr))
2884 			break;
2885 
2886 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2887 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2888 		ctl_putfs(peer_var[CP_INITTSP].text,
2889 			  ntohl(p->recval.tstamp));
2890 		break;
2891 
2892 	case CP_IDENT:
2893 		if (p->ident != NULL)
2894 			ctl_putstr(peer_var[id].text, p->ident,
2895 			    strlen(p->ident));
2896 		break;
2897 
2898 
2899 #endif	/* AUTOKEY */
2900 	}
2901 }
2902 
2903 
2904 #ifdef REFCLOCK
2905 /*
2906  * ctl_putclock - output clock variables
2907  */
2908 static void
2909 ctl_putclock(
2910 	int id,
2911 	struct refclockstat *pcs,
2912 	int mustput
2913 	)
2914 {
2915 	char buf[CTL_MAX_DATA_LEN];
2916 	char *s, *t, *be;
2917 	const char *ss;
2918 	int i;
2919 	const struct ctl_var *k;
2920 
2921 	switch (id) {
2922 
2923 	case CC_TYPE:
2924 		if (mustput || pcs->clockdesc == NULL
2925 		    || *(pcs->clockdesc) == '\0') {
2926 			ctl_putuint(clock_var[id].text, pcs->type);
2927 		}
2928 		break;
2929 	case CC_TIMECODE:
2930 		ctl_putstr(clock_var[id].text,
2931 			   pcs->p_lastcode,
2932 			   (unsigned)pcs->lencode);
2933 		break;
2934 
2935 	case CC_POLL:
2936 		ctl_putuint(clock_var[id].text, pcs->polls);
2937 		break;
2938 
2939 	case CC_NOREPLY:
2940 		ctl_putuint(clock_var[id].text,
2941 			    pcs->noresponse);
2942 		break;
2943 
2944 	case CC_BADFORMAT:
2945 		ctl_putuint(clock_var[id].text,
2946 			    pcs->badformat);
2947 		break;
2948 
2949 	case CC_BADDATA:
2950 		ctl_putuint(clock_var[id].text,
2951 			    pcs->baddata);
2952 		break;
2953 
2954 	case CC_FUDGETIME1:
2955 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2956 			ctl_putdbl(clock_var[id].text,
2957 				   pcs->fudgetime1 * 1e3);
2958 		break;
2959 
2960 	case CC_FUDGETIME2:
2961 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2962 			ctl_putdbl(clock_var[id].text,
2963 				   pcs->fudgetime2 * 1e3);
2964 		break;
2965 
2966 	case CC_FUDGEVAL1:
2967 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2968 			ctl_putint(clock_var[id].text,
2969 				   pcs->fudgeval1);
2970 		break;
2971 
2972 	case CC_FUDGEVAL2:
2973 		/* RefID of clocks are always text even if stratum is fudged */
2974 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2))
2975 			ctl_putrefid(clock_var[id].text, pcs->fudgeval2);
2976 		break;
2977 
2978 	case CC_FLAGS:
2979 		ctl_putuint(clock_var[id].text, pcs->flags);
2980 		break;
2981 
2982 	case CC_DEVICE:
2983 		if (pcs->clockdesc == NULL ||
2984 		    *(pcs->clockdesc) == '\0') {
2985 			if (mustput)
2986 				ctl_putstr(clock_var[id].text,
2987 					   "", 0);
2988 		} else {
2989 			ctl_putstr(clock_var[id].text,
2990 				   pcs->clockdesc,
2991 				   strlen(pcs->clockdesc));
2992 		}
2993 		break;
2994 
2995 	case CC_VARLIST:
2996 		s = buf;
2997 		be = buf + sizeof(buf);
2998 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2999 		    sizeof(buf))
3000 			break;	/* really long var name */
3001 
3002 		snprintf(s, sizeof(buf), "%s=\"",
3003 			 clock_var[CC_VARLIST].text);
3004 		s += strlen(s);
3005 		t = s;
3006 
3007 		for (k = clock_var; !(EOV & k->flags); k++) {
3008 			if (PADDING & k->flags)
3009 				continue;
3010 
3011 			i = strlen(k->text);
3012 			if (s + i + 1 >= be)
3013 				break;
3014 
3015 			if (s != t)
3016 				*s++ = ',';
3017 			memcpy(s, k->text, i);
3018 			s += i;
3019 		}
3020 
3021 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3022 			if (PADDING & k->flags)
3023 				continue;
3024 
3025 			ss = k->text;
3026 			if (NULL == ss)
3027 				continue;
3028 
3029 			while (*ss && *ss != '=')
3030 				ss++;
3031 			i = ss - k->text;
3032 			if (s + i + 1 >= be)
3033 				break;
3034 
3035 			if (s != t)
3036 				*s++ = ',';
3037 			memcpy(s, k->text, (unsigned)i);
3038 			s += i;
3039 			*s = '\0';
3040 		}
3041 		if (s + 2 >= be)
3042 			break;
3043 
3044 		*s++ = '"';
3045 		*s = '\0';
3046 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3047 		break;
3048 
3049 	case CC_FUDGEMINJIT:
3050 		if (mustput || (pcs->haveflags & CLK_HAVEMINJIT))
3051 			ctl_putdbl(clock_var[id].text,
3052 				   pcs->fudgeminjitter * 1e3);
3053 		break;
3054 
3055 	default:
3056 		break;
3057 
3058 	}
3059 }
3060 #endif
3061 
3062 
3063 
3064 /*
3065  * ctl_getitem - get the next data item from the incoming packet
3066  */
3067 static const struct ctl_var *
3068 ctl_getitem(
3069 	const struct ctl_var *var_list,
3070 	char **data
3071 	)
3072 {
3073 	/* [Bug 3008] First check the packet data sanity, then search
3074 	 * the key. This improves the consistency of result values: If
3075 	 * the result is NULL once, it will never be EOV again for this
3076 	 * packet; If it's EOV, it will never be NULL again until the
3077 	 * variable is found and processed in a given 'var_list'. (That
3078 	 * is, a result is returned that is neither NULL nor EOV).
3079 	 */
3080 	static const struct ctl_var eol = { 0, EOV, NULL };
3081 	static char buf[128];
3082 	static u_long quiet_until;
3083 	const struct ctl_var *v;
3084 	char *cp;
3085 	char *tp;
3086 
3087 	/*
3088 	 * Part One: Validate the packet state
3089 	 */
3090 
3091 	/* Delete leading commas and white space */
3092 	while (reqpt < reqend && (*reqpt == ',' ||
3093 				  isspace((unsigned char)*reqpt)))
3094 		reqpt++;
3095 	if (reqpt >= reqend)
3096 		return NULL;
3097 
3098 	/* Scan the string in the packet until we hit comma or
3099 	 * EoB. Register position of first '=' on the fly. */
3100 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3101 		if (*cp == '=' && tp == NULL)
3102 			tp = cp;
3103 		if (*cp == ',')
3104 			break;
3105 	}
3106 
3107 	/* Process payload, if any. */
3108 	*data = NULL;
3109 	if (NULL != tp) {
3110 		/* eventually strip white space from argument. */
3111 		const char *plhead = tp + 1; /* skip the '=' */
3112 		const char *pltail = cp;
3113 		size_t      plsize;
3114 
3115 		while (plhead != pltail && isspace((u_char)plhead[0]))
3116 			++plhead;
3117 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3118 			--pltail;
3119 
3120 		/* check payload size, terminate packet on overflow */
3121 		plsize = (size_t)(pltail - plhead);
3122 		if (plsize >= sizeof(buf))
3123 			goto badpacket;
3124 
3125 		/* copy data, NUL terminate, and set result data ptr */
3126 		memcpy(buf, plhead, plsize);
3127 		buf[plsize] = '\0';
3128 		*data = buf;
3129 	} else {
3130 		/* no payload, current end --> current name termination */
3131 		tp = cp;
3132 	}
3133 
3134 	/* Part Two
3135 	 *
3136 	 * Now we're sure that the packet data itself is sane. Scan the
3137 	 * list now. Make sure a NULL list is properly treated by
3138 	 * returning a synthetic End-Of-Values record. We must not
3139 	 * return NULL pointers after this point, or the behaviour would
3140 	 * become inconsistent if called several times with different
3141 	 * variable lists after an EoV was returned.  (Such a behavior
3142 	 * actually caused Bug 3008.)
3143 	 */
3144 
3145 	if (NULL == var_list)
3146 		return &eol;
3147 
3148 	for (v = var_list; !(EOV & v->flags); ++v)
3149 		if (!(PADDING & v->flags)) {
3150 			/* Check if the var name matches the buffer. The
3151 			 * name is bracketed by [reqpt..tp] and not NUL
3152 			 * terminated, and it contains no '=' char. The
3153 			 * lookup value IS NUL-terminated but might
3154 			 * include a '='... We have to look out for
3155 			 * that!
3156 			 */
3157 			const char *sp1 = reqpt;
3158 			const char *sp2 = v->text;
3159 
3160 			/* [Bug 3412] do not compare past NUL byte in name */
3161 			while (   (sp1 != tp)
3162 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3163 				++sp1;
3164 				++sp2;
3165 			}
3166 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3167 				break;
3168 		}
3169 
3170 	/* See if we have found a valid entry or not. If found, advance
3171 	 * the request pointer for the next round; if not, clear the
3172 	 * data pointer so we have no dangling garbage here.
3173 	 */
3174 	if (EOV & v->flags)
3175 		*data = NULL;
3176 	else
3177 		reqpt = cp + (cp != reqend);
3178 	return v;
3179 
3180   badpacket:
3181 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3182 	numctlbadpkts++;
3183 	NLOG(NLOG_SYSEVENT)
3184 	    if (quiet_until <= current_time) {
3185 		    quiet_until = current_time + 300;
3186 		    msyslog(LOG_WARNING,
3187 			    "Possible 'ntpdx' exploit from %s (possibly spoofed)",
3188 			    sptoa(rmt_addr));
3189 	    }
3190 	reqpt = reqend; /* never again for this packet! */
3191 	return NULL;
3192 }
3193 
3194 
3195 /*
3196  * control_unspec - response to an unspecified op-code
3197  */
3198 /*ARGSUSED*/
3199 static void
3200 control_unspec(
3201 	struct recvbuf *rbufp,
3202 	int restrict_mask
3203 	)
3204 {
3205 	struct peer *peer;
3206 
3207 	/*
3208 	 * What is an appropriate response to an unspecified op-code?
3209 	 * I return no errors and no data, unless a specified assocation
3210 	 * doesn't exist.
3211 	 */
3212 	if (res_associd) {
3213 		peer = findpeerbyassoc(res_associd);
3214 		if (NULL == peer) {
3215 			ctl_error(CERR_BADASSOC);
3216 			return;
3217 		}
3218 		rpkt.status = htons(ctlpeerstatus(peer));
3219 	} else
3220 		rpkt.status = htons(ctlsysstatus());
3221 	ctl_flushpkt(0);
3222 }
3223 
3224 
3225 /*
3226  * read_status - return either a list of associd's, or a particular
3227  * peer's status.
3228  */
3229 /*ARGSUSED*/
3230 static void
3231 read_status(
3232 	struct recvbuf *rbufp,
3233 	int restrict_mask
3234 	)
3235 {
3236 	struct peer *peer;
3237 	const u_char *cp;
3238 	size_t n;
3239 	/* a_st holds association ID, status pairs alternating */
3240 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3241 
3242 #ifdef DEBUG
3243 	if (debug > 2)
3244 		printf("read_status: ID %d\n", res_associd);
3245 #endif
3246 	/*
3247 	 * Two choices here. If the specified association ID is
3248 	 * zero we return all known assocation ID's.  Otherwise
3249 	 * we return a bunch of stuff about the particular peer.
3250 	 */
3251 	if (res_associd) {
3252 		peer = findpeerbyassoc(res_associd);
3253 		if (NULL == peer) {
3254 			ctl_error(CERR_BADASSOC);
3255 			return;
3256 		}
3257 		rpkt.status = htons(ctlpeerstatus(peer));
3258 		if (res_authokay)
3259 			peer->num_events = 0;
3260 		/*
3261 		 * For now, output everything we know about the
3262 		 * peer. May be more selective later.
3263 		 */
3264 		for (cp = def_peer_var; *cp != 0; cp++)
3265 			ctl_putpeer((int)*cp, peer);
3266 		ctl_flushpkt(0);
3267 		return;
3268 	}
3269 	n = 0;
3270 	rpkt.status = htons(ctlsysstatus());
3271 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3272 		a_st[n++] = htons(peer->associd);
3273 		a_st[n++] = htons(ctlpeerstatus(peer));
3274 		/* two entries each loop iteration, so n + 1 */
3275 		if (n + 1 >= COUNTOF(a_st)) {
3276 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3277 				    1);
3278 			n = 0;
3279 		}
3280 	}
3281 	if (n)
3282 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3283 	ctl_flushpkt(0);
3284 }
3285 
3286 
3287 /*
3288  * read_peervars - half of read_variables() implementation
3289  */
3290 static void
3291 read_peervars(void)
3292 {
3293 	const struct ctl_var *v;
3294 	struct peer *peer;
3295 	const u_char *cp;
3296 	size_t i;
3297 	char *	valuep;
3298 	u_char	wants[CP_MAXCODE + 1];
3299 	u_int	gotvar;
3300 
3301 	/*
3302 	 * Wants info for a particular peer. See if we know
3303 	 * the guy.
3304 	 */
3305 	peer = findpeerbyassoc(res_associd);
3306 	if (NULL == peer) {
3307 		ctl_error(CERR_BADASSOC);
3308 		return;
3309 	}
3310 	rpkt.status = htons(ctlpeerstatus(peer));
3311 	if (res_authokay)
3312 		peer->num_events = 0;
3313 	ZERO(wants);
3314 	gotvar = 0;
3315 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3316 		if (v->flags & EOV) {
3317 			ctl_error(CERR_UNKNOWNVAR);
3318 			return;
3319 		}
3320 		INSIST(v->code < COUNTOF(wants));
3321 		wants[v->code] = 1;
3322 		gotvar = 1;
3323 	}
3324 	if (gotvar) {
3325 		for (i = 1; i < COUNTOF(wants); i++)
3326 			if (wants[i])
3327 				ctl_putpeer(i, peer);
3328 	} else
3329 		for (cp = def_peer_var; *cp != 0; cp++)
3330 			ctl_putpeer((int)*cp, peer);
3331 	ctl_flushpkt(0);
3332 }
3333 
3334 
3335 /*
3336  * read_sysvars - half of read_variables() implementation
3337  */
3338 static void
3339 read_sysvars(void)
3340 {
3341 	const struct ctl_var *v;
3342 	struct ctl_var *kv;
3343 	u_int	n;
3344 	u_int	gotvar;
3345 	const u_char *cs;
3346 	char *	valuep;
3347 	const char * pch;
3348 	u_char *wants;
3349 	size_t	wants_count;
3350 
3351 	/*
3352 	 * Wants system variables. Figure out which he wants
3353 	 * and give them to him.
3354 	 */
3355 	rpkt.status = htons(ctlsysstatus());
3356 	if (res_authokay)
3357 		ctl_sys_num_events = 0;
3358 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3359 	wants = emalloc_zero(wants_count);
3360 	gotvar = 0;
3361 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3362 		if (!(EOV & v->flags)) {
3363 			INSIST(v->code < wants_count);
3364 			wants[v->code] = 1;
3365 			gotvar = 1;
3366 		} else {
3367 			v = ctl_getitem(ext_sys_var, &valuep);
3368 			if (NULL == v) {
3369 				ctl_error(CERR_BADVALUE);
3370 				free(wants);
3371 				return;
3372 			}
3373 			if (EOV & v->flags) {
3374 				ctl_error(CERR_UNKNOWNVAR);
3375 				free(wants);
3376 				return;
3377 			}
3378 			n = v->code + CS_MAXCODE + 1;
3379 			INSIST(n < wants_count);
3380 			wants[n] = 1;
3381 			gotvar = 1;
3382 		}
3383 	}
3384 	if (gotvar) {
3385 		for (n = 1; n <= CS_MAXCODE; n++)
3386 			if (wants[n])
3387 				ctl_putsys(n);
3388 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3389 			if (wants[n + CS_MAXCODE + 1]) {
3390 				pch = ext_sys_var[n].text;
3391 				ctl_putdata(pch, strlen(pch), 0);
3392 			}
3393 	} else {
3394 		for (cs = def_sys_var; *cs != 0; cs++)
3395 			ctl_putsys((int)*cs);
3396 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3397 			if (DEF & kv->flags)
3398 				ctl_putdata(kv->text, strlen(kv->text),
3399 					    0);
3400 	}
3401 	free(wants);
3402 	ctl_flushpkt(0);
3403 }
3404 
3405 
3406 /*
3407  * read_variables - return the variables the caller asks for
3408  */
3409 /*ARGSUSED*/
3410 static void
3411 read_variables(
3412 	struct recvbuf *rbufp,
3413 	int restrict_mask
3414 	)
3415 {
3416 	if (res_associd)
3417 		read_peervars();
3418 	else
3419 		read_sysvars();
3420 }
3421 
3422 
3423 /*
3424  * write_variables - write into variables. We only allow leap bit
3425  * writing this way.
3426  */
3427 /*ARGSUSED*/
3428 static void
3429 write_variables(
3430 	struct recvbuf *rbufp,
3431 	int restrict_mask
3432 	)
3433 {
3434 	const struct ctl_var *v;
3435 	int ext_var;
3436 	char *valuep;
3437 	long val;
3438 	size_t octets;
3439 	char *vareqv;
3440 	const char *t;
3441 	char *tt;
3442 
3443 	val = 0;
3444 	/*
3445 	 * If he's trying to write into a peer tell him no way
3446 	 */
3447 	if (res_associd != 0) {
3448 		ctl_error(CERR_PERMISSION);
3449 		return;
3450 	}
3451 
3452 	/*
3453 	 * Set status
3454 	 */
3455 	rpkt.status = htons(ctlsysstatus());
3456 
3457 	/*
3458 	 * Look through the variables. Dump out at the first sign of
3459 	 * trouble.
3460 	 */
3461 	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3462 		ext_var = 0;
3463 		if (v->flags & EOV) {
3464 			v = ctl_getitem(ext_sys_var, &valuep);
3465 			if (v != NULL) {
3466 				if (v->flags & EOV) {
3467 					ctl_error(CERR_UNKNOWNVAR);
3468 					return;
3469 				}
3470 				ext_var = 1;
3471 			} else {
3472 				break;
3473 			}
3474 		}
3475 		if (!(v->flags & CAN_WRITE)) {
3476 			ctl_error(CERR_PERMISSION);
3477 			return;
3478 		}
3479 		/* [bug 3565] writing makes sense only if we *have* a
3480 		 * value in the packet!
3481 		 */
3482 		if (valuep == NULL) {
3483 			ctl_error(CERR_BADFMT);
3484 			return;
3485 		}
3486 		if (!ext_var) {
3487 			if ( !(*valuep && atoint(valuep, &val))) {
3488 				ctl_error(CERR_BADFMT);
3489 				return;
3490 			}
3491 			if ((val & ~LEAP_NOTINSYNC) != 0) {
3492 				ctl_error(CERR_BADVALUE);
3493 				return;
3494 			}
3495 		}
3496 
3497 		if (ext_var) {
3498 			octets = strlen(v->text) + strlen(valuep) + 2;
3499 			vareqv = emalloc(octets);
3500 			tt = vareqv;
3501 			t = v->text;
3502 			while (*t && *t != '=')
3503 				*tt++ = *t++;
3504 			*tt++ = '=';
3505 			memcpy(tt, valuep, 1 + strlen(valuep));
3506 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3507 			free(vareqv);
3508 		} else {
3509 			ctl_error(CERR_UNSPEC); /* really */
3510 			return;
3511 		}
3512 	}
3513 
3514 	/*
3515 	 * If we got anything, do it. xxx nothing to do ***
3516 	 */
3517 	/*
3518 	  if (leapind != ~0 || leapwarn != ~0) {
3519 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3520 	  ctl_error(CERR_PERMISSION);
3521 	  return;
3522 	  }
3523 	  }
3524 	*/
3525 	ctl_flushpkt(0);
3526 }
3527 
3528 
3529 /*
3530  * configure() processes ntpq :config/config-from-file, allowing
3531  *		generic runtime reconfiguration.
3532  */
3533 static void configure(
3534 	struct recvbuf *rbufp,
3535 	int restrict_mask
3536 	)
3537 {
3538 	size_t data_count;
3539 	int retval;
3540 
3541 	/* I haven't yet implemented changes to an existing association.
3542 	 * Hence check if the association id is 0
3543 	 */
3544 	if (res_associd != 0) {
3545 		ctl_error(CERR_BADVALUE);
3546 		return;
3547 	}
3548 
3549 	if (RES_NOMODIFY & restrict_mask) {
3550 		snprintf(remote_config.err_msg,
3551 			 sizeof(remote_config.err_msg),
3552 			 "runtime configuration prohibited by restrict ... nomodify");
3553 		ctl_putdata(remote_config.err_msg,
3554 			    strlen(remote_config.err_msg), 0);
3555 		ctl_flushpkt(0);
3556 		NLOG(NLOG_SYSINFO)
3557 			msyslog(LOG_NOTICE,
3558 				"runtime config from %s rejected due to nomodify restriction",
3559 				stoa(&rbufp->recv_srcadr));
3560 		sys_restricted++;
3561 		return;
3562 	}
3563 
3564 	/* Initialize the remote config buffer */
3565 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3566 
3567 	if (data_count > sizeof(remote_config.buffer) - 2) {
3568 		snprintf(remote_config.err_msg,
3569 			 sizeof(remote_config.err_msg),
3570 			 "runtime configuration failed: request too long");
3571 		ctl_putdata(remote_config.err_msg,
3572 			    strlen(remote_config.err_msg), 0);
3573 		ctl_flushpkt(0);
3574 		msyslog(LOG_NOTICE,
3575 			"runtime config from %s rejected: request too long",
3576 			stoa(&rbufp->recv_srcadr));
3577 		return;
3578 	}
3579 	/* Bug 2853 -- check if all characters were acceptable */
3580 	if (data_count != (size_t)(reqend - reqpt)) {
3581 		snprintf(remote_config.err_msg,
3582 			 sizeof(remote_config.err_msg),
3583 			 "runtime configuration failed: request contains an unprintable character");
3584 		ctl_putdata(remote_config.err_msg,
3585 			    strlen(remote_config.err_msg), 0);
3586 		ctl_flushpkt(0);
3587 		msyslog(LOG_NOTICE,
3588 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3589 			stoa(&rbufp->recv_srcadr),
3590 			reqpt[data_count]);
3591 		return;
3592 	}
3593 
3594 	memcpy(remote_config.buffer, reqpt, data_count);
3595 	/* The buffer has no trailing linefeed or NUL right now. For
3596 	 * logging, we do not want a newline, so we do that first after
3597 	 * adding the necessary NUL byte.
3598 	 */
3599 	remote_config.buffer[data_count] = '\0';
3600 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3601 		remote_config.buffer));
3602 	msyslog(LOG_NOTICE, "%s config: %s",
3603 		stoa(&rbufp->recv_srcadr),
3604 		remote_config.buffer);
3605 
3606 	/* Now we have to make sure there is a NL/NUL sequence at the
3607 	 * end of the buffer before we parse it.
3608 	 */
3609 	remote_config.buffer[data_count++] = '\n';
3610 	remote_config.buffer[data_count] = '\0';
3611 	remote_config.pos = 0;
3612 	remote_config.err_pos = 0;
3613 	remote_config.no_errors = 0;
3614 	config_remotely(&rbufp->recv_srcadr);
3615 
3616 	/*
3617 	 * Check if errors were reported. If not, output 'Config
3618 	 * Succeeded'.  Else output the error count.  It would be nice
3619 	 * to output any parser error messages.
3620 	 */
3621 	if (0 == remote_config.no_errors) {
3622 		retval = snprintf(remote_config.err_msg,
3623 				  sizeof(remote_config.err_msg),
3624 				  "Config Succeeded");
3625 		if (retval > 0)
3626 			remote_config.err_pos += retval;
3627 	}
3628 
3629 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3630 	ctl_flushpkt(0);
3631 
3632 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3633 
3634 	if (remote_config.no_errors > 0)
3635 		msyslog(LOG_NOTICE, "%d error in %s config",
3636 			remote_config.no_errors,
3637 			stoa(&rbufp->recv_srcadr));
3638 }
3639 
3640 
3641 /*
3642  * derive_nonce - generate 32-bit nonce value derived from the client
3643  *		  address and a request-specific timestamp.
3644  *
3645  * This uses MD5 for a non-authentication purpose -- the nonce is used
3646  * analogous to the TCP 3-way handshake to confirm the UDP client can
3647  * receive traffic from which it claims to originate, that is, to
3648  * prevent spoofed requests leading to reflected amplification.
3649  */
3650 static u_int32 derive_nonce(
3651 	sockaddr_u *	addr,
3652 	u_int32		ts_i,
3653 	u_int32		ts_f
3654 	)
3655 {
3656 	static u_int32	salt[4];
3657 	static u_long	last_salt_update;
3658 	MD5_CTX		ctx;
3659 	union d_tag {
3660 		u_char	digest[MD5_DIGEST_LENGTH];
3661 		u_int32 extract;
3662 	}		d;
3663 
3664 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3665 		salt[0] = ntp_random();
3666 		salt[1] = ntp_random();
3667 		salt[2] = ntp_random();
3668 		salt[3] = ntp_random();
3669 		last_salt_update = current_time;
3670 	}
3671 
3672 	MD5Init(&ctx);
3673 	MD5Update(&ctx, __UNCONST(salt), sizeof(salt));
3674 	MD5Update(&ctx, __UNCONST(&ts_i), sizeof(ts_i));
3675 	MD5Update(&ctx, __UNCONST(&ts_f), sizeof(ts_f));
3676 	if (IS_IPV4(addr)) {
3677 		MD5Update(&ctx, __UNCONST(&SOCK_ADDR4(addr)), sizeof(SOCK_ADDR4(addr)));
3678 	} else {
3679 		MD5Update(&ctx, __UNCONST(&SOCK_ADDR6(addr)), sizeof(SOCK_ADDR6(addr)));
3680 	}
3681 	MD5Update(&ctx, __UNCONST(&NSRCPORT(addr)), sizeof(NSRCPORT(addr)));
3682 	MD5Update(&ctx, __UNCONST(salt), sizeof(salt));
3683 	MD5Final(d.digest, &ctx);
3684 
3685 	return d.extract;
3686 }
3687 
3688 
3689 /*
3690  * generate_nonce - generate client-address-specific nonce string.
3691  */
3692 static void generate_nonce(
3693 	struct recvbuf *	rbufp,
3694 	char *			nonce,
3695 	size_t			nonce_octets
3696 	)
3697 {
3698 	u_int32 derived;
3699 
3700 	derived = derive_nonce(&rbufp->recv_srcadr,
3701 			       rbufp->recv_time.l_ui,
3702 			       rbufp->recv_time.l_uf);
3703 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3704 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3705 }
3706 
3707 
3708 /*
3709  * validate_nonce - validate client-address-specific nonce string.
3710  *
3711  * Returns TRUE if the local calculation of the nonce matches the
3712  * client-provided value and the timestamp is recent enough.
3713  */
3714 static int validate_nonce(
3715 	const char *		pnonce,
3716 	struct recvbuf *	rbufp
3717 	)
3718 {
3719 	u_int	ts_i;
3720 	u_int	ts_f;
3721 	l_fp	ts;
3722 	l_fp	now_delta;
3723 	u_int	supposed;
3724 	u_int	derived;
3725 
3726 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3727 		return FALSE;
3728 
3729 	ts.l_ui = (u_int32)ts_i;
3730 	ts.l_uf = (u_int32)ts_f;
3731 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3732 	get_systime(&now_delta);
3733 	L_SUB(&now_delta, &ts);
3734 
3735 	return (supposed == derived && now_delta.l_ui < 16);
3736 }
3737 
3738 
3739 /*
3740  * send_random_tag_value - send a randomly-generated three character
3741  *			   tag prefix, a '.', an index, a '=' and a
3742  *			   random integer value.
3743  *
3744  * To try to force clients to ignore unrecognized tags in mrulist,
3745  * reslist, and ifstats responses, the first and last rows are spiced
3746  * with randomly-generated tag names with correct .# index.  Make it
3747  * three characters knowing that none of the currently-used subscripted
3748  * tags have that length, avoiding the need to test for
3749  * tag collision.
3750  */
3751 static void
3752 send_random_tag_value(
3753 	int	indx
3754 	)
3755 {
3756 	int	noise;
3757 	char	buf[32];
3758 
3759 	noise = rand() ^ (rand() << 16);
3760 	buf[0] = 'a' + noise % 26;
3761 	noise >>= 5;
3762 	buf[1] = 'a' + noise % 26;
3763 	noise >>= 5;
3764 	buf[2] = 'a' + noise % 26;
3765 	noise >>= 5;
3766 	buf[3] = '.';
3767 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3768 	ctl_putuint(buf, noise);
3769 }
3770 
3771 
3772 /*
3773  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3774  *
3775  * To keep clients honest about not depending on the order of values,
3776  * and thereby avoid being locked into ugly workarounds to maintain
3777  * backward compatibility later as new fields are added to the response,
3778  * the order is random.
3779  */
3780 static void
3781 send_mru_entry(
3782 	mon_entry *	mon,
3783 	int		count
3784 	)
3785 {
3786 	const char first_fmt[] =	"first.%d";
3787 	const char ct_fmt[] =		"ct.%d";
3788 	const char mv_fmt[] =		"mv.%d";
3789 	const char rs_fmt[] =		"rs.%d";
3790 	char	tag[32];
3791 	u_char	sent[6]; /* 6 tag=value pairs */
3792 	u_int32 noise;
3793 	u_int	which;
3794 	u_int	remaining;
3795 	const char * pch;
3796 
3797 	remaining = COUNTOF(sent);
3798 	ZERO(sent);
3799 	noise = (u_int32)(rand() ^ (rand() << 16));
3800 	while (remaining > 0) {
3801 		which = (noise & 7) % COUNTOF(sent);
3802 		noise >>= 3;
3803 		while (sent[which])
3804 			which = (which + 1) % COUNTOF(sent);
3805 
3806 		switch (which) {
3807 
3808 		case 0:
3809 			snprintf(tag, sizeof(tag), addr_fmt, count);
3810 			pch = sptoa(&mon->rmtadr);
3811 			ctl_putunqstr(tag, pch, strlen(pch));
3812 			break;
3813 
3814 		case 1:
3815 			snprintf(tag, sizeof(tag), last_fmt, count);
3816 			ctl_putts(tag, &mon->last);
3817 			break;
3818 
3819 		case 2:
3820 			snprintf(tag, sizeof(tag), first_fmt, count);
3821 			ctl_putts(tag, &mon->first);
3822 			break;
3823 
3824 		case 3:
3825 			snprintf(tag, sizeof(tag), ct_fmt, count);
3826 			ctl_putint(tag, mon->count);
3827 			break;
3828 
3829 		case 4:
3830 			snprintf(tag, sizeof(tag), mv_fmt, count);
3831 			ctl_putuint(tag, mon->vn_mode);
3832 			break;
3833 
3834 		case 5:
3835 			snprintf(tag, sizeof(tag), rs_fmt, count);
3836 			ctl_puthex(tag, mon->flags);
3837 			break;
3838 		}
3839 		sent[which] = TRUE;
3840 		remaining--;
3841 	}
3842 }
3843 
3844 
3845 /*
3846  * read_mru_list - supports ntpq's mrulist command.
3847  *
3848  * The challenge here is to match ntpdc's monlist functionality without
3849  * being limited to hundreds of entries returned total, and without
3850  * requiring state on the server.  If state were required, ntpq's
3851  * mrulist command would require authentication.
3852  *
3853  * The approach was suggested by Ry Jones.  A finite and variable number
3854  * of entries are retrieved per request, to avoid having responses with
3855  * such large numbers of packets that socket buffers are overflowed and
3856  * packets lost.  The entries are retrieved oldest-first, taking into
3857  * account that the MRU list will be changing between each request.  We
3858  * can expect to see duplicate entries for addresses updated in the MRU
3859  * list during the fetch operation.  In the end, the client can assemble
3860  * a close approximation of the MRU list at the point in time the last
3861  * response was sent by ntpd.  The only difference is it may be longer,
3862  * containing some number of oldest entries which have since been
3863  * reclaimed.  If necessary, the protocol could be extended to zap those
3864  * from the client snapshot at the end, but so far that doesn't seem
3865  * useful.
3866  *
3867  * To accomodate the changing MRU list, the starting point for requests
3868  * after the first request is supplied as a series of last seen
3869  * timestamps and associated addresses, the newest ones the client has
3870  * received.  As long as at least one of those entries hasn't been
3871  * bumped to the head of the MRU list, ntpd can pick up at that point.
3872  * Otherwise, the request is failed and it is up to ntpq to back up and
3873  * provide the next newest entry's timestamps and addresses, conceivably
3874  * backing up all the way to the starting point.
3875  *
3876  * input parameters:
3877  *	nonce=		Regurgitated nonce retrieved by the client
3878  *			previously using CTL_OP_REQ_NONCE, demonstrating
3879  *			ability to receive traffic sent to its address.
3880  *	frags=		Limit on datagrams (fragments) in response.  Used
3881  *			by newer ntpq versions instead of limit= when
3882  *			retrieving multiple entries.
3883  *	limit=		Limit on MRU entries returned.  One of frags= or
3884  *			limit= must be provided.
3885  *			limit=1 is a special case:  Instead of fetching
3886  *			beginning with the supplied starting point's
3887  *			newer neighbor, fetch the supplied entry, and
3888  *			in that case the #.last timestamp can be zero.
3889  *			This enables fetching a single entry by IP
3890  *			address.  When limit is not one and frags= is
3891  *			provided, the fragment limit controls.
3892  *	mincount=	(decimal) Return entries with count >= mincount.
3893  *	laddr=		Return entries associated with the server's IP
3894  *			address given.  No port specification is needed,
3895  *			and any supplied is ignored.
3896  *	resall=		0x-prefixed hex restrict bits which must all be
3897  *			lit for an MRU entry to be included.
3898  *			Has precedence over any resany=.
3899  *	resany=		0x-prefixed hex restrict bits, at least one of
3900  *			which must be list for an MRU entry to be
3901  *			included.
3902  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3903  *			which client previously received.
3904  *	addr.0=		text of newest entry's IP address and port,
3905  *			IPv6 addresses in bracketed form: [::]:123
3906  *	last.1=		timestamp of 2nd newest entry client has.
3907  *	addr.1=		address of 2nd newest entry.
3908  *	[...]
3909  *
3910  * ntpq provides as many last/addr pairs as will fit in a single request
3911  * packet, except for the first request in a MRU fetch operation.
3912  *
3913  * The response begins with a new nonce value to be used for any
3914  * followup request.  Following the nonce is the next newer entry than
3915  * referred to by last.0 and addr.0, if the "0" entry has not been
3916  * bumped to the front.  If it has, the first entry returned will be the
3917  * next entry newer than referred to by last.1 and addr.1, and so on.
3918  * If none of the referenced entries remain unchanged, the request fails
3919  * and ntpq backs up to the next earlier set of entries to resync.
3920  *
3921  * Except for the first response, the response begins with confirmation
3922  * of the entry that precedes the first additional entry provided:
3923  *
3924  *	last.older=	hex l_fp timestamp matching one of the input
3925  *			.last timestamps, which entry now precedes the
3926  *			response 0. entry in the MRU list.
3927  *	addr.older=	text of address corresponding to older.last.
3928  *
3929  * And in any case, a successful response contains sets of values
3930  * comprising entries, with the oldest numbered 0 and incrementing from
3931  * there:
3932  *
3933  *	addr.#		text of IPv4 or IPv6 address and port
3934  *	last.#		hex l_fp timestamp of last receipt
3935  *	first.#		hex l_fp timestamp of first receipt
3936  *	ct.#		count of packets received
3937  *	mv.#		mode and version
3938  *	rs.#		restriction mask (RES_* bits)
3939  *
3940  * Note the code currently assumes there are no valid three letter
3941  * tags sent with each row, and needs to be adjusted if that changes.
3942  *
3943  * The client should accept the values in any order, and ignore .#
3944  * values which it does not understand, to allow a smooth path to
3945  * future changes without requiring a new opcode.  Clients can rely
3946  * on all *.0 values preceding any *.1 values, that is all values for
3947  * a given index number are together in the response.
3948  *
3949  * The end of the response list is noted with one or two tag=value
3950  * pairs.  Unconditionally:
3951  *
3952  *	now=		0x-prefixed l_fp timestamp at the server marking
3953  *			the end of the operation.
3954  *
3955  * If any entries were returned, now= is followed by:
3956  *
3957  *	last.newest=	hex l_fp identical to last.# of the prior
3958  *			entry.
3959  */
3960 static void read_mru_list(
3961 	struct recvbuf *rbufp,
3962 	int restrict_mask
3963 	)
3964 {
3965 	static const char	nulltxt[1] = 		{ '\0' };
3966 	static const char	nonce_text[] =		"nonce";
3967 	static const char	frags_text[] =		"frags";
3968 	static const char	limit_text[] =		"limit";
3969 	static const char	mincount_text[] =	"mincount";
3970 	static const char	resall_text[] =		"resall";
3971 	static const char	resany_text[] =		"resany";
3972 	static const char	maxlstint_text[] =	"maxlstint";
3973 	static const char	laddr_text[] =		"laddr";
3974 	static const char	resaxx_fmt[] =		"0x%hx";
3975 
3976 	u_int			limit;
3977 	u_short			frags;
3978 	u_short			resall;
3979 	u_short			resany;
3980 	int			mincount;
3981 	u_int			maxlstint;
3982 	sockaddr_u		laddr;
3983 	endpt *			lcladr;
3984 	u_int			count;
3985 	u_int			ui;
3986 	u_int			uf;
3987 	l_fp			last[16];
3988 	sockaddr_u		addr[COUNTOF(last)];
3989 	char			buf[128];
3990 	struct ctl_var *	in_parms;
3991 	const struct ctl_var *	v;
3992 	const char *		val;
3993 	const char *		pch;
3994 	char *			pnonce;
3995 	int			nonce_valid;
3996 	size_t			i;
3997 	int			priors;
3998 	u_short			hash;
3999 	mon_entry *		mon;
4000 	mon_entry *		prior_mon;
4001 	l_fp			now;
4002 
4003 	if (RES_NOMRULIST & restrict_mask) {
4004 		ctl_error(CERR_PERMISSION);
4005 		NLOG(NLOG_SYSINFO)
4006 			msyslog(LOG_NOTICE,
4007 				"mrulist from %s rejected due to nomrulist restriction",
4008 				stoa(&rbufp->recv_srcadr));
4009 		sys_restricted++;
4010 		return;
4011 	}
4012 	/*
4013 	 * fill in_parms var list with all possible input parameters.
4014 	 */
4015 	in_parms = NULL;
4016 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4017 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4018 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4019 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4020 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4021 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4022 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4023 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4024 	for (i = 0; i < COUNTOF(last); i++) {
4025 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4026 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4027 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4028 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4029 	}
4030 
4031 	/* decode input parms */
4032 	pnonce = NULL;
4033 	frags = 0;
4034 	limit = 0;
4035 	mincount = 0;
4036 	resall = 0;
4037 	resany = 0;
4038 	maxlstint = 0;
4039 	lcladr = NULL;
4040 	priors = 0;
4041 	ZERO(last);
4042 	ZERO(addr);
4043 
4044 	/* have to go through '(void*)' to drop 'const' property from pointer.
4045 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4046 	 */
4047 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4048 	       !(EOV & v->flags)) {
4049 		int si;
4050 
4051 		if (NULL == val)
4052 			val = nulltxt;
4053 
4054 		if (!strcmp(nonce_text, v->text)) {
4055 			free(pnonce);
4056 			pnonce = (*val) ? estrdup(val) : NULL;
4057 		} else if (!strcmp(frags_text, v->text)) {
4058 			if (1 != sscanf(val, "%hu", &frags))
4059 				goto blooper;
4060 		} else if (!strcmp(limit_text, v->text)) {
4061 			if (1 != sscanf(val, "%u", &limit))
4062 				goto blooper;
4063 		} else if (!strcmp(mincount_text, v->text)) {
4064 			if (1 != sscanf(val, "%d", &mincount))
4065 				goto blooper;
4066 			if (mincount < 0)
4067 				mincount = 0;
4068 		} else if (!strcmp(resall_text, v->text)) {
4069 			if (1 != sscanf(val, resaxx_fmt, &resall))
4070 				goto blooper;
4071 		} else if (!strcmp(resany_text, v->text)) {
4072 			if (1 != sscanf(val, resaxx_fmt, &resany))
4073 				goto blooper;
4074 		} else if (!strcmp(maxlstint_text, v->text)) {
4075 			if (1 != sscanf(val, "%u", &maxlstint))
4076 				goto blooper;
4077 		} else if (!strcmp(laddr_text, v->text)) {
4078 			if (!decodenetnum(val, &laddr))
4079 				goto blooper;
4080 			lcladr = getinterface(&laddr, 0);
4081 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4082 			   (size_t)si < COUNTOF(last)) {
4083 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4084 				goto blooper;
4085 			last[si].l_ui = ui;
4086 			last[si].l_uf = uf;
4087 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4088 				priors++;
4089 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4090 			   (size_t)si < COUNTOF(addr)) {
4091 			if (!decodenetnum(val, &addr[si]))
4092 				goto blooper;
4093 			if (last[si].l_ui && last[si].l_uf && si == priors)
4094 				priors++;
4095 		} else {
4096 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4097 				    v->text));
4098 			continue;
4099 
4100 		blooper:
4101 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4102 				    v->text, val));
4103 			free(pnonce);
4104 			pnonce = NULL;
4105 			break;
4106 		}
4107 	}
4108 	free_varlist(in_parms);
4109 	in_parms = NULL;
4110 
4111 	/* return no responses until the nonce is validated */
4112 	if (NULL == pnonce)
4113 		return;
4114 
4115 	nonce_valid = validate_nonce(pnonce, rbufp);
4116 	free(pnonce);
4117 	if (!nonce_valid)
4118 		return;
4119 
4120 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4121 	    frags > MRU_FRAGS_LIMIT) {
4122 		ctl_error(CERR_BADVALUE);
4123 		return;
4124 	}
4125 
4126 	/*
4127 	 * If either frags or limit is not given, use the max.
4128 	 */
4129 	if (0 != frags && 0 == limit)
4130 		limit = UINT_MAX;
4131 	else if (0 != limit && 0 == frags)
4132 		frags = MRU_FRAGS_LIMIT;
4133 
4134 	/*
4135 	 * Find the starting point if one was provided.
4136 	 */
4137 	mon = NULL;
4138 	for (i = 0; i < (size_t)priors; i++) {
4139 		hash = MON_HASH(&addr[i]);
4140 		for (mon = mon_hash[hash];
4141 		     mon != NULL;
4142 		     mon = mon->hash_next)
4143 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4144 				break;
4145 		if (mon != NULL) {
4146 			if (L_ISEQU(&mon->last, &last[i]))
4147 				break;
4148 			mon = NULL;
4149 		}
4150 	}
4151 
4152 	/* If a starting point was provided... */
4153 	if (priors) {
4154 		/* and none could be found unmodified... */
4155 		if (NULL == mon) {
4156 			/* tell ntpq to try again with older entries */
4157 			ctl_error(CERR_UNKNOWNVAR);
4158 			return;
4159 		}
4160 		/* confirm the prior entry used as starting point */
4161 		ctl_putts("last.older", &mon->last);
4162 		pch = sptoa(&mon->rmtadr);
4163 		ctl_putunqstr("addr.older", pch, strlen(pch));
4164 
4165 		/*
4166 		 * Move on to the first entry the client doesn't have,
4167 		 * except in the special case of a limit of one.  In
4168 		 * that case return the starting point entry.
4169 		 */
4170 		if (limit > 1)
4171 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4172 	} else {	/* start with the oldest */
4173 		mon = TAIL_DLIST(mon_mru_list, mru);
4174 	}
4175 
4176 	/*
4177 	 * send up to limit= entries in up to frags= datagrams
4178 	 */
4179 	get_systime(&now);
4180 	generate_nonce(rbufp, buf, sizeof(buf));
4181 	ctl_putunqstr("nonce", buf, strlen(buf));
4182 	prior_mon = NULL;
4183 	for (count = 0;
4184 	     mon != NULL && res_frags < frags && count < limit;
4185 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4186 
4187 		if (mon->count < mincount)
4188 			continue;
4189 		if (resall && resall != (resall & mon->flags))
4190 			continue;
4191 		if (resany && !(resany & mon->flags))
4192 			continue;
4193 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4194 		    maxlstint)
4195 			continue;
4196 		if (lcladr != NULL && mon->lcladr != lcladr)
4197 			continue;
4198 
4199 		send_mru_entry(mon, count);
4200 		if (!count)
4201 			send_random_tag_value(0);
4202 		count++;
4203 		prior_mon = mon;
4204 	}
4205 
4206 	/*
4207 	 * If this batch completes the MRU list, say so explicitly with
4208 	 * a now= l_fp timestamp.
4209 	 */
4210 	if (NULL == mon) {
4211 		if (count > 1)
4212 			send_random_tag_value(count - 1);
4213 		ctl_putts("now", &now);
4214 		/* if any entries were returned confirm the last */
4215 		if (prior_mon != NULL)
4216 			ctl_putts("last.newest", &prior_mon->last);
4217 	}
4218 	ctl_flushpkt(0);
4219 }
4220 
4221 
4222 /*
4223  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4224  *
4225  * To keep clients honest about not depending on the order of values,
4226  * and thereby avoid being locked into ugly workarounds to maintain
4227  * backward compatibility later as new fields are added to the response,
4228  * the order is random.
4229  */
4230 static void
4231 send_ifstats_entry(
4232 	endpt *	la,
4233 	u_int	ifnum
4234 	)
4235 {
4236 	const char addr_fmtu[] =	"addr.%u";
4237 	const char bcast_fmt[] =	"bcast.%u";
4238 	const char en_fmt[] =		"en.%u";	/* enabled */
4239 	const char name_fmt[] =		"name.%u";
4240 	const char flags_fmt[] =	"flags.%u";
4241 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4242 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4243 	const char rx_fmt[] =		"rx.%u";
4244 	const char tx_fmt[] =		"tx.%u";
4245 	const char txerr_fmt[] =	"txerr.%u";
4246 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4247 	const char up_fmt[] =		"up.%u";	/* uptime */
4248 	char	tag[32];
4249 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4250 	int	noisebits;
4251 	u_int32 noise;
4252 	u_int	which;
4253 	u_int	remaining;
4254 	const char *pch;
4255 
4256 	remaining = COUNTOF(sent);
4257 	ZERO(sent);
4258 	noise = 0;
4259 	noisebits = 0;
4260 	while (remaining > 0) {
4261 		if (noisebits < 4) {
4262 			noise = rand() ^ (rand() << 16);
4263 			noisebits = 31;
4264 		}
4265 		which = (noise & 0xf) % COUNTOF(sent);
4266 		noise >>= 4;
4267 		noisebits -= 4;
4268 
4269 		while (sent[which])
4270 			which = (which + 1) % COUNTOF(sent);
4271 
4272 		switch (which) {
4273 
4274 		case 0:
4275 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4276 			pch = sptoa(&la->sin);
4277 			ctl_putunqstr(tag, pch, strlen(pch));
4278 			break;
4279 
4280 		case 1:
4281 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4282 			if (INT_BCASTOPEN & la->flags)
4283 				pch = sptoa(&la->bcast);
4284 			else
4285 				pch = "";
4286 			ctl_putunqstr(tag, pch, strlen(pch));
4287 			break;
4288 
4289 		case 2:
4290 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4291 			ctl_putint(tag, !la->ignore_packets);
4292 			break;
4293 
4294 		case 3:
4295 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4296 			ctl_putstr(tag, la->name, strlen(la->name));
4297 			break;
4298 
4299 		case 4:
4300 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4301 			ctl_puthex(tag, (u_int)la->flags);
4302 			break;
4303 
4304 		case 5:
4305 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4306 			ctl_putint(tag, la->last_ttl);
4307 			break;
4308 
4309 		case 6:
4310 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4311 			ctl_putint(tag, la->num_mcast);
4312 			break;
4313 
4314 		case 7:
4315 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4316 			ctl_putint(tag, la->received);
4317 			break;
4318 
4319 		case 8:
4320 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4321 			ctl_putint(tag, la->sent);
4322 			break;
4323 
4324 		case 9:
4325 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4326 			ctl_putint(tag, la->notsent);
4327 			break;
4328 
4329 		case 10:
4330 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4331 			ctl_putuint(tag, la->peercnt);
4332 			break;
4333 
4334 		case 11:
4335 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4336 			ctl_putuint(tag, current_time - la->starttime);
4337 			break;
4338 		}
4339 		sent[which] = TRUE;
4340 		remaining--;
4341 	}
4342 	send_random_tag_value((int)ifnum);
4343 }
4344 
4345 
4346 /*
4347  * read_ifstats - send statistics for each local address, exposed by
4348  *		  ntpq -c ifstats
4349  */
4350 static void
4351 read_ifstats(
4352 	struct recvbuf *	rbufp
4353 	)
4354 {
4355 	u_int	ifidx;
4356 	endpt *	la;
4357 
4358 	/*
4359 	 * loop over [0..sys_ifnum] searching ep_list for each
4360 	 * ifnum in turn.
4361 	 */
4362 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4363 		for (la = ep_list; la != NULL; la = la->elink)
4364 			if (ifidx == la->ifnum)
4365 				break;
4366 		if (NULL == la)
4367 			continue;
4368 		/* return stats for one local address */
4369 		send_ifstats_entry(la, ifidx);
4370 	}
4371 	ctl_flushpkt(0);
4372 }
4373 
4374 static void
4375 sockaddrs_from_restrict_u(
4376 	sockaddr_u *	psaA,
4377 	sockaddr_u *	psaM,
4378 	restrict_u *	pres,
4379 	int		ipv6
4380 	)
4381 {
4382 	ZERO(*psaA);
4383 	ZERO(*psaM);
4384 	if (!ipv6) {
4385 		psaA->sa.sa_family = AF_INET;
4386 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4387 		psaM->sa.sa_family = AF_INET;
4388 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4389 	} else {
4390 		psaA->sa.sa_family = AF_INET6;
4391 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4392 		       sizeof(psaA->sa6.sin6_addr));
4393 		psaM->sa.sa_family = AF_INET6;
4394 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4395 		       sizeof(psaA->sa6.sin6_addr));
4396 	}
4397 }
4398 
4399 
4400 /*
4401  * Send a restrict entry in response to a "ntpq -c reslist" request.
4402  *
4403  * To keep clients honest about not depending on the order of values,
4404  * and thereby avoid being locked into ugly workarounds to maintain
4405  * backward compatibility later as new fields are added to the response,
4406  * the order is random.
4407  */
4408 static void
4409 send_restrict_entry(
4410 	restrict_u *	pres,
4411 	int		ipv6,
4412 	u_int		idx
4413 	)
4414 {
4415 	const char addr_fmtu[] =	"addr.%u";
4416 	const char mask_fmtu[] =	"mask.%u";
4417 	const char hits_fmt[] =		"hits.%u";
4418 	const char flags_fmt[] =	"flags.%u";
4419 	char		tag[32];
4420 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4421 	int		noisebits;
4422 	u_int32		noise;
4423 	u_int		which;
4424 	u_int		remaining;
4425 	sockaddr_u	addr;
4426 	sockaddr_u	mask;
4427 	const char *	pch;
4428 	char *		buf;
4429 	const char *	match_str;
4430 	const char *	access_str;
4431 
4432 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4433 	remaining = COUNTOF(sent);
4434 	ZERO(sent);
4435 	noise = 0;
4436 	noisebits = 0;
4437 	while (remaining > 0) {
4438 		if (noisebits < 2) {
4439 			noise = rand() ^ (rand() << 16);
4440 			noisebits = 31;
4441 		}
4442 		which = (noise & 0x3) % COUNTOF(sent);
4443 		noise >>= 2;
4444 		noisebits -= 2;
4445 
4446 		while (sent[which])
4447 			which = (which + 1) % COUNTOF(sent);
4448 
4449 		/* XXX: Numbers?  Really? */
4450 		switch (which) {
4451 
4452 		case 0:
4453 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4454 			pch = stoa(&addr);
4455 			ctl_putunqstr(tag, pch, strlen(pch));
4456 			break;
4457 
4458 		case 1:
4459 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4460 			pch = stoa(&mask);
4461 			ctl_putunqstr(tag, pch, strlen(pch));
4462 			break;
4463 
4464 		case 2:
4465 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4466 			ctl_putuint(tag, pres->count);
4467 			break;
4468 
4469 		case 3:
4470 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4471 			match_str = res_match_flags(pres->mflags);
4472 			access_str = res_access_flags(pres->rflags);
4473 			if ('\0' == match_str[0]) {
4474 				pch = access_str;
4475 			} else {
4476 				LIB_GETBUF(buf);
4477 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4478 					 match_str, access_str);
4479 				pch = buf;
4480 			}
4481 			ctl_putunqstr(tag, pch, strlen(pch));
4482 			break;
4483 		}
4484 		sent[which] = TRUE;
4485 		remaining--;
4486 	}
4487 	send_random_tag_value((int)idx);
4488 }
4489 
4490 
4491 static void
4492 send_restrict_list(
4493 	restrict_u *	pres,
4494 	int		ipv6,
4495 	u_int *		pidx
4496 	)
4497 {
4498 	for ( ; pres != NULL; pres = pres->link) {
4499 		send_restrict_entry(pres, ipv6, *pidx);
4500 		(*pidx)++;
4501 	}
4502 }
4503 
4504 
4505 /*
4506  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4507  */
4508 static void
4509 read_addr_restrictions(
4510 	struct recvbuf *	rbufp
4511 )
4512 {
4513 	u_int idx;
4514 
4515 	idx = 0;
4516 	send_restrict_list(restrictlist4, FALSE, &idx);
4517 	send_restrict_list(restrictlist6, TRUE, &idx);
4518 	ctl_flushpkt(0);
4519 }
4520 
4521 
4522 /*
4523  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4524  */
4525 static void
4526 read_ordlist(
4527 	struct recvbuf *	rbufp,
4528 	int			restrict_mask
4529 	)
4530 {
4531 	const char ifstats_s[] = "ifstats";
4532 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4533 	const char addr_rst_s[] = "addr_restrictions";
4534 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4535 	struct ntp_control *	cpkt;
4536 	u_short			qdata_octets;
4537 
4538 	/*
4539 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4540 	 * used only for ntpq -c ifstats.  With the addition of reslist
4541 	 * the same opcode was generalized to retrieve ordered lists
4542 	 * which require authentication.  The request data is empty or
4543 	 * contains "ifstats" (not null terminated) to retrieve local
4544 	 * addresses and associated stats.  It is "addr_restrictions"
4545 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4546 	 * which are access control lists.  Other request data return
4547 	 * CERR_UNKNOWNVAR.
4548 	 */
4549 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4550 	qdata_octets = ntohs(cpkt->count);
4551 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4552 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4553 		read_ifstats(rbufp);
4554 		return;
4555 	}
4556 	if (a_r_chars == qdata_octets &&
4557 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4558 		read_addr_restrictions(rbufp);
4559 		return;
4560 	}
4561 	ctl_error(CERR_UNKNOWNVAR);
4562 }
4563 
4564 
4565 /*
4566  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4567  */
4568 static void req_nonce(
4569 	struct recvbuf *	rbufp,
4570 	int			restrict_mask
4571 	)
4572 {
4573 	char	buf[64];
4574 
4575 	generate_nonce(rbufp, buf, sizeof(buf));
4576 	ctl_putunqstr("nonce", buf, strlen(buf));
4577 	ctl_flushpkt(0);
4578 }
4579 
4580 
4581 /*
4582  * read_clockstatus - return clock radio status
4583  */
4584 /*ARGSUSED*/
4585 static void
4586 read_clockstatus(
4587 	struct recvbuf *rbufp,
4588 	int restrict_mask
4589 	)
4590 {
4591 #ifndef REFCLOCK
4592 	/*
4593 	 * If no refclock support, no data to return
4594 	 */
4595 	ctl_error(CERR_BADASSOC);
4596 #else
4597 	const struct ctl_var *	v;
4598 	int			i;
4599 	struct peer *		peer;
4600 	char *			valuep;
4601 	u_char *		wants;
4602 	size_t			wants_alloc;
4603 	int			gotvar;
4604 	const u_char *		cc;
4605 	struct ctl_var *	kv;
4606 	struct refclockstat	cs;
4607 
4608 	if (res_associd != 0) {
4609 		peer = findpeerbyassoc(res_associd);
4610 	} else {
4611 		/*
4612 		 * Find a clock for this jerk.	If the system peer
4613 		 * is a clock use it, else search peer_list for one.
4614 		 */
4615 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4616 		    sys_peer->flags))
4617 			peer = sys_peer;
4618 		else
4619 			for (peer = peer_list;
4620 			     peer != NULL;
4621 			     peer = peer->p_link)
4622 				if (FLAG_REFCLOCK & peer->flags)
4623 					break;
4624 	}
4625 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4626 		ctl_error(CERR_BADASSOC);
4627 		return;
4628 	}
4629 	/*
4630 	 * If we got here we have a peer which is a clock. Get his
4631 	 * status.
4632 	 */
4633 	cs.kv_list = NULL;
4634 	refclock_control(&peer->srcadr, NULL, &cs);
4635 	kv = cs.kv_list;
4636 	/*
4637 	 * Look for variables in the packet.
4638 	 */
4639 	rpkt.status = htons(ctlclkstatus(&cs));
4640 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4641 	wants = emalloc_zero(wants_alloc);
4642 	gotvar = FALSE;
4643 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4644 		if (!(EOV & v->flags)) {
4645 			wants[v->code] = TRUE;
4646 			gotvar = TRUE;
4647 		} else {
4648 			v = ctl_getitem(kv, &valuep);
4649 			if (NULL == v) {
4650 				ctl_error(CERR_BADVALUE);
4651 				free(wants);
4652 				free_varlist(cs.kv_list);
4653 				return;
4654 			}
4655 			if (EOV & v->flags) {
4656 				ctl_error(CERR_UNKNOWNVAR);
4657 				free(wants);
4658 				free_varlist(cs.kv_list);
4659 				return;
4660 			}
4661 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4662 			gotvar = TRUE;
4663 		}
4664 	}
4665 
4666 	if (gotvar) {
4667 		for (i = 1; i <= CC_MAXCODE; i++)
4668 			if (wants[i])
4669 				ctl_putclock(i, &cs, TRUE);
4670 		if (kv != NULL)
4671 			for (i = 0; !(EOV & kv[i].flags); i++)
4672 				if (wants[i + CC_MAXCODE + 1])
4673 					ctl_putdata(kv[i].text,
4674 						    strlen(kv[i].text),
4675 						    FALSE);
4676 	} else {
4677 		for (cc = def_clock_var; *cc != 0; cc++)
4678 			ctl_putclock((int)*cc, &cs, FALSE);
4679 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4680 			if (DEF & kv->flags)
4681 				ctl_putdata(kv->text, strlen(kv->text),
4682 					    FALSE);
4683 	}
4684 
4685 	free(wants);
4686 	free_varlist(cs.kv_list);
4687 
4688 	ctl_flushpkt(0);
4689 #endif
4690 }
4691 
4692 
4693 /*
4694  * write_clockstatus - we don't do this
4695  */
4696 /*ARGSUSED*/
4697 static void
4698 write_clockstatus(
4699 	struct recvbuf *rbufp,
4700 	int restrict_mask
4701 	)
4702 {
4703 	ctl_error(CERR_PERMISSION);
4704 }
4705 
4706 /*
4707  * Trap support from here on down. We send async trap messages when the
4708  * upper levels report trouble. Traps can by set either by control
4709  * messages or by configuration.
4710  */
4711 /*
4712  * set_trap - set a trap in response to a control message
4713  */
4714 static void
4715 set_trap(
4716 	struct recvbuf *rbufp,
4717 	int restrict_mask
4718 	)
4719 {
4720 	int traptype;
4721 
4722 	/*
4723 	 * See if this guy is allowed
4724 	 */
4725 	if (restrict_mask & RES_NOTRAP) {
4726 		ctl_error(CERR_PERMISSION);
4727 		return;
4728 	}
4729 
4730 	/*
4731 	 * Determine his allowed trap type.
4732 	 */
4733 	traptype = TRAP_TYPE_PRIO;
4734 	if (restrict_mask & RES_LPTRAP)
4735 		traptype = TRAP_TYPE_NONPRIO;
4736 
4737 	/*
4738 	 * Call ctlsettrap() to do the work.  Return
4739 	 * an error if it can't assign the trap.
4740 	 */
4741 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4742 			(int)res_version))
4743 		ctl_error(CERR_NORESOURCE);
4744 	ctl_flushpkt(0);
4745 }
4746 
4747 
4748 /*
4749  * unset_trap - unset a trap in response to a control message
4750  */
4751 static void
4752 unset_trap(
4753 	struct recvbuf *rbufp,
4754 	int restrict_mask
4755 	)
4756 {
4757 	int traptype;
4758 
4759 	/*
4760 	 * We don't prevent anyone from removing his own trap unless the
4761 	 * trap is configured. Note we also must be aware of the
4762 	 * possibility that restriction flags were changed since this
4763 	 * guy last set his trap. Set the trap type based on this.
4764 	 */
4765 	traptype = TRAP_TYPE_PRIO;
4766 	if (restrict_mask & RES_LPTRAP)
4767 		traptype = TRAP_TYPE_NONPRIO;
4768 
4769 	/*
4770 	 * Call ctlclrtrap() to clear this out.
4771 	 */
4772 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4773 		ctl_error(CERR_BADASSOC);
4774 	ctl_flushpkt(0);
4775 }
4776 
4777 
4778 /*
4779  * ctlsettrap - called to set a trap
4780  */
4781 int
4782 ctlsettrap(
4783 	sockaddr_u *raddr,
4784 	endpt *linter,
4785 	int traptype,
4786 	int version
4787 	)
4788 {
4789 	size_t n;
4790 	struct ctl_trap *tp;
4791 	struct ctl_trap *tptouse;
4792 
4793 	/*
4794 	 * See if we can find this trap.  If so, we only need update
4795 	 * the flags and the time.
4796 	 */
4797 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4798 		switch (traptype) {
4799 
4800 		case TRAP_TYPE_CONFIG:
4801 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4802 			break;
4803 
4804 		case TRAP_TYPE_PRIO:
4805 			if (tp->tr_flags & TRAP_CONFIGURED)
4806 				return (1); /* don't change anything */
4807 			tp->tr_flags = TRAP_INUSE;
4808 			break;
4809 
4810 		case TRAP_TYPE_NONPRIO:
4811 			if (tp->tr_flags & TRAP_CONFIGURED)
4812 				return (1); /* don't change anything */
4813 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4814 			break;
4815 		}
4816 		tp->tr_settime = current_time;
4817 		tp->tr_resets++;
4818 		return (1);
4819 	}
4820 
4821 	/*
4822 	 * First we heard of this guy.	Try to find a trap structure
4823 	 * for him to use, clearing out lesser priority guys if we
4824 	 * have to. Clear out anyone who's expired while we're at it.
4825 	 */
4826 	tptouse = NULL;
4827 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4828 		tp = &ctl_traps[n];
4829 		if ((TRAP_INUSE & tp->tr_flags) &&
4830 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4831 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4832 			tp->tr_flags = 0;
4833 			num_ctl_traps--;
4834 		}
4835 		if (!(TRAP_INUSE & tp->tr_flags)) {
4836 			tptouse = tp;
4837 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4838 			switch (traptype) {
4839 
4840 			case TRAP_TYPE_CONFIG:
4841 				if (tptouse == NULL) {
4842 					tptouse = tp;
4843 					break;
4844 				}
4845 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4846 				    !(TRAP_NONPRIO & tp->tr_flags))
4847 					break;
4848 
4849 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4850 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4851 					tptouse = tp;
4852 					break;
4853 				}
4854 				if (tptouse->tr_origtime <
4855 				    tp->tr_origtime)
4856 					tptouse = tp;
4857 				break;
4858 
4859 			case TRAP_TYPE_PRIO:
4860 				if ( TRAP_NONPRIO & tp->tr_flags) {
4861 					if (tptouse == NULL ||
4862 					    ((TRAP_INUSE &
4863 					      tptouse->tr_flags) &&
4864 					     tptouse->tr_origtime <
4865 					     tp->tr_origtime))
4866 						tptouse = tp;
4867 				}
4868 				break;
4869 
4870 			case TRAP_TYPE_NONPRIO:
4871 				break;
4872 			}
4873 		}
4874 	}
4875 
4876 	/*
4877 	 * If we don't have room for him return an error.
4878 	 */
4879 	if (tptouse == NULL)
4880 		return (0);
4881 
4882 	/*
4883 	 * Set up this structure for him.
4884 	 */
4885 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4886 	tptouse->tr_count = tptouse->tr_resets = 0;
4887 	tptouse->tr_sequence = 1;
4888 	tptouse->tr_addr = *raddr;
4889 	tptouse->tr_localaddr = linter;
4890 	tptouse->tr_version = (u_char) version;
4891 	tptouse->tr_flags = TRAP_INUSE;
4892 	if (traptype == TRAP_TYPE_CONFIG)
4893 		tptouse->tr_flags |= TRAP_CONFIGURED;
4894 	else if (traptype == TRAP_TYPE_NONPRIO)
4895 		tptouse->tr_flags |= TRAP_NONPRIO;
4896 	num_ctl_traps++;
4897 	return (1);
4898 }
4899 
4900 
4901 /*
4902  * ctlclrtrap - called to clear a trap
4903  */
4904 int
4905 ctlclrtrap(
4906 	sockaddr_u *raddr,
4907 	endpt *linter,
4908 	int traptype
4909 	)
4910 {
4911 	register struct ctl_trap *tp;
4912 
4913 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4914 		return (0);
4915 
4916 	if (tp->tr_flags & TRAP_CONFIGURED
4917 	    && traptype != TRAP_TYPE_CONFIG)
4918 		return (0);
4919 
4920 	tp->tr_flags = 0;
4921 	num_ctl_traps--;
4922 	return (1);
4923 }
4924 
4925 
4926 /*
4927  * ctlfindtrap - find a trap given the remote and local addresses
4928  */
4929 static struct ctl_trap *
4930 ctlfindtrap(
4931 	sockaddr_u *raddr,
4932 	endpt *linter
4933 	)
4934 {
4935 	size_t	n;
4936 
4937 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4938 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4939 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4940 		    && (linter == ctl_traps[n].tr_localaddr))
4941 			return &ctl_traps[n];
4942 
4943 	return NULL;
4944 }
4945 
4946 
4947 /*
4948  * report_event - report an event to the trappers
4949  */
4950 void
4951 report_event(
4952 	int	err,		/* error code */
4953 	struct peer *peer,	/* peer structure pointer */
4954 	const char *str		/* protostats string */
4955 	)
4956 {
4957 	char	statstr[NTP_MAXSTRLEN];
4958 	int	i;
4959 	size_t	len;
4960 
4961 	/*
4962 	 * Report the error to the protostats file, system log and
4963 	 * trappers.
4964 	 */
4965 	if (peer == NULL) {
4966 
4967 		/*
4968 		 * Discard a system report if the number of reports of
4969 		 * the same type exceeds the maximum.
4970 		 */
4971 		if (ctl_sys_last_event != (u_char)err)
4972 			ctl_sys_num_events= 0;
4973 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4974 			return;
4975 
4976 		ctl_sys_last_event = (u_char)err;
4977 		ctl_sys_num_events++;
4978 		snprintf(statstr, sizeof(statstr),
4979 		    "0.0.0.0 %04x %02x %s",
4980 		    ctlsysstatus(), err, eventstr(err));
4981 		if (str != NULL) {
4982 			len = strlen(statstr);
4983 			snprintf(statstr + len, sizeof(statstr) - len,
4984 			    " %s", str);
4985 		}
4986 		NLOG(NLOG_SYSEVENT)
4987 			msyslog(LOG_INFO, "%s", statstr);
4988 	} else {
4989 
4990 		/*
4991 		 * Discard a peer report if the number of reports of
4992 		 * the same type exceeds the maximum for that peer.
4993 		 */
4994 		const char *	src;
4995 		u_char		errlast;
4996 
4997 		errlast = (u_char)err & ~PEER_EVENT;
4998 		if (peer->last_event != errlast)
4999 			peer->num_events = 0;
5000 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
5001 			return;
5002 
5003 		peer->last_event = errlast;
5004 		peer->num_events++;
5005 		if (ISREFCLOCKADR(&peer->srcadr))
5006 			src = refnumtoa(&peer->srcadr);
5007 		else
5008 			src = stoa(&peer->srcadr);
5009 
5010 		snprintf(statstr, sizeof(statstr),
5011 		    "%s %04x %02x %s", src,
5012 		    ctlpeerstatus(peer), err, eventstr(err));
5013 		if (str != NULL) {
5014 			len = strlen(statstr);
5015 			snprintf(statstr + len, sizeof(statstr) - len,
5016 			    " %s", str);
5017 		}
5018 		NLOG(NLOG_PEEREVENT)
5019 			msyslog(LOG_INFO, "%s", statstr);
5020 	}
5021 	record_proto_stats(statstr);
5022 #if DEBUG
5023 	if (debug)
5024 		printf("event at %lu %s\n", current_time, statstr);
5025 #endif
5026 
5027 	/*
5028 	 * If no trappers, return.
5029 	 */
5030 	if (num_ctl_traps <= 0)
5031 		return;
5032 
5033 	/* [Bug 3119]
5034 	 * Peer Events should be associated with a peer -- hence the
5035 	 * name. But there are instances where this function is called
5036 	 * *without* a valid peer. This happens e.g. with an unsolicited
5037 	 * CryptoNAK, or when a leap second alarm is going off while
5038 	 * currently without a system peer.
5039 	 *
5040 	 * The most sensible approach to this seems to bail out here if
5041 	 * this happens. Avoiding to call this function would also
5042 	 * bypass the log reporting in the first part of this function,
5043 	 * and this is probably not the best of all options.
5044 	 *   -*-perlinger@ntp.org-*-
5045 	 */
5046 	if ((err & PEER_EVENT) && !peer)
5047 		return;
5048 
5049 	/*
5050 	 * Set up the outgoing packet variables
5051 	 */
5052 	res_opcode = CTL_OP_ASYNCMSG;
5053 	res_offset = 0;
5054 	res_async = TRUE;
5055 	res_authenticate = FALSE;
5056 	datapt = rpkt.u.data;
5057 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5058 	if (!(err & PEER_EVENT)) {
5059 		rpkt.associd = 0;
5060 		rpkt.status = htons(ctlsysstatus());
5061 
5062 		/* Include the core system variables and the list. */
5063 		for (i = 1; i <= CS_VARLIST; i++)
5064 			ctl_putsys(i);
5065 	} else if (NULL != peer) { /* paranoia -- skip output */
5066 		rpkt.associd = htons(peer->associd);
5067 		rpkt.status = htons(ctlpeerstatus(peer));
5068 
5069 		/* Dump it all. Later, maybe less. */
5070 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5071 			ctl_putpeer(i, peer);
5072 #	    ifdef REFCLOCK
5073 		/*
5074 		 * for clock exception events: add clock variables to
5075 		 * reflect info on exception
5076 		 */
5077 		if (err == PEVNT_CLOCK) {
5078 			struct refclockstat cs;
5079 			struct ctl_var *kv;
5080 
5081 			cs.kv_list = NULL;
5082 			refclock_control(&peer->srcadr, NULL, &cs);
5083 
5084 			ctl_puthex("refclockstatus",
5085 				   ctlclkstatus(&cs));
5086 
5087 			for (i = 1; i <= CC_MAXCODE; i++)
5088 				ctl_putclock(i, &cs, FALSE);
5089 			for (kv = cs.kv_list;
5090 			     kv != NULL && !(EOV & kv->flags);
5091 			     kv++)
5092 				if (DEF & kv->flags)
5093 					ctl_putdata(kv->text,
5094 						    strlen(kv->text),
5095 						    FALSE);
5096 			free_varlist(cs.kv_list);
5097 		}
5098 #	    endif /* REFCLOCK */
5099 	}
5100 
5101 	/*
5102 	 * We're done, return.
5103 	 */
5104 	ctl_flushpkt(0);
5105 }
5106 
5107 
5108 /*
5109  * mprintf_event - printf-style varargs variant of report_event()
5110  */
5111 int
5112 mprintf_event(
5113 	int		evcode,		/* event code */
5114 	struct peer *	p,		/* may be NULL */
5115 	const char *	fmt,		/* msnprintf format */
5116 	...
5117 	)
5118 {
5119 	va_list	ap;
5120 	int	rc;
5121 	char	msg[512];
5122 
5123 	va_start(ap, fmt);
5124 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5125 	va_end(ap);
5126 	report_event(evcode, p, msg);
5127 
5128 	return rc;
5129 }
5130 
5131 
5132 /*
5133  * ctl_clr_stats - clear stat counters
5134  */
5135 void
5136 ctl_clr_stats(void)
5137 {
5138 	ctltimereset = current_time;
5139 	numctlreq = 0;
5140 	numctlbadpkts = 0;
5141 	numctlresponses = 0;
5142 	numctlfrags = 0;
5143 	numctlerrors = 0;
5144 	numctlfrags = 0;
5145 	numctltooshort = 0;
5146 	numctlinputresp = 0;
5147 	numctlinputfrag = 0;
5148 	numctlinputerr = 0;
5149 	numctlbadoffset = 0;
5150 	numctlbadversion = 0;
5151 	numctldatatooshort = 0;
5152 	numctlbadop = 0;
5153 	numasyncmsgs = 0;
5154 }
5155 
5156 static u_short
5157 count_var(
5158 	const struct ctl_var *k
5159 	)
5160 {
5161 	u_int c;
5162 
5163 	if (NULL == k)
5164 		return 0;
5165 
5166 	c = 0;
5167 	while (!(EOV & (k++)->flags))
5168 		c++;
5169 
5170 	ENSURE(c <= USHRT_MAX);
5171 	return (u_short)c;
5172 }
5173 
5174 
5175 char *
5176 add_var(
5177 	struct ctl_var **kv,
5178 	u_long size,
5179 	u_short def
5180 	)
5181 {
5182 	u_short		c;
5183 	struct ctl_var *k;
5184 	char *		buf;
5185 
5186 	c = count_var(*kv);
5187 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5188 	k = *kv;
5189 	buf = emalloc(size);
5190 	k[c].code  = c;
5191 	k[c].text  = buf;
5192 	k[c].flags = def;
5193 	k[c + 1].code  = 0;
5194 	k[c + 1].text  = NULL;
5195 	k[c + 1].flags = EOV;
5196 
5197 	return buf;
5198 }
5199 
5200 
5201 void
5202 set_var(
5203 	struct ctl_var **kv,
5204 	const char *data,
5205 	u_long size,
5206 	u_short def
5207 	)
5208 {
5209 	struct ctl_var *k;
5210 	const char *s;
5211 	const char *t;
5212 	char *td;
5213 
5214 	if (NULL == data || !size)
5215 		return;
5216 
5217 	k = *kv;
5218 	if (k != NULL) {
5219 		while (!(EOV & k->flags)) {
5220 			if (NULL == k->text)	{
5221 				td = emalloc(size);
5222 				memcpy(td, data, size);
5223 				k->text = td;
5224 				k->flags = def;
5225 				return;
5226 			} else {
5227 				s = data;
5228 				t = k->text;
5229 				while (*t != '=' && *s == *t) {
5230 					s++;
5231 					t++;
5232 				}
5233 				if (*s == *t && ((*t == '=') || !*t)) {
5234 					td = erealloc((void *)(intptr_t)k->text, size);
5235 					memcpy(td, data, size);
5236 					k->text = td;
5237 					k->flags = def;
5238 					return;
5239 				}
5240 			}
5241 			k++;
5242 		}
5243 	}
5244 	td = add_var(kv, size, def);
5245 	memcpy(td, data, size);
5246 }
5247 
5248 
5249 void
5250 set_sys_var(
5251 	const char *data,
5252 	u_long size,
5253 	u_short def
5254 	)
5255 {
5256 	set_var(&ext_sys_var, data, size, def);
5257 }
5258 
5259 
5260 /*
5261  * get_ext_sys_var() retrieves the value of a user-defined variable or
5262  * NULL if the variable has not been setvar'd.
5263  */
5264 const char *
5265 get_ext_sys_var(const char *tag)
5266 {
5267 	struct ctl_var *	v;
5268 	size_t			c;
5269 	const char *		val;
5270 
5271 	val = NULL;
5272 	c = strlen(tag);
5273 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5274 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5275 			if ('=' == v->text[c]) {
5276 				val = v->text + c + 1;
5277 				break;
5278 			} else if ('\0' == v->text[c]) {
5279 				val = "";
5280 				break;
5281 			}
5282 		}
5283 	}
5284 
5285 	return val;
5286 }
5287 
5288 
5289 void
5290 free_varlist(
5291 	struct ctl_var *kv
5292 	)
5293 {
5294 	struct ctl_var *k;
5295 	if (kv) {
5296 		for (k = kv; !(k->flags & EOV); k++)
5297 			free((void *)(intptr_t)k->text);
5298 		free((void *)kv);
5299 	}
5300 }
5301