xref: /netbsd-src/external/bsd/ntp/dist/ntpd/ntp_control.c (revision 63aea4bd5b445e491ff0389fe27ec78b3099dba3)
1 /*	$NetBSD: ntp_control.c,v 1.14 2015/10/23 18:06:19 christos Exp $	*/
2 
3 /*
4  * ntp_control.c - respond to mode 6 control messages and send async
5  *		   traps.  Provides service to ntpq and others.
6  */
7 
8 #ifdef HAVE_CONFIG_H
9 # include <config.h>
10 #endif
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <signal.h>
15 #include <sys/stat.h>
16 #ifdef HAVE_NETINET_IN_H
17 # include <netinet/in.h>
18 #endif
19 #include <arpa/inet.h>
20 
21 #include "ntpd.h"
22 #include "ntp_io.h"
23 #include "ntp_refclock.h"
24 #include "ntp_control.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 #include "ntp_config.h"
28 #include "ntp_crypto.h"
29 #include "ntp_assert.h"
30 #include "ntp_leapsec.h"
31 #include "ntp_md5.h"	/* provides OpenSSL digest API */
32 #include "lib_strbuf.h"
33 #include <rc_cmdlength.h>
34 #ifdef KERNEL_PLL
35 # include "ntp_syscall.h"
36 #endif
37 
38 
39 /*
40  * Structure to hold request procedure information
41  */
42 
43 struct ctl_proc {
44 	short control_code;		/* defined request code */
45 #define NO_REQUEST	(-1)
46 	u_short flags;			/* flags word */
47 	/* Only one flag.  Authentication required or not. */
48 #define NOAUTH	0
49 #define AUTH	1
50 	void (*handler) (struct recvbuf *, int); /* handle request */
51 };
52 
53 
54 /*
55  * Request processing routines
56  */
57 static	void	ctl_error	(u_char);
58 #ifdef REFCLOCK
59 static	u_short ctlclkstatus	(struct refclockstat *);
60 #endif
61 static	void	ctl_flushpkt	(u_char);
62 static	void	ctl_putdata	(const char *, unsigned int, int);
63 static	void	ctl_putstr	(const char *, const char *, size_t);
64 static	void	ctl_putdblf	(const char *, int, int, double);
65 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
66 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
67 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
68 					    FPTOD(sfp))
69 static	void	ctl_putuint	(const char *, u_long);
70 static	void	ctl_puthex	(const char *, u_long);
71 static	void	ctl_putint	(const char *, long);
72 static	void	ctl_putts	(const char *, l_fp *);
73 static	void	ctl_putadr	(const char *, u_int32,
74 				 sockaddr_u *);
75 static	void	ctl_putrefid	(const char *, u_int32);
76 static	void	ctl_putarray	(const char *, double *, int);
77 static	void	ctl_putsys	(int);
78 static	void	ctl_putpeer	(int, struct peer *);
79 static	void	ctl_putfs	(const char *, tstamp_t);
80 #ifdef REFCLOCK
81 static	void	ctl_putclock	(int, struct refclockstat *, int);
82 #endif	/* REFCLOCK */
83 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84 					  char **);
85 static	u_short	count_var	(const struct ctl_var *);
86 static	void	control_unspec	(struct recvbuf *, int);
87 static	void	read_status	(struct recvbuf *, int);
88 static	void	read_sysvars	(void);
89 static	void	read_peervars	(void);
90 static	void	read_variables	(struct recvbuf *, int);
91 static	void	write_variables (struct recvbuf *, int);
92 static	void	read_clockstatus(struct recvbuf *, int);
93 static	void	write_clockstatus(struct recvbuf *, int);
94 static	void	set_trap	(struct recvbuf *, int);
95 static	void	save_config	(struct recvbuf *, int);
96 static	void	configure	(struct recvbuf *, int);
97 static	void	send_mru_entry	(mon_entry *, int);
98 static	void	send_random_tag_value(int);
99 static	void	read_mru_list	(struct recvbuf *, int);
100 static	void	send_ifstats_entry(endpt *, u_int);
101 static	void	read_ifstats	(struct recvbuf *);
102 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
103 					  restrict_u *, int);
104 static	void	send_restrict_entry(restrict_u *, int, u_int);
105 static	void	send_restrict_list(restrict_u *, int, u_int *);
106 static	void	read_addr_restrictions(struct recvbuf *);
107 static	void	read_ordlist	(struct recvbuf *, int);
108 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
109 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
110 static	int	validate_nonce	(const char *, struct recvbuf *);
111 static	void	req_nonce	(struct recvbuf *, int);
112 static	void	unset_trap	(struct recvbuf *, int);
113 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
114 				     struct interface *);
115 
116 static const struct ctl_proc control_codes[] = {
117 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122 	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
123 	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
124 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129 	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
130 	{ NO_REQUEST,			0,	NULL }
131 };
132 
133 /*
134  * System variables we understand
135  */
136 #define	CS_LEAP			1
137 #define	CS_STRATUM		2
138 #define	CS_PRECISION		3
139 #define	CS_ROOTDELAY		4
140 #define	CS_ROOTDISPERSION	5
141 #define	CS_REFID		6
142 #define	CS_REFTIME		7
143 #define	CS_POLL			8
144 #define	CS_PEERID		9
145 #define	CS_OFFSET		10
146 #define	CS_DRIFT		11
147 #define	CS_JITTER		12
148 #define	CS_ERROR		13
149 #define	CS_CLOCK		14
150 #define	CS_PROCESSOR		15
151 #define	CS_SYSTEM		16
152 #define	CS_VERSION		17
153 #define	CS_STABIL		18
154 #define	CS_VARLIST		19
155 #define	CS_TAI			20
156 #define	CS_LEAPTAB		21
157 #define	CS_LEAPEND		22
158 #define	CS_RATE			23
159 #define	CS_MRU_ENABLED		24
160 #define	CS_MRU_DEPTH		25
161 #define	CS_MRU_DEEPEST		26
162 #define	CS_MRU_MINDEPTH		27
163 #define	CS_MRU_MAXAGE		28
164 #define	CS_MRU_MAXDEPTH		29
165 #define	CS_MRU_MEM		30
166 #define	CS_MRU_MAXMEM		31
167 #define	CS_SS_UPTIME		32
168 #define	CS_SS_RESET		33
169 #define	CS_SS_RECEIVED		34
170 #define	CS_SS_THISVER		35
171 #define	CS_SS_OLDVER		36
172 #define	CS_SS_BADFORMAT		37
173 #define	CS_SS_BADAUTH		38
174 #define	CS_SS_DECLINED		39
175 #define	CS_SS_RESTRICTED	40
176 #define	CS_SS_LIMITED		41
177 #define	CS_SS_KODSENT		42
178 #define	CS_SS_PROCESSED		43
179 #define	CS_PEERADR		44
180 #define	CS_PEERMODE		45
181 #define	CS_BCASTDELAY		46
182 #define	CS_AUTHDELAY		47
183 #define	CS_AUTHKEYS		48
184 #define	CS_AUTHFREEK		49
185 #define	CS_AUTHKLOOKUPS		50
186 #define	CS_AUTHKNOTFOUND	51
187 #define	CS_AUTHKUNCACHED	52
188 #define	CS_AUTHKEXPIRED		53
189 #define	CS_AUTHENCRYPTS		54
190 #define	CS_AUTHDECRYPTS		55
191 #define	CS_AUTHRESET		56
192 #define	CS_K_OFFSET		57
193 #define	CS_K_FREQ		58
194 #define	CS_K_MAXERR		59
195 #define	CS_K_ESTERR		60
196 #define	CS_K_STFLAGS		61
197 #define	CS_K_TIMECONST		62
198 #define	CS_K_PRECISION		63
199 #define	CS_K_FREQTOL		64
200 #define	CS_K_PPS_FREQ		65
201 #define	CS_K_PPS_STABIL		66
202 #define	CS_K_PPS_JITTER		67
203 #define	CS_K_PPS_CALIBDUR	68
204 #define	CS_K_PPS_CALIBS		69
205 #define	CS_K_PPS_CALIBERRS	70
206 #define	CS_K_PPS_JITEXC		71
207 #define	CS_K_PPS_STBEXC		72
208 #define	CS_KERN_FIRST		CS_K_OFFSET
209 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
210 #define	CS_IOSTATS_RESET	73
211 #define	CS_TOTAL_RBUF		74
212 #define	CS_FREE_RBUF		75
213 #define	CS_USED_RBUF		76
214 #define	CS_RBUF_LOWATER		77
215 #define	CS_IO_DROPPED		78
216 #define	CS_IO_IGNORED		79
217 #define	CS_IO_RECEIVED		80
218 #define	CS_IO_SENT		81
219 #define	CS_IO_SENDFAILED	82
220 #define	CS_IO_WAKEUPS		83
221 #define	CS_IO_GOODWAKEUPS	84
222 #define	CS_TIMERSTATS_RESET	85
223 #define	CS_TIMER_OVERRUNS	86
224 #define	CS_TIMER_XMTS		87
225 #define	CS_FUZZ			88
226 #define	CS_WANDER_THRESH	89
227 #define	CS_LEAPSMEARINTV	90
228 #define	CS_LEAPSMEAROFFS	91
229 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
230 #ifdef AUTOKEY
231 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
232 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
233 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
234 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
235 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
236 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
237 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
238 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
239 #define	CS_MAXCODE		CS_DIGEST
240 #else	/* !AUTOKEY follows */
241 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
242 #endif	/* !AUTOKEY */
243 
244 /*
245  * Peer variables we understand
246  */
247 #define	CP_CONFIG		1
248 #define	CP_AUTHENABLE		2
249 #define	CP_AUTHENTIC		3
250 #define	CP_SRCADR		4
251 #define	CP_SRCPORT		5
252 #define	CP_DSTADR		6
253 #define	CP_DSTPORT		7
254 #define	CP_LEAP			8
255 #define	CP_HMODE		9
256 #define	CP_STRATUM		10
257 #define	CP_PPOLL		11
258 #define	CP_HPOLL		12
259 #define	CP_PRECISION		13
260 #define	CP_ROOTDELAY		14
261 #define	CP_ROOTDISPERSION	15
262 #define	CP_REFID		16
263 #define	CP_REFTIME		17
264 #define	CP_ORG			18
265 #define	CP_REC			19
266 #define	CP_XMT			20
267 #define	CP_REACH		21
268 #define	CP_UNREACH		22
269 #define	CP_TIMER		23
270 #define	CP_DELAY		24
271 #define	CP_OFFSET		25
272 #define	CP_JITTER		26
273 #define	CP_DISPERSION		27
274 #define	CP_KEYID		28
275 #define	CP_FILTDELAY		29
276 #define	CP_FILTOFFSET		30
277 #define	CP_PMODE		31
278 #define	CP_RECEIVED		32
279 #define	CP_SENT			33
280 #define	CP_FILTERROR		34
281 #define	CP_FLASH		35
282 #define	CP_TTL			36
283 #define	CP_VARLIST		37
284 #define	CP_IN			38
285 #define	CP_OUT			39
286 #define	CP_RATE			40
287 #define	CP_BIAS			41
288 #define	CP_SRCHOST		42
289 #define	CP_TIMEREC		43
290 #define	CP_TIMEREACH		44
291 #define	CP_BADAUTH		45
292 #define	CP_BOGUSORG		46
293 #define	CP_OLDPKT		47
294 #define	CP_SELDISP		48
295 #define	CP_SELBROKEN		49
296 #define	CP_CANDIDATE		50
297 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
298 #ifdef AUTOKEY
299 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
300 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
301 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
302 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
303 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
304 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
305 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
306 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
307 #define	CP_MAXCODE		CP_IDENT
308 #else	/* !AUTOKEY follows */
309 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
310 #endif	/* !AUTOKEY */
311 
312 /*
313  * Clock variables we understand
314  */
315 #define	CC_TYPE		1
316 #define	CC_TIMECODE	2
317 #define	CC_POLL		3
318 #define	CC_NOREPLY	4
319 #define	CC_BADFORMAT	5
320 #define	CC_BADDATA	6
321 #define	CC_FUDGETIME1	7
322 #define	CC_FUDGETIME2	8
323 #define	CC_FUDGEVAL1	9
324 #define	CC_FUDGEVAL2	10
325 #define	CC_FLAGS	11
326 #define	CC_DEVICE	12
327 #define	CC_VARLIST	13
328 #define	CC_MAXCODE	CC_VARLIST
329 
330 /*
331  * System variable values. The array can be indexed by the variable
332  * index to find the textual name.
333  */
334 static const struct ctl_var sys_var[] = {
335 	{ 0,		PADDING, "" },		/* 0 */
336 	{ CS_LEAP,	RW, "leap" },		/* 1 */
337 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
338 	{ CS_PRECISION, RO, "precision" },	/* 3 */
339 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
340 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
341 	{ CS_REFID,	RO, "refid" },		/* 6 */
342 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
343 	{ CS_POLL,	RO, "tc" },		/* 8 */
344 	{ CS_PEERID,	RO, "peer" },		/* 9 */
345 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
346 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
347 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
348 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
349 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
350 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
351 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
352 	{ CS_VERSION,	RO, "version" },	/* 17 */
353 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
354 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
355 	{ CS_TAI,	RO, "tai" },		/* 20 */
356 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
357 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
358 	{ CS_RATE,	RO, "mintc" },		/* 23 */
359 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
360 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
361 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
362 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
363 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
364 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
365 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
366 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
367 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
368 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
369 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
370 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
371 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
372 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
373 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
374 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
375 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
376 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
377 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
378 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
379 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
380 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
381 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
382 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
383 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
384 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
385 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
386 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
387 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
388 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
389 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
390 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
391 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
392 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
393 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
394 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
395 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
396 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
397 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
398 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
399 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
400 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
401 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
402 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
403 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
404 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
405 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
406 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
407 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
408 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
409 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
410 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
411 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
412 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
413 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
414 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
415 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
416 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
417 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
418 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
419 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
420 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
421 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
422 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
423 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
424 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
425 
426 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
427 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
428 
429 #ifdef AUTOKEY
430 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
431 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
432 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
433 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
434 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
435 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
436 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
437 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
438 #endif	/* AUTOKEY */
439 	{ 0,		EOV, "" }		/* 87/95 */
440 };
441 
442 static struct ctl_var *ext_sys_var = NULL;
443 
444 /*
445  * System variables we print by default (in fuzzball order,
446  * more-or-less)
447  */
448 static const u_char def_sys_var[] = {
449 	CS_VERSION,
450 	CS_PROCESSOR,
451 	CS_SYSTEM,
452 	CS_LEAP,
453 	CS_STRATUM,
454 	CS_PRECISION,
455 	CS_ROOTDELAY,
456 	CS_ROOTDISPERSION,
457 	CS_REFID,
458 	CS_REFTIME,
459 	CS_CLOCK,
460 	CS_PEERID,
461 	CS_POLL,
462 	CS_RATE,
463 	CS_OFFSET,
464 	CS_DRIFT,
465 	CS_JITTER,
466 	CS_ERROR,
467 	CS_STABIL,
468 	CS_TAI,
469 	CS_LEAPTAB,
470 	CS_LEAPEND,
471 	CS_LEAPSMEARINTV,
472 	CS_LEAPSMEAROFFS,
473 #ifdef AUTOKEY
474 	CS_HOST,
475 	CS_IDENT,
476 	CS_FLAGS,
477 	CS_DIGEST,
478 	CS_SIGNATURE,
479 	CS_PUBLIC,
480 	CS_CERTIF,
481 #endif	/* AUTOKEY */
482 	0
483 };
484 
485 
486 /*
487  * Peer variable list
488  */
489 static const struct ctl_var peer_var[] = {
490 	{ 0,		PADDING, "" },		/* 0 */
491 	{ CP_CONFIG,	RO, "config" },		/* 1 */
492 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
493 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
494 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
495 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
496 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
497 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
498 	{ CP_LEAP,	RO, "leap" },		/* 8 */
499 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
500 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
501 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
502 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
503 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
504 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
505 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
506 	{ CP_REFID,	RO, "refid" },		/* 16 */
507 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
508 	{ CP_ORG,	RO, "org" },		/* 18 */
509 	{ CP_REC,	RO, "rec" },		/* 19 */
510 	{ CP_XMT,	RO, "xleave" },		/* 20 */
511 	{ CP_REACH,	RO, "reach" },		/* 21 */
512 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
513 	{ CP_TIMER,	RO, "timer" },		/* 23 */
514 	{ CP_DELAY,	RO, "delay" },		/* 24 */
515 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
516 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
517 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
518 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
519 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
520 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
521 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
522 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
523 	{ CP_SENT,	RO, "sent" },		/* 33 */
524 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
525 	{ CP_FLASH,	RO, "flash" },		/* 35 */
526 	{ CP_TTL,	RO, "ttl" },		/* 36 */
527 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
528 	{ CP_IN,	RO, "in" },		/* 38 */
529 	{ CP_OUT,	RO, "out" },		/* 39 */
530 	{ CP_RATE,	RO, "headway" },	/* 40 */
531 	{ CP_BIAS,	RO, "bias" },		/* 41 */
532 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
533 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
534 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
535 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
536 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
537 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
538 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
539 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
540 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
541 #ifdef AUTOKEY
542 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
543 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
544 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
545 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
546 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
547 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
548 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
549 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
550 #endif	/* AUTOKEY */
551 	{ 0,		EOV, "" }		/* 50/58 */
552 };
553 
554 
555 /*
556  * Peer variables we print by default
557  */
558 static const u_char def_peer_var[] = {
559 	CP_SRCADR,
560 	CP_SRCPORT,
561 	CP_SRCHOST,
562 	CP_DSTADR,
563 	CP_DSTPORT,
564 	CP_OUT,
565 	CP_IN,
566 	CP_LEAP,
567 	CP_STRATUM,
568 	CP_PRECISION,
569 	CP_ROOTDELAY,
570 	CP_ROOTDISPERSION,
571 	CP_REFID,
572 	CP_REFTIME,
573 	CP_REC,
574 	CP_REACH,
575 	CP_UNREACH,
576 	CP_HMODE,
577 	CP_PMODE,
578 	CP_HPOLL,
579 	CP_PPOLL,
580 	CP_RATE,
581 	CP_FLASH,
582 	CP_KEYID,
583 	CP_TTL,
584 	CP_OFFSET,
585 	CP_DELAY,
586 	CP_DISPERSION,
587 	CP_JITTER,
588 	CP_XMT,
589 	CP_BIAS,
590 	CP_FILTDELAY,
591 	CP_FILTOFFSET,
592 	CP_FILTERROR,
593 #ifdef AUTOKEY
594 	CP_HOST,
595 	CP_FLAGS,
596 	CP_SIGNATURE,
597 	CP_VALID,
598 	CP_INITSEQ,
599 	CP_IDENT,
600 #endif	/* AUTOKEY */
601 	0
602 };
603 
604 
605 #ifdef REFCLOCK
606 /*
607  * Clock variable list
608  */
609 static const struct ctl_var clock_var[] = {
610 	{ 0,		PADDING, "" },		/* 0 */
611 	{ CC_TYPE,	RO, "type" },		/* 1 */
612 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
613 	{ CC_POLL,	RO, "poll" },		/* 3 */
614 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
615 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
616 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
617 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
618 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
619 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
620 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
621 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
622 	{ CC_DEVICE,	RO, "device" },		/* 12 */
623 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
624 	{ 0,		EOV, ""  }		/* 14 */
625 };
626 
627 
628 /*
629  * Clock variables printed by default
630  */
631 static const u_char def_clock_var[] = {
632 	CC_DEVICE,
633 	CC_TYPE,	/* won't be output if device = known */
634 	CC_TIMECODE,
635 	CC_POLL,
636 	CC_NOREPLY,
637 	CC_BADFORMAT,
638 	CC_BADDATA,
639 	CC_FUDGETIME1,
640 	CC_FUDGETIME2,
641 	CC_FUDGEVAL1,
642 	CC_FUDGEVAL2,
643 	CC_FLAGS,
644 	0
645 };
646 #endif
647 
648 /*
649  * MRU string constants shared by send_mru_entry() and read_mru_list().
650  */
651 static const char addr_fmt[] =		"addr.%d";
652 static const char last_fmt[] =		"last.%d";
653 
654 /*
655  * System and processor definitions.
656  */
657 #ifndef HAVE_UNAME
658 # ifndef STR_SYSTEM
659 #  define		STR_SYSTEM	"UNIX"
660 # endif
661 # ifndef STR_PROCESSOR
662 #  define		STR_PROCESSOR	"unknown"
663 # endif
664 
665 static const char str_system[] = STR_SYSTEM;
666 static const char str_processor[] = STR_PROCESSOR;
667 #else
668 # include <sys/utsname.h>
669 static struct utsname utsnamebuf;
670 #endif /* HAVE_UNAME */
671 
672 /*
673  * Trap structures. We only allow a few of these, and send a copy of
674  * each async message to each live one. Traps time out after an hour, it
675  * is up to the trap receipient to keep resetting it to avoid being
676  * timed out.
677  */
678 /* ntp_request.c */
679 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
680 int num_ctl_traps;
681 
682 /*
683  * Type bits, for ctlsettrap() call.
684  */
685 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
686 #define TRAP_TYPE_PRIO		1	/* priority trap */
687 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
688 
689 
690 /*
691  * List relating reference clock types to control message time sources.
692  * Index by the reference clock type. This list will only be used iff
693  * the reference clock driver doesn't set peer->sstclktype to something
694  * different than CTL_SST_TS_UNSPEC.
695  */
696 #ifdef REFCLOCK
697 static const u_char clocktypes[] = {
698 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
699 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
700 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
701 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
702 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
703 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
704 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
705 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
706 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
707 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
708 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
709 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
710 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
711 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
712 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
713 	CTL_SST_TS_NTP,		/* not used (15) */
714 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
715 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
716 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
717 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
718 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
719 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
720 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
721 	CTL_SST_TS_NTP,		/* not used (23) */
722 	CTL_SST_TS_NTP,		/* not used (24) */
723 	CTL_SST_TS_NTP,		/* not used (25) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
725 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
726 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
727 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
728 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
729 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
730 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
731 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
732 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
733 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
734 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
735 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
736 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
737 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
738 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
739 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
740 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
741 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
742 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
743 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
744 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
745 };
746 #endif  /* REFCLOCK */
747 
748 
749 /*
750  * Keyid used for authenticating write requests.
751  */
752 keyid_t ctl_auth_keyid;
753 
754 /*
755  * We keep track of the last error reported by the system internally
756  */
757 static	u_char ctl_sys_last_event;
758 static	u_char ctl_sys_num_events;
759 
760 
761 /*
762  * Statistic counters to keep track of requests and responses.
763  */
764 u_long ctltimereset;		/* time stats reset */
765 u_long numctlreq;		/* number of requests we've received */
766 u_long numctlbadpkts;		/* number of bad control packets */
767 u_long numctlresponses;		/* number of resp packets sent with data */
768 u_long numctlfrags;		/* number of fragments sent */
769 u_long numctlerrors;		/* number of error responses sent */
770 u_long numctltooshort;		/* number of too short input packets */
771 u_long numctlinputresp;		/* number of responses on input */
772 u_long numctlinputfrag;		/* number of fragments on input */
773 u_long numctlinputerr;		/* number of input pkts with err bit set */
774 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
775 u_long numctlbadversion;	/* number of input pkts with unknown version */
776 u_long numctldatatooshort;	/* data too short for count */
777 u_long numctlbadop;		/* bad op code found in packet */
778 u_long numasyncmsgs;		/* number of async messages we've sent */
779 
780 /*
781  * Response packet used by these routines. Also some state information
782  * so that we can handle packet formatting within a common set of
783  * subroutines.  Note we try to enter data in place whenever possible,
784  * but the need to set the more bit correctly means we occasionally
785  * use the extra buffer and copy.
786  */
787 static struct ntp_control rpkt;
788 static u_char	res_version;
789 static u_char	res_opcode;
790 static associd_t res_associd;
791 static u_short	res_frags;	/* datagrams in this response */
792 static int	res_offset;	/* offset of payload in response */
793 static u_char * datapt;
794 static u_char * dataend;
795 static int	datalinelen;
796 static int	datasent;	/* flag to avoid initial ", " */
797 static int	datanotbinflag;
798 static sockaddr_u *rmt_addr;
799 static struct interface *lcl_inter;
800 
801 static u_char	res_authenticate;
802 static u_char	res_authokay;
803 static keyid_t	res_keyid;
804 
805 #define MAXDATALINELEN	(72)
806 
807 static u_char	res_async;	/* sending async trap response? */
808 
809 /*
810  * Pointers for saving state when decoding request packets
811  */
812 static	char *reqpt;
813 static	char *reqend;
814 
815 #ifndef MIN
816 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
817 #endif
818 
819 /*
820  * init_control - initialize request data
821  */
822 void
823 init_control(void)
824 {
825 	size_t i;
826 
827 #ifdef HAVE_UNAME
828 	uname(&utsnamebuf);
829 #endif /* HAVE_UNAME */
830 
831 	ctl_clr_stats();
832 
833 	ctl_auth_keyid = 0;
834 	ctl_sys_last_event = EVNT_UNSPEC;
835 	ctl_sys_num_events = 0;
836 
837 	num_ctl_traps = 0;
838 	for (i = 0; i < COUNTOF(ctl_traps); i++)
839 		ctl_traps[i].tr_flags = 0;
840 }
841 
842 
843 /*
844  * ctl_error - send an error response for the current request
845  */
846 static void
847 ctl_error(
848 	u_char errcode
849 	)
850 {
851 	int		maclen;
852 
853 	numctlerrors++;
854 	DPRINTF(3, ("sending control error %u\n", errcode));
855 
856 	/*
857 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
858 	 * have already been filled in.
859 	 */
860 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
861 			(res_opcode & CTL_OP_MASK);
862 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
863 	rpkt.count = 0;
864 
865 	/*
866 	 * send packet and bump counters
867 	 */
868 	if (res_authenticate && sys_authenticate) {
869 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
870 				     CTL_HEADER_LEN);
871 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
872 			CTL_HEADER_LEN + maclen);
873 	} else
874 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
875 			CTL_HEADER_LEN);
876 }
877 
878 /*
879  * save_config - Implements ntpq -c "saveconfig <filename>"
880  *		 Writes current configuration including any runtime
881  *		 changes by ntpq's :config or config-from-file
882  */
883 void
884 save_config(
885 	struct recvbuf *rbufp,
886 	int restrict_mask
887 	)
888 {
889 	/* block directory traversal by searching for characters that
890 	 * indicate directory components in a file path.
891 	 *
892 	 * Conceptually we should be searching for DIRSEP in filename,
893 	 * however Windows actually recognizes both forward and
894 	 * backslashes as equivalent directory separators at the API
895 	 * level.  On POSIX systems we could allow '\\' but such
896 	 * filenames are tricky to manipulate from a shell, so just
897 	 * reject both types of slashes on all platforms.
898 	 */
899 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
900 	static const char * illegal_in_filename =
901 #if defined(VMS)
902 	    ":[]"	/* do not allow drive and path components here */
903 #elif defined(SYS_WINNT)
904 	    ":\\/"	/* path and drive separators */
905 #else
906 	    "\\/"	/* separator and critical char for POSIX */
907 #endif
908 	    ;
909 
910 
911 	char reply[128];
912 #ifdef SAVECONFIG
913 	char filespec[128];
914 	char filename[128];
915 	char fullpath[512];
916 	const char savedconfig_eq[] = "savedconfig=";
917 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
918 	time_t now;
919 	int fd;
920 	FILE *fptr;
921 #endif
922 
923 	if (RES_NOMODIFY & restrict_mask) {
924 		snprintf(reply, sizeof(reply),
925 			 "saveconfig prohibited by restrict ... nomodify");
926 		ctl_putdata(reply, strlen(reply), 0);
927 		ctl_flushpkt(0);
928 		NLOG(NLOG_SYSINFO)
929 			msyslog(LOG_NOTICE,
930 				"saveconfig from %s rejected due to nomodify restriction",
931 				stoa(&rbufp->recv_srcadr));
932 		sys_restricted++;
933 		return;
934 	}
935 
936 #ifdef SAVECONFIG
937 	if (NULL == saveconfigdir) {
938 		snprintf(reply, sizeof(reply),
939 			 "saveconfig prohibited, no saveconfigdir configured");
940 		ctl_putdata(reply, strlen(reply), 0);
941 		ctl_flushpkt(0);
942 		NLOG(NLOG_SYSINFO)
943 			msyslog(LOG_NOTICE,
944 				"saveconfig from %s rejected, no saveconfigdir",
945 				stoa(&rbufp->recv_srcadr));
946 		return;
947 	}
948 
949 	if (0 == reqend - reqpt)
950 		return;
951 
952 	strlcpy(filespec, reqpt, sizeof(filespec));
953 	time(&now);
954 
955 	/*
956 	 * allow timestamping of the saved config filename with
957 	 * strftime() format such as:
958 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
959 	 * XXX: Nice feature, but not too safe.
960 	 */
961 	if (0 == strftime(filename, sizeof(filename), filespec,
962 			       localtime(&now)))
963 		strlcpy(filename, filespec, sizeof(filename));
964 
965 	/* block directory/drive traversal */
966 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
967 	if (NULL != strpbrk(filename, illegal_in_filename)) {
968 		snprintf(reply, sizeof(reply),
969 			 "saveconfig does not allow directory in filename");
970 		ctl_putdata(reply, strlen(reply), 0);
971 		ctl_flushpkt(0);
972 		msyslog(LOG_NOTICE,
973 			"saveconfig with path from %s rejected",
974 			stoa(&rbufp->recv_srcadr));
975 		return;
976 	}
977 
978 	snprintf(fullpath, sizeof(fullpath), "%s%s",
979 		 saveconfigdir, filename);
980 
981 	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
982 		  S_IRUSR | S_IWUSR);
983 	if (-1 == fd)
984 		fptr = NULL;
985 	else
986 		fptr = fdopen(fd, "w");
987 
988 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
989 		snprintf(reply, sizeof(reply),
990 			 "Unable to save configuration to file %s",
991 			 filename);
992 		msyslog(LOG_ERR,
993 			"saveconfig %s from %s failed", filename,
994 			stoa(&rbufp->recv_srcadr));
995 	} else {
996 		snprintf(reply, sizeof(reply),
997 			 "Configuration saved to %s", filename);
998 		msyslog(LOG_NOTICE,
999 			"Configuration saved to %s (requested by %s)",
1000 			fullpath, stoa(&rbufp->recv_srcadr));
1001 		/*
1002 		 * save the output filename in system variable
1003 		 * savedconfig, retrieved with:
1004 		 *   ntpq -c "rv 0 savedconfig"
1005 		 */
1006 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1007 			 savedconfig_eq, filename);
1008 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1009 	}
1010 
1011 	if (NULL != fptr)
1012 		fclose(fptr);
1013 #else	/* !SAVECONFIG follows */
1014 	snprintf(reply, sizeof(reply),
1015 		 "saveconfig unavailable, configured with --disable-saveconfig");
1016 #endif
1017 
1018 	ctl_putdata(reply, strlen(reply), 0);
1019 	ctl_flushpkt(0);
1020 }
1021 
1022 
1023 /*
1024  * process_control - process an incoming control message
1025  */
1026 void
1027 process_control(
1028 	struct recvbuf *rbufp,
1029 	int restrict_mask
1030 	)
1031 {
1032 	struct ntp_control *pkt;
1033 	int req_count;
1034 	int req_data;
1035 	const struct ctl_proc *cc;
1036 	keyid_t *pkid;
1037 	int properlen;
1038 	size_t maclen;
1039 
1040 	DPRINTF(3, ("in process_control()\n"));
1041 
1042 	/*
1043 	 * Save the addresses for error responses
1044 	 */
1045 	numctlreq++;
1046 	rmt_addr = &rbufp->recv_srcadr;
1047 	lcl_inter = rbufp->dstadr;
1048 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1049 
1050 	/*
1051 	 * If the length is less than required for the header, or
1052 	 * it is a response or a fragment, ignore this.
1053 	 */
1054 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1055 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1056 	    || pkt->offset != 0) {
1057 		DPRINTF(1, ("invalid format in control packet\n"));
1058 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1059 			numctltooshort++;
1060 		if (CTL_RESPONSE & pkt->r_m_e_op)
1061 			numctlinputresp++;
1062 		if (CTL_MORE & pkt->r_m_e_op)
1063 			numctlinputfrag++;
1064 		if (CTL_ERROR & pkt->r_m_e_op)
1065 			numctlinputerr++;
1066 		if (pkt->offset != 0)
1067 			numctlbadoffset++;
1068 		return;
1069 	}
1070 	res_version = PKT_VERSION(pkt->li_vn_mode);
1071 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1072 		DPRINTF(1, ("unknown version %d in control packet\n",
1073 			    res_version));
1074 		numctlbadversion++;
1075 		return;
1076 	}
1077 
1078 	/*
1079 	 * Pull enough data from the packet to make intelligent
1080 	 * responses
1081 	 */
1082 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1083 					 MODE_CONTROL);
1084 	res_opcode = pkt->r_m_e_op;
1085 	rpkt.sequence = pkt->sequence;
1086 	rpkt.associd = pkt->associd;
1087 	rpkt.status = 0;
1088 	res_frags = 1;
1089 	res_offset = 0;
1090 	res_associd = htons(pkt->associd);
1091 	res_async = FALSE;
1092 	res_authenticate = FALSE;
1093 	res_keyid = 0;
1094 	res_authokay = FALSE;
1095 	req_count = (int)ntohs(pkt->count);
1096 	datanotbinflag = FALSE;
1097 	datalinelen = 0;
1098 	datasent = 0;
1099 	datapt = rpkt.u.data;
1100 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1101 
1102 	if ((rbufp->recv_length & 0x3) != 0)
1103 		DPRINTF(3, ("Control packet length %d unrounded\n",
1104 			    rbufp->recv_length));
1105 
1106 	/*
1107 	 * We're set up now. Make sure we've got at least enough
1108 	 * incoming data space to match the count.
1109 	 */
1110 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1111 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1112 		ctl_error(CERR_BADFMT);
1113 		numctldatatooshort++;
1114 		return;
1115 	}
1116 
1117 	properlen = req_count + CTL_HEADER_LEN;
1118 	/* round up proper len to a 8 octet boundary */
1119 
1120 	properlen = (properlen + 7) & ~7;
1121 	maclen = rbufp->recv_length - properlen;
1122 	if ((rbufp->recv_length & 3) == 0 &&
1123 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1124 	    sys_authenticate) {
1125 		res_authenticate = TRUE;
1126 		pkid = (void *)((char *)pkt + properlen);
1127 		res_keyid = ntohl(*pkid);
1128 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1129 			    rbufp->recv_length, properlen, res_keyid,
1130 			    maclen));
1131 
1132 		if (!authistrusted(res_keyid))
1133 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1134 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1135 				     rbufp->recv_length - maclen,
1136 				     maclen)) {
1137 			res_authokay = TRUE;
1138 			DPRINTF(3, ("authenticated okay\n"));
1139 		} else {
1140 			res_keyid = 0;
1141 			DPRINTF(3, ("authentication failed\n"));
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * Set up translate pointers
1147 	 */
1148 	reqpt = (char *)pkt->u.data;
1149 	reqend = reqpt + req_count;
1150 
1151 	/*
1152 	 * Look for the opcode processor
1153 	 */
1154 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1155 		if (cc->control_code == res_opcode) {
1156 			DPRINTF(3, ("opcode %d, found command handler\n",
1157 				    res_opcode));
1158 			if (cc->flags == AUTH
1159 			    && (!res_authokay
1160 				|| res_keyid != ctl_auth_keyid)) {
1161 				ctl_error(CERR_PERMISSION);
1162 				return;
1163 			}
1164 			(cc->handler)(rbufp, restrict_mask);
1165 			return;
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * Can't find this one, return an error.
1171 	 */
1172 	numctlbadop++;
1173 	ctl_error(CERR_BADOP);
1174 	return;
1175 }
1176 
1177 
1178 /*
1179  * ctlpeerstatus - return a status word for this peer
1180  */
1181 u_short
1182 ctlpeerstatus(
1183 	register struct peer *p
1184 	)
1185 {
1186 	u_short status;
1187 
1188 	status = p->status;
1189 	if (FLAG_CONFIG & p->flags)
1190 		status |= CTL_PST_CONFIG;
1191 	if (p->keyid)
1192 		status |= CTL_PST_AUTHENABLE;
1193 	if (FLAG_AUTHENTIC & p->flags)
1194 		status |= CTL_PST_AUTHENTIC;
1195 	if (p->reach)
1196 		status |= CTL_PST_REACH;
1197 	if (MDF_TXONLY_MASK & p->cast_flags)
1198 		status |= CTL_PST_BCAST;
1199 
1200 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1201 }
1202 
1203 
1204 /*
1205  * ctlclkstatus - return a status word for this clock
1206  */
1207 #ifdef REFCLOCK
1208 static u_short
1209 ctlclkstatus(
1210 	struct refclockstat *pcs
1211 	)
1212 {
1213 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1214 }
1215 #endif
1216 
1217 
1218 /*
1219  * ctlsysstatus - return the system status word
1220  */
1221 u_short
1222 ctlsysstatus(void)
1223 {
1224 	register u_char this_clock;
1225 
1226 	this_clock = CTL_SST_TS_UNSPEC;
1227 #ifdef REFCLOCK
1228 	if (sys_peer != NULL) {
1229 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1230 			this_clock = sys_peer->sstclktype;
1231 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1232 			this_clock = clocktypes[sys_peer->refclktype];
1233 	}
1234 #else /* REFCLOCK */
1235 	if (sys_peer != 0)
1236 		this_clock = CTL_SST_TS_NTP;
1237 #endif /* REFCLOCK */
1238 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1239 			      ctl_sys_last_event);
1240 }
1241 
1242 
1243 /*
1244  * ctl_flushpkt - write out the current packet and prepare
1245  *		  another if necessary.
1246  */
1247 static void
1248 ctl_flushpkt(
1249 	u_char more
1250 	)
1251 {
1252 	size_t i;
1253 	int dlen;
1254 	int sendlen;
1255 	int maclen;
1256 	int totlen;
1257 	keyid_t keyid;
1258 
1259 	dlen = datapt - rpkt.u.data;
1260 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1261 		/*
1262 		 * Big hack, output a trailing \r\n
1263 		 */
1264 		*datapt++ = '\r';
1265 		*datapt++ = '\n';
1266 		dlen += 2;
1267 	}
1268 	sendlen = dlen + CTL_HEADER_LEN;
1269 
1270 	/*
1271 	 * Pad to a multiple of 32 bits
1272 	 */
1273 	while (sendlen & 0x3) {
1274 		*datapt++ = '\0';
1275 		sendlen++;
1276 	}
1277 
1278 	/*
1279 	 * Fill in the packet with the current info
1280 	 */
1281 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1282 			(res_opcode & CTL_OP_MASK);
1283 	rpkt.count = htons((u_short)dlen);
1284 	rpkt.offset = htons((u_short)res_offset);
1285 	if (res_async) {
1286 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1287 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1288 				rpkt.li_vn_mode =
1289 				    PKT_LI_VN_MODE(
1290 					sys_leap,
1291 					ctl_traps[i].tr_version,
1292 					MODE_CONTROL);
1293 				rpkt.sequence =
1294 				    htons(ctl_traps[i].tr_sequence);
1295 				sendpkt(&ctl_traps[i].tr_addr,
1296 					ctl_traps[i].tr_localaddr, -4,
1297 					(struct pkt *)&rpkt, sendlen);
1298 				if (!more)
1299 					ctl_traps[i].tr_sequence++;
1300 				numasyncmsgs++;
1301 			}
1302 		}
1303 	} else {
1304 		if (res_authenticate && sys_authenticate) {
1305 			totlen = sendlen;
1306 			/*
1307 			 * If we are going to authenticate, then there
1308 			 * is an additional requirement that the MAC
1309 			 * begin on a 64 bit boundary.
1310 			 */
1311 			while (totlen & 7) {
1312 				*datapt++ = '\0';
1313 				totlen++;
1314 			}
1315 			keyid = htonl(res_keyid);
1316 			memcpy(datapt, &keyid, sizeof(keyid));
1317 			maclen = authencrypt(res_keyid,
1318 					     (u_int32 *)&rpkt, totlen);
1319 			sendpkt(rmt_addr, lcl_inter, -5,
1320 				(struct pkt *)&rpkt, totlen + maclen);
1321 		} else {
1322 			sendpkt(rmt_addr, lcl_inter, -6,
1323 				(struct pkt *)&rpkt, sendlen);
1324 		}
1325 		if (more)
1326 			numctlfrags++;
1327 		else
1328 			numctlresponses++;
1329 	}
1330 
1331 	/*
1332 	 * Set us up for another go around.
1333 	 */
1334 	res_frags++;
1335 	res_offset += dlen;
1336 	datapt = rpkt.u.data;
1337 }
1338 
1339 
1340 /*
1341  * ctl_putdata - write data into the packet, fragmenting and starting
1342  * another if this one is full.
1343  */
1344 static void
1345 ctl_putdata(
1346 	const char *dp,
1347 	unsigned int dlen,
1348 	int bin			/* set to 1 when data is binary */
1349 	)
1350 {
1351 	int overhead;
1352 	unsigned int currentlen;
1353 
1354 	overhead = 0;
1355 	if (!bin) {
1356 		datanotbinflag = TRUE;
1357 		overhead = 3;
1358 		if (datasent) {
1359 			*datapt++ = ',';
1360 			datalinelen++;
1361 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1362 				*datapt++ = '\r';
1363 				*datapt++ = '\n';
1364 				datalinelen = 0;
1365 			} else {
1366 				*datapt++ = ' ';
1367 				datalinelen++;
1368 			}
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * Save room for trailing junk
1374 	 */
1375 	while (dlen + overhead + datapt > dataend) {
1376 		/*
1377 		 * Not enough room in this one, flush it out.
1378 		 */
1379 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1380 
1381 		memcpy(datapt, dp, currentlen);
1382 
1383 		datapt += currentlen;
1384 		dp += currentlen;
1385 		dlen -= currentlen;
1386 		datalinelen += currentlen;
1387 
1388 		ctl_flushpkt(CTL_MORE);
1389 	}
1390 
1391 	memcpy(datapt, dp, dlen);
1392 	datapt += dlen;
1393 	datalinelen += dlen;
1394 	datasent = TRUE;
1395 }
1396 
1397 
1398 /*
1399  * ctl_putstr - write a tagged string into the response packet
1400  *		in the form:
1401  *
1402  *		tag="data"
1403  *
1404  *		len is the data length excluding the NUL terminator,
1405  *		as in ctl_putstr("var", "value", strlen("value"));
1406  */
1407 static void
1408 ctl_putstr(
1409 	const char *	tag,
1410 	const char *	data,
1411 	size_t		len
1412 	)
1413 {
1414 	char buffer[512];
1415 	char *cp;
1416 	size_t tl;
1417 
1418 	tl = strlen(tag);
1419 	memcpy(buffer, tag, tl);
1420 	cp = buffer + tl;
1421 	if (len > 0) {
1422 		INSIST(tl + 3 + len <= sizeof(buffer));
1423 		*cp++ = '=';
1424 		*cp++ = '"';
1425 		memcpy(cp, data, len);
1426 		cp += len;
1427 		*cp++ = '"';
1428 	}
1429 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1430 }
1431 
1432 
1433 /*
1434  * ctl_putunqstr - write a tagged string into the response packet
1435  *		   in the form:
1436  *
1437  *		   tag=data
1438  *
1439  *	len is the data length excluding the NUL terminator.
1440  *	data must not contain a comma or whitespace.
1441  */
1442 static void
1443 ctl_putunqstr(
1444 	const char *	tag,
1445 	const char *	data,
1446 	size_t		len
1447 	)
1448 {
1449 	char buffer[512];
1450 	char *cp;
1451 	size_t tl;
1452 
1453 	tl = strlen(tag);
1454 	memcpy(buffer, tag, tl);
1455 	cp = buffer + tl;
1456 	if (len > 0) {
1457 		INSIST(tl + 1 + len <= sizeof(buffer));
1458 		*cp++ = '=';
1459 		memcpy(cp, data, len);
1460 		cp += len;
1461 	}
1462 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1463 }
1464 
1465 
1466 /*
1467  * ctl_putdblf - write a tagged, signed double into the response packet
1468  */
1469 static void
1470 ctl_putdblf(
1471 	const char *	tag,
1472 	int		use_f,
1473 	int		precision,
1474 	double		d
1475 	)
1476 {
1477 	char *cp;
1478 	const char *cq;
1479 	char buffer[200];
1480 
1481 	cp = buffer;
1482 	cq = tag;
1483 	while (*cq != '\0')
1484 		*cp++ = *cq++;
1485 	*cp++ = '=';
1486 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1487 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1488 	    precision, d);
1489 	cp += strlen(cp);
1490 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1491 }
1492 
1493 /*
1494  * ctl_putuint - write a tagged unsigned integer into the response
1495  */
1496 static void
1497 ctl_putuint(
1498 	const char *tag,
1499 	u_long uval
1500 	)
1501 {
1502 	register char *cp;
1503 	register const char *cq;
1504 	char buffer[200];
1505 
1506 	cp = buffer;
1507 	cq = tag;
1508 	while (*cq != '\0')
1509 		*cp++ = *cq++;
1510 
1511 	*cp++ = '=';
1512 	INSIST((cp - buffer) < (int)sizeof(buffer));
1513 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1514 	cp += strlen(cp);
1515 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1516 }
1517 
1518 /*
1519  * ctl_putcal - write a decoded calendar data into the response
1520  */
1521 static void
1522 ctl_putcal(
1523 	const char *tag,
1524 	const struct calendar *pcal
1525 	)
1526 {
1527 	char buffer[100];
1528 	unsigned numch;
1529 
1530 	numch = snprintf(buffer, sizeof(buffer),
1531 			"%s=%04d%02d%02d%02d%02d",
1532 			tag,
1533 			pcal->year,
1534 			pcal->month,
1535 			pcal->monthday,
1536 			pcal->hour,
1537 			pcal->minute
1538 			);
1539 	INSIST(numch < sizeof(buffer));
1540 	ctl_putdata(buffer, numch, 0);
1541 
1542 	return;
1543 }
1544 
1545 /*
1546  * ctl_putfs - write a decoded filestamp into the response
1547  */
1548 static void
1549 ctl_putfs(
1550 	const char *tag,
1551 	tstamp_t uval
1552 	)
1553 {
1554 	register char *cp;
1555 	register const char *cq;
1556 	char buffer[200];
1557 	struct tm *tm = NULL;
1558 	time_t fstamp;
1559 
1560 	cp = buffer;
1561 	cq = tag;
1562 	while (*cq != '\0')
1563 		*cp++ = *cq++;
1564 
1565 	*cp++ = '=';
1566 	fstamp = uval - JAN_1970;
1567 	tm = gmtime(&fstamp);
1568 	if (NULL ==  tm)
1569 		return;
1570 	INSIST((cp - buffer) < (int)sizeof(buffer));
1571 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1572 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1573 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1574 	cp += strlen(cp);
1575 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1576 }
1577 
1578 
1579 /*
1580  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1581  * response
1582  */
1583 static void
1584 ctl_puthex(
1585 	const char *tag,
1586 	u_long uval
1587 	)
1588 {
1589 	register char *cp;
1590 	register const char *cq;
1591 	char buffer[200];
1592 
1593 	cp = buffer;
1594 	cq = tag;
1595 	while (*cq != '\0')
1596 		*cp++ = *cq++;
1597 
1598 	*cp++ = '=';
1599 	INSIST((cp - buffer) < (int)sizeof(buffer));
1600 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1601 	cp += strlen(cp);
1602 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1603 }
1604 
1605 
1606 /*
1607  * ctl_putint - write a tagged signed integer into the response
1608  */
1609 static void
1610 ctl_putint(
1611 	const char *tag,
1612 	long ival
1613 	)
1614 {
1615 	register char *cp;
1616 	register const char *cq;
1617 	char buffer[200];
1618 
1619 	cp = buffer;
1620 	cq = tag;
1621 	while (*cq != '\0')
1622 		*cp++ = *cq++;
1623 
1624 	*cp++ = '=';
1625 	INSIST((cp - buffer) < (int)sizeof(buffer));
1626 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1627 	cp += strlen(cp);
1628 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1629 }
1630 
1631 
1632 /*
1633  * ctl_putts - write a tagged timestamp, in hex, into the response
1634  */
1635 static void
1636 ctl_putts(
1637 	const char *tag,
1638 	l_fp *ts
1639 	)
1640 {
1641 	register char *cp;
1642 	register const char *cq;
1643 	char buffer[200];
1644 
1645 	cp = buffer;
1646 	cq = tag;
1647 	while (*cq != '\0')
1648 		*cp++ = *cq++;
1649 
1650 	*cp++ = '=';
1651 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1652 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1653 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1654 	cp += strlen(cp);
1655 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1656 }
1657 
1658 
1659 /*
1660  * ctl_putadr - write an IP address into the response
1661  */
1662 static void
1663 ctl_putadr(
1664 	const char *tag,
1665 	u_int32 addr32,
1666 	sockaddr_u *addr
1667 	)
1668 {
1669 	register char *cp;
1670 	register const char *cq;
1671 	char buffer[200];
1672 
1673 	cp = buffer;
1674 	cq = tag;
1675 	while (*cq != '\0')
1676 		*cp++ = *cq++;
1677 
1678 	*cp++ = '=';
1679 	if (NULL == addr)
1680 		cq = numtoa(addr32);
1681 	else
1682 		cq = stoa(addr);
1683 	INSIST((cp - buffer) < (int)sizeof(buffer));
1684 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1685 	cp += strlen(cp);
1686 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1687 }
1688 
1689 
1690 /*
1691  * ctl_putrefid - send a u_int32 refid as printable text
1692  */
1693 static void
1694 ctl_putrefid(
1695 	const char *	tag,
1696 	u_int32		refid
1697 	)
1698 {
1699 	char	output[16];
1700 	char *	optr;
1701 	char *	oplim;
1702 	char *	iptr;
1703 	char *	iplim;
1704 	char *	past_eq;
1705 
1706 	optr = output;
1707 	oplim = output + sizeof(output);
1708 	while (optr < oplim && '\0' != *tag)
1709 		*optr++ = *tag++;
1710 	if (optr < oplim) {
1711 		*optr++ = '=';
1712 		past_eq = optr;
1713 	}
1714 	if (!(optr < oplim))
1715 		return;
1716 	iptr = (char *)&refid;
1717 	iplim = iptr + sizeof(refid);
1718 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1719 	     iptr++, optr++)
1720 		if (isprint((int)*iptr))
1721 			*optr = *iptr;
1722 		else
1723 			*optr = '.';
1724 	if (!(optr <= oplim))
1725 		optr = past_eq;
1726 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1727 }
1728 
1729 
1730 /*
1731  * ctl_putarray - write a tagged eight element double array into the response
1732  */
1733 static void
1734 ctl_putarray(
1735 	const char *tag,
1736 	double *arr,
1737 	int start
1738 	)
1739 {
1740 	register char *cp;
1741 	register const char *cq;
1742 	char buffer[200];
1743 	int i;
1744 	cp = buffer;
1745 	cq = tag;
1746 	while (*cq != '\0')
1747 		*cp++ = *cq++;
1748 	*cp++ = '=';
1749 	i = start;
1750 	do {
1751 		if (i == 0)
1752 			i = NTP_SHIFT;
1753 		i--;
1754 		INSIST((cp - buffer) < (int)sizeof(buffer));
1755 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1756 			 " %.2f", arr[i] * 1e3);
1757 		cp += strlen(cp);
1758 	} while (i != start);
1759 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1760 }
1761 
1762 
1763 /*
1764  * ctl_putsys - output a system variable
1765  */
1766 static void
1767 ctl_putsys(
1768 	int varid
1769 	)
1770 {
1771 	l_fp tmp;
1772 	char str[256];
1773 	u_int u;
1774 	double kb;
1775 	double dtemp;
1776 	const char *ss;
1777 #ifdef AUTOKEY
1778 	struct cert_info *cp;
1779 #endif	/* AUTOKEY */
1780 #ifdef KERNEL_PLL
1781 	static struct timex ntx;
1782 	static u_long ntp_adjtime_time;
1783 
1784 	static const double to_ms =
1785 # ifdef STA_NANO
1786 		1.0e-6; /* nsec to msec */
1787 # else
1788 		1.0e-3; /* usec to msec */
1789 # endif
1790 
1791 	/*
1792 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1793 	 */
1794 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1795 	    current_time != ntp_adjtime_time) {
1796 		ZERO(ntx);
1797 		if (ntp_adjtime(&ntx) < 0)
1798 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1799 		else
1800 			ntp_adjtime_time = current_time;
1801 	}
1802 #endif	/* KERNEL_PLL */
1803 
1804 	switch (varid) {
1805 
1806 	case CS_LEAP:
1807 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1808 		break;
1809 
1810 	case CS_STRATUM:
1811 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1812 		break;
1813 
1814 	case CS_PRECISION:
1815 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1816 		break;
1817 
1818 	case CS_ROOTDELAY:
1819 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1820 			   1e3);
1821 		break;
1822 
1823 	case CS_ROOTDISPERSION:
1824 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1825 			   sys_rootdisp * 1e3);
1826 		break;
1827 
1828 	case CS_REFID:
1829 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1830 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1831 		else
1832 			ctl_putrefid(sys_var[varid].text, sys_refid);
1833 		break;
1834 
1835 	case CS_REFTIME:
1836 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1837 		break;
1838 
1839 	case CS_POLL:
1840 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1841 		break;
1842 
1843 	case CS_PEERID:
1844 		if (sys_peer == NULL)
1845 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1846 		else
1847 			ctl_putuint(sys_var[CS_PEERID].text,
1848 				    sys_peer->associd);
1849 		break;
1850 
1851 	case CS_PEERADR:
1852 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1853 			ss = sptoa(&sys_peer->srcadr);
1854 		else
1855 			ss = "0.0.0.0:0";
1856 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1857 		break;
1858 
1859 	case CS_PEERMODE:
1860 		u = (sys_peer != NULL)
1861 			? sys_peer->hmode
1862 			: MODE_UNSPEC;
1863 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1864 		break;
1865 
1866 	case CS_OFFSET:
1867 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1868 		break;
1869 
1870 	case CS_DRIFT:
1871 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1872 		break;
1873 
1874 	case CS_JITTER:
1875 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1876 		break;
1877 
1878 	case CS_ERROR:
1879 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1880 		break;
1881 
1882 	case CS_CLOCK:
1883 		get_systime(&tmp);
1884 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1885 		break;
1886 
1887 	case CS_PROCESSOR:
1888 #ifndef HAVE_UNAME
1889 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1890 			   sizeof(str_processor) - 1);
1891 #else
1892 		ctl_putstr(sys_var[CS_PROCESSOR].text,
1893 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1894 #endif /* HAVE_UNAME */
1895 		break;
1896 
1897 	case CS_SYSTEM:
1898 #ifndef HAVE_UNAME
1899 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1900 			   sizeof(str_system) - 1);
1901 #else
1902 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1903 			 utsnamebuf.release);
1904 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1905 #endif /* HAVE_UNAME */
1906 		break;
1907 
1908 	case CS_VERSION:
1909 		ctl_putstr(sys_var[CS_VERSION].text, Version,
1910 			   strlen(Version));
1911 		break;
1912 
1913 	case CS_STABIL:
1914 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1915 			   1e6);
1916 		break;
1917 
1918 	case CS_VARLIST:
1919 	{
1920 		char buf[CTL_MAX_DATA_LEN];
1921 		//buffPointer, firstElementPointer, buffEndPointer
1922 		char *buffp, *buffend;
1923 		int firstVarName;
1924 		const char *ss1;
1925 		int len;
1926 		const struct ctl_var *k;
1927 
1928 		buffp = buf;
1929 		buffend = buf + sizeof(buf);
1930 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1931 			break;	/* really long var name */
1932 
1933 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1934 		buffp += strlen(buffp);
1935 		firstVarName = TRUE;
1936 		for (k = sys_var; !(k->flags & EOV); k++) {
1937 			if (k->flags & PADDING)
1938 				continue;
1939 			len = strlen(k->text);
1940 			if (buffp + len + 1 >= buffend)
1941 				break;
1942 			if (!firstVarName)
1943 				*buffp++ = ',';
1944 			else
1945 				firstVarName = FALSE;
1946 			memcpy(buffp, k->text, len);
1947 			buffp += len;
1948 		}
1949 
1950 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1951 			if (k->flags & PADDING)
1952 				continue;
1953 			if (NULL == k->text)
1954 				continue;
1955 			ss1 = strchr(k->text, '=');
1956 			if (NULL == ss1)
1957 				len = strlen(k->text);
1958 			else
1959 				len = ss1 - k->text;
1960 			if (buffp + len + 1 >= buffend)
1961 				break;
1962 			if (firstVarName) {
1963 				*buffp++ = ',';
1964 				firstVarName = FALSE;
1965 			}
1966 			memcpy(buffp, k->text,(unsigned)len);
1967 			buffp += len;
1968 		}
1969 		if (buffp + 2 >= buffend)
1970 			break;
1971 
1972 		*buffp++ = '"';
1973 		*buffp = '\0';
1974 
1975 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1976 		break;
1977 	}
1978 
1979 	case CS_TAI:
1980 		if (sys_tai > 0)
1981 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1982 		break;
1983 
1984 	case CS_LEAPTAB:
1985 	{
1986 		leap_signature_t lsig;
1987 		leapsec_getsig(&lsig);
1988 		if (lsig.ttime > 0)
1989 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1990 		break;
1991 	}
1992 
1993 	case CS_LEAPEND:
1994 	{
1995 		leap_signature_t lsig;
1996 		leapsec_getsig(&lsig);
1997 		if (lsig.etime > 0)
1998 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1999 		break;
2000 	}
2001 
2002 #ifdef LEAP_SMEAR
2003 	case CS_LEAPSMEARINTV:
2004 		if (leap_smear_intv > 0)
2005 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2006 		break;
2007 
2008 	case CS_LEAPSMEAROFFS:
2009 		if (leap_smear_intv > 0)
2010 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2011 				   leap_smear.doffset * 1e3);
2012 		break;
2013 #endif	/* LEAP_SMEAR */
2014 
2015 	case CS_RATE:
2016 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2017 		break;
2018 
2019 	case CS_MRU_ENABLED:
2020 		ctl_puthex(sys_var[varid].text, mon_enabled);
2021 		break;
2022 
2023 	case CS_MRU_DEPTH:
2024 		ctl_putuint(sys_var[varid].text, mru_entries);
2025 		break;
2026 
2027 	case CS_MRU_MEM:
2028 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2029 		u = (u_int)kb;
2030 		if (kb - u >= 0.5)
2031 			u++;
2032 		ctl_putuint(sys_var[varid].text, u);
2033 		break;
2034 
2035 	case CS_MRU_DEEPEST:
2036 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2037 		break;
2038 
2039 	case CS_MRU_MINDEPTH:
2040 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2041 		break;
2042 
2043 	case CS_MRU_MAXAGE:
2044 		ctl_putint(sys_var[varid].text, mru_maxage);
2045 		break;
2046 
2047 	case CS_MRU_MAXDEPTH:
2048 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2049 		break;
2050 
2051 	case CS_MRU_MAXMEM:
2052 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2053 		u = (u_int)kb;
2054 		if (kb - u >= 0.5)
2055 			u++;
2056 		ctl_putuint(sys_var[varid].text, u);
2057 		break;
2058 
2059 	case CS_SS_UPTIME:
2060 		ctl_putuint(sys_var[varid].text, current_time);
2061 		break;
2062 
2063 	case CS_SS_RESET:
2064 		ctl_putuint(sys_var[varid].text,
2065 			    current_time - sys_stattime);
2066 		break;
2067 
2068 	case CS_SS_RECEIVED:
2069 		ctl_putuint(sys_var[varid].text, sys_received);
2070 		break;
2071 
2072 	case CS_SS_THISVER:
2073 		ctl_putuint(sys_var[varid].text, sys_newversion);
2074 		break;
2075 
2076 	case CS_SS_OLDVER:
2077 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2078 		break;
2079 
2080 	case CS_SS_BADFORMAT:
2081 		ctl_putuint(sys_var[varid].text, sys_badlength);
2082 		break;
2083 
2084 	case CS_SS_BADAUTH:
2085 		ctl_putuint(sys_var[varid].text, sys_badauth);
2086 		break;
2087 
2088 	case CS_SS_DECLINED:
2089 		ctl_putuint(sys_var[varid].text, sys_declined);
2090 		break;
2091 
2092 	case CS_SS_RESTRICTED:
2093 		ctl_putuint(sys_var[varid].text, sys_restricted);
2094 		break;
2095 
2096 	case CS_SS_LIMITED:
2097 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2098 		break;
2099 
2100 	case CS_SS_KODSENT:
2101 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2102 		break;
2103 
2104 	case CS_SS_PROCESSED:
2105 		ctl_putuint(sys_var[varid].text, sys_processed);
2106 		break;
2107 
2108 	case CS_BCASTDELAY:
2109 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2110 		break;
2111 
2112 	case CS_AUTHDELAY:
2113 		LFPTOD(&sys_authdelay, dtemp);
2114 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2115 		break;
2116 
2117 	case CS_AUTHKEYS:
2118 		ctl_putuint(sys_var[varid].text, authnumkeys);
2119 		break;
2120 
2121 	case CS_AUTHFREEK:
2122 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2123 		break;
2124 
2125 	case CS_AUTHKLOOKUPS:
2126 		ctl_putuint(sys_var[varid].text, authkeylookups);
2127 		break;
2128 
2129 	case CS_AUTHKNOTFOUND:
2130 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2131 		break;
2132 
2133 	case CS_AUTHKUNCACHED:
2134 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2135 		break;
2136 
2137 	case CS_AUTHKEXPIRED:
2138 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2139 		break;
2140 
2141 	case CS_AUTHENCRYPTS:
2142 		ctl_putuint(sys_var[varid].text, authencryptions);
2143 		break;
2144 
2145 	case CS_AUTHDECRYPTS:
2146 		ctl_putuint(sys_var[varid].text, authdecryptions);
2147 		break;
2148 
2149 	case CS_AUTHRESET:
2150 		ctl_putuint(sys_var[varid].text,
2151 			    current_time - auth_timereset);
2152 		break;
2153 
2154 		/*
2155 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2156 		 * unavailable, otherwise calls putfunc with args.
2157 		 */
2158 #ifndef KERNEL_PLL
2159 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2160 		ctl_putint(sys_var[varid].text, 0)
2161 #else
2162 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2163 		putfunc args
2164 #endif
2165 
2166 		/*
2167 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2168 		 * loop is unavailable, or kernel hard PPS is not
2169 		 * active, otherwise calls putfunc with args.
2170 		 */
2171 #ifndef KERNEL_PLL
2172 # define	CTL_IF_KERNPPS(putfunc, args)	\
2173 		ctl_putint(sys_var[varid].text, 0)
2174 #else
2175 # define	CTL_IF_KERNPPS(putfunc, args)			\
2176 		if (0 == ntx.shift)				\
2177 			ctl_putint(sys_var[varid].text, 0);	\
2178 		else						\
2179 			putfunc args	/* no trailing ; */
2180 #endif
2181 
2182 	case CS_K_OFFSET:
2183 		CTL_IF_KERNLOOP(
2184 			ctl_putdblf,
2185 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2186 		);
2187 		break;
2188 
2189 	case CS_K_FREQ:
2190 		CTL_IF_KERNLOOP(
2191 			ctl_putsfp,
2192 			(sys_var[varid].text, ntx.freq)
2193 		);
2194 		break;
2195 
2196 	case CS_K_MAXERR:
2197 		CTL_IF_KERNLOOP(
2198 			ctl_putdblf,
2199 			(sys_var[varid].text, 0, 6,
2200 			 to_ms * ntx.maxerror)
2201 		);
2202 		break;
2203 
2204 	case CS_K_ESTERR:
2205 		CTL_IF_KERNLOOP(
2206 			ctl_putdblf,
2207 			(sys_var[varid].text, 0, 6,
2208 			 to_ms * ntx.esterror)
2209 		);
2210 		break;
2211 
2212 	case CS_K_STFLAGS:
2213 #ifndef KERNEL_PLL
2214 		ss = "";
2215 #else
2216 		ss = k_st_flags(ntx.status);
2217 #endif
2218 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2219 		break;
2220 
2221 	case CS_K_TIMECONST:
2222 		CTL_IF_KERNLOOP(
2223 			ctl_putint,
2224 			(sys_var[varid].text, ntx.constant)
2225 		);
2226 		break;
2227 
2228 	case CS_K_PRECISION:
2229 		CTL_IF_KERNLOOP(
2230 			ctl_putdblf,
2231 			(sys_var[varid].text, 0, 6,
2232 			    to_ms * ntx.precision)
2233 		);
2234 		break;
2235 
2236 	case CS_K_FREQTOL:
2237 		CTL_IF_KERNLOOP(
2238 			ctl_putsfp,
2239 			(sys_var[varid].text, ntx.tolerance)
2240 		);
2241 		break;
2242 
2243 	case CS_K_PPS_FREQ:
2244 		CTL_IF_KERNPPS(
2245 			ctl_putsfp,
2246 			(sys_var[varid].text, ntx.ppsfreq)
2247 		);
2248 		break;
2249 
2250 	case CS_K_PPS_STABIL:
2251 		CTL_IF_KERNPPS(
2252 			ctl_putsfp,
2253 			(sys_var[varid].text, ntx.stabil)
2254 		);
2255 		break;
2256 
2257 	case CS_K_PPS_JITTER:
2258 		CTL_IF_KERNPPS(
2259 			ctl_putdbl,
2260 			(sys_var[varid].text, to_ms * ntx.jitter)
2261 		);
2262 		break;
2263 
2264 	case CS_K_PPS_CALIBDUR:
2265 		CTL_IF_KERNPPS(
2266 			ctl_putint,
2267 			(sys_var[varid].text, 1 << ntx.shift)
2268 		);
2269 		break;
2270 
2271 	case CS_K_PPS_CALIBS:
2272 		CTL_IF_KERNPPS(
2273 			ctl_putint,
2274 			(sys_var[varid].text, ntx.calcnt)
2275 		);
2276 		break;
2277 
2278 	case CS_K_PPS_CALIBERRS:
2279 		CTL_IF_KERNPPS(
2280 			ctl_putint,
2281 			(sys_var[varid].text, ntx.errcnt)
2282 		);
2283 		break;
2284 
2285 	case CS_K_PPS_JITEXC:
2286 		CTL_IF_KERNPPS(
2287 			ctl_putint,
2288 			(sys_var[varid].text, ntx.jitcnt)
2289 		);
2290 		break;
2291 
2292 	case CS_K_PPS_STBEXC:
2293 		CTL_IF_KERNPPS(
2294 			ctl_putint,
2295 			(sys_var[varid].text, ntx.stbcnt)
2296 		);
2297 		break;
2298 
2299 	case CS_IOSTATS_RESET:
2300 		ctl_putuint(sys_var[varid].text,
2301 			    current_time - io_timereset);
2302 		break;
2303 
2304 	case CS_TOTAL_RBUF:
2305 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2306 		break;
2307 
2308 	case CS_FREE_RBUF:
2309 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2310 		break;
2311 
2312 	case CS_USED_RBUF:
2313 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2314 		break;
2315 
2316 	case CS_RBUF_LOWATER:
2317 		ctl_putuint(sys_var[varid].text, lowater_additions());
2318 		break;
2319 
2320 	case CS_IO_DROPPED:
2321 		ctl_putuint(sys_var[varid].text, packets_dropped);
2322 		break;
2323 
2324 	case CS_IO_IGNORED:
2325 		ctl_putuint(sys_var[varid].text, packets_ignored);
2326 		break;
2327 
2328 	case CS_IO_RECEIVED:
2329 		ctl_putuint(sys_var[varid].text, packets_received);
2330 		break;
2331 
2332 	case CS_IO_SENT:
2333 		ctl_putuint(sys_var[varid].text, packets_sent);
2334 		break;
2335 
2336 	case CS_IO_SENDFAILED:
2337 		ctl_putuint(sys_var[varid].text, packets_notsent);
2338 		break;
2339 
2340 	case CS_IO_WAKEUPS:
2341 		ctl_putuint(sys_var[varid].text, handler_calls);
2342 		break;
2343 
2344 	case CS_IO_GOODWAKEUPS:
2345 		ctl_putuint(sys_var[varid].text, handler_pkts);
2346 		break;
2347 
2348 	case CS_TIMERSTATS_RESET:
2349 		ctl_putuint(sys_var[varid].text,
2350 			    current_time - timer_timereset);
2351 		break;
2352 
2353 	case CS_TIMER_OVERRUNS:
2354 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2355 		break;
2356 
2357 	case CS_TIMER_XMTS:
2358 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2359 		break;
2360 
2361 	case CS_FUZZ:
2362 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2363 		break;
2364 	case CS_WANDER_THRESH:
2365 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2366 		break;
2367 #ifdef AUTOKEY
2368 	case CS_FLAGS:
2369 		if (crypto_flags)
2370 			ctl_puthex(sys_var[CS_FLAGS].text,
2371 			    crypto_flags);
2372 		break;
2373 
2374 	case CS_DIGEST:
2375 		if (crypto_flags) {
2376 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2377 			    COUNTOF(str));
2378 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2379 			    strlen(str));
2380 		}
2381 		break;
2382 
2383 	case CS_SIGNATURE:
2384 		if (crypto_flags) {
2385 			const EVP_MD *dp;
2386 
2387 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2388 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2389 			    COUNTOF(str));
2390 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2391 			    strlen(str));
2392 		}
2393 		break;
2394 
2395 	case CS_HOST:
2396 		if (hostval.ptr != NULL)
2397 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2398 			    strlen(hostval.ptr));
2399 		break;
2400 
2401 	case CS_IDENT:
2402 		if (sys_ident != NULL)
2403 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2404 			    strlen(sys_ident));
2405 		break;
2406 
2407 	case CS_CERTIF:
2408 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2409 			snprintf(str, sizeof(str), "%s %s 0x%x",
2410 			    cp->subject, cp->issuer, cp->flags);
2411 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2412 			    strlen(str));
2413 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2414 		}
2415 		break;
2416 
2417 	case CS_PUBLIC:
2418 		if (hostval.tstamp != 0)
2419 			ctl_putfs(sys_var[CS_PUBLIC].text,
2420 			    ntohl(hostval.tstamp));
2421 		break;
2422 #endif	/* AUTOKEY */
2423 
2424 	default:
2425 		break;
2426 	}
2427 }
2428 
2429 
2430 /*
2431  * ctl_putpeer - output a peer variable
2432  */
2433 static void
2434 ctl_putpeer(
2435 	int id,
2436 	struct peer *p
2437 	)
2438 {
2439 	char buf[CTL_MAX_DATA_LEN];
2440 	char *s;
2441 	char *t;
2442 	char *be;
2443 	int i;
2444 	const struct ctl_var *k;
2445 #ifdef AUTOKEY
2446 	struct autokey *ap;
2447 	const EVP_MD *dp;
2448 	const char *str;
2449 #endif	/* AUTOKEY */
2450 
2451 	switch (id) {
2452 
2453 	case CP_CONFIG:
2454 		ctl_putuint(peer_var[id].text,
2455 			    !(FLAG_PREEMPT & p->flags));
2456 		break;
2457 
2458 	case CP_AUTHENABLE:
2459 		ctl_putuint(peer_var[id].text, !(p->keyid));
2460 		break;
2461 
2462 	case CP_AUTHENTIC:
2463 		ctl_putuint(peer_var[id].text,
2464 			    !!(FLAG_AUTHENTIC & p->flags));
2465 		break;
2466 
2467 	case CP_SRCADR:
2468 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2469 		break;
2470 
2471 	case CP_SRCPORT:
2472 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2473 		break;
2474 
2475 	case CP_SRCHOST:
2476 		if (p->hostname != NULL)
2477 			ctl_putstr(peer_var[id].text, p->hostname,
2478 				   strlen(p->hostname));
2479 		break;
2480 
2481 	case CP_DSTADR:
2482 		ctl_putadr(peer_var[id].text, 0,
2483 			   (p->dstadr != NULL)
2484 				? &p->dstadr->sin
2485 				: NULL);
2486 		break;
2487 
2488 	case CP_DSTPORT:
2489 		ctl_putuint(peer_var[id].text,
2490 			    (p->dstadr != NULL)
2491 				? SRCPORT(&p->dstadr->sin)
2492 				: 0);
2493 		break;
2494 
2495 	case CP_IN:
2496 		if (p->r21 > 0.)
2497 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2498 		break;
2499 
2500 	case CP_OUT:
2501 		if (p->r34 > 0.)
2502 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2503 		break;
2504 
2505 	case CP_RATE:
2506 		ctl_putuint(peer_var[id].text, p->throttle);
2507 		break;
2508 
2509 	case CP_LEAP:
2510 		ctl_putuint(peer_var[id].text, p->leap);
2511 		break;
2512 
2513 	case CP_HMODE:
2514 		ctl_putuint(peer_var[id].text, p->hmode);
2515 		break;
2516 
2517 	case CP_STRATUM:
2518 		ctl_putuint(peer_var[id].text, p->stratum);
2519 		break;
2520 
2521 	case CP_PPOLL:
2522 		ctl_putuint(peer_var[id].text, p->ppoll);
2523 		break;
2524 
2525 	case CP_HPOLL:
2526 		ctl_putuint(peer_var[id].text, p->hpoll);
2527 		break;
2528 
2529 	case CP_PRECISION:
2530 		ctl_putint(peer_var[id].text, p->precision);
2531 		break;
2532 
2533 	case CP_ROOTDELAY:
2534 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2535 		break;
2536 
2537 	case CP_ROOTDISPERSION:
2538 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2539 		break;
2540 
2541 	case CP_REFID:
2542 #ifdef REFCLOCK
2543 		if (p->flags & FLAG_REFCLOCK) {
2544 			ctl_putrefid(peer_var[id].text, p->refid);
2545 			break;
2546 		}
2547 #endif
2548 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2549 			ctl_putadr(peer_var[id].text, p->refid,
2550 				   NULL);
2551 		else
2552 			ctl_putrefid(peer_var[id].text, p->refid);
2553 		break;
2554 
2555 	case CP_REFTIME:
2556 		ctl_putts(peer_var[id].text, &p->reftime);
2557 		break;
2558 
2559 	case CP_ORG:
2560 		ctl_putts(peer_var[id].text, &p->aorg);
2561 		break;
2562 
2563 	case CP_REC:
2564 		ctl_putts(peer_var[id].text, &p->dst);
2565 		break;
2566 
2567 	case CP_XMT:
2568 		if (p->xleave)
2569 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2570 		break;
2571 
2572 	case CP_BIAS:
2573 		if (p->bias != 0.)
2574 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2575 		break;
2576 
2577 	case CP_REACH:
2578 		ctl_puthex(peer_var[id].text, p->reach);
2579 		break;
2580 
2581 	case CP_FLASH:
2582 		ctl_puthex(peer_var[id].text, p->flash);
2583 		break;
2584 
2585 	case CP_TTL:
2586 #ifdef REFCLOCK
2587 		if (p->flags & FLAG_REFCLOCK) {
2588 			ctl_putuint(peer_var[id].text, p->ttl);
2589 			break;
2590 		}
2591 #endif
2592 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2593 			ctl_putint(peer_var[id].text,
2594 				   sys_ttl[p->ttl]);
2595 		break;
2596 
2597 	case CP_UNREACH:
2598 		ctl_putuint(peer_var[id].text, p->unreach);
2599 		break;
2600 
2601 	case CP_TIMER:
2602 		ctl_putuint(peer_var[id].text,
2603 			    p->nextdate - current_time);
2604 		break;
2605 
2606 	case CP_DELAY:
2607 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2608 		break;
2609 
2610 	case CP_OFFSET:
2611 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2612 		break;
2613 
2614 	case CP_JITTER:
2615 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2616 		break;
2617 
2618 	case CP_DISPERSION:
2619 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2620 		break;
2621 
2622 	case CP_KEYID:
2623 		if (p->keyid > NTP_MAXKEY)
2624 			ctl_puthex(peer_var[id].text, p->keyid);
2625 		else
2626 			ctl_putuint(peer_var[id].text, p->keyid);
2627 		break;
2628 
2629 	case CP_FILTDELAY:
2630 		ctl_putarray(peer_var[id].text, p->filter_delay,
2631 			     p->filter_nextpt);
2632 		break;
2633 
2634 	case CP_FILTOFFSET:
2635 		ctl_putarray(peer_var[id].text, p->filter_offset,
2636 			     p->filter_nextpt);
2637 		break;
2638 
2639 	case CP_FILTERROR:
2640 		ctl_putarray(peer_var[id].text, p->filter_disp,
2641 			     p->filter_nextpt);
2642 		break;
2643 
2644 	case CP_PMODE:
2645 		ctl_putuint(peer_var[id].text, p->pmode);
2646 		break;
2647 
2648 	case CP_RECEIVED:
2649 		ctl_putuint(peer_var[id].text, p->received);
2650 		break;
2651 
2652 	case CP_SENT:
2653 		ctl_putuint(peer_var[id].text, p->sent);
2654 		break;
2655 
2656 	case CP_VARLIST:
2657 		s = buf;
2658 		be = buf + sizeof(buf);
2659 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2660 			break;	/* really long var name */
2661 
2662 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2663 		s += strlen(s);
2664 		t = s;
2665 		for (k = peer_var; !(EOV & k->flags); k++) {
2666 			if (PADDING & k->flags)
2667 				continue;
2668 			i = strlen(k->text);
2669 			if (s + i + 1 >= be)
2670 				break;
2671 			if (s != t)
2672 				*s++ = ',';
2673 			memcpy(s, k->text, i);
2674 			s += i;
2675 		}
2676 		if (s + 2 < be) {
2677 			*s++ = '"';
2678 			*s = '\0';
2679 			ctl_putdata(buf, (u_int)(s - buf), 0);
2680 		}
2681 		break;
2682 
2683 	case CP_TIMEREC:
2684 		ctl_putuint(peer_var[id].text,
2685 			    current_time - p->timereceived);
2686 		break;
2687 
2688 	case CP_TIMEREACH:
2689 		ctl_putuint(peer_var[id].text,
2690 			    current_time - p->timereachable);
2691 		break;
2692 
2693 	case CP_BADAUTH:
2694 		ctl_putuint(peer_var[id].text, p->badauth);
2695 		break;
2696 
2697 	case CP_BOGUSORG:
2698 		ctl_putuint(peer_var[id].text, p->bogusorg);
2699 		break;
2700 
2701 	case CP_OLDPKT:
2702 		ctl_putuint(peer_var[id].text, p->oldpkt);
2703 		break;
2704 
2705 	case CP_SELDISP:
2706 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2707 		break;
2708 
2709 	case CP_SELBROKEN:
2710 		ctl_putuint(peer_var[id].text, p->selbroken);
2711 		break;
2712 
2713 	case CP_CANDIDATE:
2714 		ctl_putuint(peer_var[id].text, p->status);
2715 		break;
2716 #ifdef AUTOKEY
2717 	case CP_FLAGS:
2718 		if (p->crypto)
2719 			ctl_puthex(peer_var[id].text, p->crypto);
2720 		break;
2721 
2722 	case CP_SIGNATURE:
2723 		if (p->crypto) {
2724 			dp = EVP_get_digestbynid(p->crypto >> 16);
2725 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2726 			ctl_putstr(peer_var[id].text, str, strlen(str));
2727 		}
2728 		break;
2729 
2730 	case CP_HOST:
2731 		if (p->subject != NULL)
2732 			ctl_putstr(peer_var[id].text, p->subject,
2733 			    strlen(p->subject));
2734 		break;
2735 
2736 	case CP_VALID:		/* not used */
2737 		break;
2738 
2739 	case CP_INITSEQ:
2740 		if (NULL == (ap = p->recval.ptr))
2741 			break;
2742 
2743 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2744 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2745 		ctl_putfs(peer_var[CP_INITTSP].text,
2746 			  ntohl(p->recval.tstamp));
2747 		break;
2748 
2749 	case CP_IDENT:
2750 		if (p->ident != NULL)
2751 			ctl_putstr(peer_var[id].text, p->ident,
2752 			    strlen(p->ident));
2753 		break;
2754 
2755 
2756 #endif	/* AUTOKEY */
2757 	}
2758 }
2759 
2760 
2761 #ifdef REFCLOCK
2762 /*
2763  * ctl_putclock - output clock variables
2764  */
2765 static void
2766 ctl_putclock(
2767 	int id,
2768 	struct refclockstat *pcs,
2769 	int mustput
2770 	)
2771 {
2772 	char buf[CTL_MAX_DATA_LEN];
2773 	char *s, *t, *be;
2774 	const char *ss;
2775 	int i;
2776 	const struct ctl_var *k;
2777 
2778 	switch (id) {
2779 
2780 	case CC_TYPE:
2781 		if (mustput || pcs->clockdesc == NULL
2782 		    || *(pcs->clockdesc) == '\0') {
2783 			ctl_putuint(clock_var[id].text, pcs->type);
2784 		}
2785 		break;
2786 	case CC_TIMECODE:
2787 		ctl_putstr(clock_var[id].text,
2788 			   pcs->p_lastcode,
2789 			   (unsigned)pcs->lencode);
2790 		break;
2791 
2792 	case CC_POLL:
2793 		ctl_putuint(clock_var[id].text, pcs->polls);
2794 		break;
2795 
2796 	case CC_NOREPLY:
2797 		ctl_putuint(clock_var[id].text,
2798 			    pcs->noresponse);
2799 		break;
2800 
2801 	case CC_BADFORMAT:
2802 		ctl_putuint(clock_var[id].text,
2803 			    pcs->badformat);
2804 		break;
2805 
2806 	case CC_BADDATA:
2807 		ctl_putuint(clock_var[id].text,
2808 			    pcs->baddata);
2809 		break;
2810 
2811 	case CC_FUDGETIME1:
2812 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2813 			ctl_putdbl(clock_var[id].text,
2814 				   pcs->fudgetime1 * 1e3);
2815 		break;
2816 
2817 	case CC_FUDGETIME2:
2818 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2819 			ctl_putdbl(clock_var[id].text,
2820 				   pcs->fudgetime2 * 1e3);
2821 		break;
2822 
2823 	case CC_FUDGEVAL1:
2824 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2825 			ctl_putint(clock_var[id].text,
2826 				   pcs->fudgeval1);
2827 		break;
2828 
2829 	case CC_FUDGEVAL2:
2830 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2831 			if (pcs->fudgeval1 > 1)
2832 				ctl_putadr(clock_var[id].text,
2833 					   pcs->fudgeval2, NULL);
2834 			else
2835 				ctl_putrefid(clock_var[id].text,
2836 					     pcs->fudgeval2);
2837 		}
2838 		break;
2839 
2840 	case CC_FLAGS:
2841 		ctl_putuint(clock_var[id].text, pcs->flags);
2842 		break;
2843 
2844 	case CC_DEVICE:
2845 		if (pcs->clockdesc == NULL ||
2846 		    *(pcs->clockdesc) == '\0') {
2847 			if (mustput)
2848 				ctl_putstr(clock_var[id].text,
2849 					   "", 0);
2850 		} else {
2851 			ctl_putstr(clock_var[id].text,
2852 				   pcs->clockdesc,
2853 				   strlen(pcs->clockdesc));
2854 		}
2855 		break;
2856 
2857 	case CC_VARLIST:
2858 		s = buf;
2859 		be = buf + sizeof(buf);
2860 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2861 		    sizeof(buf))
2862 			break;	/* really long var name */
2863 
2864 		snprintf(s, sizeof(buf), "%s=\"",
2865 			 clock_var[CC_VARLIST].text);
2866 		s += strlen(s);
2867 		t = s;
2868 
2869 		for (k = clock_var; !(EOV & k->flags); k++) {
2870 			if (PADDING & k->flags)
2871 				continue;
2872 
2873 			i = strlen(k->text);
2874 			if (s + i + 1 >= be)
2875 				break;
2876 
2877 			if (s != t)
2878 				*s++ = ',';
2879 			memcpy(s, k->text, i);
2880 			s += i;
2881 		}
2882 
2883 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2884 			if (PADDING & k->flags)
2885 				continue;
2886 
2887 			ss = k->text;
2888 			if (NULL == ss)
2889 				continue;
2890 
2891 			while (*ss && *ss != '=')
2892 				ss++;
2893 			i = ss - k->text;
2894 			if (s + i + 1 >= be)
2895 				break;
2896 
2897 			if (s != t)
2898 				*s++ = ',';
2899 			memcpy(s, k->text, (unsigned)i);
2900 			s += i;
2901 			*s = '\0';
2902 		}
2903 		if (s + 2 >= be)
2904 			break;
2905 
2906 		*s++ = '"';
2907 		*s = '\0';
2908 		ctl_putdata(buf, (unsigned)(s - buf), 0);
2909 		break;
2910 	}
2911 }
2912 #endif
2913 
2914 
2915 
2916 /*
2917  * ctl_getitem - get the next data item from the incoming packet
2918  */
2919 static const struct ctl_var *
2920 ctl_getitem(
2921 	const struct ctl_var *var_list,
2922 	char **data
2923 	)
2924 {
2925 	static const struct ctl_var eol = { 0, EOV, NULL };
2926 	static char buf[128];
2927 	static u_long quiet_until;
2928 	const struct ctl_var *v;
2929 	const char *pch;
2930 	char *cp;
2931 	char *tp;
2932 
2933 	/*
2934 	 * Delete leading commas and white space
2935 	 */
2936 	while (reqpt < reqend && (*reqpt == ',' ||
2937 				  isspace((unsigned char)*reqpt)))
2938 		reqpt++;
2939 	if (reqpt >= reqend)
2940 		return NULL;
2941 
2942 	if (NULL == var_list)
2943 		return &eol;
2944 
2945 	/*
2946 	 * Look for a first character match on the tag.  If we find
2947 	 * one, see if it is a full match.
2948 	 */
2949 	cp = reqpt;
2950 	for (v = var_list; !(EOV & v->flags); v++) {
2951 		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2952 			pch = v->text;
2953 			while ('\0' != *pch && '=' != *pch && cp < reqend
2954 			       && *cp == *pch) {
2955 				cp++;
2956 				pch++;
2957 			}
2958 			if ('\0' == *pch || '=' == *pch) {
2959 				while (cp < reqend && isspace((u_char)*cp))
2960 					cp++;
2961 				if (cp == reqend || ',' == *cp) {
2962 					buf[0] = '\0';
2963 					*data = buf;
2964 					if (cp < reqend)
2965 						cp++;
2966 					reqpt = cp;
2967 					return v;
2968 				}
2969 				if ('=' == *cp) {
2970 					cp++;
2971 					tp = buf;
2972 					while (cp < reqend && isspace((u_char)*cp))
2973 						cp++;
2974 					while (cp < reqend && *cp != ',') {
2975 						*tp++ = *cp++;
2976 						if ((size_t)(tp - buf) >= sizeof(buf)) {
2977 							ctl_error(CERR_BADFMT);
2978 							numctlbadpkts++;
2979 							NLOG(NLOG_SYSEVENT)
2980 								if (quiet_until <= current_time) {
2981 									quiet_until = current_time + 300;
2982 									msyslog(LOG_WARNING,
2983 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2984 								}
2985 							return NULL;
2986 						}
2987 					}
2988 					if (cp < reqend)
2989 						cp++;
2990 					*tp-- = '\0';
2991 					while (tp >= buf && isspace((u_char)*tp))
2992 						*tp-- = '\0';
2993 					reqpt = cp;
2994 					*data = buf;
2995 					return v;
2996 				}
2997 			}
2998 			cp = reqpt;
2999 		}
3000 	}
3001 	return v;
3002 }
3003 
3004 
3005 /*
3006  * control_unspec - response to an unspecified op-code
3007  */
3008 /*ARGSUSED*/
3009 static void
3010 control_unspec(
3011 	struct recvbuf *rbufp,
3012 	int restrict_mask
3013 	)
3014 {
3015 	struct peer *peer;
3016 
3017 	/*
3018 	 * What is an appropriate response to an unspecified op-code?
3019 	 * I return no errors and no data, unless a specified assocation
3020 	 * doesn't exist.
3021 	 */
3022 	if (res_associd) {
3023 		peer = findpeerbyassoc(res_associd);
3024 		if (NULL == peer) {
3025 			ctl_error(CERR_BADASSOC);
3026 			return;
3027 		}
3028 		rpkt.status = htons(ctlpeerstatus(peer));
3029 	} else
3030 		rpkt.status = htons(ctlsysstatus());
3031 	ctl_flushpkt(0);
3032 }
3033 
3034 
3035 /*
3036  * read_status - return either a list of associd's, or a particular
3037  * peer's status.
3038  */
3039 /*ARGSUSED*/
3040 static void
3041 read_status(
3042 	struct recvbuf *rbufp,
3043 	int restrict_mask
3044 	)
3045 {
3046 	struct peer *peer;
3047 	const u_char *cp;
3048 	size_t n;
3049 	/* a_st holds association ID, status pairs alternating */
3050 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3051 
3052 #ifdef DEBUG
3053 	if (debug > 2)
3054 		printf("read_status: ID %d\n", res_associd);
3055 #endif
3056 	/*
3057 	 * Two choices here. If the specified association ID is
3058 	 * zero we return all known assocation ID's.  Otherwise
3059 	 * we return a bunch of stuff about the particular peer.
3060 	 */
3061 	if (res_associd) {
3062 		peer = findpeerbyassoc(res_associd);
3063 		if (NULL == peer) {
3064 			ctl_error(CERR_BADASSOC);
3065 			return;
3066 		}
3067 		rpkt.status = htons(ctlpeerstatus(peer));
3068 		if (res_authokay)
3069 			peer->num_events = 0;
3070 		/*
3071 		 * For now, output everything we know about the
3072 		 * peer. May be more selective later.
3073 		 */
3074 		for (cp = def_peer_var; *cp != 0; cp++)
3075 			ctl_putpeer((int)*cp, peer);
3076 		ctl_flushpkt(0);
3077 		return;
3078 	}
3079 	n = 0;
3080 	rpkt.status = htons(ctlsysstatus());
3081 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3082 		a_st[n++] = htons(peer->associd);
3083 		a_st[n++] = htons(ctlpeerstatus(peer));
3084 		/* two entries each loop iteration, so n + 1 */
3085 		if (n + 1 >= COUNTOF(a_st)) {
3086 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3087 				    1);
3088 			n = 0;
3089 		}
3090 	}
3091 	if (n)
3092 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3093 	ctl_flushpkt(0);
3094 }
3095 
3096 
3097 /*
3098  * read_peervars - half of read_variables() implementation
3099  */
3100 static void
3101 read_peervars(void)
3102 {
3103 	const struct ctl_var *v;
3104 	struct peer *peer;
3105 	const u_char *cp;
3106 	size_t i;
3107 	char *	valuep;
3108 	u_char	wants[CP_MAXCODE + 1];
3109 	u_int	gotvar;
3110 
3111 	/*
3112 	 * Wants info for a particular peer. See if we know
3113 	 * the guy.
3114 	 */
3115 	peer = findpeerbyassoc(res_associd);
3116 	if (NULL == peer) {
3117 		ctl_error(CERR_BADASSOC);
3118 		return;
3119 	}
3120 	rpkt.status = htons(ctlpeerstatus(peer));
3121 	if (res_authokay)
3122 		peer->num_events = 0;
3123 	ZERO(wants);
3124 	gotvar = 0;
3125 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3126 		if (v->flags & EOV) {
3127 			ctl_error(CERR_UNKNOWNVAR);
3128 			return;
3129 		}
3130 		INSIST(v->code < COUNTOF(wants));
3131 		wants[v->code] = 1;
3132 		gotvar = 1;
3133 	}
3134 	if (gotvar) {
3135 		for (i = 1; i < COUNTOF(wants); i++)
3136 			if (wants[i])
3137 				ctl_putpeer(i, peer);
3138 	} else
3139 		for (cp = def_peer_var; *cp != 0; cp++)
3140 			ctl_putpeer((int)*cp, peer);
3141 	ctl_flushpkt(0);
3142 }
3143 
3144 
3145 /*
3146  * read_sysvars - half of read_variables() implementation
3147  */
3148 static void
3149 read_sysvars(void)
3150 {
3151 	const struct ctl_var *v;
3152 	struct ctl_var *kv;
3153 	u_int	n;
3154 	u_int	gotvar;
3155 	const u_char *cs;
3156 	char *	valuep;
3157 	const char * pch;
3158 	u_char *wants;
3159 	size_t	wants_count;
3160 
3161 	/*
3162 	 * Wants system variables. Figure out which he wants
3163 	 * and give them to him.
3164 	 */
3165 	rpkt.status = htons(ctlsysstatus());
3166 	if (res_authokay)
3167 		ctl_sys_num_events = 0;
3168 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3169 	wants = emalloc_zero(wants_count);
3170 	gotvar = 0;
3171 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3172 		if (!(EOV & v->flags)) {
3173 			INSIST(v->code < wants_count);
3174 			wants[v->code] = 1;
3175 			gotvar = 1;
3176 		} else {
3177 			v = ctl_getitem(ext_sys_var, &valuep);
3178 			INSIST(v != NULL);
3179 			if (EOV & v->flags) {
3180 				ctl_error(CERR_UNKNOWNVAR);
3181 				free(wants);
3182 				return;
3183 			}
3184 			n = v->code + CS_MAXCODE + 1;
3185 			INSIST(n < wants_count);
3186 			wants[n] = 1;
3187 			gotvar = 1;
3188 		}
3189 	}
3190 	if (gotvar) {
3191 		for (n = 1; n <= CS_MAXCODE; n++)
3192 			if (wants[n])
3193 				ctl_putsys(n);
3194 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3195 			if (wants[n + CS_MAXCODE + 1]) {
3196 				pch = ext_sys_var[n].text;
3197 				ctl_putdata(pch, strlen(pch), 0);
3198 			}
3199 	} else {
3200 		for (cs = def_sys_var; *cs != 0; cs++)
3201 			ctl_putsys((int)*cs);
3202 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3203 			if (DEF & kv->flags)
3204 				ctl_putdata(kv->text, strlen(kv->text),
3205 					    0);
3206 	}
3207 	free(wants);
3208 	ctl_flushpkt(0);
3209 }
3210 
3211 
3212 /*
3213  * read_variables - return the variables the caller asks for
3214  */
3215 /*ARGSUSED*/
3216 static void
3217 read_variables(
3218 	struct recvbuf *rbufp,
3219 	int restrict_mask
3220 	)
3221 {
3222 	if (res_associd)
3223 		read_peervars();
3224 	else
3225 		read_sysvars();
3226 }
3227 
3228 
3229 /*
3230  * write_variables - write into variables. We only allow leap bit
3231  * writing this way.
3232  */
3233 /*ARGSUSED*/
3234 static void
3235 write_variables(
3236 	struct recvbuf *rbufp,
3237 	int restrict_mask
3238 	)
3239 {
3240 	const struct ctl_var *v;
3241 	int ext_var;
3242 	char *valuep;
3243 	long val;
3244 	size_t octets;
3245 	char *vareqv;
3246 	const char *t;
3247 	char *tt;
3248 
3249 	val = 0;
3250 	/*
3251 	 * If he's trying to write into a peer tell him no way
3252 	 */
3253 	if (res_associd != 0) {
3254 		ctl_error(CERR_PERMISSION);
3255 		return;
3256 	}
3257 
3258 	/*
3259 	 * Set status
3260 	 */
3261 	rpkt.status = htons(ctlsysstatus());
3262 
3263 	/*
3264 	 * Look through the variables. Dump out at the first sign of
3265 	 * trouble.
3266 	 */
3267 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3268 		ext_var = 0;
3269 		if (v->flags & EOV) {
3270 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3271 			    0) {
3272 				if (v->flags & EOV) {
3273 					ctl_error(CERR_UNKNOWNVAR);
3274 					return;
3275 				}
3276 				ext_var = 1;
3277 			} else {
3278 				break;
3279 			}
3280 		}
3281 		if (!(v->flags & CAN_WRITE)) {
3282 			ctl_error(CERR_PERMISSION);
3283 			return;
3284 		}
3285 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3286 							    &val))) {
3287 			ctl_error(CERR_BADFMT);
3288 			return;
3289 		}
3290 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3291 			ctl_error(CERR_BADVALUE);
3292 			return;
3293 		}
3294 
3295 		if (ext_var) {
3296 			octets = strlen(v->text) + strlen(valuep) + 2;
3297 			vareqv = emalloc(octets);
3298 			tt = vareqv;
3299 			t = v->text;
3300 			while (*t && *t != '=')
3301 				*tt++ = *t++;
3302 			*tt++ = '=';
3303 			memcpy(tt, valuep, 1 + strlen(valuep));
3304 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3305 			free(vareqv);
3306 		} else {
3307 			ctl_error(CERR_UNSPEC); /* really */
3308 			return;
3309 		}
3310 	}
3311 
3312 	/*
3313 	 * If we got anything, do it. xxx nothing to do ***
3314 	 */
3315 	/*
3316 	  if (leapind != ~0 || leapwarn != ~0) {
3317 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3318 	  ctl_error(CERR_PERMISSION);
3319 	  return;
3320 	  }
3321 	  }
3322 	*/
3323 	ctl_flushpkt(0);
3324 }
3325 
3326 
3327 /*
3328  * configure() processes ntpq :config/config-from-file, allowing
3329  *		generic runtime reconfiguration.
3330  */
3331 static void configure(
3332 	struct recvbuf *rbufp,
3333 	int restrict_mask
3334 	)
3335 {
3336 	size_t data_count;
3337 	int retval;
3338 
3339 	/* I haven't yet implemented changes to an existing association.
3340 	 * Hence check if the association id is 0
3341 	 */
3342 	if (res_associd != 0) {
3343 		ctl_error(CERR_BADVALUE);
3344 		return;
3345 	}
3346 
3347 	if (RES_NOMODIFY & restrict_mask) {
3348 		snprintf(remote_config.err_msg,
3349 			 sizeof(remote_config.err_msg),
3350 			 "runtime configuration prohibited by restrict ... nomodify");
3351 		ctl_putdata(remote_config.err_msg,
3352 			    strlen(remote_config.err_msg), 0);
3353 		ctl_flushpkt(0);
3354 		NLOG(NLOG_SYSINFO)
3355 			msyslog(LOG_NOTICE,
3356 				"runtime config from %s rejected due to nomodify restriction",
3357 				stoa(&rbufp->recv_srcadr));
3358 		sys_restricted++;
3359 		return;
3360 	}
3361 
3362 	/* Initialize the remote config buffer */
3363 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3364 
3365 	if (data_count > sizeof(remote_config.buffer) - 2) {
3366 		snprintf(remote_config.err_msg,
3367 			 sizeof(remote_config.err_msg),
3368 			 "runtime configuration failed: request too long");
3369 		ctl_putdata(remote_config.err_msg,
3370 			    strlen(remote_config.err_msg), 0);
3371 		ctl_flushpkt(0);
3372 		msyslog(LOG_NOTICE,
3373 			"runtime config from %s rejected: request too long",
3374 			stoa(&rbufp->recv_srcadr));
3375 		return;
3376 	}
3377 	/* Bug 2853 -- check if all characters were acceptable */
3378 	if (data_count != (size_t)(reqend - reqpt)) {
3379 		snprintf(remote_config.err_msg,
3380 			 sizeof(remote_config.err_msg),
3381 			 "runtime configuration failed: request contains an unprintable character");
3382 		ctl_putdata(remote_config.err_msg,
3383 			    strlen(remote_config.err_msg), 0);
3384 		ctl_flushpkt(0);
3385 		msyslog(LOG_NOTICE,
3386 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3387 			stoa(&rbufp->recv_srcadr),
3388 			reqpt[data_count]);
3389 		return;
3390 	}
3391 
3392 	memcpy(remote_config.buffer, reqpt, data_count);
3393 	/* The buffer has no trailing linefeed or NUL right now. For
3394 	 * logging, we do not want a newline, so we do that first after
3395 	 * adding the necessary NUL byte.
3396 	 */
3397 	remote_config.buffer[data_count] = '\0';
3398 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3399 		remote_config.buffer));
3400 	msyslog(LOG_NOTICE, "%s config: %s",
3401 		stoa(&rbufp->recv_srcadr),
3402 		remote_config.buffer);
3403 
3404 	/* Now we have to make sure there is a NL/NUL sequence at the
3405 	 * end of the buffer before we parse it.
3406 	 */
3407 	remote_config.buffer[data_count++] = '\n';
3408 	remote_config.buffer[data_count] = '\0';
3409 	remote_config.pos = 0;
3410 	remote_config.err_pos = 0;
3411 	remote_config.no_errors = 0;
3412 	config_remotely(&rbufp->recv_srcadr);
3413 
3414 	/*
3415 	 * Check if errors were reported. If not, output 'Config
3416 	 * Succeeded'.  Else output the error count.  It would be nice
3417 	 * to output any parser error messages.
3418 	 */
3419 	if (0 == remote_config.no_errors) {
3420 		retval = snprintf(remote_config.err_msg,
3421 				  sizeof(remote_config.err_msg),
3422 				  "Config Succeeded");
3423 		if (retval > 0)
3424 			remote_config.err_pos += retval;
3425 	}
3426 
3427 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3428 	ctl_flushpkt(0);
3429 
3430 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3431 
3432 	if (remote_config.no_errors > 0)
3433 		msyslog(LOG_NOTICE, "%d error in %s config",
3434 			remote_config.no_errors,
3435 			stoa(&rbufp->recv_srcadr));
3436 }
3437 
3438 
3439 /*
3440  * derive_nonce - generate client-address-specific nonce value
3441  *		  associated with a given timestamp.
3442  */
3443 static u_int32 derive_nonce(
3444 	sockaddr_u *	addr,
3445 	u_int32		ts_i,
3446 	u_int32		ts_f
3447 	)
3448 {
3449 	static u_int32	salt[4];
3450 	static u_long	last_salt_update;
3451 	union d_tag {
3452 		u_char	digest[EVP_MAX_MD_SIZE];
3453 		u_int32 extract;
3454 	}		d;
3455 	EVP_MD_CTX	ctx;
3456 	u_int		len;
3457 
3458 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3459 		salt[0] = ntp_random();
3460 		salt[1] = ntp_random();
3461 		salt[2] = ntp_random();
3462 		salt[3] = ntp_random();
3463 		last_salt_update = current_time;
3464 	}
3465 
3466 	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3467 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3468 	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3469 	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3470 	if (IS_IPV4(addr))
3471 		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3472 			         sizeof(SOCK_ADDR4(addr)));
3473 	else
3474 		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3475 			         sizeof(SOCK_ADDR6(addr)));
3476 	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3477 	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3478 	EVP_DigestFinal(&ctx, d.digest, &len);
3479 
3480 	return d.extract;
3481 }
3482 
3483 
3484 /*
3485  * generate_nonce - generate client-address-specific nonce string.
3486  */
3487 static void generate_nonce(
3488 	struct recvbuf *	rbufp,
3489 	char *			nonce,
3490 	size_t			nonce_octets
3491 	)
3492 {
3493 	u_int32 derived;
3494 
3495 	derived = derive_nonce(&rbufp->recv_srcadr,
3496 			       rbufp->recv_time.l_ui,
3497 			       rbufp->recv_time.l_uf);
3498 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3499 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3500 }
3501 
3502 
3503 /*
3504  * validate_nonce - validate client-address-specific nonce string.
3505  *
3506  * Returns TRUE if the local calculation of the nonce matches the
3507  * client-provided value and the timestamp is recent enough.
3508  */
3509 static int validate_nonce(
3510 	const char *		pnonce,
3511 	struct recvbuf *	rbufp
3512 	)
3513 {
3514 	u_int	ts_i;
3515 	u_int	ts_f;
3516 	l_fp	ts;
3517 	l_fp	now_delta;
3518 	u_int	supposed;
3519 	u_int	derived;
3520 
3521 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3522 		return FALSE;
3523 
3524 	ts.l_ui = (u_int32)ts_i;
3525 	ts.l_uf = (u_int32)ts_f;
3526 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3527 	get_systime(&now_delta);
3528 	L_SUB(&now_delta, &ts);
3529 
3530 	return (supposed == derived && now_delta.l_ui < 16);
3531 }
3532 
3533 
3534 /*
3535  * send_random_tag_value - send a randomly-generated three character
3536  *			   tag prefix, a '.', an index, a '=' and a
3537  *			   random integer value.
3538  *
3539  * To try to force clients to ignore unrecognized tags in mrulist,
3540  * reslist, and ifstats responses, the first and last rows are spiced
3541  * with randomly-generated tag names with correct .# index.  Make it
3542  * three characters knowing that none of the currently-used subscripted
3543  * tags have that length, avoiding the need to test for
3544  * tag collision.
3545  */
3546 static void
3547 send_random_tag_value(
3548 	int	indx
3549 	)
3550 {
3551 	int	noise;
3552 	char	buf[32];
3553 
3554 	noise = rand() ^ (rand() << 16);
3555 	buf[0] = 'a' + noise % 26;
3556 	noise >>= 5;
3557 	buf[1] = 'a' + noise % 26;
3558 	noise >>= 5;
3559 	buf[2] = 'a' + noise % 26;
3560 	noise >>= 5;
3561 	buf[3] = '.';
3562 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3563 	ctl_putuint(buf, noise);
3564 }
3565 
3566 
3567 /*
3568  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3569  *
3570  * To keep clients honest about not depending on the order of values,
3571  * and thereby avoid being locked into ugly workarounds to maintain
3572  * backward compatibility later as new fields are added to the response,
3573  * the order is random.
3574  */
3575 static void
3576 send_mru_entry(
3577 	mon_entry *	mon,
3578 	int		count
3579 	)
3580 {
3581 	const char first_fmt[] =	"first.%d";
3582 	const char ct_fmt[] =		"ct.%d";
3583 	const char mv_fmt[] =		"mv.%d";
3584 	const char rs_fmt[] =		"rs.%d";
3585 	char	tag[32];
3586 	u_char	sent[6]; /* 6 tag=value pairs */
3587 	u_int32 noise;
3588 	u_int	which;
3589 	u_int	remaining;
3590 	const char * pch;
3591 
3592 	remaining = COUNTOF(sent);
3593 	ZERO(sent);
3594 	noise = (u_int32)(rand() ^ (rand() << 16));
3595 	while (remaining > 0) {
3596 		which = (noise & 7) % COUNTOF(sent);
3597 		noise >>= 3;
3598 		while (sent[which])
3599 			which = (which + 1) % COUNTOF(sent);
3600 
3601 		switch (which) {
3602 
3603 		case 0:
3604 			snprintf(tag, sizeof(tag), addr_fmt, count);
3605 			pch = sptoa(&mon->rmtadr);
3606 			ctl_putunqstr(tag, pch, strlen(pch));
3607 			break;
3608 
3609 		case 1:
3610 			snprintf(tag, sizeof(tag), last_fmt, count);
3611 			ctl_putts(tag, &mon->last);
3612 			break;
3613 
3614 		case 2:
3615 			snprintf(tag, sizeof(tag), first_fmt, count);
3616 			ctl_putts(tag, &mon->first);
3617 			break;
3618 
3619 		case 3:
3620 			snprintf(tag, sizeof(tag), ct_fmt, count);
3621 			ctl_putint(tag, mon->count);
3622 			break;
3623 
3624 		case 4:
3625 			snprintf(tag, sizeof(tag), mv_fmt, count);
3626 			ctl_putuint(tag, mon->vn_mode);
3627 			break;
3628 
3629 		case 5:
3630 			snprintf(tag, sizeof(tag), rs_fmt, count);
3631 			ctl_puthex(tag, mon->flags);
3632 			break;
3633 		}
3634 		sent[which] = TRUE;
3635 		remaining--;
3636 	}
3637 }
3638 
3639 
3640 /*
3641  * read_mru_list - supports ntpq's mrulist command.
3642  *
3643  * The challenge here is to match ntpdc's monlist functionality without
3644  * being limited to hundreds of entries returned total, and without
3645  * requiring state on the server.  If state were required, ntpq's
3646  * mrulist command would require authentication.
3647  *
3648  * The approach was suggested by Ry Jones.  A finite and variable number
3649  * of entries are retrieved per request, to avoid having responses with
3650  * such large numbers of packets that socket buffers are overflowed and
3651  * packets lost.  The entries are retrieved oldest-first, taking into
3652  * account that the MRU list will be changing between each request.  We
3653  * can expect to see duplicate entries for addresses updated in the MRU
3654  * list during the fetch operation.  In the end, the client can assemble
3655  * a close approximation of the MRU list at the point in time the last
3656  * response was sent by ntpd.  The only difference is it may be longer,
3657  * containing some number of oldest entries which have since been
3658  * reclaimed.  If necessary, the protocol could be extended to zap those
3659  * from the client snapshot at the end, but so far that doesn't seem
3660  * useful.
3661  *
3662  * To accomodate the changing MRU list, the starting point for requests
3663  * after the first request is supplied as a series of last seen
3664  * timestamps and associated addresses, the newest ones the client has
3665  * received.  As long as at least one of those entries hasn't been
3666  * bumped to the head of the MRU list, ntpd can pick up at that point.
3667  * Otherwise, the request is failed and it is up to ntpq to back up and
3668  * provide the next newest entry's timestamps and addresses, conceivably
3669  * backing up all the way to the starting point.
3670  *
3671  * input parameters:
3672  *	nonce=		Regurgitated nonce retrieved by the client
3673  *			previously using CTL_OP_REQ_NONCE, demonstrating
3674  *			ability to receive traffic sent to its address.
3675  *	frags=		Limit on datagrams (fragments) in response.  Used
3676  *			by newer ntpq versions instead of limit= when
3677  *			retrieving multiple entries.
3678  *	limit=		Limit on MRU entries returned.  One of frags= or
3679  *			limit= must be provided.
3680  *			limit=1 is a special case:  Instead of fetching
3681  *			beginning with the supplied starting point's
3682  *			newer neighbor, fetch the supplied entry, and
3683  *			in that case the #.last timestamp can be zero.
3684  *			This enables fetching a single entry by IP
3685  *			address.  When limit is not one and frags= is
3686  *			provided, the fragment limit controls.
3687  *	mincount=	(decimal) Return entries with count >= mincount.
3688  *	laddr=		Return entries associated with the server's IP
3689  *			address given.  No port specification is needed,
3690  *			and any supplied is ignored.
3691  *	resall=		0x-prefixed hex restrict bits which must all be
3692  *			lit for an MRU entry to be included.
3693  *			Has precedence over any resany=.
3694  *	resany=		0x-prefixed hex restrict bits, at least one of
3695  *			which must be list for an MRU entry to be
3696  *			included.
3697  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3698  *			which client previously received.
3699  *	addr.0=		text of newest entry's IP address and port,
3700  *			IPv6 addresses in bracketed form: [::]:123
3701  *	last.1=		timestamp of 2nd newest entry client has.
3702  *	addr.1=		address of 2nd newest entry.
3703  *	[...]
3704  *
3705  * ntpq provides as many last/addr pairs as will fit in a single request
3706  * packet, except for the first request in a MRU fetch operation.
3707  *
3708  * The response begins with a new nonce value to be used for any
3709  * followup request.  Following the nonce is the next newer entry than
3710  * referred to by last.0 and addr.0, if the "0" entry has not been
3711  * bumped to the front.  If it has, the first entry returned will be the
3712  * next entry newer than referred to by last.1 and addr.1, and so on.
3713  * If none of the referenced entries remain unchanged, the request fails
3714  * and ntpq backs up to the next earlier set of entries to resync.
3715  *
3716  * Except for the first response, the response begins with confirmation
3717  * of the entry that precedes the first additional entry provided:
3718  *
3719  *	last.older=	hex l_fp timestamp matching one of the input
3720  *			.last timestamps, which entry now precedes the
3721  *			response 0. entry in the MRU list.
3722  *	addr.older=	text of address corresponding to older.last.
3723  *
3724  * And in any case, a successful response contains sets of values
3725  * comprising entries, with the oldest numbered 0 and incrementing from
3726  * there:
3727  *
3728  *	addr.#		text of IPv4 or IPv6 address and port
3729  *	last.#		hex l_fp timestamp of last receipt
3730  *	first.#		hex l_fp timestamp of first receipt
3731  *	ct.#		count of packets received
3732  *	mv.#		mode and version
3733  *	rs.#		restriction mask (RES_* bits)
3734  *
3735  * Note the code currently assumes there are no valid three letter
3736  * tags sent with each row, and needs to be adjusted if that changes.
3737  *
3738  * The client should accept the values in any order, and ignore .#
3739  * values which it does not understand, to allow a smooth path to
3740  * future changes without requiring a new opcode.  Clients can rely
3741  * on all *.0 values preceding any *.1 values, that is all values for
3742  * a given index number are together in the response.
3743  *
3744  * The end of the response list is noted with one or two tag=value
3745  * pairs.  Unconditionally:
3746  *
3747  *	now=		0x-prefixed l_fp timestamp at the server marking
3748  *			the end of the operation.
3749  *
3750  * If any entries were returned, now= is followed by:
3751  *
3752  *	last.newest=	hex l_fp identical to last.# of the prior
3753  *			entry.
3754  */
3755 static void read_mru_list(
3756 	struct recvbuf *rbufp,
3757 	int restrict_mask
3758 	)
3759 {
3760 	const char		nonce_text[] =		"nonce";
3761 	const char		frags_text[] =		"frags";
3762 	const char		limit_text[] =		"limit";
3763 	const char		mincount_text[] =	"mincount";
3764 	const char		resall_text[] =		"resall";
3765 	const char		resany_text[] =		"resany";
3766 	const char		maxlstint_text[] =	"maxlstint";
3767 	const char		laddr_text[] =		"laddr";
3768 	const char		resaxx_fmt[] =		"0x%hx";
3769 	u_int			limit;
3770 	u_short			frags;
3771 	u_short			resall;
3772 	u_short			resany;
3773 	int			mincount;
3774 	u_int			maxlstint;
3775 	sockaddr_u		laddr;
3776 	struct interface *	lcladr;
3777 	u_int			count;
3778 	u_int			ui;
3779 	u_int			uf;
3780 	l_fp			last[16];
3781 	sockaddr_u		addr[COUNTOF(last)];
3782 	char			buf[128];
3783 	struct ctl_var *	in_parms;
3784 	const struct ctl_var *	v;
3785 	char *			val;
3786 	const char *		pch;
3787 	char *			pnonce;
3788 	int			nonce_valid;
3789 	size_t			i;
3790 	int			priors;
3791 	u_short			hash;
3792 	mon_entry *		mon;
3793 	mon_entry *		prior_mon;
3794 	l_fp			now;
3795 
3796 	if (RES_NOMRULIST & restrict_mask) {
3797 		ctl_error(CERR_PERMISSION);
3798 		NLOG(NLOG_SYSINFO)
3799 			msyslog(LOG_NOTICE,
3800 				"mrulist from %s rejected due to nomrulist restriction",
3801 				stoa(&rbufp->recv_srcadr));
3802 		sys_restricted++;
3803 		return;
3804 	}
3805 	/*
3806 	 * fill in_parms var list with all possible input parameters.
3807 	 */
3808 	in_parms = NULL;
3809 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3810 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3811 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3812 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3813 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3814 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3815 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3816 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3817 	for (i = 0; i < COUNTOF(last); i++) {
3818 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3819 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3820 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3821 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3822 	}
3823 
3824 	/* decode input parms */
3825 	pnonce = NULL;
3826 	frags = 0;
3827 	limit = 0;
3828 	mincount = 0;
3829 	resall = 0;
3830 	resany = 0;
3831 	maxlstint = 0;
3832 	lcladr = NULL;
3833 	priors = 0;
3834 	ZERO(last);
3835 	ZERO(addr);
3836 
3837 	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3838 	       !(EOV & v->flags)) {
3839 		int si;
3840 
3841 		if (!strcmp(nonce_text, v->text)) {
3842 			if (NULL != pnonce)
3843 				free(pnonce);
3844 			pnonce = estrdup(val);
3845 		} else if (!strcmp(frags_text, v->text)) {
3846 			sscanf(val, "%hu", &frags);
3847 		} else if (!strcmp(limit_text, v->text)) {
3848 			sscanf(val, "%u", &limit);
3849 		} else if (!strcmp(mincount_text, v->text)) {
3850 			if (1 != sscanf(val, "%d", &mincount) ||
3851 			    mincount < 0)
3852 				mincount = 0;
3853 		} else if (!strcmp(resall_text, v->text)) {
3854 			sscanf(val, resaxx_fmt, &resall);
3855 		} else if (!strcmp(resany_text, v->text)) {
3856 			sscanf(val, resaxx_fmt, &resany);
3857 		} else if (!strcmp(maxlstint_text, v->text)) {
3858 			sscanf(val, "%u", &maxlstint);
3859 		} else if (!strcmp(laddr_text, v->text)) {
3860 			if (decodenetnum(val, &laddr))
3861 				lcladr = getinterface(&laddr, 0);
3862 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3863 			   (size_t)si < COUNTOF(last)) {
3864 			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3865 				last[si].l_ui = ui;
3866 				last[si].l_uf = uf;
3867 				if (!SOCK_UNSPEC(&addr[si]) &&
3868 				    si == priors)
3869 					priors++;
3870 			}
3871 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3872 			   (size_t)si < COUNTOF(addr)) {
3873 			if (decodenetnum(val, &addr[si])
3874 			    && last[si].l_ui && last[si].l_uf &&
3875 			    si == priors)
3876 				priors++;
3877 		}
3878 	}
3879 	free_varlist(in_parms);
3880 	in_parms = NULL;
3881 
3882 	/* return no responses until the nonce is validated */
3883 	if (NULL == pnonce)
3884 		return;
3885 
3886 	nonce_valid = validate_nonce(pnonce, rbufp);
3887 	free(pnonce);
3888 	if (!nonce_valid)
3889 		return;
3890 
3891 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3892 	    frags > MRU_FRAGS_LIMIT) {
3893 		ctl_error(CERR_BADVALUE);
3894 		return;
3895 	}
3896 
3897 	/*
3898 	 * If either frags or limit is not given, use the max.
3899 	 */
3900 	if (0 != frags && 0 == limit)
3901 		limit = UINT_MAX;
3902 	else if (0 != limit && 0 == frags)
3903 		frags = MRU_FRAGS_LIMIT;
3904 
3905 	/*
3906 	 * Find the starting point if one was provided.
3907 	 */
3908 	mon = NULL;
3909 	for (i = 0; i < (size_t)priors; i++) {
3910 		hash = MON_HASH(&addr[i]);
3911 		for (mon = mon_hash[hash];
3912 		     mon != NULL;
3913 		     mon = mon->hash_next)
3914 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3915 				break;
3916 		if (mon != NULL) {
3917 			if (L_ISEQU(&mon->last, &last[i]))
3918 				break;
3919 			mon = NULL;
3920 		}
3921 	}
3922 
3923 	/* If a starting point was provided... */
3924 	if (priors) {
3925 		/* and none could be found unmodified... */
3926 		if (NULL == mon) {
3927 			/* tell ntpq to try again with older entries */
3928 			ctl_error(CERR_UNKNOWNVAR);
3929 			return;
3930 		}
3931 		/* confirm the prior entry used as starting point */
3932 		ctl_putts("last.older", &mon->last);
3933 		pch = sptoa(&mon->rmtadr);
3934 		ctl_putunqstr("addr.older", pch, strlen(pch));
3935 
3936 		/*
3937 		 * Move on to the first entry the client doesn't have,
3938 		 * except in the special case of a limit of one.  In
3939 		 * that case return the starting point entry.
3940 		 */
3941 		if (limit > 1)
3942 			mon = PREV_DLIST(mon_mru_list, mon, mru);
3943 	} else {	/* start with the oldest */
3944 		mon = TAIL_DLIST(mon_mru_list, mru);
3945 	}
3946 
3947 	/*
3948 	 * send up to limit= entries in up to frags= datagrams
3949 	 */
3950 	get_systime(&now);
3951 	generate_nonce(rbufp, buf, sizeof(buf));
3952 	ctl_putunqstr("nonce", buf, strlen(buf));
3953 	prior_mon = NULL;
3954 	for (count = 0;
3955 	     mon != NULL && res_frags < frags && count < limit;
3956 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3957 
3958 		if (mon->count < mincount)
3959 			continue;
3960 		if (resall && resall != (resall & mon->flags))
3961 			continue;
3962 		if (resany && !(resany & mon->flags))
3963 			continue;
3964 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3965 		    maxlstint)
3966 			continue;
3967 		if (lcladr != NULL && mon->lcladr != lcladr)
3968 			continue;
3969 
3970 		send_mru_entry(mon, count);
3971 		if (!count)
3972 			send_random_tag_value(0);
3973 		count++;
3974 		prior_mon = mon;
3975 	}
3976 
3977 	/*
3978 	 * If this batch completes the MRU list, say so explicitly with
3979 	 * a now= l_fp timestamp.
3980 	 */
3981 	if (NULL == mon) {
3982 		if (count > 1)
3983 			send_random_tag_value(count - 1);
3984 		ctl_putts("now", &now);
3985 		/* if any entries were returned confirm the last */
3986 		if (prior_mon != NULL)
3987 			ctl_putts("last.newest", &prior_mon->last);
3988 	}
3989 	ctl_flushpkt(0);
3990 }
3991 
3992 
3993 /*
3994  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3995  *
3996  * To keep clients honest about not depending on the order of values,
3997  * and thereby avoid being locked into ugly workarounds to maintain
3998  * backward compatibility later as new fields are added to the response,
3999  * the order is random.
4000  */
4001 static void
4002 send_ifstats_entry(
4003 	endpt *	la,
4004 	u_int	ifnum
4005 	)
4006 {
4007 	const char addr_fmtu[] =	"addr.%u";
4008 	const char bcast_fmt[] =	"bcast.%u";
4009 	const char en_fmt[] =		"en.%u";	/* enabled */
4010 	const char name_fmt[] =		"name.%u";
4011 	const char flags_fmt[] =	"flags.%u";
4012 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4013 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4014 	const char rx_fmt[] =		"rx.%u";
4015 	const char tx_fmt[] =		"tx.%u";
4016 	const char txerr_fmt[] =	"txerr.%u";
4017 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4018 	const char up_fmt[] =		"up.%u";	/* uptime */
4019 	char	tag[32];
4020 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4021 	int	noisebits;
4022 	u_int32 noise;
4023 	u_int	which;
4024 	u_int	remaining;
4025 	const char *pch;
4026 
4027 	remaining = COUNTOF(sent);
4028 	ZERO(sent);
4029 	noise = 0;
4030 	noisebits = 0;
4031 	while (remaining > 0) {
4032 		if (noisebits < 4) {
4033 			noise = rand() ^ (rand() << 16);
4034 			noisebits = 31;
4035 		}
4036 		which = (noise & 0xf) % COUNTOF(sent);
4037 		noise >>= 4;
4038 		noisebits -= 4;
4039 
4040 		while (sent[which])
4041 			which = (which + 1) % COUNTOF(sent);
4042 
4043 		switch (which) {
4044 
4045 		case 0:
4046 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4047 			pch = sptoa(&la->sin);
4048 			ctl_putunqstr(tag, pch, strlen(pch));
4049 			break;
4050 
4051 		case 1:
4052 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4053 			if (INT_BCASTOPEN & la->flags)
4054 				pch = sptoa(&la->bcast);
4055 			else
4056 				pch = "";
4057 			ctl_putunqstr(tag, pch, strlen(pch));
4058 			break;
4059 
4060 		case 2:
4061 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4062 			ctl_putint(tag, !la->ignore_packets);
4063 			break;
4064 
4065 		case 3:
4066 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4067 			ctl_putstr(tag, la->name, strlen(la->name));
4068 			break;
4069 
4070 		case 4:
4071 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4072 			ctl_puthex(tag, (u_int)la->flags);
4073 			break;
4074 
4075 		case 5:
4076 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4077 			ctl_putint(tag, la->last_ttl);
4078 			break;
4079 
4080 		case 6:
4081 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4082 			ctl_putint(tag, la->num_mcast);
4083 			break;
4084 
4085 		case 7:
4086 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4087 			ctl_putint(tag, la->received);
4088 			break;
4089 
4090 		case 8:
4091 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4092 			ctl_putint(tag, la->sent);
4093 			break;
4094 
4095 		case 9:
4096 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4097 			ctl_putint(tag, la->notsent);
4098 			break;
4099 
4100 		case 10:
4101 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4102 			ctl_putuint(tag, la->peercnt);
4103 			break;
4104 
4105 		case 11:
4106 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4107 			ctl_putuint(tag, current_time - la->starttime);
4108 			break;
4109 		}
4110 		sent[which] = TRUE;
4111 		remaining--;
4112 	}
4113 	send_random_tag_value((int)ifnum);
4114 }
4115 
4116 
4117 /*
4118  * read_ifstats - send statistics for each local address, exposed by
4119  *		  ntpq -c ifstats
4120  */
4121 static void
4122 read_ifstats(
4123 	struct recvbuf *	rbufp
4124 	)
4125 {
4126 	u_int	ifidx;
4127 	endpt *	la;
4128 
4129 	/*
4130 	 * loop over [0..sys_ifnum] searching ep_list for each
4131 	 * ifnum in turn.
4132 	 */
4133 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4134 		for (la = ep_list; la != NULL; la = la->elink)
4135 			if (ifidx == la->ifnum)
4136 				break;
4137 		if (NULL == la)
4138 			continue;
4139 		/* return stats for one local address */
4140 		send_ifstats_entry(la, ifidx);
4141 	}
4142 	ctl_flushpkt(0);
4143 }
4144 
4145 static void
4146 sockaddrs_from_restrict_u(
4147 	sockaddr_u *	psaA,
4148 	sockaddr_u *	psaM,
4149 	restrict_u *	pres,
4150 	int		ipv6
4151 	)
4152 {
4153 	ZERO(*psaA);
4154 	ZERO(*psaM);
4155 	if (!ipv6) {
4156 		psaA->sa.sa_family = AF_INET;
4157 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4158 		psaM->sa.sa_family = AF_INET;
4159 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4160 	} else {
4161 		psaA->sa.sa_family = AF_INET6;
4162 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4163 		       sizeof(psaA->sa6.sin6_addr));
4164 		psaM->sa.sa_family = AF_INET6;
4165 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4166 		       sizeof(psaA->sa6.sin6_addr));
4167 	}
4168 }
4169 
4170 
4171 /*
4172  * Send a restrict entry in response to a "ntpq -c reslist" request.
4173  *
4174  * To keep clients honest about not depending on the order of values,
4175  * and thereby avoid being locked into ugly workarounds to maintain
4176  * backward compatibility later as new fields are added to the response,
4177  * the order is random.
4178  */
4179 static void
4180 send_restrict_entry(
4181 	restrict_u *	pres,
4182 	int		ipv6,
4183 	u_int		idx
4184 	)
4185 {
4186 	const char addr_fmtu[] =	"addr.%u";
4187 	const char mask_fmtu[] =	"mask.%u";
4188 	const char hits_fmt[] =		"hits.%u";
4189 	const char flags_fmt[] =	"flags.%u";
4190 	char		tag[32];
4191 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4192 	int		noisebits;
4193 	u_int32		noise;
4194 	u_int		which;
4195 	u_int		remaining;
4196 	sockaddr_u	addr;
4197 	sockaddr_u	mask;
4198 	const char *	pch;
4199 	char *		buf;
4200 	const char *	match_str;
4201 	const char *	access_str;
4202 
4203 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4204 	remaining = COUNTOF(sent);
4205 	ZERO(sent);
4206 	noise = 0;
4207 	noisebits = 0;
4208 	while (remaining > 0) {
4209 		if (noisebits < 2) {
4210 			noise = rand() ^ (rand() << 16);
4211 			noisebits = 31;
4212 		}
4213 		which = (noise & 0x3) % COUNTOF(sent);
4214 		noise >>= 2;
4215 		noisebits -= 2;
4216 
4217 		while (sent[which])
4218 			which = (which + 1) % COUNTOF(sent);
4219 
4220 		switch (which) {
4221 
4222 		case 0:
4223 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4224 			pch = stoa(&addr);
4225 			ctl_putunqstr(tag, pch, strlen(pch));
4226 			break;
4227 
4228 		case 1:
4229 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4230 			pch = stoa(&mask);
4231 			ctl_putunqstr(tag, pch, strlen(pch));
4232 			break;
4233 
4234 		case 2:
4235 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4236 			ctl_putuint(tag, pres->count);
4237 			break;
4238 
4239 		case 3:
4240 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4241 			match_str = res_match_flags(pres->mflags);
4242 			access_str = res_access_flags(pres->flags);
4243 			if ('\0' == match_str[0]) {
4244 				pch = access_str;
4245 			} else {
4246 				LIB_GETBUF(buf);
4247 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4248 					 match_str, access_str);
4249 				pch = buf;
4250 			}
4251 			ctl_putunqstr(tag, pch, strlen(pch));
4252 			break;
4253 		}
4254 		sent[which] = TRUE;
4255 		remaining--;
4256 	}
4257 	send_random_tag_value((int)idx);
4258 }
4259 
4260 
4261 static void
4262 send_restrict_list(
4263 	restrict_u *	pres,
4264 	int		ipv6,
4265 	u_int *		pidx
4266 	)
4267 {
4268 	for ( ; pres != NULL; pres = pres->link) {
4269 		send_restrict_entry(pres, ipv6, *pidx);
4270 		(*pidx)++;
4271 	}
4272 }
4273 
4274 
4275 /*
4276  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4277  */
4278 static void
4279 read_addr_restrictions(
4280 	struct recvbuf *	rbufp
4281 )
4282 {
4283 	u_int idx;
4284 
4285 	idx = 0;
4286 	send_restrict_list(restrictlist4, FALSE, &idx);
4287 	send_restrict_list(restrictlist6, TRUE, &idx);
4288 	ctl_flushpkt(0);
4289 }
4290 
4291 
4292 /*
4293  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4294  */
4295 static void
4296 read_ordlist(
4297 	struct recvbuf *	rbufp,
4298 	int			restrict_mask
4299 	)
4300 {
4301 	const char ifstats_s[] = "ifstats";
4302 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4303 	const char addr_rst_s[] = "addr_restrictions";
4304 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4305 	struct ntp_control *	cpkt;
4306 	u_short			qdata_octets;
4307 
4308 	/*
4309 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4310 	 * used only for ntpq -c ifstats.  With the addition of reslist
4311 	 * the same opcode was generalized to retrieve ordered lists
4312 	 * which require authentication.  The request data is empty or
4313 	 * contains "ifstats" (not null terminated) to retrieve local
4314 	 * addresses and associated stats.  It is "addr_restrictions"
4315 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4316 	 * which are access control lists.  Other request data return
4317 	 * CERR_UNKNOWNVAR.
4318 	 */
4319 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4320 	qdata_octets = ntohs(cpkt->count);
4321 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4322 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4323 		read_ifstats(rbufp);
4324 		return;
4325 	}
4326 	if (a_r_chars == qdata_octets &&
4327 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4328 		read_addr_restrictions(rbufp);
4329 		return;
4330 	}
4331 	ctl_error(CERR_UNKNOWNVAR);
4332 }
4333 
4334 
4335 /*
4336  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4337  */
4338 static void req_nonce(
4339 	struct recvbuf *	rbufp,
4340 	int			restrict_mask
4341 	)
4342 {
4343 	char	buf[64];
4344 
4345 	generate_nonce(rbufp, buf, sizeof(buf));
4346 	ctl_putunqstr("nonce", buf, strlen(buf));
4347 	ctl_flushpkt(0);
4348 }
4349 
4350 
4351 /*
4352  * read_clockstatus - return clock radio status
4353  */
4354 /*ARGSUSED*/
4355 static void
4356 read_clockstatus(
4357 	struct recvbuf *rbufp,
4358 	int restrict_mask
4359 	)
4360 {
4361 #ifndef REFCLOCK
4362 	/*
4363 	 * If no refclock support, no data to return
4364 	 */
4365 	ctl_error(CERR_BADASSOC);
4366 #else
4367 	const struct ctl_var *	v;
4368 	int			i;
4369 	struct peer *		peer;
4370 	char *			valuep;
4371 	u_char *		wants;
4372 	size_t			wants_alloc;
4373 	int			gotvar;
4374 	const u_char *		cc;
4375 	struct ctl_var *	kv;
4376 	struct refclockstat	cs;
4377 
4378 	if (res_associd != 0) {
4379 		peer = findpeerbyassoc(res_associd);
4380 	} else {
4381 		/*
4382 		 * Find a clock for this jerk.	If the system peer
4383 		 * is a clock use it, else search peer_list for one.
4384 		 */
4385 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4386 		    sys_peer->flags))
4387 			peer = sys_peer;
4388 		else
4389 			for (peer = peer_list;
4390 			     peer != NULL;
4391 			     peer = peer->p_link)
4392 				if (FLAG_REFCLOCK & peer->flags)
4393 					break;
4394 	}
4395 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4396 		ctl_error(CERR_BADASSOC);
4397 		return;
4398 	}
4399 	/*
4400 	 * If we got here we have a peer which is a clock. Get his
4401 	 * status.
4402 	 */
4403 	cs.kv_list = NULL;
4404 	refclock_control(&peer->srcadr, NULL, &cs);
4405 	kv = cs.kv_list;
4406 	/*
4407 	 * Look for variables in the packet.
4408 	 */
4409 	rpkt.status = htons(ctlclkstatus(&cs));
4410 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4411 	wants = emalloc_zero(wants_alloc);
4412 	gotvar = FALSE;
4413 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4414 		if (!(EOV & v->flags)) {
4415 			wants[v->code] = TRUE;
4416 			gotvar = TRUE;
4417 		} else {
4418 			v = ctl_getitem(kv, &valuep);
4419 			INSIST(NULL != v);
4420 			if (EOV & v->flags) {
4421 				ctl_error(CERR_UNKNOWNVAR);
4422 				free(wants);
4423 				free_varlist(cs.kv_list);
4424 				return;
4425 			}
4426 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4427 			gotvar = TRUE;
4428 		}
4429 	}
4430 
4431 	if (gotvar) {
4432 		for (i = 1; i <= CC_MAXCODE; i++)
4433 			if (wants[i])
4434 				ctl_putclock(i, &cs, TRUE);
4435 		if (kv != NULL)
4436 			for (i = 0; !(EOV & kv[i].flags); i++)
4437 				if (wants[i + CC_MAXCODE + 1])
4438 					ctl_putdata(kv[i].text,
4439 						    strlen(kv[i].text),
4440 						    FALSE);
4441 	} else {
4442 		for (cc = def_clock_var; *cc != 0; cc++)
4443 			ctl_putclock((int)*cc, &cs, FALSE);
4444 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4445 			if (DEF & kv->flags)
4446 				ctl_putdata(kv->text, strlen(kv->text),
4447 					    FALSE);
4448 	}
4449 
4450 	free(wants);
4451 	free_varlist(cs.kv_list);
4452 
4453 	ctl_flushpkt(0);
4454 #endif
4455 }
4456 
4457 
4458 /*
4459  * write_clockstatus - we don't do this
4460  */
4461 /*ARGSUSED*/
4462 static void
4463 write_clockstatus(
4464 	struct recvbuf *rbufp,
4465 	int restrict_mask
4466 	)
4467 {
4468 	ctl_error(CERR_PERMISSION);
4469 }
4470 
4471 /*
4472  * Trap support from here on down. We send async trap messages when the
4473  * upper levels report trouble. Traps can by set either by control
4474  * messages or by configuration.
4475  */
4476 /*
4477  * set_trap - set a trap in response to a control message
4478  */
4479 static void
4480 set_trap(
4481 	struct recvbuf *rbufp,
4482 	int restrict_mask
4483 	)
4484 {
4485 	int traptype;
4486 
4487 	/*
4488 	 * See if this guy is allowed
4489 	 */
4490 	if (restrict_mask & RES_NOTRAP) {
4491 		ctl_error(CERR_PERMISSION);
4492 		return;
4493 	}
4494 
4495 	/*
4496 	 * Determine his allowed trap type.
4497 	 */
4498 	traptype = TRAP_TYPE_PRIO;
4499 	if (restrict_mask & RES_LPTRAP)
4500 		traptype = TRAP_TYPE_NONPRIO;
4501 
4502 	/*
4503 	 * Call ctlsettrap() to do the work.  Return
4504 	 * an error if it can't assign the trap.
4505 	 */
4506 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4507 			(int)res_version))
4508 		ctl_error(CERR_NORESOURCE);
4509 	ctl_flushpkt(0);
4510 }
4511 
4512 
4513 /*
4514  * unset_trap - unset a trap in response to a control message
4515  */
4516 static void
4517 unset_trap(
4518 	struct recvbuf *rbufp,
4519 	int restrict_mask
4520 	)
4521 {
4522 	int traptype;
4523 
4524 	/*
4525 	 * We don't prevent anyone from removing his own trap unless the
4526 	 * trap is configured. Note we also must be aware of the
4527 	 * possibility that restriction flags were changed since this
4528 	 * guy last set his trap. Set the trap type based on this.
4529 	 */
4530 	traptype = TRAP_TYPE_PRIO;
4531 	if (restrict_mask & RES_LPTRAP)
4532 		traptype = TRAP_TYPE_NONPRIO;
4533 
4534 	/*
4535 	 * Call ctlclrtrap() to clear this out.
4536 	 */
4537 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4538 		ctl_error(CERR_BADASSOC);
4539 	ctl_flushpkt(0);
4540 }
4541 
4542 
4543 /*
4544  * ctlsettrap - called to set a trap
4545  */
4546 int
4547 ctlsettrap(
4548 	sockaddr_u *raddr,
4549 	struct interface *linter,
4550 	int traptype,
4551 	int version
4552 	)
4553 {
4554 	size_t n;
4555 	struct ctl_trap *tp;
4556 	struct ctl_trap *tptouse;
4557 
4558 	/*
4559 	 * See if we can find this trap.  If so, we only need update
4560 	 * the flags and the time.
4561 	 */
4562 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4563 		switch (traptype) {
4564 
4565 		case TRAP_TYPE_CONFIG:
4566 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4567 			break;
4568 
4569 		case TRAP_TYPE_PRIO:
4570 			if (tp->tr_flags & TRAP_CONFIGURED)
4571 				return (1); /* don't change anything */
4572 			tp->tr_flags = TRAP_INUSE;
4573 			break;
4574 
4575 		case TRAP_TYPE_NONPRIO:
4576 			if (tp->tr_flags & TRAP_CONFIGURED)
4577 				return (1); /* don't change anything */
4578 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4579 			break;
4580 		}
4581 		tp->tr_settime = current_time;
4582 		tp->tr_resets++;
4583 		return (1);
4584 	}
4585 
4586 	/*
4587 	 * First we heard of this guy.	Try to find a trap structure
4588 	 * for him to use, clearing out lesser priority guys if we
4589 	 * have to. Clear out anyone who's expired while we're at it.
4590 	 */
4591 	tptouse = NULL;
4592 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4593 		tp = &ctl_traps[n];
4594 		if ((TRAP_INUSE & tp->tr_flags) &&
4595 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4596 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4597 			tp->tr_flags = 0;
4598 			num_ctl_traps--;
4599 		}
4600 		if (!(TRAP_INUSE & tp->tr_flags)) {
4601 			tptouse = tp;
4602 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4603 			switch (traptype) {
4604 
4605 			case TRAP_TYPE_CONFIG:
4606 				if (tptouse == NULL) {
4607 					tptouse = tp;
4608 					break;
4609 				}
4610 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4611 				    !(TRAP_NONPRIO & tp->tr_flags))
4612 					break;
4613 
4614 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4615 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4616 					tptouse = tp;
4617 					break;
4618 				}
4619 				if (tptouse->tr_origtime <
4620 				    tp->tr_origtime)
4621 					tptouse = tp;
4622 				break;
4623 
4624 			case TRAP_TYPE_PRIO:
4625 				if ( TRAP_NONPRIO & tp->tr_flags) {
4626 					if (tptouse == NULL ||
4627 					    ((TRAP_INUSE &
4628 					      tptouse->tr_flags) &&
4629 					     tptouse->tr_origtime <
4630 					     tp->tr_origtime))
4631 						tptouse = tp;
4632 				}
4633 				break;
4634 
4635 			case TRAP_TYPE_NONPRIO:
4636 				break;
4637 			}
4638 		}
4639 	}
4640 
4641 	/*
4642 	 * If we don't have room for him return an error.
4643 	 */
4644 	if (tptouse == NULL)
4645 		return (0);
4646 
4647 	/*
4648 	 * Set up this structure for him.
4649 	 */
4650 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4651 	tptouse->tr_count = tptouse->tr_resets = 0;
4652 	tptouse->tr_sequence = 1;
4653 	tptouse->tr_addr = *raddr;
4654 	tptouse->tr_localaddr = linter;
4655 	tptouse->tr_version = (u_char) version;
4656 	tptouse->tr_flags = TRAP_INUSE;
4657 	if (traptype == TRAP_TYPE_CONFIG)
4658 		tptouse->tr_flags |= TRAP_CONFIGURED;
4659 	else if (traptype == TRAP_TYPE_NONPRIO)
4660 		tptouse->tr_flags |= TRAP_NONPRIO;
4661 	num_ctl_traps++;
4662 	return (1);
4663 }
4664 
4665 
4666 /*
4667  * ctlclrtrap - called to clear a trap
4668  */
4669 int
4670 ctlclrtrap(
4671 	sockaddr_u *raddr,
4672 	struct interface *linter,
4673 	int traptype
4674 	)
4675 {
4676 	register struct ctl_trap *tp;
4677 
4678 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4679 		return (0);
4680 
4681 	if (tp->tr_flags & TRAP_CONFIGURED
4682 	    && traptype != TRAP_TYPE_CONFIG)
4683 		return (0);
4684 
4685 	tp->tr_flags = 0;
4686 	num_ctl_traps--;
4687 	return (1);
4688 }
4689 
4690 
4691 /*
4692  * ctlfindtrap - find a trap given the remote and local addresses
4693  */
4694 static struct ctl_trap *
4695 ctlfindtrap(
4696 	sockaddr_u *raddr,
4697 	struct interface *linter
4698 	)
4699 {
4700 	size_t	n;
4701 
4702 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4703 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4704 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4705 		    && (linter == ctl_traps[n].tr_localaddr))
4706 			return &ctl_traps[n];
4707 
4708 	return NULL;
4709 }
4710 
4711 
4712 /*
4713  * report_event - report an event to the trappers
4714  */
4715 void
4716 report_event(
4717 	int	err,		/* error code */
4718 	struct peer *peer,	/* peer structure pointer */
4719 	const char *str		/* protostats string */
4720 	)
4721 {
4722 	char	statstr[NTP_MAXSTRLEN];
4723 	int	i;
4724 	size_t	len;
4725 
4726 	/*
4727 	 * Report the error to the protostats file, system log and
4728 	 * trappers.
4729 	 */
4730 	if (peer == NULL) {
4731 
4732 		/*
4733 		 * Discard a system report if the number of reports of
4734 		 * the same type exceeds the maximum.
4735 		 */
4736 		if (ctl_sys_last_event != (u_char)err)
4737 			ctl_sys_num_events= 0;
4738 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4739 			return;
4740 
4741 		ctl_sys_last_event = (u_char)err;
4742 		ctl_sys_num_events++;
4743 		snprintf(statstr, sizeof(statstr),
4744 		    "0.0.0.0 %04x %02x %s",
4745 		    ctlsysstatus(), err, eventstr(err));
4746 		if (str != NULL) {
4747 			len = strlen(statstr);
4748 			snprintf(statstr + len, sizeof(statstr) - len,
4749 			    " %s", str);
4750 		}
4751 		NLOG(NLOG_SYSEVENT)
4752 			msyslog(LOG_INFO, "%s", statstr);
4753 	} else {
4754 
4755 		/*
4756 		 * Discard a peer report if the number of reports of
4757 		 * the same type exceeds the maximum for that peer.
4758 		 */
4759 		const char *	src;
4760 		u_char		errlast;
4761 
4762 		errlast = (u_char)err & ~PEER_EVENT;
4763 		if (peer->last_event == errlast)
4764 			peer->num_events = 0;
4765 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4766 			return;
4767 
4768 		peer->last_event = errlast;
4769 		peer->num_events++;
4770 		if (ISREFCLOCKADR(&peer->srcadr))
4771 			src = refnumtoa(&peer->srcadr);
4772 		else
4773 			src = stoa(&peer->srcadr);
4774 
4775 		snprintf(statstr, sizeof(statstr),
4776 		    "%s %04x %02x %s", src,
4777 		    ctlpeerstatus(peer), err, eventstr(err));
4778 		if (str != NULL) {
4779 			len = strlen(statstr);
4780 			snprintf(statstr + len, sizeof(statstr) - len,
4781 			    " %s", str);
4782 		}
4783 		NLOG(NLOG_PEEREVENT)
4784 			msyslog(LOG_INFO, "%s", statstr);
4785 	}
4786 	record_proto_stats(statstr);
4787 #if DEBUG
4788 	if (debug)
4789 		printf("event at %lu %s\n", current_time, statstr);
4790 #endif
4791 
4792 	/*
4793 	 * If no trappers, return.
4794 	 */
4795 	if (num_ctl_traps <= 0)
4796 		return;
4797 
4798 	/*
4799 	 * Set up the outgoing packet variables
4800 	 */
4801 	res_opcode = CTL_OP_ASYNCMSG;
4802 	res_offset = 0;
4803 	res_async = TRUE;
4804 	res_authenticate = FALSE;
4805 	datapt = rpkt.u.data;
4806 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4807 	if (!(err & PEER_EVENT)) {
4808 		rpkt.associd = 0;
4809 		rpkt.status = htons(ctlsysstatus());
4810 
4811 		/* Include the core system variables and the list. */
4812 		for (i = 1; i <= CS_VARLIST; i++)
4813 			ctl_putsys(i);
4814 	} else {
4815 		INSIST(peer != NULL);
4816 		rpkt.associd = htons(peer->associd);
4817 		rpkt.status = htons(ctlpeerstatus(peer));
4818 
4819 		/* Dump it all. Later, maybe less. */
4820 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4821 			ctl_putpeer(i, peer);
4822 #ifdef REFCLOCK
4823 		/*
4824 		 * for clock exception events: add clock variables to
4825 		 * reflect info on exception
4826 		 */
4827 		if (err == PEVNT_CLOCK) {
4828 			struct refclockstat cs;
4829 			struct ctl_var *kv;
4830 
4831 			cs.kv_list = NULL;
4832 			refclock_control(&peer->srcadr, NULL, &cs);
4833 
4834 			ctl_puthex("refclockstatus",
4835 				   ctlclkstatus(&cs));
4836 
4837 			for (i = 1; i <= CC_MAXCODE; i++)
4838 				ctl_putclock(i, &cs, FALSE);
4839 			for (kv = cs.kv_list;
4840 			     kv != NULL && !(EOV & kv->flags);
4841 			     kv++)
4842 				if (DEF & kv->flags)
4843 					ctl_putdata(kv->text,
4844 						    strlen(kv->text),
4845 						    FALSE);
4846 			free_varlist(cs.kv_list);
4847 		}
4848 #endif /* REFCLOCK */
4849 	}
4850 
4851 	/*
4852 	 * We're done, return.
4853 	 */
4854 	ctl_flushpkt(0);
4855 }
4856 
4857 
4858 /*
4859  * mprintf_event - printf-style varargs variant of report_event()
4860  */
4861 int
4862 mprintf_event(
4863 	int		evcode,		/* event code */
4864 	struct peer *	p,		/* may be NULL */
4865 	const char *	fmt,		/* msnprintf format */
4866 	...
4867 	)
4868 {
4869 	va_list	ap;
4870 	int	rc;
4871 	char	msg[512];
4872 
4873 	va_start(ap, fmt);
4874 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4875 	va_end(ap);
4876 	report_event(evcode, p, msg);
4877 
4878 	return rc;
4879 }
4880 
4881 
4882 /*
4883  * ctl_clr_stats - clear stat counters
4884  */
4885 void
4886 ctl_clr_stats(void)
4887 {
4888 	ctltimereset = current_time;
4889 	numctlreq = 0;
4890 	numctlbadpkts = 0;
4891 	numctlresponses = 0;
4892 	numctlfrags = 0;
4893 	numctlerrors = 0;
4894 	numctlfrags = 0;
4895 	numctltooshort = 0;
4896 	numctlinputresp = 0;
4897 	numctlinputfrag = 0;
4898 	numctlinputerr = 0;
4899 	numctlbadoffset = 0;
4900 	numctlbadversion = 0;
4901 	numctldatatooshort = 0;
4902 	numctlbadop = 0;
4903 	numasyncmsgs = 0;
4904 }
4905 
4906 static u_short
4907 count_var(
4908 	const struct ctl_var *k
4909 	)
4910 {
4911 	u_int c;
4912 
4913 	if (NULL == k)
4914 		return 0;
4915 
4916 	c = 0;
4917 	while (!(EOV & (k++)->flags))
4918 		c++;
4919 
4920 	ENSURE(c <= USHRT_MAX);
4921 	return (u_short)c;
4922 }
4923 
4924 
4925 char *
4926 add_var(
4927 	struct ctl_var **kv,
4928 	u_long size,
4929 	u_short def
4930 	)
4931 {
4932 	u_short		c;
4933 	struct ctl_var *k;
4934 	char *		buf;
4935 
4936 	c = count_var(*kv);
4937 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4938 	k = *kv;
4939 	buf = emalloc(size);
4940 	k[c].code  = c;
4941 	k[c].text  = buf;
4942 	k[c].flags = def;
4943 	k[c + 1].code  = 0;
4944 	k[c + 1].text  = NULL;
4945 	k[c + 1].flags = EOV;
4946 
4947 	return buf;
4948 }
4949 
4950 
4951 void
4952 set_var(
4953 	struct ctl_var **kv,
4954 	const char *data,
4955 	u_long size,
4956 	u_short def
4957 	)
4958 {
4959 	struct ctl_var *k;
4960 	const char *s;
4961 	const char *t;
4962 	char *td;
4963 
4964 	if (NULL == data || !size)
4965 		return;
4966 
4967 	k = *kv;
4968 	if (k != NULL) {
4969 		while (!(EOV & k->flags)) {
4970 			if (NULL == k->text)	{
4971 				td = emalloc(size);
4972 				memcpy(td, data, size);
4973 				k->text = td;
4974 				k->flags = def;
4975 				return;
4976 			} else {
4977 				s = data;
4978 				t = k->text;
4979 				while (*t != '=' && *s == *t) {
4980 					s++;
4981 					t++;
4982 				}
4983 				if (*s == *t && ((*t == '=') || !*t)) {
4984 					td = erealloc((void *)(intptr_t)k->text, size);
4985 					memcpy(td, data, size);
4986 					k->text = td;
4987 					k->flags = def;
4988 					return;
4989 				}
4990 			}
4991 			k++;
4992 		}
4993 	}
4994 	td = add_var(kv, size, def);
4995 	memcpy(td, data, size);
4996 }
4997 
4998 
4999 void
5000 set_sys_var(
5001 	const char *data,
5002 	u_long size,
5003 	u_short def
5004 	)
5005 {
5006 	set_var(&ext_sys_var, data, size, def);
5007 }
5008 
5009 
5010 /*
5011  * get_ext_sys_var() retrieves the value of a user-defined variable or
5012  * NULL if the variable has not been setvar'd.
5013  */
5014 const char *
5015 get_ext_sys_var(const char *tag)
5016 {
5017 	struct ctl_var *	v;
5018 	size_t			c;
5019 	const char *		val;
5020 
5021 	val = NULL;
5022 	c = strlen(tag);
5023 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5024 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5025 			if ('=' == v->text[c]) {
5026 				val = v->text + c + 1;
5027 				break;
5028 			} else if ('\0' == v->text[c]) {
5029 				val = "";
5030 				break;
5031 			}
5032 		}
5033 	}
5034 
5035 	return val;
5036 }
5037 
5038 
5039 void
5040 free_varlist(
5041 	struct ctl_var *kv
5042 	)
5043 {
5044 	struct ctl_var *k;
5045 	if (kv) {
5046 		for (k = kv; !(k->flags & EOV); k++)
5047 			free((void *)(intptr_t)k->text);
5048 		free((void *)kv);
5049 	}
5050 }
5051